1
|
Ebrahimi MN, Banazadeh M, Alitaneh Z, Jaafari Suha A, Esmaeili A, Hasannejad-Asl B, Siahposht-Khachaki A, Hassanshahi A, Bagheri-Mohammadi S. The distribution of neurotransmitters in the brain circuitry: Mesolimbic pathway and addiction. Physiol Behav 2024; 284:114639. [PMID: 39004195 DOI: 10.1016/j.physbeh.2024.114639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Understanding the central nervous system (CNS) circuitry and its different neurotransmitters that underlie reward is essential to improve treatment for many common health issues, such as addiction. Here, we concentrate on understanding how the mesolimbic circuitry and neurotransmitters are organized and function, and how drug exposure affects synaptic and structural changes in this circuitry. While the role of some reward circuits, like the cerebral dopamine (DA)/glutamate (Glu)/gamma aminobutyric acid (GABA)ergic pathways, in drug reward, is well known, new research using molecular-based methods has shown functional alterations throughout the reward circuitry that contribute to various aspects of addiction, including craving and relapse. A new understanding of the fundamental connections between brain regions as well as the molecular alterations within these particular microcircuits, such as neurotrophic factor and molecular signaling or distinct receptor function, that underlie synaptic and structural plasticity evoked by drugs of abuse has been made possible by the ability to observe and manipulate neuronal activity within specific cell types and circuits. It is exciting that these discoveries from preclinical animal research are now being applied in the clinic, where therapies for human drug dependence, such as deep brain stimulation and transcranial magnetic stimulation, are being tested. Therefore, this chapter seeks to summarize the current understanding of the important brain regions (especially, mesolimbic circuitry) and neurotransmitters implicated in drug-related behaviors and the molecular mechanisms that contribute to altered connectivity between these areas, with the postulation that increased knowledge of the plasticity within the drug reward circuit will lead to new and improved treatments for addiction.
Collapse
Affiliation(s)
- Mohammad Navid Ebrahimi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Banazadeh
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Alitaneh
- Quantitative and System Biology, Department of Natural Sciences, University of California Merced, USA
| | - Ali Jaafari Suha
- Department of Physiology and Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Esmaeili
- Student Research Committee, Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnam Hasannejad-Asl
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti, University of Medical Sciences, Tehran, Iran
| | - Ali Siahposht-Khachaki
- Immunogenetics Research Center, Department of Physiology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amin Hassanshahi
- Department of Physiology, Bam University of Medical Sciences, Bam, Iran
| | - Saeid Bagheri-Mohammadi
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
2
|
Oriol L, Chao M, Kollman GJ, Dowlat DS, Singhal SM, Steinkellner T, Hnasko TS. Ventral tegmental area interneurons revisited: GABA and glutamate projection neurons make local synapses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597996. [PMID: 38895464 PMCID: PMC11185768 DOI: 10.1101/2024.06.07.597996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The ventral tegmental area (VTA) contains projection neurons that release the neurotransmitters dopamine, GABA, and/or glutamate from distal synapses. VTA also contains GABA neurons that synapse locally on to VTA dopamine neurons, synapses widely credited to a population of so-called VTA interneurons. Interneurons in cortex, striatum, and elsewhere have well-defined morphological features, physiological properties, and molecular markers, but such features have not been clearly described in VTA. Indeed, there is scant evidence that local and distal synapses originate from separate populations of VTA GABA neurons. In this study we tested whether several markers expressed in non-dopamine VTA neurons are selective markers of interneurons, defined as neurons that synapse locally but not distally. Challenging previous assumptions, we found that VTA neurons genetically defined by expression of parvalbumin, somatostatin, neurotensin, or mu-opioid receptor project to known VTA targets including nucleus accumbens, ventral pallidum, lateral habenula, and prefrontal cortex. Moreover, we provide evidence that VTA GABA and glutamate projection neurons make functional inhibitory or excitatory synapses locally within VTA. These findings suggest that local collaterals of VTA projection neurons could mediate functions prior attributed to VTA interneurons. This study underscores the need for a refined understanding of VTA connectivity to explain how heterogeneous VTA circuits mediate diverse functions related to reward, motivation, or addiction.
Collapse
Affiliation(s)
- Lucie Oriol
- Department of Neurosciences, University of California, San Diego, La Jolla, United States
| | - Melody Chao
- Department of Neurosciences, University of California, San Diego, La Jolla, United States
| | - Grace J Kollman
- Department of Neurosciences, University of California, San Diego, La Jolla, United States
| | - Dina S Dowlat
- Department of Neurosciences, University of California, San Diego, La Jolla, United States
| | - Sarthak M Singhal
- Department of Neurosciences, University of California, San Diego, La Jolla, United States
| | - Thomas Steinkellner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Austria
| | - Thomas S Hnasko
- Department of Neurosciences, University of California, San Diego, La Jolla, United States
- Research Service VA San Diego Healthcare System, San Diego, United States
| |
Collapse
|
3
|
Singhal SM, Zell V, Faget L, Slosky LM, Barak LS, Caron MG, Pinkerton AB, Hnasko TS. Neurotensin receptor 1-biased ligand attenuates neurotensin-mediated excitation of ventral tegmental area dopamine neurons and dopamine release in the nucleus accumbens. Neuropharmacology 2023; 234:109544. [PMID: 37055008 PMCID: PMC10192038 DOI: 10.1016/j.neuropharm.2023.109544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/29/2023] [Accepted: 04/10/2023] [Indexed: 04/15/2023]
Abstract
Strong expression of the G protein-coupled receptor (GPCR) neurotensin receptor 1 (NTR1) in ventral tegmental area (VTA) dopamine (DA) neurons and terminals makes it an attractive target to modulate DA neuron activity and normalize DA-related pathologies. Recent studies have identified a novel class of NTR1 ligand that shows promising effects in preclinical models of addiction. A lead molecule, SBI-0654553 (SBI-553), can act as a positive allosteric modulator of NTR1 β-arrestin recruitment while simultaneously antagonizing NTR1 Gq protein signaling. Using cell-attached recordings from mouse VTA DA neurons we discovered that, unlike neurotensin (NT), SBI-553 did not independently increase spontaneous firing. Instead, SBI-553 blocked the NT-mediated increase in firing. SBI-553 also antagonized the effects of NT on dopamine D2 auto-receptor signaling, potentially through its inhibitory effects on G-protein signaling. We also measured DA release directly, using fast-scan cyclic voltammetry in the nucleus accumbens and observed antagonist effects of SBI-553 on an NT-induced increase in DA release. Further, in vivo administration of SBI-553 did not notably change basal or cocaine-evoked DA release measured in NAc using fiber photometry. Overall, these results indicate that SBI-553 blunts NT's effects on spontaneous DA neuron firing, D2 auto-receptor function, and DA release, without independently affecting these measures. In the presence of NT, SBI-553 has an inhibitory effect on mesolimbic DA activity, which could contribute to its efficacy in animal models of psychostimulant use.
Collapse
Affiliation(s)
- Sarthak M Singhal
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Vivien Zell
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Lauren Faget
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Lauren M Slosky
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | | | - Marc G Caron
- Departments of Cell Biology, Neurobiology and Medicine, Duke University, Durham, NC, USA
| | - Anthony B Pinkerton
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Thomas S Hnasko
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA; Research Service, VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
4
|
Rodríguez FD, Sánchez ML, Coveñas R. Neurotensin and Alcohol Use Disorders: Towards a Pharmacological Treatment. Int J Mol Sci 2023; 24:ijms24108656. [PMID: 37240004 DOI: 10.3390/ijms24108656] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Harmful alcohol use is responsible for a group of disorders collectively named alcohol use disorders (AUDs), according to the DSM-5 classification. The damage induced by alcohol depends on the amount, time, and consumption patterns (continuous and heavy episodic drinking). It affects individual global well-being and social and familial environments with variable impact. Alcohol addiction manifests with different degrees of organ and mental health detriment for the individual, exhibiting two main traits: compulsive drinking and negative emotional states occurring at withdrawal, frequently causing relapse episodes. Numerous individual and living conditions, including the concomitant use of other psychoactive substances, lie in the complexity of AUD. Ethanol and its metabolites directly impact the tissues and may cause local damage or alter the homeostasis of brain neurotransmission, immunity scaffolding, or cell repair biochemical pathways. Brain modulator and neurotransmitter-assembled neurocircuitries govern reward, reinforcement, social interaction, and consumption of alcohol behaviors in an intertwined manner. Experimental evidence supports the participation of neurotensin (NT) in preclinical models of alcohol addiction. For example, NT neurons in the central nucleus of the amygdala projecting to the parabrachial nucleus strengthen alcohol consumption and preference. In addition, the levels of NT in the frontal cortex were found to be lower in rats bred to prefer alcohol to water in a free alcohol-water choice compared to wild-type animals. NT receptors 1 and 2 seem to be involved in alcohol consumption and alcohol effects in several models of knockout mice. This review aims to present an updated picture of the role of NT systems in alcohol addiction and the possible use of nonpeptide ligands modulating the activity of the NT system, applied to experimental animal models of harmful drinking behavior mimicking alcohol addiction leading to health ruin in humans.
Collapse
Affiliation(s)
- Francisco D Rodríguez
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, University of Salamanca, 37008 Salamanca, Spain
- Group GIR-USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37008 Salamanca, Spain
| | - Manuel Lisardo Sánchez
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, C/Pintor Fernando Gallego 1, 37007 Salamanca, Spain
| | - Rafael Coveñas
- Group GIR-USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37008 Salamanca, Spain
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, C/Pintor Fernando Gallego 1, 37007 Salamanca, Spain
| |
Collapse
|
5
|
Kühl T, Georgieva MG, Hübner H, Lazarova M, Vogel M, Haas B, Peeva MI, Balacheva AA, Bogdanov IP, Milella L, Ponticelli M, Garev T, Faraone I, Detcheva R, Minchev B, Petkova-Kirova P, Tancheva L, Kalfin R, Atanasov AG, Antonov L, Pajpanova TI, Kirilov K, Gastreich M, Gmeiner P, Imhof D, Tzvetkov NT. Neurotensin(8-13) analogs as dual NTS1 and NTS2 receptor ligands with enhanced effects on a mouse model of Parkinson's disease. Eur J Med Chem 2023; 254:115386. [PMID: 37094450 DOI: 10.1016/j.ejmech.2023.115386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/15/2023] [Accepted: 04/16/2023] [Indexed: 04/26/2023]
Abstract
The modulatory interactions between neurotensin (NT) and the dopaminergic neurotransmitter system in the brain suggest that NT may be associated with the progression of Parkinson's disease (PD). NT exerts its neurophysiological effects by interactions with the human NT receptors type 1 (hNTS1) and 2 (hNTS2). Therefore, both receptor subtypes are promising targets for the development of novel NT-based analogs for the treatment of PD. In this study, we used a virtually guided molecular modeling approach to predict the activity of NT(8-13) analogs by investigating the docking models of ligands designed for binding to the human NTS1 and NTS2 receptors. The importance of the residues at positions 8 and/or 9 for hNTS1 and hNTS2 receptor binding affinity was experimentally confirmed by radioligand binding assays. Further in vitro ADME profiling and in vivo studies revealed that, compared to the parent peptide NT(8-13), compound 10 exhibited improved stability and BBB permeability combined with a significant enhancement of the motor function and memory in a mouse model of PD. The herein reported NTS1/NTS2 dual-specific NT(8-13) analogs represent an attractive tool for the development of therapeutic strategies against PD and potentially other CNS disorders.
