1
|
Rahman MS, Bharadwaj V, Lautaha AKHS, Sampson P, Brasch NE, Seed AJ. Developing Photoactive Coumarin-Caged N-Hydroxysulfonamides for Generation of Nitroxyl (HNO). Molecules 2024; 29:3918. [PMID: 39202997 PMCID: PMC11356963 DOI: 10.3390/molecules29163918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Photoactive N-hydroxysulfonamides photocaged with the (6-bromo-7-hydroxycoumarin-4-yl)methyl chromophore have been successfully synthesized, and the mechanisms of photodecomposition investigated for two of the compounds. Upon irradiation up to 97% of a diagnostic marker for (H)NO release, sulfinate was observed for the trifluoromethanesulfonamide system. In the absence of a species that reacts rapidly with (H)NO, (H)NO instead reacts with the carbocation intermediate to ultimately generate (E)-BHC-oxime and (Z)-BHC-oxime. Alternatively, the carbocation intermediate reacts with solvent water to give a diol. Deprotonation of the N(H) proton is required for HNO generation via concerted C-O/N-S bond cleavage, whereas the protonation state of the O(H) does not affect the observed photoproducts. If the N(H) is protonated, C-O bond cleavage to generate the parent N-hydroxysulfonamide will occur, and/or O-N bond cleavage to generate a sulfonamide. The undesired competing O-N bond cleavage pathway increases when the volume percentage of water in acetonitrile/water solvent mixtures is increased.
Collapse
Affiliation(s)
- Mohammad S. Rahman
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Vinay Bharadwaj
- School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
- The Dodd-Walls Centre for Quantum and Photonic Technologies, Dunedin 9054, New Zealand
| | - Anau K. H. S. Lautaha
- School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
- The Dodd-Walls Centre for Quantum and Photonic Technologies, Dunedin 9054, New Zealand
| | - Paul Sampson
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Nicola E. Brasch
- School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
- The Dodd-Walls Centre for Quantum and Photonic Technologies, Dunedin 9054, New Zealand
- The Maurice Wilkins Centre for Molecular Biodiscovery, Private Bag 92019, Auckland 1142, New Zealand
| | - Alexander J. Seed
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
2
|
Sellars E, Savguira M, Wu J, Cancelliere S, Jen M, Krishnan R, Hakem A, Barsyte-Lovejoy D, Hakem R, Narod SA, Kotsopoulos J, Salmena L. A high-throughput approach to identify BRCA1-downregulating compounds to enhance PARP inhibitor sensitivity. iScience 2024; 27:110180. [PMID: 38993666 PMCID: PMC11238136 DOI: 10.1016/j.isci.2024.110180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/29/2024] [Accepted: 06/01/2024] [Indexed: 07/13/2024] Open
Abstract
PARP inhibitors (PARPi) are efficacious in BRCA1-null tumors; however, their utility is limited in tumors with functional BRCA1. We hypothesized that pharmacologically reducing BRCA1 protein levels could enhance PARPi effectiveness in BRCA1 wild-type tumors. To identify BRCA1 downregulating agents, we generated reporter cell lines using CRISPR-mediated editing to tag endogenous BRCA1 protein with HiBiT. These reporter lines enable the sensitive measurement of BRCA1 protein levels by luminescence. Validated reporter cells were used in a pilot screen of epigenetic-modifying probes and a larger screen of more than 6,000 compounds. We identified 7 compounds that could downregulate BRCA1-HiBiT expression and synergize with olaparib. Three compounds, N-acetyl-N-acetoxy chlorobenzenesulfonamide (NANAC), A-443654, and CHIR-124, were validated to reduce BRCA1 protein levels and sensitize breast cancer cells to the toxic effects of olaparib. These results suggest that BRCA1-HiBiT reporter cells hold promise in developing agents to improve the clinical utility of PARPi.
Collapse
Affiliation(s)
- Erin Sellars
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Women's College Research Institute, Women's College Hospital, Toronto, ON M5S 1B2, Canada
| | - Margarita Savguira
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jie Wu
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sabrina Cancelliere
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Mark Jen
- Lunenfeld-Tanenbaum Research Institute, Network Biology Collaborative Centre, High-Throughput Screening, Mt. Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Rehna Krishnan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Anne Hakem
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Dalia Barsyte-Lovejoy
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Razqallah Hakem
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Steven A Narod
- Women's College Research Institute, Women's College Hospital, Toronto, ON M5S 1B2, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada
| | - Joanne Kotsopoulos
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Women's College Research Institute, Women's College Hospital, Toronto, ON M5S 1B2, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada
| | - Leonardo Salmena
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Women's College Research Institute, Women's College Hospital, Toronto, ON M5S 1B2, Canada
| |
Collapse
|
3
|
Wang S, Gai L, Chen Y, Ji X, Lu H, Guo Z. Mitochondria-targeted BODIPY dyes for small molecule recognition, bio-imaging and photodynamic therapy. Chem Soc Rev 2024; 53:3976-4019. [PMID: 38450547 DOI: 10.1039/d3cs00456b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Mitochondria are essential for a diverse array of biological functions. There is increasing research focus on developing efficient tools for mitochondria-targeted detection and treatment. BODIPY dyes, known for their structural versatility and excellent spectroscopic properties, are being actively explored in this context. Numerous studies have focused on developing innovative BODIPYs that utilize optical signals for imaging mitochondria. This review presents a comprehensive overview of the progress made in this field, aiming to investigate mitochondria-related biological events. It covers key factors such as design strategies, spectroscopic properties, and cytotoxicity, as well as mechanism to facilitate their future application in organelle imaging and targeted therapy. This work is anticipated to provide valuable insights for guiding future development and facilitating further investigation into mitochondria-related biological sensing and phototherapy.
Collapse
Affiliation(s)
- Sisi Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China.
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Lizhi Gai
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Xiaobo Ji
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Hua Lu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
4
|
Salvagno M, Sterchele ED, Zaccarelli M, Mrakic-Sposta S, Welsby IJ, Balestra C, Taccone FS. Oxidative Stress and Cerebral Vascular Tone: The Role of Reactive Oxygen and Nitrogen Species. Int J Mol Sci 2024; 25:3007. [PMID: 38474253 DOI: 10.3390/ijms25053007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
The brain's unique characteristics make it exceptionally susceptible to oxidative stress, which arises from an imbalance between reactive oxygen species (ROS) production, reactive nitrogen species (RNS) production, and antioxidant defense mechanisms. This review explores the factors contributing to the brain's vascular tone's vulnerability in the presence of oxidative damage, which can be of clinical interest in critically ill patients or those presenting acute brain injuries. The brain's high metabolic rate and inefficient electron transport chain in mitochondria lead to significant ROS generation. Moreover, non-replicating neuronal cells and low repair capacity increase susceptibility to oxidative insult. ROS can influence cerebral vascular tone and permeability, potentially impacting cerebral autoregulation. Different ROS species, including superoxide and hydrogen peroxide, exhibit vasodilatory or vasoconstrictive effects on cerebral blood vessels. RNS, particularly NO and peroxynitrite, also exert vasoactive effects. This review further investigates the neuroprotective effects of antioxidants, including superoxide dismutase (SOD), vitamin C, vitamin E, and the glutathione redox system. Various studies suggest that these antioxidants could be used as adjunct therapies to protect the cerebral vascular tone under conditions of high oxidative stress. Nevertheless, more extensive research is required to comprehensively grasp the relationship between oxidative stress and cerebrovascular tone, and explore the potential benefits of antioxidants as adjunctive therapies in critical illnesses and acute brain injuries.
Collapse
Affiliation(s)
- Michele Salvagno
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1000 Brussels, Belgium
| | - Elda Diletta Sterchele
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1000 Brussels, Belgium
| | - Mario Zaccarelli
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1000 Brussels, Belgium
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology-National Research Council (CNR-IFC), 20133 Milan, Italy
| | - Ian James Welsby
- Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Costantino Balestra
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
- Anatomical Research and Clinical Studies, Vrije Universiteit Brussels (VUB), 1050 Elsene, Belgium
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
- Motor Sciences Department, Physical Activity Teaching Unit, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1000 Brussels, Belgium
| |
Collapse
|
5
|
Rodkin S, Nwosu C, Raevskaya M, Khanukaev M, Bekova K, Vasilieva I, Vishnyak D, Tolmacheva A, Efremova E, Gasanov M, Tyurin A. The Role of Hydrogen Sulfide in the Localization and Expression of p53 and Cell Death in the Nervous Tissue in Traumatic Brain Injury and Axotomy. Int J Mol Sci 2023; 24:15708. [PMID: 37958692 PMCID: PMC10650615 DOI: 10.3390/ijms242115708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of disability and death worldwide. It is characterized by various molecular-cellular events, with the main ones being apoptosis and damage to axons. To date, there are no clinically effective neuroprotective drugs. In this study, we examined the role of hydrogen sulfide (H2S) in the localization and expression of the key pro-apoptotic protein p53, as well as cell death in the nervous tissue in TBI and axotomy. We used a fast donor (sodium sulphide, Na2S) H2S and a classic inhibitor (aminooxyacetic acid, AOAA) of cystathionine β-synthase (CBS), which is a key enzyme in H2S synthesis. These studies were carried out on three models of neurotrauma in vertebrates and invertebrates. As a result, it was found that Na2S exhibits a pronounced neuroprotective effect that reduces the number of TUNEL-positive neurons and glial cells in TBI and apoptotic glia in axotomy. This effect could be realized through the Na2S-dependent decrease in the level of p53 in the cells of the nervous tissue of vertebrates and invertebrates, which we observed in our study. We also observed the opposite effect when using AOAA, which indicates the important role of CBS in the regulation of p53 expression and death of neurons and glial cells in TBI and axotomy.
Collapse
Affiliation(s)
- Stanislav Rodkin
- Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Chizaram Nwosu
- Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Margarita Raevskaya
- Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Maxim Khanukaev
- Department of Instrumentation and Biomedical Engineering, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Khava Bekova
- Department of Nervous Diseases and Neurosurgery, Rostov State Medical University, 344022 Rostov-on-Don, Russia
| | - Inna Vasilieva
- Department of Polyclinic Therapy, N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Diana Vishnyak
- Department of Internal Diseases, Surgut State University, Lenina, 1, Nephrology Department, Surgut District Clinical Hospital, Energetikov, 24/3, 628400 Surgut, Russia
| | - Anastasia Tolmacheva
- Department of Faculty Therapy Named after Professor G.D. Zalessky, Novosibirsk State Medical University, Krasny Prospekt, 52, Department of Medical Rehabilitation, Novosibirsk Regional Clinical Hospital of War Veterans No. 3, Demyan the Poor, 71, 630005 Novosibirsk, Russia
| | - Elena Efremova
- Department of Therapy and Occupational Diseases, Ulyanovsk State University, Lev Tolstoy Street 42, 432017 Ulyanovsk, Russia;
| | - Mitkhat Gasanov
- Internal Medicine Department, Institute of Medical Education, The Yaroslav-the-Wise Novgorod State University, Derzhavina St. 6, 173020 Veliky Novgorod, Russia
| | - Anton Tyurin
- Internal Medicine Department, Bashkir State Medical University, 450008 Ufa, Russia
| |
Collapse
|
6
|
Manickas EC, LaLonde AB, Hu MY, Alp EE, Lehnert N. Stabilization of a Heme-HNO Model Complex Using a Bulky Bis-Picket Fence Porphyrin and Reactivity Studies with NO. J Am Chem Soc 2023; 145:23014-23026. [PMID: 37824502 DOI: 10.1021/jacs.3c05333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Nitroxyl, HNO/NO-, the one-electron reduced form of NO, is suggested to take part in distinct signaling pathways in mammals and is also a key intermediate in various heme-catalyzed NOx interconversions in the nitrogen cycle. Cytochrome P450nor (Cyt P450nor) is a heme-containing enzyme that performs NO reduction to N2O in fungal denitrification. The reactive intermediate in this enzyme, termed "Intermediate I", is proposed to be an Fe-NHO/Fe-NHOH type species, but it is difficult to study its electronic structure and exact protonation state due to its instability. Here, we utilize a bulky bis-picket fence porphyrin to obtain the first stable heme-HNO model complex, [Fe(3,5-Me-BAFP)(MI)(NHO)], as a model for Intermediate I, and more generally HNO adducts of heme proteins. Due to the steric hindrance of the bis-picket fence porphyrin, [Fe(3,5-Me-BAFP)(MI)(NHO)] is stable (τ1/2 = 56 min at -30 °C), can be isolated as a solid, and is available for thorough spectroscopic characterization. In particular, we were able to solve a conundrum in the literature and provide the first full vibrational characterization of a heme-HNO complex using IR and nuclear resonance vibrational spectroscopy (NRVS). Reactivity studies of [Fe(3,5-Me-BAFP)(MI)(NHO)] with NO gas show a 91 ± 10% yield for N2O formation, demonstrating that heme-HNO complexes are catalytically competent intermediates for NO reduction to N2O in Cyt P450nor. The implications of these results for the mechanism of Cyt P450nor are further discussed.
