1
|
Di Francesco V, Chua AJ, Bleier BS, Amiji MM. Effective Nose-to-Brain Delivery of Blood-Brain Barrier Impermeant Anti-IL-1β Antibody via the Minimally Invasive Nasal Depot (MIND) Technique. ACS APPLIED MATERIALS & INTERFACES 2024; 16:69103-69113. [PMID: 39655527 DOI: 10.1021/acsami.4c18679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Treatment of neuroinflammation and neurodegenerative diseases using biologic therapies is limited due to the blood-brain barrier (BBB). This study explores a clinically validated approach to bypass the BBB for the purposes of direct central nervous system (CNS) delivery of antibodies using the Minimally Invasive Nasal Depot (MIND) technique. Using a lipopolysaccharide (LPS)-induced mouse model of neuroinflammation, we evaluated the efficacy of MIND in delivering a BBB impermeant full-length anti-IL-1β antibody. The results demonstrated that MIND delivery resulted in a significant reduction in IL-1β levels and microglial activation in relevant brain regions, notably outperforming conventional intravenous (IV) administration. These results underscore the ability of the MIND approach to transform the treatment landscape for a range of neurodegenerative diseases by enabling the targeted delivery of otherwise BBB impermeant therapeutics.
Collapse
Affiliation(s)
- Valentina Di Francesco
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, 140 The Fenway Building, Boston, Massachusetts 02115, United States
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, Massachusetts 02114, United States
| | - Andy J Chua
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, 140 The Fenway Building, Boston, Massachusetts 02115, United States
- Department of Otorhinolaryngology-Head and Neck Surgery, Sengkang General Hospital, 110 Sengkang E Way, Singapore 544886, Singapore
| | - Benjamin S Bleier
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, Massachusetts 02114, United States
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, 140 The Fenway Building, Boston, Massachusetts 02115, United States
- Department of Chemical Engineering, College of Engineering, Northeastern University, 360 Huntington Avenue, 140 The Fenway Building, Boston, Massachusetts 02115, United States
| |
Collapse
|
2
|
Khan MR, Liao S, Wasim M, Farooq A, Wang Q, Wei Q. Synergetic effects of tetracycline hydrochloride incorporated regenerated cellulose acetate - Bacterial cellulose hybrid nanocomposite: Potential in biomedical application. Int J Biol Macromol 2024; 281:136563. [PMID: 39401627 DOI: 10.1016/j.ijbiomac.2024.136563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/09/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
Litter from cigarette waste is a significant threat to organisms and ecosystems. However, this waste contains cellulose acetate (CA) that can be recycled into raw materials. In this study, recycled CA from cigarettes (CFCA) electrospun through electro-spinning technique and developed hybrid nanocomposite by incorporating CFCA in the fermentation media, followed by self-assembly of bacterial cellulose (BC). CFCA exhibit excessive hydrophobicity due to their high crystallinity and reorientation of hydrophobic groups. We aimed to improve the hydrophilic, thermal and mechanical properties of CFCA. We examined fiber morphology using a scanning electron microscope (SEM), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction Analysis (XRD), thermogravimetric analysis (TGA), swelling capacity and mechanical properties. BC/CFCA showed higher swelling capacity, improved thermal properties, and good tensile strength compared to CFCA. Additionally, tetracycline hydrochloride (TC) was loaded into developed BC/CFCA matrix and evaluated in-vitro drug release, antibacterial activity and cytotoxicity. In-vitro drug release results showed that developed BC/CFCA can able to control TC release. In addition, prepared BC/CFCA-TC composites demonstrated excellent antibacterial activity against gram-positive and gram-negative bacteria. More importantly, BC/CFCA-TC composites exhibit good cytotoxicity on mouse fibroblast cells (L929). These characteristics of BC/CFCA-TC membranes indicate they may successfully serve as wound dressings and other medical biomaterials.
Collapse
Affiliation(s)
- Muhammad Rafique Khan
- Key Laboratory of Eco-Textiles, Ministry of Education, College of Textile and Clothing, Jiangnan University, Wuxi 214122, China
| | - Shiqin Liao
- Jiangxi Centre for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang 330201, China
| | - Muhammad Wasim
- Key Laboratory of Eco-Textiles, Ministry of Education, College of Textile and Clothing, Jiangnan University, Wuxi 214122, China; College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Amjad Farooq
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui, China; School of Textile and Clothing, Qingdao University, Qingdao, China
| | - Qingqing Wang
- Key Laboratory of Eco-Textiles, Ministry of Education, College of Textile and Clothing, Jiangnan University, Wuxi 214122, China.
| | - Qufu Wei
- Key Laboratory of Eco-Textiles, Ministry of Education, College of Textile and Clothing, Jiangnan University, Wuxi 214122, China; Jiangxi Centre for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang 330201, China.
| |
Collapse
|
3
|
Duan M, Cao R, Yang Y, Chen X, Liu L, Ren B, Wang L, Goh BC. Blood-Brain Barrier Conquest in Glioblastoma Nanomedicine: Strategies, Clinical Advances, and Emerging Challenges. Cancers (Basel) 2024; 16:3300. [PMID: 39409919 PMCID: PMC11475686 DOI: 10.3390/cancers16193300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Glioblastoma (GBM) is a prevalent type of malignancy within the central nervous system (CNS) that is associated with a poor prognosis. The standard treatment for GBM includes the surgical resection of the tumor, followed by radiotherapy and chemotherapy; yet, despite these interventions, overall treatment outcomes remain suboptimal. The blood-brain barrier (BBB), which plays a crucial role in maintaining the stability of brain tissue under normal physiological conditions of the CNS, also poses a significant obstacle to the effective delivery of therapeutic agents to GBMs. Recent preclinical studies have demonstrated that nanomedicine delivery systems (NDDSs) offer promising results, demonstrating both effective GBM targeting and safety, thereby presenting a potential solution for targeted drug delivery. In this review, we first explore the various strategies employed in preclinical studies to overcome the BBB for drug delivery. Subsequently, the results of the clinical translation of NDDSs are summarized, highlighting the progress made. Finally, we discuss potential strategies for advancing the development of NDDSs and accelerating their translational research through well-designed clinical trials in GBM therapy.
Collapse
Affiliation(s)
- Mengyun Duan
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou 434023, China; (M.D.); (X.C.)
| | - Ruina Cao
- Department of Anesthesiology, Maternal and Child Health Hospital of Hubei Province, Wuhan 430070, China;
| | - Yuan Yang
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan 430060, China;
| | - Xiaoguang Chen
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou 434023, China; (M.D.); (X.C.)
| | - Lian Liu
- Department of Pharmacology, Health Science Center, Yangtze University, Jingzhou 434023, China;
| | - Boxu Ren
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou 434023, China; (M.D.); (X.C.)
| | - Lingzhi Wang
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore;
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Boon-Cher Goh
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore;
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Department of Haematology-Oncology, National University Cancer Institute, Singapore 119228, Singapore
| |
Collapse
|
4
|
Kusaka S, Voulgaris N, Onishi K, Ueda J, Saito S, Tamaki S, Murata I, Takata T, Suzuki M. Therapeutic Effect of Boron Neutron Capture Therapy on Boronophenylalanine Administration via Cerebrospinal Fluid Circulation in Glioma Rat Models. Cells 2024; 13:1610. [PMID: 39404374 PMCID: PMC11475075 DOI: 10.3390/cells13191610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
In recent years, various drug delivery systems circumventing the blood-brain barrier have emerged for treating brain tumors. This study aimed to improve the efficacy of brain tumor treatment in boron neutron capture therapy (BNCT) using cerebrospinal fluid (CSF) circulation to deliver boronophenylalanine (BPA) to targeted tumors. Previous experiments have demonstrated that boron accumulation in the brain cells of normal rats remains comparable to that after intravenous (IV) administration, despite BPA being administered via CSF at significantly lower doses (approximately 1/90 of IV doses). Based on these findings, BNCT was conducted on glioma model rats at the Kyoto University Research Reactor Institute (KUR), with BPA administered via CSF. This method involved implanting C6 cells into the brains of 8-week-old Wistar rats, followed by administering BPA and neutron irradiation after a 10-day period. In this study, the rats were divided into four groups: one receiving CSF administration, another receiving IV administration, and two control groups without BPA administration, with one subjected to neutron irradiation and the other not. In the CSF administration group, BPA was infused from the cisterna magna at 8 mg/kg/h for 2 h, while in the IV administration group, BPA was intravenously administered at 350 mg/kg via the tail vein over 1.5 h. Thermal neutron irradiation (5 MW) for 20 min, with an average fluence of 3.8 × 1012/cm2, was conducted at KUR's heavy water neutron irradiation facility. Subsequently, all of the rats were monitored under identical conditions for 7 days, with pre- and post-irradiation tumor size assessed through MRI and pathological examination. The results indicate a remarkable therapeutic efficacy in both BPA-administered groups (CSF and IV). Notably, the rats treated with CSF administration exhibited diminished BPA accumulation in normal tissue compared to those treated with IV administration, alongside maintaining excellent overall health. Thus, CSF-based BPA administration holds promise as a novel drug delivery mechanism in BNCT.
Collapse
Affiliation(s)
- Sachie Kusaka
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita 565-0871, Japan; (N.V.); (S.T.); (I.M.)
| | - Nikolaos Voulgaris
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita 565-0871, Japan; (N.V.); (S.T.); (I.M.)
| | - Kazuki Onishi
- Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 2-1, Suita 565-0871, Japan; (K.O.); (J.U.); (S.S.)
| | - Junpei Ueda
- Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 2-1, Suita 565-0871, Japan; (K.O.); (J.U.); (S.S.)
| | - Shigeyoshi Saito
- Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 2-1, Suita 565-0871, Japan; (K.O.); (J.U.); (S.S.)
| | - Shingo Tamaki
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita 565-0871, Japan; (N.V.); (S.T.); (I.M.)
| | - Isao Murata
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita 565-0871, Japan; (N.V.); (S.T.); (I.M.)
| | - Takushi Takata
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-Nishi, Kumatori-cho, Sennan-gun 590-0494, Japan; (T.T.); (M.S.)
| | - Minoru Suzuki
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-Nishi, Kumatori-cho, Sennan-gun 590-0494, Japan; (T.T.); (M.S.)
| |
Collapse
|
5
|
Madadi AK, Sohn MJ. Advances in Intrathecal Nanoparticle Delivery: Targeting the Blood-Cerebrospinal Fluid Barrier for Enhanced CNS Drug Delivery. Pharmaceuticals (Basel) 2024; 17:1070. [PMID: 39204177 PMCID: PMC11357388 DOI: 10.3390/ph17081070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
The blood-cerebrospinal fluid barrier (BCSFB) tightly regulates molecular exchanges between the bloodstream and cerebrospinal fluid (CSF), creating challenges for effective central nervous system (CNS) drug delivery. This review assesses intrathecal (IT) nanoparticle (NP) delivery systems that aim to enhance drug delivery by circumventing the BCSFB, complementing approaches that target the blood-brain barrier (BBB). Active pharmaceutical ingredients (APIs) face hurdles like restricted CNS distribution and rapid clearance, which diminish the efficacy of IT therapies. NPs can be engineered to extend drug circulation times, improve CNS penetration, and facilitate sustained release. This review discusses key pharmacokinetic (PK) parameters essential for the effectiveness of these systems. NPs can quickly traverse the subarachnoid space and remain within the leptomeninges for extended periods, often exceeding three weeks. Some designs enable deeper brain parenchyma penetration. Approximately 80% of NPs in the CSF are cleared through the perivascular glymphatic pathway, with microglia-mediated transport significantly contributing to their paravascular clearance. This review synthesizes recent progress in IT-NP delivery across the BCSFB, highlighting critical findings, ongoing challenges, and the therapeutic potential of surface modifications and targeted delivery strategies.
