1
|
Yin Z, Wei X, Cao Y, Dong Z, Long Y, Wan X. Regulatory balance between ear rot resistance and grain yield and their breeding applications in maize and other crops. J Adv Res 2024:S2090-1232(24)00479-X. [PMID: 39447642 DOI: 10.1016/j.jare.2024.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/19/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Fungi are prevalent pathogens that cause substantial yield losses of major crops. Ear rot (ER), which is primarily induced by Fusarium or Aspergillus species, poses a significant challenge to maize production worldwide. ER resistance is regulated by several small effect quantitative trait loci (QTLs). To date, only a few ER-related genes have been identified that impede molecular breeding efforts to breed ER-resistant maize varieties. AIM OF REVIEW Our aim here is to explore the research progress and mine genic resources related to ER resistance, and to propose a regulatory model elucidating the ER-resistant mechanism in maize as well as a trade-off model illustrating how crops balance fungal resistance and grain yield. Key Scientific Concepts of Review: This review presents a comprehensive bibliometric analysis of the research history and current trends in the genetic and molecular regulation underlying ER resistance in maize. Moreover, we analyzed and discovered the genic resources by identifying 162 environmentally stable loci (ESLs) from various independent forward genetics studies as well as 1391 conservatively differentially expressed genes (DEGs) that respond to Fusarium or Aspergillus infection through multi-omics data analysis. Additionally, this review discusses the syntenies found among maize ER, wheat Fusariumhead blight (FHB), and rice Bakanaedisease (RBD) resistance-related loci, along with the significant overlap between fungal resistance loci and reported yield-related loci, thus providing valuable insights into the regulatory mechanisms underlying the trade-offs between yield and defense in crops.
Collapse
Affiliation(s)
- Zechao Yin
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xun Wei
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Yanyong Cao
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Zhenying Dong
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China.
| | - Yan Long
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China.
| | - Xiangyuan Wan
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China.
| |
Collapse
|
2
|
Inoue K, Tsuchida N, Saijo Y. Modulation of plant immunity and biotic interactions under phosphate deficiency. JOURNAL OF PLANT RESEARCH 2024; 137:343-357. [PMID: 38693461 DOI: 10.1007/s10265-024-01546-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024]
Abstract
Phosphorus (P) is an essential macronutrient for plant life and growth. P is primarily acquired in the form of inorganic phosphate (Pi) from soil. To cope with Pi deficiency, plants have evolved an elaborate system to improve Pi acquisition and utilization through an array of developmental and physiological changes, termed Pi starvation response (PSR). Plants also assemble and manage mutualistic microbes to enhance Pi uptake, through integrating PSR and immunity signaling. A trade-off between plant growth and defense favors the notion that plants lower a cellular state of immunity to accommodate host-beneficial microbes for nutrition and growth at the cost of infection risk. However, the existing data indicate that plants selectively activate defense responses against pathogens, but do not or less against non-pathogens, even under nutrient deficiency. In this review, we highlight recent advances in the principles and mechanisms with which plants balance immunity and growth-related processes to optimize their adaptation to Pi deficiency.
Collapse
Affiliation(s)
- Kanako Inoue
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara, 630-0192, Japan
| | - Natsuki Tsuchida
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara, 630-0192, Japan
| | - Yusuke Saijo
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
3
|
Meline V, Hendrich CG, Truchon AN, Caldwell D, Hiles R, Leuschen-Kohl R, Tran T, Mitra RM, Allen C, Iyer-Pascuzzi AS. Tomato deploys defence and growth simultaneously to resist bacterial wilt disease. PLANT, CELL & ENVIRONMENT 2023; 46:3040-3058. [PMID: 36213953 DOI: 10.1111/pce.14456] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Plant disease limits crop production, and host genetic resistance is a major means of control. Plant pathogenic Ralstonia causes bacterial wilt disease and is best controlled with resistant varieties. Tomato wilt resistance is multigenic, yet the mechanisms of resistance remain largely unknown. We combined metaRNAseq analysis and functional experiments to identify core Ralstonia-responsive genes and the corresponding biological mechanisms in wilt-resistant and wilt-susceptible tomatoes. While trade-offs between growth and defence are common in plants, wilt-resistant plants activated both defence responses and growth processes. Measurements of innate immunity and growth, including reactive oxygen species production and root system growth, respectively, validated that resistant plants executed defence-related processes at the same time they increased root growth. In contrast, in wilt-susceptible plants roots senesced and root surface area declined following Ralstonia inoculation. Wilt-resistant plants repressed genes predicted to negatively regulate water stress tolerance, while susceptible plants repressed genes predicted to promote water stress tolerance. Our results suggest that wilt-resistant plants can simultaneously promote growth and defence by investing in resources that act in both processes. Infected susceptible plants activate defences, but fail to grow and so succumb to Ralstonia, likely because they cannot tolerate the water stress induced by vascular wilt.
Collapse
Affiliation(s)
- Valerian Meline
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| | - Connor G Hendrich
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin, USA
| | - Alicia N Truchon
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin, USA
| | - Denise Caldwell
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| | - Rachel Hiles
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| | - Rebecca Leuschen-Kohl
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| | - Tri Tran
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| | - Raka M Mitra
- Department of Biology, Carleton College, Northfield, Minnesota, USA
| | - Caitilyn Allen
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin, USA
| | - Anjali S Iyer-Pascuzzi
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
4
|
Zhang P, Tang Y, Liu Y, Liu J, Wang Q, Wang H, Li H, Li L, Qin P. Metabolic characteristics of self-pollinated wheat seed under red and blue light during early development. PLANTA 2023; 258:63. [PMID: 37543957 DOI: 10.1007/s00425-023-04217-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023]
Abstract
MAIN CONCLUSION Blue light has a greater effect on jasmonic acid and flavonoid accumulation in wheat seeds than red light; blue light reduces starch synthesis and the size of starch granules and seeds. This study sought to elucidate the effects of blue and red light on seed metabolism to provide important insights regarding the role of light quality in regulating seed growth and development. We used combined multi-omics analysis to investigate the impact of red and blue light (BL) on the induction of secondary metabolite accumulation in the hexaploid wheat Dianmai 3 after pollination. Flavonoids and alkaloids were the most differentially abundant metabolites detected under different treatments. Additionally, we used multi-omics and weighted correlation network analysis to screen multiple candidate genes associated with jasmonic acid (JA) and flavonoids. Expression regulatory networks were constructed based on RNA-sequencing data and their potential binding sites. The results revealed that BL had a greater effect on JA and flavonoid accumulation in wheat seeds than red light. Furthermore, BL reduced starch synthesis and stunted the size of starch granules and seeds. Collectively, these findings clarify the role of BL in the metabolic regulation of early seed development in wheat.
Collapse
Affiliation(s)
- Ping Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, People's Republic of China
| | - Yongsheng Tang
- Qujing Academy of Agricultural Science, Qujing, 655000, People's Republic of China
| | - Yongjiang Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, People's Republic of China
| | - Junna Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, People's Republic of China
| | - Qianchao Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, People's Republic of China
| | - Hongxin Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, People's Republic of China
| | - Hanxue Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, People's Republic of China
| | - Li Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, People's Republic of China
| | - Peng Qin
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, People's Republic of China.
| |
Collapse
|
5
|
Wang H, Jiao X, Zhang X, Zhang M, Liu Y, Chen X, Fang R, Yan Y. Ammonium protects rice against rice stripe virus by activating HDA703/OsBZR1-mediated BR signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 326:111504. [PMID: 36272547 DOI: 10.1016/j.plantsci.2022.111504] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/30/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Ammonium (NH4+) is a major inorganic nitrogen source for plants and also as a signal regulates plant growth and defense. Brassinosteroids (BRs) are a class of steroid hormones that control plant developmental and physiological processes through its signaling pathway. Rice is a kind of NH4+-preferring plant which responds to virus infection involving in the regulation of BR biosynthesis and signaling. However, the BR-mediated regulatory mechanisms in rice-virus interactions are not fully understood. In addition, it remains unknown whether there is a direct link between NH4+ and BRs in regulating rice response to virus. HDA703, a histone deacetylase and OsBZR1, a transcription factor, are two positive regulator of BR signaling and interact with each other. In this study, we show that rice plants grown with NH4+ as the sole N source have enhanced resistance to rice stripe virus (RSV), one of the most devastating viruses of rice, than those grown with NO3- as the sole N source. We also show that in contrast to NO3-, NH4+ does not affect BR biosynthesis but promotes BR signaling by upregulating the expression of HDA703 and promoting the accumulation of OsBZR1 in rice shoots. We further show that BR biosynthesis and signaling is required for rice defense against RSV and BR-mediated resistance to RSV attributes to activating HDA703/OsBZR1 module, then decreasing the expression of Ghd7, a direct target of HDA703/OsBZR1. Consistently, increase of the expression of HDA703 or decrease of the expression of Ghd7 enhances rice resistance to RSV. Together, our study reveals that activation of HDA703/OsBZR1-Ghd7 signaling cascade is an undescribed mechanism conferring BR-mediated RSV resistance and NH4+ protects rice against RSV by activating HDA703/OsBZR1-Ghd7-mediated BR signaling in rice.
Collapse
Affiliation(s)
- Huacai Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoming Jiao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuan Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengting Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yawen Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoying Chen
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Rongxiang Fang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; National Plant Gene Research Center, Beijing 100101, China.
| | - Yongsheng Yan
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
6
|
Üstüner S, Schäfer P, Eichmann R. Development specifies, diversifies and empowers root immunity. EMBO Rep 2022; 23:e55631. [PMID: 36330761 PMCID: PMC9724680 DOI: 10.15252/embr.202255631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 08/04/2023] Open
Abstract
Roots are a highly organised plant tissue consisting of different cell types with distinct developmental functions defined by cell identity networks. Roots are the target of some of the most devastating diseases and possess a highly effective immune system. The recognition of microbe- or plant-derived molecules released in response to microbial attack is highly important in the activation of complex immunity gene networks. Development and immunity are intertwined, and immunity activation can result in growth inhibition. In turn, by connecting immunity and cell identity regulators, cell types are able to launch a cell type-specific immunity based on the developmental function of each cell type. By this strategy, fundamental developmental processes of each cell type contribute their most basic functions to drive cost-effective but highly diverse and, thus, efficient immune responses. This review highlights the interdependence of root development and immunity and how the developmental age of root cells contributes to positive and negative outcomes of development-immunity cross-talk.