Collapse
Affiliation(s)
- Elizabeth C Manickas
- Department of Chemistry and Department of Biophysics, The University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Ashley B LaLonde
- Department of Chemistry and Department of Biophysics, The University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Michael Y Hu
- Advanced Photon Source (APS), Argonne National Laboratory (ANL), Argonne, Illinois 60439, United States
| | - E Ercan Alp
- Advanced Photon Source (APS), Argonne National Laboratory (ANL), Argonne, Illinois 60439, United States
| | - Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, The University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
7
|
Saha S, Maity S, Mazumdar R, Samanta B, Ghosh R, Guha AK, Mondal B. Sixth Ligand Induced HNO/NO - Release by a Five-Coordinated Cobalt(II) Nitrosyl Complex Having a {CoNO} 8 Configuration. Inorg Chem 2023; 62:17074-17082. [PMID: 37811901 DOI: 10.1021/acs.inorgchem.3c01124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Nitroxyl (HNO) and nitroxide (NO-) anion, the one-electron-reduced form of nitric oxide (NO), have been shown to have distinct advantages over NO from pharmacological and therapeutic points of view. However, the role of nitroxyl in chemical biology has not yet been studied as extensively as that of NO. Consequently, only a few examples of HNO donors such as Angeli's salt, Piloty's acid, or acyl- and acyloxynitroso derivatives are known. However, the intrinsic limitations of all of these hinder their widespread utility. Metal nitrosyl complexes, although few examples, could serve as an efficient HNO donor. Here, a cobalt nitrosyl complex of the {CoNO}8 (1) configuration has been reported. This complex in the presence of a sixth ligand [BF4-, DTC- (diethyldithiocarbamate anion), or imidazole] releases/donates HNO/NO-. This has been confirmed using well-known HNO/NO- acceptors like [Fe(TPP)Cl] and [Fe(DTC)3]. The HNO release has been authenticated further by the detection and estimation of N2O using gas chromatography-mass spectroscopy as well as its reaction with PPh3.
Collapse
Affiliation(s)
- Shankhadeep Saha
- Department of Chemistry, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam 781039, India
| | - Sayani Maity
- Department of Chemistry, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam 781039, India
| | - Rakesh Mazumdar
- Department of Chemistry, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam 781039, India
| | - Bapan Samanta
- Department of Chemistry, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam 781039, India
| | - Riya Ghosh
- Department of Chemistry, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam 781039, India
| | - Ankur K Guha
- Advanced Computational Chemistry Center, Department of Chemistry, Cotton University, Guwahati, Assam781001, India
| | - Biplab Mondal
- Department of Chemistry, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
8
|
Mollace R, Scarano F, Bava I, Carresi C, Maiuolo J, Tavernese A, Gliozzi M, Musolino V, Muscoli S, Palma E, Muscoli C, Salvemini D, Federici M, Macrì R, Mollace V. Modulation of the nitric oxide/cGMP pathway in cardiac contraction and relaxation: Potential role in heart failure treatment. Pharmacol Res 2023; 196:106931. [PMID: 37722519 DOI: 10.1016/j.phrs.2023.106931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Evidence exists that heart failure (HF) has an overall impact of 1-2 % in the global population being often associated with comorbidities that contribute to increased disease prevalence, hospitalization, and mortality. Recent advances in pharmacological approaches have significantly improved clinical outcomes for patients with vascular injury and HF. Nevertheless, there remains an unmet need to clarify the crucial role of nitric oxide/cyclic guanosine 3',5'-monophosphate (NO/cGMP) signalling in cardiac contraction and relaxation, to better identify the key mechanisms involved in the pathophysiology of myocardial dysfunction both with reduced (HFrEF) as well as preserved ejection fraction (HFpEF). Indeed, NO signalling plays a crucial role in cardiovascular homeostasis and its dysregulation induces a significant increase in oxidative and nitrosative stress, producing anatomical and physiological cardiac alterations that can lead to heart failure. The present review aims to examine the molecular mechanisms involved in the bioavailability of NO and its modulation of downstream pathways. In particular, we focus on the main therapeutic targets and emphasize the recent evidence of preclinical and clinical studies, describing the different emerging therapeutic strategies developed to counteract NO impaired signalling and cardiovascular disease (CVD) development.
Collapse
Affiliation(s)
- Rocco Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Italy
| | - Federica Scarano
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Irene Bava
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Cristina Carresi
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Jessica Maiuolo
- Pharmaceutical Biology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Annamaria Tavernese
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Micaela Gliozzi
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Vincenzo Musolino
- Pharmaceutical Biology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Saverio Muscoli
- Division of Cardiology, Foundation PTV Polyclinic Tor Vergata, Rome 00133, Italy
| | - Ernesto Palma
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Carolina Muscoli
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, Italy
| | - Roberta Macrì
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy.
| | - Vincenzo Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy; Renato Dulbecco Institute, Lamezia Terme, Catanzaro 88046, Italy.
| |
Collapse
|
9
|
Floryszak-Wieczorek J, Sobieszczuk-Nowicka E, Arasimowicz-Jelonek M. Endogenous plant nitroxyl, a new component of nitric oxide biology. Trends Biochem Sci 2023; 48:748-750. [PMID: 37331830 DOI: 10.1016/j.tibs.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/20/2023]
Abstract
Nitroxyl (HNO), a one-electron reduced and protonated congener of nitric oxide (•NO), was recently discovered in Arabidopsis thaliana. Due to its distinct chemical properties, we believe HNO must be further studied to determine how many physiological processes it impacts.
Collapse
Affiliation(s)
| | - Ewa Sobieszczuk-Nowicka
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Magdalena Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| |
Collapse
|
10
|
Palmieri EM, Holewinski R, McGinity CL, Pierri CL, Maio N, Weiss JM, Tragni V, Miranda KM, Rouault TA, Andresson T, Wink DA, McVicar DW. Pyruvate dehydrogenase operates as an intramolecular nitroxyl generator during macrophage metabolic reprogramming. Nat Commun 2023; 14:5114. [PMID: 37607904 PMCID: PMC10444860 DOI: 10.1038/s41467-023-40738-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 08/04/2023] [Indexed: 08/24/2023] Open
Abstract
M1 macrophages enter a glycolytic state when endogenous nitric oxide (NO) reprograms mitochondrial metabolism by limiting aconitase 2 and pyruvate dehydrogenase (PDH) activity. Here, we provide evidence that NO targets the PDH complex by using lipoate to generate nitroxyl (HNO). PDH E2-associated lipoate is modified in NO-rich macrophages while the PDH E3 enzyme, also known as dihydrolipoamide dehydrogenase (DLD), is irreversibly inhibited. Mechanistically, we show that lipoate facilitates NO-mediated production of HNO, which interacts with thiols forming irreversible modifications including sulfinamide. In addition, we reveal a macrophage signature of proteins with reduction-resistant modifications, including in DLD, and identify potential HNO targets. Consistently, DLD enzyme is modified in an HNO-dependent manner at Cys477 and Cys484, and molecular modeling and mutagenesis show these modifications impair the formation of DLD homodimers. In conclusion, our work demonstrates that HNO is produced physiologically. Moreover, the production of HNO is dependent on the lipoate-rich PDH complex facilitating irreversible modifications that are critical to NO-dependent metabolic rewiring.
Collapse
Affiliation(s)
- Erika M Palmieri
- Cancer Innovation Laboratory, NCI-Frederick, Frederick, MD, 21702, USA
| | - Ronald Holewinski
- Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21702, USA
| | | | - Ciro L Pierri
- Laboratory of Biochemistry, Molecular and Structural Biology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Via E. Orabona, 4, Bari, 70125, Italy
| | - Nunziata Maio
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Jonathan M Weiss
- Cancer Innovation Laboratory, NCI-Frederick, Frederick, MD, 21702, USA
| | - Vincenzo Tragni
- Laboratory of Biochemistry, Molecular and Structural Biology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Via E. Orabona, 4, Bari, 70125, Italy
| | - Katrina M Miranda
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA
| | - Tracey A Rouault
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Thorkell Andresson
- Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21702, USA
| | - David A Wink
- Cancer Innovation Laboratory, NCI-Frederick, Frederick, MD, 21702, USA
| | - Daniel W McVicar
- Cancer Innovation Laboratory, NCI-Frederick, Frederick, MD, 21702, USA.
| |
Collapse
|
11
|
Marques HM. The inorganic chemistry of the cobalt corrinoids - an update. J Inorg Biochem 2023; 242:112154. [PMID: 36871417 DOI: 10.1016/j.jinorgbio.2023.112154] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
The inorganic chemistry of the cobalt corrinoids, derivatives of vitamin B12, is reviewed, with particular emphasis on equilibrium constants for, and kinetics of, their axial ligand substitution reactions. The role the corrin ligand plays in controlling and modifying the properties of the metal ion is emphasised. Other aspects of the chemistry of these compounds, including their structure, corrinoid complexes with metals other than cobalt, the redox chemistry of the cobalt corrinoids and their chemical redox reactions, and their photochemistry are discussed. Their role as catalysts in non-biological reactions and aspects of their organometallic chemistry are briefly mentioned. Particular mention is made of the role that computational methods - and especially DFT calculations - have played in developing our understanding of the inorganic chemistry of these compounds. A brief overview of the biological chemistry of the B12-dependent enzymes is also given for the reader's convenience.
Collapse
Affiliation(s)
- Helder M Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.
| |
Collapse
|
12
|
Oza PP, Kashfi K. Utility of NO and H 2S donating platforms in managing COVID-19: Rationale and promise. Nitric Oxide 2022; 128:72-102. [PMID: 36029975 PMCID: PMC9398942 DOI: 10.1016/j.niox.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 01/08/2023]
Abstract
Viral infections are a continuing global burden on the human population, underscored by the ramifications of the COVID-19 pandemic. Current treatment options and supportive therapies for many viral infections are relatively limited, indicating a need for alternative therapeutic approaches. Virus-induced damage occurs through direct infection of host cells and inflammation-related changes. Severe cases of certain viral infections, including COVID-19, can lead to a hyperinflammatory response termed cytokine storm, resulting in extensive endothelial damage, thrombosis, respiratory failure, and death. Therapies targeting these complications are crucial in addition to antiviral therapies. Nitric oxide and hydrogen sulfide are two endogenous gasotransmitters that have emerged as key signaling molecules with a broad range of antiviral actions in addition to having anti-inflammatory properties and protective functions in the vasculature and respiratory system. The enhancement of endogenous nitric oxide and hydrogen sulfide levels thus holds promise for managing both early-stage and later-stage viral infections, including SARS-CoV-2. Using SARS-CoV-2 as a model for similar viral infections, here we explore the current evidence regarding nitric oxide and hydrogen sulfide's use to limit viral infection, resolve inflammation, and reduce vascular and pulmonary damage.
Collapse
Affiliation(s)
- Palak P Oza
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, 10031, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, 10031, USA; Graduate Program in Biology, City University of New York Graduate Center, New York, 10091, USA.
| |
Collapse
|
13
|
Age- and Hypertension-Related Changes in NOS/NO/sGC-Derived Vasoactive Control of Rat Thoracic Aortae. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7742509. [PMID: 35308173 PMCID: PMC8926472 DOI: 10.1155/2022/7742509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/21/2021] [Accepted: 02/15/2022] [Indexed: 11/23/2022]
Abstract
This study was aimed at examining the role of the NOS/NO/sGC signaling pathway in the vasoactive control of the thoracic aorta (TA) from the early to late ontogenetic stages (7 weeks, 20 weeks, and 52 weeks old) of normotensive Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHRs). Systolic blood pressure (SBP) and heart rate (HR) were significantly increased in SHRs compared to age-matched WKYs, which was associated with left heart ventricle hypertrophy in all age groups of rats. The plasma urea level was increased in 20-week-old and 52-week-old SHRs compared with WKYs without increasing creatinine and uric acid. The total cholesterol levels were lower in 20-week-old and 52-week-old SHRs than in WKYs, but triglycerides were higher in 7-week-old SHRs. The fructosamine level was increased in 52-week-old SHRs compared with age-matched WKYs and unchanged in other age groups. Superoxide production was increased only in 7-week-old SHRs compared to age-matched WKYs. The endothelium-dependent relaxation (EDR) of the TA deteriorated in both rat strains during aging; however, endothelial dysfunction already occurred in 20-week-old SHRs and was even more enhanced in 52-week-old rats. Our results also demonstrated increased activity of NOS in 52-week-old WKYs. Moreover, 7-week-old and 52-week-old WKY rats displayed an enhanced residual EDR after L-NMMA (NOS inhibitor) incubation compared with 20-week-old rats. Our results showed that in 7-week-old SHRs, the residual EDR after L-NMMA incubation was increased compared to that in other age groups. The activity of NOS in the TA was comparable in 7-week-old and 20-week-old SHRs, but it was reduced in 52-week-old SHRs compared to younger SHRs and 52-week-old WKYs. Thus, it seems that, in contrast to SHRs, the NOS/NO system in WKYs is probably able to respond to age-related pathologies to maintain endothelial functions and thus optimal BP levels even in later periods of life.
