1
|
Tegegne BA, Adugna A, Yenet A, Yihunie Belay W, Yibeltal Y, Dagne A, Hibstu Teffera Z, Amare GA, Abebaw D, Tewabe H, Abebe RB, Zeleke TK. A critical review on diabetes mellitus type 1 and type 2 management approaches: from lifestyle modification to current and novel targets and therapeutic agents. Front Endocrinol (Lausanne) 2024; 15:1440456. [PMID: 39493778 PMCID: PMC11527681 DOI: 10.3389/fendo.2024.1440456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/02/2024] [Indexed: 11/05/2024] Open
Abstract
Diabetes mellitus (DM) has emerged as an international health epidemic due to its rapid rise in prevalence. Consequently, scientists and or researchers will continue to find novel, safe, effective, and affordable anti-diabetic medications. The goal of this review is to provide a thorough overview of the role that lifestyle changes play in managing diabetes, as well as the standard medications that are currently being used to treat the condition and the most recent advancements in the development of novel medical treatments that may be used as future interventions for the disease. A literature search was conducted using research databases such as PubMed, Web of Science, Scopus, ScienceDirect, Wiley Online Library, Google Scholar, etc. Data were then abstracted from these publications using words or Phrases like "pathophysiology of diabetes", "Signe and symptoms of diabetes", "types of diabetes", "major risk factors and complication of diabetes", "diagnosis of diabetes", "lifestyle modification for diabetes", "current antidiabetic agents", and "novel drugs and targets for diabetes management" that were published in English and had a strong scientific foundation. Special emphasis was given to the importance of lifestyle modification, as well as current, novel, and emerging/promising drugs and targets helpful for the management of both T1DM and T2DM.
Collapse
Affiliation(s)
- Bantayehu Addis Tegegne
- Department of Pharmacy, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Adane Adugna
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Aderaw Yenet
- Department of Pharmacy, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Wubetu Yihunie Belay
- Department of Pharmacy, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Yared Yibeltal
- Department of Pharmacy, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Abebe Dagne
- Department of Pharmacy, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Zigale Hibstu Teffera
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Gashaw Azanaw Amare
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Desalegn Abebaw
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Haymanot Tewabe
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Rahel Belete Abebe
- Department of Clinical Pharmacy, School of Pharmacy, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Tirsit Ketsela Zeleke
- Department of Pharmacy, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
2
|
Stanton EW, Manasyan A, Banerjee R, Hong K, Koesters E, Daar DA. GLP-1 Agonists: A Practical Overview for Plastic and Reconstructive Surgeons. Ann Plast Surg 2024:00000637-990000000-00551. [PMID: 39293069 DOI: 10.1097/sap.0000000000004089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
BACKGROUND Glucagon-like peptide-1 (GLP-1) agonists, such as exenatide, liraglutide, dulaglutide, semaglutide, and tirzepatide, effectively manage type 2 diabetes by promoting insulin release, suppressing glucagon secretion, and enhancing glucose metabolism. They also aid weight reduction and cardiovascular health, potentially broadening their therapeutic scope. In plastic surgery, they hold promise for perioperative weight management and glycemic control, potentially impacting surgical outcomes. METHODS A comprehensive review was conducted to assess GLP-1 agonists' utilization in plastic surgery. We analyzed relevant studies, meta-analyses, and trials to evaluate their benefits and limitations across surgical contexts, focusing on weight reduction, glycemic control, cardiovascular risk factors, and potential complications. RESULTS Studies demonstrate GLP-1 agonists' versatility, spanning weight management, cardiovascular health, neurological disorders, and metabolic dysfunction-associated liver diseases. Comparative analyses highlight variations in glycemic control, weight loss, and cardiometabolic risk. Meta-analyses reveal significant reductions in hemoglobin A1C levels, especially with high-dose semaglutide (2 mg) and tirzepatide (15 mg). However, increased dosing may lead to gastrointestinal side effects and serious complications like pancreatitis and bowel obstruction. Notably, GLP-1 agonists' efficacy in weight reduction and glycemic control may impact perioperative management in plastic surgery, potentially expanding surgical candidacy for procedures like autologous flap-based breast reconstruction and influencing outcomes related to lymphedema. Concerns persist regarding venous thromboembolism and delayed gastric emptying, necessitating further investigation into bleeding and aspiration risk with anesthesia. CONCLUSIONS GLP-1 agonists offer advantages in perioperative weight management and glycemic control in plastic surgery patients. They may broaden surgical candidacy and mitigate lymphedema risk but require careful consideration of complications, particularly perioperative aspiration risk. Future research should focus on their specific impacts on surgical outcomes to optimize their integration into perioperative protocols effectively. Despite challenges, GLP-1 agonists promise to enhance surgical outcomes and patient care in plastic surgery.
Collapse
Affiliation(s)
| | - Artur Manasyan
- From the Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Rakhi Banerjee
- From the Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Kurt Hong
- Division of Internal Medicine, Keck School of Medicine of USC, Los Angeles, CA
| | | | | |
Collapse
|
3
|
Zago L, Pessoa HR, Rosado CP, da Silva AA, Pasqualone A, Koury JC. Acute Consumption of Cooked Green Banana Pulp Beverage (Musa cavendishii) Decreases Plasma Glucose in Healthy Women: A Cross-Sectional Controlled Study. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:641-647. [PMID: 38951375 DOI: 10.1007/s11130-024-01202-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 07/03/2024]
Abstract
This study aimed at comparing the carbohydrate composition of three banana varieties (cv. Nanica, Nanicão, and Prata) and investigating the effect of a single dose of cooked green banana pulp beverage (GBPd) on plasma glycemic homeostasis indexes (glucose, PYY, GIP, insulin) and hunger and satiety sensation (visual analog scale-VAS). The bananas were classified according to the color scale. The fiber, total carbohydrate, and resistant starch (RS) were determined using validated methods. Glucose homeostasis indexes and hunger/satiety sensation were determined in ten healthy women in two stages before and after intake: (1) glucose solution (250 g/L); (2) one week later, consumption of the glucose solution plus 75 g/L of GBPd. Blood samples were collected twice in stage-1 and every 15 min for 2 h in stage-2. Cv. Nanicão was selected, because it presented a higher content in RS and dietary fiber on dry base than the other cultivars. Thus, it was used to test glycemic response. After 2 h of GBPd intake, no difference was observed in hunger/satiety sensation and plasma glycemic homeostasis indexes, except for a decrease in plasma glucose concentration (-15%, p = 0.0232) compared to stage-1. These results suggest that cv. Nanicão has a higher potential as a functional ingredient and can influence the reduction in the glycemic index of a meal compared to other cultivars. However, it had not a short-term effect on hormones GIP and PYY in healthy women. Further research is needed to understand the long-term effects and mechanisms of green banana on glycemic control and satiety.
Collapse
Affiliation(s)
- Lilia Zago
- Institute of Nutrition, State University of Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 12º andar, sala 12006 D - Maracanã, Rio de Janeiro, RJ, Brazil.
| | - Heloisa Rodrigues Pessoa
- Institute of Nutrition, State University of Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 12º andar, sala 12006 D - Maracanã, Rio de Janeiro, RJ, Brazil
| | - Carolyne Pimentel Rosado
- Institute of Nutrition, State University of Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 12º andar, sala 12006 D - Maracanã, Rio de Janeiro, RJ, Brazil
| | - Andreia Ana da Silva
- Institute of Nutrition, State University of Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 12º andar, sala 12006 D - Maracanã, Rio de Janeiro, RJ, Brazil
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Josely Correa Koury
- Institute of Nutrition, State University of Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 12º andar, sala 12006 D - Maracanã, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
4
|
De Fano M, Malara M, Vermigli C, Murdolo G. Adipose Tissue: A Novel Target of the Incretin Axis? A Paradigm Shift in Obesity-Linked Insulin Resistance. Int J Mol Sci 2024; 25:8650. [PMID: 39201336 PMCID: PMC11354636 DOI: 10.3390/ijms25168650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
Adipose tissue (AT) represents a plastic organ that can undergo significant remodeling in response to metabolic demands. With its numerous checkpoints, the incretin system seems to play a significant role in controlling glucose homeostasis and energy balance. The importance of the incretin hormones, namely the glucagon-like peptide-1 (GLP-1) and the glucose-dependent insulinotropic peptide (GIP), in controlling the function of adipose cells has been brought to light by recent studies. Notably, a "paradigm shift" in reevaluating the role of the incretin system in AT as a potential target to treat obesity-linked metabolic disorders resulted from the demonstration that a disruption of the GIP and GLP-1 signaling axis in fat is associated with adiposity-induced insulin-resistance (IR) and/or type 2 diabetes mellitus (T2D). We will briefly discuss the (patho)physiological functions of GLP-1 and GIP signaling in AT in this review, emphasizing their potential impacts on lipid storage, adipogenesis, glucose metabolism and inflammation. We will also address the conundrum with the perturbation of the incretin axis in white or brown fat tissue and the emergence of metabolic disorders. In order to reduce or avoid adiposity-related metabolic complications, we will finally go over a potential scientific rationale for suggesting AT as a novel target for GLP-1 and GIP receptor agonists and co-agonists.
Collapse
Affiliation(s)
- Michelantonio De Fano
- Complex Structure of Endocrinology and Metabolism, Department of Medicine, Azienda Ospedaliera Santa Maria Misericordia, Ospedale di Perugia, 06081 Perugia, Italy; (M.M.); (C.V.); (G.M.)
| | | | | | | |
Collapse
|
5
|
Gasbjerg LS, Rasmussen RS, Dragan A, Lindquist P, Melchiorsen JU, Stepniewski TM, Schiellerup S, Tordrup EK, Gadgaard S, Kizilkaya HS, Willems S, Zhong Y, Wang Y, Wright SC, Lauschke VM, Hartmann B, Holst JJ, Selent J, Rosenkilde MM. Altered desensitization and internalization patterns of rodent versus human glucose-dependent insulinotropic polypeptide (GIP) receptors. An important drug discovery challenge. Br J Pharmacol 2024. [PMID: 38952084 DOI: 10.1111/bph.16478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 04/10/2024] [Accepted: 05/06/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND AND PURPOSE The gut hormone glucose-dependent insulinotropic polypeptide (GIP) signals via the GIP receptor (GIPR), resulting in postprandial potentiation of glucose-stimulated insulin secretion. The translation of results from rodent studies to human studies has been challenged by the unexpected effects of GIPR-targeting compounds. We, therefore, investigated the variation between species, focusing on GIPR desensitization and the role of the receptor C-terminus. EXPERIMENTAL APPROACH The GIPR from humans, mice, rats, pigs, dogs and cats was studied in vitro for cognate ligand affinity, G protein activation (cAMP accumulation), recruitment of beta-arrestin and internalization. Variants of the mouse, rat and human GIPRs with swapped C-terminal tails were studied in parallel. KEY RESULTS The human GIPR is more prone to internalization than rodent GIPRs. Despite similar agonist affinities and potencies for Gαs activation, especially, the mouse GIPR shows reduced receptor desensitization, internalization and beta-arrestin recruitment. Using an enzyme-stabilized, long-acting GIP analogue, the species differences were even more pronounced. 'Tail-swapped' human, rat and mouse GIPRs were all fully functional in their Gαs coupling, and the mouse GIPR regained internalization and beta-arrestin 2 recruitment properties with the human tail. The human GIPR lost the ability to recruit beta-arrestin 2 when its own C-terminus was replaced by the rat or mouse tail. CONCLUSIONS AND IMPLICATIONS Desensitization of the human GIPR is dependent on the C-terminal tail. The species-dependent functionality of the C-terminal tail and the different species-dependent internalization patterns, especially between human and mouse GIPRs, are important factors influencing the preclinical evaluation of GIPR-targeting therapeutic compounds.