Collapse
Affiliation(s)
- Toni Kühl
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Maya G Georgieva
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, 1113, Bulgaria
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander- Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, D-91058, Erlangen, Germany
| | - Maria Lazarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113, Sofia, Bulgaria
| | - Matthias Vogel
- Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Bodo Haas
- Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Martina I Peeva
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, 1113, Bulgaria
| | - Aneliya A Balacheva
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, 1113, Bulgaria
| | - Ivan P Bogdanov
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, 1113, Bulgaria
| | - Luigi Milella
- Department of Science, University of Basilicata, V.le dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Maria Ponticelli
- Department of Science, University of Basilicata, V.le dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Tsvetomir Garev
- UMBALSM "N. I. Pirogov"-Hospital, 1606 Pette Kyosheta, Sofia, Bulgaria
| | - Immacolata Faraone
- Department of Science, University of Basilicata, V.le dell'Ateneo Lucano 10, 85100, Potenza, Italy; Innovative Startup Farmis s.r.l., Via Nicola Vaccaro 40, 85100, Potenza, Italy
| | - Roumyana Detcheva
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, 1113, Bulgaria
| | - Borislav Minchev
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113, Sofia, Bulgaria
| | - Polina Petkova-Kirova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113, Sofia, Bulgaria
| | - Lyubka Tancheva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113, Sofia, Bulgaria; Weizmann Institute of Science, 234 Herzl St., Rehovot, 7610001, Israel
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113, Sofia, Bulgaria
| | - Atanas G Atanasov
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria; Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552, Magdalenka, Poland
| | - Liudmil Antonov
- Institute of Electronics, Bulgarian Academy of Sciences, Blvd. Tsarigradsko Chaussee 72, 1784, Sofia, Bulgaria
| | - Tamara I Pajpanova
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, 1113, Bulgaria
| | - Kiril Kirilov
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, 1113, Bulgaria; Department of Natural Sciences, New Bulgarian University, 21 Montevideo Str., Sofia, 1618, Bulgaria
| | - Marcus Gastreich
- BioSolveIT GmbH, An der Ziegelei 79, 53757 St. Augustin, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander- Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, D-91058, Erlangen, Germany
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Nikolay T Tzvetkov
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, 1113, Bulgaria.
| |
Collapse
|
6
|
Georgieva JV, Katt M, Ye Z, Umlauf BJ, Wenthur CJ, Shusta EV. The 46.1 Antibody Mediates Neurotensin Uptake into the CNS and the Effects Depend on the Route of Intravenous Administration. Pharmaceutics 2022; 14:pharmaceutics14081706. [PMID: 36015332 PMCID: PMC9414616 DOI: 10.3390/pharmaceutics14081706] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Central nervous system (CNS) exposure to blood-borne biotherapeutics is limited by the restrictive nature of the brain vasculature. In particular, tightly sealed endothelial cells of the blood-brain barrier (BBB) prevent the uptake of protein and gene medicines. An approach to increase the bioavailability of such therapeutics is harnessing the BBB endothelial cells' own receptor-mediated transcytosis (RMT) mechanisms. Key to this process is a targeting ligand that can engage a BBB-resident RMT receptor. We recently identified an antibody, named 46.1, that accumulates in the mouse brain after intravenous injection. To further characterize the brain targeting and penetrating properties of clone 46.1, we conjugated neurotensin (NT) to an scFv-Fc form of the antibody (46.1-scFv-Fc-LongLinker-NT). While centrally administered NT decreases the core body temperature and locomotor activity, effects attributed to two spatially segregated brain areas, systemically administered NT has limited effects. Hence, NT can be used as a model therapeutic payload to evaluate the brain penetration of BBB-targeting antibodies and their capability to accumulate in discrete brain areas. We demonstrate that intravenously administered 46.1-scFv-Fc-LL-NT can elicit transient hypothermia and reduce drug-induced hyperlocomotion, confirming that 46.1 can deliver drug cargo to the CNS at pharmacologically relevant doses. Interestingly, when two intravenous administration routes in mice, retro-orbital and tail vein, were compared, only retro-orbital administration led to transient hypothermia. We further explored the retro-orbital route and demonstrated that the 46.1-scFv-Fc-LL-NT could enter the brain arterial blood supply directly from the retro-orbital/cavernous sinus. Taken together, the 46.1 antibody is capable of transporting drug cargo into the CNS, and at least of a portion of its CNS accumulation occurs via the cavernous sinus-arterial route.
Collapse
Affiliation(s)
- Julia V. Georgieva
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Moriah Katt
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Zhou Ye
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Benjamin J. Umlauf
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Cody J. Wenthur
- Divisions of Pharmaceutical Sciences and Pharmacy Practice, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Eric V. Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
- Correspondence:
| |
Collapse
|
7
|
Bee Pollen and Probiotics May Alter Brain Neuropeptide Levels in a Rodent Model of Autism Spectrum Disorders. Metabolites 2022; 12:metabo12060562. [PMID: 35736494 PMCID: PMC9230532 DOI: 10.3390/metabo12060562] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Neuropeptides play a major role in maintaining normal brain development in children. Dysfunction of some specific neuropeptides can lead to autism spectrum disorders (ASD) in terms of social interaction and repetitive behavior, but the exact underlying etiological mechanisms are still not clear. In this study, we used an animal model of autism to investigate the role of bee pollen and probiotic in maintaining neuropeptide levels in the brain. We measured the Alpha-melanocyte-stimulating hormone (α-MSH), Beta-endorphin (β-End), neurotensin (NT), and substance P (SP) in brain homogenates of six studied groups of rats. Group I served as control, given only PBS for 30 days; Group II as an autistic model treated with 250 mg PPA/kg BW/day for 3 days after being given PBS for 27 days. Groups III-VI were denoted as intervention groups. G-III was treated with bee pollen (BP) 250 mg/kg body weight/day; G-IV with Lactobacillus paracaseii (LB) (109 CFU/mL) suspended in PBS; G-V with 0.2 g/kg body weight/day Protexin®, a mixture of probiotics (MPB); and G-VI was transplanted with stool from normal animals (FT) for 27 days prior to the induction of PPA neurotoxicity on the last 3 days of study (days 28–30). The obtained data were analyzed through the use of principal component analysis (PCA), discriminant analysis (DA), hierarchical clustering, and receiver operating characteristic (ROC) curves as excellent statistical tools in the field of biomarkers. The obtained data revealed that brain levels of the four measured neuropeptides were significantly reduced in PPA-treated animals compared to healthy control animals. Moreover, the findings demonstrate the ameliorative effects of bee pollen as a prebiotic and of the pure or mixed probiotics. This study proves the protective effects of pre and probiotics against the neurotoxic effects of PPA presented as impaired levels of α-MSH, β-End, NT, and SP.
Collapse
|
8
|
Mishra A, Singh KP. Neurotensin agonist PD 149163 modulates the neuroinflammation induced by bacterial endotoxin lipopolysaccharide in mice model. Immunopharmacol Immunotoxicol 2022; 44:216-226. [PMID: 35166614 DOI: 10.1080/08923973.2022.2037628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE The disruption of bidirectional communication between neuroendocrine and immune components by stressors leads to mental problems. The immunomodulation therapy of neuroinflammation-led psychiatric illness is an emerging area of research. Therefore, the present study aimed to evaluate immune modulation efficacy of PD 149163 (PD) against the lipopolysaccharide (LPS)-induced neuroinflammation. MATERIALS AND METHODS The Swiss albino mice (female/12 weeks) were divided into six groups (6 mice/group): (I) Control: 0.9% NaCl; (II) LPS: 1 mg/kg BW, for 5 days; (III) LPS + PD Low: LPS 1 mg/kg BW (for 5 days) after that PD 100 µg/kg BW (for 21 days); (IV) LPS + PD High: LPS 1 mg/kg BW (for 5 days) after that PD 300 µg/kg BW (for 21 days); (V) PD Low: PD 100 µg/kg BW (for 21 days); (VI) PD High: PD 300 µg/kg BW (for 21 days). All treatments were given intraperitoneal. RESULTS The LPS-induced weight loss (body and brain) was normalized to control after PD treatment. The PD enhanced superoxide dismutase (SOD) activity while decreased lipid hydroperoxide (LOOH) level altered in LPS-exposed mice. The significantly increased pro-inflammatory cytokines (IL-6 and TNF-α) in LPS exposure were also decreased by PD. Likewise, the LPS-induced HPA axis activation was stabilized by PD. In the hippocampus, the pyramidal cell layer thickness, pyramidal neurons number and size of CA1 and CA3 regions were reduced along with misalignment, shrinkage, and impairment of cytoarchitecture. In the co-treated group, the LPS-induced hippocampus disruption was reversed after PD exposure. CONCLUSION We suggested that the PD modulates the LPS-induced neuroinflammation and psychiatric illness in a dose-dependent manner.
Collapse
Affiliation(s)
- Ankit Mishra
- Neurobiology Lab, Department of Zoology, University of Allahabad, Prayagraj, India
| | - K P Singh
- Neurobiology Lab, Department of Zoology, University of Allahabad, Prayagraj, India
| |
Collapse
|
9
|
Sánchez ML, Coveñas R. The Neurotensinergic System: A Target for Cancer Treatment. Curr Med Chem 2021; 29:3231-3260. [PMID: 34711154 DOI: 10.2174/0929867328666211027124328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The scientific interest regarding the involvement of peptides in cancer has increased in the last years. In tumor cells the overexpression of peptides and their receptors is known and new therapeutic targets for the treatment of cancer have been suggested. The overexpression of the neurotensinergic system has been associated with poor prognosis, tumor size, higher tumor aggressiveness, increased relapse risk and worse sensitivity to chemotherapy agents. OBJECTIVE The aim of this review is to update the findings regarding the involvement of the neurotensinergic system in cancer to suggest anticancer therapeutic strategies targeting this system. The neurotensin (NT) precursor, NT and its receptors (NTR) and the involvement of the neurotensinergic system in lung, breast, prostate, gastric, colon, liver and pancreatic cancers, glioblastoma, neuroendocrine tumors and B-cell leukemia will be mentioned and discussed as well as the signaling pathways mediated by NT. Some research lines to be developed in the future will be suggested such as: molecules regulating the expression of the NT precursor, influence of the diet in the development of tumors, molecules and signaling pathways activated by NT and antitumor therapeutic strategies targeting the neurotensinergic system. CONCLUSION NT, via the NTR, exerts oncogenic (tumor cell proliferation, invasion, migration, angiogenesis) and antiapoptotic effects, whereas NTR antagonists inhibit these effects. NTR expression can be used as a diagnostic tool/therapeutic target and the administration of NTR antagonists as antitumor drugs could be a therapeutic strategy to treat tumors overexpressing NTR.
Collapse
Affiliation(s)
- Manuel Lisardo Sánchez
- University of Salamanca, Laboratory of Neuroanatomy of the Peptidergic Systems (Lab. 14), Institute of Neurosciences of Castilla y León (INCYL), Salamanca. Spain
| | - Rafael Coveñas
- University of Salamanca, Laboratory of Neuroanatomy of the Peptidergic Systems (Lab. 14), Institute of Neurosciences of Castilla y León (INCYL), Salamanca. Spain
| |
Collapse
|
10
|
Hafeez Z, Benoit S, Cakir-Kiefer C, Dary A, Miclo L. Food protein-derived anxiolytic peptides: their potential role in anxiety management. Food Funct 2021; 12:1415-1431. [DOI: 10.1039/d0fo02432e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Could bioactive peptides from food proteins be used as prophylactic in the management of anxiety disorders?