Collapse
|
14
|
Li M, Wang B, Li M, Li X, Wang L, Li N, Rao L, Wan C, Liu C, Liu C. A reactivity-based probe for off-on fluorescent detection, labeling, and profiling of protein S-sulfenylation in cells. SENSORS AND ACTUATORS B: CHEMICAL 2022; 354:131235. [DOI: 10.1016/j.snb.2021.131235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
|
15
|
Xu J, Bai Y, Ma Q, Sun J, Tian M, Li L, Zhu N, Liu S. Ratiometric Determination of Nitroxyl Utilizing a Novel Fluorescence Resonance Energy Transfer-Based Fluorescent Probe Based on a Coumarin-Rhodol Derivative. ACS OMEGA 2022; 7:5264-5273. [PMID: 35187341 PMCID: PMC8851634 DOI: 10.1021/acsomega.1c06403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/25/2022] [Indexed: 05/15/2023]
Abstract
Nitroxyl (HNO) is a member of the reactive nitrogen species, and how to detect it quickly and accurately is a challenging task. In this work, we designed and prepared a fluorescent ratiometric probe based on the fluorescence resonance energy transfer (FRET) mechanism, which can detect HNO with high selectivity. The coumarin derivative was used as an energy donor, the rhodol derivative was applied as an energy receptor, and 2-(diphenylphosphine)benzoate was utilized as the recognition group to detect nitroxyl. In the absence of HNO, the rhodol derivative exists in a non-fluorescent spironolactone state, and the FRET process is inhibited. Upon adding HNO, the closed spironolactone form is transformed into a conjugated xanthene structure and the FRET process occurs. This probe could specifically recognize nitroxyl, showing high sensitivity and selectivity. When the HNO concentration was changed from 3.0 × 10-7 to 2.0 × 10-5 mol·L-1, I 543nm/I 470nm exhibited a satisfactory linear correlation with the concentration of HNO. A detection limit of 7.0 × 10-8 mol·L-1 was obtained. In addition, almost no cell toxicity had been verified for the probe. The probe had been successfully applied to the ratiometric fluorescence imaging of HNO in HepG2 cells.
Collapse
Affiliation(s)
- Junhong Xu
- Department
of Dynamical Engineering, North China University
of Water Resources and Electric Power, Zhengzhou 450011, PR China
| | - Yu Bai
- School
of Pharmacy and Chemical Engineering, Zhengzhou
University of Industrial Technology, Zhengzhou 450011, PR China
- School
of Pharmacy, Henan University of Chinese
Medicine, Zhengzhou 450046, PR China
| | - Qiujuan Ma
- School
of Pharmacy, Henan University of Chinese
Medicine, Zhengzhou 450046, PR China
- . Tel.: +86-371-65676656. Fax: +86-371-65680028
| | - Jingguo Sun
- School
of Pharmacy, Henan University of Chinese
Medicine, Zhengzhou 450046, PR China
| | - Meiju Tian
- School
of Pharmacy, Henan University of Chinese
Medicine, Zhengzhou 450046, PR China
| | - Linke Li
- School
of Pharmacy, Henan University of Chinese
Medicine, Zhengzhou 450046, PR China
| | - Nannan Zhu
- School
of Pharmacy, Henan University of Chinese
Medicine, Zhengzhou 450046, PR China
| | - Shuzhen Liu
- School
of Pharmacy, Henan University of Chinese
Medicine, Zhengzhou 450046, PR China
| |
Collapse
|
16
|
Lehnert N, Kim E, Dong HT, Harland JB, Hunt AP, Manickas EC, Oakley KM, Pham J, Reed GC, Alfaro VS. The Biologically Relevant Coordination Chemistry of Iron and Nitric Oxide: Electronic Structure and Reactivity. Chem Rev 2021; 121:14682-14905. [PMID: 34902255 DOI: 10.1021/acs.chemrev.1c00253] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule that is involved in a wide range of physiological and pathological events in biology. Metal coordination chemistry, especially with iron, is at the heart of many biological transformations involving NO. A series of heme proteins, nitric oxide synthases (NOS), soluble guanylate cyclase (sGC), and nitrophorins, are responsible for the biosynthesis, sensing, and transport of NO. Alternatively, NO can be generated from nitrite by heme- and copper-containing nitrite reductases (NIRs). The NO-bearing small molecules such as nitrosothiols and dinitrosyl iron complexes (DNICs) can serve as an alternative vehicle for NO storage and transport. Once NO is formed, the rich reaction chemistry of NO leads to a wide variety of biological activities including reduction of NO by heme or non-heme iron-containing NO reductases and protein post-translational modifications by DNICs. Much of our understanding of the reactivity of metal sites in biology with NO and the mechanisms of these transformations has come from the elucidation of the geometric and electronic structures and chemical reactivity of synthetic model systems, in synergy with biochemical and biophysical studies on the relevant proteins themselves. This review focuses on recent advancements from studies on proteins and model complexes that not only have improved our understanding of the biological roles of NO but also have provided foundations for biomedical research and for bio-inspired catalyst design in energy science.
Collapse
Affiliation(s)
- Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Eunsuk Kim
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Hai T Dong
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jill B Harland
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Andrew P Hunt
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Elizabeth C Manickas
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Kady M Oakley
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - John Pham
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Garrett C Reed
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Victor Sosa Alfaro
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
17
|
Kemp-Harper B. Vasoprotective Actions of Nitroxyl (HNO): A Story of Sibling Rivalry. J Cardiovasc Pharmacol 2021; 78:S13-S18. [PMID: 34840263 DOI: 10.1097/fjc.0000000000001151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Nitroxyl (HNO), the 1 electron-reduced and protonated form of nitric oxide (NO•), has emerged as a nitrogen oxide with a suite of vasoprotective properties and therapeutic advantages over its redox sibling. Although HNO has garnered much attention due to its cardioprotective actions in heart failure, its ability to modulate vascular function, without the limitations of tolerance development and NO• resistance, is desirable in the treatment of vascular disease. HNO serves as a potent vasodilator and antiaggregatory agent and has an ability to limit vascular inflammation and reactive oxygen species generation. In addition, its resistance to scavenging by reactive oxygen species and ability to target distinct vascular signaling pathways (Kv, KATP, and calcitonin gene-related peptide) contribute to its preserved efficacy in hypertension, diabetes, and hypercholesterolemia. In this review, the vasoprotective actions of HNO will be compared with those of NO•, and the therapeutic utility of HNO donors in the treatment of angina, acute cardiovascular emergencies, and chronic vascular disease are discussed.
Collapse
Affiliation(s)
- Barbara Kemp-Harper
- Department of Pharmacology, Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
18
|
Smulik-Izydorczyk R, Dębowska K, Rostkowski M, Adamus J, Michalski R, Sikora A. Kinetics of Azanone (HNO) Reactions with Thiols: Effect of pH. Cell Biochem Biophys 2021; 79:845-856. [PMID: 33950351 PMCID: PMC8558164 DOI: 10.1007/s12013-021-00986-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2021] [Indexed: 11/04/2022]
Abstract
HNO (nitroxyl, IUPAC name azanone) is an electrophilic reactive nitrogen species of growing pharmacological and biological significance. Here, we present data on the pH-dependent kinetics of azanone reactions with the low molecular thiols glutathione and N-acetylcysteine, as well as with important serum proteins: bovine serum albumin and human serum albumin. The competition kinetics method used is based on two parallel HNO reactions: with RSH/RS- or with O2. The results provide evidence that the reaction of azanone with the anionic form of thiols (RS-) is favored over reactions with the protonated form (RSH). The data are supported with quantum mechanical calculations. A comprehensive discussion of the HNO reaction with thiolates is provided.
Collapse
Affiliation(s)
| | - Karolina Dębowska
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Michał Rostkowski
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Jan Adamus
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Radosław Michalski
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland.
| |
Collapse
|
19
|
Muniz Carvalho E, Silva Sousa EH, Bernardes‐Génisson V, Gonzaga de França Lopes L. When NO
.
Is not Enough: Chemical Systems, Advances and Challenges in the Development of NO
.
and HNO Donors for Old and Current Medical Issues. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Edinilton Muniz Carvalho
- Bioinorganic Group Department of Organic and Inorganic Chemistry Center of Sciences Federal University of Ceará Pici Campus Fortaleza 60455-760 Brazil
- CNRS Laboratoire de Chimie de Coordination LCC UPR 8241 205 Route de Narbonne, 44099 31077 Toulouse, Cedex 4 France
- Université de Toulouse Université Paul Sabatier UPS 118 Route de Narbonne 31062 Toulouse, Cedex 9 France
| | - Eduardo Henrique Silva Sousa
- Bioinorganic Group Department of Organic and Inorganic Chemistry Center of Sciences Federal University of Ceará Pici Campus Fortaleza 60455-760 Brazil
| | - Vania Bernardes‐Génisson
- CNRS Laboratoire de Chimie de Coordination LCC UPR 8241 205 Route de Narbonne, 44099 31077 Toulouse, Cedex 4 France
- Université de Toulouse Université Paul Sabatier UPS 118 Route de Narbonne 31062 Toulouse, Cedex 9 France
| | - Luiz Gonzaga de França Lopes
- Bioinorganic Group Department of Organic and Inorganic Chemistry Center of Sciences Federal University of Ceará Pici Campus Fortaleza 60455-760 Brazil
| |
Collapse
|
20
|
Neuman NI, Venâncio MF, Rocha WR, Bikiel DE, Suárez SA, Doctorovich F. Nitric Oxide Reacts Very Fast with Hydrogen Sulfide, Alcohols, and Thiols to Produce HNO: Revised Rate Constants. Inorg Chem 2021; 60:15997-16007. [PMID: 34450017 DOI: 10.1021/acs.inorgchem.1c01061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The chemical reactivity of NO and its role in several biological processes seem well established. Despite this, the chemical reduction of •NO toward HNO has been historically discarded, mainly because of the negative reduction potential of NO. However, this value and its implications are nowadays under revision. The last reported redox potential, E'(NO,H+/HNO), at micromolar and picomolar concentrations of •NO and HNO, respectively, is between -0.3 and 0 V at pH 7.4. This potential implies that the one-electron-reduction process for NO is feasible under biological conditions and could be promoted by well-known biological reductants with reduction potentials of around -0.3 to -0.5 V. Moreover, the biologically compatible chemical reduction of •NO (nonenzymatic), like direct routes to HNO by alkylamines, aromatic and pseudoaromatic alcohols, thiols, and hydrogen sulfide, has been extensively explored by our group during the past decade. The aim of this work is to use a kinetic modeling approach to analyze electrochemical HNO measurements and to report for the first-time direct reaction rate constants between •NO and moderate reducing agents, producing HNO. These values are between 5 and 30 times higher than the previously reported keff values. On the other hand, we also showed that reaction through successive attack by two NO molecules to biologically compatible compounds could produce HNO. After over 3 decades of intense research, the •NO chemistry is still there, ready to be discovered.
Collapse
Affiliation(s)
- Nicolas I Neuman
- Instituto de Desarrollo Tecnológico para la Industria Química, INTEC, UNL-CONICET, Paraje El Pozo, Santa Fe 3000, Argentina
- Institut für Anorganische Chemie, Universität Stuttgart, Stuttgart D-70569, Germany
| | - Mateus F Venâncio
- Departamento de Físico-Química, Instituto de Química, Universidade Federal da Bahia, Salvador, Bahia 40170-110, Brazil
| | - Willian R Rocha
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Damian E Bikiel
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1053, Argentina
- INQUIMAE-CONICET, Ciudad Universitaria, Buenos Aires C1428EHA, Argentina
| | - Sebastián A Suárez
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1053, Argentina
- INQUIMAE-CONICET, Ciudad Universitaria, Buenos Aires C1428EHA, Argentina
| | - Fabio Doctorovich
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1053, Argentina
- INQUIMAE-CONICET, Ciudad Universitaria, Buenos Aires C1428EHA, Argentina
| |
Collapse
|
21
|
Gallego CM, Mazzeo A, Vargas P, Suárez S, Pellegrino J, Doctorovich F. Azanone (HNO): generation, stabilization and detection. Chem Sci 2021; 12:10410-10425. [PMID: 34447533 PMCID: PMC8356739 DOI: 10.1039/d1sc02236a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022] Open
Abstract
HNO (nitroxyl, azanone), joined the 'biologically relevant reactive nitrogen species' family in the 2000s. Azanone is impossible to store due to its high reactivity and inherent low stability. Consequently, its chemistry and effects are studied using donor compounds, which release this molecule in solution and in the gas phase upon stimulation. Researchers have also tried to stabilize this elusive species and its conjugate base by coordination to metal centers using several ligands, like metalloporphyrins and pincer ligands. Given HNO's high reactivity and short lifetime, several different strategies have been proposed for its detection in chemical and biological systems, such as colorimetric methods, EPR, HPLC, mass spectrometry, fluorescent probes, and electrochemical analysis. These approaches are described and critically compared. Finally, in the last ten years, several advances regarding the possibility of endogenous HNO generation were made; some of them are also revised in the present work.