Collapse
Affiliation(s)
- Ahmad Khalid Madadi
- Department of Biomedical Science, Graduate School of Medicine, Inje University, 75, Bokji-ro, Busanjingu, Busan 47392, Republic of Korea;
| | - Moon-Jun Sohn
- Department of Biomedical Science, Graduate School of Medicine, Inje University, 75, Bokji-ro, Busanjingu, Busan 47392, Republic of Korea;
- Department of Neurosurgery, Neuroscience & Radiosurgery Hybrid Research Center, Inje University Ilsan Paik Hospital, College of Medicine, Juhwa-ro 170, Ilsanseo-gu, Goyang City 10380, Republic of Korea
| |
Collapse
|
6
|
Burla GKR, Shrestha D, Bowen M, Horvath JD, Martin BA. Evaluating the effect of injection protocols on intrathecal solute dispersion in non-human primates: an in vitro study using a cynomolgus cerebrospinal fluid system. Fluids Barriers CNS 2024; 21:61. [PMID: 39061067 PMCID: PMC11282645 DOI: 10.1186/s12987-024-00556-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 06/16/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Achieving effective drug delivery to the central nervous system (CNS) remains a challenge for treating neurological disorders. Intrathecal (IT) delivery, which involves direct injection into the cerebrospinal fluid (CSF), presents a promising strategy. Large animal studies are important to assess the safety and efficacy of most drugs and treatments and translate the data to humans. An understanding of the influence of IT injection parameters on solute distribution within the CNS is essential to optimize preclinical research, which would potentially help design human clinical studies. METHODS A three-dimensional (3D) in vitro model of a cynomolgus monkey, based on MRI data, was developed to evaluate the impact of lumbar injection parameters on intrathecal solute dispersion. The parameters evaluated were (a) injection location, (b) bolus volume, (c) flush volume, (d) bolus rate, and (e) flush rate. To simulate the CSF flow within the subarachnoid space (SAS), an idealized CSF flow waveform with both cardiac and respiratory-induced components was input into the model. A solution of fluorescein drug surrogate tracer was administered in the lumbar region of the 3D in vitro model filled with deionized water. After injection of the tracer, the CSF system wide-solute dispersion was imaged using high-resolution cameras every thirty seconds for a duration of three hours. To ensure repeatability each injection protocol was repeated three times. For each protocol, the average spatial-temporal distribution over three hours post-injection, the area under the curve (AUC), and the percent injected dose (%ID) to extra-axial CSF (eaCSF) at three hours were determined. RESULTS The changes to the lumbar injection parameters led to variations in solute distribution along the neuro-axis. Specifically, injection location showed the most impact, enhancing the delivery to the eaCSF up to + 10.5%ID (p = 0.0282) at three hours post-injection. Adding a post-injection flush of 1.5 ml at 1 ml/min increased the solute delivery to the eaCSF by + 6.5%ID (p = 0.0218), while the larger bolus volume resulted in a + 2.3%ID (p = 0.1910) increase. The bolus and flush rates analyzed had minimal, statistically non-significant effects. CONCLUSION These results predict the effects of lumbar injection parameters on solute distribution in the intrathecal space in NHPs. Specifically, the choice of injection location, flush, and bolus volume significantly improved solute delivery to eaCSF. The in vitro NHP CSF model and results offer a system to help predict and optimize IT delivery protocols for pre-clinical NHP studies.
Collapse
Affiliation(s)
- Goutham Kumar Reddy Burla
- Department of Chemical and Biological Engineering, University of Idaho, 875 Perimeter Dr. MC1122, Moscow, ID, 83844, USA
| | - Dev Shrestha
- Department of Chemical and Biological Engineering, University of Idaho, 875 Perimeter Dr. MC1122, Moscow, ID, 83844, USA
| | - Mayumi Bowen
- Genentech, Inc., a member of the Roche Group, South San Francisco, CA, USA
| | - Joshua D Horvath
- Genentech, Inc., a member of the Roche Group, South San Francisco, CA, USA
| | - Bryn A Martin
- Department of Chemical and Biological Engineering, University of Idaho, 875 Perimeter Dr. MC1122, Moscow, ID, 83844, USA.
- Alcyone Therapeutics Inc., Lowell, MA, USA.
- Flux Neuroscience, LLC., Troy, ID, USA.
| |
Collapse
|
7
|
Gao Y, Su J, Ma Y, Sun Y, Cui J, Jin X, Li Y, Chen Z. Efficacy and safety of intrathecal dexamethasone combined with isoniazid in the treatment of tuberculous meningitis: a meta-analysis. BMC Neurol 2024; 24:194. [PMID: 38858618 PMCID: PMC11163761 DOI: 10.1186/s12883-024-03701-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/31/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND The treatment regimen for tuberculous meningitis (TBM) remains unclear and requires optimization. There are some reports on successful adjunct intrathecal dexamethasone and isoniazid (IDI) treatment strategies for TBM, however, there is equivocal evidence on their efficacy and safety. METHODS A comprehensive search of English and Chinese databases was conducted from inception to February 2024. A meta-analysis was performed on randomized controlled trials (RCTs) estimating the effects of adjunct IDI on conventional anti-TB (C anti-TB) treatments or C anti-TB alone. Efficacy, adverse reaction rate, cerebrospinal fluid (CSF) leukocytes, and CSF protein were used as primary outcome indicators. CSF glucose, CSF chlorides, CSF pressure, recovery time for laboratory indicators and recovery time for clinical symptoms were used as secondary outcome indicators. RESULTS A total of 17 studies involving 1360 (IDI group vs. C anti-TB group: 392 vs. 372; higher-dose IDI group vs. lower-dose IDI group: 319 vs. 277) patients were included in our analysis. Efficacy was significantly higher (RR 1.3, 95% CI 1.2-1.4, P < 0.001) and adverse reaction rate was significantly lower in the IDI groups (RR 0.59, 95% CI 0.37-0.92, P = 0.021). Furthermore, CSF leukocytes (WMD - 29.33, 95% CI [- 40.64 to-18.02], P < 0.001) and CSF protein (WMD - 0.79, 95%CI [-0.96 to-0.61], P < 0.001) were significantly lower in the IDI groups. Recovery time indicators were all shorter in the IDI groups, fever (SMD - 2.45, 95% CI [-3.55 to-1.35], P < 0.001), coma (SMD-3.75, 95% CI [-4.33 to-3.17], P < 0.001), and headache (SMD - 3.06, 95% CI [- 4.05 to-2.07], P < 0.001), respectively. Higher-dose IDI was more effective than lower-dose IDI (RR 1.23, 95% CI 1.14-1.33, P < 0.001), with no significant difference in adverse reaction rate between the two (RR 0.82, 95%CI 0.43-1.56, P = 0.544). CONCLUSION Adjunct IDI with C anti-TB can enhance therapeutic outcomes and reduce adverse reaction rate in adult TBM patients, with higher-dose IDI showing superior efficacy. These findings highlight the potential of IDI as an adjunctive therapy in TBM management. However, more high-quality RCTs from more regions should be conducted to support our results. TRIAL REGISTRATION Retrospectively registered in PROSPERO https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023388860 .
Collapse
Affiliation(s)
- Yan Gao
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- ICU, Tuberculosis Department, 8th Medical Center of Chinese PLA General Hospital Tuberculosis Research Institute, Beijing, 100091, China
| | - Jinwen Su
- ICU, Tuberculosis Department, 8th Medical Center of Chinese PLA General Hospital Tuberculosis Research Institute, Beijing, 100091, China
| | - Yuxiang Ma
- ICU, Tuberculosis Department, 8th Medical Center of Chinese PLA General Hospital Tuberculosis Research Institute, Beijing, 100091, China
| | - Yunliang Sun
- ICU, Tuberculosis Department, 8th Medical Center of Chinese PLA General Hospital Tuberculosis Research Institute, Beijing, 100091, China
| | - Jiyong Cui
- ICU, Tuberculosis Department, 8th Medical Center of Chinese PLA General Hospital Tuberculosis Research Institute, Beijing, 100091, China
| | - Xianhe Jin
- ICU, Tuberculosis Department, 8th Medical Center of Chinese PLA General Hospital Tuberculosis Research Institute, Beijing, 100091, China
| | - Yuxi Li
- ICU, Tuberculosis Department, 8th Medical Center of Chinese PLA General Hospital Tuberculosis Research Institute, Beijing, 100091, China
| | - Zhi Chen
- ICU, Tuberculosis Department, 8th Medical Center of Chinese PLA General Hospital Tuberculosis Research Institute, Beijing, 100091, China.
| |
Collapse
|
8
|
Madadi AK, Sohn MJ. Comprehensive Therapeutic Approaches to Tuberculous Meningitis: Pharmacokinetics, Combined Dosing, and Advanced Intrathecal Therapies. Pharmaceutics 2024; 16:540. [PMID: 38675201 PMCID: PMC11054600 DOI: 10.3390/pharmaceutics16040540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Tuberculous meningitis (TBM) presents a critical neurologic emergency characterized by high mortality and morbidity rates, necessitating immediate therapeutic intervention, often ahead of definitive microbiological and molecular diagnoses. The primary hurdle in effective TBM treatment is the blood-brain barrier (BBB), which significantly restricts the delivery of anti-tuberculous medications to the central nervous system (CNS), leading to subtherapeutic drug levels and poor treatment outcomes. The standard regimen for initial TBM treatment frequently falls short, followed by adverse side effects, vasculitis, and hydrocephalus, driving the condition toward a refractory state. To overcome this obstacle, intrathecal (IT) sustained release of anti-TB medication emerges as a promising approach. This method enables a steady, uninterrupted, and prolonged release of medication directly into the cerebrospinal fluid (CSF), thus preventing systemic side effects by limiting drug exposure to the rest of the body. Our review diligently investigates the existing literature and treatment methodologies, aiming to highlight their shortcomings. As part of our enhanced strategy for sustained IT anti-TB delivery, we particularly seek to explore the utilization of nanoparticle-infused hydrogels containing isoniazid (INH) and rifampicin (RIF), alongside osmotic pump usage, as innovative treatments for TBM. This comprehensive review delineates an optimized framework for the management of TBM, including an integrated approach that combines pharmacokinetic insights, concomitant drug administration strategies, and the latest advancements in IT and intraventricular (IVT) therapy for CNS infections. By proposing a multifaceted treatment strategy, this analysis aims to enhance the clinical outcomes for TBM patients, highlighting the critical role of targeted drug delivery in overcoming the formidable challenges presented by the blood-brain barrier and the complex pathophysiology of TBM.