Collapse
Affiliation(s)
- Sim Üstüner
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and NutritionJustus Liebig UniversityGiessenGermany
| | - Patrick Schäfer
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and NutritionJustus Liebig UniversityGiessenGermany
| | - Ruth Eichmann
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and NutritionJustus Liebig UniversityGiessenGermany
| |
Collapse
|
7
|
Berry HM, Argueso CT. More than growth: Phytohormone-regulated transcription factors controlling plant immunity, plant development and plant architecture. CURRENT OPINION IN PLANT BIOLOGY 2022; 70:102309. [PMID: 36344376 DOI: 10.1016/j.pbi.2022.102309] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/10/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Activation of immunity by exogenous signals or mutations leading to autoimmunity has long been associated with decreased plant growth, known as the growth-defense tradeoff. Originally thought to be a redirection of metabolic resources towards defense and away from growth, recent studies have demonstrated that growth and defense can be uncoupled, indicating that metabolic regulation is not solely responsible for the growth-defense tradeoff. Immunity activation has effects on plant development beyond the reduction of plant biomass, including changes in plant architecture. Phytohormone signaling pathways, and crosstalk between these pathways, are responsible for regulating plant growth and development, and plant defense responses. Here we review the hormonal regulation of transcription factors that play roles in both defense and development, with a focus on their effects on plant architecture, and suggest the targeting of these transcription factors to increase plant immunity and change plant growth and form for enhancement of agronomical traits.
Collapse
Affiliation(s)
- Hannah M Berry
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA; Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO 80523, USA
| | - Cristiana T Argueso
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA; Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
8
|
Zhang Y, Lyu L, Tao Y, Ju H, Chen J. Health risks of phthalates: A review of immunotoxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120173. [PMID: 36113640 DOI: 10.1016/j.envpol.2022.120173] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/27/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Phthalates (PAEs) are known environmental endocrine disruptors that have been widely detected in several environments, and many studies have reported the immunotoxic effects of these compounds. Here, we reviewed relevant published studies, summarized the occurrence and major metabolic pathways of six typical PAEs (DMP, DEP, DBP, BBP, DEHP, and DOP) in water, soil, and the atmosphere, degradation and metabolic pathways under aerobic and anaerobic conditions, and explored the molecular mechanisms of the toxic effects of eleven PAEs (DEHP, DPP, DPrP, DHP, DEP, DBP, MBP, MBzP, BBP, DiNP, and DMP) on the immune system of different organisms at the gene, protein, and cellular levels. A comprehensive understanding of the mechanisms by which PAEs affect immune system function through regulation of immune gene expression and enzymes, increased ROS, immune signaling pathways, specific and non-specific immunosuppression, and interference with the complement system. By summarizing the effects of these compounds on typical model organisms, this review provides insights into the mechanisms by which PAEs affect the immune system, thus supplementing human immune experiments. Finally, we discuss the future direction of PAEs immunotoxicity research, thus providing a framework for the analysis of other environmental pollutants, as well as a basis for PAEs management and safe use.
Collapse
Affiliation(s)
- Ying Zhang
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Liang Lyu
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Yue Tao
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Hanxun Ju
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Jie Chen
- Rural Energy Station of Heilongjiang Province, Harbin, 150030, PR China.
| |
Collapse
|
9
|
Chen L, Sun S, Song CP, Zhou JM, Li J, Zuo J. Nitric oxide negatively regulates gibberellin signaling to coordinate growth and salt tolerance in Arabidopsis. J Genet Genomics 2022; 49:756-765. [PMID: 35276388 DOI: 10.1016/j.jgg.2022.02.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 12/17/2022]
Abstract
In response to dynamically altered environments, plants must finely coordinate the balance between growth and stress responses for their survival. However, the underpinning regulatory mechanisms remain largely elusive. The phytohormone gibberellin promotes growth via a derepression mechanism by proteasomal degradation of the DELLA transcription repressors. Conversely, the stress-induced burst of nitric oxide (NO) enhances stress tolerance, largely relaying on NO-mediated S-nitrosylation, a redox-based posttranslational modification. Here, we show that S-nitrosylation of Cys-374 in the Arabidopsis RGA protein, a key member of DELLAs, inhibits its interaction with the F-box protein SLY1, thereby preventing its proteasomal degradation under salinity condition. The accumulation of RGA consequently retards growth but enhances salt tolerance. We propose that NO negatively regulates gibberellin signaling via S-nitrosylation of RGA to coordinate the balance of growth and stress responses when challenged by adverse environments.
Collapse
Affiliation(s)
- Lichao Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Beijing 100101, China.
| | - Shuhao Sun
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, Collaborative Innovation Center of Crop Stress Biology, Henan University, Kaifeng, Henang 475001, China
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China
| | - Jianru Zuo
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Beijing 100101, China; Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China.
| |
Collapse
|
10
|
Arabidopsis TBP-ASSOCIATED FACTOR 12 ortholog NOBIRO6 controls root elongation with unfolded protein response cofactor activity. Proc Natl Acad Sci U S A 2022; 119:2120219119. [PMID: 35115407 PMCID: PMC8833210 DOI: 10.1073/pnas.2120219119] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2021] [Indexed: 11/18/2022] Open
Abstract
Plant root growth is indeterminate but continuously responds to environmental changes. We previously reported on the severe root growth defect of a double mutant in bZIP17 and bZIP28 (bz1728) modulating the unfolded protein response (UPR). To elucidate the mechanism by which bz1728 seedlings develop a short root, we obtained a series of bz1728 suppressor mutants, called nobiro, for rescued root growth. We focused here on nobiro6, which is defective in the general transcription factor component TBP-ASSOCIATED FACTOR 12b (TAF12b). The expression of hundreds of genes, including the bZIP60-UPR regulon, was induced in the bz1728 mutant, but these inductions were markedly attenuated in the bz1728nobiro6 mutant. In view of this, we assigned transcriptional cofactor activity via physical interaction with bZIP60 to NOBIRO6/TAF12b. The single nobiro6/taf12b mutant also showed an altered sensitivity to endoplasmic reticulum stress for both UPR and root growth responses, demonstrating that NOBIRO6/TAF12b contributes to environment-responsive root growth control through UPR.
Collapse
|
11
|
Sun Y, Huang B, Cheng P, Li C, Chen Y, Li Y, Zheng L, Xing J, Dong Z, Yu G. Endophytic Bacillus subtilis TR21 Improves Banana Plant Resistance to Fusarium oxysporum f. sp. cubense and Promotes Root Growth by Upregulating the Jasmonate and Brassinosteroid Biosynthesis Pathways. PHYTOPATHOLOGY 2022; 112:219-231. [PMID: 34231376 DOI: 10.1094/phyto-04-21-0159-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The banana (Musa spp.) industry experiences dramatic annual losses from Fusarium wilt of banana disease, which is caused by the fungus Fusarium oxysporum f. sp. cubense (FOC). Pisang Awak banana 'Fenza No. 1' (Musa spp. cultivar Fenza No. 1), a major banana cultivar with high resistance to F. oxysporum f. sp. cubense race 4, is considered to be ideal for growth in problematic areas. However, 'Fenza No. 1' is still affected by F. oxysporum f. sp. cubense race 1 in the field. TR21 is an endophytic Bacillus subtilis strain isolated from orchids (Dendrobium sp.). Axillary spraying of banana plants with TR21 controls Fusarium wilt of banana, decreasing the growth period and increasing yields in the field. In this study, we established that TR21 increases root growth in different monocotyledonous plant species. By axillary inoculation, TR21 induced a similar transcriptomic change as that induced by F. oxysporum f. sp. cubense race 1 but also upregulated the biosynthetic pathways for the phytohormones brassinosteroid and jasmonic acid in 'Fenza No. 1' root tissues, indicating that TR21 increases Fusarium wilt of banana resistance, shortens growth period, and increases yield of banana by inducing specific transcriptional reprogramming and modulating phytohormone levels. These findings will contribute to the identification of candidate genes related to plant resistance against fungi in a nonmodel system and facilitate further study and exploitation of endophytic biocontrol agents.
Collapse
Affiliation(s)
- Yunhao Sun
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, People's Republic of China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, People's Republic of China
| | - Bingzhi Huang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510000, People's Republic of China
| | - Ping Cheng
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, People's Republic of China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, People's Republic of China
| | - Chunji Li
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, People's Republic of China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, People's Republic of China
| | - Yanhong Chen
- Zhuhai Agricultural Sciences Research Center, Zhuhai 519075, People's Republic of China
| | - Yongjian Li
- Zhuhai Agricultural Sciences Research Center, Zhuhai 519075, People's Republic of China
| | - Li Zheng
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, People's Republic of China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, People's Republic of China
| | - Juejun Xing
- Laboratory & Equipment Management Department, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, People's Republic of China
| | - Zhangyong Dong
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, People's Republic of China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, People's Republic of China
| | - Guohui Yu
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, People's Republic of China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, People's Republic of China
| |
Collapse
|
12
|
Geisen S, Heinen R, Andreou E, van Lent T, ten Hooven FC, Thakur MP. Contrasting effects of soil microbial interactions on growth-defence relationships between early- and mid-successional plant communities. THE NEW PHYTOLOGIST 2022; 233:1345-1357. [PMID: 34242435 PMCID: PMC9292498 DOI: 10.1111/nph.17609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Plants allocate resources to processes related to growth and enemy defence. Simultaneously, they interact with complex soil microbiomes that also affect plant performance. While the influence of individual microbial groups on single plants is increasingly studied, effects of microbial interactions on growth, defence and growth-defence relationships remain unknown, especially at the plant community level. We investigated how three microbial groups (bacteria, fungi, protists), alone and in full-factorial combinations, affect plant performance and potential growth-defence relationships by measuring phenolics composition in early- and mid-successional grass and forb communities in a glasshouse experiment. Microbial groups did not affect plant growth and only fungi increased defence compounds in early- and mid-successional forbs, while grasses were not affected. Shoot biomass-defence relationships were negatively correlated in most microbial treatments in early-successional forbs, but positively in several microbial treatments in mid-successional forbs. The growth-defence relationship was generally negative in early-successional but not in mid-successional grasses. The presence of different microbiomes commonly removed the observed growth-defence relationships. We conclude that soil microorganisms and their interactions can shift growth-defence relationships differentially for plant functional groups and the relationships vary between successional stages. Microbial interaction-induced growth-defence shifts might therefore underlie distinct plant strategies and fitness.