Collapse
Affiliation(s)
- Cecilia Mariel Gallego
- Departamento de Química Inorgánica, Analítica, y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria Pab. 2 C1428EHA Buenos Aires Argentina
| | - Agostina Mazzeo
- Departamento de Química Inorgánica, Analítica, y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria Pab. 2 C1428EHA Buenos Aires Argentina
| | - Paola Vargas
- Departamento de Química Inorgánica, Analítica, y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria Pab. 2 C1428EHA Buenos Aires Argentina
| | - Sebastián Suárez
- Departamento de Química Inorgánica, Analítica, y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria Pab. 2 C1428EHA Buenos Aires Argentina
| | - Juan Pellegrino
- Departamento de Química Inorgánica, Analítica, y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria Pab. 2 C1428EHA Buenos Aires Argentina
| | - Fabio Doctorovich
- Departamento de Química Inorgánica, Analítica, y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria Pab. 2 C1428EHA Buenos Aires Argentina
| |
Collapse
|
22
|
Lang NN, Ahmad FA, Cleland JG, O'Connor CM, Teerlink JR, Voors AA, Taubel J, Hodes AR, Anwar M, Karra R, Sakata Y, Ishihara S, Senior R, Khemka A, Prasad NG, DeSouza MM, Seiffert D, Ye JY, Kessler PD, Borentain M, Solomon SD, Felker GM, McMurray JJV. Haemodynamic effects of the nitroxyl donor cimlanod (BMS-986231) in chronic heart failure: a randomized trial. Eur J Heart Fail 2021; 23:1147-1155. [PMID: 33620131 DOI: 10.1002/ejhf.2138] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/01/2021] [Accepted: 02/18/2021] [Indexed: 12/22/2022] Open
Abstract
AIMS Nitroxyl provokes vasodilatation and inotropic and lusitropic effects in animals via post-translational modification of thiols. We aimed to compare effects of the nitroxyl donor cimlanod (BMS-986231) with those of nitroglycerin (NTG) or placebo on cardiac function in patients with chronic heart failure with reduced ejection fraction (HFrEF). METHODS AND RESULTS In a randomized, multicentre, double-blind, crossover trial, 45 patients with stable HFrEF were given a 5 h intravenous infusion of cimlanod, NTG, or placebo on separate days. Echocardiograms were done at the start and end of each infusion period and read in a core laboratory. The primary endpoint was stroke volume index derived from the left ventricular outflow tract at the end of each infusion period. Stroke volume index with placebo was 30 ± 7 mL/m2 and was lower with cimlanod (29 ± 9 mL/m2 ; P = 0.03) and NTG (28 ± 8 mL/m2 ; P = 0.02). Transmitral E-wave Doppler velocity on cimlanod or NTG was lower than on placebo and, consequently, E/e' (P = 0.006) and E/A ratio (P = 0.003) were also lower. NTG had similar effects to cimlanod on these measurements. Blood pressure reduction was similar with cimlanod and NTG and greater than with placebo. CONCLUSION In patients with chronic HFrEF, the haemodynamic effects of cimlanod and NTG are similar. The effects of cimlanod may be explained by venodilatation and preload reduction without additional inotropic or lusitropic effects. Ongoing trials of cimlanod will further define its potential role in the treatment of heart failure.
Collapse
Affiliation(s)
- Ninian N Lang
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, UK
| | - Faheem A Ahmad
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, UK
| | - John G Cleland
- Robertson Centre for Biostatistics & Clinical Trials, University of Glasgow, Glasgow, UK.,National Heart & Lung Institute, Royal Brompton & Harefield Hospitals, Imperial College, London, UK
| | | | - John R Teerlink
- Department of Cardiology, San Francisco Veterans Affairs Medical Center and School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Adriaan A Voors
- Department of Cardiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | | | - Anke R Hodes
- Department of Cardiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Mohamed Anwar
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Ravi Karra
- Department of Medicine, Duke Advanced Heart and Lung Failure Clinic, Duke University School of Medicine, Durham, NC, USA
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Hospital, Suita, Osaka, Japan
| | - Shiro Ishihara
- Department of Cardiology, Nippon Medical School, Kawasaki-shi, Japan
| | - Roxy Senior
- Department of Cardiovascular Research, Northwick Park Hospital & Department of Cardiology, Royal Brompton Hospital, London, UK
| | - Abhishek Khemka
- Department of Cardiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Narayana G Prasad
- Cardiovascular Division, Brigham and Women's Hospital, Boston, MA, USA
| | | | | | - June Y Ye
- Bristol-Myers Squibb, Princeton, NJ, USA
| | | | | | - Scott D Solomon
- Cardiovascular Division, Brigham and Women's Hospital, Boston, MA, USA
| | - G Michael Felker
- Division of Cardiology, Duke Clinical Research Institute (DCRI), Duke University School of Medicine, Durham, NC, USA
| | - John J V McMurray
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
23
|
Updating NO •/HNO interconversion under physiological conditions: A biological implication overview. J Inorg Biochem 2020; 216:111333. [PMID: 33385637 DOI: 10.1016/j.jinorgbio.2020.111333] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/13/2020] [Accepted: 12/05/2020] [Indexed: 12/12/2022]
Abstract
Azanone (HNO/NO-), also called nitroxyl, is a highly reactive compound whose biological role is still a matter of debate. A key issue that remains to be clarified regarding HNO and its biological activity is that of its endogenous formation. Given the overlap of the molecular targets and reactivity of nitric oxide (NO•) and HNO, its chemical biology was perceived to be similar to that of NO• as a biological signaling agent. However, despite their closely related reactivity, NO• and HNO's biochemical pathways are quite different. Moreover, the reduction of nitric oxide to azanone is possible but necessarily coupled to other reactions, which drive the reaction forward, overcoming the unfavorable thermodynamic barrier. The mechanism of this NO•/HNO interplay and its downstream effects in different contexts were studied recently, showing that more than fifteen moderate reducing agents react with NO• producing HNO. Particularly, it is known that the reaction between nitric oxide and hydrogen sulfide (H2S) produces HNO. However, this rate constant was not reported yet. In this work, firstly the NO•/H2S effective rate constant was measured as a function of the pH. Then, the implications of these chemical (non-enzymatic), biologically compatible, routes to endogenous HNO formation was discussed. There is no doubt that HNO could be (is?) a new endogenously produced messenger that mediates specific physiological responses, many of which were attributed yet to direct NO• effects.
Collapse
|
24
|
Felker GM, McMurray JJV, Cleland JG, O'Connor CM, Teerlink JR, Voors AA, Belohlavek J, Böhm M, Borentain M, Bueno H, Cole RT, DeSouza MM, Ezekowitz JA, Filippatos G, Lang NN, Kessler PD, Martinez FA, Mebazaa A, Metra M, Mosterd A, Pang PS, Ponikowski P, Sato N, Seiffert D, Ye J. Effects of a Novel Nitroxyl Donor in Acute Heart Failure: The STAND-UP AHF Study. JACC-HEART FAILURE 2020; 9:146-157. [PMID: 33248986 DOI: 10.1016/j.jchf.2020.10.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/04/2020] [Indexed: 01/24/2023]
Abstract
OBJECTIVES The primary objective was to identify well-tolerated doses of cimlanod in patients with acute heart failure (AHF). Secondary objectives were to identify signals of efficacy, including biomarkers, symptoms, and clinical events. BACKGROUND Nitroxyl (HNO) donors have vasodilator, inotropic and lusitropic effects. Bristol-Myers Squibb-986231 (cimlanod) is an HNO donor being developed for acute heart failure (AHF). METHODS This was a phase IIb, double-blind, randomized, placebo-controlled trial of 48-h treatment with cimlanod compared with placebo in patients with left ventricular ejection fraction ≤40% hospitalized for AHF. In part I, patients were randomized in a 1:1 ratio to escalating doses of cimlanod or matching placebo. In part II, patients were randomized in a 1:1:1 ratio to either of the 2 highest tolerated doses of cimlanod from part I or placebo. The primary endpoint was the rate of clinically relevant hypotension (systolic blood pressure <90 mm Hg or patients became symptomatic). RESULTS In part I (n = 100), clinically relevant hypotension was more common with cimlanod than placebo (20% vs. 8%; relative risk [RR]: 2.45; 95% confidence interval [CI]: 0.83 to 14.53). In part II (n = 222), the incidence of clinically relevant hypotension was 18% for placebo, 21% for cimlanod 6 μg/kg/min (RR: 1.15; 95% CI: 0.58 to 2.43), and 35% for cimlanod 12 μg/kg/min (RR: 1.9; 95% CI: 1.04 to 3.59). N-terminal pro-B-type natriuretic peptide and bilirubin decreased during infusion of cimlanod treatment compared with placebo, but these differences did not persist after treatment discontinuation. CONCLUSIONS Cimlanod at a dose of 6 μg/kg/min was reasonably well-tolerated compared with placebo. Cimlanod reduced markers of congestion, but this did not persist beyond the treatment period. (Evaluate the Safety and Efficacy of 48-Hour Infusions of HNO (Nitroxyl) Donor in Hospitalized Patients With Heart Failure [STANDUP AHF]; NCT03016325).
Collapse
Affiliation(s)
- G Michael Felker
- Duke University School of Medicine and the Duke Clinical Research Institute, Durham, North Carolina, USA.
| | - John J V McMurray
- British Heart Foundation Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - John G Cleland
- Robertson Centre for Biostatistics, Institute of Health and Wellbeing, University of Glasgow, Glasgow Royal Infirmary, Glasgow, United Kingdom and National Heart & Lung Institute Imperial College, London, United Kingdom
| | | | - John R Teerlink
- Section of Cardiology, San Francisco Veterans Affairs Medical Center and School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Adriaan A Voors
- University of Groningen, Department of Cardiology, University Medical Center Groningen, Groningen, the Netherlands
| | - Jan Belohlavek
- 2nd Department of Internal Medicine, Cardiovascular Medicine, General University Hospital, Charles University in Prague, Czech Republic
| | - Michael Böhm
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Saarland University, Homburg/Saar, Germany
| | | | - Hector Bueno
- Cardiology Department, Hospital Universitario 12 de Octubre and Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain
| | - Robert T Cole
- Inova Heart and Vascular Institute, Falls Church, Virginia, USA
| | | | - Justin A Ezekowitz
- Canadian VIGOUR Centre at the University of Alberta, Edmonton, Alberta, Canada
| | - Gerasimos Filippatos
- National and Kapodisrian University of Athens, School of Medicine, Athens, Greece
| | - Ninian N Lang
- British Heart Foundation Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | | | | | - Alex Mebazaa
- Department of Anaesthesiology and Critical Care Medicine, Saint Louis Lariboisière University Hospitals, Assistance Publique - Hôpitaux de Paris, Université de Paris, Inserm 942-MASCOT, FHU PROMICE, Paris, France
| | - Marco Metra
- Institute of Cardiology, ASST Spedali Civili di Brescia and Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Arend Mosterd
- Department of Cardiology, Meander Medical Center, Amersfoort, the Netherlands and Dutch Network for Cardiovascular Research, Utrecht, the Netherlands
| | - Peter S Pang
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | - Naoki Sato
- Cardiology and Intensive Care Unit, Nippon Medical School, Musashi-Kosugi Hospital, Kawasaki, Japan
| | | | - June Ye
- Bristol-Myers-Squibb, Princeton, New Jersey, USA
| |
Collapse
|
25
|
Mukosera GT, Liu T, Manaen M, Zhu L, Power G, Schroeder H, Blood AB. Deferoxamine produces nitric oxide under ferricyanide oxidation, blood incubation, and UV-irradiation. Free Radic Biol Med 2020; 160:458-470. [PMID: 32828952 PMCID: PMC11059783 DOI: 10.1016/j.freeradbiomed.2020.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/03/2020] [Accepted: 08/09/2020] [Indexed: 11/29/2022]
Abstract
Deferoxamine (DFO), an iron chelator, is used therapeutically for the removal of excess iron in multiple clinical conditions such as beta thalassemia and intracerebral hemorrhage. DFO is also used as an iron chelator and hypoxia-mimetic agent in in vivo and in vitro basic research. Here we unexpectedly discover DFO to be a nitric oxide (NO) precursor in experiments where it was intended to act as an iron chelator. Production of NO from aqueous solutions of DFO was directly observed by ozone-based chemiluminescence using a ferricyanide-based assay and was confirmed by electron paramagnetic resonance (EPR). DFO also produced NO following exposure to ultraviolet light, and its incubation with sheep adult and fetal blood resulted in considerable formation of iron nitrosyl hemoglobin, as confirmed by both visible spectroscopy and EPR. These results suggest that experiments using DFO can be confounded by concomitant production of NO, and offer new insight into some of DFO's unexplained clinical side effects such as hypotension.