Collapse
Affiliation(s)
| | - Simon Benoit
- Université de Lorraine
- CALBINOTOX
- F-54000 Nancy
- France
| | | | - Annie Dary
- Université de Lorraine
- CALBINOTOX
- F-54000 Nancy
- France
| | | |
Collapse
|
11
|
Bumbak F, Thomas T, Noonan-Williams BJ, Vaid TM, Yan F, Whitehead AR, Bruell S, Kocan M, Tan X, Johnson MA, Bathgate RAD, Chalmers DK, Gooley PR, Scott DJ. Conformational Changes in Tyrosine 11 of Neurotensin Are Required to Activate the Neurotensin Receptor 1. ACS Pharmacol Transl Sci 2020; 3:690-705. [PMID: 32832871 PMCID: PMC7432660 DOI: 10.1021/acsptsci.0c00026] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Indexed: 12/12/2022]
Abstract
Cell-cell communication via endogenous peptides and their receptors is vital for controlling all aspects of human physiology and most peptides signal through G protein-coupled receptors (GPCRs). Disordered peptides bind GPCRs through complex modes for which there are few representative crystal structures. The disordered peptide neurotensin (NT) is a neuromodulator of classical neurotransmitters such as dopamine and glutamate, through activation of neurotensin receptor 1 (NTS1). While several experimental structures show how NT binds NTS1, details about the structural dynamics of NT during and after binding NTS1, or the role of peptide dynamics on receptor activation, remain obscure. Here saturation transfer difference (STD) NMR revealed that the binding mode of NT fragment NT10-13 is heterogeneous. Epitope maps of NT10-13 at NTS1 suggested that tyrosine 11 (Y11) samples other conformations to those observed in crystal structures of NT-bound NTS1. Molecular dynamics (MD) simulations confirmed that when NT is bound to NTS1, residue Y11 can exist in two χ1 rotameric states, gauche plus (g+) or gauche minus (g-). Since only the g+ Y11 state is observed in all the structures solved to date, we asked if the g- state is important for receptor activation. NT analogues with Y11 replaced with 7-OH-Tic were synthesized to restrain the dynamics of the side chain. P(OH-TIC)IL bound NTS1 with the same affinity as NT10-13 but did not activate NTS1, instead acted as an antagonist. This study highlights that flexibility of Y11 in NT may be required for NT activation of NTS1.
Collapse
Affiliation(s)
- Fabian Bumbak
- The
Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
- Department
of Biochemistry and Molecular Biology, The
University of Melbourne, Parkville, Victoria 3010, Australia
- Bio21
Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Trayder Thomas
- Monash
Institute of Pharmaceutical Sciences, Monash
University, Parkville, Victoria 3052, Australia
| | - Billy J. Noonan-Williams
- Monash
Institute of Pharmaceutical Sciences, Monash
University, Parkville, Victoria 3052, Australia
| | - Tasneem M. Vaid
- The
Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
- Department
of Biochemistry and Molecular Biology, The
University of Melbourne, Parkville, Victoria 3010, Australia
- Bio21
Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Fei Yan
- Department
of Biochemistry and Molecular Biology, The
University of Melbourne, Parkville, Victoria 3010, Australia
- Bio21
Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alice R. Whitehead
- The
Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Shoni Bruell
- The
Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Martina Kocan
- The
Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
- The School
of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Xuan Tan
- Department
of Chemistry, The University of Alabama
at Birmingham, Birmingham, Alabama 35294-1240, United States
| | - Margaret A. Johnson
- Department
of Chemistry, The University of Alabama
at Birmingham, Birmingham, Alabama 35294-1240, United States
| | - Ross A. D. Bathgate
- The
Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
- Department
of Biochemistry and Molecular Biology, The
University of Melbourne, Parkville, Victoria 3010, Australia
| | - David K. Chalmers
- Monash
Institute of Pharmaceutical Sciences, Monash
University, Parkville, Victoria 3052, Australia
| | - Paul R. Gooley
- Department
of Biochemistry and Molecular Biology, The
University of Melbourne, Parkville, Victoria 3010, Australia
- Bio21
Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Daniel J. Scott
- The
Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
- Department
of Biochemistry and Molecular Biology, The
University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
12
|
Wang LJ, Liu MJ, Zhai TS, Zhu HJ, Gong FY, Yang HB, Yan KM, Pan H, Zeng Y. Identification of U-shaped curve relation between proneurotensin and risk of coronary artery disease (CAD) in patients with premature CAD. Nutr Metab Cardiovasc Dis 2020; 30:483-491. [PMID: 31926821 DOI: 10.1016/j.numecd.2019.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 09/18/2019] [Accepted: 10/15/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND AND AIMS Neurotensin (NT) is a gut hormone with broad effects on the cardiovascular system. Recent data suggested that circulating proneurotensin (pro-NT)-the stable precursor fragment of NT-could independently predict cardiovascular artery disease (CAD) development. However, serum pro-NT levels in patients with premature cardiovascular artery disease (PCAD) are still unknown. This study aims to determine serum pro-NT levels in patients with PCAD and investigate its relationship with PCAD risk. METHODS AND RESULTS A total of 490 subjects, including 364 with PCAD and 126 without PCAD (NPCAD), and 182 controls were enrolled in the study. Data of baseline clinical parameters and biochemical variables were collected. Serum pro-NT levels were measured by ELISA. Serum pro-NT levels were higher in patients with PCAD than in controls (59.42 ± 66.66 vs. 38.07 ± 48.48 pg/mL, P < 0.05), especially in patients with BMI<25 kg/m2. Serum pro-NT levels were independently related to PCAD (β = 0.349, P < 0.001), and the association revealed a U-shaped curve characteristic between pro-NT tertiles and CAD risk in patients with premature CAD and controls. Subjects with low and high tertiles of pro-NT levels had 1.79-fold and 2.23-fold higher risks of PCAD, respectively, than subjects with median pro-NT levels (P < 0.05). After adjusting for age, gender, and BMI in Model 1 and other confounders in Model 2 and Model 3, the U-shaped relationship remained significant. CONCLUSION Serum pro-NT levels were significantly increased in patients with PCAD. The association between pro-NT levels and PCAD risk presents a U-shaped curve characteristic, which demonstrated that subjects with lower and higher pro-NT levels both were more likely to have PCAD.
Collapse
Affiliation(s)
- Lin-Jie Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Mei-Juan Liu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Tian-Shu Zhai
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Hui-Juan Zhu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Feng-Ying Gong
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Hong-Bo Yang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Ke-Min Yan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Hui Pan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China.
| | - Yong Zeng
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
| |
Collapse
|
13
|
Torruella-Suárez ML, Vandenberg JR, Cogan ES, Tipton GJ, Teklezghi A, Dange K, Patel GK, McHenry JA, Hardaway JA, Kantak PA, Crowley NA, DiBerto JF, Faccidomo SP, Hodge CW, Stuber GD, McElligott ZA. Manipulations of Central Amygdala Neurotensin Neurons Alter the Consumption of Ethanol and Sweet Fluids in Mice. J Neurosci 2020; 40:632-647. [PMID: 31744862 PMCID: PMC6961987 DOI: 10.1523/jneurosci.1466-19.2019] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/11/2019] [Accepted: 11/04/2019] [Indexed: 12/22/2022] Open
Abstract
The central nucleus of the amygdala plays a significant role in alcohol use and other affective disorders; however, the genetically-defined neuronal subtypes and projections that govern these behaviors are not well known. Here we show that neurotensin neurons in the central nucleus of the amygdala of male mice are activated by in vivo ethanol consumption and that genetic ablation of these neurons decreases ethanol consumption and preference in non-ethanol-dependent animals. This ablation did not impact preference for sucrose, saccharin, or quinine. We found that the most robust projection of the central amygdala neurotensin neurons was to the parabrachial nucleus, a brain region known to be important in feeding behaviors, conditioned taste aversion, and alarm. Optogenetic stimulation of projections from these neurons to the parabrachial nucleus is reinforcing, and increases ethanol drinking as well as consumption of sucrose and saccharin solutions. These data suggest that this central amygdala to parabrachial nucleus projection influences the expression of reward-related phenotypes and is a novel circuit promoting consumption of ethanol and palatable fluids.SIGNIFICANCE STATEMENT Alcohol use disorder (AUD) is a major health burden worldwide. Although ethanol consumption is required for the development of AUD, much remains unknown regarding the underlying neural circuits that govern initial ethanol intake. Here we show that ablation of a population of neurotensin-expressing neurons in the central amygdala decreases intake of and preference for ethanol in non-dependent animals, whereas the projection of these neurons to the parabrachial nucleus promotes consumption of ethanol as well as other palatable fluids.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - J Andrew Hardaway
- Bowles Center for Alcohol Studies
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | | | | | - Jeffrey F DiBerto
- Bowles Center for Alcohol Studies
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | | | - Clyde W Hodge
- Bowles Center for Alcohol Studies
- Department of Psychiatry
| | - Garret D Stuber
- Bowles Center for Alcohol Studies
- Department of Psychiatry
- Neuroscience Center, and
| | - Zoé A McElligott
- Bowles Center for Alcohol Studies,
- Department of Psychiatry
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| |
Collapse
|
14
|
Kim DJ, Blossom SJ, Delgado PL, Carbajal JM, Cáceda R. Examination of pain threshold and neuropeptides in patients with acute suicide risk. Prog Neuropsychopharmacol Biol Psychiatry 2019; 95:109705. [PMID: 31326514 PMCID: PMC7309511 DOI: 10.1016/j.pnpbp.2019.109705] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/08/2019] [Accepted: 07/17/2019] [Indexed: 01/01/2023]
Abstract
INTRODUCTION One of the main challenges in suicide prevention is the limited understanding of the biological mechanisms underlying suicide. Recent findings suggest impairments in pain processing in acutely suicidal patients. However, little is known about the biological factors that may drive these discrete physiological abnormalities. In this study, we examined plasma peptides involved in analgesic and inflammatory responses and physical pain threshold in acutely suicidal patients. METHODS Thirty-seven depressed patients of both sexes hospitalized for severe suicidal ideation or a recent suicide attempt were characterized clinically including history of suicidal ideation and behavior. Psychological and physical pain, and pressure pain threshold was also measured. Plasma levels of β-endorphin, neurotensin, agouti-related protein (AgRP), C-reactive protein (CRP), adrenocorticotropic hormone (ACTH), and brain-derived neurotrophic factor (BDNF) were run in Milliplex multiplex assays. RESULTS The number of lifetime suicide attempts was positively correlated with β-endorphin (r = 0.702; p = 0.007), and neurotensin (r = 0.728, p = 0.007) plasma levels. Higher pain threshold was measured in the suicide attempt group as compared to the suicidal ideation group. Pain threshold was strongly and negatively associated with CRP plasma levels (r = -0.548; p < 0.001). In patients reporting chronic pain, lower AgRP levels and lower pain threshold were observed (t = 4.472; p = 0.001). CONCLUSION Our results suggest that abnormalities in the opioid and neurotensin systems may underlie the increase in pain threshold found in suicide attempters, and possibly risk for suicidal behavior. Targeting pain circuits and systems may provide therapeutic mechanisms for suicide prevention.
Collapse
Affiliation(s)
- Diane J. Kim
- Department of Psychiatry and Behavioral Health, Stony Brook University, Stony Brook, New York, USA
| | - Sarah J. Blossom
- Department of Pediatrics and Microbiology/Immunology, University of Arkansas for Medical Sciences and Arkansas Children’s Research Institute, Little Rock, Arkansas, USA
| | - Pedro L. Delgado
- Psychiatric Research Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jessica M. Carbajal
- Department of Psychiatry and Behavioral Health, Stony Brook University, Stony Brook, New York, USA
| | - Ricardo Cáceda
- Department of Psychiatry and Behavioral Health, Stony Brook University, Stony Brook, New York, USA.
| |
Collapse
|
15
|
Rodríguez B, Nani JV, Almeida PGC, Brietzke E, Lee RS, Hayashi MAF. Neuropeptides and oligopeptidases in schizophrenia. Neurosci Biobehav Rev 2019; 108:679-693. [PMID: 31794779 DOI: 10.1016/j.neubiorev.2019.11.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 11/14/2019] [Accepted: 11/27/2019] [Indexed: 12/30/2022]
Abstract
Schizophrenia (SCZ) is a complex psychiatric disorder with severe impact on patient's livelihood. In the last years, the importance of neuropeptides in SCZ and other CNS disorders has been recognized, mainly due to their ability to modulate the signaling of classical monoaminergic neurotransmitters as dopamine. In addition, a class of enzymes coined as oligopeptidases are able to cleave several of these neuropeptides, and their potential implication in SCZ was also demonstrated. Interestingly, these enzymes are able to play roles as modulators of neuropeptidergic systems, and they were also implicated in neurogenesis, neurite outgrowth, neuron migration, and therefore, in neurodevelopment and brain formation. Altered activity of oligopeptidases in SCZ was described only more recently, suggesting their possible utility as biomarkers for mental disorders diagnosis or treatment response. We provide here an updated and comprehensive review on neuropeptides and oligopeptidases involved in mental disorders, aiming to attract the attention of physicians to the potential of targeting this system for improving the therapy and for understanding the neurobiology underlying mental disorders as SCZ.