Collapse
Affiliation(s)
- Lærke Smidt Gasbjerg
- Department of Biomedical Sciences, Faculty of Healthy and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Syberg Rasmussen
- Department of Biomedical Sciences, Faculty of Healthy and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Adrian Dragan
- Department of Biomedical Sciences, Faculty of Healthy and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Lindquist
- Department of Biomedical Sciences, Faculty of Healthy and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Josefine Ulrikke Melchiorsen
- Department of Biomedical Sciences, Faculty of Healthy and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tomasz Maciej Stepniewski
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Research Institute and Pompeu Fabra University, Barcelona, Spain
- InterAx Biotech AG, Villigen, Switzerland
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Sine Schiellerup
- Department of Biomedical Sciences, Faculty of Healthy and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Esther Karen Tordrup
- Department of Biomedical Sciences, Faculty of Healthy and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sarina Gadgaard
- Department of Biomedical Sciences, Faculty of Healthy and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Bainan Biotech, Copenhagen, Denmark
| | - Hüsün Sheyma Kizilkaya
- Department of Biomedical Sciences, Faculty of Healthy and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sabine Willems
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Yi Zhong
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yi Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, China
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China
| | - Shane C Wright
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Healthy and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Healthy and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Center for Basic Metabolic Research, Faculty of Healthy and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Research Institute and Pompeu Fabra University, Barcelona, Spain
| | - Mette Marie Rosenkilde
- Department of Biomedical Sciences, Faculty of Healthy and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Rosenkilde MM, Lindquist P, Kizilkaya HS, Gasbjerg LS. GIP-derived GIP receptor antagonists - a review of their role in GIP receptor pharmacology. Peptides 2024; 177:171212. [PMID: 38608836 DOI: 10.1016/j.peptides.2024.171212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Surprisingly, agonists, as well as antagonists of the glucose-dependent insulinotropic polypeptide receptor (GIPR), are currently being used or investigated as treatment options for type 2 diabetes and obesity - and both, when combined with glucagon-like peptide 1 receptor (GLP-1R) agonism, enhance GLP-1-induced glycemia and weight loss further. This paradox raises several questions regarding not only the mechanisms of actions of GIP but also the processes engaged during the activation of both the GIP and GLP-1 receptors. Here, we provide an overview of studies of the properties and actions of peptide-derived GIPR antagonists, focusing on GIP(3-30)NH2, a naturally occurring N- and C-terminal truncation of GIP(1-42). GIP(3-30)NH2 was the first GIPR antagonist administered to humans. GIP(3-30)NH2 and a few additional antagonists, like Pro3-GIP, have been used in both in vitro and in vivo studies to elucidate the molecular and cellular consequences of GIPR inhibition, desensitization, and internalization and, at a larger scale, the role of the GIP system in health and disease. We provide an overview of these studies combined with recent knowledge regarding the effects of naturally occurring variants of the GIPR system and species differences within the GIP system to enhance our understanding of the GIPR as a drug target.
Collapse
Affiliation(s)
- Mette Marie Rosenkilde
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Peter Lindquist
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hüsün Sheyma Kizilkaya
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lærke Smidt Gasbjerg
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
7
|
Guo B, Qi M, Luo X, Guo L, Xu M, Zhang Y, Li Z, Li M, Wu R, Guan T, Liu M, Liu Y. GIP attenuates neuronal oxidative stress by regulating glucose uptake in spinal cord injury of rat. CNS Neurosci Ther 2024; 30:e14806. [PMID: 38887182 PMCID: PMC11183929 DOI: 10.1111/cns.14806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/01/2024] [Accepted: 05/18/2024] [Indexed: 06/20/2024] Open
Abstract
AIM Glucose-dependent insulinotropic polypeptide (GIP) is a ligand of glucose-dependent insulinotropic polypeptide receptor (GIPR) that plays an important role in the digestive system. In recent years, GIP has been regarded as a hormone-like peptide to regulate the local metabolic environment. In this study, we investigated the antioxidant role of GIP on the neuron and explored the possible mechanism. METHODS Cell counting Kit-8 (CCK-8) was used to measure cell survival. TdT-mediated dUTP Nick-End Labeling (TUNEL) was used to detect apoptosis in vitro and in vivo. Reactive oxygen species (ROS) levels were probed with 2', 7'-Dichloro dihydrofluorescein diacetate (DCFH-DA), and glucose intake was detected with 2-NBDG. Immunofluorescence staining and western blot were used to evaluate the protein level in cells and tissues. Hematoxylin-eosin (HE) staining, immunofluorescence staining and tract-tracing were used to observe the morphology of the injured spinal cord. Basso-Beattie-Bresnahan (BBB) assay was used to evaluate functional recovery after spinal cord injury. RESULTS GIP reduced the ROS level and protected cells from apoptosis in cultured neurons and injured spinal cord. GIP facilitated wound healing and functional recovery of the injured spinal cord. GIP significantly improved the glucose uptake of cultured neurons. Meanwhile, inhibition of glucose uptake significantly attenuated the antioxidant effect of GIP. GIP increased glucose transporter 3 (GLUT3) expression via up-regulating the level of hypoxia-inducible factor 1α (HIF-1α) in an Akt-dependent manner. CONCLUSION GIP increases GLUT3 expression and promotes glucose intake in neurons, which exerts an antioxidant effect and protects neuronal cells from oxidative stress both in vitro and in vivo.
Collapse
Affiliation(s)
- Beibei Guo
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of Neuroregeneration, Medical SchoolNantong UniversityNantongChina
| | - Mengwei Qi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology ProductsNantong UniversityNantongChina
| | - Xiaoqian Luo
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology ProductsNantong UniversityNantongChina
| | - Longyu Guo
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology ProductsNantong UniversityNantongChina
| | - Man Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology ProductsNantong UniversityNantongChina
| | - Yufang Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of Neuroregeneration, Medical SchoolNantong UniversityNantongChina
| | - Zhen Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology ProductsNantong UniversityNantongChina
| | - Mingxuan Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology ProductsNantong UniversityNantongChina
| | - Ronghua Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology ProductsNantong UniversityNantongChina
| | - Tuchen Guan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology ProductsNantong UniversityNantongChina
| | - Mei Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology ProductsNantong UniversityNantongChina
| | - Yan Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology ProductsNantong UniversityNantongChina
| |
Collapse
|
8
|
Jędrysik M, Wyszomirski K, Różańska-Walędziak A, Grosicka-Maciąg E, Walędziak M, Chełstowska B. The Role of GLP-1, GIP, MCP-1 and IGFBP-7 Biomarkers in the Development of Metabolic Disorders: A Review and Predictive Analysis in the Context of Diabetes and Obesity. Biomedicines 2024; 12:159. [PMID: 38255264 PMCID: PMC10813748 DOI: 10.3390/biomedicines12010159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/29/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Metabolic illnesses, including obesity and type 2 diabetes, have become worldwide epidemics that have an effect on public health. Clinical investigations and further exploration of these mechanisms could lead to innovative, effective, and personalized treatment strategies for individuals. It is important to screen biomarkers in previous studies to discover what is missing. Glucagon-like peptide-1's role in insulin secretion and glucose control highlights its diagnostic and therapeutic potential. Glucose-dependent insulinotropic peptide's influence on postprandial satiety and weight management signifies its importance in understanding metabolic processes. Monocyte chemoattractant protein-1's involvement in inflammation and insulin resistance underlines its value as a diagnostic marker. Insulin-like growth factor-binding protein-7's association with insulin sensitivity and kidney function presents it as a potential target for these diseases' management. In validating these biomarkers, it will be easier to reflect pathophysiological processes, and clinicians will be able to better assess disease severity, monitor disease progression, and tailor treatment strategies. The purpose of the study was to elucidate the significance of identifying novel biomarkers for type 2 diabetes mellitus and obesity, which can revolutionize early detection, risk assessment, and personalized treatment strategies. Standard literature searches of PubMed (MEDLINE), EMBASE, and Cochrane Library were conducted in the year 2023 to identify both original RCTs and recent systematic reviews that have explored the importance of identifying novel biomarkers for T2D and obesity. This search produced 1964 results, and then was reduced to randomized controlled trial and systematic reviews, producing 145 results and 44 results, respectively. Researchers have discovered potential associations between type 2 diabetes mellitus and obesity and the biomarkers glucagon-like peptide-1, glucose-dependent insulinotropic peptide, monocyte chemoattractant protein-1, and insulin-like growth factor-binding protein-7. Understanding the role of those biomarkers in disease pathogenesis offers hope for improving diagnostics, personalized treatment, and prevention strategies.
Collapse
Affiliation(s)
- Malwina Jędrysik
- Department of Biochemistry and Laboratory Diagnostics, Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland; (M.J.); (E.G.-M.); (B.C.)
| | - Krzysztof Wyszomirski
- Department of Human Physiology and Pathophysiology, Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland;
| | - Anna Różańska-Walędziak
- Department of Human Physiology and Pathophysiology, Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland;
| | - Emilia Grosicka-Maciąg
- Department of Biochemistry and Laboratory Diagnostics, Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland; (M.J.); (E.G.-M.); (B.C.)
| | - Maciej Walędziak
- Department of General, Oncological, Metabolic and Thoracic Surgery, Military Institute of Medicine—National Research Institute, Szaserów 128 St., 04-141 Warsaw, Poland;
| | - Beata Chełstowska
- Department of Biochemistry and Laboratory Diagnostics, Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland; (M.J.); (E.G.-M.); (B.C.)
| |
Collapse
|
9
|
Nery Neto JADO, Yariwake VY, Câmara NOS, Andrade-Oliveira V. Enteroendocrine cells and gut hormones as potential targets in the crossroad of the gut-kidney axis communication. Front Pharmacol 2023; 14:1248757. [PMID: 37927592 PMCID: PMC10620747 DOI: 10.3389/fphar.2023.1248757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/28/2023] [Indexed: 11/07/2023] Open
Abstract
Recent studies suggest that disruptions in intestinal homeostasis, such as changes in gut microbiota composition, infection, and inflammatory-related gut diseases, can be associated with kidney diseases. For instance, genomic investigations highlight how susceptibility genes linked to IgA nephropathy are also correlated with the risk of inflammatory bowel disease. Conversely, investigations demonstrate that the use of short-chain fatty acids, produced through fermentation by intestinal bacteria, protects kidney function in models of acute and chronic kidney diseases. Thus, the dialogue between the gut and kidney seems to be crucial in maintaining their proper function, although the factors governing this crosstalk are still emerging as the field evolves. In recent years, a series of studies have highlighted the significance of enteroendocrine cells (EECs) which are part of the secretory lineage of the gut epithelial cells, as important components in gut-kidney crosstalk. EECs are distributed throughout the epithelial layer and release more than 20 hormones in response to microenvironment stimuli. Interestingly, some of these hormones and/or their pathways such as Glucagon-Like Peptide 1 (GLP-1), GLP-2, gastrin, and somatostatin have been shown to exert renoprotective effects. Therefore, the present review explores the role of EECs and their hormones as regulators of gut-kidney crosstalk and their potential impact on kidney diseases. This comprehensive exploration underscores the substantial contribution of EEC hormones in mediating gut-kidney communication and their promising potential for the treatment of kidney diseases.
Collapse
Affiliation(s)
- José Arimatéa de Oliveira Nery Neto
- Bernardo’s Lab, Center for Natural and Human Sciences, Federal University of ABC, Santo André, Brazil
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Victor Yuji Yariwake
- Bernardo’s Lab, Center for Natural and Human Sciences, Federal University of ABC, Santo André, Brazil
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Niels Olsen Saraiva Câmara
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Vinicius Andrade-Oliveira
- Bernardo’s Lab, Center for Natural and Human Sciences, Federal University of ABC, Santo André, Brazil
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Zhao F, Hang K, Zhou Q, Shao L, Li H, Li W, Lin S, Dai A, Cai X, Liu Y, Xu Y, Feng W, Yang D, Wang MW. Molecular basis of signal transduction mediated by the human GIPR splice variants. Proc Natl Acad Sci U S A 2023; 120:e2306145120. [PMID: 37792509 PMCID: PMC10576055 DOI: 10.1073/pnas.2306145120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 08/07/2023] [Indexed: 10/06/2023] Open
Abstract
Glucose-dependent insulinotropic polypeptide receptor (GIPR) is a potential drug target for metabolic disorders. It works with glucagon-like peptide-1 receptor and glucagon receptor in humans to maintain glucose homeostasis. Unlike the other two receptors, GIPR has at least 13 reported splice variants (SVs), more than half of which have sequence variations at either C or N terminus. To explore their roles in endogenous peptide-mediated GIPR signaling, we determined the cryoelectron microscopy (cryo-EM) structures of the two N terminus-altered SVs (referred as GIPR-202 and GIPR-209 in the Ensembl database, SV1 and SV2 here, respectively) and investigated the outcome of coexpressing each of them in question with GIPR in HEK293T cells with respect to ligand binding, receptor expression, cAMP (adenosine 3,5-cyclic monophosphate) accumulation, β-arrestin recruitment, and cell surface localization. It was found that while both N terminus-altered SVs of GIPR neither bound to the hormone nor elicited signal transduction per se, they suppressed ligand binding and cAMP accumulation of GIPR. Meanwhile, SV1 reduced GIPR-mediated β-arrestin 2 responses. The cryo-EM structures of SV1 and SV2 showed that they reorganized the extracellular halves of transmembrane helices 1, 6, and 7 and extracellular loops 2 and 3 to adopt a ligand-binding pocket-occupied conformation, thereby losing binding ability to the peptide. The results suggest a form of signal bias that is constitutive and ligand-independent, thus expanding our knowledge of biased signaling beyond pharmacological manipulation (i.e., ligand specific) as well as constitutive and ligand-independent (e.g., SV1 of the growth hormone-releasing hormone receptor).