Collapse
Affiliation(s)
- George T Mukosera
- Lawrence D Longo Center for Perinatal Biology and Department of Pediatrics, Loma Linda University, 11175 Campus Street, Loma Linda, CA, 92354, USA
| | - Taiming Liu
- Lawrence D Longo Center for Perinatal Biology and Department of Pediatrics, Loma Linda University, 11175 Campus Street, Loma Linda, CA, 92354, USA
| | - Meshach Manaen
- Lawrence D Longo Center for Perinatal Biology and Department of Pediatrics, Loma Linda University, 11175 Campus Street, Loma Linda, CA, 92354, USA
| | - Lingchao Zhu
- Department of Chemistry, University of California-Riverside 501 Big Springs Road, Riverside, CA 92521, USA
| | - Gordon Power
- Lawrence D Longo Center for Perinatal Biology and Department of Pediatrics, Loma Linda University, 11175 Campus Street, Loma Linda, CA, 92354, USA
| | - Hobe Schroeder
- Lawrence D Longo Center for Perinatal Biology and Department of Pediatrics, Loma Linda University, 11175 Campus Street, Loma Linda, CA, 92354, USA
| | - Arlin B Blood
- Lawrence D Longo Center for Perinatal Biology and Department of Pediatrics, Loma Linda University, 11175 Campus Street, Loma Linda, CA, 92354, USA.
| |
Collapse
|
26
|
Lv X, Chen K, Shi G, Lin W, Bai H, Li H, Tang G, Wang C. Design and tuning of ionic liquid-based HNO donor through intramolecular hydrogen bond for efficient inhibition of tumor growth. SCIENCE ADVANCES 2020; 6:eabb7788. [PMID: 33158861 PMCID: PMC7673712 DOI: 10.1126/sciadv.abb7788] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/23/2020] [Indexed: 05/20/2023]
Abstract
Developing ionic liquid (IL) drugs broaden new horizons in pharmaceuticals. The tunable nature endows ILs with capacity to delivery active ingredients. However, the tunability is limited to screen ionic components, and none realizes the kinetic tuning of drug release, which is a key challenge in the design of IL drugs. Here, a series of ILs are developed using biocompatible ionic components, which realizes absorption of gaseous NO to yield IL-NONOates. These IL-NONOates serve as HNO donors to release active ingredient. The release kinetics can be tuned through configuring the geometric construction of ILs (release half-lives, 4.2 to 1061 min). Mechanism research indicates that the tunability depends on the strength of intramolecular hydrogen bond. Furthermore, the IL-based HNO donors exert pharmacological potential to inhibit tumor progression by regulating intratumoral redox state. Coupled with biosafety, these IL-based HNO donors with facile preparation and tunable functionalization can be promising candidates for pharmaceutical application.
Collapse
Affiliation(s)
- Xiaoyu Lv
- Department of Chemistry, ZJU-NHU United R&D Center, Zhejiang University, Hangzhou 310027, China
| | - Kaihong Chen
- Department of Chemistry, ZJU-NHU United R&D Center, Zhejiang University, Hangzhou 310027, China
| | - Guiling Shi
- Department of Chemistry, ZJU-NHU United R&D Center, Zhejiang University, Hangzhou 310027, China
| | - Wenjun Lin
- Department of Chemistry, ZJU-NHU United R&D Center, Zhejiang University, Hangzhou 310027, China
| | - Hongzhen Bai
- Department of Chemistry, ZJU-NHU United R&D Center, Zhejiang University, Hangzhou 310027, China.
| | - Haoran Li
- Department of Chemistry, ZJU-NHU United R&D Center, Zhejiang University, Hangzhou 310027, China
| | - Guping Tang
- Department of Chemistry, ZJU-NHU United R&D Center, Zhejiang University, Hangzhou 310027, China
| | - Congmin Wang
- Department of Chemistry, ZJU-NHU United R&D Center, Zhejiang University, Hangzhou 310027, China.
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
27
|
Maack C, Eschenhagen T, Hamdani N, Heinzel FR, Lyon AR, Manstein DJ, Metzger J, Papp Z, Tocchetti CG, Yilmaz MB, Anker SD, Balligand JL, Bauersachs J, Brutsaert D, Carrier L, Chlopicki S, Cleland JG, de Boer RA, Dietl A, Fischmeister R, Harjola VP, Heymans S, Hilfiker-Kleiner D, Holzmeister J, de Keulenaer G, Limongelli G, Linke WA, Lund LH, Masip J, Metra M, Mueller C, Pieske B, Ponikowski P, Ristić A, Ruschitzka F, Seferović PM, Skouri H, Zimmermann WH, Mebazaa A. Treatments targeting inotropy. Eur Heart J 2020; 40:3626-3644. [PMID: 30295807 DOI: 10.1093/eurheartj/ehy600] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/06/2018] [Accepted: 09/14/2018] [Indexed: 02/06/2023] Open
Abstract
Acute heart failure (HF) and in particular, cardiogenic shock are associated with high morbidity and mortality. A therapeutic dilemma is that the use of positive inotropic agents, such as catecholamines or phosphodiesterase-inhibitors, is associated with increased mortality. Newer drugs, such as levosimendan or omecamtiv mecarbil, target sarcomeres to improve systolic function putatively without elevating intracellular Ca2+. Although meta-analyses of smaller trials suggested that levosimendan is associated with a better outcome than dobutamine, larger comparative trials failed to confirm this observation. For omecamtiv mecarbil, Phase II clinical trials suggest a favourable haemodynamic profile in patients with acute and chronic HF, and a Phase III morbidity/mortality trial in patients with chronic HF has recently begun. Here, we review the pathophysiological basis of systolic dysfunction in patients with HF and the mechanisms through which different inotropic agents improve cardiac function. Since adenosine triphosphate and reactive oxygen species production in mitochondria are intimately linked to the processes of excitation-contraction coupling, we also discuss the impact of inotropic agents on mitochondrial bioenergetics and redox regulation. Therefore, this position paper should help identify novel targets for treatments that could not only safely improve systolic and diastolic function acutely, but potentially also myocardial structure and function over a longer-term.
Collapse
Affiliation(s)
- Christoph Maack
- Comprehensive Heart Failure Center, University Clinic Würzburg, Am Schwarzenberg 15, Würzburg, Germany
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.,Partner site Hamburg/Kiel/Lübeck, DZHK (German Centre for Cardiovascular Research), Hamburg, Germany
| | - Nazha Hamdani
- Department of Cardiovascular Physiology, Ruhr University Bochum, Bochum, Germany
| | - Frank R Heinzel
- Department of Cardiology, Charité University Medicine, Berlin, Germany
| | - Alexander R Lyon
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton Hospital and National Heart and Lung Institute, Imperial College, London, UK
| | - Dietmar J Manstein
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany.,Division for Structural Biochemistry, Hannover Medical School, Hannover, Germany
| | - Joseph Metzger
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Zoltán Papp
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Carlo G Tocchetti
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - M Birhan Yilmaz
- Department of Cardiology, Cumhuriyet University, Sivas, Turkey
| | - Stefan D Anker
- Department of Cardiology and Pneumology, University Medical Center Göttingen and DZHK (German Center for Cardiovascular Research), Göttingen, Germany.,Division of Cardiology and Metabolism - Heart Failure, Cachexia and Sarcopenia, Department of Internal Medicine and Cardiology, Berlin-Brandenburg Center for Regenerative Therapies (BCRT) at Charité University Medicine, Berlin, Germany
| | - Jean-Luc Balligand
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Pharmacology and Therapeutics (FATH), Universite Catholique de Louvain and Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover D-30625, Germany
| | | | - Lucie Carrier
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.,Partner site Hamburg/Kiel/Lübeck, DZHK (German Centre for Cardiovascular Research), Hamburg, Germany
| | - Stefan Chlopicki
- Department of Pharmacology, Medical College, Jagiellonian University, Krakow, Poland
| | - John G Cleland
- University of Hull, Kingston upon Hull, UK.,National Heart and Lung Institute, Royal Brompton and Harefield Hospitals NHS Trust, Imperial College, London, UK
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Alexander Dietl
- Klinik und Poliklinik für Innere Medizin II, Universitätsklinikum Regensburg, Regensburg, Germany
| | - Rodolphe Fischmeister
- Inserm UMR-S 1180, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | | | | | | | | | - Gilles de Keulenaer
- Laboratory of Physiopharmacology (University of Antwerp) and Department of Cardiology, ZNA Hospital, Antwerp, Belgium
| | - Giuseppe Limongelli
- Department of Cardiothoracic Sciences, Second University of Naples, Naples, Italy
| | | | - Lars H Lund
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Josep Masip
- Intensive Care Department, Consorci Sanitari Integral, University of Barcelona, Spain
| | - Marco Metra
- Cardiology, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Italy
| | - Christian Mueller
- Department of Cardiology and Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, Switzerland
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany.,Department of Internal Medicine and Cardiology, German Heart Center Berlin, and German Centre for Cardiovascular Research (DZHK), Partner site Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Piotr Ponikowski
- Department of Cardiology, Medical University, Clinical Military Hospital, Wroclaw, Poland
| | - Arsen Ristić
- Department of Cardiology of the Clinical Center of Serbia and Belgrade University School of Medicine, Belgrade, Serbia
| | - Frank Ruschitzka
- Department of Cardiology, University Heart Centre, University Hospital Zurich, Switzerland
| | | | - Hadi Skouri
- Division of Cardiology, American University of Beirut Medical Centre, Beirut, Lebanon
| | - Wolfram H Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Partner siteGöttingen, Göttingen, Germany
| | - Alexandre Mebazaa
- Hôpital Lariboisière, Université Paris Diderot, Inserm U 942, Paris, France
| |
Collapse
|
28
|
Sun HJ, Wu ZY, Cao L, Zhu MY, Nie XW, Huang DJ, Sun MT, Bian JS. Role of nitroxyl (HNO) in cardiovascular system: From biochemistry to pharmacology. Pharmacol Res 2020; 159:104961. [DOI: 10.1016/j.phrs.2020.104961] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/16/2020] [Accepted: 05/24/2020] [Indexed: 12/12/2022]
|
29
|
Cardiovascular Therapeutic Potential of the Redox Siblings, Nitric Oxide (NO•) and Nitroxyl (HNO), in the Setting of Reactive Oxygen Species Dysregulation. Handb Exp Pharmacol 2020; 264:311-337. [PMID: 32813078 DOI: 10.1007/164_2020_389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Reactive oxygen species (ROS) dysregulation is a hallmark of cardiovascular disease, characterised by an imbalance in the synthesis and removal of ROS. ROS such as superoxide (•O2-), hydrogen peroxide (H2O2), hydroxyl (OH•) and peroxynitrite (ONOO-) have a marked impact on cardiovascular function, contributing to the vascular impairment and cardiac dysfunction associated with diseases such as angina, hypertension, diabetes and heart failure. Central to the vascular dysfunction is a reduction in bioavailability and/or physiological effects of vasoprotective nitric oxide (NO•), leading to vasoconstriction, inflammation and vascular remodelling. In a cardiac context, increased ROS generation can also lead to modification of key proteins involved in cardiac contractility. Whilst playing a key role in the pathogenesis of cardiovascular disease, ROS dysregulation also limits the clinical efficacy of current therapies, such as nitrosovasodilators. As such, alternate therapies are sought. This review will discuss the impact of ROS dysregulation on the therapeutic utility of NO• and its redox sibling, nitroxyl (HNO). Both nitric oxide (NO) and nitroxyl (HNO) donors signal through soluble guanylyl cyclase (sGC). NO binds to the Fe(II) form of sGC and nitroxyl possibly to both sGC heme and thiol groups. In the vasculature, nitroxyl can also signal through voltage-dependent (Kv) and ATP-sensitive (KATP) K+ channels as well as calcitonin gene-related peptide (CGRP). In the heart, HNO directly targets critical thiols to increase myocardial contractility, an effect not seen with NO. The qualitative effects via elevation of cGMP are similar, i.e. lusitropic in the heart and inhibitory on vasoconstriction, inflammation, aggregation and vascular remodelling. Of pathophysiological significance is the fact the efficacy of NO donors is impaired by ROS, e.g. through chemical scavenging of NO, to generate reactive nitrogen oxide species (RNOS), whilst nitroxyl is apparently not.