Collapse
Affiliation(s)
- Benjamín Rodríguez
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - João Victor Nani
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil; National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil
| | - Priscila G C Almeida
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Elisa Brietzke
- Department of Psychiatry, Queen's University School of Medicine, Kingston, ON, Canada
| | - Richard S Lee
- Department of Psychiatry, Johns Hopkins University, Baltimore, MD, USA
| | - Mirian A F Hayashi
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil; National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil.
| |
Collapse
|
16
|
Gender Related Changes in Gene Expression Induced by Valproic Acid in A Mouse Model of Autism and the Correction by S-adenosyl Methionine. Does It Explain the Gender Differences in Autistic Like Behavior? Int J Mol Sci 2019; 20:ijms20215278. [PMID: 31652960 PMCID: PMC6862653 DOI: 10.3390/ijms20215278] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022] Open
Abstract
In previous studies we produced autism like behavioral changes in mice by Valproic acid (VPA) with significant differences between genders. S-adenosine methionine (SAM) prevented the autism like behavior in both genders. The expression of 770 genes of pathways involved in neurophysiology and neuropathology was studied in the prefrontal cortex of 60 days old male and female mice using the NanoString nCounter. In females, VPA induced statistically significant changes in the expression of 146 genes; 71 genes were upregulated and 75 downregulated. In males, VPA changed the expression of only 19 genes, 16 were upregulated and 3 downregulated. Eight genes were similarly changed in both genders. When considering only the genes that were changed by at least 50%, VPA changed the expression of 15 genes in females and 3 in males. Only Nts was similarly downregulated in both genders. SAM normalized the expression of most changed genes in both genders. We presume that genes that are involved in autism like behavior in our model were similarly changed in both genders and corrected by SAM. The behavioral and other differences between genders may be related to genes that were differently affected by VPA in males and females and/or differently affected by SAM.
Collapse
|
17
|
Theoharides TC, Tsilioni I, Conti P. Mast Cells May Regulate The Anti-Inflammatory Activity of IL-37. Int J Mol Sci 2019; 20:ijms20153701. [PMID: 31362339 PMCID: PMC6696426 DOI: 10.3390/ijms20153701] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/13/2019] [Accepted: 07/19/2019] [Indexed: 12/17/2022] Open
Abstract
Mast cells are unique immune cells involved in allergic reactions, but also in immunity and inflammation. Interleukin 37 (IL-37) has emerged as an important regulatory cytokine with ability to inhibit immune and inflammatory processes. IL-37 is made primarily by macrophages upon activation of toll-like receptors (TLR) leading to generation of mature IL-37 via the action of caspase 1. In this review, we advance the premise that mast cells could regulate the anti-inflammatory activity of the IL-37 via their secretion of heparin and tryptase. Extracellular IL-37 could either dimerize in the presence of heparin and lose biological activity, or be acted upon by proteases that can generate even more biologically active IL-37 forms. Molecules that could selectively inhibit the secretion of mast cell mediators may, therefore, be used together with IL-37 as novel therapeutic agents.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA.
- Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA.
- Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA 02111, USA.
| | - Irene Tsilioni
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Pio Conti
- Immunology Division, Postgraduate Medical School, University of Chieti, 65100 Pescara, Italy
| |
Collapse
|
18
|
Theoharides TC, Kavalioti M, Tsilioni I. Mast Cells, Stress, Fear and Autism Spectrum Disorder. Int J Mol Sci 2019; 20:E3611. [PMID: 31344805 PMCID: PMC6696098 DOI: 10.3390/ijms20153611] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/18/2019] [Accepted: 07/20/2019] [Indexed: 02/07/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a developmental condition characterized by impaired communication and obsessive behavior that affects 1 in 59 children. ASD is expected to affect 1 in about 40 children by 2020, but there is still no distinct pathogenesis or effective treatments. Prenatal stress has been associated with higher risk of developing ASD in the offspring. Moreover, children with ASD cannot handle anxiety and respond disproportionately even to otherwise benign triggers. Stress and environmental stimuli trigger the unique immune cells, mast cells, which could then trigger microglia leading to abnormal synaptic pruning and dysfunctional neuronal connectivity. This process could alter the "fear threshold" in the amygdala and lead to an exaggerated "fight-or-flight" reaction. The combination of corticotropin-releasing hormone (CRH), secreted under stress, together with environmental stimuli could be major contributors to the pathogenesis of ASD. Recognizing these associations and preventing stimulation of mast cells and/or microglia could greatly benefit ASD patients.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA.
- Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA.
- Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA 02111, USA.
- Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, MA 02111, USA.
| | - Maria Kavalioti
- Graduate Program in Education, Lesley University, Cambridge, MA 02138, USA
| | - Irene Tsilioni
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
19
|
Theoharides TC, Tsilioni I, Ren H. Recent advances in our understanding of mast cell activation - or should it be mast cell mediator disorders? Expert Rev Clin Immunol 2019; 15:639-656. [PMID: 30884251 PMCID: PMC7003574 DOI: 10.1080/1744666x.2019.1596800] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/14/2019] [Indexed: 02/07/2023]
Abstract
INTRODUCTION An increasing number of patients present with multiple symptoms affecting many organs including the brain due to multiple mediators released by mast cells. These unique tissue immune cells are critical for allergic reactions triggered by immunoglobulin E (IgE), but are also stimulated (not activated) by immune, drug, environmental, food, infectious, and stress triggers, leading to secretion of multiple mediators often without histamine and tryptase. The presentation, diagnosis, and management of the spectrum of mast cell disorders are very confusing. As a result, neuropsychiatric symptoms have been left out, and diagnostic criteria made stricter excluding most patients. Areas covered: A literature search was performed on papers published between January 1990 and November 2018 using MEDLINE. Terms used were activation, antihistamines, atopy, autism, brain fog, heparin, KIT mutation, IgE, inflammation, IL-6, IL-31, IL-37, luteolin, mast cells, mastocytosis, mediators, mycotoxins, release, secretion, tetramethoxyluteolin, and tryptase. Expert opinion: Conditions associated with elevated serum or urine levels of any mast cell mediator, in the absence of comorbidities that could explain elevated levels, should be considered 'Mast Cell Mediator Disorders (MCMD).' Emphasis should be placed on the identification of unique mast cell mediators, and development of drugs or supplements that inhibit their release.
Collapse
Affiliation(s)
- Theoharis C. Theoharides
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
- Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
- Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA
- Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA
| | - Irene Tsilioni
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Huali Ren
- Department of Otolaryngology, Beijing Electric Power Hospital, Beijing, China
| |
Collapse
|
20
|
Choi JH, Yarishkin O, Kim E, Bae Y, Kim A, Kim SC, Ryoo K, Cho CH, Hwang EM, Park JY. TWIK-1/TASK-3 heterodimeric channels contribute to the neurotensin-mediated excitation of hippocampal dentate gyrus granule cells. Exp Mol Med 2018; 50:1-13. [PMID: 30416196 PMCID: PMC6230555 DOI: 10.1038/s12276-018-0172-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 07/16/2018] [Accepted: 07/23/2018] [Indexed: 01/15/2023] Open
Abstract
Two-pore domain K+ (K2P) channels have been shown to modulate neuronal excitability. The physiological role of TWIK-1, the first identified K2P channel, in neuronal cells is largely unknown, and we reported previously that TWIK-1 contributes to the intrinsic excitability of dentate gyrus granule cells (DGGCs) in mice. In the present study, we investigated the coexpression of TWIK-1 and TASK-3, another K2P member, in DGGCs. Immunohistochemical staining data showed that TASK-3 proteins were highly localized in the proximal dendrites and soma of DGGCs, and this localization is similar to the expression pattern of TWIK-1. TWIK-1 was shown to associate with TASK-3 in DGGCs of mouse hippocampus and when both genes were overexpressed in COS-7 cells. shRNA-mediated gene silencing demonstrated that TWIK-1/TASK-3 heterodimeric channels displayed outwardly rectifying currents and contributed to the intrinsic excitability of DGGCs. Neurotensin-neurotensin receptor 1 (NT-NTSR1) signaling triggered the depolarization of DGGCs by inhibiting TWIK-1/TASK-3 heterodimeric channels, causing facilitated excitation of DGGCs. Taken together, our study clearly showed that TWIK-1/TASK-3 heterodimeric channels contribute to the intrinsic excitability of DGGCs and that their activities are regulated by NT-NTSR1 signaling.
Collapse
Affiliation(s)
- Jae Hyouk Choi
- Korea Institute of Science and Technology (KIST), Center for Functional Connectomics, Seoul, 02792, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Oleg Yarishkin
- Korea Institute of Science and Technology (KIST), Center for Functional Connectomics, Seoul, 02792, Republic of Korea
| | - Eunju Kim
- Korea Institute of Science and Technology (KIST), Center for Functional Connectomics, Seoul, 02792, Republic of Korea.,School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, 02841, Republic of Korea
| | - Yeonju Bae
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, 02841, Republic of Korea
| | - Ajung Kim
- Korea Institute of Science and Technology (KIST), Center for Functional Connectomics, Seoul, 02792, Republic of Korea.,KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Seung-Chan Kim
- Korea Institute of Science and Technology (KIST), Center for Functional Connectomics, Seoul, 02792, Republic of Korea.,School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, 02841, Republic of Korea
| | - Kanghyun Ryoo
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, 02841, Republic of Korea
| | - Chang-Hoon Cho
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, 02841, Republic of Korea
| | - Eun Mi Hwang
- Korea Institute of Science and Technology (KIST), Center for Functional Connectomics, Seoul, 02792, Republic of Korea. .,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea. .,KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Jae-Yong Park
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
21
|
Hatziagelaki E, Adamaki M, Tsilioni I, Dimitriadis G, Theoharides TC. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome-Metabolic Disease or Disturbed Homeostasis due to Focal Inflammation in the Hypothalamus? J Pharmacol Exp Ther 2018; 367:155-167. [PMID: 30076265 DOI: 10.1124/jpet.118.250845] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/01/2018] [Indexed: 12/13/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex disease characterized by debilitating fatigue, lasting for at least 6 months, with associated malaise, headaches, sleep disturbance, and cognitive impairment, which severely impacts quality of life. A significant percentage of ME/CFS patients remain undiagnosed, mainly due to the complexity of the disease and the lack of reliable objective biomarkers. ME/CFS patients display decreased metabolism and the severity of symptoms appears to be directly correlated to the degree of metabolic reduction that may be unique to each individual patient. However, the precise pathogenesis is still unknown, preventing the development of effective treatments. The ME/CFS phenotype has been associated with abnormalities in energy metabolism, which are apparently due to mitochondrial dysfunction in the absence of mitochondrial diseases, resulting in reduced oxidative metabolism. Such mitochondria may be further contributing to the ME/CFS symptomatology by extracellular secretion of mitochondrial DNA, which could act as an innate pathogen and create an autoinflammatory state in the hypothalamus. We propose that stimulation of hypothalamic mast cells by environmental, neuroimmune, pathogenic and stress triggers activates microglia, leading to focal inflammation in the brain and disturbed homeostasis. This process could be targeted for the development of novel effective treatments.