Collapse
Affiliation(s)
- Stefan Geisen
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)Wageningen6708PBthe Netherlands
- Laboratory of NematologyWageningen UniversityWageningen6708PBthe Netherlands
| | - Robin Heinen
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)Wageningen6708PBthe Netherlands
- Lehrstuhl für Terrestrische Ökologie, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und UmweltTechnische Universität MünchenFreising85354Germany
| | - Elena Andreou
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)Wageningen6708PBthe Netherlands
| | - Teun van Lent
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)Wageningen6708PBthe Netherlands
- Laboratory of NematologyWageningen UniversityWageningen6708PBthe Netherlands
| | - Freddy C. ten Hooven
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)Wageningen6708PBthe Netherlands
| | - Madhav P. Thakur
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)Wageningen6708PBthe Netherlands
- Institute of Ecology and EvolutionUniversity of BernBern3012Switzerland
| |
Collapse
|
13
|
Yang D, Li S, Xiao Y, Lu L, Zheng Z, Tang D, Cui H. Transcriptome analysis of rice response to blast fungus identified core genes involved in immunity. PLANT, CELL & ENVIRONMENT 2021; 44:3103-3121. [PMID: 33993496 DOI: 10.1111/pce.14098] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 05/04/2021] [Indexed: 05/05/2023]
Abstract
Rice blast disease caused by the filamentous Ascomycetous fungus Magnaporthe oryzae is a major threat to rice production worldwide. The mechanisms underlying rice resistance to M. oryzae, such as transcriptional reprogramming and signalling networks, remain elusive. In this study, we carried out an in-depth comparative transcriptome study on the susceptible and resistant rice cultivars in response to M. oryzae. Our analysis highlighted that rapid, high-amplitude transcriptional reprogramming was important for rice defence against blast fungus. Ribosome- and protein translation-related genes were significantly enriched among differentially expressed genes (DEGs) at 12 hpi in both cultivars, indicating that the protein translation machinery is regulated in the activation of immunity in rice. Furthermore, we identified a core set of genes that are involved in the rice response to both biotic and abiotic stress. More importantly, among the core genes, we demonstrated that the metallothionein OsMT1a and OsMT1b genes positively regulated rice resistance while a peroxidase gene Perox4 negatively regulated rice resistance to M. oryzae. Our study provides novel insight into transcriptional reprogramming and serves as a valuable resource for functional studies on rice immune signalling components in resistance to blast disease.
Collapse
Affiliation(s)
- Dewei Yang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Rice, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Shengping Li
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yueping Xiao
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ling Lu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zichao Zheng
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Haitao Cui
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
14
|
Galindo-Trigo S. Two genotypes, one phenotype? The roles of CBP60b during immunity. PLANT PHYSIOLOGY 2021; 186:1371-1372. [PMID: 34624115 PMCID: PMC8260118 DOI: 10.1093/plphys/kiab210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/16/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Sergio Galindo-Trigo
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
15
|
Parys K, Colaianni NR, Lee HS, Hohmann U, Edelbacher N, Trgovcevic A, Blahovska Z, Lee D, Mechtler A, Muhari-Portik Z, Madalinski M, Schandry N, Rodríguez-Arévalo I, Becker C, Sonnleitner E, Korte A, Bläsi U, Geldner N, Hothorn M, Jones CD, Dangl JL, Belkhadir Y. Signatures of antagonistic pleiotropy in a bacterial flagellin epitope. Cell Host Microbe 2021; 29:620-634.e9. [DOI: 10.1016/j.chom.2021.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/04/2021] [Accepted: 02/11/2021] [Indexed: 12/20/2022]
|
16
|
Haplotype- and SNP-Based GWAS for Growth and Wood Quality Traits in Eucalyptus cladocalyx Trees under Arid Conditions. PLANTS 2021; 10:plants10010148. [PMID: 33450896 PMCID: PMC7828368 DOI: 10.3390/plants10010148] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 12/14/2022]
Abstract
The agricultural and forestry productivity of Mediterranean ecosystems is strongly threatened by the adverse effects of climate change, including an increase in severe droughts and changes in rainfall distribution. In the present study, we performed a genome-wide association study (GWAS) to identify single-nucleotide polymorphisms (SNPs) and haplotype blocks associated with the growth and wood quality of Eucalyptus cladocalyx, a tree species suitable for low-rainfall sites. The study was conducted in a progeny-provenance trial established in an arid site with Mediterranean patterns located in the southern Atacama Desert, Chile. A total of 87 SNPs and 3 haplotype blocks were significantly associated with the 6 traits under study (tree height, diameter at breast height, slenderness coefficient, first bifurcation height, stem straightness, and pilodyn penetration). In addition, 11 loci were identified as pleiotropic through Bayesian multivariate regression and were mainly associated with wood hardness, height, and diameter. In general, the GWAS revealed associations with genes related to primary metabolism and biosynthesis of cell wall components. Additionally, associations coinciding with stress response genes, such as GEM-related 5 and prohibitin-3, were detected. The findings of this study provide valuable information regarding genetic control of morphological traits related to adaptation to arid environments.
Collapse
|
17
|
Fu Y, Li F, Mu S, Jiang L, Ye M, Wu R. Heterophylly Quantitative Trait Loci Respond to Salt Stress in the Desert Tree Populus euphratica. FRONTIERS IN PLANT SCIENCE 2021; 12:692494. [PMID: 34335660 PMCID: PMC8321784 DOI: 10.3389/fpls.2021.692494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/16/2021] [Indexed: 05/05/2023]
Abstract
Heterophylly, or leaf morphological changes along plant shoot axes, is an important indicator of plant eco-adaptation to heterogeneous microenvironments. Despite extensive studies on the genetic control of leaf shape, the genetic architecture of heterophylly remains elusive. To identify genes related to heterophylly and their associations with plant saline tolerance, we conducted a leaf shape mapping experiment using leaves from a natural population of Populus euphratica. We included 106 genotypes grown under salt stress and salt-free (control) conditions using clonal seedling replicates. We developed a shape tracking method to monitor and analyze the leaf shape using principal component (PC) analysis. PC1 explained 42.18% of the shape variation, indicating that shape variation is mainly determined by the leaf length. Using leaf length along shoot axes as a dynamic trait, we implemented a functional mapping-assisted genome-wide association study (GWAS) for heterophylly. We identified 171 and 134 significant quantitative trait loci (QTLs) in control and stressed plants, respectively, which were annotated as candidate genes for stress resistance, auxin, shape, and disease resistance. Functions of the stress resistance genes ABSCISIC ACIS-INSENSITIVE 5-like (ABI5), WRKY72, and MAPK3 were found to be related to many tolerance responses. The detection of AUXIN RESPONSE FACTOR17-LIKE (ARF17) suggests a balance between auxin-regulated leaf growth and stress resistance within the genome, which led to the development of heterophylly via evolution. Differentially expressed genes between control and stressed plants included several factors with similar functions affecting stress-mediated heterophylly, such as the stress-related genes ABC transporter C family member 2 (ABCC2) and ABC transporter F family member (ABCF), and the stomata-regulating and reactive oxygen species (ROS) signaling gene RESPIRATORY BURST OXIDASE HOMOLOG (RBOH). A comparison of the genetic architecture of control and salt-stressed plants revealed a potential link between heterophylly and saline tolerance in P. euphratica, which will provide new avenues for research on saline resistance-related genetic mechanisms.
Collapse
Affiliation(s)
- Yaru Fu
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Feiran Li
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Shuaicheng Mu
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Libo Jiang
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Meixia Ye
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- *Correspondence: Meixia Ye
| | - Rongling Wu
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Departments of Public Health Sciences and Statistics, Center for Statistical Genetics, The Pennsylvania State University, Hershey, PA, United States
| |
Collapse
|
18
|
Shrestha A, Mishra AK, Matoušek J, Steinbachová L, Potěšil D, Nath VS, Awasthi P, Kocábek T, Jakse J, Drábková LZ, Zdráhal Z, Honys D, Steger G. Integrated Proteo-Transcriptomic Analyses Reveal Insights into Regulation of Pollen Development Stages and Dynamics of Cellular Response to Apple Fruit Crinkle Viroid (AFCVd)-Infection in Nicotiana tabacum. Int J Mol Sci 2020; 21:E8700. [PMID: 33218043 PMCID: PMC7698868 DOI: 10.3390/ijms21228700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
Tobacco (Nicotiana tabacum) pollen is a well-suited model for studying many fundamental biological processes owing to its well-defined and distinct development stages. It is also one of the major agents involved in the transmission of infectious viroids, which is the primary mechanism of viroid pathogenicity in plants. However, some viroids are non-transmissible and may be possibly degraded or eliminated during the gradual process of pollen development maturation. The molecular details behind the response of developing pollen against the apple fruit crinkle viroid (AFCVd) infection and viroid eradication is largely unknown. In this study, we performed an integrative analysis of the transcriptome and proteome profiles to disentangle the molecular cascade of events governing the three pollen development stages: early bicellular pollen (stage 3, S3), late bicellular pollen (stage 5, S5), and 6 h-pollen tube (PT6). The integrated analysis delivered the molecular portraits of the developing pollen against AFCVd infection, including mechanistic insights into the viroid eradication during the last steps of pollen development. The isobaric tags for label-free relative quantification (iTRAQ) with digital gene expression (DGE) experiments led us to reliably identify subsets of 5321, 5286, and 6923 proteins and 64,033, 60,597, and 46,640 expressed genes in S3, S5, and PT6, respectively. In these subsets, 2234, 2108 proteins and 9207 and 14,065 mRNAs were differentially expressed in pairwise comparisons of three stages S5 vs. S3 and PT6 vs. S5 of control pollen in tobacco. Correlation analysis between the abundance of differentially expressed mRNAs (DEGs) and differentially expressed proteins (DEPs) in pairwise comparisons of three stages of pollen revealed numerous discordant changes in mRNA/protein pairs. Only a modest correlation was observed, indicative of divergent transcription, and its regulation and importance of post-transcriptional events in the determination of the fate of early and late pollen development in tobacco. The functional and enrichment analysis of correlated DEGs/DEPs revealed the activation in pathways involved in carbohydrate metabolism, amino acid metabolism, lipid metabolism, and cofactor as well as vitamin metabolism, which points to the importance of these metabolic pathways in pollen development. Furthermore, the detailed picture of AFCVd-infected correlated DEGs/DEPs was obtained in pairwise comparisons of three stages of infected pollen. The AFCVd infection caused the modulation of several genes involved in protein degradation, nuclear transport, phytohormone signaling, defense response, and phosphorylation. Intriguingly, we also identified several factors including, DNA-dependent RNA-polymerase, ribosomal protein, Argonaute (AGO) proteins, nucleotide binding proteins, and RNA exonucleases, which may plausibly involve in viroid stabilization and eradication during the last steps of pollen development. The present study provides essential insights into the transcriptional and translational dynamics of tobacco pollen, which further strengthens our understanding of plant-viroid interactions and support for future mechanistic studies directed at delineating the functional role of candidate factors involved in viroid elimination.