Collapse
Affiliation(s)
- Ahmad Khalid Madadi
- Department of Biomedical Science, Graduate School of Medicine, Inje University, 75, Bokji-ro, Busanjin-gu, Busan 47392, Republic of Korea;
| | - Moon-Jun Sohn
- Department of Biomedical Science, Graduate School of Medicine, Inje University, 75, Bokji-ro, Busanjin-gu, Busan 47392, Republic of Korea;
- Department of Neurosurgery, Neuroscience & Radiosurgery Hybrid Research Center, College of Medicine, Inje University Ilsan Paik Hospital, 170, Juhwa-ro, Ilsanseo-gu, Goyang City 10380, Republic of Korea
| |
Collapse
|
9
|
Li J, Wu A, Kim S. Mechanistic Modeling of Intrathecal Chemotherapy Pharmacokinetics in the Human Central Nervous System. Clin Cancer Res 2024; 30:1397-1408. [PMID: 38289997 PMCID: PMC10984761 DOI: 10.1158/1078-0432.ccr-23-3062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/05/2023] [Accepted: 01/25/2024] [Indexed: 02/01/2024]
Abstract
PURPOSE The pharmacokinetics of intrathecally administered antibody or small-molecule drugs in the human central nervous system (CNS) remains poorly understood. This study aimed to provide mechanistic and quantitative perspectives on the CNS pharmacokinetics of intrathecal chemotherapy, by using a physiologically based pharmacokinetic (PBPK) modeling approach. EXPERIMENTAL DESIGN A novel CNS PBPK model platform was developed and verified, which accounted for the human CNS general anatomy and physiologic processes governing drug distribution and disposition. The model was used to predict CNS pharmacokinetics of antibody (trastuzumab) and small-molecule drugs (methotrexate, abemaciclib, tucatinib) following intraventricular injection or intraventricular 24-hour infusion, and to assess the key determinants of drug penetration into the deep brain parenchyma. RESULTS Intraventricularly administered antibody and small-molecule drugs exhibited distinct temporal and spatial distribution and disposition in human CNS. Both antibody and small-molecule drugs achieved supratherapeutic or therapeutic concentrations in the cerebrospinal fluid (CSF) compartments and adjacent brain tissue. While intrathecal small-molecule drugs penetrated the deep brain parenchyma to a negligible extent, intrathecal antibodies may achieve therapeutic concentrations in the deep brain parenchyma. Intraventricular 24-hour infusion enabled prolonged CNS exposure to therapeutically relevant concentrations while avoiding excessively high and potentially neurotoxic drug concentrations. CONCLUSIONS CNS PBPK modeling, in line with available clinical efficacy data, confirms the therapeutic value of intrathecal chemotherapy with antibody or small-molecule drugs for treating neoplastic meningitis and warrants further clinical investigation of intrathecal antibody drugs to treat brain parenchyma tumors. Compared with intraventricular injection, intraventricular 24-hour infusion may mitigate neurotoxicity while retaining potential efficacy.
Collapse
Affiliation(s)
- Jing Li
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 482012
| | - Andrew Wu
- Northville High School, 45700 Six Mile Rd, Northville, MI 48168
| | - Seongho Kim
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 482012
| |
Collapse
|
10
|
Seo J, Saurkar S, Fernandez GS, Das A, Goutman SA, Heidenreich S. Preferences of Patients with Amyotrophic Lateral Sclerosis for Intrathecal Drug Delivery: Choosing between an Implanted Drug-Delivery Device and Therapeutic Lumbar Puncture. THE PATIENT 2024; 17:161-177. [PMID: 38097873 DOI: 10.1007/s40271-023-00665-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/29/2023] [Indexed: 02/25/2024]
Abstract
BACKGROUND Novel intrathecal treatments for amyotrophic lateral sclerosis (ALS) may require delivery using lumbar puncture (LP). Implanted drug-delivery devices (IDDDs) could be an alternative but little is known about patients' preferences for intrathecal drug-delivery methods. OBJECTIVE We aimed to elicit preferences of patients with ALS for routine LP and IDDD use. METHODS A discrete choice experiment (DCE) and a threshold technique (TT) exercise were conducted online among patients with ALS in the US and Europe. In the DCE, patients made trade-offs between administration attributes. Attributes were identified from qualitative interviews. The TT elicited maximum acceptable risks (MARs) of complications from device implantation surgery. DCE data were analyzed using mixed logit to quantify relative attribute importance (RAI) as the maximum contribution of each attribute to a preference, and to estimate MARs of device failure. TT data were analyzed using interval regression. Four scenarios of LP and IDDD were compared. RESULTS Participants (N = 295) had a mean age of 57.7 years; most (74.2%) were diagnosed < 3 years ago. Preferences were affected by device failure risk (RAI 28.6%), administration frequency (26.4%), administration risk (19.7%), overall duration (17.8%), and appointment location (7.5%). Patients accepted a 5.6% device failure risk to reduce overall duration from 2 h to 30 min and a 3.6% risk for administration in a local clinic instead of a hospital. The average MAR of complications from implantation surgery was 29%. Patients preferred IDDD over LP in three of four scenarios. CONCLUSION Patients considered an IDDD as a valuable alternative to LP in multiple clinical settings.
Collapse
Affiliation(s)
- Jaein Seo
- Patient-Centered Research, Evidera, Bethesda, MD, USA
| | | | | | - Anup Das
- Patient-Centered Research, Evidera Ltd, 201 Talgarth Rd Hammersmith, London, W6 8BJ, UK
| | | | - Sebastian Heidenreich
- Patient-Centered Research, Evidera Ltd, 201 Talgarth Rd Hammersmith, London, W6 8BJ, UK.
| |
Collapse
|
11
|
Desmarais S, Ramos-Palacios G, Porée J, Lee SA, Leconte A, Sadikot AF, Provost J. Equivalent-time-active-cavitation-imaging enables vascular-resolution blood-brain-barrier-opening-therapy planning. Phys Med Biol 2024; 69:055014. [PMID: 38157550 DOI: 10.1088/1361-6560/ad199a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
Objective. Linking cavitation and anatomy was found to be important for predictable outcomes in focused-ultrasound blood-brain-barrier-opening and requires high resolution cavitation mapping. However, cavitation mapping techniques for planning and monitoring of therapeutic procedures either (1) do not leverage the full resolution capabilities of ultrasound imaging or (2) place constraints on the length of the therapeutic pulse. This study aimed to develop a high-resolution technique that could resolve vascular anatomy in the cavitation map.Approach. Herein, we develop BandPass-sampled-equivalent-time-active-cavitation-imaging (BP-ETACI), derived from bandpass sampling and dual-frequency contrast imaging at 12.5 MHz to produce cavitation maps prior and during blood-brain barrier opening with long therapeutic bursts using a 1.5 MHz focused transducer in the brain of C57BL/6 mice.Main results. The BP-ETACI cavitation maps were found to correlate with the vascular anatomy in ultrasound localization microscopy vascular maps and in histological sections. Cavitation maps produced from non-blood-brain-barrier disrupting doses showed the same cavitation-bearing vasculature as maps produced over entire blood-brain-barrier opening procedures, allowing use for (1) monitoring focused-ultrasound blood-brain-barrier-opening (FUS-BBBO), but also for (2) therapy planning and target verification.Significance. BP-ETACI is versatile, created high resolution cavitation maps in the mouse brain and is easily translatable to existing FUS-BBBO experiments. As such, it provides a means to further study cavitation phenomena in FUS-BBBO.
Collapse
Affiliation(s)
| | | | | | | | | | - Abbas F Sadikot
- Montreal Neurological Institute and Hospital, McGill University, Montréal, Canada
| | - Jean Provost
- Polytechnique Montréal, Montréal, Canada
- Institut de Cardiologie de Montréal, Montréal, Canada
| |
Collapse
|
12
|
Kim S, Kim SE, Lee DA, Lee H, Park KM. Anti-seizure medication response and the glymphatic system in patients with focal epilepsy. Eur J Neurol 2024; 31:e16097. [PMID: 37823697 PMCID: PMC11235655 DOI: 10.1111/ene.16097] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/14/2023] [Accepted: 09/23/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND AND PURPOSE We aimed to evaluate (i) glymphatic system function in patients with focal epilepsy in comparison with healthy controls, and (ii) the association between anti-seizure medication (ASM) response and glymphatic system function by using diffusion tensor image analysis along the perivascular space (DTI-ALPS). METHODS We retrospectively enrolled 100 patients with focal epilepsy who had normal brain magnetic resonance imaging (MRI) findings, and classified them as "poor" or "good" ASM responders according to their seizure control at the time of brain MRI. We also included 79 age- and sex-matched healthy controls. All patients and healthy controls underwent conventional brain MRI and diffusion tensor imaging. The DTI-ALPS index was calculated using the DSI studio program. RESULTS Of the 100 patients with focal epilepsy, 38 and 62 were poor and good ASM responders, respectively. The DTI-ALPS index differed significantly between patients with focal epilepsy and healthy controls and was significantly lower in patients with focal epilepsy (1.55 vs. 1.70; p < 0.001). The DTI-ALPS index also differed significantly according to ASM response and was lower in poor ASM responders (1.48 vs. 1.59; p = 0.047). Furthermore, the DTI-ALPS index was negatively correlated with age (r = -0.234, p = 0.019) and duration of epilepsy (r = -0.240, p = 0.016) in patients with focal epilepsy. CONCLUSION Our study is the first to identify, in focal epilepsy patients, a greater reduction in glymphatic system function among poor ASM responders compared to good responders. To confirm our results, further prospective multicenter studies with large sample sizes are needed.