Collapse
|
30
|
Gastreich-Seelig M, Jimenez M, Pouokam E. Mechanisms Associated to Nitroxyl (HNO)-Induced Relaxation in the Intestinal Smooth Muscle. Front Physiol 2020; 11:438. [PMID: 32581821 PMCID: PMC7283591 DOI: 10.3389/fphys.2020.00438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/08/2020] [Indexed: 12/23/2022] Open
Abstract
The pharmacological properties of nitroxyl (HNO) donors in the gastrointestinal tract are unknown. We investigated the properties of this molecule in the regulation of gastrointestinal contractility focusing on its possible interaction with other gaseous signaling molecules such as NO and H2S. Organ bath, Ca2+ imaging, and microelectrode recordings were performed on rat intestinal samples, using Angeli’s salt as HNO donor. Angeli’s salt caused a concentration-dependent relaxation of longitudinal or circular muscle strips of the ileum and the proximal colon. This relaxation was strongly inhibited by the Rho-kinase inhibitor Y-27632 (10 μM), by the reducing agent DTT or by the inhibitor of soluble guanylate cyclase (sGC) ODQ (10 μM) alone or in combination with the inhibitors of the endogenous synthesis of H2S β-cyano-L-alanine (5 mM) and amino-oxyacetate (5 mM). Preventing endogenous synthesis of NO by the NO synthase inhibitor L-NAME (200 μM) did not affect the relaxation induced by HNO. HNO induced an increase in cytosolic Ca2+ concentration in colonic myocytes. It also elicited myocyte membrane hyperpolarization that amounted to −10.6 ± 1.1 mV. ODQ (10 μM) and Apamin (1 μM), a selective inhibitor of small conductance Ca2+-activated K+ channels (SKca), strongly antagonized this effect. We conclude that HNO relaxes the gastrointestinal tract musculature by hyperpolarizing myocytes via activation of the sGC/cGMP pathway similarly to NO, not only inhibiting the RhoK and activating MLCP as do both NO and H2S but also increasing cytosolic Ca2+ for activation of SKCa contributing to hyperpolarization.
Collapse
Affiliation(s)
- Mirko Gastreich-Seelig
- Institute for Veterinary Physiology and Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany
| | - Marcel Jimenez
- Department of Cell Biology, Physiology and Immunology and Neurosciences Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ervice Pouokam
- Institute for Veterinary Physiology and Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
31
|
Velagic A, Qin C, Woodman OL, Horowitz JD, Ritchie RH, Kemp-Harper BK. Nitroxyl: A Novel Strategy to Circumvent Diabetes Associated Impairments in Nitric Oxide Signaling. Front Pharmacol 2020; 11:727. [PMID: 32508651 PMCID: PMC7248192 DOI: 10.3389/fphar.2020.00727] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 05/01/2020] [Indexed: 12/19/2022] Open
Abstract
Diabetes is associated with an increased mortality risk due to cardiovascular complications. Hyperglycemia-induced oxidative stress underlies these complications, leading to an impairment in endogenous nitric oxide (NO•) generation, together with reductions in NO• bioavailability and NO• responsiveness in the vasculature, platelets and myocardium. The latter impairment of responsiveness to NO•, termed NO• resistance, compromises the ability of traditional NO•-based therapeutics to improve hemodynamic status during diabetes-associated cardiovascular emergencies, such as acute myocardial infarction. Whilst a number of agents can ameliorate (e.g. angiotensin converting enzyme [ACE] inhibitors, perhexiline, statins and insulin) or circumvent (e.g. nitrite and sGC activators) NO• resistance, nitroxyl (HNO) donors offer a novel opportunity to circumvent NO• resistance in diabetes. With a suite of vasoprotective properties and an ability to enhance cardiac inotropic and lusitropic responses, coupled with preserved efficacy in the setting of oxidative stress, HNO donors have intact therapeutic potential in the face of diminished NO• signaling. This review explores the major mechanisms by which hyperglycemia-induced oxidative stress drives NO• resistance, and the therapeutic potential of HNO donors to circumvent this to treat cardiovascular complications in type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Anida Velagic
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Chengxue Qin
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Owen L. Woodman
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - John D. Horowitz
- Basil Hetzel Institute, Queen Elizabeth Hospital, University of Adelaide, Adelaide, SA, Australia
| | - Rebecca H. Ritchie
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Barbara K. Kemp-Harper
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
32
|
Sun HJ, Lee WT, Leng B, Wu ZY, Yang Y, Bian JS. Nitroxyl as a Potential Theranostic in the Cancer Arena. Antioxid Redox Signal 2020; 32:331-349. [PMID: 31617376 DOI: 10.1089/ars.2019.7904] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Significance: As one-electron reduced molecule of nitric oxide (NO), nitroxyl (HNO) has gained enormous attention because of its novel physiological or pharmacological properties, ranging from cardiovascular protective actions to antitumoricidal effects. Recent Advances: HNO is emerging as a new entity with therapeutic advantages over its redox sibling, NO. The interests in the chemical, pharmacological, and biological characteristics of HNO have broadened our current understanding of its role in physiology and pathophysiology. Critical Issues: In particular, the experimental evidence suggests the therapeutic potential of HNO in tumor pharmacology, such as neuroblastoma, gastrointestinal tumor, ovarian, lung, and breast cancers. Indeed, HNO donors have been demonstrated to attenuate tumor proliferation and angiogenesis. Future Directions: In this review, the generation and detection of HNO are outlined, and the roles of HNO in cancer progression are further discussed. We anticipate that the completion of this review might give novel insights into the roles of HNO in cancer pharmacology and open up a novel field of cancer therapy based on HNO.
Collapse
Affiliation(s)
- Hai-Jian Sun
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wei-Thye Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Bin Leng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhi-Yuan Wu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yong Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
| | - Jin-Song Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,National University of Singapore (Suzhou) Research Institute, Suzhou, China
| |
Collapse
|
33
|
Bhattacharya S, Lakshman TR, Sutradhar S, Tiwari CK, Paine TK. Bioinspired oxidation of oximes to nitric oxide with dioxygen by a nonheme iron(II) complex. J Biol Inorg Chem 2019; 25:3-11. [PMID: 31637527 DOI: 10.1007/s00775-019-01726-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/24/2019] [Indexed: 11/29/2022]
Abstract
The ability of two iron(II) complexes, [(TpPh2)FeII(benzilate)] (1) and [(TpPh2)(FeII)2(NPP)3] (2) (TpPh2 = hydrotris(3,5-diphenylpyrazol-1-yl)borate, NPP-H = α-isonitrosopropiophenone), of a monoanionic facial N3 ligand in the O2-dependent oxidation of oximes is reported. The mononuclear complex 1 reacts with dioxygen to decarboxylate the iron-coordinated benzilate. The oximate-bridged dinuclear complex (2), which contains a high-spin (TpPh2)FeII unit and a low-spin iron(II)-oximate unit, activates dioxygen at the high-spin iron(II) center. Both the complexes exhibit the oxidative transformation of oximes to the corresponding carbonyl compounds with the incorporation of one oxygen atom from dioxygen. In the oxidation process, the oxime units are converted to nitric oxide (NO) or nitroxyl (HNO). The iron(II)-benzilate complex (1) reacts with oximes to afford HNO, whereas the iron(II)-oximate complex (2) generates NO. The results described here suggest that the oxidative transformation of oximes to NO/HNO follows different pathways depending upon the nature of co-ligand/reductant.Graphic abstract.
Collapse
Affiliation(s)
- Shrabanti Bhattacharya
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Triloke Ranjan Lakshman
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Subhankar Sutradhar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Chandan Kumar Tiwari
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Tapan Kanti Paine
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India.
| |
Collapse
|
34
|
Rahman MH, Liu Y, Ryan MD. Proton Transfer versus Hydrogen Bonding in a Reduced Iron Porphyrin Nitrosyl Complex. Inorg Chem 2019; 58:13788-13795. [PMID: 31565930 DOI: 10.1021/acs.inorgchem.9b01447] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The 1H NMR spectra of Fe(OEP)(HNO), which was formed from Fe(OEP)(NO)- in the presence of 3,5-dichlorophenol, were studied as a function of temperature. The chemical shift of the HNO proton showed a unique behavior which could be explained based on the equilibrium between the protonated complex, Fe(OEP)(HNO), and the hydrogen-bonded complex, Fe(OEP)(NO)-···HOPh. This equilibrium was consistent with UV/visible spectroscopy and the voltammetric data. UV/visible stopped-flow experiments showed that the hydrogen-bonded complex, which was formed when weak acids such as phenol were added, and the Fe(OEP)(HNO) complex were quite similar. In addition to the HNO proton resonance, the meso-resonances were consistent with the proposed equilibrium. Density functional theory calculations of various Fe(OEP)(NO)-/Fe(OEP)(HNO) species were calculated, and the results were consistent with experimental data.
Collapse
Affiliation(s)
- Md Hafizur Rahman
- Chemistry Department , Marquette University , PO Box 1881, Milwaukee , Wisconsin 53201 , United States
| | - Yilin Liu
- Chemistry Department , Marquette University , PO Box 1881, Milwaukee , Wisconsin 53201 , United States
| | - Michael D Ryan
- Chemistry Department , Marquette University , PO Box 1881, Milwaukee , Wisconsin 53201 , United States
| |
Collapse
|
35
|
Gonzalez MC, Braun AM. VUV-photolysis of aqueous solutions of hydroxylamine and nitric oxide. Effect of organic matter: phenol. Photochem Photobiol Sci 2019; 18:2240-2247. [PMID: 31290902 DOI: 10.1039/c9pp00143c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
VUV-irradiation of aqueous solutions containing hydroxylamine (NH2OH) in its acid form (NH3OH+) and phenol (C6H5OH) results in the simultaneous mineralization of the organic substrate and the almost quantitative reduction of NH3OH+ to ammonium ions (NH4+). Irradiation of aqueous solutions of NH3OH+ in the absence of organic substrates showed the formation of nitrate (NO3-) and nitrite (NO2-) and minor quantities of NH4+. In line with these experiments, VUV-irradiation of aqueous solutions of nitrogen monoxide (NO˙) yields NH4+ only when C6H5OH is simultaneously mineralized. A possible reaction mechanism is discussed, where reactions of NO˙ and NH3OH+ with hydrogen atoms (H˙), hydroxyl radicals (HO˙) and hydrated electrons (e-aq), all generated by the VUV-photochemically initiated homolysis of water, are of great importance to the observed results. In the presence of phenol, competition between phenol and either NO˙ or NH3OH+ for these reactive intermediates in the primary volume of reactions strongly determines the oxidation state and nature of the N-containing products. C-Centered radicals and intermediate products of reactions may also have an important effect on the overall mechanism. The present results are discussed in relation to the actual state of knowledge presented in the literature.
Collapse
Affiliation(s)
- Mónica C Gonzalez
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (1900) La Plata, Argentina.
| | - André M Braun
- Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany.
| |
Collapse
|
36
|
Felker GM, Borentain M, Cleland JG, DeSouza MM, Kessler PD, O'Connor CM, Seiffert D, Teerlink JR, Voors AA, McMurray JJV. Rationale and design for the development of a novel nitroxyl donor in patients with acute heart failure. Eur J Heart Fail 2019; 21:1022-1031. [PMID: 31168885 DOI: 10.1002/ejhf.1504] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/20/2019] [Accepted: 05/11/2019] [Indexed: 12/18/2022] Open
Abstract
Hospitalisation for acute heart failure remains a major public health problem with high prevalence, morbidity, mortality, and cost. Prior attempts to develop new therapies for this condition have not been successful. Nitroxyl (HNO) plays a unique role in cardiovascular physiology by direct post-translational modification of thiol residues on target proteins, specifically SERCA2a, phospholamban, the ryanodine receptor and myofilament proteins in cardiomyocytes. In animal models, these biological effects lead to vasodilatation, increased inotropy and lusitropy, but without tachyphylaxis, pro-arrhythmia or evidence of increased myocardial oxygen demand. BMS-986231 is an HNO donor being developed as a therapy for heart failure, and initial studies in patients with heart failure support the potential clinical value of these physiological effects. In this manuscript, we describe the ongoing phase II development programme for BMS-986231, which consists of three related randomised placebo-controlled clinical trials, StandUP-AHF, StandUP-Imaging and StandUP-Kidney, which are designed to provide evidence of tolerability and efficacy as well as confirm the anticipated physiological effects in patients with heart failure with reduced ejection fraction. These studies will set the stage for the further study of BMS-986231 in future phase III clinical trials.