Collapse
Affiliation(s)
- Fenghui Zhao
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
| | - Kaini Hang
- iHuman Institute, ShanghaiTech University, Shanghai201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Qingtong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
- Research Center for Deepsea Bioresources, Sanya, Hainan572025, China
| | - Lijun Shao
- iHuman Institute, ShanghaiTech University, Shanghai201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Hao Li
- Research Center for Deepsea Bioresources, Sanya, Hainan572025, China
| | - Wenzhuo Li
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
| | - Shi Lin
- Research Center for Deepsea Bioresources, Sanya, Hainan572025, China
| | - Antao Dai
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
| | - Xiaoqing Cai
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
| | - Yanyun Liu
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing210023, China
| | - Yingna Xu
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Wenbo Feng
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Dehua Yang
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
- Research Center for Deepsea Bioresources, Sanya, Hainan572025, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing210023, China
| | - Ming-Wei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
- Research Center for Deepsea Bioresources, Sanya, Hainan572025, China
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo113-0033, Japan
- School of Pharmacy, Hainan Medical University, Haikou570228, China
| |
Collapse
|
11
|
Asadi F, Dhanvantari S. Misrouting of glucagon and stathmin-2 towards lysosomal system of α-cells in glucagon hypersecretion of diabetes. Islets 2022; 14:40-57. [PMID: 34923907 PMCID: PMC8726656 DOI: 10.1080/19382014.2021.2011550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Glucagon hypersecretion from the pancreatic α-cell is a characteristic sign of diabetes, which exacerbates fasting hyperglycemia. Thus, targeting glucagon secretion from α-cells may be a promising approach for combating hyperglucagonemia. We have recently identified stathmin-2 as an α-cell protein that regulates glucagon secretion by directing glucagon toward the endolysosomal system in αTC1-6 cells. We hypothesized that disruption of Stmn2-mediated trafficking of glucagon to the endolysosomes in diabetes contributes to hyperglucagonemia. In isolated islets from male mice treated with streptozotocin (STZ), glucagon secretion and cellular content were augmented, but cellular Stmn2 levels were reduced (p < .01), as measured by both ELISA and immunofluorescence intensity. Using confocal immunofluorescence microscopy, the colocalization of glucagon and Stmn2 in Lamp2A+ lysosomes was dramatically reduced (p < .001) in islets from diabetic mice, and the colocalization of Stmn2, but not glucagon, with the late endosome marker, Rab7, significantly (p < .01) increased. Further studies were conducted in αTC1-6 cells cultured in media containing high glucose (16.7 mM) for 2 weeks to mimic glucagon hypersecretion of diabetes. Surprisingly, treatment of αTC1-6 cells with the lysosomal inhibitor bafilomycin A1 reduced K+-induced glucagon secretion, suggesting that high glucose may induce glucagon secretion from another lysosomal compartment. Both glucagon and Stmn2 co-localized with Lamp1, which marks secretory lysosomes, in cells cultured in high glucose. We propose that, in addition to enhanced trafficking and secretion through the regulated secretory pathway, the hyperglucagonemia of diabetes may also be due to re-routing of glucagon from the degradative Lamp2A+ lysosome toward the secretory Lamp1+ lysosome.
Collapse
Affiliation(s)
- Farzad Asadi
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Savita Dhanvantari
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
- Metabolism & Diabetes and Imaging Programs, Lawson Health Research Institute, London, ON, Canada
- CONTACT Savita Dhanvantari Lawson Health Research Institute, PO Box 5777, Stn B, London, ONN6A 4V2, Canada
| |
Collapse
|
12
|
Bertherat J, Bourdeau I, Bouys L, Chasseloup F, Kamenicky P, Lacroix A. Clinical, pathophysiologic, genetic and therapeutic progress in Primary Bilateral Macronodular Adrenal Hyperplasia. Endocr Rev 2022:6957368. [PMID: 36548967 DOI: 10.1210/endrev/bnac034] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/07/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Patients with primary bilateral macronodular adrenal hyperplasia (PBMAH) usually present bilateral benign adrenocortical macronodules at imaging and variable levels of cortisol excess. PBMAH is a rare cause of primary overt Cushing's syndrome, but may represent up to one third of bilateral adrenal incidentalomas with evidence of cortisol excess. The increased steroidogenesis in PBMAH is often regulated by various G-protein coupled receptors aberrantly expressed in PBMAH tissues; some receptor ligands are ectopically produced in PBMAH tissues creating aberrant autocrine/paracrine regulation of steroidogenesis. The bilateral nature of PBMAH and familial aggregation, led to the identification of germline heterozygous inactivating mutations of the ARMC5 gene, in 20-25% of the apparent sporadic cases and more frequently in familial cases; ARMC5 mutations/pathogenic variants can be associated with meningiomas. More recently, combined germline mutations/pathogenic variants and somatic events inactivating the KDM1A gene were specifically identified in patients affected by GIP-dependent PBMAH. Functional studies demonstrated that inactivation of KDM1A leads to GIP-receptor (GIPR) overexpression and over or down-regulation of other GPCRs. Genetic analysis is now available for early detection of family members of index cases with PBMAH carrying identified germline pathogenic variants. Detailed biochemical, imaging, and co-morbidities assessment of the nature and severity of PBMAH is essential for its management. Treatment is reserved for patients with overt or mild cortisol/aldosterone or other steroid excesses taking in account co-morbidities. It previously relied on bilateral adrenalectomy; however recent studies tend to favor unilateral adrenalectomy, or less frequently, medical treatment with cortisol synthesis inhibitors or specific blockers of aberrant GPCR.
Collapse
Affiliation(s)
- Jerôme Bertherat
- Department of Endocrinology and National Reference Center for Rare Adrenal Disorders, Cochin Hospital, Assistance Publique Hôpitaux de Paris, 24 rue du Fg St Jacques, Paris 75014, France
| | - Isabelle Bourdeau
- Division of Endocrinology, Department of Medicine and Research Center, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
| | - Lucas Bouys
- Department of Endocrinology and National Reference Center for Rare Adrenal Disorders, Cochin Hospital, Assistance Publique Hôpitaux de Paris, 24 rue du Fg St Jacques, Paris 75014, France
| | - Fanny Chasseloup
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, Service d'Endocrinologie et des Maladies de la Reproduction, 94276 Le Kremlin-Bicêtre, France
| | - Peter Kamenicky
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, Service d'Endocrinologie et des Maladies de la Reproduction, 94276 Le Kremlin-Bicêtre, France
| | - André Lacroix
- Division of Endocrinology, Department of Medicine and Research Center, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
| |
Collapse
|
13
|
Samuel SM, Varghese E, Kubatka P, Büsselberg D. Tirzepatide-Friend or Foe in Diabetic Cancer Patients? Biomolecules 2022; 12:1580. [PMID: 36358930 PMCID: PMC9687454 DOI: 10.3390/biom12111580] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/12/2022] [Accepted: 10/25/2022] [Indexed: 09/25/2023] Open
Abstract
It is a well-accepted fact that obesity and diabetes increase the risk of incidence of different cancers and their progression, leading to a decrease in the quality of life among affected cancer patients. In addition to decreasing the risk of cancers, maintaining a healthy body mass index (BMI)/body weight and/or blood glucose levels within the normal range critically impacts the response to anti-cancer therapy among affected individuals. A cancer patient managing their body weight and maintaining blood glucose control responds better to anti-cancer therapy than obese individuals and those whose blood glucose levels remain higher than normal during therapeutic intervention. In some cases, anti-diabetic/glucose-lowering drugs, some of which are also used to promote weight loss, were found to possess anti-cancer potential themselves and/or support anti-cancer therapy when used to treat such patients. On the other hand, certain glucose-lowering drugs promoted the cancer phenotype and risked cancer progression when used for treatment. Tirzepatide (TRZD), the glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide/gastric inhibitory peptide (GIP) agonist, has recently gained interest as a promising injectable drug for the treatment of type 2 diabetes and was approved by the FDA after successful clinical trials (SURPASS 1/2/3/4 and 5, NCT03954834, NCT03987919, NCT03882970, NCT03730662, and NCT04039503). In addition, the reports from the SURMOUNT-1 clinical trial (NCT04184622) support the use of TRZD as an anti-obesity drug. In the current review article, we examine the possibility and molecular mechanisms of how TRZD intervention could benefit cancer therapeutics or increase the risk of cancer progression when used as an anti-diabetic drug in diabetic patients.
Collapse
Affiliation(s)
- Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| | - Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| |
Collapse
|
14
|
Franklin ZJ, Lafferty RA, Flatt PR, McShane LM, O'Harte FP, Irwin N. Metabolic effects of combined glucagon receptor antagonism and glucagon-like peptide-1 receptor agonism in high fat fed mice. Biochimie 2022; 199:60-67. [DOI: 10.1016/j.biochi.2022.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 01/19/2023]
|
15
|
Chen T, Sun T, Bian Y, Pei Y, Feng F, Chi H, Li Y, Tang X, Sang S, Du C, Chen Y, Chen Y, Sun H. The Design and Optimization of Monomeric Multitarget Peptides for the Treatment of Multifactorial Diseases. J Med Chem 2022; 65:3685-3705. [DOI: 10.1021/acs.jmedchem.1c01456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tingkai Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Tianyu Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Yaoyao Bian
- College of Acupuncture and Massage, College of Regimen and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| | - Yuqiong Pei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| | - Feng Feng
- Food and Pharmaceutical Research Institute, Jiangsu Food and Pharmaceuticals Science College, Huaian 223003, People’s Republic of China
| | - Heng Chi
- Food and Pharmaceutical Research Institute, Jiangsu Food and Pharmaceuticals Science College, Huaian 223003, People’s Republic of China
| | - Yuan Li
- Department of Pharmaceutical Engineering, Jiangsu Food and Pharmaceuticals Science College, Huaian 223005, People’s Republic of China
| | - Xu Tang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| | - Shenghu Sang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| | - Chenxi Du
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Ying Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| |
Collapse
|
16
|
Nauck MA, Quast DR, Wefers J, Pfeiffer AFH. The evolving story of incretins (GIP and GLP-1) in metabolic and cardiovascular disease: A pathophysiological update. Diabetes Obes Metab 2021; 23 Suppl 3:5-29. [PMID: 34310013 DOI: 10.1111/dom.14496] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 11/27/2022]
Abstract
The incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) have their main physiological role in augmenting insulin secretion after their nutrient-induced secretion from the gut. A functioning entero-insular (gut-endocrine pancreas) axis is essential for the maintenance of a normal glucose tolerance. This is exemplified by the incretin effect (greater insulin secretory response to oral as compared to "isoglycaemic" intravenous glucose administration due to the secretion and action of incretin hormones). GIP and GLP-1 have additive effects on insulin secretion. Local production of GIP and/or GLP-1 in islet α-cells (instead of enteroendocrine K and L cells) has been observed, and its significance is still unclear. GLP-1 suppresses, and GIP increases glucagon secretion, both in a glucose-dependent manner. GIP plays a greater physiological role as an incretin. In type 2-diabetic patients, the incretin effect is reduced despite more or less normal secretion of GIP and GLP-1. While insulinotropic effects of GLP-1 are only slightly impaired in type 2 diabetes, GIP has lost much of its acute insulinotropic activity in type 2 diabetes, for largely unknown reasons. Besides their role in glucose homoeostasis, the incretin hormones GIP and GLP-1 have additional biological functions: GLP-1 at pharmacological concentrations reduces appetite, food intake, and-in the long run-body weight, and a similar role is evolving for GIP, at least in animal studies. Human studies, however, do not confirm these findings. GIP, but not GLP-1 increases triglyceride storage in white adipose tissue not only through stimulating insulin secretion, but also by interacting with regional blood vessels and GIP receptors. GIP, and to a lesser degree GLP-1, play a role in bone remodelling. GLP-1, but not GIP slows gastric emptying, which reduces post-meal glycaemic increments. For both GIP and GLP-1, beneficial effects on cardiovascular complications and neurodegenerative central nervous system (CNS) disorders have been observed, pointing to therapeutic potential over and above improving diabetes complications. The recent finding that GIP/GLP-1 receptor co-agonists like tirzepatide have superior efficacy compared to selective GLP-1 receptor agonists with respect to glycaemic control as well as body weight has renewed interest in GIP, which previously was thought to be without any therapeutic potential. One focus of this research is into the long-term interaction of GIP and GLP-1 receptor signalling. A GLP-1 receptor antagonist (exendin [9-39]) and, more recently, a GIP receptor agonist (GIP [3-30] NH2 ) and, hopefully, longer-acting GIP receptor agonists for human use will be helpful tools to shed light on the open questions. A detailed knowledge of incretin physiology and pathophysiology will be a prerequisite for designing more effective incretin-based diabetes drugs.