Collapse
Affiliation(s)
- Sung‐Tae Kim
- Department of NeurosugeryInje University Busan Paik HospitalBusanKorea
| | - Sung Eun Kim
- Department of Neurology, Haeundae Paik HospitalInje University College of MedicineBusanKorea
| | - Dong Ah Lee
- Department of Neurology, Haeundae Paik HospitalInje University College of MedicineBusanKorea
| | - Ho‐Joon Lee
- Department of Radiology, Haeundae Paik HospitalInje University College of MedicineBusanKorea
| | - Kang Min Park
- Department of Neurology, Haeundae Paik HospitalInje University College of MedicineBusanKorea
| |
Collapse
|
13
|
Sela T, Mansø M, Siegel M, Marban-Doran C, Ducret A, Niewöhner J, Ravn J, Martin RE, Sommer A, Lohmann S, Krippendorff BF, Ladefoged M, Indlekofer A, Quaiser T, Bueddefeld F, Koller E, Mohamed MY, Oelschlaegel T, Gothelf KV, Hofer K, Schumacher FF. Diligent Design Enables Antibody-ASO Conjugates with Optimal Pharmacokinetic Properties. Bioconjug Chem 2023; 34:2096-2111. [PMID: 37916986 DOI: 10.1021/acs.bioconjchem.3c00393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Antisense-oligonucleotides (ASOs) are a promising drug modality for the treatment of neurological disorders, but the currently established route of administration via intrathecal delivery is a major limitation to its broader clinical application. An attractive alternative is the conjugation of the ASO to an antibody that facilitates access to the central nervous system (CNS) after peripheral application and target engagement at the blood-brain barrier, followed by transcytosis. Here, we show that the diligent conjugate design of Brainshuttle-ASO conjugates is the key to generating promising delivery vehicles and thereby establishing design principles to create optimized molecules with drug-like properties. An innovative site-specific transglutaminase-based conjugation technology was chosen and optimized in a stepwise process to identify the best-suited conjugation site, tags, reaction conditions, and linker design. The overall conjugation performance was found to be specifically governed by the choice of buffer conditions and the structure of the linker. The combination of the peptide tags YRYRQ and RYESK was chosen, showing high conjugation fidelity. Elaborate conjugate analysis revealed that one leading differentiating factor was hydrophobicity. The increase of hydrophobicity by the ASO payload could be mitigated by the appropriate choice of conjugation site and the heavy chain position 297 proved to be the most optimal. Evaluating the properties of the linker suggested a short bicyclo[6.1.0]nonyne (BCN) unit as best suited with regards to conjugation performance and potency. Promising in vitro activity and in vivo pharmacokinetic behavior of optimized Brainshuttle-ASO conjugates, based on a microtubule-associated protein tau (MAPT) targeting oligonucleotide, suggest that such designs have the potential to serve as a blueprint for peripherally delivered ASO-based drugs for the CNS in the future.
Collapse
Affiliation(s)
- Tatjana Sela
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Roche Diagnostics GmbH, Nonnenwald 2, Penzberg 82377, Germany
- Department of Biochemistry, Ludwig-Maximilians-Universität, Munich 80539, Germany
| | - Mads Mansø
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Copenhagen, F. Hoffmann-La Roche Ltd., Fremtidsvej 3, Hørsholm 2970, Denmark
| | - Michel Siegel
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Céline Marban-Doran
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Axel Ducret
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Jens Niewöhner
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Roche Diagnostics GmbH, Nonnenwald 2, Penzberg 82377, Germany
| | - Jacob Ravn
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Copenhagen, F. Hoffmann-La Roche Ltd., Fremtidsvej 3, Hørsholm 2970, Denmark
| | - Rainer E Martin
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Annika Sommer
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Roche Diagnostics GmbH, Nonnenwald 2, Penzberg 82377, Germany
| | - Sabine Lohmann
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Roche Diagnostics GmbH, Nonnenwald 2, Penzberg 82377, Germany
| | - Ben-Fillippo Krippendorff
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Mette Ladefoged
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Copenhagen, F. Hoffmann-La Roche Ltd., Fremtidsvej 3, Hørsholm 2970, Denmark
| | - Annette Indlekofer
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Roche Diagnostics GmbH, Nonnenwald 2, Penzberg 82377, Germany
| | - Tom Quaiser
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Roche Diagnostics GmbH, Nonnenwald 2, Penzberg 82377, Germany
| | - Florian Bueddefeld
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Roche Diagnostics GmbH, Nonnenwald 2, Penzberg 82377, Germany
| | - Erich Koller
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | | | | | - Kurt V Gothelf
- Department of Chemistry and Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus 8000, Central Denmark Region, Denmark
| | - Kerstin Hofer
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Roche Diagnostics GmbH, Nonnenwald 2, Penzberg 82377, Germany
| | - Felix F Schumacher
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| |
Collapse
|
14
|
Kaur J, Ding G, Zhang L, Lu Y, Luo H, Li L, Boyd E, Li Q, Wei M, Zhang Z, Chopp M, Jiang Q. Imaging glymphatic response to glioblastoma. Cancer Imaging 2023; 23:107. [PMID: 37904254 PMCID: PMC10614361 DOI: 10.1186/s40644-023-00628-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/19/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND The glymphatic system actively exchanges cerebrospinal fluid (CSF) and interstitial fluid (ISF) to eliminate toxic interstitial waste solutes from the brain parenchyma. Impairment of the glymphatic system has been linked to several neurological conditions. Glioblastoma, also known as Glioblastoma multiforme (GBM) is a highly aggressive form of malignant brain cancer within the glioma category. However, the impact of GBM on the functioning of the glymphatic system has not been investigated. Using dynamic contrast-enhanced magnetic resonance imaging (CE-MRI) and advanced kinetic modeling, we examined the changes in the glymphatic system in rats with GBM. METHODS Dynamic 3D contrast-enhanced T1-weighted imaging (T1WI) with intra-cisterna magna (ICM) infusion of paramagnetic Gd-DTPA contrast agent was used for MRI glymphatic measurements in both GBM-induced and control rats. Glymphatic flow in the whole brain and the olfactory bulb was analyzed using model-derived parameters of arrival time, infusion rate, clearance rate, and residual that describe the dynamics of CSF tracer over time. RESULTS 3D dynamic T1WI data identified reduced glymphatic influx and clearance, indicating an impaired glymphatic system due to GBM. Kinetic modeling and quantitative analyses consistently indicated significantly reduced infusion rate, clearance rate, and increased residual of CSF tracer in GBM rats compared to control rats, suggesting restricted glymphatic flow in the brain with GBM. In addition, our results identified compromised perineural pathway along the optic nerves in GBM rats. CONCLUSIONS Our study demonstrates the presence of GBM-impaired glymphatic response in the rat brain and impaired perineural pathway along the optic nerves. Reduced glymphatic waste clearance may lead to the accumulation of toxic waste solutes and pro-inflammatory signaling molecules which may affect the progression of the GBM.
Collapse
Affiliation(s)
- Jasleen Kaur
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
- Department of Physics, Oakland University, Rochester, MI, USA
| | - Guangliang Ding
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
- Department of Radiology, Michigan State University, Lasing, MI, USA
| | - Li Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
- Department of Physiology, Michigan State University, Lasing, MI, USA
| | - Yong Lu
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Hao Luo
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Lian Li
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Edward Boyd
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
- Department of Radiology, Michigan State University, Lasing, MI, USA
| | - Qingjiang Li
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Min Wei
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Zhenggang Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
- Department of Physiology, Michigan State University, Lasing, MI, USA
- Department of Neurology, Wayne State University, Detroit, MI, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
- Department of Physics, Oakland University, Rochester, MI, USA
- Department of Physiology, Michigan State University, Lasing, MI, USA
- Department of Neurology, Wayne State University, Detroit, MI, USA
| | - Quan Jiang
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA.
- Department of Physics, Oakland University, Rochester, MI, USA.
- Department of Radiology, Michigan State University, Lasing, MI, USA.
- Department of Neurology, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
15
|
Holdaway M, Ablyazova F, Huda S, D'Amico RS, Wong T, Shani D, Ben-Shalom N, Boockvar JA. First in-human intrathecal delivery of bevacizumab for leptomeningeal spread from recurrent glioblastoma: rationale for a dose escalation trial. J Neurooncol 2023; 164:231-237. [PMID: 37548850 DOI: 10.1007/s11060-023-04412-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/28/2023] [Indexed: 08/08/2023]
Abstract
PURPOSE To outline the dose rationale for the first in-human intrathecal delivery of bevacizumab for LMS of GBM. METHODS A 19-year-old female patient presented to Lenox Hill Hospital following thalamic GBM recurrence. She subsequently underwent two infusions of intra-arterial BEV (NCT01269853) and experienced a period of relative disease stability until progression in 2022. One month later, MRI disclosed diffuse enhancement representative of LMS of GBM. The patient subsequently underwent five cycles of IT BEV in mid-2022 (IND 162119). Doses of 25 mg, 37.5 mg, 50 mg, 50 mg, and 37.8 mg were delivered at two-week intervals between doses 1-4. The final 37.8 mg dose was given one day following her fourth dose, given that the patient was to be discharged, traveled several hours to our center, and was tolerating therapy well. Dosage was decreased due to the short interval between the final two treatments. Shortly after IT BEV completion, she received a third dose of IA BEV. RESULTS Our patient did not show any signs of serious adverse effects or dose limiting toxicities following any of the treatments. It is difficult to determine PFS due to the rapid progression associated with LMS of GBM and rapid timeframe of treatment. CONCLUSION LMS continues to be a devastating progression in many types of cancer, including GBM, and novel ways to deliver therapeutics may offer patients symptomatic and therapeutic benefits.
Collapse
Affiliation(s)
- Matthew Holdaway
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Lenox Hill Hospital, 130 East 77th Street, New York, NY, 10065, USA.