Collapse
Affiliation(s)
- G Michael Felker
- Duke Clinical Research Institute (DCRI), Duke University School of Medicine, Durham, NC, USA
| | | | - John G Cleland
- Robertson Centre for Biostatistics & Clinical Trials, University of Glasgow, Glasgow, UK.,National Heart & Lung Institute, Royal Brompton & Harefield Hospitals, Imperial College, London, UK
| | | | | | | | | | - John R Teerlink
- San Francisco Veterans Affairs Medical Center and School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Adriaan A Voors
- University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - John J V McMurray
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
37
|
Confer AM, Vilbert AC, Dey A, Lancaster KM, Goldberg DP. A Mononuclear, Nonheme Fe II-Piloty's Acid (PhSO 2NHOH) Adduct: An Intermediate in the Production of {FeNO} 7/8 Complexes from Piloty's Acid. J Am Chem Soc 2019; 141:7046-7055. [PMID: 30994347 DOI: 10.1021/jacs.9b01700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Reaction of the mononuclear nonheme complex [FeII(CH3CN)(N3PyS)]BF4 (1) with an HNO donor, Piloty's acid (PhSO2NHOH, P.A.), at low temperature affords a high-spin ( S = 2) FeII-P.A. intermediate (2), characterized by 57Fe Mössbauer and Fe K-edge X-ray absorption (XAS) spectroscopies, with interpretation of both supported by DFT calculations. The combined methods indicate that P.A. anion binds as the N-deprotonated tautomer (PhSO2NOH-) to [FeII(N3PyS)]+, leading to 2. Complex 2 is the first spectroscopically characterized example, to our knowledge, of P.A. anion bound to a redox-active metal center. Warming of 2 above -60 °C yields the stable {FeNO}7 complex [Fe(NO)(N3PyS)]BF4 (4), as evidenced by 1H NMR, ATR-IR, and Mössbauer spectroscopies. Isotope labeling experiments with 15N-labeled P.A. confirm that the nitrosyl ligand in 4 derives from P.A. In contrast, addition of a second equivalent of a strong base leads to S-N cleavage and production of an {FeNO}8 species, the deprotonated analog of an Fe-HNO complex. This work has implications for the targeted delivery of HNO/NO-/NO· to nonheme Fe centers in biological and synthetic applications, and suggests a new role for nonheme FeII complexes in the assisted degradation of HNO donor molecules.
Collapse
Affiliation(s)
- Alex M Confer
- Department of Chemistry , The Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Avery C Vilbert
- Baker Laboratory, Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - Aniruddha Dey
- Department of Chemistry , The Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Kyle M Lancaster
- Baker Laboratory, Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - David P Goldberg
- Department of Chemistry , The Johns Hopkins University , Baltimore , Maryland 21218 , United States
| |
Collapse
|
38
|
Zhao X, Gao C, Li N, Liu F, Huo S, Li J, Guan X, Yan N. BODIPY based fluorescent turn-on sensor for highly selective detection of HNO and the application in living cells. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.04.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
Keceli G, Majumdar A, Thorpe CN, Jun S, Tocchetti CG, Lee DI, Mahaney JE, Paolocci N, Toscano JP. Nitroxyl (HNO) targets phospholamban cysteines 41 and 46 to enhance cardiac function. J Gen Physiol 2019; 151:758-770. [PMID: 30842219 PMCID: PMC6571998 DOI: 10.1085/jgp.201812208] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 02/15/2019] [Indexed: 11/20/2022] Open
Abstract
Nitroxyl (HNO) positively modulates myocardial function by accelerating Ca2+ reuptake into the sarcoplasmic reticulum (SR). HNO-induced enhancement of myocardial Ca2+ cycling and function is due to the modification of cysteines in the transmembrane domain of phospholamban (PLN), which results in activation of SR Ca2+-ATPase (SERCA2a) by functionally uncoupling PLN from SERCA2a. However, which cysteines are modified by HNO, and whether HNO induces reversible disulfides or single cysteine sulfinamides (RS(O)NH2) that are less easily reversed by reductants, remain to be determined. Using an 15N-edited NMR method for sulfinamide detection, we first demonstrate that Cys46 and Cys41 are the main targets of HNO reactivity with PLN. Supporting this conclusion, mutation of PLN cysteines 46 and 41 to alanine reduces the HNO-induced enhancement of SERCA2a activity. Treatment of WT-PLN with HNO leads to sulfinamide formation when the HNO donor is in excess, whereas disulfide formation is expected to dominate when the HNO/thiol stoichiometry approaches a 1:1 ratio that is more similar to that anticipated in vivo under normal, physiological conditions. Thus, 15N-edited NMR spectroscopy detects redox changes on thiols that are unique to HNO, greatly advancing the ability to detect HNO footprints in biological systems, while further differentiating HNO-induced post-translational modifications from those imparted by other reactive nitrogen or oxygen species. The present study confirms the potential of HNO as a signaling molecule in the cardiovascular system.
Collapse
Affiliation(s)
- Gizem Keceli
- Department of Chemistry, Johns Hopkins University, Baltimore, MD.,Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Ananya Majumdar
- Biomolecular NMR Center, Johns Hopkins University, Baltimore, MD
| | - Chevon N Thorpe
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Seungho Jun
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, MD
| | | | - Dong I Lee
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, MD
| | | | - Nazareno Paolocci
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, MD.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - John P Toscano
- Department of Chemistry, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
40
|
An W, Ryan LS, Reeves AG, Bruemmer KJ, Mouhaffel L, Gerberich JL, Winters A, Mason RP, Lippert AR. A Chemiluminescent Probe for HNO Quantification and Real-Time Monitoring in Living Cells. Angew Chem Int Ed Engl 2019; 58:1361-1365. [PMID: 30476360 PMCID: PMC6396311 DOI: 10.1002/anie.201811257] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/07/2018] [Indexed: 01/28/2023]
Abstract
Azanone (HNO) is a reactive nitrogen species with pronounced biological activity and high therapeutic potential for cardiovascular dysfunction. A critical barrier to understanding the biology of HNO and furthering clinical development is the quantification and real-time monitoring of its delivery in living systems. Herein, we describe the design and synthesis of the first chemiluminescent probe for HNO, HNOCL-1, which can detect HNO generated from concentrations of Angeli's salt as low as 138 nm with high selectivity based on the reaction with a phosphine group to form a self-cleavable azaylide intermediate. We have capitalized on this high sensitivity to develop a generalizable kinetics-based approach, which provides real-time quantitative measurements of HNO concentration at the picomolar level. HNOCL-1 can monitor dynamics of HNO delivery in living cells and tissues, demonstrating the versatility of this method for tracking HNO in living systems.
Collapse
Affiliation(s)
- Weiwei An
- Department of Chemistry, Center for Drug Discovery, Design, and Delivery (CD4), and, Center for Global Health Impact (CGHI), Southern Methodist University, Dallas, TX, 75205-0314, USA
| | - Lucas S Ryan
- Department of Chemistry, Center for Drug Discovery, Design, and Delivery (CD4), and, Center for Global Health Impact (CGHI), Southern Methodist University, Dallas, TX, 75205-0314, USA
| | - Audrey G Reeves
- Department of Chemistry, Center for Drug Discovery, Design, and Delivery (CD4), and, Center for Global Health Impact (CGHI), Southern Methodist University, Dallas, TX, 75205-0314, USA
| | - Kevin J Bruemmer
- Department of Chemistry, Center for Drug Discovery, Design, and Delivery (CD4), and, Center for Global Health Impact (CGHI), Southern Methodist University, Dallas, TX, 75205-0314, USA
| | - Lyn Mouhaffel
- Department of Chemistry, Center for Drug Discovery, Design, and Delivery (CD4), and, Center for Global Health Impact (CGHI), Southern Methodist University, Dallas, TX, 75205-0314, USA
| | - Jeni L Gerberich
- Prognostic Imaging Research Laboratory (PIRL), Pre-clinical Imaging Section, Department of Radiology, UT Southwestern Medical Center, Dallas, TX, 75390-9058, USA
| | - Alexander Winters
- Prognostic Imaging Research Laboratory (PIRL), Pre-clinical Imaging Section, Department of Radiology, UT Southwestern Medical Center, Dallas, TX, 75390-9058, USA
| | - Ralph P Mason
- Prognostic Imaging Research Laboratory (PIRL), Pre-clinical Imaging Section, Department of Radiology, UT Southwestern Medical Center, Dallas, TX, 75390-9058, USA
| | - Alexander R Lippert
- Department of Chemistry, Center for Drug Discovery, Design, and Delivery (CD4), and, Center for Global Health Impact (CGHI), Southern Methodist University, Dallas, TX, 75205-0314, USA
| |
Collapse
|
41
|
An W, Ryan LS, Reeves AG, Bruemmer KJ, Mouhaffel L, Gerberich JL, Winters A, Mason RP, Lippert AR. A Chemiluminescent Probe for HNO Quantification and Real‐Time Monitoring in Living Cells. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201811257] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Weiwei An
- Department of Chemistry Center for Drug Discovery, Design, and Delivery (CD4), and Center for Global Health Impact (CGHI) Southern Methodist University Dallas TX 75205-0314 USA
| | - Lucas S. Ryan
- Department of Chemistry Center for Drug Discovery, Design, and Delivery (CD4), and Center for Global Health Impact (CGHI) Southern Methodist University Dallas TX 75205-0314 USA
| | - Audrey G. Reeves
- Department of Chemistry Center for Drug Discovery, Design, and Delivery (CD4), and Center for Global Health Impact (CGHI) Southern Methodist University Dallas TX 75205-0314 USA
| | - Kevin J. Bruemmer
- Department of Chemistry Center for Drug Discovery, Design, and Delivery (CD4), and Center for Global Health Impact (CGHI) Southern Methodist University Dallas TX 75205-0314 USA
| | - Lyn Mouhaffel
- Department of Chemistry Center for Drug Discovery, Design, and Delivery (CD4), and Center for Global Health Impact (CGHI) Southern Methodist University Dallas TX 75205-0314 USA
| | - Jeni L. Gerberich
- Prognostic Imaging Research Laboratory (PIRL) Pre-clinical Imaging Section Department of Radiology UT Southwestern Medical Center Dallas TX 75390-9058 USA
| | - Alexander Winters
- Prognostic Imaging Research Laboratory (PIRL) Pre-clinical Imaging Section Department of Radiology UT Southwestern Medical Center Dallas TX 75390-9058 USA
| | - Ralph P. Mason
- Prognostic Imaging Research Laboratory (PIRL) Pre-clinical Imaging Section Department of Radiology UT Southwestern Medical Center Dallas TX 75390-9058 USA
| | - Alexander R. Lippert
- Department of Chemistry Center for Drug Discovery, Design, and Delivery (CD4), and Center for Global Health Impact (CGHI) Southern Methodist University Dallas TX 75205-0314 USA
| |
Collapse
|
42
|
Huang Y, Zhang X, He N, Wang Y, Kang Q, Shen D, Yu F, Chen L. Imaging of anti-inflammatory effects of HNO via a near-infrared fluorescent probe in cells and in rat gouty arthritis model. J Mater Chem B 2018; 7:305-313. [PMID: 32254555 DOI: 10.1039/c8tb02494d] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nitroxyl (HNO) plays a crucial role in anti-inflammatory effects via the inhibition of inflammatory pathways, but the details of the endogenous generation of HNO still remain challenging owing to the complex biosynthetic pathways, in which the interaction between H2S and NO simultaneously generates HNO and polysulfides (H2Sn) in mitochondria. Moreover, nearly all the available fluorescent probes for HNO are utilized for imaging HNO in cells and tissues, instead of the in situ real-time detection of the simultaneous formation of HNO and H2Sn in mitochondria and animals. Here, we have developed a mitochondria-targeting near-infrared fluorescent probe, namely, Mito-JN, to detect the generation of HNO in cells and a rat model. The probe consists of three moieties: Aza-BODIPY as a fluorescent signal transducer, a triphenylphosphonium cation as a mitochondria-targeting agent, and a diphenylphosphinobenzoyl group as an HNO-responsive unit. The response mechanism is based on an aza-ylide intramolecular ester aminolysis reaction with fluorescence emissions on. Mito-JN displays high selectivity and sensitivity for HNO over various other biologically relevant species. Mito-JN was successfully used for the detection of the endogenous generation of HNO, which is derived from the crosstalk between H2S and NO in living cells. The additional generation of H2Sn was also confirmed using our previous probe Cy-Mito. The anti-inflammatory effect of HNO was examined in a cell model of LPS-induced inflammation and a rat model of gouty arthritis. The results imply that our probe is a good candidate for the assessment of the protective effects of HNO in inflammatory processes.