Collapse
Affiliation(s)
- Erifili Hatziagelaki
- Second Department of Internal Medicine, Attikon General Hospital, Athens Medical School, Athens, Greece (E.H., M.A., G.D.); Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology (I.T., T.C.T.) and Sackler School of Graduate Biomedical Sciences (T.C.T.), Tufts University School of Medicine, Boston, Massachusetts; and Departments of Internal Medicine and Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts (T.C.T.)
| | - Maria Adamaki
- Second Department of Internal Medicine, Attikon General Hospital, Athens Medical School, Athens, Greece (E.H., M.A., G.D.); Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology (I.T., T.C.T.) and Sackler School of Graduate Biomedical Sciences (T.C.T.), Tufts University School of Medicine, Boston, Massachusetts; and Departments of Internal Medicine and Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts (T.C.T.)
| | - Irene Tsilioni
- Second Department of Internal Medicine, Attikon General Hospital, Athens Medical School, Athens, Greece (E.H., M.A., G.D.); Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology (I.T., T.C.T.) and Sackler School of Graduate Biomedical Sciences (T.C.T.), Tufts University School of Medicine, Boston, Massachusetts; and Departments of Internal Medicine and Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts (T.C.T.)
| | - George Dimitriadis
- Second Department of Internal Medicine, Attikon General Hospital, Athens Medical School, Athens, Greece (E.H., M.A., G.D.); Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology (I.T., T.C.T.) and Sackler School of Graduate Biomedical Sciences (T.C.T.), Tufts University School of Medicine, Boston, Massachusetts; and Departments of Internal Medicine and Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts (T.C.T.)
| | - Theoharis C Theoharides
- Second Department of Internal Medicine, Attikon General Hospital, Athens Medical School, Athens, Greece (E.H., M.A., G.D.); Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology (I.T., T.C.T.) and Sackler School of Graduate Biomedical Sciences (T.C.T.), Tufts University School of Medicine, Boston, Massachusetts; and Departments of Internal Medicine and Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts (T.C.T.)
| |
Collapse
|
22
|
Wettersten N, Cushman M, Howard VJ, Hartmann O, Filippatos G, Beri N, Clopton P, Howard G, Safford MM, Judd SE, Bergmann A, Struck J, Maisel AS. Usefulness of Proneurotensin to Predict Cardiovascular and All-Cause Mortality in a United States Population (from the Reasons for Geographic and Racial Differences in Stroke Study). Am J Cardiol 2018; 122:26-32. [PMID: 29866581 PMCID: PMC7856682 DOI: 10.1016/j.amjcard.2018.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/27/2018] [Accepted: 03/05/2018] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease is a leading cause of death. Proneurotensin is a biomarker associated with the development of cardiovascular disease, cardiovascular mortality, and all-cause mortality. We assessed the association of fasting proneurotensin with mortal events by gender and race (black-white) in a US population. Using a case-cohort subpopulation of the Reasons for Geographic and Racial Differences in Stroke study, fasting proneurotensin was measured on a 1,046-person subcohort and in 651 participants with incident coronary heart disease. Higher proneurotensin was associated with all-cause mortality (hazard ratio [HR] 1.6 per interquartile range, 95% confidence interval [CI] 1.3 to 1.9) and cardiovascular mortality (HR 1.8, 95% CI 1.2 to 2.6). For all-cause and cardiovascular mortality, association was stronger in women (HR 1.9, 95% CI 1.4 to 2.6 and HR 2.5, 95% CI 1.4 to 4.7, respectively) than men (HR 1.4, 95% CI 1.0 to 1.8 and HR 1.4, 95% CI 0.9 to 2.3, respectively), although this difference was not significant. Proneurotensin predicted all-cause mortality in both races and was not predictive of cardiovascular mortality in whites but was in blacks. Proneurotensin was not associated with incident coronary heart disease events. Elevated proneurotensin levels predicted all-cause and cardiovascular mortality in both genders, with a trend toward stronger association in women. Associations were similar in blacks and whites. In conclusion, proneurotensin may be a useful biomarker for all-cause and cardiovascular mortality regardless of race, and it is potentially specific in women.
Collapse
Affiliation(s)
- Nicholas Wettersten
- Division of Cardiovascular Medicine, University of California, San Diego, California
| | - Mary Cushman
- Department of Medicine and Pathology & Laboratory Medicine, Larner College of Medicine at the University of Vermont, Burlington, Vermont
| | - Virginia J Howard
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Gerasimos Filippatos
- Department of Cardiology, Athens University Hospital Attikon, University of Athens, Athens, Greece
| | - Neil Beri
- Division of Internal Medicine, University of California, San Diego, California
| | - Paul Clopton
- Division of Cardiovascular Medicine, Veterans Affairs Medical Center, San Diego, California
| | - George Howard
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama
| | - Monika M Safford
- Division of General Internal Medicine, Weill Cornell Medicine, New York, New York
| | - Suzanne E Judd
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama
| | | | | | - Alan S Maisel
- Division of Cardiovascular Medicine, Veterans Affairs Medical Center, San Diego, California.
| |
Collapse
|
23
|
Mouritzen MV, Abourayale S, Ejaz R, Ardon CB, Carvalho E, Dalgaard LT, Roursgaard M, Jenssen H. Neurotensin, substance P, and insulin enhance cell migration. J Pept Sci 2018; 24:e3093. [PMID: 29938867 DOI: 10.1002/psc.3093] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/16/2018] [Accepted: 05/16/2018] [Indexed: 12/14/2022]
Abstract
Neurotensin, substance P, and insulin have been demonstrated to improve wound healing in vivo. However, the mechanism behind their effect is still not fully understood. This study investigates the effects leading to enhanced scratch closure by these peptides in vitro. The skin keratinocyte cell line, HaCaT, was used to test scratch closure effects of the peptides and alterations of cytokine levels. HUVEC cells were used to test the angiogenic effect of the peptides. Furthermore, clinical isolates of Staphylococcus lugdunensis were used to examine the potential antimicrobial activity of each peptide. Our results demonstrate that neurotensin, substance P, and insulin had significant migratory effects in scratch assays were neurotensin had the lowest effect. Furthermore, we investigated use of the peptides in combination. When substance P was used in combination with neurotensin, the cell migratory capacity was decreased, and the peptides showed a negative correlation (r = -0.298, P < .001). Neurotensin and insulin significantly increased levels of monocyte chemoattractant protein-1 (P < .001) secreted from white blood cells, whereas substance P showed a tendency. Interestingly, neurotensin increased the level of monocyte chemoattractant protein-1 significantly compared to substance P (P < .01). Additionally, the peptides decreased TNFα mRNA levels (P < .001) in HaCaT cells, whereas only neurotensin and insulin decreased IL-8 mRNA (P < .001) but had no significant effect on IL-6 mRNA levels. Surprisingly, substance P increased IL-6 mRNA 9-fold (P < .001). Furthermore, we demonstrate that the peptides increased angiogenesis in the HUVEC cells (P < .001). Finally, S. lugdunensis isolates were not susceptible to the peptides. We demonstrate that the peptides worked differently on HaCaT cells, but substance P acted differently than neurotensin on cytokine levels expression as well as on migration of HaCaT cells. On the contrary, neurotensin and insulin worked similarly. All of these aspects are crucial for proper wound healing, and the results suggest multiple mechanisms for wound-healing properties of these peptides.
Collapse
Affiliation(s)
| | - Sali Abourayale
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Rooshanie Ejaz
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Christine B Ardon
- Department of Dermatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Eugenia Carvalho
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.,Arkansas Children's Research Institute, Little Rock, AR, USA
| | - Louise T Dalgaard
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Martin Roursgaard
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| | - Håvard Jenssen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| |
Collapse
|
24
|
Bumbak F, Keen AC, Gunn NJ, Gooley PR, Bathgate RAD, Scott DJ. Optimization and 13CH 3 methionine labeling of a signaling competent neurotensin receptor 1 variant for NMR studies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1372-1383. [PMID: 29596791 DOI: 10.1016/j.bbamem.2018.03.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/19/2018] [Accepted: 03/21/2018] [Indexed: 01/16/2023]
Abstract
Neurotensin is a 13-residue peptide that acts as a neuromodulator of classical neurotransmitters such as dopamine and glutamate in the mammalian central nervous system, mainly by activating the G protein-coupled receptor (GPCR), neurotensin receptor 1 (NTS1). Agonist binding to GPCRs shifts the conformational equilibrium of the transmembrane helices towards distinct, thermodynamically favorable conformations that favor effector protein interactions and promotes cell signaling. The introduction of site specific labels for NMR spectroscopy has proven useful for investigating this dynamic process, but the low expression levels and poor stability of GPCRs is a hindrance to solution NMR experiments. Several thermostabilized mutants of NTS1 have been engineered to circumvent this, with the crystal structures of four of these published. The conformational dynamics of NTS1 however, has not been thoroughly investigated with NMR. It is generally accepted that stabilized GPCRs exhibit attenuated signaling, thus we thoroughly characterized the signaling characteristics of several thermostabilized NTS1 variants to identify an optimal variant for protein NMR studies. A variant termed enNTS1 exhibited the best combination of signaling capability and stability upon solubilization with detergents. enNTS1 was subsequently labeled with 13CH3-methionine in E. coli and purified to homogeneity in the absence of bound ligands. Using solution NMR spectroscopy we observed several well dispersed 13CH3-methionine resonances, many of which exhibited chemical shift changes upon the addition of the high affinity agonist peptide, NT8-13. Thus, enNTS1 represents a novel tool for investigating ligand induced conformational changes in NTS1 to gain insights into the molecular mechanisms underlying neurotensin signaling.
Collapse
Affiliation(s)
- Fabian Bumbak
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia; Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alastair C Keen
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Natalie J Gunn
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia; IBM Research Australia, Southbank, Victoria 3053, Australia
| | - Paul R Gooley
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Ross A D Bathgate
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia; Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Daniel J Scott
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia; Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
25
|
Tschumi CW, Beckstead MJ. Diverse actions of the modulatory peptide neurotensin on central synaptic transmission. Eur J Neurosci 2018; 49:784-793. [PMID: 29405480 DOI: 10.1111/ejn.13858] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 12/27/2022]
Abstract
Neurotensin (NT) is a 13 amino acid neuropeptide that is expressed throughout the central nervous system and is implicated in the etiology of multiple diseases and disorders. Many primary investigations of NT-induced modulation of neuronal excitability at the level of the synapse have been conducted, but they have not been summarized in review form in nearly 30 years. Therefore, the goal of this review is to discuss the many actions of NT on neuronal excitability across brain regions as well as NT circuit architecture. In the basal ganglia as well as other brain nuclei, NT can act through diverse intracellular signaling cascades to enhance or depress neuronal activity by modulating activity of ion channels, ionotropic and metabotropic neurotransmitter receptors, and presynaptic release of neurotransmitters. Further, NT can produce indirect effects by evoking endocannabinoid release, and recently has itself been identified as a putative retrograde messenger. In the basal ganglia, the diverse actions and circuit architecture of NT signaling allow for input-specific control of reward-related behaviors.
Collapse
Affiliation(s)
- Christopher W Tschumi
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104-5005, USA
| | - Michael J Beckstead
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104-5005, USA
| |
Collapse
|
26
|
Identification of Neurotensin Receptor Expressing Cells in the Ventral Tegmental Area across the Lifespan. eNeuro 2018; 5:eN-NWR-0191-17. [PMID: 29464190 PMCID: PMC5815659 DOI: 10.1523/eneuro.0191-17.2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 01/15/2018] [Accepted: 01/25/2018] [Indexed: 11/21/2022] Open
Abstract
Neurotensin (Nts) promotes activation of dopamine (DA) neurons in the ventral tegmental area (VTA) via incompletely understood mechanisms. Nts can signal via the G protein-coupled Nts receptors 1 and 2 (NtsR1 and NtsR2), but the lack of methods to detect NtsR1- and NtsR2-expressing cells has limited mechanistic understanding of Nts action. To overcome this challenge, we generated dual recombinase mice that express FlpO-dependent Cre recombinase in NtsR1 or NtsR2 cells. This strategy permitted temporal control over recombination, such that we could identify NtsR1- or NtsR2-expressing cells and determine whether their distributions differed between the developing and adult brain. Using this system, we found that NtsR1 is transiently expressed in nearly all DA neurons and in many non-DA neurons in the VTA during development. However, NtsR1 expression is more restricted within the adult brain, where only two thirds of VTA DA neurons expressed NtsR1. By contrast, NtsR2 expression remains constant throughout lifespan, but it is predominantly expressed within glia. Anterograde tract tracing revealed that NtsR1 is expressed by mesolimbic, not mesocortical DA neurons, suggesting that VTA NtsR1 neurons may represent a functionally unique subset of VTA DA neurons. Collectively, this work reveals a cellular mechanism by which Nts can directly engage NtsR1-expressing DA neurons to modify DA signaling. Going forward, the dual recombinase strategy developed here will be useful to selectively modulate NtsR1- and NtsR2-expressing cells and to parse their contributions to Nts-mediated behaviors.