Collapse
Affiliation(s)
- Michael A Nauck
- Diabetes Division, Katholisches Klinikum Bochum, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Daniel R Quast
- Diabetes Division, Katholisches Klinikum Bochum, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Jakob Wefers
- Diabetes Division, Katholisches Klinikum Bochum, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Andreas F H Pfeiffer
- Charité - Universitätsmedizin Berlin, Klinik für Endokrinologie, Stoffwechsel- und Ernährungsmedizin, Berlin, Germany
| |
Collapse
|
17
|
Samms RJ, Sloop KW, Gribble FM, Reimann F, Adriaenssens AE. GIPR Function in the Central Nervous System: Implications and Novel Perspectives for GIP-Based Therapies in Treating Metabolic Disorders. Diabetes 2021; 70:1938-1944. [PMID: 34176786 PMCID: PMC8576420 DOI: 10.2337/dbi21-0002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/21/2021] [Indexed: 11/17/2022]
Abstract
During the past decade, pharmaceutical engineering of unimolecular agents has revealed the therapeutic potential of glucose-dependent insulinotropic polypeptide receptor (GIPR) agonism. From this work, one of the most intriguing findings is that engagement of GIPR enhances the weight loss profile of glucagon-like peptide 1 (GLP-1)-based therapeutics. Consequently, this pharmacological approach, in combination with novel Gipr mouse models, has provided evidence indicating that activation of GIPR in certain areas of the brain that regulate energy balance is required for the synergistic weight loss of dual GIPR and GLP-1 receptor (GLP-1R) agonism. This has led to significant interest in understanding how GIPR activity in the brain functions to reduce caloric intake, induce negative energy balance, and drive weight loss. Herein, we review key findings in this field and provide a novel perspective explaining how GIP may act in the brain to affect energy balance both alone and in concert with GLP-1R agonism.
Collapse
Affiliation(s)
- Ricardo J Samms
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Kyle W Sloop
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Fiona M Gribble
- Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, U.K
| | - Frank Reimann
- Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, U.K
| | - Alice E Adriaenssens
- Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, U.K.
| |
Collapse
|
18
|
Borg MJ, Xie C, Rayner CK, Horowitz M, Jones KL, Wu T. Potential for Gut Peptide-Based Therapy in Postprandial Hypotension. Nutrients 2021; 13:nu13082826. [PMID: 34444986 PMCID: PMC8399874 DOI: 10.3390/nu13082826] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/06/2021] [Accepted: 08/14/2021] [Indexed: 02/07/2023] Open
Abstract
Postprandial hypotension (PPH) is an important and under-recognised disorder resulting from inadequate compensatory cardiovascular responses to meal-induced splanchnic blood pooling. Current approaches to management are suboptimal. Recent studies have established that the cardiovascular response to a meal is modulated profoundly by gastrointestinal factors, including the type and caloric content of ingested meals, rate of gastric emptying, and small intestinal transit and absorption of nutrients. The small intestine represents the major site of nutrient-gut interactions and associated neurohormonal responses, including secretion of glucagon-like peptide-1, glucose-dependent insulinotropic peptide and somatostatin, which exert pleotropic actions relevant to the postprandial haemodynamic profile. This review summarises knowledge relating to the role of these gut peptides in the cardiovascular response to a meal and their potential application to the management of PPH.
Collapse
Affiliation(s)
- Malcolm J. Borg
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia; (M.J.B.); (C.X.); (C.K.R.); (M.H.); (K.L.J.)
| | - Cong Xie
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia; (M.J.B.); (C.X.); (C.K.R.); (M.H.); (K.L.J.)
| | - Christopher K. Rayner
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia; (M.J.B.); (C.X.); (C.K.R.); (M.H.); (K.L.J.)
| | - Michael Horowitz
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia; (M.J.B.); (C.X.); (C.K.R.); (M.H.); (K.L.J.)
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5000, Australia
| | - Karen L. Jones
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia; (M.J.B.); (C.X.); (C.K.R.); (M.H.); (K.L.J.)
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5000, Australia
| | - Tongzhi Wu
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia; (M.J.B.); (C.X.); (C.K.R.); (M.H.); (K.L.J.)
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5000, Australia
- Correspondence: ; Tel.: +61-8-8313-6535
| |
Collapse
|
19
|
Samms RJ, Christe ME, Collins KA, Pirro V, Droz BA, Holland AK, Friedrich JL, Wojnicki S, Konkol DL, Cosgrove R, Furber EPC, Ruan X, O'Farrell LS, Long AM, Dogra M, Willency JA, Lin Y, Ding L, Cheng CC, Cabrera O, Briere DA, Alsina-Fernandez J, Gimeno RE, Moyers JS, Coskun T, Coghlan MP, Sloop KW, Roell WC. GIPR agonism mediates weight-independent insulin sensitization by tirzepatide in obese mice. J Clin Invest 2021; 131:146353. [PMID: 34003802 DOI: 10.1172/jci146353] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 05/05/2021] [Indexed: 01/01/2023] Open
Abstract
Tirzepatide (LY3298176), a dual GIP and GLP-1 receptor (GLP-1R) agonist, delivered superior glycemic control and weight loss compared with GLP-1R agonism in patients with type 2 diabetes. However, the mechanism by which tirzepatide improves efficacy and how GIP receptor (GIPR) agonism contributes is not fully understood. Here, we show that tirzepatide is an effective insulin sensitizer, improving insulin sensitivity in obese mice to a greater extent than GLP-1R agonism. To determine whether GIPR agonism contributes, we compared the effect of tirzepatide in obese WT and Glp-1r-null mice. In the absence of GLP-1R-induced weight loss, tirzepatide improved insulin sensitivity by enhancing glucose disposal in white adipose tissue (WAT). In support of this, a long-acting GIPR agonist (LAGIPRA) was found to enhance insulin sensitivity by augmenting glucose disposal in WAT. Interestingly, the effect of tirzepatide and LAGIPRA on insulin sensitivity was associated with reduced branched-chain amino acids (BCAAs) and ketoacids in the circulation. Insulin sensitization was associated with upregulation of genes associated with the catabolism of glucose, lipid, and BCAAs in brown adipose tissue. Together, our studies show that tirzepatide improved insulin sensitivity in a weight-dependent and -independent manner. These results highlight how GIPR agonism contributes to the therapeutic profile of dual-receptor agonism, offering mechanistic insights into the clinical efficacy of tirzepatide.
Collapse
|
20
|
Cabri W, Cantelmi P, Corbisiero D, Fantoni T, Ferrazzano L, Martelli G, Mattellone A, Tolomelli A. Therapeutic Peptides Targeting PPI in Clinical Development: Overview, Mechanism of Action and Perspectives. Front Mol Biosci 2021; 8:697586. [PMID: 34195230 PMCID: PMC8236712 DOI: 10.3389/fmolb.2021.697586] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/01/2021] [Indexed: 12/14/2022] Open
Abstract
Targeting protein-protein interactions (PPIs) has been recently recognized as an emerging therapeutic approach for several diseases. Up today, more than half a million PPI dysregulations have been found to be involved in pathological events. The dynamic nature of these processes and the involvement of large protein surfaces discouraged anyway the scientific community in considering them promising therapeutic targets. More recently peptide drugs received renewed attention since drug discovery has offered a broad range of structural diverse sequences, moving from traditionally endogenous peptides to sequences possessing improved pharmaceutical profiles. About 70 peptides are currently on the marked but several others are in clinical development. In this review we want to report the update on these novel APIs, focusing our attention on the molecules in clinical development, representing the direct consequence of the drug discovery process of the last 10 years. The comprehensive collection will be classified in function of the structural characteristics (native, analogous, heterologous) and on the basis of the therapeutic targets. The mechanism of interference on PPI will also be reported to offer useful information for novel peptide design.
Collapse
Affiliation(s)
- Walter Cabri
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | - Alessandra Tolomelli
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
21
|
Trifonova EA, Popovich AA, Makeeva OA, Minaycheva LI, Bocharova AV, Vagaitseva KV, Stepanov VA. Replicative Association Analysis of Genetic Markers of Obesity in the Russian Population. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421050136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
22
|
Montégut L, Lopez-Otin C, Magnan C, Kroemer G. Old Paradoxes and New Opportunities for Appetite Control in Obesity. Trends Endocrinol Metab 2021; 32:264-294. [PMID: 33707095 DOI: 10.1016/j.tem.2021.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/13/2022]
Abstract
Human obesity is accompanied by alterations in the blood concentrations of multiple circulating appetite regulators. Paradoxically, most of the appetite-inhibitory hormones are elevated in nonsyndromic obesity, while most of the appetite stimulatory hormones are reduced, perhaps reflecting vain attempts of regulation by inefficient feedback circuitries. In this context, it is important to understand which appetite regulators exhibit a convergent rather than paradoxical behavior and hence are likely to contribute to the maintenance of the obese state. Pharmacological interventions in obesity should preferentially consist of the supplementation of deficient appetite inhibitors or the neutralization of excessive appetite stimulators. Here, we critically analyze the current literature on appetite-regulatory peptide hormones. We propose a short-list of appetite modulators that may constitute the best candidates for therapeutic interventions.
Collapse
Affiliation(s)
- Léa Montégut
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Carlos Lopez-Otin
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006, Oviedo, Spain
| | | | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France; Unité de Biologie Fonctionnelle et Adaptative, Sorbonne Paris Cité, CNRS UMR8251, Université Paris Diderot, Paris, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-, HP, Paris, France; Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
23
|
Temporal Effects of Sleeve Gastrectomy on Glucose-Insulin Homeostasis and Incretin Hormone Response at 1 and 6 Months. Obes Surg 2021; 30:2243-2250. [PMID: 32067166 PMCID: PMC7475060 DOI: 10.1007/s11695-020-04457-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Bariatric surgery is an effective treatment for morbid obesity and glycaemic dysfunction. OBJECTIVES The aim of the work was to examine both the static and dynamic changes of glucose-insulin homeostasis and incretin hormone response following sleeve gastrectomy (SG) in a sample of 55 participants preoperatively and 1 month and 6 months postoperatively. The focus was on a sample of patients with impaired glucose tolerance and type 2 diabetes (T2D). SETTING Morriston Hospital, UK. METHODS Prospective study comprising of 55 participants with impaired glucose homeostasis and T2D undergoing SG (mean body mass index [BMI] 50.4 kg/m2, mean glycated haemoglobin [A1C] 7.4%). Serial measurements of glucose, insulin, C-peptide, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic hormone (GIP) were performed during oral glucose tolerance testing preoperatively and 1 and 6 months postoperatively. Areas under the curve (AUC) were examined at 30, 60, and 120 min. RESULTS We observed significant improvements in measures of obesity, as well as static and dynamic measures of glucose, insulin, C-peptide and HOMA. Furthermore, significant increases in GLP-1 response as early as 6 months postoperatively were also seen. CONCLUSIONS To our knowledge, no study has examined the detailed dynamic changes in glucose and insulin homeostasis in this number of participants undergoing SG in relation to incretin hormones GIP and GLP-1. This current study supports the role of SG for the treatment of obesity-related glucose dysregulation.