Collapse
Affiliation(s)
- Ankita Shrestha
- Biology Centre, Czech Academy of Sciences, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic; (A.S.); (J.M.); (V.S.N.); (P.A.); (T.K.)
| | - Ajay Kumar Mishra
- Biology Centre, Czech Academy of Sciences, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic; (A.S.); (J.M.); (V.S.N.); (P.A.); (T.K.)
| | - Jaroslav Matoušek
- Biology Centre, Czech Academy of Sciences, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic; (A.S.); (J.M.); (V.S.N.); (P.A.); (T.K.)
| | - Lenka Steinbachová
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague 6-Lysolaje, Czech Republic; (L.S.); (L.Z.D.); (D.H.)
| | - David Potěšil
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (D.P.); (Z.Z.)
| | - Vishnu Sukumari Nath
- Biology Centre, Czech Academy of Sciences, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic; (A.S.); (J.M.); (V.S.N.); (P.A.); (T.K.)
| | - Praveen Awasthi
- Biology Centre, Czech Academy of Sciences, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic; (A.S.); (J.M.); (V.S.N.); (P.A.); (T.K.)
| | - Tomáš Kocábek
- Biology Centre, Czech Academy of Sciences, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic; (A.S.); (J.M.); (V.S.N.); (P.A.); (T.K.)
| | - Jernej Jakse
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia;
| | - Lenka Záveská Drábková
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague 6-Lysolaje, Czech Republic; (L.S.); (L.Z.D.); (D.H.)
| | - Zbyněk Zdráhal
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (D.P.); (Z.Z.)
| | - David Honys
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague 6-Lysolaje, Czech Republic; (L.S.); (L.Z.D.); (D.H.)
| | - Gerhard Steger
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, D-40204 Düsseldorf, Germany;
| |
Collapse
|
19
|
Wang J, Long X, Chern M, Chen X. Understanding the molecular mechanisms of trade-offs between plant growth and immunity. SCIENCE CHINA-LIFE SCIENCES 2020; 64:234-241. [PMID: 32710363 DOI: 10.1007/s11427-020-1719-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/05/2020] [Indexed: 12/24/2022]
Abstract
Trade-offs between plant growth and immunity are a well-known phenomenon in plants that are meant to ensure the best use of limited resources. Recently, many advances have been achieved on molecular regulations of the trade-offs between plant growth and immunity. Here, we provide an overview on molecular understanding of these trade-offs including those regulated at the transcriptional level or post-transcriptional level by transcriptional factors, microRNAs, and post-translational modifications of proteins, respectively The understanding on the molecular regulation of these trade-offs will provide new strategies to breed crops with high yield and enhanced resistance to disease.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China (in preparation), Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, 611130, China
| | - Xiaoyu Long
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China (in preparation), Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, 611130, China
| | - Mawsheng Chern
- Department of Plant Pathology and the Genome Center, University of California, Davis, California, 95616, USA
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China (in preparation), Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, 611130, China.
| |
Collapse
|
20
|
Wang Y, Wang Y, Wang Y. Apoplastic Proteases: Powerful Weapons against Pathogen Infection in Plants. PLANT COMMUNICATIONS 2020; 1:100085. [PMID: 33367249 PMCID: PMC7748006 DOI: 10.1016/j.xplc.2020.100085] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 05/23/2023]
Abstract
Plants associate with diverse microbes that exert beneficial, neutral, or pathogenic effects inside the host. During the initial stages of invasion, the plant apoplast constitutes a hospitable environment for invading microbes, providing both water and nutrients. In response to microbial infection, a number of secreted proteins from host cells accumulate in the apoplastic space, which is related to microbial association or colonization processes. However, the molecular mechanisms underlying plant modulation of the apoplast environment and how plant-secreted proteases are involved in pathogen resistance are still poorly understood. Recently, several studies have reported the roles of apoplastic proteases in plant resistance against bacteria, fungi, and oomycetes. On the other hand, microbe-secreted proteins directly and/or indirectly inhibit host-derived apoplastic proteases to promote infection. These findings illustrate the importance of apoplastic proteases in plant-microbe interactions. Therefore, understanding the protease-mediated apoplastic battle between hosts and pathogens is of fundamental importance for understanding plant-pathogen interactions. Here, we provide an overview of plant-microbe interactions in the apoplastic space. We define the apoplast, summarize the physical and chemical properties of these structures, and discuss the roles of plant apoplastic proteases and pathogen protease inhibitors in host-microbe interactions. Challenges and future perspectives for research into protease-mediated apoplastic interactions are discussed, which may facilitate the engineering of resistant crops.
Collapse
Affiliation(s)
- Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiming Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
21
|
Hyodo K, Okuno T. Hijacking of host cellular components as proviral factors by plant-infecting viruses. Adv Virus Res 2020; 107:37-86. [PMID: 32711734 DOI: 10.1016/bs.aivir.2020.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Plant viruses are important pathogens that cause serious crop losses worldwide. They are obligate intracellular parasites that commandeer a wide array of proteins, as well as metabolic resources, from infected host cells. In the past two decades, our knowledge of plant-virus interactions at the molecular level has exploded, which provides insights into how plant-infecting viruses co-opt host cellular machineries to accomplish their infection. Here, we review recent advances in our understanding of how plant viruses divert cellular components from their original roles to proviral functions. One emerging theme is that plant viruses have versatile strategies that integrate a host factor that is normally engaged in plant defense against invading pathogens into a viral protein complex that facilitates viral infection. We also highlight viral manipulation of cellular key regulatory systems for successful virus infection: posttranslational protein modifications for fine control of viral and cellular protein dynamics; glycolysis and fermentation pathways to usurp host resources, and ion homeostasis to create a cellular environment that is beneficial for viral genome replication. A deeper understanding of viral-infection strategies will pave the way for the development of novel antiviral strategies.
Collapse
Affiliation(s)
- Kiwamu Hyodo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan.
| | - Tetsuro Okuno
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, Otsu, Shiga, Japan
| |
Collapse
|
22
|
Abstract
The organizational principles of the root immune system are largely uncharacterized. In the February 6, 2020 issue of Cell, Zhou et al. showed roots are built entirely by immunocompetent cells that require distinct instructions to unlock cell-autonomous immune programs. A root cell's developmental identity combined with its spatial distribution fine-tunes immune signal sensitivity, enabling sector-specific immune responses.
Collapse
Affiliation(s)
- Ho-Seok Lee
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr Gasse 3, Vienna 1030, Austria
| | - Youssef Belkhadir
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr Gasse 3, Vienna 1030, Austria.
| |
Collapse
|
23
|
The Arabidopsis Hypoxia Inducible AtR8 Long Non-Coding RNA also Contributes to Plant Defense and Root Elongation Coordinating with WRKY Genes under Low Levels of Salicylic Acid. Noncoding RNA 2020; 6:ncrna6010008. [PMID: 32110879 PMCID: PMC7151572 DOI: 10.3390/ncrna6010008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/22/2020] [Accepted: 02/23/2020] [Indexed: 12/13/2022] Open
Abstract
AtR8 lncRNA was previously identified in the flowering plant Arabidopsis thaliana as an abundant Pol III-transcribed long non-coding RNA (lncRNA) of approximately 260 nt. AtR8 lncRNA accumulation is responsive to hypoxic stress and salicylic acid (SA) treatment in roots, but its function has not yet been identified. In this study, microarray analysis of an atr8 mutant and wild-type Arabidopsis indicated a strong association of AtR8 lncRNA with the defense response. AtR8 accumulation exhibited an inverse correlation with an accumulation of two WRKY genes (WRKY53/WRKY70) when plants were exposed to exogenous low SA concentrations (20 µM), infected with Pseudomonas syringae, or in the early stage of development. The highest AtR8 accumulation was observed 5 days after germination, at which time no WRKY53 or WRKY70 mRNA was detectable. The presence of low levels of SA resulted in a significant reduction of root length in atr8 seedlings, whereas wrky53 and wrky70 mutants exhibited the opposite phenotype. Taken together, AtR8 lncRNA participates in Pathogenesis-Related Proteins 1 (PR-1)-independent defense and root elongation, which are related to the SA response. The mutual regulation of AtR8 lncRNA and WRKY53/WRKY70 is mediated by Nonexpressor of Pathogenesis-Related Gene 1 (NPR1).
Collapse
|
24
|
Piya S, Liu J, Burch-Smith T, Baum TJ, Hewezi T. A role for Arabidopsis growth-regulating factors 1 and 3 in growth-stress antagonism. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1402-1417. [PMID: 31701146 PMCID: PMC7031083 DOI: 10.1093/jxb/erz502] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/05/2019] [Indexed: 05/21/2023]
Abstract
Growth-regulating factors (GRFs) belong to a small family of transcription factors that are highly conserved in plants. GRFs regulate many developmental processes and plant responses to biotic and abiotic stimuli. Despite the importance of GRFs, a detailed mechanistic understanding of their regulatory functions is still lacking. In this study, we used ChIP sequencing (ChIP-seq) to identify genome-wide binding sites of Arabidopsis GRF1 and GRF3, and correspondingly their direct downstream target genes. RNA-sequencing (RNA-seq) analysis revealed that GRF1 and GRF3 regulate the expression of a significant number of the identified direct targets. The target genes unveiled broad regulatory functions of GRF1 and GRF3 in plant growth and development, phytohormone biosynthesis and signaling, and the cell cycle. Our analyses also revealed that clock core genes and genes with stress- and defense-related functions are most predominant among the GRF1- and GRF3-bound targets, providing insights into a possible role for these transcription factors in mediating growth-defense antagonism and integrating environmental stimuli into developmental programs. Additionally, GRF1 and GRF3 target molecular nodes of growth-defense antagonism and modulate the levels of defense- and development-related hormones in opposite directions. Taken together, our results point to GRF1 and GRF3 as potential key determinants of plant fitness under stress conditions.