- Albany Medical College, Albany, NY, USA.
| | - Faina Ablyazova
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Lenox Hill Hospital, 130 East 77th Street, New York, NY, 10065, USA
| | - Shayan Huda
- CUNY School of Medicine, New York City, NY, USA
| | - Randy S D'Amico
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Lenox Hill Hospital, 130 East 77th Street, New York, NY, 10065, USA
| | - Tamika Wong
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Lenox Hill Hospital, 130 East 77th Street, New York, NY, 10065, USA
| | - Dana Shani
- Department of Hematology, Medical Oncology, Internal Medicine, Lenox Hill Hospital, New York City, NY, USA
- Northwell Health Cancer Institute, New Hyde Park, New York, NY, USA
| | - Netanel Ben-Shalom
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Lenox Hill Hospital, 130 East 77th Street, New York, NY, 10065, USA
| | - John A Boockvar
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Lenox Hill Hospital, 130 East 77th Street, New York, NY, 10065, USA
| |
Collapse
|
16
|
Linninger AA, Barua D, Hang Y, Iadevaia S, Vakilynejad M. A mechanistic pharmacokinetic model for intrathecal administration of antisense oligonucleotides. Front Physiol 2023; 14:1130925. [PMID: 37334053 PMCID: PMC10272745 DOI: 10.3389/fphys.2023.1130925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
Intrathecal administration is an important mode for delivering biological agents targeting central nervous system (CNS) diseases. However, current clinical practices lack a sound theorical basis for a quantitative understanding of the variables and conditions that govern the delivery efficiency and specific tissue targeting especially in the brain. This work presents a distributed mechanistic pharmacokinetic model (DMPK) for predictive analysis of intrathecal drug delivery to CNS. The proposed DMPK model captures the spatiotemporal dispersion of antisense oligonucleotides (ASO) along the neuraxis over clinically relevant time scales of days and weeks as a function of infusion, physiological and molecular properties. We demonstrate its prediction capability using biodistribution data of antisense oligonucleotide (ASO) administration in non-human primates. The results are in close agreement with the observed ASO pharmacokinetics in all key compartments of the central nervous system. The model enables determination of optimal injection parameters such as intrathecal infusion volume and duration for maximum ASO delivery to the brain. Our quantitative model-guided analysis is suitable for identifying optimal parameter settings to target specific brain regions with therapeutic drugs such as ASOs.
Collapse
Affiliation(s)
| | - Dipak Barua
- Takeda Pharmaceuticals, Cambridge, MA, United States
| | - Yaming Hang
- Takeda Pharmaceuticals, Cambridge, MA, United States
| | | | | |
Collapse
|
17
|
Vangansewinkel T, Lemmens S, Tiane A, Geurts N, Dooley D, Vanmierlo T, Pejler G, Hendrix S. Therapeutic administration of mouse mast cell protease 6 improves functional recovery after traumatic spinal cord injury in mice by promoting remyelination and reducing glial scar formation. FASEB J 2023; 37:e22939. [PMID: 37130013 DOI: 10.1096/fj.202201942rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
Traumatic spinal cord injury (SCI) most often leads to permanent paralysis due to the inability of axons to regenerate in the adult mammalian central nervous system (CNS). In the past, we have shown that mast cells (MCs) improve the functional outcome after SCI by suppressing scar tissue formation at the lesion site via mouse mast cell protease 6 (mMCP6). In this study, we investigated whether recombinant mMCP6 can be used therapeutically to improve the functional outcome after SCI. Therefore, we applied mMCP6 locally via an intrathecal catheter in the subacute phase after a spinal cord hemisection injury in mice. Our findings showed that hind limb motor function was significantly improved in mice that received recombinant mMCP6 compared with the vehicle-treated group. In contrast to our previous findings in mMCP6 knockout mice, the lesion size and expression levels of the scar components fibronectin, laminin, and axon-growth-inhibitory chondroitin sulfate proteoglycans were not affected by the treatment with recombinant mMCP6. Surprisingly, no difference in infiltration of CD4+ T cells and reactivity of Iba-1+ microglia/macrophages at the lesion site was observed between the mMCP6-treated mice and control mice. Additionally, local protein levels of the pro- and anti-inflammatory mediators IL-1β, IL-2, IL-4, IL-6, IL-10, TNF-α, IFNγ, and MCP-1 were comparable between the two treatment groups, indicating that locally applied mMCP6 did not affect inflammatory processes after injury. However, the increase in locomotor performance in mMCP6-treated mice was accompanied by reduced demyelination and astrogliosis in the perilesional area after SCI. Consistently, we found that TNF-α/IL-1β-astrocyte activation was decreased and that oligodendrocyte precursor cell (OPC) differentiation was increased after recombinant mMCP6 treatment in vitro. Mechanistically, this suggests effects of mMCP6 on reducing astrogliosis and improving (re)myelination in the spinal cord after injury. In conclusion, these data show for the first time that recombinant mMCP6 is therapeutically active in enhancing recovery after SCI.
Collapse
Affiliation(s)
- Tim Vangansewinkel
- Cardio and Organ Systems, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Stefanie Lemmens
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Assia Tiane
- Department of Neuroscience, Faculty of Medicine and Life Sciences, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- University MS Center (UMSC) Hasselt-Pelt, Hasselt, Belgium
| | - Nathalie Geurts
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Dearbhaile Dooley
- School of Medicine, Health Sciences Centre, University College Dublin, Belfield, Ireland
- UCD Conway Institute of Biomolecular & Biomedical Research University College Dublin, Belfield, Ireland
| | - Tim Vanmierlo
- Department of Neuroscience, Faculty of Medicine and Life Sciences, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- University MS Center (UMSC) Hasselt-Pelt, Hasselt, Belgium
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Sven Hendrix
- Institute for Translational Medicine, Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
18
|
Yang J, Luly KM, Green JJ. Nonviral nanoparticle gene delivery into the CNS for neurological disorders and brain cancer applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1853. [PMID: 36193561 PMCID: PMC10023321 DOI: 10.1002/wnan.1853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/24/2022] [Accepted: 08/11/2022] [Indexed: 03/15/2023]
Abstract
Nonviral nanoparticles have emerged as an attractive alternative to viral vectors for gene therapy applications, utilizing a range of lipid-based, polymeric, and inorganic materials. These materials can either encapsulate or be functionalized to bind nucleic acids and protect them from degradation. To effectively elicit changes to gene expression, the nanoparticle carrier needs to undergo a series of steps intracellularly, from interacting with the cellular membrane to facilitate cellular uptake to endosomal escape and nucleic acid release. Adjusting physiochemical properties of the nanoparticles, such as size, charge, and targeting ligands, can improve cellular uptake and ultimately gene delivery. Applications in the central nervous system (CNS; i.e., neurological diseases, brain cancers) face further extracellular barriers for a gene-carrying nanoparticle to surpass, with the most significant being the blood-brain barrier (BBB). Approaches to overcome these extracellular challenges to deliver nanoparticles into the CNS include systemic, intracerebroventricular, intrathecal, and intranasal administration. This review describes and compares different biomaterials for nonviral nanoparticle-mediated gene therapy to the CNS and explores challenges and recent preclinical and clinical developments in overcoming barriers to nanoparticle-mediated delivery to the brain. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Joanna Yang
- Departments of Biomedical Engineering, Ophthalmology, Oncology, Neurosurgery, Materials Science & Engineering, and Chemical & Biomolecular Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kathryn M Luly
- Departments of Biomedical Engineering, Ophthalmology, Oncology, Neurosurgery, Materials Science & Engineering, and Chemical & Biomolecular Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jordan J Green
- Departments of Biomedical Engineering, Ophthalmology, Oncology, Neurosurgery, Materials Science & Engineering, and Chemical & Biomolecular Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
19
|
CNS Delivery of Nucleic Acid Therapeutics: Beyond the Blood-Brain Barrier and Towards Specific Cellular Targeting. Pharm Res 2023; 40:77-105. [PMID: 36380168 DOI: 10.1007/s11095-022-03433-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022]
Abstract
Nucleic acid-based therapeutic molecules including small interfering RNA (siRNA), microRNA(miRNA), antisense oligonucleotides (ASOs), messenger RNA (mRNA), and DNA-based gene therapy have tremendous potential for treating diseases in the central nervous system (CNS). However, achieving clinically meaningful delivery to the brain and particularly to target cells and sub-cellular compartments is typically very challenging. Mediating cell-specific delivery in the CNS would be a crucial advance that mitigates off-target effects and toxicities. In this review, we describe these challenges and provide contemporary evidence of advances in cellular and sub-cellular delivery using a variety of delivery mechanisms and alternative routes of administration, including the nose-to-brain approach. Strategies to achieve subcellular localization, endosomal escape, cytosolic bioavailability, and nuclear transfer are also discussed. Ultimately, there are still many challenges to translating these experimental strategies into effective and clinically viable approaches for treating patients.
Collapse
|
20
|
Zheng F, Pang Y, Li L, Pang Y, Zhang J, Wang X, Raes G. Applications of nanobodies in brain diseases. Front Immunol 2022; 13:978513. [PMID: 36426363 PMCID: PMC9679430 DOI: 10.3389/fimmu.2022.978513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/30/2022] [Indexed: 03/31/2024] Open
Abstract
Nanobodies are antibody fragments derived from camelids, naturally endowed with properties like low molecular weight, high affinity and low immunogenicity, which contribute to their effective use as research tools, but also as diagnostic and therapeutic agents in a wide range of diseases, including brain diseases. Also, with the success of Caplacizumab, the first approved nanobody drug which was established as a first-in-class medication to treat acquired thrombotic thrombocytopenic purpura, nanobody-based therapy has received increasing attention. In the current review, we first briefly introduce the characterization and manufacturing of nanobodies. Then, we discuss the issue of crossing of the brain-blood-barrier (BBB) by nanobodies, making use of natural methods of BBB penetration, including passive diffusion, active efflux carriers (ATP-binding cassette transporters), carrier-mediated influx via solute carriers and transcytosis (including receptor-mediated transport, and adsorptive mediated transport) as well as various physical and chemical methods or even more complicated methods such as genetic methods via viral vectors to deliver nanobodies to the brain. Next, we give an extensive overview of research, diagnostic and therapeutic applications of nanobodies in brain-related diseases, with emphasis on Alzheimer's disease, Parkinson's disease, and brain tumors. Thanks to the advance of nanobody engineering and modification technologies, nanobodies can be linked to toxins or conjugated with radionuclides, photosensitizers and nanoparticles, according to different requirements. Finally, we provide several perspectives that may facilitate future studies and whereby the versatile nanobodies offer promising perspectives for advancing our knowledge about brain disorders, as well as hopefully yielding diagnostic and therapeutic solutions.