Collapse
|
24
|
West JA, Tsakmaki A, Ghosh SS, Parkes DG, Grønlund RV, Pedersen PJ, Maggs D, Rajagopalan H, Bewick GA. Chronic peptide-based GIP receptor inhibition exhibits modest glucose metabolic changes in mice when administered either alone or combined with GLP-1 agonism. PLoS One 2021; 16:e0249239. [PMID: 33788878 PMCID: PMC8011784 DOI: 10.1371/journal.pone.0249239] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/13/2021] [Indexed: 12/04/2022] Open
Abstract
Combinatorial gut hormone therapy is one of the more promising strategies for identifying improved treatments for metabolic disease. Many approaches combine the established benefits of glucagon-like peptide-1 (GLP-1) agonism with one or more additional molecules with the aim of improving metabolic outcomes. Recent attention has been drawn to the glucose-dependent insulinotropic polypeptide (GIP) system due to compelling pre-clinical evidence describing the metabolic benefits of antagonising the GIP receptor (GIPR). We rationalised that benefit might be accrued from combining GIPR antagonism with GLP-1 agonism. Two GIPR peptide antagonists, GIPA-1 (mouse GIP(3–30)NH2) and GIPA-2 (NαAc-K10[γEγE-C16]-Arg18-hGIP(5–42)), were pharmacologically characterised and both exhibited potent antagonist properties. Acute in vivo administration of GIPA-1 during an oral glucose tolerance test (OGTT) had negligible effects on glucose tolerance and insulin in lean mice. In contrast, GIPA-2 impaired glucose tolerance and attenuated circulating insulin levels. A mouse model of diet-induced obesity (DIO) was used to investigate the potential metabolic benefits of chronic dosing of each antagonist, alone or in combination with liraglutide. Chronic administration studies showed expected effects of liraglutide, lowering food intake, body weight, fasting blood glucose and plasma insulin concentrations while improving glucose sensitivity, whereas delivery of either GIPR antagonist alone had negligible effects on these parameters. Interestingly, chronic dual therapy augmented insulin sensitizing effects and lowered plasma triglycerides and free-fatty acids, with more notable effects observed with GIPA-1 compared to GIPA-2. Thus, the co-administration of both a GIPR antagonist with a GLP1 agonist uncovers interesting beneficial effects on measures of insulin sensitivity, circulating lipids and certain adipose stores that seem influenced by the degree or nature of GIP receptor antagonism.
Collapse
Affiliation(s)
- Jason A. West
- Fractyl Laboratories Inc, Lexington, MA, United States of America
| | - Anastasia Tsakmaki
- Diabetes Research Group, School of Life Course Sciences, Faculty of Life Science and Medicine, King’s College London, London, England, United Kingdom
| | | | | | | | | | - David Maggs
- Fractyl Laboratories Inc, Lexington, MA, United States of America
| | | | - Gavin A. Bewick
- Diabetes Research Group, School of Life Course Sciences, Faculty of Life Science and Medicine, King’s College London, London, England, United Kingdom
- * E-mail:
| |
Collapse
|
25
|
Campbell JE. Targeting the GIPR for obesity: To agonize or antagonize? Potential mechanisms. Mol Metab 2020; 46:101139. [PMID: 33290902 PMCID: PMC8085569 DOI: 10.1016/j.molmet.2020.101139] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/24/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Glucose-dependent insulinotropic peptide (GIP) is one of two incretin hormones that communicate nutrient intake with systemic metabolism. Although GIP was the first incretin hormone to be discovered, the understanding of GIP's biology was quickly outpaced by research focusing on the other incretin hormone, glucagon-like peptide 1 (GLP-1). Early work on GIP produced the theory that GIP is obesogenic, limiting interest in developing GIPR agonists to treat type 2 diabetes. A resurgence of GIP research has occurred in the last five years, reinvigorating interest in this peptide. Two independent approaches have emerged for treating obesity, one promoting GIPR agonism and the other antagonism. In this report, evidence supporting both cases is discussed and hypotheses are presented to reconcile this apparent paradox. SCOPE OF THE REVIEW This review presents evidence to support targeting GIPR to reduce obesity. Most of the focus is on the effect of singly targeting the GIPR using both a gain- and loss-of-function approach, with additional sections that discuss co-targeting of the GIPR and GLP-1R. MAJOR CONCLUSIONS There is substantial evidence to support that GIPR agonism and antagonism can positively impact body weight. The long-standing theory that GIP drives weight gain is exclusively derived from loss-of-function studies, with no evidence to support that GIPR agonisms increases adiposity or body weight. There is insufficient evidence to reconcile the paradoxical observations that both GIPR agonism and antagonism can reduce body weight; however, two independent hypotheses centered on GIPR antagonism are presented based on new data in an effort to address this question. The first discusses the compensatory relationship between incretin receptors and how antagonism of the GIPR may enhance GLP-1R activity. The second discusses how chronic GIPR agonism may produce desensitization and ultimately loss of GIPR activity that mimics antagonism. Overall, it is clear that a deeper understanding of GIP biology is required to understand how modulating this system impacts metabolic homeostasis.
Collapse
Affiliation(s)
- Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA; Department of Medicine, Division of Endocrinology, Duke University, Durham, NC, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
26
|
Neurochemical regulators of food behavior for pharmacological treatment of obesity: current status and future prospects. Future Med Chem 2020; 12:1865-1884. [PMID: 33040605 DOI: 10.4155/fmc-2019-0361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In recent decades, obesity has become a pandemic disease and appears to be an ultimate medical and social problem. Existing antiobesity drugs show low efficiency and a wide variety of side effects. In this review, we discuss possible mechanisms underlying brain-gut-adipose tissue axis, as well as molecular biochemical characteristics of various neurochemical regulators of body weight and appetite. Multiple brain regions are responsible for eating behavior, hedonic eating and food addiction. The existing pharmacological targets for treatment of obesity were reviewed as well.
Collapse
|
27
|
Gabe MBN, van der Velden WJC, Gadgaard S, Smit FX, Hartmann B, Bräuner‐Osborne H, Rosenkilde MM. Enhanced agonist residence time, internalization rate and signalling of the GIP receptor variant [E354Q] facilitate receptor desensitization and long-term impairment of the GIP system. Basic Clin Pharmacol Toxicol 2020; 126 Suppl 6:122-132. [PMID: 31299132 PMCID: PMC7317972 DOI: 10.1111/bcpt.13289] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/03/2019] [Indexed: 12/21/2022]
Abstract
In patients with type 2 diabetes mellitus (T2DM), the insulinotropic action of the GIP system is desensitized, whereas this is not the case for the GLP-1 system. This has raised an interesting discussion of whether GIP agonists or antagonists are most suitable for future treatment of T2DM together with GLP-1-based therapies. Homozygous carriers of the GIP receptor (GIPR) variant, [E354Q], display lower bone mineral density, increased bone fracture risk and slightly increased blood glucose. Here, we present an in-depth molecular pharmacological phenotyping of GIPR-[E354Q]. In silico modelling suggested similar interaction of the endogenous agonist GIP(1-42) to [E354Q] as to GIPR wt. This was supported by homologous competition binding in COS-7 cells revealing GIPR wt-like affinities of GIP(1-42) with Kd values of ~2 nmol/L and wt-like agonist association rates (Kon ). In contrast, the dissociation rates (Koff ) were slower, resulting in 25% higher agonist residence time for GIPR-[E354Q]. Moreover, in Gαs signalling (cAMP production) GIP(1-42) was ~2-fold more potent and more efficacious on GIPR-[E354Q] compared to wt with 17.5% higher basal activity. No difference from GIPR wt was found in the recruitment of β-arrestin 2, whereas the agonist-induced internalization rate was 2.1- to 2.3-fold faster for [E354Q]. Together with the previously described impaired recycling of [E354Q], our findings with enhanced signalling and internalization rate possibly explained by an altered ligand-binding kinetics will lead to receptor desensitization and down-regulation. This could explain the long-term functional impairment of the GIP system in bone metabolism and blood sugar maintenance for [E354Q] carriers and may shed light on the desensitization of the insulinotropic action of GIP in patients with T2DM.
Collapse
Affiliation(s)
- Maria Buur Nordskov Gabe
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Wijnand J. C. van der Velden
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Sarina Gadgaard
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Florent Xavier Smit
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Novo Nordisk Foundation Center for Basic Metabolic ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Hans Bräuner‐Osborne
- Department of Drug Design and Pharmacology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Mette Marie Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
28
|
Pharmacological characterization of mono-, dual- and tri-peptidic agonists at GIP and GLP-1 receptors. Biochem Pharmacol 2020; 177:114001. [PMID: 32360365 DOI: 10.1016/j.bcp.2020.114001] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022]
Abstract
Glucose-dependent insulinotropic peptide (GIP) is an incretin hormone with physiological roles in adipose tissue, the central nervous system and bone metabolism. While selective ligands for GIP receptor (GIPR) have not been advanced for disease treatment, dual and triple agonists of GIPR, in conjunction with that of glucagon-like peptide-1 (GLP-1) and glucagon receptors, are currently in clinical trials, with an expectation of enhanced efficacy beyond that of GLP-1 receptor (GLP-1R) agonist monotherapy for diabetic patients. Consequently, it is important to understand the pharmacological behavior of such drugs. In this study, we have explored signaling pathway specificity and the potential for biased agonism of mono-, dual- and tri-agonists of GIPR using human embryonic kidney 293 (HEK293) cells recombinantly expressing human GIPR or GLP-1R. Compared to GIP(1-42), the GIPR mono-agonists Pro3GIP and Lys3GIP are biased towards ERK1/2 phosphorylation (pERK1/2) relative to cAMP accumulation at GIPR, whereas the triple agonist at GLP-1R/GCGR/GIPR is biased towards pERK1/2 relative to β-arrestin2 recruitment. Moreover, the dual GIPR/GLP-1R agonist, LY3298176, is biased towards pERK1/2 relative to cAMP accumulation at both GIPR and GLP-1R compared to their respective endogenous ligands. These data reveal novel pharmacological properties of potential therapeutic agents that may impact on diversity in clinical responses.
Collapse
|
29
|
|
30
|
El K, Campbell JE. The role of GIP in α-cells and glucagon secretion. Peptides 2020; 125:170213. [PMID: 31785304 PMCID: PMC7580028 DOI: 10.1016/j.peptides.2019.170213] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) is an intestinally derived peptide that is secreted in response to feeding. The GIP receptor (GIPR) is expressed in many cell types involved in the regulation of metabolism, including α- and β-cells. Glucagon and insulin exert tremendous control over glucose metabolism. Thus, GIP action in islets strongly dictates metabolic control in the postprandial state. Loss of GIPR activity in β-cells is a characteristic of type 2 diabetes (T2D) which associates with reduced postprandial insulin secretion and hyperglycemia. Less is known about GIPR activity in α-cells or the control of glucagon secretion. GIP stimulates glucagon secretion in a glucose-dependent manner in healthy people, with enhanced activity at lower glycemia. However, GIP stimulates glucagon secretion even at hyperglycemia in people with T2D, suggesting that inappropriate GIPR activity in α-cells contributes to the pathogenesis of T2D. Here, we review the literature describing GIP action and GIPR activity in the α-cell, detailing the basic science that has shaped the view of how GIP regulates glucagon secretion. We also contrast the effects of GIP on glucagon secretion in healthy and T2D people. Finally, we contextualize these observations in light of recent work that redefines the role of glucagon in glucose homeostasis, suggesting that hyperglucagonemia per se does not drive hyperglycemia. As new medications for T2D that incorporate GIPR activity are being developed, it is clear that a better understanding of GIPR activity beyond the β-cell is necessary. This work highlights the importance of focusing on the GIPR in α-cells.