Collapse
Affiliation(s)
- Sarbottam Piya
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Jinyi Liu
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
- Present address: College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Tessa Burch-Smith
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Thomas J Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
- Correspondence:
| |
Collapse
|
25
|
Saijo Y, Loo EPI. Plant immunity in signal integration between biotic and abiotic stress responses. THE NEW PHYTOLOGIST 2020; 225:87-104. [PMID: 31209880 DOI: 10.1111/nph.15989] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/04/2019] [Indexed: 05/20/2023]
Abstract
Plants constantly monitor and cope with the fluctuating environment while hosting a diversity of plant-inhabiting microbes. The mode and outcome of plant-microbe interactions, including plant disease epidemics, are dynamically and profoundly influenced by abiotic factors, such as light, temperature, water and nutrients. Plants also utilize associations with beneficial microbes during adaptation to adverse conditions. Elucidation of the molecular bases for the plant-microbe-environment interactions is therefore of fundamental importance in the plant sciences. Following advances into individual stress signaling pathways, recent studies are beginning to reveal molecular intersections between biotic and abiotic stress responses and regulatory principles in combined stress responses. We outline mechanisms underlying environmental modulation of plant immunity and emerging roles for immune regulators in abiotic stress tolerance. Furthermore, we discuss how plants coordinate conflicting demands when exposed to combinations of different stresses, with attention to a possible determinant that links initial stress response to broad-spectrum stress tolerance or prioritization of specific stress tolerance.
Collapse
Affiliation(s)
- Yusuke Saijo
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Eliza Po-Iian Loo
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| |
Collapse
|
26
|
Kesten C, Gámez‐Arjona FM, Menna A, Scholl S, Dora S, Huerta AI, Huang H, Tintor N, Kinoshita T, Rep M, Krebs M, Schumacher K, Sánchez‐Rodríguez C. Pathogen-induced pH changes regulate the growth-defense balance in plants. EMBO J 2019; 38:e101822. [PMID: 31736111 PMCID: PMC6912046 DOI: 10.15252/embj.2019101822] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 10/11/2019] [Accepted: 10/17/2019] [Indexed: 01/06/2023] Open
Abstract
Environmental adaptation of organisms relies on fast perception and response to external signals, which lead to developmental changes. Plant cell growth is strongly dependent on cell wall remodeling. However, little is known about cell wall-related sensing of biotic stimuli and the downstream mechanisms that coordinate growth and defense responses. We generated genetically encoded pH sensors to determine absolute pH changes across the plasma membrane in response to biotic stress. A rapid apoplastic acidification by phosphorylation-based proton pump activation in response to the fungus Fusarium oxysporum immediately reduced cellulose synthesis and cell growth and, furthermore, had a direct influence on the pathogenicity of the fungus. In addition, pH seems to influence cellulose structure. All these effects were dependent on the COMPANION OF CELLULOSE SYNTHASE proteins that are thus at the nexus of plant growth and defense. Hence, our discoveries show a remarkable connection between plant biomass production, immunity, and pH control, and advance our ability to investigate the plant growth-defense balance.
Collapse
Affiliation(s)
| | | | | | - Stefan Scholl
- Centre for Organismal Studies, Cell BiologyHeidelberg UniversityHeidelbergGermany
| | - Susanne Dora
- Department of BiologyETH ZurichZurichSwitzerland
| | | | | | - Nico Tintor
- Department of PhytopathologyUniversity of AmsterdamAmsterdamThe Netherlands
| | - Toshinori Kinoshita
- Institute of Transformative Bio‐Molecules (WPI‐ITbM)Nagoya UniversityChikusa, NagoyaJapan
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityChikusa, NagoyaJapan
| | - Martijn Rep
- Department of PhytopathologyUniversity of AmsterdamAmsterdamThe Netherlands
| | - Melanie Krebs
- Centre for Organismal Studies, Cell BiologyHeidelberg UniversityHeidelbergGermany
| | - Karin Schumacher
- Centre for Organismal Studies, Cell BiologyHeidelberg UniversityHeidelbergGermany
| | | |
Collapse
|
27
|
Savchenko TV, Rolletschek H, Dehesh K. Jasmonates-Mediated Rewiring of Central Metabolism Regulates Adaptive Responses. PLANT & CELL PHYSIOLOGY 2019; 60:2613-2620. [PMID: 31529102 PMCID: PMC6896697 DOI: 10.1093/pcp/pcz181] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 09/03/2019] [Indexed: 05/23/2023]
Abstract
The lipid-derived hormones jasmonates (JAs) play key functions in a wide range of physiological and developmental processes that regulate growth, secondary metabolism and defense against biotic and abiotic stresses. In this connection, biosynthesis, tissue-specific distribution, metabolism, perception, signaling of JAs have been the target of extensive studies. In recent years, the involvement of JAs signaling pathway in the regulation of growth and adaptive responses to environmental challenges has been further examined. However, JAs-mediated mechanisms underlying the transition from 'growth mode' to 'adaptive mode' remain ambiguous. Combined analysis of transgenic lines deficient in JAs signaling in conjunction with the data from JAs-treated plants revealed the function of these hormones in rewiring of central metabolism. The collective data illustrate JAs-mediated decrease in the levels of metabolites associated with active growth such as sucrose, raffinose, orotate, citrate, malate, and an increase in phosphorylated hexoses, responsible for the suppression of growth and photosynthesis, concurrent with the induction of protective metabolites, such as aromatic and branched-chain amino acids, and aspartate family of metabolites. This finding provides an insight into the function of JAs in shifting the central metabolism from the production of growth-promoting metabolites to protective compounds and expands our understanding of the role of JAs in resource allocation in response to environmental challenges.
Collapse
Affiliation(s)
- Tatyana V Savchenko
- Institute of Basic Biological Problems, FRC PSCBR RAS, Institutskaya St. 2, Pushchino, Moscow Region 142290, Russian Federation
| | - Hardy Rolletschek
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, Gatersleben D-06466, Germany
| | - Katayoon Dehesh
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
28
|
Góra-Sochacka A, Więsyk A, Fogtman A, Lirski M, Zagórski-Ostoja W. Root Transcriptomic Analysis Reveals Global Changes Induced by Systemic Infection of Solanum lycopersicum with Mild and Severe Variants of Potato Spindle Tuber Viroid. Viruses 2019; 11:v11110992. [PMID: 31671783 PMCID: PMC6893655 DOI: 10.3390/v11110992] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/24/2019] [Accepted: 10/26/2019] [Indexed: 12/11/2022] Open
Abstract
Potato spindle tuber viroid (PSTVd) causes systemic infection in plant hosts. There are many studies on viroid-host plant interactions, but they have predominantly focused on the aboveground part of the plant. Here, we investigated transcriptomic profile changes in tomato roots systemically infected with mild or severe PSTVd variants using a combined microarray/RNA-seq approach. Analysis indicated differential expression of genes related to various Gene Ontology categories depending on the stage of infection and PSTVd variant. A majority of cell-wall-related genes were down-regulated at early infection stages, but at the late stage, the number of up-regulated genes increased significantly. Along with observed alterations of many lignin-related genes, performed lignin quantification indicated their disrupted level in PSTVd-infected roots. Altered expression of genes related to biosynthesis and signaling of auxin and cytokinin, which are crucial for lateral root development, was also identified. Comparison of both PSTVd infections showed that transcriptional changes induced by the severe variant were stronger than those caused by the mild variant, especially at the late infection stage. Taken together, we showed that similarly to aboveground plant parts, PSTVd infection in the underground tissues activates the plant immune response.
Collapse
Affiliation(s)
- Anna Góra-Sochacka
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland.
| | - Aneta Więsyk
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland.
| | - Anna Fogtman
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland.
| | - Maciej Lirski
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland.
| | | |
Collapse
|
29
|
Neuser J, Metzen CC, Dreyer BH, Feulner C, van Dongen JT, Schmidt RR, Schippers JH. HBI1 Mediates the Trade-off between Growth and Immunity through Its Impact on Apoplastic ROS Homeostasis. Cell Rep 2019; 28:1670-1678.e3. [DOI: 10.1016/j.celrep.2019.07.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 11/15/2018] [Accepted: 07/11/2019] [Indexed: 10/26/2022] Open
|
30
|
Vï Lz R, Kim SK, Mi J, Mariappan KG, Siodmak A, Al-Babili S, Hirt H. A Chimeric IDD4 Repressor Constitutively Induces Immunity in Arabidopsis via the Modulation of Salicylic Acid and Jasmonic Acid Homeostasis. PLANT & CELL PHYSIOLOGY 2019; 60:1536-1555. [PMID: 30989238 DOI: 10.1093/pcp/pcz057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
INDETERMINATE DOMAIN (IDD)/BIRD proteins belong to a highly conserved plant-specific group of transcription factors with dedicated functions in plant physiology and development. Here, we took advantage of the chimeric repressor gene-silencing technology (CRES-T, SRDX) to widen our view on the role of IDD4/IMPERIAL EAGLE and IDD family members in plant immunity. The hypomorphic idd4SRDX lines are compromised in growth and show a robust autoimmune phenotype. Hormonal measurements revealed the concomitant accumulation of salicylic acid and jasmonic acid suggesting that IDDs are involved in regulating the metabolism of these biotic stress hormones. The analysis of immunity-pathways showed enhanced activation of immune MAP kinase-signaling pathways, the accumulation of hydrogen peroxide and spontaneous programmed cell death. The transcriptome of nonelicited idd4SRDX lines can be aligned to approximately 40% of differentially expressed genes (DEGs) in flg22-treated wild-type plants. The pattern of DEGs implies IDDs as pivotal repressors of flg22-dependent gene induction. Infection experiments showed the increased resistance of idd4SRDX lines to Pseudomonas syringae and Botrytis cinerea implying a function of IDDs in defense adaptation to hemibiotrophs and necrotrophs. Genome-wide IDD4 DNA-binding studies (DAP-SEQ) combined with DEG analysis of idd4SRDX lines identified IDD4-regulated functional gene clusters that contribute to plant growth and development. In summary, we discovered that the expression of idd4SRDX activates a wide range of defense-related traits opening up the possibility to apply idd4SRDX as a powerful tool to stimulate innate immunity in engineered crops.