Collapse
Affiliation(s)
- Fang Zheng
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Yucheng Pang
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Luyao Li
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Yuxing Pang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiaxin Zhang
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Xinyi Wang
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Geert Raes
- Research Group of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Lab, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Brussels, Belgium
| |
Collapse
|
21
|
Kusaka S, Miyake Y, Tokumaru Y, Morizane Y, Tamaki S, Akiyama Y, Sato F, Murata I. Boron Delivery to Brain Cells via Cerebrospinal Fluid (CSF) Circulation in BNCT of Brain-Tumor-Model Rats-Ex Vivo Imaging of BPA Using MALDI Mass Spectrometry Imaging. Life (Basel) 2022; 12:1786. [PMID: 36362940 PMCID: PMC9695333 DOI: 10.3390/life12111786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 09/10/2024] Open
Abstract
The blood-brain barrier (BBB) is likely to be intact during the early stages of brain metastatic melanoma development, and thereby inhibits sufficient drug delivery into the metastatic lesions. Our laboratory has been developing a system for boron drug delivery to brain cells via cerebrospinal fluid (CSF) as a viable pathway to circumvent the BBB in boron neutron capture therapy (BNCT). BNCT is a cell-selective cancer treatment based on the use of boron-containing drugs and neutron irradiation. Selective tumor targeting by boron with minimal normal tissue toxicity is required for effective BNCT. Boronophenylalanine (BPA) is widely used as a boron drug for BNCT. In our previous study, we demonstrated that application of the CSF administration method results in high BPA accumulation in the brain tumor even with a low dose of BPA. In this study, we evaluate BPA biodistribution in the brain following application of the CSF method in brain-tumor-model rats (melanoma) utilizing matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI). We observed increased BPA penetration to the tumor tissue, where the color contrast on mass images indicates the border of BPA accumulation between tumor and normal cells. Our approach could be useful as drug delivery to different types of brain tumor, including brain metastases of melanoma.
Collapse
Affiliation(s)
- Sachie Kusaka
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita 565-0871, Osaka, Japan
| | - Yumi Miyake
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
| | - Yugo Tokumaru
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita 565-0871, Osaka, Japan
| | - Yuri Morizane
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita 565-0871, Osaka, Japan
| | - Shingo Tamaki
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita 565-0871, Osaka, Japan
| | - Yoko Akiyama
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita 565-0871, Osaka, Japan
| | - Fuminobu Sato
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita 565-0871, Osaka, Japan
| | - Isao Murata
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita 565-0871, Osaka, Japan
| |
Collapse
|
22
|
Kusaka S, Morizane Y, Tokumaru Y, Tamaki S, Maemunah IR, Akiyama Y, Sato F, Murata I. Cerebrospinal fluid-based boron delivery system may help increase the uptake boron for boron neutron capture therapy in veterinary medicine: A preliminary study with normal rat brain cells. Res Vet Sci 2022; 148:1-6. [PMID: 35523003 DOI: 10.1016/j.rvsc.2022.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 01/29/2023]
Abstract
Boron neutron capture therapy (BNCT) is a non-invasive type of radiation therapy developed for humans and translated to veterinary medicine. However, clinical trials on BNCT for patients with brain tumors are on-going. To improve the therapeutic efficacy of BNCT for brain tumors, we developed a boron delivery system that involves the cerebrospinal fluid (CSF), in contrast to the conventional method that involves intravenous (IV) administration. This study aimed to investigate the time-concentration profile of boron in the CSF as well as the uptake rate of boron by the brain cells after administering L-p‑boronophenylalanine (BPA) into the lateral ventricle of normal rats. Brain cell uptake rates were compared between the CSF-based and IV administration methods. The CSF-based and IV administration methods achieved comparable brain cell uptake levels; however, the former method involved lower BPA doses than the latter method. These findings suggest that the CSF method may reduce the economic and physical burdens associated with this treatment in brain tumor patients. Future studies should validate these findings in rat models of brain tumors.
Collapse
Affiliation(s)
- Sachie Kusaka
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan.
| | - Yuri Morizane
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
| | - Yugo Tokumaru
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
| | - Shingo Tamaki
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
| | - Indah Rosidah Maemunah
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
| | - Yoko Akiyama
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
| | - Fuminobu Sato
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
| | - Isao Murata
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
| |
Collapse
|
23
|
Lilius TO, Rosenholm M, Klinger L, Mortensen KN, Sigurdsson B, Mogensen FLH, Hauglund NL, Nielsen MSN, Rantamäki T, Nedergaard M. SPECT/CT imaging reveals CNS-wide modulation of glymphatic cerebrospinal fluid flow by systemic hypertonic saline. iScience 2022; 25:105250. [PMID: 36274948 PMCID: PMC9579504 DOI: 10.1016/j.isci.2022.105250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 09/04/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022] Open
Abstract
Intrathecal administration enables central nervous system delivery of drugs that do not bypass the blood-brain barrier. Systemic administration of hypertonic saline (HTS) enhances delivery of intrathecal therapeutics into the neuropil, but its effect on solute clearance from the brain remains unknown. Here, we developed a dynamic in vivo single-photon emission computed tomography (SPECT)/computed tomography (CT) imaging platform to study the effects of HTS on whole-body distribution of the radiolabeled tracer 99mTc-diethylenetriaminepentaacetic acid (DTPA) administered through intracisternal, intrastriatal, or intravenous route in anesthetized rats. Co-administration of systemic HTS increased intracranial exposure to intracisternal 99mTc-DTPA by ∼80% during imaging. In contrast, HTS had minimal effects on brain clearance of intrastriatal 99mTc-DTPA. In sum, SPECT/CT imaging presents a valuable approach to study glymphatic drug delivery. Using this methodology, we show that systemic HTS increases intracranial availability of cerebrospinal fluid-administered tracer, but has marginal effects on brain clearance, thus substantiating a simple, yet effective strategy for enhancing intrathecal drug delivery to the brain.
Collapse
Affiliation(s)
- Tuomas O. Lilius
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Emergency Medicine and Services, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Marko Rosenholm
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Laura Klinger
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Nygaard Mortensen
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Björn Sigurdsson
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Frida Lind-Holm Mogensen
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Neuro-immunology Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Doctoral School of Science and Technology, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Natalie L. Hauglund
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Tomi Rantamäki
- Laboratory of Neurotherapeutics, Doctoral Program in Drug Research, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, 601 Elmwood Avenue, Box 645, Rochester, NY 14642, USA
| |
Collapse
|
24
|
Mashabela LT, Maboa MM, Miya NF, Ajayi TO, Chasara RS, Milne M, Mokhele S, Demana PH, Witika BA, Siwe-Noundou X, Poka MS. A Comprehensive Review of Cross-Linked Gels as Vehicles for Drug Delivery to Treat Central Nervous System Disorders. Gels 2022; 8:563. [PMID: 36135275 PMCID: PMC9498590 DOI: 10.3390/gels8090563] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Gels are attractive candidates for drug delivery because they are easily producible while offering sustained and/or controlled drug release through various mechanisms by releasing the therapeutic agent at the site of action or absorption. Gels can be classified based on various characteristics including the nature of solvents used during preparation and the method of cross-linking. The development of novel gel systems for local or systemic drug delivery in a sustained, controlled, and targetable manner has been at the epitome of recent advances in drug delivery systems. Cross-linked gels can be modified by altering their polymer composition and content for pharmaceutical and biomedical applications. These modifications have resulted in the development of stimuli-responsive and functionalized dosage forms that offer many advantages for effective dosing of drugs for Central Nervous System (CNS) conditions. In this review, the literature concerning recent advances in cross-linked gels for drug delivery to the CNS are explored. Injectable and non-injectable formulations intended for the treatment of diseases of the CNS together with the impact of recent advances in cross-linked gels on studies involving CNS drug delivery are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Madan S. Poka
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa
| |
Collapse
|
25
|
Orientation of nanocarriers in subarachnoid space: A tweak in strategic transport for effective CNS delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Aryal M, Azadian MM, Hart AR, Macedo N, Zhou Q, Rosenthal EL, Airan RD. Noninvasive ultrasonic induction of cerebrospinal fluid flow enhances intrathecal drug delivery. J Control Release 2022; 349:434-442. [PMID: 35798095 DOI: 10.1016/j.jconrel.2022.06.067] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/15/2022] [Accepted: 06/30/2022] [Indexed: 10/17/2022]
Abstract
Intrathecal drug delivery is routinely used in the treatment and prophylaxis of varied central nervous system conditions, as doing so allows drugs to directly bypass the blood-brain barrier. However, the utility of this route of administration is limited by poor brain and spinal cord parenchymal drug uptake from the cerebrospinal fluid. We demonstrate that a simple noninvasive transcranial ultrasound protocol can significantly increase influx of cerebrospinal fluid into the perivascular spaces of the brain, to enhance the uptake of intrathecally administered drugs. Specifically, we administered small (~1 kDa) and large (~155 kDa) molecule agents into the cisterna magna of rats and then applied low, diagnostic-intensity focused ultrasound in a scanning protocol throughout the brain. Using real-time magnetic resonance imaging and ex vivo histologic analyses, we observed significantly increased uptake of small molecule agents into the brain parenchyma, and of both small and large molecule agents into the perivascular space from the cerebrospinal fluid. Notably, there was no evidence of brain parenchymal damage following this intervention. The low intensity and noninvasive approach of transcranial ultrasound in this protocol underscores the ready path to clinical translation of this technique. In this manner, this protocol can be used to directly bypass the blood-brain barrier for whole-brain delivery of a variety of agents. Additionally, this technique can potentially be used as a means to probe the causal role of the glymphatic system in the variety of disease and physiologic processes to which it has been correlated.
Collapse
Affiliation(s)
- Muna Aryal
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States; Departments of Engineering and Radiation Oncology, Loyola University Chicago, Chicago, IL, United States
| | - Matine M Azadian
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
| | - Alex R Hart
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
| | - Nicholas Macedo
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
| | - Quan Zhou
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, CA, United States; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Eben L Rosenthal
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, CA, United States; Stanford Cancer Center, Stanford Medical Center, Stanford, CA, United States; Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Raag D Airan
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States; Department of Materials Science and Engineering, Stanford University School of Medicine, Stanford, CA, United States; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States.
| |
Collapse
|
27
|
Wang Y, van Gelderen P, de Zwart JA, Özbay PS, Mandelkow H, Picchioni D, Duyn JH. Cerebrovascular activity is a major factor in the cerebrospinal fluid flow dynamics. Neuroimage 2022; 258:119362. [PMID: 35688316 PMCID: PMC9271599 DOI: 10.1016/j.neuroimage.2022.119362] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
Cerebrospinal fluid (CSF) provides physical protection to the central nervous system as well as an essential homeostatic environment for the normal functioning of neurons. Additionally, it has been proposed that the pulsatile movement of CSF may assist in glymphatic clearance of brain metabolic waste products implicated in neurodegeneration. In awake humans, CSF flow dynamics are thought to be driven primarily by cerebral blood volume fluctuations resulting from a number of mechanisms, including a passive vascular response to blood pressure variations associated with cardiac and respiratory cycles. Recent research has shown that mechanisms that rely on the action of vascular smooth muscle cells ("cerebrovascular activity") such as neuronal activity, changes in intravascular CO2, and autonomic activation from the brainstem, may lead to CSF pulsations as well. Nevertheless, the relative contribution of these mechanisms to CSF flow remains unclear. To investigate this further, we developed an MRI approach capable of disentangling and quantifying CSF flow components of different time scales associated with these mechanisms. This approach was evaluated on human control subjects (n = 12) performing intermittent voluntary deep inspirations, by determining peak flow velocities and displaced volumes between these mechanisms in the fourth ventricle. We found that peak flow velocities were similar between the different mechanisms, while displaced volumes per cycle were about a magnitude larger for deep inspirations. CSF flow velocity peaked at around 10.4 s (range 7.1-14.8 s, n = 12) following deep inspiration, consistent with known cerebrovascular activation delays for this autonomic challenge. These findings point to an important role of cerebrovascular activity in the genesis of CSF pulsations. Other regulatory triggers for cerebral blood flow such as autonomic arousal and orthostatic challenges may create major CSF pulsatile movement as well. Future quantitative comparison of these and possibly additional types of CSF pulsations with the proposed approach may help clarify the conditions that affect CSF flow dynamics.