Collapse
|
27
|
Lénárd L, László K, Kertes E, Ollmann T, Péczely L, Kovács A, Kállai V, Zagorácz O, Gálosi R, Karádi Z. Substance P and neurotensin in the limbic system: Their roles in reinforcement and memory consolidation. Neurosci Biobehav Rev 2018; 85:1-20. [DOI: 10.1016/j.neubiorev.2017.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 08/24/2017] [Accepted: 09/02/2017] [Indexed: 12/18/2022]
|
28
|
Schroeder LE, Leinninger GM. Role of central neurotensin in regulating feeding: Implications for the development and treatment of body weight disorders. Biochim Biophys Acta Mol Basis Dis 2017; 1864:900-916. [PMID: 29288794 DOI: 10.1016/j.bbadis.2017.12.036] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/11/2017] [Accepted: 12/26/2017] [Indexed: 02/06/2023]
Abstract
The peptide neurotensin (Nts) was discovered within the brain over 40years ago and is implicated in regulating analgesia, body temperature, blood pressure, locomotor activity and feeding. Recent evidence suggests, however, that these disparate processes may be controlled via specific populations of Nts neurons and receptors. The neuronal mediators of Nts anorectic action are now beginning to be understood, and, as such, modulating specific Nts pathways might be useful in treating feeding and body weight disorders. This review considers mechanisms through which Nts normally regulates feeding and how disruptions in Nts signaling might contribute to the disordered feeding and body weight of schizophrenia, Parkinson's disease, anorexia nervosa, and obesity. Defining how Nts specifically mediates feeding vs. other aspects of physiology will inform the design of therapeutics that modify body weight without disrupting other important Nts-mediated physiology.
Collapse
Affiliation(s)
- Laura E Schroeder
- Department of Physiology, Michigan State University, East Lansing, MI 48823, United States
| | - Gina M Leinninger
- Department of Physiology, Michigan State University, East Lansing, MI 48823, United States.
| |
Collapse
|
29
|
New Targets for Schizophrenia Treatment beyond the Dopamine Hypothesis. Int J Mol Sci 2017; 18:ijms18081689. [PMID: 28771182 PMCID: PMC5578079 DOI: 10.3390/ijms18081689] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 07/30/2017] [Accepted: 08/01/2017] [Indexed: 12/14/2022] Open
Abstract
Schizophrenia has been primarily associated with dopamine dysfunction, and treatments have been developed that target the dopamine pathway in the central nervous system. However, accumulating evidence has shown that the core pathophysiology of schizophrenia might involve dysfunction in dopaminergic, glutamatergic, serotonergic, and gamma-aminobutyric acid (GABA) signaling, which may lead to aberrant functioning of interneurons that manifest as cognitive, behavioral, and social dysfunction through altered functioning of a broad range of macro- and microcircuits. The interactions between neurotransmitters can be modeled as nodes and edges by using graph theory, and oxidative balance, immune, and glutamatergic systems may represent multiple nodes interlocking at a central hub; imbalance within any of these nodes might affect the entire system. Therefore, this review attempts to address novel treatment targets beyond the dopamine hypothesis, including glutamate, serotonin, acetylcholine, GABA, and inflammatory cytokines. Furthermore, we outline that these treatment targets can be possibly integrated with novel treatment strategies aimed at different symptoms or phases of the illness. We anticipate that reversing anomalous activity in these novel treatment targets or combinations between these strategies might be beneficial in the treatment of schizophrenia.
Collapse
|
30
|
Keshavan MS, Lawler AN, Nasrallah HA, Tandon R. New drug developments in psychosis: Challenges, opportunities and strategies. Prog Neurobiol 2017; 152:3-20. [PMID: 27519538 PMCID: PMC5362348 DOI: 10.1016/j.pneurobio.2016.07.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 07/11/2016] [Indexed: 02/06/2023]
Abstract
All currently approved drugs for schizophrenia work mainly by dopaminergic antagonism. While they are efficacious for psychotic symptoms, their efficacy is limited for negative symptoms and cognitive deficits which underlie the substantive disability in this illness. Recent insights into the biological basis of schizophrenia, especially in relation to non-dopaminergic mechanisms, have raised the efforts to find novel and effective drug targets, though with relatively little success thus far. Potential impediments to novel drug discovery include the continued use of symptom based disease definitions which leads to etiological and pathophysiological heterogeneity, lack of valid preclinical models for drug testing, and design limitations in clinical trials. These roadblocks can be addressed by (i) characterizing trans-diagnostic, translational pathophysiological dimensions as potential treatment targets, (ii) efficiency, accountability and, transparency in approaches to the clinical trials process, and (iii) leveraging recent advances in genetics and in vitro phenotypes. Accomplishing these goals is urgent given the significant unmet needs in the pharmacological treatment of schizophrenia. As this happens, it is imperative that clinicians employ optimal dosing, measurement-based care, and other best practices in utilizing existing treatments to optimize outcomes for their patients today.
Collapse
Affiliation(s)
- Matcheri S Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Massachusetts Mental Health Center, Harvard Medical School, United States.
| | - Ashley N Lawler
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Massachusetts Mental Health Center, Harvard Medical School, United States
| | - Henry A Nasrallah
- Department of Neurology & Psychiatry, St Louis University, United States
| | - Rajiv Tandon
- Department of Psychiatry, University of Florida, Gainsville, Florida. and the North FL/South Georgia Veterans' Administration Medical Center, Gainesville, FL 32610, United States; The North Florida/South Georgia Veterans' Administration Medical Center, Gainesville, FL, 32610, United States
| |
Collapse
|
31
|
Bradshaw NJ, Hayashi MAF. NDE1 and NDEL1 from genes to (mal)functions: parallel but distinct roles impacting on neurodevelopmental disorders and psychiatric illness. Cell Mol Life Sci 2017; 74:1191-1210. [PMID: 27742926 PMCID: PMC11107680 DOI: 10.1007/s00018-016-2395-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/13/2016] [Accepted: 10/06/2016] [Indexed: 01/01/2023]
Abstract
NDE1 (Nuclear Distribution Element 1, also known as NudE) and NDEL1 (NDE-Like 1, also known as NudEL) are the mammalian homologues of the fungus nudE gene, with important and at least partially overlapping roles for brain development. While a large number of studies describe the various properties and functions of these proteins, many do not directly compare the similarities and differences between NDE1 and NDEL1. Although sharing a high degree structural similarity and multiple common cellular roles, each protein presents several distinct features that justify their parallel but also unique functions. Notably both proteins have key binding partners in dynein, LIS1 and DISC1, which impact on neurodevelopmental and psychiatric illnesses. Both are implicated in schizophrenia through genetic and functional evidence, with NDE1 also strongly implicated in microcephaly, as well as other neurodevelopmental and psychiatric conditions through copy number variation, while NDEL1 possesses an oligopeptidase activity with a unique potential as a biomarker in schizophrenia. In this review, we aim to give a comprehensive overview of the various cellular roles of these proteins in a "bottom-up" manner, from their biochemistry and protein-protein interactions on the molecular level, up to the consequences for neuronal differentiation, and ultimately to their importance for correct cortical development, with direct consequences for the pathophysiology of neurodevelopmental and mental illness.
Collapse
Affiliation(s)
- Nicholas J Bradshaw
- Department of Neuropathology, Heinrich Heine University, Düsseldorf, Germany.
| | - Mirian A F Hayashi
- Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo, Brazil
| |
Collapse
|
32
|
Kim YK, Choi J, Park SC. A Novel Bio-Psychosocial-Behavioral Treatment Model in Schizophrenia. Int J Mol Sci 2017; 18:ijms18040734. [PMID: 28358303 PMCID: PMC5412320 DOI: 10.3390/ijms18040734] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/25/2017] [Accepted: 03/26/2017] [Indexed: 12/21/2022] Open
Abstract
Despite the substantial burden of illness in schizophrenia, there has been a discrepancy between the beneficial effects of an increased use of antipsychotic medications and achieving limited recovery or remission. Because the focus of the most common antipsychotic medications is on dopamine, which is associated with positive symptoms, there is an unmet need for patients with negative symptoms. Since cognitive and negative symptoms rather than positive symptoms are more closely associated with psychosocial impairments in patients with schizophrenia, the non-dopaminergic systems including glutamate and γ-aminobutyric acid (GABA) of the prefrontal cortex should be of concern as well. The balance of excitation and inhibition has been associated with epigenetic modifications and thus can be analyzed in terms of a neurodevelopmental and neural circuitry perspective. Hence, a novel bio-psychosocial-behavioral model for the treatment of schizophrenia is needed to account for the non-dopaminergic systems involved in schizophrenia, rather than dopaminergic mechanisms. This model can be understood from the viewpoint of neurodevelopment and neural circuitry and should include the staging care, personalized care, preventive care, reducing the cognitive deficits, and reducing stigma. Thomas R. Insel proposed this as a goal for schizophrenia treatment to be achieved by 2030.
Collapse
Affiliation(s)
- Yong-Ku Kim
- Department of Psychiatry, Korea University College of Medicine, Seoul 02841, Korea.
| | - Joonho Choi
- Department of Psychiatry, Hanyang University Guri Hospital, Guri 11923, Korea.
| | - Seon-Cheol Park
- Department of Psychiatry, Inje University College of Medicine and Haeundae Paik Hospital, Busan 48108, Korea.
| |
Collapse
|
33
|
Potential drug targets and treatment of schizophrenia. Inflammopharmacology 2017; 25:277-292. [DOI: 10.1007/s10787-017-0340-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/17/2017] [Indexed: 12/25/2022]
|
34
|
Simeth NA, Bause M, Dobmeier M, Kling RC, Lachmann D, Hübner H, Einsiedel J, Gmeiner P, König B. NTS2-selective neurotensin mimetics with tetrahydrofuran amino acids. Bioorg Med Chem 2017; 25:350-359. [DOI: 10.1016/j.bmc.2016.10.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/20/2016] [Accepted: 10/31/2016] [Indexed: 01/10/2023]
|
35
|
Zhang G, Wang K, Li XD, Zhang DL, Xu F. Discovery of novel antagonists of human neurotensin receptor 1 on the basis of ligand and protein structure. Biomed Pharmacother 2016; 84:147-157. [DOI: 10.1016/j.biopha.2016.09.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 09/08/2016] [Accepted: 09/08/2016] [Indexed: 12/25/2022] Open
|
36
|
Ellenbroek BA, Angelucci F, Husum H, Mathé AA. Gene-environment interactions in a rat model of depression. Maternal separation affects neurotensin in selected brain regions. Neuropeptides 2016; 59:83-88. [PMID: 27372546 DOI: 10.1016/j.npep.2016.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/13/2016] [Accepted: 05/23/2016] [Indexed: 12/11/2022]
Abstract
Although the etiology of major psychiatric disorders has not been elucidated, accumulating evidence indicates that both genetic and early environmental factors play a role. We have previously demonstrated behavioral and neurochemical changes both in non-manipulated genetic rat models of depression, such as Flinders Sensitive Line (FSL) and Fawn Hooded (FH), and in normal rats following maternal separation (MS). The aim of the present study was to extend this work by exploring whether neurotensin (NT), a peptide implicated in several psychiatric disorders, is altered in a new animal model based on gene - environment interactions. More specifically, we used the FSL rats as a genetic model of depression and the Flinders Resistant Line (FRL) as controls and subjected them to MS. Pups randomly assigned to the MS procedure were separated from the dam as a litter for 180min daily between postnatal day 2 to 14. On postnatal day 90, rats were weighed and sacrificed by a two second high energy focused microwave irradiation and several brain regions were obtained by micropuncture. Neurotensin-like immunoreactivity (NT-LI) was measured by radioimmunoassay (RIA). The results showed that the FSL rats compared to the FRL rats have higher baseline NT-LI concentrations in the temporal cortex and periaqueductal gray and a markedly different response to maternal separation. The only observed change following maternal separation in the FRL rats was an NT-LI increase in the periaqueductal gray. In contrast, in the FSL significant increases were found in the nucleus accumbens, hippocampus, and entorhinal cortex and a decrease was seen in the temporal cortex after MS. The present study revealed baseline regional differences in NT-LI concentrations between the FSL and FRL strains and demonstrated that early MD differentially affects the two strains. The relevance of these alterations for depression as well as possible mechanisms underlying this gene-environment interaction are discussed.