Collapse
Affiliation(s)
- Ronny Vï Lz
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources and Plant Immunity Research Center, Seoul National University, Seoul, Korea
| | - Soon-Kap Kim
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Jianing Mi
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Kiruthiga G Mariappan
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Anna Siodmak
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Salim Al-Babili
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Heribert Hirt
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Universit� Paris-Sud, Universit� Evry, Universit� Paris-Saclay, B�timent 630, Orsay, France
- Max Perutz Laboratories, University of Vienna, Vienna, Austria
| |
Collapse
|
31
|
Wang Y, Garrido-Oter R, Wu J, Winkelmüller TM, Agler M, Colby T, Nobori T, Kemen E, Tsuda K. Site-specific cleavage of bacterial MucD by secreted proteases mediates antibacterial resistance in Arabidopsis. Nat Commun 2019; 10:2853. [PMID: 31253808 PMCID: PMC6599210 DOI: 10.1038/s41467-019-10793-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/03/2019] [Indexed: 01/10/2023] Open
Abstract
Plant innate immunity restricts growth of bacterial pathogens that threaten global food security. However, the mechanisms by which plant immunity suppresses bacterial growth remain enigmatic. Here we show that Arabidopsis thaliana secreted aspartic protease 1 and 2 (SAP1 and SAP2) cleave the evolutionarily conserved bacterial protein MucD to redundantly inhibit the growth of the bacterial pathogen Pseudomonas syringae. Antibacterial activity of SAP1 requires its protease activity in planta and in vitro. Plants overexpressing SAP1 exhibit enhanced MucD cleavage and resistance but incur no penalties in growth and reproduction, while sap1 sap2 double mutant plants exhibit compromised MucD cleavage and resistance against P. syringae. P. syringae lacking mucD shows compromised growth in planta and in vitro. Notably, growth of ΔmucD complemented with the non-cleavable MucDF106Y is not affected by SAP activity in planta and in vitro. Our findings identify the genetic factors and biochemical process underlying an antibacterial mechanism in plants. During innate immune responses, plant cells secrete proteases into apoplastic spaces where they contribute to pathogen resistance. Here Wang et al. show that the Arabidopsis SAP1 and SAP2 proteases cleave the bacterial MucD protein to inhibit growth of Pseudomonas syringae.
Collapse
Affiliation(s)
- Yiming Wang
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829, Cologne, Germany
| | - Ruben Garrido-Oter
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829, Cologne, Germany.,Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Jingni Wu
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829, Cologne, Germany.,Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Thomas M Winkelmüller
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829, Cologne, Germany
| | - Matthew Agler
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829, Cologne, Germany.,Plant Microbiosis Lab, Institute of Microbiology, Friedrich-Schiller University Jena, Neugasse 23, 07743, Jena, Germany
| | - Thomas Colby
- Plant Proteomics Group, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829, Cologne, Germany.,Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931, Cologne, Germany
| | - Tatsuya Nobori
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829, Cologne, Germany
| | - Eric Kemen
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829, Cologne, Germany.,Center for Plant Molecular Biology, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Kenichi Tsuda
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829, Cologne, Germany.
| |
Collapse
|
32
|
Liu M, Shi Z, Zhang X, Wang M, Zhang L, Zheng K, Liu J, Hu X, Di C, Qian Q, He Z, Yang DL. Inducible overexpression of Ideal Plant Architecture1 improves both yield and disease resistance in rice. NATURE PLANTS 2019; 5:389-400. [PMID: 30886331 DOI: 10.1038/s41477-019-0383-2] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/06/2019] [Indexed: 05/04/2023]
Abstract
Breeding crops with resistance is an efficient way to control diseases. However, increased resistance often has a fitness penalty. Thus, simultaneously increasing disease resistance and yield potential is a challenge in crop breeding. In this study, we found that downregulation of microRNA-156 (miR-156) and overexpression of Ideal Plant Architecture1 (IPA1) and OsSPL7, two target genes of miR-156, enhanced disease resistance against bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo), but reduced rice yield. We discovered that gibberellin signalling might be partially responsible for the disease resistance and developmental defects in IPA1 overexpressors. We then generated transgenic rice plants expressing IPA1 with the pathogen-inducible promoter of OsHEN1; these plants had both enhanced disease resistance and enhanced yield-related traits. Thus, we have identified miR-156-IPA1 as a novel regulator of the crosstalk between growth and defence, and we have established a new strategy for obtaining both high disease resistance and high yield.
Collapse
Affiliation(s)
- Mingming Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Zhenying Shi
- Key Laboratory of Insect Developmental and Evolutionary Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xiaohan Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Mingxuan Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Lin Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Kezhi Zheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Jiyun Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xingming Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Cuiru Di
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Dong-Lei Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
33
|
Lu-Irving P, Harenčár JG, Sounart H, Welles SR, Swope SM, Baltrus DA, Dlugosch KM. Native and Invading Yellow Starthistle (Centaurea solstitialis) Microbiomes Differ in Composition and Diversity of Bacteria. mSphere 2019; 4:e00088-19. [PMID: 30842267 PMCID: PMC6403453 DOI: 10.1128/msphere.00088-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 11/29/2022] Open
Abstract
Invasive species could benefit from being introduced to locations with more favorable species interactions, including the loss of enemies, the gain of mutualists, or the simplification of complex interaction networks. Microbiomes are an important source of species interactions with strong fitness effects on multicellular organisms, and these interactions are known to vary across regions. The highly invasive plant yellow starthistle (Centaurea solstitialis) has been shown to experience more favorable microbial interactions in its invasions of the Americas, but the microbiome that must contribute to this variation in interactions is unknown. We sequenced amplicons of 16S rRNA genes to characterize bacterial community compositions in the phyllosphere, ectorhizosphere, and endorhizosphere of yellow starthistle plants from seven invading populations in California, USA, and eight native populations in Europe. We tested for the differentiation of microbiomes by geography, plant compartment, and plant genotype. Bacterial communities differed significantly between native and invading plants within plant compartments, with consistently lower diversity in the microbiome of invading plants. The diversity of bacteria in roots was positively correlated with plant genotype diversity within both ranges, but this relationship did not explain microbiome differences between ranges. Our results reveal that these invading plants are experiencing either a simplified microbial environment or simplified microbial interactions as a result of the dominance of a few taxa within their microbiome. Our findings highlight several alternative hypotheses for the sources of variation that we observe in invader microbiomes and the potential for altered bacterial interactions to facilitate invasion success.IMPORTANCE Previous studies have found that introduced plants commonly experience more favorable microbial interactions in their non-native range, suggesting that changes to the microbiome could be an important contributor to invasion success. Little is known about microbiome variation across native and invading populations, however, and the potential sources of more favorable interactions are undescribed. Here, we report one of the first microbiome comparisons of plants from multiple native and invading populations, in the noxious weed yellow starthistle. We identify clear differences in composition and diversity of microbiome bacteria. Our findings raise new questions about the sources of these differences, and we outline the next generation of research that will be required to connect microbiome variation to its potential role in plant invasions.
Collapse
Affiliation(s)
- Patricia Lu-Irving
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
- Evolutionary Ecology, Royal Botanic Gardens Sydney, Sydney, New South Wales, Australia
| | - Julia G Harenčár
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California, USA
| | - Hailey Sounart
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
- Department of Biology, Mills College, Oakland, California, USA
| | - Shana R Welles
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| | - Sarah M Swope
- Department of Biology, Mills College, Oakland, California, USA
| | - David A Baltrus
- School of Plant Sciences, University of Arizona, Tucson, Arizona, USA
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
| | - Katrina M Dlugosch
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
34
|
Natural variation at XND1 impacts root hydraulics and trade-off for stress responses in Arabidopsis. Nat Commun 2018; 9:3884. [PMID: 30250259 PMCID: PMC6155316 DOI: 10.1038/s41467-018-06430-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 09/04/2018] [Indexed: 12/15/2022] Open
Abstract
Soil water uptake by roots is a key component of plant performance and adaptation to adverse environments. Here, we use a genome-wide association analysis to identify the XYLEM NAC DOMAIN 1 (XND1) transcription factor as a negative regulator of Arabidopsis root hydraulic conductivity (Lpr). The distinct functionalities of a series of natural XND1 variants and a single nucleotide polymorphism that determines XND1 translation efficiency demonstrate the significance of XND1 natural variation at species-wide level. Phenotyping of xnd1 mutants and natural XND1 variants show that XND1 modulates Lpr through action on xylem formation and potential indirect effects on aquaporin function and that it diminishes drought stress tolerance. XND1 also mediates the inhibition of xylem formation by the bacterial elicitor flagellin and counteracts plant infection by the root pathogen Ralstonia solanacearum. Thus, genetic variation at XND1, and xylem differentiation contribute to resolving the major trade-off between abiotic and biotic stress resistance in Arabidopsis. Soil water uptake is a major determinant of plant performance and stress tolerance. Here the authors show that, by affecting xylem formation in the root, natural variation at the Arabidopsis XND1 locus has contrasting effects on root hydraulics and drought tolerance versus pathogen resistance.
Collapse
|
35
|
Nobori T, Mine A, Tsuda K. Molecular networks in plant-pathogen holobiont. FEBS Lett 2018; 592:1937-1953. [PMID: 29714033 DOI: 10.1002/1873-3468.13071] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/13/2018] [Accepted: 04/23/2018] [Indexed: 12/31/2022]
Abstract
Plant immune receptors enable detection of a multitude of microbes including pathogens. The recognition of microbes activates various plant signaling pathways, such as those mediated by phytohormones. Over the course of coevolution with microbes, plants have expanded their repertoire of immune receptors and signaling components, resulting in highly interconnected plant immune networks. These immune networks enable plants to appropriately respond to different types of microbes and to coordinate immune responses with developmental programs and environmental stress responses. However, the interconnectivity in plant immune networks is exploited by microbial pathogens to promote pathogen fitness in plants. Analogous to plant immune networks, virulence-related pathways in bacterial pathogens are also interconnected. Accumulating evidence implies that some plant-derived compounds target bacterial virulence networks. Thus, the plant immune and bacterial virulence networks intimately interact with each other. Here, we highlight recent insights into the structures of the plant immune and bacterial virulence networks and the interactions between them. We propose that small molecules derived from plants and/or bacterial pathogens connect the two molecular networks, forming supernetworks in the plant-bacterial pathogen holobiont.