Collapse
Affiliation(s)
- Yicun Wang
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States.
| | - Peter van Gelderen
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Jacco A de Zwart
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Pinar S Özbay
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Hendrik Mandelkow
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Dante Picchioni
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Jeff H Duyn
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
28
|
The glymphatic system: implications for drugs for central nervous system diseases. Nat Rev Drug Discov 2022; 21:763-779. [PMID: 35948785 DOI: 10.1038/s41573-022-00500-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2022] [Indexed: 12/14/2022]
Abstract
In the past decade, evidence for a fluid clearance pathway in the central nervous system known as the glymphatic system has grown. According to the glymphatic system concept, cerebrospinal fluid flows directionally through the brain and non-selectively clears the interstitium of metabolic waste. Importantly, the glymphatic system may be modulated by particular drugs such as anaesthetics, as well as by non-pharmacological factors such as sleep, and its dysfunction has been implicated in central nervous system disorders such as Alzheimer disease. Although the glymphatic system is best described in rodents, reports using multiple neuroimaging modalities indicate that a similar transport system exists in the human brain. Here, we overview the evidence for the glymphatic system and its role in disease and discuss opportunities to harness the glymphatic system therapeutically; for example, by improving the effectiveness of intrathecally delivered drugs.
Collapse
|
29
|
Khang M, Bindra RS, Mark Saltzman W. Intrathecal delivery and its applications in leptomeningeal disease. Adv Drug Deliv Rev 2022; 186:114338. [PMID: 35561835 DOI: 10.1016/j.addr.2022.114338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 04/26/2022] [Accepted: 05/06/2022] [Indexed: 12/22/2022]
Abstract
Intrathecal delivery (IT) of opiates into the cerebrospinal fluid (CSF) for anesthesia and pain relief has been used clinically for decades, but this relatively straightforward approach of bypassing the blood-brain barrier has been underutilized for other indications because of its lack of utility in delivering small lipid-soluble drugs. However, emerging evidence suggests that IT drug delivery be an efficacious strategy for the treatment of cancers in which there is leptomeningeal spread of disease. In this review, we discuss CSF flow dynamics and CSF clearance pathways in the context of intrathecal delivery. We discuss human and animal studies of several new classes of therapeutic agents-cellular, protein, nucleic acid, and nanoparticle-based small molecules-that may benefit from IT delivery. The complexity of the CSF compartment presents several key challenges in predicting biodistribution of IT-delivered drugs. New approaches and strategies are needed that can overcome the high rates of turnover in the CSF to reach specific tissues or cellular targets.
Collapse
|
30
|
Seiner A, Burla GKR, Shrestha D, Bowen M, Horvath JD, Martin BA. Investigation of Human Intrathecal Solute Transport Dynamics Using a Novel in vitro Cerebrospinal Fluid System Analog. FRONTIERS IN NEUROIMAGING 2022; 1:879098. [PMID: 37555174 PMCID: PMC10406265 DOI: 10.3389/fnimg.2022.879098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/24/2022] [Indexed: 08/10/2023]
Abstract
BACKGROUND Understanding the relationship between cerebrospinal fluid (CSF) dynamics and intrathecal drug delivery (ITDD) injection parameters is essential to improve treatment of central nervous system (CNS) disorders. METHODS An anatomically detailed in vitro model of the complete CSF system was constructed. Patient-specific cardiac- and respiratory-induced CSF oscillations were input to the model in the subarachnoid space and within the ventricles. CSF production was input at the lateral ventricles and CSF absorption at the superior sagittal sinus. A model small molecule simulated drug product containing fluorescein was imaged within the system over a period of 3-h post-lumbar ITDD injections and used to quantify the impact of (a) bolus injection volume and rate, (b) post-injection flush volume, rate, and timing, (c) injection location, and (d) type of injection device. For each experiment, neuraxial distribution of fluorescein in terms of spatial temporal concentration, area-under-the-curve (AUC), and percent of injected dose (%ID) to the brain was quantified at a time point 3-h post-injection. RESULTS For all experiments conducted with ITDD administration in the lumbar spine, %ID to the brain did not exceed 11.6% at a time point 3-h post-injection. Addition of a 12 mL flush slightly increased solute transport to the brain up to +3.9%ID compared to without a flush (p < 0.01). Implantation of a lumbar catheter with the tip at an equivalent location to the lumbar placed needle, but with rostral tip orientation, resulted in a small improvement of 1.5%ID to the brain (p < 0.05). An increase of bolus volume from 5 to 20 mL improved solute transport to the brain from 5.0 to 6.3%ID, but this improvement was not statistically significant. Increasing bolus injection rate from 5 to 13.3 mL/min lacked improvement of solute transport to the brain, with a value of 6.3 compared to 5.7%ID. CONCLUSION The in vitro modeling approach allowed precisely controlled and repeatable parametric investigation of ITDD injection protocols and devices. In combination, the results predict that parametric changes in lumbar spine ITDD-injection related parameters and devices can alter %ID to the brain and be tuned to optimize therapeutic benefit to CNS targets.
Collapse
Affiliation(s)
- Akari Seiner
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, ID, United States
| | | | - Dev Shrestha
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, ID, United States
| | - Mayumi Bowen
- Genentech, Inc., A Member of the Roche Group, South San Francisco, CA, United States
| | - Joshua D. Horvath
- Genentech, Inc., A Member of the Roche Group, South San Francisco, CA, United States
| | - Bryn A. Martin
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, ID, United States
- Alcyone Therapeutics Inc., Lowell, MA, United States
| |
Collapse
|
31
|
Power EA, Rechberger JS, Gupta S, Schwartz JD, Daniels DJ, Khatua S. Drug delivery across the blood-brain barrier for the treatment of pediatric brain tumors - An update. Adv Drug Deliv Rev 2022; 185:114303. [PMID: 35460714 DOI: 10.1016/j.addr.2022.114303] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 12/14/2022]
Abstract
Even though the last decade has seen a surge in the identification of molecular targets and targeted therapies in pediatric brain tumors, the blood brain barrier (BBB) remains a significant challenge in systemic drug delivery. This continues to undermine therapeutic efficacy. Recent efforts have identified several strategies that can facilitate enhanced drug delivery into pediatric brain tumors. These include invasive methods such as intra-arterial, intrathecal, and convection enhanced delivery and non-invasive technologies that allow for transient access across the BBB, including focused ultrasound and nanotechnology. This review discusses current strategies that are being used to enhance delivery of different therapies across the BBB to the tumor site - a major unmet need in pediatric neuro-oncology.
Collapse
Affiliation(s)
- Erica A Power
- Mayo Clinic Graduate School of Biomedical Sciences, 200 First Street SW, Rochester, MN 55905, United States; Department of Neurologic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States
| | - Julian S Rechberger
- Mayo Clinic Graduate School of Biomedical Sciences, 200 First Street SW, Rochester, MN 55905, United States; Department of Neurologic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States
| | - Sumit Gupta
- Department of Pediatric Hematology/Oncology, Roseman University of Health Sciences, Las Vegas, NV 89118, United States
| | - Jonathan D Schwartz
- Department of Pediatric Hematology/Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States
| | - David J Daniels
- Department of Neurologic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States
| | - Soumen Khatua
- Department of Pediatric Hematology/Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States.
| |
Collapse
|
32
|
Bénard A, Chouinard S, Leavitt BR, Budd N, Wu JW, Schoffer K. Canadian healthcare capacity gaps for disease-modifying treatment in Huntington's disease: a survey of current practice and modelling of future needs. BMJ Open 2022; 12:e062740. [PMID: 35649593 PMCID: PMC9161103 DOI: 10.1136/bmjopen-2022-062740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES Disease-modifying therapies in development for Huntington's disease (HD) may require specialised administration and additional resource capacity. We sought to understand current and future capacity for HD management in Canada considering the possible introduction of an intrathecal (IT) disease-modifying treatment (DMT). DESIGN, SETTING AND PARTICIPANTS Using a case study, mixed methods framework, online surveys followed by semistructured interviews were conducted in late 2020 and early 2021. Neurologists from Canadian HD (n=16) and community (n=11) centres and social workers (n=16) were invited to complete online surveys assessing current HD management and potential capacity to support administration of an IT DMT. OUTCOME MEASURES Survey responses, anticipated demand and assumed resource requirements were modelled to reveal capacity to treat (ie, % of eligible patients) by centre. Resource bottlenecks and incremental support required (full-time equivalent, FTE) were also determined. RESULTS Neurologists from 15/16 HD centres and 5/11 community centres, plus 16/16 social workers participated. HD centres manage 94% of patients with HD currently seeking care in Canada, however, only 20% of IT DMT-eligible patients are currently seen by neurologists. One-third of centres have no access to nursing support. The average national incremental nursing, room, neurologist and social worker support required to provide IT DMT to all eligible patients is 0.73, 0.36, 0.30 and 0.21 FTE per HD centre, respectively. At peak demand, current capacity would support the treatment of 6% of IT DMT-eligible patients. If frequency of administration is halved, capacity for IT-DMT administration only increases to 11%. CONCLUSIONS In Canada, there is little to no capacity to support the administration of an IT DMT for HD. Current inequitable and inadequate resourcing will require solutions that consider regional gaps and patient needs.