Collapse
Affiliation(s)
- Yan Huang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Levin N, Codesido NO, Marcolongo JP, Alborés P, Weyhermüller T, Olabe JA, Slep LD. Remarkable Changes of the Acidity of Bound Nitroxyl (HNO) in the [Ru(Me3[9]aneN3)(L2)(NO)]n+ Family (n = 1–3). Systematic Structural and Chemical Exploration and Bioinorganic Chemistry Implications. Inorg Chem 2018; 57:12270-12281. [DOI: 10.1021/acs.inorgchem.8b01958] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Natalia Levin
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, and INQUIMAE, Universidad de Buenos Aires, CONICET, Pabellón 2, 3er piso, Ciudad Universitaria, C1428EHA Ciudad Autónoma de Buenos Aires, Argentina
| | - Nicolás Osa Codesido
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, and INQUIMAE, Universidad de Buenos Aires, CONICET, Pabellón 2, 3er piso, Ciudad Universitaria, C1428EHA Ciudad Autónoma de Buenos Aires, Argentina
| | - Juan Pablo Marcolongo
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, and INQUIMAE, Universidad de Buenos Aires, CONICET, Pabellón 2, 3er piso, Ciudad Universitaria, C1428EHA Ciudad Autónoma de Buenos Aires, Argentina
| | - Pablo Alborés
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, and INQUIMAE, Universidad de Buenos Aires, CONICET, Pabellón 2, 3er piso, Ciudad Universitaria, C1428EHA Ciudad Autónoma de Buenos Aires, Argentina
| | - Thomas Weyhermüller
- Max-Planck Institut für Chemische Energiekonversion, Stiftstraße 34−36, D-45470 Mülheim an der Ruhr, Germany
| | - José A. Olabe
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, and INQUIMAE, Universidad de Buenos Aires, CONICET, Pabellón 2, 3er piso, Ciudad Universitaria, C1428EHA Ciudad Autónoma de Buenos Aires, Argentina
| | - Leonardo D. Slep
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, and INQUIMAE, Universidad de Buenos Aires, CONICET, Pabellón 2, 3er piso, Ciudad Universitaria, C1428EHA Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
44
|
Mukosera GT, Liu T, Ishtiaq Ahmed AS, Li Q, Sheng MHC, Tipple TE, Baylink DJ, Power GG, Blood AB. Detection of dinitrosyl iron complexes by ozone-based chemiluminescence. Nitric Oxide 2018; 79:57-67. [PMID: 30059767 PMCID: PMC6277231 DOI: 10.1016/j.niox.2018.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/23/2018] [Accepted: 07/23/2018] [Indexed: 12/19/2022]
Abstract
Dinitrosyl iron complexes (DNICs) are important intermediates in the metabolism of nitric oxide (NO). They have been considered to be NO storage adducts able to release NO, scavengers of excess NO during inflammatory hypotensive shock, and mediators of apoptosis in cancer cells, among many other functions. Currently, all studies of DNICs in biological matrices use electron paramagnetic resonance (EPR) for both detection and quantification. EPR is limited, however, by its ability to detect only paramagnetic mononuclear DNICs even though EPR-silent binuclear are likely to be prevalent. Furthermore, physiological concentrations of mononuclear DNICs are usually lower than the EPR detection limit (1 μM). We have thus developed a chemiluminescence-based method for the selective detection of both DNIC forms at physiological, pathophysiological, and pharmacologic conditions. We have also demonstrated the use of the new method in detecting DNIC formation in the presence of nitrite and nitrosothiols within biological fluids and tissue. This new method, which can be used alone or in tandem with EPR, has the potential to offer insight about the involvement of DNICs in many NO-dependent pathways.
Collapse
Affiliation(s)
- George T Mukosera
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Taiming Liu
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Abu Shufian Ishtiaq Ahmed
- Regenerative Medicine Division, Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA; Center for Dental Research, Loma Linda University School of Dentistry, Loma Linda, CA, 92350, USA
| | - Qian Li
- Neonatal Redox Biology Laboratory, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Matilda H-C Sheng
- Regenerative Medicine Division, Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Trent E Tipple
- Neonatal Redox Biology Laboratory, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - David J Baylink
- Regenerative Medicine Division, Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Gordon G Power
- Lawrence D. Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Arlin B Blood
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA; Lawrence D. Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA.
| |
Collapse
|
45
|
Maimon E, Lerner A, Samuni A, Goldstein S. Direct Observation of Acyl Nitroso Compounds in Aqueous Solution and the Kinetics of Their Reactions with Amines, Thiols, and Hydroxamic Acids. J Phys Chem A 2018; 122:7006-7013. [PMID: 30111101 DOI: 10.1021/acs.jpca.8b06672] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Acyl nitroso compounds or nitrosocarhonyls (RC(O)N═O) are reactive short-lived electrophiles, and their hydrolysis and reactions with nucleophiles produce HNO. Previously, direct detection of acyl nitroso species in nonaqueous media has been provided by time-resolved infrared spectroscopy demonstrating that its half-life is about 1 ms. In the present study hydroxamic acids (RC(O)NHOH) are oxidized electrochemically in buffered aqueous solutions (pH 5.9-10.2) yielding transient species characterized by their maximal absorption at 314-330 nm. These transient species decompose via a first-order reaction yielding mainly HNO and the respective carboxylic acid and therefore are ascribed to RC(O)N═O. The sufficiently long half-life of RC(O)N═O in aqueous solution allows for the first time the study of the kinetics of its reactions with various nucleophiles demonstrating that the nucleophilic reactivity follows the order thiolate > hydroxamate > amine. Metal chelates of CH3C(O)NHOH catalyze the hydrolysis of CH3C(O)N═O at the efficacy order of CuII > ZnII > NiII > CoII where only CuII catalyzes the hydrolysis also in the absence of the hydroxamate. Finally, oxidation of hydroxamic acids generates HNO, and the rate of this process is determined by the half-life of the respective acyl nitroso compound.
Collapse
Affiliation(s)
- Eric Maimon
- Nuclear Research Centre Negev, Beer Sheva 84190 , Israel.,Chemistry Department , Ben-Gurion University , Beer-Sheva 84105 , Israel
| | - Ana Lerner
- Chemistry Department , Ben-Gurion University , Beer-Sheva 84105 , Israel
| | - Amram Samuni
- Institute of Medical Research-Israel Canada, Medical School , The Hebrew University of Jerusalem , Jerusalem 91120 , Israel
| | - Sara Goldstein
- Institute of Chemistry, The Accelerator Laboratory , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel
| |
Collapse
|
46
|
Dong B, Kong X, Lin W. Reaction-Based Fluorescent Probes for the Imaging of Nitroxyl (HNO) in Biological Systems. ACS Chem Biol 2018; 13:1714-1720. [PMID: 29210560 DOI: 10.1021/acschembio.7b00901] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nitroxyl (HNO) has been identified as an important signaling molecule in biological systems and plays critical roles in many physiological processes. Fluorescence imaging could provide a robust approach to explore the biological formation of HNO and its physiological functions. Herein, we summarize the organic reaction types for constructing HNO probes and specifically focus on review of the recent advances in the development of the reaction-based HNO probes and their imaging applications in living systems.
Collapse
Affiliation(s)
- Baoli Dong
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, People’s Republic of China
| | - Xiuqi Kong
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, People’s Republic of China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, People’s Republic of China
| |
Collapse
|
47
|
Puglisi MP, Bradaric MJ, Pontikis J, Cabai J, Weyna T, Tednes P, Schretzman R, Rickert K, Cao Z, Andrei D. Novel primary amine diazeniumdiolates-Chemical and biological characterization. Drug Dev Res 2018; 79:136-143. [DOI: 10.1002/ddr.21428] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 04/11/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Melany P. Puglisi
- Department of Pharmaceutical Sciences; Chicago State University; Chicago Illinois
| | - Michael J. Bradaric
- Department of Pharmaceutical Sciences; Chicago State University; Chicago Illinois
| | - John Pontikis
- Department of Chemistry; Dominican University; River Forest Illinois
| | - Jonathan Cabai
- Department of Chemistry; Dominican University; River Forest Illinois
| | - Theodore Weyna
- Department of Chemistry; Dominican University; River Forest Illinois
| | - Patrick Tednes
- Department of Chemistry; Dominican University; River Forest Illinois
| | - Robert Schretzman
- Department of Chemistry; Dominican University; River Forest Illinois
| | - Karl Rickert
- Department of Chemistry; Dominican University; River Forest Illinois
| | - Zhao Cao
- Basic Research Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research; Frederick Maryland
| | - Daniela Andrei
- Department of Chemistry; Dominican University; River Forest Illinois
| |
Collapse
|
48
|
Biological Activities and Potential Oral Applications of N-Acetylcysteine: Progress and Prospects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2835787. [PMID: 29849877 PMCID: PMC5937417 DOI: 10.1155/2018/2835787] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/22/2018] [Accepted: 01/30/2018] [Indexed: 12/27/2022]
Abstract
N-Acetylcysteine (NAC), a cysteine prodrug and glutathione (GSH) precursor, has been used for several decades in clinical therapeutic practices as a mucolytic agent and for the treatment of disorders associated with GSH deficiency. Other therapeutic activities of NAC include inhibition of inflammation/NF-κB signaling and expression of proinflammatory cytokines. N-Acetylcysteine is also a nonantibiotic compound possessing antimicrobial property and exerts anticarcinogenic and antimutagenic effects against certain types of cancer. Recently, studies describing potentially important biological and pharmacological activities of NAC have stimulated interests in using NAC-based therapeutics for oral health care. The present review focused on the biological activities of NAC and its potential oral applications. The potential side effects of NAC and formulations for drug delivery were also discussed, with the intent of advancing NAC-associated treatment modalities in oral medicine.
Collapse
|
49
|
Kawaguchi M, Tani T, Hombu R, Ieda N, Nakagawa H. Development and cellular application of visible-light-controllable HNO releasers based on caged Piloty's acid. Chem Commun (Camb) 2018; 54:10371-10374. [DOI: 10.1039/c8cc04954h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Novel visible-light-controllable HNO releasers was developed based on a caged form of Piloty's acid, and applied for cellular systems.
Collapse
Affiliation(s)
| | - Takuma Tani
- Graduate School of Pharmaceutical Sciences
- Nagoya City University
- Nagoya
- Japan
| | - Ryoma Hombu
- Graduate School of Pharmaceutical Sciences
- Nagoya City University
- Nagoya
- Japan
| | - Naoya Ieda
- Graduate School of Pharmaceutical Sciences
- Nagoya City University
- Nagoya
- Japan
| | - Hidehiko Nakagawa
- Graduate School of Pharmaceutical Sciences
- Nagoya City University
- Nagoya
- Japan
| |
Collapse
|
50
|
Roof SR, Ueyama Y, Mazhari R, Hamlin RL, Hartman JC, Ziolo MT, Reardon JE, Del Rio CL. CXL-1020, a Novel Nitroxyl (HNO) Prodrug, Is More Effective than Milrinone in Models of Diastolic Dysfunction-A Cardiovascular Therapeutic: An Efficacy and Safety Study in the Rat. Front Physiol 2017; 8:894. [PMID: 29209225 PMCID: PMC5701606 DOI: 10.3389/fphys.2017.00894] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/24/2017] [Indexed: 01/08/2023] Open
Abstract
The nitroxyl (HNO) prodrug, CXL-1020, induces vasorelaxation and improves cardiac function in canine models and patients with systolic heart failure (HF). HNO's unique mechanism of action may be applicable to a broader subset of cardiac patients. This study investigated the load-independent safety and efficacy of CXL-1020 in two rodent (rat) models of diastolic heart failure and explored potential drug interactions with common HF background therapies. In vivo left-ventricular hemodynamics/pressure-volume relationships assessed before/during a 30 min IV infusion of CXL-1020 demonstrated acute load-independent positive inotropic, lusitropic, and vasodilatory effects in normal rats. In rats with only diastolic dysfunction due to bilateral renal wrapping (RW) or pronounced diastolic and mild systolic dysfunction due to 4 weeks of chronic isoproterenol exposure (ISO), CXL-1020 attenuated the elevated LV filling pressures, improved the end diastolic pressure volume relationship, and accelerated relaxation. CXL-1020 facilitated Ca2+ re-uptake and enhanced myocyte relaxation in isolated cardiomyocytes from ISO rats. Compared to milrinone, CXL-1020 more effectively improved Ca2+ reuptake in ISO rats without concomitant chronotropy, and did not enhance Ca2+ entry via L-type Ca2+ channels nor increase myocardial arrhythmias/ectopic activity. Acute-therapy with CXL-1020 improved ventricular relaxation and Ca2+ cycling, in the setting of chronic induced diastolic dysfunction. CXL-1020's lusitropic effects were greater than those seen with the cAMP-dependent agent milrinone, and unlike milrinone it did not produce chronotropy or increased ectopy. HNO is a promising new potential therapy for both systolic and diastolic heart failure.
Collapse
Affiliation(s)
| | | | - Reza Mazhari
- Cardioxyl Pharmaceuticals, Chapel Hill, NC, United States
| | | | | | - Mark T Ziolo
- Ohio State University Columbus, Columbus, OH, United States
| | - John E Reardon
- Cardioxyl Pharmaceuticals, Chapel Hill, NC, United States
| | | |
Collapse
|