Collapse
Affiliation(s)
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, USA; Department of Medicine, Division of Endocrinology, Duke University, Durham, NC, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
31
|
Thondam SK, Cuthbertson DJ, Wilding JPH. The influence of Glucose-dependent Insulinotropic Polypeptide (GIP) on human adipose tissue and fat metabolism: Implications for obesity, type 2 diabetes and Non-Alcoholic Fatty Liver Disease (NAFLD). Peptides 2020; 125:170208. [PMID: 31759125 DOI: 10.1016/j.peptides.2019.170208] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 12/25/2022]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) and glucagon like peptide (GLP-1) are the two incretin hormones secreted by the enteroendocrine system in response to nutrient ingestion. Compared with GLP-1, GIP is less well studied as a hormone or as a potential pharmacological treatment. Beyond its insulinotropic effects in the pancreas, GIP has important biological actions in many other tissues but its role in dietary fat metabolism and lipid storage in adipose tissue has been most studied. It is still unclear if such effects of GIP on adipose tissue/fat metabolism are protective or deleterious in the long term. Antagonising GIP actions through genetic and chemical disruption in mice models prevented diet induced obesity and improved insulin sensitivity. Whilst such effects of GIP antagonism are yet to be evaluated in humans, recent studies using combined GIP and GLP-1 agonists have shown weight reduction and improved glycaemic control in people with type 2 diabetes (T2D). Therapeutic manipulation of GIP physiology is intriguing in that both agonists and antagonists of GIP are being investigated to explore their potential weight-reducing and other metabolic benefits in people with obesity, T2D and non-alcoholic fatty liver disease (NAFLD). This review will discuss the physiological effects of GIP on fat metabolism in human adipose and other non-adipose tissues such as liver, pancreas, skeletal muscle and heart, describe where the actions of GIP may contribute to the pathophysiology of obesity, T2D and NAFLD and finally describe the therapeutic implications of GIP antagonism and agonism in these conditions.
Collapse
Affiliation(s)
- Sravan K Thondam
- Department of Diabetes and Endocrinology, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Daniel J Cuthbertson
- Department of Diabetes and Endocrinology, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom; Obesity and Endocrinology Research Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - John P H Wilding
- Department of Diabetes and Endocrinology, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom; Obesity and Endocrinology Research Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom.
| |
Collapse
|
32
|
Irwin N, Gault VA, O'Harte FPM, Flatt PR. Blockade of gastric inhibitory polypeptide (GIP) action as a novel means of countering insulin resistance in the treatment of obesity-diabetes. Peptides 2020; 125:170203. [PMID: 31733230 DOI: 10.1016/j.peptides.2019.170203] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/21/2019] [Accepted: 11/12/2019] [Indexed: 12/15/2022]
Abstract
Gastric inhibitory polypeptide (GIP) is a 42 amino acid hormone secreted from intestinal K-cells in response to nutrient ingestion. Despite a recognised physiological role for GIP as an insulin secretagogue to control postprandial blood glucose levels, growing evidence reveals important actions of GIP on adipocytes and promotion of fat deposition in tissues. As such, blockade of GIP receptor (GIPR) action has been proposed as a means to counter insulin resistance, and improve metabolic status in obesity and related diabetes. In agreement with this, numerous independent observations in animal models support important therapeutic applications of GIPR antagonists in obesity-diabetes. Sustained administration of peptide-based GIPR inhibitors, low molecular weight GIPR antagonists, GIPR neutralising antibodies as well as genetic knockout of GIPR's or vaccination against GIP all demonstrate amelioration of insulin resistance and reduced body weight gain in response to high fat feeding. These observations were consistently associated with decreased accumulation of lipids in peripheral tissues, thereby alleviating insulin resistance. Although the impact of prolonged GIPR inhibition on bone turnover still needs to be determined, evidence to date indicates that GIPR antagonists represent an exciting novel treatment option for obesity-diabetes.
Collapse
Affiliation(s)
- Nigel Irwin
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, UK.
| | - Victor A Gault
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, UK
| | - Finbarr P M O'Harte
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, UK
| | - Peter R Flatt
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, UK
| |
Collapse
|
33
|
Knerr PJ, Mowery SA, Finan B, Perez-Tilve D, Tschöp MH, DiMarchi RD. Selection and progression of unimolecular agonists at the GIP, GLP-1, and glucagon receptors as drug candidates. Peptides 2020; 125:170225. [PMID: 31786282 DOI: 10.1016/j.peptides.2019.170225] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023]
Abstract
The continued global growth in the prevalence of obesity coupled with the limited number of efficacious and safe treatment options elevates the importance of innovative pharmaceutical approaches. Combinatorial strategies that harness the metabolic benefits of multiple hormonal mechanisms have emerged at the preclinical and more recently clinical stages of drug development. A priority has been anti-obesity unimolecular peptides that function as balanced, high potency poly-agonists at two or all the cellular receptors for the endocrine hormones glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and glucagon. This report reviews recent progress in this area, with emphasis on what the initial clinical results demonstrate and what remains to be addressed.
Collapse
Affiliation(s)
- Patrick J Knerr
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | | | - Brian Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - Diego Perez-Tilve
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Garching, Germany
| | - Richard D DiMarchi
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA; Department of Chemistry, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
34
|
Ahrén B, Yamada Y, Seino Y. Islet adaptation in GIP receptor knockout mice. Peptides 2020; 125:170152. [PMID: 31522751 DOI: 10.1016/j.peptides.2019.170152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/01/2019] [Accepted: 09/02/2019] [Indexed: 12/27/2022]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) receptor knockout (KO) mice are tools for studying GIP physiology. Previous results have demonstrated that these mice have impaired insulin response to oral glucose. In this study, we examined the insulin response to intravenous glucose by measuring glucose, insulin and C-peptide after intravenous glucose (0.35 g/kg) in 5-h fasted female GIP receptor KO mice and their wild-type (WT) littermates. The 1 min insulin and C-peptide responses to intravenous glucose were significantly enhanced in GIP receptor KO mice (n = 26) compared to WT mice (n = 30) as was beta cell function (area under the 50 min C-peptide curve divided by area under the 50 min curve for glucose) (P = 0.001). Beta cell function after intravenous glucose was also enhanced in GIP receptor KO mice in the presence of the glucagon-like peptide-1 receptor antagonist exendin 9 (30 nmol/kg; P = 0.007), the muscarinic antagonist atropine (5 mg/kg; P = 0.007) and the combination of the alpha-adrenoceptor antagonist yohimbine (1.4 mg/kg) and the beta-adrenoceptor antagonist propranolol (2.5 mg/kg; P = 0.042). Analysis of the regression between fasting glucose (6.8 ± 0.1 mmol/l in GIP receptor KO mice and 7.5 ± 0.2 mmol/l in WT mice, P = 0.003) and the 1 min C-peptide response to intravenous glucose showed a negative linear regression between these variables in both WT (n = 60; r = -0.425, P = 0.001) and GIP receptor KO mice (n = 56; r = -0.474, P < 0.001). We conclude that there is a beta cell adaptation in GIP receptor KO mice resulting in enhanced insulin secretion after intravenous glucose to which slight long-term reduction in circulating glucose in these mice may contribute.
Collapse
Affiliation(s)
- Bo Ahrén
- Department of Clinical Sciences Lund, Lund university, Lund, Sweden.
| | - Yuchiro Yamada
- Department of Endocrinology, Diabetes and Geriatric Medicine, Graduate School of Medicine, Akita University, Akita, Japan
| | | |
Collapse
|
35
|
Gabe MBN, van der Velden WJC, Smit FX, Gasbjerg LS, Rosenkilde MM. Molecular interactions of full-length and truncated GIP peptides with the GIP receptor - A comprehensive review. Peptides 2020; 125:170224. [PMID: 31809770 DOI: 10.1016/j.peptides.2019.170224] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 12/17/2022]
Abstract
Enzymatic cleavage of endogenous peptides is a commonly used principle to initiate, modulate and terminate action for instance among cytokines and peptide hormones. The incretin hormones, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), and the related hormone glucagon-like peptide-2 (GLP-2) are all rapidly N-terminally truncated with severe loss of intrinsic activity. The most abundant circulating form of full length GIP(1-42) is GIP(3-42) (a dipeptidyl peptidase-4 (DPP-4) product). GIP(1-30)NH2 is another active form resulting from prohormone convertase 2 (PC2) cleavage of proGIP. Like GIP(1-42), GIP(1-30)NH2 is a substrate for DPP-4 generating GIP(3-30)NH2 which, compared to GIP(3-42), binds with higher affinity and very efficiently inhibits GIP receptor (GIPR) activity with no intrinsic activity. Here, we review the action of these four and multiple other N- and C-terminally truncated forms of GIP with an emphasis on molecular pharmacology, i.e. ligand binding, subsequent receptor activation and desensitization. Our overall conclusion is that the N-terminus is essential for receptor activation as GIP N-terminal truncation leads to decreased/lost intrinsic activity and antagonism (similar to GLP-1 and GLP-2), whereas the C-terminal extension of GIP(1-42), as compared to GLP-1, GLP-2 and glucagon (29-33 amino acids), has no apparent impact on the GIPR in vitro, but may play a role for other properties such as stability and tissue distribution. A deeper understanding of the molecular interaction of naturally occurring and designed GIP-based peptides, and their impact in vivo, may contribute to a future therapeutic targeting of the GIP system - either with agonists or with antagonists, or both.
Collapse
Affiliation(s)
- Maria Buur Nordskov Gabe
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Wijnand J C van der Velden
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Florent Xavier Smit
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Lærke Smidt Gasbjerg
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Mette Marie Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
36
|
Hasib A. Multiagonist Unimolecular Peptides for Obesity and Type 2 Diabetes: Current Advances and Future Directions. CLINICAL MEDICINE INSIGHTS-ENDOCRINOLOGY AND DIABETES 2020; 13:1179551420905844. [PMID: 32110131 PMCID: PMC7025423 DOI: 10.1177/1179551420905844] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 01/16/2020] [Indexed: 12/18/2022]
Abstract
The ever-increasing prevalence of obesity and Type 2 diabetes has necessitated the development of newer and more effective approaches for achieving efficient glycemic control and weight loss. Conventional treatment methods often result in weight gain, further deteriorating the already impaired metabolic control in people with obesity/Type 2 diabetes. Alleviation of obesity and diabetes achieved after bariatric surgeries highlight the therapeutic importance of gut-brain axis and entails development of more patient-friendly approaches replicating the positive metabolic effects of bariatric surgery. Given the potential involvement of several gut hormones in the success of bariatric surgery, the therapeutic importance of synergistic interaction between these hormones for improved metabolism cannot be ignored. Many unimolecular multiagonist peptides are in preclinical and clinical trials as they maximize the combinatorial metabolic efficacy by concurrent activation of multiple gut hormone receptors. This review summarizes the ongoing developments of multiagonist peptides as novel therapeutic approaches against obesity-diabetes.
Collapse
Affiliation(s)
- Annie Hasib
- Division of Systems Medicine, School of Medicine, University of Dundee, Dundee, UK
| |
Collapse
|
37
|
Rosas-Pérez AM, Honma K, Goda T. Sustained effects of resistant starch on the expression of genes related to carbohydrate digestion/absorption in the small intestine. Int J Food Sci Nutr 2020; 71:572-580. [PMID: 31976784 DOI: 10.1080/09637486.2019.1711362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Resistant starch (RS) consumption has beneficial effects on health, such as reduced postprandial blood glucose levels. In this study, we evaluated the effect of a 14-day diet containing RS on α-glucosidase activity and the expression of genes related to carbohydrate digestion/absorption in rats. We examined whether the effects of RS persist when the rats were shifted to a control diet. The results suggest that RS consumption reduces α-glucosidase activity and Mgam, Si and Sglt1 mRNA levels in the proximal jejunum. In addition, RS consumption appeared to influence the serum GIP level, up to 2 days after the animals were shifted to a control diet. To our knowledge, this is the first report that RS has a sustained effect on gut hormone expression and the expression of genes related to carbohydrate digestion/absorption in the proximal jejunum.