Collapse
Affiliation(s)
- Bart A Ellenbroek
- School of Psychology, Victoria University of Wellington, Wellington, New Zealand.
| | | | - Henriette Husum
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Aleksander A Mathé
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
37
|
Guo X, Fang Q, Ma C, Zhou B, Wan Y, Jiang R. Whole-genome resequencing of Xishuangbanna fighting chicken to identify signatures of selection. Genet Sel Evol 2016; 48:62. [PMID: 27565441 PMCID: PMC5000499 DOI: 10.1186/s12711-016-0239-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 08/05/2016] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Selective breeding for genetic improvement is expected to leave distinctive selection signatures within genomes. The identification of selection signatures can help to elucidate the mechanisms of selection and accelerate genetic improvement. Fighting chickens have undergone extensive artificial selection, resulting in modifications to their morphology, physiology and behavior compared to wild species. Comparing the genomes of fighting chickens and wild species offers a unique opportunity for identifying signatures of artificial selection. RESULTS We identified selection signals in 100-kb windows sliding in 10-kb steps by using two approaches: the pooled heterozygosity [Formula: see text] and the fixation index [Formula: see text] between Xishuangbanna fighting chicken (YNLC) and Red Jungle Fowl. A total of 413 candidate genes were found to be putatively under selection in YNLC. These genes were related to traits such as growth, disease resistance, aggressive behavior and energy metabolism, as well as the morphogenesis and homeostasis of many tissues and organs. CONCLUSIONS This study reveals mechanisms and targets of artificial selection, which will contribute to improve our knowledge about the evolution of fighting chickens and facilitate future quantitative trait loci mapping.
Collapse
Affiliation(s)
- Xing Guo
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036 People’s Republic of China
| | - Qi Fang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036 People’s Republic of China
| | - Chendong Ma
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036 People’s Republic of China
| | - Bangyuan Zhou
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036 People’s Republic of China
| | - Yi Wan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036 People’s Republic of China
| | - Runshen Jiang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036 People’s Republic of China
| |
Collapse
|
38
|
Bolivar JH, Muñoz-García JC, Castro-Dopico T, Dijkman PM, Stansfeld PJ, Watts A. Interaction of lipids with the neurotensin receptor 1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1278-87. [DOI: 10.1016/j.bbamem.2016.02.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 02/02/2016] [Accepted: 02/24/2016] [Indexed: 10/22/2022]
|
39
|
Gevaert B, Wynendaele E, Stalmans S, Bracke N, D'Hondt M, Smolders I, van Eeckhaut A, De Spiegeleer B. Blood-brain barrier transport kinetics of the neuromedin peptides NMU, NMN, NMB and NT. Neuropharmacology 2016; 107:460-470. [PMID: 27040796 DOI: 10.1016/j.neuropharm.2016.03.051] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 03/27/2016] [Accepted: 03/29/2016] [Indexed: 12/12/2022]
Abstract
The neuromedin peptides are peripherally and centrally produced, but until now, it is generally believed that they only function as locally acting compounds without any quantitative knowledge about their blood-brain barrier (BBB) passage. Here, we characterize the transport kinetics of four neuromedins (NMU, NMN, NMB and NT) across the BBB, as well as their metabolization profile, and evaluate if they can act as endocrine hormones. Using the in vivo mouse model, multiple time regression (MTR), capillary depletion (CD) and brain efflux studies were performed. Data was fitted using linear (NMU, NT and NMB) or biphasic modeling (NMU and NMN). Three of the four investigated peptides, i.e. NMU, NT and NMN, showed a significant influx into the brain with unidirectional influx rate constants of 1.31 and 0.75 μL/(g × min) for NMU and NT respectively and initial influx constants (K1) of 72.14 and 7.55 μL/(g × min) and net influx constants (K) of 1.28 and 1.36 × 10(-16) μL/(g×min) for NMU and NMN respectively. The influx of NMB was negligible. Only NMN and NT showed a significant efflux out of the brain with an efflux constant (kout) of 0.042 min(-1) and 0.053 min(-1) respectively. Our results indicate that locally produced neuromedin peptides and/or fragments can be transported through the whole body, including passing the BBB, and taken up by different organs/tissues, supporting the idea that the neuromedins could have a much bigger role in the regulation of biological processes than currently assumed.
Collapse
Affiliation(s)
- Bert Gevaert
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Evelien Wynendaele
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Sofie Stalmans
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Nathalie Bracke
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Matthias D'Hondt
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Ilse Smolders
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ann van Eeckhaut
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bart De Spiegeleer
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
40
|
Ferraro L, Tiozzo Fasiolo L, Beggiato S, Borelli AC, Pomierny-Chamiolo L, Frankowska M, Antonelli T, Tomasini MC, Fuxe K, Filip M. Neurotensin: A role in substance use disorder? J Psychopharmacol 2016; 30:112-27. [PMID: 26755548 DOI: 10.1177/0269881115622240] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neurotensin is a tridecapeptide originally identified in extracts of bovine hypothalamus. This peptide has a close anatomical and functional relationship with the mesocorticolimbic and nigrostriatal dopamine system. Neural circuits containing neurotensin were originally proposed to play a role in the mechanism of action of antipsychotic agents. Additionally, neurotensin-containing pathways were demonstrated to mediate some of the rewarding and/or sensitizing properties of drugs of abuse.This review attempts to contribute to the understanding of the role of neurotensin and its receptors in drug abuse. In particular, we will summarize the potential relevance of neurotensin, its related compounds and neurotensin receptors in substance use disorders, with a focus on the preclinical research.
Collapse
Affiliation(s)
- Luca Ferraro
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Laura Tiozzo Fasiolo
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Sarah Beggiato
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Andrea C Borelli
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | | - Malgorzata Frankowska
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Tiziana Antonelli
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Maria C Tomasini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Kjell Fuxe
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Malgorzata Filip
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
41
|
Merullo DP, Cordes MA, Susan DeVries M, Stevenson SA, Riters LV. Neurotensin neural mRNA expression correlates with vocal communication and other highly-motivated social behaviors in male European starlings. Physiol Behav 2015; 151:155-61. [PMID: 26192712 DOI: 10.1016/j.physbeh.2015.07.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/14/2015] [Accepted: 07/15/2015] [Indexed: 12/31/2022]
Abstract
Vocalizations coordinate social interactions in many species and often are important for behaviors such as mate attraction or territorial defense. Although the neural circuitry underlying vocal communication is well-known for some animal groups, such as songbirds, the motivational processes that regulate vocal signals are not as clearly understood. Neurotensin (NT) is a neuropeptide implicated in motivation that can modulate the activity of dopaminergic neurons. Dopaminergic projections from the ventral tegmental area (VTA) are key to mediating highly motivated, goal-directed behaviors, including sexually-motivated birdsong. However, the role of NT in modifying vocal communication or other social behaviors has not been well-studied. Here in European starlings (Sturnus vulgaris) we analyzed relationships between sexually-motivated song and NT and NT1 receptor (NTSR1) expression in VTA. Additionally, we examined NT and NTSR1 expression in four regions that receive dopaminergic projections from VTA and are involved in courtship song: the medial preoptic nucleus (POM), the lateral septum (LS), Area X, and HVC. Relationships between NT and NTSR1 expression and non-vocal courtship and agonistic behaviors were also examined. NT expression in Area X positively related to sexually-motivated song production. NT expression in POM positively correlated with non-vocal courtship behavior and agonistic behavior. NT expression in POM was greatest in males owning nesting sites, and the opposite pattern was observed for NTSR1 expression in LS. These results are the first to implicate NT in Area X in birdsong, and further highlight NT as a potential neuromodulator for the control of vocal communication and other social behaviors.
Collapse
Affiliation(s)
- Devin P Merullo
- Department of Zoology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA.
| | - Melissa A Cordes
- Department of Zoology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - M Susan DeVries
- Department of Zoology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Sharon A Stevenson
- Department of Zoology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Lauren V Riters
- Department of Zoology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| |
Collapse
|
42
|
Alburges ME, Hoonakker AJ, Cordova NM, Robson CM, McFadden LM, Martin AL, Hanson GR. Effect of low doses of methamphetamine on rat limbic-related neurotensin systems. Synapse 2015; 69:396-404. [PMID: 25963809 DOI: 10.1002/syn.21829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 04/16/2015] [Accepted: 04/25/2015] [Indexed: 12/30/2022]
Abstract
Administration of methamphetamine (METH) alters limbic-related (LR) neurotensin (NT) systems. Thus, through a D1-receptor mechanism, noncontingent high doses (5-15 mg kg(-1)), and likely self-administration, of METH appears to reduce NT release causing its accumulation and an elevation of NT-like immunoreactivity (NTLI) in limbic-related NT pathways. For comparison, we tested the effect of low doses of METH, that are more like those used in therapy, on NTLI in the core and shell of the nucleus accumbens (NAc and NAs), prefrontal cortex (PFC), ventral tegmental area (VTA), the lateral habenula (Hb) and basolateral amygdala (Amyg). METH at the dose of 0.25 mg kg(-1) in particular, but not 1.00 mg kg(-1), decreased NTLI concentration in all of the LR structures studied, except for the prefrontal cortex; however, these effects were rapid and brief being observed at 5 h but not at 24 h after treatment. In all of the LR areas where NTLI levels were reduced after the low dose of METH, the effect was blocked by pretreatment with either a D1 or a D2 antagonist. Thus, opposite to high doses like those associated with abuse, the therapeutic-like low-dose METH treatment induced reduction in NT tissue levels likely reflected an increase in NT release and a short-term depletion of the levels of this neuropeptide in LR structures, manifesting features comparable to the response of basal ganglia NT systems to similar low doses of METH.
Collapse
Affiliation(s)
- Mario E Alburges
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah
| | - Amanda J Hoonakker
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah
| | - Nathaniel M Cordova
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah
| | - Christina M Robson
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah
| | - Lisa M McFadden
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah
| | - Amber L Martin
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah
| | - Glen R Hanson
- School of Dentistry and Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
43
|
Zhang H, Dong H, Lei S. Neurotensinergic augmentation of glutamate release at the perforant path-granule cell synapse in rat dentate gyrus: Roles of L-Type Ca²⁺ channels, calmodulin and myosin light-chain kinase. Neuropharmacology 2015; 95:252-60. [PMID: 25842242 DOI: 10.1016/j.neuropharm.2015.03.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 01/12/2023]
Abstract
Neurotensin (NT) serves as a neuromodulator in the brain where it is involved in modulating a variety of physiological functions including nociception, temperature, blood pressure and cognition, and many neurological diseases such as Alzheimer's disease, schizophrenia and Parkinson's disease. Whereas there is compelling evidence demonstrating that NT facilitates cognitive processes, the underlying cellular and molecular mechanisms have not been fully determined. Because the dentate gyrus expresses high densities of NT and NT receptors, we examined the effects of NT on the synaptic transmission at the synapse formed between the perforant path (PP) and granule cells (GC) in the rats. Our results demonstrate that NT persistently increased the amplitude of the AMPA receptor-mediated EPSCs at the PP-GC synapse. NT-induced increases in AMPA EPSCs were mediated by presynaptic NTS1 receptors. NT reduced the coefficient of variation and paired-pulse ratio of AMPA EPSCs suggesting that NT facilitates presynaptic glutamate release. NT increased the release probability and the number of readily releasable vesicles with no effects on the rate of recovery from vesicle depletion. NT-mediated augmentation of glutamate release required the influx of Ca(2+) via L-type Ca(2+) channels and the functions of calmodulin and myosin light chain kinase. Our results provide a cellular and molecular mechanism to explain the roles of NT in the hippocampus.