Collapse
Affiliation(s)
- Tatsuya Nobori
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Akira Mine
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Kusatsu, Japan.,JST, PRESTO, Kawaguchi-shi, Japan
| | - Kenichi Tsuda
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
36
|
Su J, Yang L, Zhu Q, Wu H, He Y, Liu Y, Xu J, Jiang D, Zhang S. Active photosynthetic inhibition mediated by MPK3/MPK6 is critical to effector-triggered immunity. PLoS Biol 2018; 16:e2004122. [PMID: 29723186 PMCID: PMC5953503 DOI: 10.1371/journal.pbio.2004122] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 05/15/2018] [Accepted: 04/06/2018] [Indexed: 01/04/2023] Open
Abstract
Extensive research revealed tremendous details about how plants sense pathogen effectors during effector-triggered immunity (ETI). However, less is known about downstream signaling events. In this report, we demonstrate that prolonged activation of MPK3 and MPK6, two Arabidopsis pathogen-responsive mitogen-activated protein kinases (MPKs), is essential to ETI mediated by both coiled coil-nucleotide binding site-leucine rich repeats (CNLs) and toll/interleukin-1 receptor nucleotide binding site-leucine rich repeats (TNLs) types of R proteins. MPK3/MPK6 activation rapidly alters the expression of photosynthesis-related genes and inhibits photosynthesis, which promotes the accumulation of superoxide ( O2•−) and hydrogen peroxide (H2O2), two major reactive oxygen species (ROS), in chloroplasts under light. In the chemical-genetically rescued mpk3 mpk6 double mutants, ETI-induced photosynthetic inhibition and chloroplastic ROS accumulation are compromised, which correlates with delayed hypersensitive response (HR) cell death and compromised resistance. Furthermore, protection of chloroplasts by expressing a plastid-targeted cyanobacterial flavodoxin (pFLD) delays photosynthetic inhibition and compromises ETI. Collectively, this study highlights a critical role of MPK3/MPK6 in manipulating plant photosynthetic activities to promote ROS accumulation in chloroplasts and HR cell death, which contributes to the robustness of ETI. Furthermore, the dual functionality of MPK3/MPK6 cascade in promoting defense and inhibiting photosynthesis potentially allow it to orchestrate the trade-off between plant growth and defense in plant immunity. Plants follow different strategies to defend themselves against pathogens and activate their immune systems once the pathogens have been detected. One of the responses observed is the inhibition of photosynthesis and the global down-regulation of genes that regulate this process, similar to what is frequently observed in plants under various biotic stress conditions. However, the mechanisms underlying the turning off of the photosynthetic activity and whether this process contributes to plants’ defense against pathogens remain to be determined. In this study, we analyze these mechanisms in Arabidopsis plants and show that prolonged activation of MPK3 and MPK6, two kinases critical for pathogen resistance, results in the inhibition of photosynthesis and accumulation of reactive oxygen species (ROS) in the chloroplasts. We find that this response is similar to that observed during pathogen effector-triggered immunity (ETI). Correspondingly, plants that carry mutant versions of MPK3 and MPK6 result in compromised ETI-induced photosynthetic inhibition and chloroplastic ROS accumulation; thus, these two kinases seem to be essential for ETI. Our results suggest that MPK3/MPK6 activation induces a global down-regulation of photosynthesis along with an up-regulation of defense-related genes, and coordinates the growth and defense trade-off in plants.
Collapse
Affiliation(s)
- Jianbin Su
- Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Division of Biochemistry, Interdisciplinary Plant Group, and Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - Liuyi Yang
- Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiankun Zhu
- Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongjiao Wu
- Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi He
- Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yidong Liu
- Division of Biochemistry, Interdisciplinary Plant Group, and Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - Juan Xu
- Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dean Jiang
- Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shuqun Zhang
- Division of Biochemistry, Interdisciplinary Plant Group, and Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
37
|
Abstract
Plants contain a unique family of membrane receptors, which are different from the ones found in bacteria and animals. These proteins are able to sense very different signals, such as steroid molecules, peptides, and proteins at the cell surface using a spiral-shaped ligand binding domain. Ligand binding allows the receptor to engage with a smaller coreceptor kinase, which is shared among different receptors. Here it is analyzed how one coreceptor protein can contribute to the sensing of two different ligands involved in plant growth and organ abscission and to activation of their cognate receptors. Plant-unique membrane receptor kinases with leucine-rich repeat ectodomains (LRR-RKs) can sense small molecule, peptide, and protein ligands. Many LRR-RKs require SERK-family coreceptor kinases for high-affinity ligand binding and receptor activation. How one coreceptor can contribute to the specific binding of distinct ligands and activation of different LRR-RKs is poorly understood. Here we quantitatively analyze the contribution of SERK3 to ligand binding and activation of the brassinosteroid receptor BRI1 and the peptide hormone receptor HAESA. We show that while the isolated receptors sense their respective ligands with drastically different binding affinities, the SERK3 ectodomain binds the ligand-associated receptors with very similar binding kinetics. We identify residues in the SERK3 N-terminal capping domain, which allow for selective steroid and peptide hormone recognition. In contrast, residues in the SERK3 LRR core form a second, constitutive receptor–coreceptor interface. Genetic analyses of protein chimera between BRI1 and SERK3 define that signaling-competent complexes are formed by receptor–coreceptor heteromerization in planta. A functional BRI1–HAESA chimera suggests that the receptor activation mechanism is conserved among different LRR-RKs, and that their signaling specificity is encoded in the kinase domain of the receptor. Our work pinpoints the relative contributions of receptor, ligand, and coreceptor to the formation and activation of SERK-dependent LRR-RK signaling complexes regulating plant growth and development.
Collapse
|
38
|
Ballaré CL, Pierik R. The shade-avoidance syndrome: multiple signals and ecological consequences. PLANT, CELL & ENVIRONMENT 2017; 40:2530-2543. [PMID: 28102548 DOI: 10.1111/pce.12914] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/10/2017] [Accepted: 01/13/2017] [Indexed: 05/18/2023]
Abstract
Plants use photoreceptor proteins to detect the proximity of other plants and to activate adaptive responses. Of these photoreceptors, phytochrome B (phyB), which is sensitive to changes in the red (R) to far-red (FR) ratio of sunlight, is the one that has been studied in greatest detail. The molecular connections between the proximity signal (low R:FR) and a model physiological response (increased elongation growth) have now been mapped in considerable detail in Arabidopsis seedlings. We briefly review our current understanding of these connections and discuss recent progress in establishing the roles of other photoreceptors in regulating growth-related pathways in response to competition cues. We also consider processes other than elongation that are controlled by photoreceptors and contribute to plant fitness under variable light conditions, including photoresponses that optimize the utilization of soil resources. In examining recent advances in the field, we highlight emerging roles of phyB as a major modulator of hormones related to plant immunity, in particular salicylic acid and jasmonic acid (JA). Recent attempts to manipulate connections between light signals and defence in Arabidopsis suggest that it might be possible to improve crop health at high planting densities by targeting links between phyB and JA signalling.
Collapse
Affiliation(s)
- Carlos L Ballaré
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Ave. San Martín 4453, C1417DSE, Buenos Aires, Argentina
- IIB-INTECH, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de San Martín, B1650HMP, Buenos Aires, Argentina
| | - Ronald Pierik
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
39
|
Brassinosteroid signaling-dependent root responses to prolonged elevated ambient temperature. Nat Commun 2017; 8:309. [PMID: 28827608 PMCID: PMC5567177 DOI: 10.1038/s41467-017-00355-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 06/16/2017] [Indexed: 01/09/2023] Open
Abstract
Due to their sessile nature, plants have to cope with and adjust to their fluctuating environment. Temperature elevation stimulates the growth of Arabidopsis aerial parts. This process is mediated by increased biosynthesis of the growth-promoting hormone auxin. How plant roots respond to elevated ambient temperature is however still elusive. Here we present strong evidence that temperature elevation impinges on brassinosteroid hormone signaling to alter root growth. We show that elevated temperature leads to increased root elongation, independently of auxin or factors known to drive temperature-mediated shoot growth. We further demonstrate that brassinosteroid signaling regulates root responses to elevated ambient temperature. Increased growth temperature specifically impacts on the level of the brassinosteroid receptor BRI1 to downregulate brassinosteroid signaling and mediate root elongation. Our results establish that BRI1 integrates temperature and brassinosteroid signaling to regulate root growth upon long-term changes in environmental conditions associated with global warming.Moderate heat stimulates the growth of Arabidopsis shoots in an auxin-dependent manner. Here, Martins et al. show that elevated ambient temperature modifies root growth by reducing the BRI1 brassinosteroid-receptor protein level and downregulating brassinosteroid signaling.
Collapse
|
40
|
Saremba BM, Tymm FJM, Baethke K, Rheault MR, Sherif SM, Saxena PK, Murch SJ. Plant signals during beetle (Scolytus multistriatus) feeding in American elm (Ulmus americana Planch). PLANT SIGNALING & BEHAVIOR 2017; 12:e1296997. [PMID: 28448744 PMCID: PMC5501226 DOI: 10.1080/15592324.2017.1296997] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/11/2017] [Accepted: 02/13/2017] [Indexed: 05/23/2023]
Abstract
American Elms were devastated by an outbreak of Dutch Elm Disease is caused by the fungus Ophiostoma novo-ulmi Brasier that originated in Asia and arrived in the early 1900s. In spite of decades of study, the specific mechanisms and disease resistance in some trees is not well understood. the fungus is spread by several species of bark beetles in the genus Scolytus, during their dispersal and feeding. Our objective was to understand elm responses to beetle feeding in the absence of the fungus to identify potential resistance mechanisms. A colony of Scolytus multistriatus was established from wild-caught beetles and beetles were co-incubated with susceptible or resistant American elm varieties in a controlled environment chamber. Beetles burrowed into the auxillary meristems of the young elm shoots. The trees responded to the beetle damage by a series of spikes in the concentration of plant growth regulating compounds, melatonin, serotonin, and jasmonic acid. Spikes in melatonin and serotonin represented a 7,000-fold increase over resting levels. Spikes in jasmonic acid were about 10-fold higher than resting levels with one very large spike observed. Differences were noted between susceptible and resistant elms that provide new understanding of plant defenses.