Collapse
Affiliation(s)
- Aratza M Rosas-Pérez
- Laboratory of Nutritional Physiology, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kazue Honma
- Laboratory of Nutritional Physiology, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Toshinao Goda
- Laboratory of Nutritional Physiology, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
38
|
Zhang D, Ma M, Liu Y. Protective Effects of Incretin Against Age-Related Diseases. Curr Drug Deliv 2019; 16:793-806. [PMID: 31622202 DOI: 10.2174/1567201816666191010145029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/01/2019] [Accepted: 09/19/2019] [Indexed: 12/11/2022]
Abstract
Incretin contains two peptides named glucagon-like peptide-1(GLP-1) and glucose-dependent
insulinotropic polypeptide (GIP). Drug therapy using incretin has become a new strategy for diabetic
treatments due to its significant effects on improving insulin receptors and promoting insulinotropic
secretion. Considering the fact that diabetes millitus is a key risk factor for almost all age-related diseases,
the extensive protective roles of incretin in chronic diseases have received great attention. Based
on the evidence from animal experiments, where incretin can protect against the pathophysiological
processes of neurodegenerative diseases, clinical trials for the treatments of Alzheimer’s disease (AD)
and Parkinson’s disease (PD) patients are currently ongoing. Moreover, the protective effect of incretin
on heart has been observed in cardiac myocytes, smooth muscle cells and endothelial cells of vessels.
Meanwhile, incretin can also inhibit the proliferation of aortic vascular smooth muscle cells, which can
induce atherosclerogenesis. Incretin is also beneficial for diabetic microvascular complications, including
nephropathy, retinopathy and gastric ulcer, as well as the hepatic-related diseases such as NAFLD
and NASH. Besides, the anti-tumor properties of incretin have been proven in diverse cancers including
ovarian cancer, pancreas cancer, prostate cancer and breast cancer.
Collapse
Affiliation(s)
- Di Zhang
- Chemistry Department, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Mingzhu Ma
- Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yueze Liu
- Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
39
|
Svendsen B, Capozzi ME, Nui J, Hannou SA, Finan B, Naylor J, Ravn P, D'Alessio DA, Campbell JE. Pharmacological antagonism of the incretin system protects against diet-induced obesity. Mol Metab 2019; 32:44-55. [PMID: 32029229 PMCID: PMC6939028 DOI: 10.1016/j.molmet.2019.11.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 01/31/2023] Open
Abstract
Objective Glucose-dependent insulinotropic polypeptide is an intestinally derived hormone that is essential for normal metabolic regulation. Loss of the GIP receptor (GIPR) through genetic elimination or pharmacological antagonism reduces body weight and adiposity in the context of nutrient excess. Interrupting GIPR signaling also enhances the sensitivity of the receptor for the other incretin peptide, glucagon-like peptide 1 (GLP-1). The role of GLP-1 compensation in loss of GIPR signaling to protect against obesity has not been directly tested. Methods We blocked the GIPR and GLP-1R with specific antibodies, alone and in combination, in healthy and diet-induced obese (DIO) mice. The primary outcome measure of these interventions was the effect on body weight and composition. Results Antagonism of either the GIPR or GLP-1R system reduced food intake and weight gain during high-fat feeding and enhanced sensitivity to the alternative incretin signaling system. Combined antagonism of both GIPR and GLP-1R produced additive effects to mitigate DIO. Acute pharmacological studies using GIPR and GLP-1R agonists demonstrated both peptides reduced food intake, which was prevented by co-administration of the respective antagonists. Conclusions Disruption of either axis of the incretin system protects against diet-induced obesity in mice. However, combined antagonism of both GIPR and GLP-1R produced additional protection against diet-induced obesity, suggesting additional factors beyond compensation by the complementary incretin axis. While antagonizing the GLP-1 system decreases weight gain, GLP-1R agonists are used clinically to target obesity. Hence, the phenotype arising from loss of function of GLP-1R does not implicate GLP-1 as an obesogenic hormone. By extension, caution is warranted in labeling GIP as an obesogenic hormone based on loss-of-function studies. Acute administration of either GIP or GLP-1 reduces food intake inmice, which is blocked by antagonizing antibodies. Chronic antagonism of the GIPR limits weight gain, improves glucose tolerance, and enhances sensitivity to GLP-1R agonists. Chronic antagonism of the GLP-1R reduces weight gain and enhances sensitivity to GIPR agonists. Chronic antagonism of both GIPR and GLP-1R provides additive protections against weight gain when mice are fed a HFD. Incretin receptor antagonism reduces food intake but does not change energy expenditure.
Collapse
Affiliation(s)
- Berit Svendsen
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Megan E Capozzi
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Jingjing Nui
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Sarah A Hannou
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Brian Finan
- Novo Nordisk Research Center, Indianapolis, IN, USA
| | - Jacqueline Naylor
- AstraZeneca, R&D BioPharmaceuticals Unit, Cardiovascular, Renal and Metabolism, Cambridge, United Kingdom
| | - Peter Ravn
- AstraZeneca, R&D BioPharmaceuticals Unit, Antibody Discovery and Protein Engineering, Cambridge, United Kingdom
| | - David A D'Alessio
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA; Department of Medicine, Division of Endocrinology, Duke University, Durham, NC, USA
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA; Department of Medicine, Division of Endocrinology, Duke University, Durham, NC, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
40
|
Holst JJ, Albrechtsen NJW, Rosenkilde MM, Deacon CF. Physiology of the Incretin Hormones,
GIP
and
GLP
‐1—Regulation of Release and Posttranslational Modifications. Compr Physiol 2019; 9:1339-1381. [DOI: 10.1002/cphy.c180013] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
41
|
Lee E, Miedzybrodzka EL, Zhang X, Hatano R, Miyamoto J, Kimura I, Fujimoto K, Uematsu S, Rodriguez-Cuenca S, Vidal-Puig A, Gribble FM, Reimann F, Miki T. Diet-Induced Obese Mice and Leptin-Deficient Lepob/ob Mice Exhibit Increased Circulating GIP Levels Produced by Different Mechanisms. Int J Mol Sci 2019; 20:ijms20184448. [PMID: 31509948 PMCID: PMC6769670 DOI: 10.3390/ijms20184448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 12/23/2022] Open
Abstract
As glucose-dependent insulinotropic polypeptide (GIP) possesses pro-adipogenic action, the suppression of the GIP hypersecretion seen in obesity might represent a novel therapeutic approach to the treatment of obesity. However, the mechanism of GIP hypersecretion remains largely unknown. In the present study, we investigated GIP secretion in two mouse models of obesity: High-fat diet-induced obese (DIO) mice and leptin-deficient Lepob/ob mice. In DIO mice, plasma GIP was increased along with an increase in GIP mRNA expression in the lower small intestine. Despite the robust alteration in the gut microbiome in DIO mice, co-administration of maltose and the α-glucosidase inhibitor (α-GI) miglitol induced the microbiome-mediated suppression of GIP secretion. The plasma GIP levels of Lepob/ob mice were also elevated and were suppressed by fat transplantation. The GIP mRNA expression in fat tissue was not increased in Lepob/ob mice, while the expression of an interleukin-1 receptor antagonist (IL-1Ra) was increased. Fat transplantation suppressed the expression of IL-1Ra. The plasma IL-1Ra levels were positively correlated with the plasma GIP levels. Accordingly, although circulating GIP levels are increased in both DIO and Lepob/ob mice, the underlying mechanisms differ, and the anti-obesity actions of α-GIs and leptin sensitizers may be mediated partly by the suppression of GIP secretion.
Collapse
Affiliation(s)
- Eunyoung Lee
- Department of Medical Physiology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan.
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| | - Emily L Miedzybrodzka
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| | - Xilin Zhang
- Department of Medical Physiology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan.
| | - Ryo Hatano
- Department of Medical Physiology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan.
| | - Junki Miyamoto
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu 183-8509, Japan.
| | - Ikuo Kimura
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu 183-8509, Japan.
| | - Kosuke Fujimoto
- Department of Immunology and Genomics, Osaka City University School of Medicine, Osaka 545-8585, Japan.
- Division of Innate Immune Regulation, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Minato-ku 108-8639, Japan.
| | - Satoshi Uematsu
- Department of Immunology and Genomics, Osaka City University School of Medicine, Osaka 545-8585, Japan.
- Division of Innate Immune Regulation, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Minato-ku 108-8639, Japan.
| | - Sergio Rodriguez-Cuenca
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| | - Antonio Vidal-Puig
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| | - Fiona M Gribble
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| | - Frank Reimann
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| | - Takashi Miki
- Department of Medical Physiology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan.
| |
Collapse
|
42
|
Chia CW, Egan JM. Incretins in obesity and diabetes. Ann N Y Acad Sci 2019; 1461:104-126. [PMID: 31392745 PMCID: PMC10131087 DOI: 10.1111/nyas.14211] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/13/2019] [Accepted: 07/18/2019] [Indexed: 12/11/2022]
Abstract
Incretins are hormones secreted from enteroendocrine cells after nutrient intake that stimulate insulin secretion from β cells in a glucose-dependent manner. Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are the only two known incretins. Dysregulation of incretin secretion and actions are noted in diseases such as obesity and diabetes. In this review, we first summarize our traditional understanding of the physiology of GIP and GLP-1, and our current knowledge of the relationships between GIP and GLP-1 and obesity and diabetes. Next, we present the results from major randomized controlled trials on the use of GLP-1 receptor agonists for managing type 2 diabetes, and emerging data on treating obesity and prediabetes. We conclude with a glimpse of the future with possible complex interactions between nutrients, gut microbiota, the endocannabinoid system, and enteroendocrine cells.
Collapse
Affiliation(s)
- Chee W Chia
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Josephine M Egan
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
43
|
Skov-Jeppesen K, Svane MS, Martinussen C, Gabe MBN, Gasbjerg LS, Veedfald S, Bojsen-Møller KN, Madsbad S, Holst JJ, Rosenkilde MM, Hartmann B. GLP-2 and GIP exert separate effects on bone turnover: A randomized, placebo-controlled, crossover study in healthy young men. Bone 2019; 125:178-185. [PMID: 31100534 DOI: 10.1016/j.bone.2019.05.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/15/2019] [Accepted: 05/11/2019] [Indexed: 11/20/2022]
Abstract
BACKGROUND Glucagon-like peptide-2 (GLP-2) and glucose-dependent insulinotropic polypeptide (GIP) both inhibit bone resorption in humans but the underlying mechanisms are poorly understood. In vitro, GLP-2 activates the GIP-receptor (GIPR). OBJECTIVE Based on in vitro studies, we hypothesized that the antiresorptive effect of GLP-2 was mediated through the GIPR. This was tested using the selective GIPR-antagonist GIP(3-30)NH2. METHODS The study was a randomized, single-blinded, placebo-controlled, crossover study conducted at Hvidovre University Hospital, Denmark. Eight healthy young men were included and studied on four study days: GIP (200 μg), GLP-2 (800 μg), GIP(3-30)NH2 (800 pmol/kg/min) + GLP-2 (800 μg), and placebo. The main outcomes were bone resorption measured as collagen type 1 C-terminal telopeptide (CTX) and bone formation measured as procollagen type 1 N-terminal propeptide (P1NP). RESULTS CTX (mean ± SEM) significantly decreased after both GIP (to 55.3 ± 6.3% of baseline at t = 90 min) and GLP-2 (to 60.5 ± 5.0% of baseline at t = 180 min). The maximal reduction in CTX after GIP(3-30)NH2 + GLP-2 (to 63.2 ± 3.1% of baseline) did not differ from GLP-2 alone (p = 0.95) nor did net AUC0-240 (-6801 ± 879%*min vs -6027 ± 648%*min, p = 0.56). At t = 30 min, GIP significantly (p < 0.0001) increased P1NP to 115.1 ± 2.2% of baseline compared with 103.1 ± 1.5% after placebo. Both GLP-2 and GIP(3-30)NH2 + GLP-2 significantly (p < 0.0001) decreased P1NP to 91.3 ± 1.1% and 88.1 ± 3.0% of baseline, respectively (at t = 45 min) compared with placebo. CONCLUSIONS GIPR antagonism did not inhibit the GLP-2-induced reduction in bone resorption (CTX) in healthy young men. In contrast to GLP-2, GIP increased P1NP despite decreasing CTX indicating an uncoupling of bone resorption from formation. Thus, GLP-2 and GIP seem to exert separate effects on bone turnover in humans. CLINICAL TRIALS INFORMATION ClinicalTrials.gov (NCT03159741).