Collapse
Affiliation(s)
- Haopeng Zhang
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA; Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, PR China
| | - Hailong Dong
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, PR China
| | - Saobo Lei
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA.
| |
Collapse
|
44
|
Kash TL, Pleil KE, Marcinkiewcz CA, Lowery-Gionta EG, Crowley N, Mazzone C, Sugam J, Hardaway JA, McElligott ZA. Neuropeptide regulation of signaling and behavior in the BNST. Mol Cells 2015; 38:1-13. [PMID: 25475545 PMCID: PMC4314126 DOI: 10.14348/molcells.2015.2261] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 09/29/2014] [Indexed: 12/23/2022] Open
Abstract
Recent technical developments have transformed how neuroscientists can probe brain function. What was once thought to be difficult and perhaps impossible, stimulating a single set of long range inputs among many, is now relatively straight-forward using optogenetic approaches. This has provided an avalanche of data demonstrating causal roles for circuits in a variety of behaviors. However, despite the critical role that neuropeptide signaling plays in the regulation of behavior and physiology of the brain, there have been remarkably few studies demonstrating how peptide release is causally linked to behaviors. This is likely due to both the different time scale by which peptides act on and the modulatory nature of their actions. For example, while glutamate release can effectively transmit information between synapses in milliseconds, peptide release is potentially slower [See the excellent review by Van Den Pol on the time scales and mechanisms of release (van den Pol, 2012)] and it can only tune the existing signals via modulation. And while there have been some studies exploring mechanisms of release, it is still not as clearly known what is required for efficient peptide release. Furthermore, this analysis could be complicated by the fact that there are multiple peptides released, some of which may act in contrast. Despite these limitations, there are a number of groups making progress in this area. The goal of this review is to explore the role of peptide signaling in one specific structure, the bed nucleus of the stria terminalis, that has proven to be a fertile ground for peptide action.
Collapse
Affiliation(s)
- Thomas L. Kash
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| | - Kristen E. Pleil
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| | - Catherine A. Marcinkiewcz
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| | - Emily G. Lowery-Gionta
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| | - Nicole Crowley
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| | - Christopher Mazzone
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| | - Jonathan Sugam
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| | - J. Andrew Hardaway
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| | - Zoe A. McElligott
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| |
Collapse
|
45
|
Parks GS, Wang L, Wang Z, Civelli O. Identification of neuropeptide receptors expressed by melanin-concentrating hormone neurons. J Comp Neurol 2014; 522:3817-33. [PMID: 24978951 PMCID: PMC4167928 DOI: 10.1002/cne.23642] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 06/17/2014] [Accepted: 06/24/2014] [Indexed: 01/13/2023]
Abstract
Melanin-concentrating hormone (MCH) is a 19-amino-acid cyclic neuropeptide that acts in rodents via the MCH receptor 1 (MCHR1) to regulate a wide variety of physiological functions. MCH is produced by a distinct population of neurons located in the lateral hypothalamus (LH) and zona incerta (ZI), but MCHR1 mRNA is widely expressed throughout the brain. The physiological responses and behaviors regulated by the MCH system have been investigated, but less is known about how MCH neurons are regulated. The effects of most classical neurotransmitters on MCH neurons have been studied, but those of most neuropeptides are poorly understood. To gain insight into how neuropeptides regulate the MCH system, we investigated which neuropeptide receptors are expressed by MCH neurons by using double in situ hybridization. In all, 20 receptors, selected based on either a suspected interaction with the MCH system or demonstrated high expression levels in the LH and ZI, were tested to determine whether they are expressed by MCH neurons. Overall, 11 neuropeptide receptors were found to exhibit significant colocalization with MCH neurons: nociceptin/orphanin FQ opioid receptor (NOP), MCHR1, both orexin receptors (ORX), somatostatin receptors 1 and 2 (SSTR1, SSTR2), kisspeptin recepotor (KissR1), neurotensin receptor 1 (NTSR1), neuropeptide S receptor (NPSR), cholecystokinin receptor A (CCKAR), and the κ-opioid receptor (KOR). Among these receptors, six have never before been linked to the MCH system. Surprisingly, several receptors thought to regulate MCH neurons displayed minimal colocalization with MCH, suggesting that they may not directly regulate the MCH system.
Collapse
Affiliation(s)
- Gregory S. Parks
- Department of Pharmacology, University of California Irvine, Irvine, California 92697
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California, 92697
| | - Lien Wang
- Department of Pharmacology, University of California Irvine, Irvine, California 92697
| | - Zhiwei Wang
- Department of Pharmacology, University of California Irvine, Irvine, California 92697
| | - Olivier Civelli
- Department of Pharmacology, University of California Irvine, Irvine, California 92697
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California, 92697
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, California, 92697
| |
Collapse
|
46
|
Responses of the rat basal ganglia neurotensin systems to low doses of methamphetamine. Psychopharmacology (Berl) 2014; 231:2933-40. [PMID: 24522333 PMCID: PMC4102623 DOI: 10.1007/s00213-014-3468-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 01/20/2014] [Indexed: 12/31/2022]
Abstract
RATIONALE Administration of high doses of methamphetamine (METH) in a manner mimicking the binging patterns associated with abuse reduces NT release and causes its accumulation and elevated NT levels in extrapyramidal structures by a D1 mechanism. The relevance of these findings to the therapeutic use of METH needs to be studied. OBJECTIVES The effect of low doses (comparable to that used for therapy) of METH on basal ganglia NT systems was examined and compared to high-dose and self-administration effects previously reported. METHODS Rats were injected four times (2-h intervals) with either saline or low doses of METH (0.25, 0.50, or 1.00 mg/kg/subcutaneously (s.c.)). For the DA antagonist studies, animals were pretreated with a D1 (SCH23390) or D2 (eticlopride) antagonist 15 min prior to METH or saline treatments. Rats were sacrificed 5-48 h after the last injection. RESULTS METH at doses of 0.25 and 0.50, but not 1.00 mg/kg, rapidly and briefly decreased NTLI concentration in all basal ganglia structures studied. In the posterior dorsal striatum, the reduction in NT level after low-dose METH appeared to be caused principally by D2 stimulation, but both D2 and D1 stimulation were required for the NT responses in the other basal ganglia regions. CONCLUSIONS A novel finding from the present study was that opposite to abuse-mimicking high doses of METH, the therapeutically relevant low-dose METH treatment reduced NT tissue levels likely reflecting an increase in NT release and a short-term depletion of the levels of this neuropeptide in basal ganglia structures. The possible significance is discussed.
Collapse
|
47
|
Zhang M, Wang H, Zhao J, Chen C, Leak RK, Xu Y, Vosler P, Chen J, Gao Y, Zhang F. Drug-induced hypothermia in stroke models: does it always protect? CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2014; 12:371-80. [PMID: 23469851 DOI: 10.2174/1871527311312030010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/06/2012] [Accepted: 11/11/2012] [Indexed: 12/19/2022]
Abstract
Ischemic stroke is a common neurological disorder lacking a cure. Recent studies show that therapeutic hypothermia is a promising neuroprotective strategy against ischemic brain injury. Several methods to induce therapeutic hypothermia have been established; however, most of them are not clinically feasible for stroke patients. Therefore, pharmacological cooling is drawing increasing attention as a neuroprotective alternative worthy of further clinical development. We begin this review with a brief introduction to the commonly used methods for inducing hypothermia; we then focus on the hypothermic effects of eight classes of hypothermia-inducing drugs: the cannabinoids, opioid receptor activators, transient receptor potential vanilloid, neurotensins, thyroxine derivatives, dopamine receptor activators, hypothermia-inducing gases, adenosine, and adenine nucleotides. Their neuroprotective effects as well as the complications associated with their use are both considered. This article provides guidance for future clinical trials and animal studies on pharmacological cooling in the setting of acute stroke.
Collapse
Affiliation(s)
- Meijuan Zhang
- Department of Neurology, University of Pittsburgh School of Medicine, 3500 Terrace Street, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Elucidating the role of neurotensin in the pathophysiology and management of major mental disorders. Behav Sci (Basel) 2014; 4:125-153. [PMID: 25379273 PMCID: PMC4219245 DOI: 10.3390/bs4020125] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/15/2014] [Accepted: 05/21/2014] [Indexed: 12/30/2022] Open
Abstract
Neurotensin (NT) is a neuropeptide that is closely associated with, and is thought to modulate, dopaminergic and other neurotransmitter systems involved in the pathophysiology of various mental disorders. This review outlines data implicating NT in the pathophysiology and management of major mental disorders such as schizophrenia, drug addiction, and autism. The data suggest that NT receptor analogs have the potential to be used as novel therapeutic agents acting through modulation of neurotransmitter systems dys-regulated in these disorders.
Collapse
|
49
|
Olfaction and olfactory-mediated behaviour in psychiatric disease models. Cell Tissue Res 2013; 354:69-80. [DOI: 10.1007/s00441-013-1617-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 03/12/2013] [Indexed: 12/26/2022]
|
50
|
Boules M, Li Z, Smith K, Fredrickson P, Richelson E. Diverse roles of neurotensin agonists in the central nervous system. Front Endocrinol (Lausanne) 2013; 4:36. [PMID: 23526754 PMCID: PMC3605594 DOI: 10.3389/fendo.2013.00036] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 03/06/2013] [Indexed: 01/10/2023] Open
Abstract
Neurotensin (NT) is a tridecapeptide that is found in the central nervous system (CNS) and the gastrointestinal tract. NT behaves as a neurotransmitter in the brain and as a hormone in the gut. Additionally, NT acts as a neuromodulator to several neurotransmitter systems including dopaminergic, sertonergic, GABAergic, glutamatergic, and cholinergic systems. Due to its association with such a wide variety of neurotransmitters, NT has been implicated in the pathophysiology of several CNS disorders such as schizophrenia, drug abuse, Parkinson's disease (PD), pain, central control of blood pressure, eating disorders, as well as, cancer and inflammation. The present review will focus on the role that NT and its analogs play in schizophrenia, endocrine function, pain, psychostimulant abuse, and PD.
Collapse
Affiliation(s)
- Mona Boules
- Neuropsychopharmacology Laboratory, Department of Neuroscience, Mayo Clinic FloridaJacksonville, FL, USA
- *Correspondence: Mona Boules, Neuropsychopharmacology Laboratory, Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA. e-mail:
| | - Zhimin Li
- Neuropsychopharmacology Laboratory, Department of Neuroscience, Mayo Clinic FloridaJacksonville, FL, USA
| | - Kristin Smith
- Neuropsychopharmacology Laboratory, Department of Neuroscience, Mayo Clinic FloridaJacksonville, FL, USA
| | - Paul Fredrickson
- Neuropsychopharmacology Laboratory, Department of Neuroscience, Mayo Clinic FloridaJacksonville, FL, USA
| | - Elliott Richelson
- Neuropsychopharmacology Laboratory, Department of Neuroscience, Mayo Clinic FloridaJacksonville, FL, USA
| |
Collapse
|