Collapse
Affiliation(s)
- Brett M. Saremba
- Biology, University of British Columbia, Kelowna, British Columbia, Canada
| | - Fiona J. M. Tymm
- Chemistry, University of British Columbia, Kelowna, British Columbia, Canada
| | - Kathy Baethke
- Chemistry, University of British Columbia, Kelowna, British Columbia, Canada
| | - Mark R. Rheault
- Biology, University of British Columbia, Kelowna, British Columbia, Canada
| | - Sherif M. Sherif
- Department of Plant Agriculture, University of Guelph, Guelph, Ontario, Canada
- Alson H. Smith Jr. Agricultural Research and Extension Center, Virginia Tech, Winchester, Virginia, USA
| | - Praveen K. Saxena
- Department of Plant Agriculture, University of Guelph, Guelph, Ontario, Canada
| | - Susan J. Murch
- Chemistry, University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
41
|
Fallath T, Kidd BN, Stiller J, Davoine C, Björklund S, Manners JM, Kazan K, Schenk PM. MEDIATOR18 and MEDIATOR20 confer susceptibility to Fusarium oxysporum in Arabidopsis thaliana. PLoS One 2017; 12:e0176022. [PMID: 28441405 PMCID: PMC5404846 DOI: 10.1371/journal.pone.0176022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/04/2017] [Indexed: 12/29/2022] Open
Abstract
The conserved protein complex known as Mediator conveys transcriptional signals by acting as an intermediary between transcription factors and RNA polymerase II. As a result, Mediator subunits play multiple roles in regulating developmental as well as abiotic and biotic stress pathways. In this report we identify the head domain subunits MEDIATOR18 and MEDIATOR20 as important susceptibility factors for Fusarium oxysporum infection in Arabidopsis thaliana. Mutants of MED18 and MED20 display down-regulation of genes associated with jasmonate signaling and biosynthesis while up-regulation of salicylic acid associated pathogenesis related genes and reactive oxygen producing and scavenging genes. We propose that MED18 and MED20 form a sub-domain within Mediator that controls the balance of salicylic acid and jasmonate associated defense pathways.
Collapse
Affiliation(s)
- Thorya Fallath
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Australia
| | - Brendan N. Kidd
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Australia
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St Lucia, Australia
| | - Jiri Stiller
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St Lucia, Australia
| | - Celine Davoine
- Department of Medical Biochemistry and Biophysics, Umeå Plant Science Center, Umeå University Umeå Sweden
| | - Stefan Björklund
- Department of Medical Biochemistry and Biophysics, Umeå Plant Science Center, Umeå University Umeå Sweden
| | - John M. Manners
- CSIRO Agriculture and Food, Black Mountain, Canberra, Australia
| | - Kemal Kazan
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St Lucia, Australia
- Queensland Alliance for Agriculture & Food Innovation (QAAFI), University of Queensland, St Lucia, Australia
| | - Peer M. Schenk
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Australia
- Queensland Alliance for Agriculture & Food Innovation (QAAFI), University of Queensland, St Lucia, Australia
- * E-mail:
| |
Collapse
|
42
|
Scheres B, van der Putten WH. The plant perceptron connects environment to development. Nature 2017; 543:337-345. [DOI: 10.1038/nature22010] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 01/10/2017] [Indexed: 12/23/2022]
|
43
|
Meng Z, Ruberti C, Gong Z, Brandizzi F. CPR5 modulates salicylic acid and the unfolded protein response to manage tradeoffs between plant growth and stress responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:486-501. [PMID: 27747970 PMCID: PMC5340296 DOI: 10.1111/tpj.13397] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/07/2016] [Indexed: 05/13/2023]
Abstract
Completion of a plant's life cycle depends on successful prioritization of signaling favoring either growth or defense. Although hormones are pivotal regulators of growth-defense tradeoffs, the underlying signaling mechanisms remain obscure. The unfolded protein response (UPR) is essential for physiological growth as well as management of endoplasmic reticulum (ER) stress in unfavorable growth conditions. The plant UPR transducers are the kinase and ribonuclease IRE1 and the transcription factors bZIP28 and bZIP60. We analyzed management of the tradeoff between growth and ER stress defense by the stress response hormone salicylic acid (SA) and the UPR, which is modulated by SA via unknown mechanisms. We show that the plant growth and stress regulator CPR5, which represses accumulation of SA, favors growth in physiological conditions through inhibition of the SA-dependent IRE1-bZIP60 arm that antagonizes organ growth; CPR5 also favors growth in stress conditions through repression of ER stress-induced bZIP28/IRE1-bZIP60 arms. By demonstrating a physical interaction of CPR5 with bZIP60 and bZIP28, we provide mechanistic insights into CPR5-mediated modulation of UPR signaling. These findings define a critical surveillance strategy for plant growth-ER stress defense tradeoffs based on CPR5 and SA-modulated UPR signaling, whereby CPR5 acts as a positive modulator of growth in physiological conditions and in stress by antagonizing SA-dependent growth inhibition through UPR modulation.
Collapse
Affiliation(s)
- Zhe Meng
- MSU-DOE Plant Research Lab and Plant Biology, Department Michigan State University, East Lansing, MI 48824, USA
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Cristina Ruberti
- MSU-DOE Plant Research Lab and Plant Biology, Department Michigan State University, East Lansing, MI 48824, USA
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab and Plant Biology, Department Michigan State University, East Lansing, MI 48824, USA
- For correspondence ()
| |
Collapse
|
44
|
Mine A, Nobori T, Salazar-Rondon MC, Winkelmüller TM, Anver S, Becker D, Tsuda K. An incoherent feed-forward loop mediates robustness and tunability in a plant immune network. EMBO Rep 2017; 18:464-476. [PMID: 28069610 DOI: 10.15252/embr.201643051] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/09/2016] [Accepted: 12/08/2016] [Indexed: 01/09/2023] Open
Abstract
Immune signaling networks must be tunable to alleviate fitness costs associated with immunity and, at the same time, robust against pathogen interferences. How these properties mechanistically emerge in plant immune signaling networks is poorly understood. Here, we discovered a molecular mechanism by which the model plant species Arabidopsis thaliana achieves robust and tunable immunity triggered by the microbe-associated molecular pattern, flg22. Salicylic acid (SA) is a major plant immune signal molecule. Another signal molecule jasmonate (JA) induced expression of a gene essential for SA accumulation, EDS5 Paradoxically, JA inhibited expression of PAD4, a positive regulator of EDS5 expression. This incoherent type-4 feed-forward loop (I4-FFL) enabled JA to mitigate SA accumulation in the intact network but to support it under perturbation of PAD4, thereby minimizing the negative impact of SA on fitness as well as conferring robust SA-mediated immunity. We also present evidence for evolutionary conservation of these gene regulations in the family Brassicaceae Our results highlight an I4-FFL that simultaneously provides the immune network with robustness and tunability in A. thaliana and possibly in its relatives.
Collapse
Affiliation(s)
- Akira Mine
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany.,Center for Gene Research, Nagoya University, Chikusa-Ku Nagoya, Japan
| | - Tatsuya Nobori
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Maria C Salazar-Rondon
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Thomas M Winkelmüller
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Shajahan Anver
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Dieter Becker
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Kenichi Tsuda
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
45
|
Cortés LE, Weldegergis BT, Boccalandro HE, Dicke M, Ballaré CL. Trading direct for indirect defense? Phytochrome B inactivation in tomato attenuates direct anti-herbivore defenses whilst enhancing volatile-mediated attraction of predators. THE NEW PHYTOLOGIST 2016; 212:1057-1071. [PMID: 27689843 DOI: 10.1111/nph.14210] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 08/11/2016] [Indexed: 05/23/2023]
Abstract
Under conditions of competition for light, which lead to the inactivation of the photoreceptor phytochrome B (phyB), the growth of shade-intolerant plants is promoted and the accumulation of direct anti-herbivore defenses is down-regulated. Little is known about the effects of phyB on emissions of volatile organic compounds (VOCs), which play a major role as informational cues in indirect defense. We investigated the effects of phyB on direct and indirect defenses in tomato (Solanum lycopersicum) using two complementary approaches to inactivate phyB: illumination with a low red to far-red ratio, simulating competition, and mutation of the two PHYB genes present in the tomato genome. Inactivation of phyB resulted in low levels of constitutive defenses and down-regulation of direct defenses induced by methyl jasmonate (MeJA). Interestingly, phyB inactivation also had large effects on the blends of VOCs induced by MeJA. Moreover, in two-choice bioassays using MeJA-induced plants, the predatory mirid bug Macrolophus pygmaeus preferred VOCs from plants in which phyB was inactivated over VOCs from control plants. These results suggest that, in addition to repressing direct defense, phyB inactivation has consequences for VOC-mediated tritrophic interactions in canopies, presumably attracting predators to less defended plants, where they are likely to find more abundant prey.
Collapse
Affiliation(s)
- Leandro E Cortés
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad de Buenos Aires, Ave. San Martín 4453, C1417DSE, Buenos Aires, Argentina
- Instituto de Biología Agrícola de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional de Cuyo, Almirante Brown 500, Luján de Cuyo, 5500, Mendoza, Argentina
| | - Berhane T Weldegergis
- Laboratory of Entomology, Wageningen University, PO Box 16, NL-6700, AA Wageningen, the Netherlands
| | - Hernán E Boccalandro
- Instituto de Biología Agrícola de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional de Cuyo, Almirante Brown 500, Luján de Cuyo, 5500, Mendoza, Argentina
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, PO Box 16, NL-6700, AA Wageningen, the Netherlands
| | - Carlos L Ballaré
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad de Buenos Aires, Ave. San Martín 4453, C1417DSE, Buenos Aires, Argentina
- IIB-INTECH, Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional de San Martín, B1650HMP, Buenos Aires, Argentina
| |
Collapse
|
46
|
XVII Congress on Molecular Plant-Microbe Interactions Meeting Report. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:S1-S22. [PMID: 28384051 DOI: 10.1094/mpmi-29-12-s1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
|