Collapse
Affiliation(s)
- Kirsa Skov-Jeppesen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Maria S Svane
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark; Department of Endocrinology, Hvidovre University Hospital, Hvidovre, Denmark
| | - Christoffer Martinussen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark; Department of Endocrinology, Hvidovre University Hospital, Hvidovre, Denmark
| | - Maria B N Gabe
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lærke S Gasbjerg
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Simon Veedfald
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | | | - Sten Madsbad
- Department of Endocrinology, Hvidovre University Hospital, Hvidovre, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
44
|
Holst JJ. The incretin system in healthy humans: The role of GIP and GLP-1. Metabolism 2019; 96:46-55. [PMID: 31029770 DOI: 10.1016/j.metabol.2019.04.014] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/11/2019] [Accepted: 04/23/2019] [Indexed: 01/07/2023]
Abstract
The incretin effect, the amplification of insulin secretion occurring when glucose is taken in orally as compared to infused intravenously, is one of the factors that help the body to tolerate carbohydrate/glucose ingestion. These include 1) amount and type of carbohydrates; 2) gastric emptying rate; 3) digestion and absorption of the carbohydrates; 4) secretion and effect of the incretin hormones; 5) disposition of absorbed nutrients/glucose. The incretin effect can also be viewed as the fraction of the ingested glucose load handled via gastrointestinal mechanisms (including the incretin effect); it is calculated by comparison of the amount of glucose required to copy, by intravenous infusion, the oral load. Typically, for 75 g of oral glucose, about 25 g are required. This means that the GastroIntestinal Glucose Disposal (GIGD) is 66%. Both the GIGD and the incretin effect depend on the amount of glucose ingested: for higher doses the GIGD may amount to 80%, which shows that this effect is a major contributor to glucose tolerance. The main mechanism behind it is stimulation of insulin secretion by a proportional secretion of the insulinotropic hormones GIP and GLP-1. Recently it has become possible to estimate their contributions in healthy humans using specific and potent receptor antagonists. Both hormones act to improve glucose tolerance (i.e. the antagonists impair tolerance) and their effects are additive. GIP seems to be quantitatively the most important, particularly regarding insulin secretion, whereas the action of GLP-1 is mainly displayed via inhibition of glucagon secretion.
Collapse
Affiliation(s)
- Jens Juul Holst
- The NNF center for Basic Metabolic Research and Department of Biomedical Sciences, the Panum Institute, University of Copenhagen, DK-2200, Denmark.
| |
Collapse
|
45
|
Alexiadou K, Anyiam O, Tan T. Cracking the combination: Gut hormones for the treatment of obesity and diabetes. J Neuroendocrinol 2019; 31:e12664. [PMID: 30466162 PMCID: PMC6563152 DOI: 10.1111/jne.12664] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/11/2018] [Accepted: 11/17/2018] [Indexed: 12/21/2022]
Abstract
Obesity and type 2 diabetes are a veritable global pandemic. There is an imperative to develop new therapies for these conditions that can be delivered at scale to patients, which deliver effective and titratable weight loss, amelioration of diabetes, prevention of diabetic complications and improvements in cardiovascular health. Although agents based on glucagon-like peptide-1 (GLP-1) are now in routine use for diabetes and obesity, the limited efficacy of such drugs means that newer agents are required. By combining the effects of GLP-1 with other gut and metabolic hormones such as glucagon (GCG), oxyntomodulin, glucose-dependent insulinotropic peptide (GIP) and peptide YY (PYY), we may obtain improved weight loss, increased energy expenditure and improved metabolic profiles. Drugs based on dual agonism of GLP1R/GCGR and GLP1R/GIPR are being actively developed in clinical trials. Triple agonism, for example with GLPR1/GCGR/GIPR unimolecular agonists or using GLP-1/oxyntomodulin/PYY, is also being explored. Multi-agonist drugs seem set to deliver the next generation of therapies for diabetes and obesity soon.
Collapse
Affiliation(s)
| | - Oluwaseun Anyiam
- Section of Investigative MedicineImperial College LondonLondonUK
| | - Tricia Tan
- Section of Investigative MedicineImperial College LondonLondonUK
| |
Collapse
|
46
|
Affiliation(s)
- Alessandro Pocai
- Cardiovascular and Metabolism, Janssen Research and Development, Spring House, Pennsylvania
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW This review examines the hormonal regulation of gastric emptying, a topic of increasing relevance, given the fact that medications that are analogs of some of these hormones or act as agonists at the hormonal receptors, are used in clinical practice for optimizing metabolic control in the treatment of type 2 diabetes and in obesity. RECENT FINDINGS The major effects on gastric emptying result from actions of incretins, particularly gastric inhibitory polypeptide, glucagon-like peptide-1, and peptide tyrosine-tyrosine, the duodenal and pancreatic hormones, motilin, glucagon, and amylin, and the gastric orexigenic hormones, ghrelin and motilin. All of these hormones delay gastric emptying, except for ghrelin and motilin which accelerate gastric emptying. These effects on gastric emptying parallel the effects of the hormones on satiation (by those retarding emptying) and increase appetite by those that accelerate emptying. Indeed, in addition to the effects of these hormones on hypothalamic appetite centers and glycemic control, there is evidence that some of their biological effects are mediated through actions on the stomach, particularly with the glucagon-like peptide-1 analogs or agonists used in treating obesity. SUMMARY Effects of gastrointestinal hormones on gastric emptying are increasingly recognized as important mediators of satiation and postprandial glycemic control.
Collapse
Affiliation(s)
- Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
48
|
Mroz PA, Finan B, Gelfanov V, Yang B, Tschöp MH, DiMarchi RD, Perez-Tilve D. Optimized GIP analogs promote body weight lowering in mice through GIPR agonism not antagonism. Mol Metab 2019; 20:51-62. [PMID: 30578168 PMCID: PMC6358549 DOI: 10.1016/j.molmet.2018.12.001] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 11/29/2018] [Accepted: 12/02/2018] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE Structurally-improved GIP analogs were developed to determine precisely whether GIP receptor (GIPR) agonism or antagonism lowers body weight in obese mice. METHODS A series of peptide-based GIP analogs, including structurally diverse agonists and a long-acting antagonist, were generated and characterized in vitro using functional assays in cell systems overexpressing human and mouse derived receptors. These analogs were characterized in vivo in DIO mice following acute dosing for effects on glycemic control, and following chronic dosing for effects on body weight and food intake. Pair-feeding studies and indirect calorimetry were used to survey the mechanism for body weight lowering. Congenital Gipr-/- and Glp1r-/- DIO mice were used to investigate the selectivity of the agonists and to ascribe the pharmacology to effects mediated by the GIPR. RESULTS Non-acylated, Aib2 substituted analogs derived from human GIP sequence showed full in vitro potency at human GIPR and subtly reduced in vitro potency at mouse GIPR without cross-reactivity at GLP-1R. These GIPR agonists lowered acute blood glucose in wild-type and Glp1r-/- mice, and this effect was absent in Gipr-/- mice, which confirmed selectivity towards GIPR. Chronic treatment of DIO mice resulted in modest yet consistent, dose-dependent decreased body weight across many studies with diverse analogs. The mechanism for body weight lowering is due to reductions in food intake, not energy expenditure, as suggested by pair-feeding studies and indirect calorimetry assessment. The weight lowering effect was preserved in DIO Glp-1r-/- mice and absent in DIO Gipr-/- mice. The body weight lowering efficacy of GIPR agonists was enhanced with analogs that exhibit higher mouse GIPR potency, with increased frequency of administration, and with fatty-acylated peptides of extended duration of action. Additionally, a fatty-acylated, N-terminally truncated GIP analog was shown to have high in vitro antagonism potency for human and mouse GIPR without cross-reactive activity at mouse GLP-1R or mouse glucagon receptor (GcgR). This acylated antagonist sufficiently inhibited the acute effects of GIP to improve glucose tolerance in DIO mice. Chronic treatment of DIO mice with high doses of this acylated GIPR antagonist did not result in body weight change. Further, co-treatment of this acylated GIPR antagonist with liraglutide, an acylated GLP-1R agonist, to DIO mice did not result in increased body weight lowering relative to liraglutide-treated mice. Enhanced body weight lowering in DIO mice was evident however following co-treatment of long-acting selective individual agonists for GLP-1R and GIPR, consistent with previous data. CONCLUSIONS We conclude that peptide-based GIPR agonists, not peptide-based GIPR antagonists, that are suitably optimized for receptor selectivity, cross-species activity, and duration of action consistently lower body weight in DIO mice, although with moderate efficacy relative to GLP-1R agonists. These preclinical rodent pharmacology results, in accordance with recent clinical results, provide definitive proof that systemic GIPR agonism, not antagonism, is beneficial for body weight loss.
Collapse
Affiliation(s)
- Piotr A Mroz
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Brian Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN 46241, USA; Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Munich-Neuherberg, Germany.
| | - Vasily Gelfanov
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA; Novo Nordisk Research Center Indianapolis, Indianapolis, IN 46241, USA
| | - Bin Yang
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA; Novo Nordisk Research Center Indianapolis, Indianapolis, IN 46241, USA
| | - Matthias H Tschöp
- Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Munich-Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, 80333 Munich, Germany; German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany
| | - Richard D DiMarchi
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA; Novo Nordisk Research Center Indianapolis, Indianapolis, IN 46241, USA
| | - Diego Perez-Tilve
- Department of Internal Medicine, University of Cincinnati-College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
49
|
Abstract
Findings from the past 10 years have placed the glucagon-secreting pancreatic α-cell centre stage in the development of diabetes mellitus, a disease affecting almost one in every ten adults worldwide. Glucagon secretion is reduced in patients with type 1 diabetes mellitus, increasing the risk of insulin-induced hypoglycaemia, but is enhanced in type 2 diabetes mellitus, exacerbating the effects of diminished insulin release and action on blood levels of glucose. A better understanding of the mechanisms underlying these changes is therefore an important goal. RNA sequencing reveals that, despite their opposing roles in the control of blood levels of glucose, α-cells and β-cells have remarkably similar patterns of gene expression. This similarity might explain the fairly facile interconversion between these cells and the ability of the α-cell compartment to serve as a source of new β-cells in models of extreme β-cell loss that mimic type 1 diabetes mellitus. Emerging data suggest that GABA might facilitate this interconversion, whereas the amino acid glutamine serves as a liver-derived factor to promote α-cell replication and maintenance of α-cell mass. Here, we survey these developments and their therapeutic implications for patients with diabetes mellitus.
Collapse
Affiliation(s)
| | - Pauline Chabosseau
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK.
| |
Collapse
|
50
|
Wu Y, Hu Y, Yuan Y, Luo Y, lai D, Zhou H, Tong Z, Liu D. Gymnemic acid I triggers mechanistic target of rapamycin‐mediated β cells cytoprotection through the promotion of autophagy under high glucose stress. J Cell Physiol 2018; 234:9370-9377. [DOI: 10.1002/jcp.27621] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 09/24/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Yanyang Wu
- Hunan Agricultural University Changsha China
- Horticulture and Landscape College, Hunan Agricultural University Changsha China
- College of Food Science and Technology, Hunan Agricultural University Changsha China
| | - Yongquan Hu
- Horticulture and Landscape College, Hunan Agricultural University Changsha China
- Hunan Co‐Innovation Center for Utilization of Botanical Functional Ingredients Changsha China
- State Key Laboratory of Subhealth Intervention Technology Changsha China
| | - Yuju Yuan
- Hunan Agricultural University Changsha China
- Horticulture and Landscape College, Hunan Agricultural University Changsha China
- College of Food Science and Technology, Hunan Agricultural University Changsha China
| | - Yushuang Luo
- Horticulture and Landscape College, Hunan Agricultural University Changsha China
- Hunan Co‐Innovation Center for Utilization of Botanical Functional Ingredients Changsha China
- State Key Laboratory of Subhealth Intervention Technology Changsha China
| | - Dengni lai
- Hunan Agricultural University Changsha China
- Horticulture and Landscape College, Hunan Agricultural University Changsha China
- College of Food Science and Technology, Hunan Agricultural University Changsha China
| | - Haiyan Zhou
- Horticulture and Landscape College, Hunan Agricultural University Changsha China
- Hunan Co‐Innovation Center for Utilization of Botanical Functional Ingredients Changsha China
- State Key Laboratory of Subhealth Intervention Technology Changsha China
| | - Zhongyi Tong
- Department of Pathology The Second Xiangya Hospital of Central South University Changsha China
| | - Dongbo Liu
- Horticulture and Landscape College, Hunan Agricultural University Changsha China
- Hunan Co‐Innovation Center for Utilization of Botanical Functional Ingredients Changsha China
- State Key Laboratory of Subhealth Intervention Technology Changsha China
| |
Collapse
|