Collapse
Affiliation(s)
- Angèle Bénard
- Huntington Society of Canada, Waterloo, Ontario, Canada
| | - Sylvain Chouinard
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Unité des troubles du mouvement André Barbeau, Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Blair R Leavitt
- Department of Medical Genetics and Department of Medicine, Division of Neurology, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Nathalie Budd
- Hoffmann-La Roche Limited, Mississauga, Ontario, Canada
| | - Jennifer W Wu
- Hoffmann-La Roche Limited, Mississauga, Ontario, Canada
| | - Kerrie Schoffer
- Division of Neurology, Dalhousie University Faculty of Medicine, Halifax, Nova Scotia, Canada
- Movement Disorder Clinic, QEII Health Sciences Centre Foundation, Halifax, Nova Scotia, Canada
| |
Collapse
|
33
|
McClane J, Chawla A, Welch JJG. Direct CNS administration of rituximab and epratuzumab in a pediatric patient with relapsed refractory CNS B-cell acute lymphoblastic leukemia. Pediatr Blood Cancer 2022; 69:e29664. [PMID: 35293685 DOI: 10.1002/pbc.29664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 01/17/2023]
Abstract
Relapsed central nervous system (CNS) leukemia presents a therapeutic challenge to pediatric oncologists. Systemic monoclonal antibody therapy has shown recent promise in patients with relapsed acute lymphoblastic leukemia, however its effect on CNS disease in this population is not well established. We describe a case of multiply relapsed and refractory CNS leukemia in an adolescent patient who responded to the intra-CNS delivery of rituximab (anti-CD20) and epratuzumab (anti-CD22) therapy, demonstrating the practical use and potential efficacy of a novel route of monoclonal antibody administration in difficult-to-treat CNS leukemia.
Collapse
Affiliation(s)
- Jenna McClane
- Department of Pediatrics, Brown University and Hasbro Children's Hospital, Providence, Rhode Island, USA
| | - Anjulika Chawla
- Division of Hematology Oncology, Department of Pediatrics, Brown University and Hasbro Children's Hospital, Providence, Rhode Island, USA
| | - Jennifer J G Welch
- Division of Hematology Oncology, Department of Pediatrics, Brown University and Hasbro Children's Hospital, Providence, Rhode Island, USA
| |
Collapse
|
34
|
Wakeman DR, Weed MR, Perez SE, Cline EN, Viola KL, Wilcox KC, Moddrelle DS, Nisbett EZ, Kurian AM, Bell AF, Pike R, Jacobson PB, Klein WL, Mufson EJ, Lawrence MS, Elsworth JD. Intrathecal amyloid-beta oligomer administration increases tau phosphorylation in the medial temporal lobe in the African green monkey: A nonhuman primate model of Alzheimer's disease. Neuropathol Appl Neurobiol 2022; 48:e12800. [PMID: 35156715 PMCID: PMC10902791 DOI: 10.1111/nan.12800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/31/2022] [Accepted: 02/05/2022] [Indexed: 11/26/2022]
Abstract
AIMS An obstacle to developing new treatment strategies for Alzheimer's disease (AD) has been the inadequate translation of findings in current AD transgenic rodent models to the prediction of clinical outcomes. By contrast, nonhuman primates (NHPs) share a close neurobiology with humans in virtually all aspects relevant to developing a translational AD model. The present investigation used African green monkeys (AGMs) to refine an inducible NHP model of AD based on the administration of amyloid-beta oligomers (AβOs), a key upstream initiator of AD pathology. METHODS AβOs or vehicle were repeatedly delivered over 4 weeks to age-matched young adult AGMs by intracerebroventricular (ICV) or intrathecal (IT) injections. Induction of AD-like pathology was assessed in subregions of the medial temporal lobe (MTL) by quantitative immunohistochemistry (IHC) using the AT8 antibody to detect hyperphosphorylated tau. Hippocampal volume was measured by magnetic resonance imaging (MRI) scans prior to, and after, intrathecal injections. RESULTS IT administration of AβOs in young adult AGMs revealed an elevation of tau phosphorylation in the MTL cortical memory circuit compared with controls. The largest increases were detected in the entorhinal cortex that persisted for at least 12 weeks after dosing. MRI scans showed a reduction in hippocampal volume following AβO injections. CONCLUSIONS Repeated IT delivery of AβOs in young adult AGMs led to an accelerated AD-like neuropathology in MTL, similar to human AD, supporting the value of this translational model to de-risk the clinical trial of diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Sylvia E Perez
- Neurobiology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Erika N Cline
- Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Kirsten L Viola
- Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Kyle C Wilcox
- Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - David S Moddrelle
- Virscio Inc., St. Kitts Biomedical Research Foundation, St. Kitts, West Indies
| | - Ernell Z Nisbett
- Virscio Inc., St. Kitts Biomedical Research Foundation, St. Kitts, West Indies
| | | | - Amanda F Bell
- Virscio Inc., St. Kitts Biomedical Research Foundation, St. Kitts, West Indies
| | - Ricaldo Pike
- Virscio Inc., St. Kitts Biomedical Research Foundation, St. Kitts, West Indies
| | | | - William L Klein
- Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Elliott J Mufson
- Neurobiology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | | | | |
Collapse
|
35
|
Current Strategies to Enhance Delivery of Drugs across the Blood–Brain Barrier. Pharmaceutics 2022; 14:pharmaceutics14050987. [PMID: 35631573 PMCID: PMC9145636 DOI: 10.3390/pharmaceutics14050987] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/18/2022] [Accepted: 04/29/2022] [Indexed: 12/13/2022] Open
Abstract
The blood–brain barrier (BBB) has shown to be a significant obstacle to brain medication delivery. The BBB in a healthy brain is a diffusion barrier that prevents most substances from passing from the blood to the brain; only tiny molecules can pass across the BBB. The BBB is disturbed in specific pathological illnesses such as stroke, diabetes, seizures, multiple sclerosis, Parkinson’s disease, and Alzheimer’s disease. The goal of this study is to offer a general overview of current brain medication delivery techniques and associated topics from the last five years. It is anticipated that this review will stimulate readers to look into new ways to deliver medications to the brain. Following an introduction of the construction and function of the BBB in both healthy and pathological conditions, this review revisits certain contested questions, such as whether nanoparticles may cross the BBB on their own and if medications are selectively delivered to the brain by deliberately targeted nanoparticles. Current non-nanoparticle options are also discussed, including drug delivery via the permeable BBB under pathological circumstances and the use of non-invasive approaches to improve brain medication absorption.
Collapse
|
36
|
Ghosh S, Huda P, Fletcher NL, Howard CB, Walsh B, Campbell D, Pinkham MB, Thurecht KJ. Antibody-Based Formats to Target Glioblastoma: Overcoming Barriers to Protein Drug Delivery. Mol Pharm 2022; 19:1233-1247. [PMID: 35438509 DOI: 10.1021/acs.molpharmaceut.1c00996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glioblastoma (GB) is recognized as the most aggressive form of primary brain cancer. Despite advances in treatment strategies that include surgery, radiation, and chemotherapy, the median survival time (∼15 months) of patients with GB has not significantly improved. The poor prognosis of GB is also associated with a very high chance of tumor recurrence (∼90%), and current treatment measures have failed to address the complications associated with this disease. However, targeted therapies enabled through antibody engineering have shown promise in countering GB when used in combination with conventional approaches. Here, we discuss the challenges in conventional as well as future GB therapeutics and highlight some of the known advantages of using targeted biologics to overcome these impediments. We also review a broad range of potential alternative routes that could be used clinically to administer anti-GB biologics to the brain through evasion of its natural barriers.
Collapse
Affiliation(s)
- Saikat Ghosh
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Pie Huda
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Nicholas L Fletcher
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Christopher B Howard
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Bradley Walsh
- GlyTherix, Ltd., Sydney, New South Wales 2113, Australia
| | | | - Mark B Pinkham
- Department of Radiation Oncology, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | - Kristofer J Thurecht
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
37
|
Nance E, Pun SH, Saigal R, Sellers DL. Drug delivery to the central nervous system. NATURE REVIEWS. MATERIALS 2022; 7:314-331. [PMID: 38464996 PMCID: PMC10923597 DOI: 10.1038/s41578-021-00394-w] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/05/2021] [Indexed: 03/12/2024]
Abstract
Despite the rising global incidence of central nervous system (CNS) disorders, CNS drug development remains challenging, with high costs, long pathways to clinical use and high failure rates. The CNS is highly protected by physiological barriers, in particular, the blood-brain barrier and the blood-cerebrospinal fluid barrier, which limit access of most drugs. Biomaterials can be designed to bypass or traverse these barriers, enabling the controlled delivery of drugs into the CNS. In this Review, we first examine the effects of normal and diseased CNS physiology on drug delivery to the brain and spinal cord. We then discuss CNS drug delivery designs and materials that are administered systemically, directly to the CNS, intranasally or peripherally through intramuscular injections. Finally, we highlight important challenges and opportunities for materials design for drug delivery to the CNS and the anticipated clinical impact of CNS drug delivery.
Collapse
Affiliation(s)
- Elizabeth Nance
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
- These authors contributed equally: Elizabeth Nance, Suzie H. Pun, Rajiv Saigal, Drew L. Sellers
| | - Suzie H. Pun
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- These authors contributed equally: Elizabeth Nance, Suzie H. Pun, Rajiv Saigal, Drew L. Sellers
| | - Rajiv Saigal
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
- These authors contributed equally: Elizabeth Nance, Suzie H. Pun, Rajiv Saigal, Drew L. Sellers
| | - Drew L. Sellers
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- These authors contributed equally: Elizabeth Nance, Suzie H. Pun, Rajiv Saigal, Drew L. Sellers
| |
Collapse
|
38
|
Kusaka S, Morizane Y, Tokumaru Y, Tamaki S, Maemunah IR, Akiyama Y, Sato F, Murata I. Boron Delivery to Brain Cells via Cerebrospinal Fluid (CSF) Circulation for BNCT in a Rat Melanoma Model. BIOLOGY 2022; 11:biology11030397. [PMID: 35336771 PMCID: PMC8945851 DOI: 10.3390/biology11030397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/17/2022] [Accepted: 02/25/2022] [Indexed: 02/02/2023]
Abstract
Simple Summary The blood–brain barrier (BBB) is formed by the brain capillary endothelium and prevents almost all therapeutic agents from reaching the brain. The importance of the BBB in brain tumor treatments has not been recognized until recently, including in the case of boron neutron capture therapy (BNCT), although it affects therapeutic efficacy when treating brain tumors. Recently, some drug delivery systems to bypass the BBB have been developed for brain tumor therapy, and our laboratory has been developing a system for boron delivery to brain cells using cerebrospinal fluid (CSF) circulation, which we call the “boron CSF administration method”. In this study, we carried out experiments with brain tumor model rats to demonstrate the usefulness of the CSF administration method for BNCT. As a result, we found that boron injected using the CSF administration method accumulates to high levels in tumor cells, with a high T/N ratio. In addition, the dose required for the boron drug was much lower than that used in the intravenous (IV) administration method for equivalent effects. This approach makes it possible for clinicians to inject a lower drug dose into patient, thus reducing the potential side effects of excessive amounts of the drug and decreasing its cost. We hope our findings will inspire additional studies on boron delivery to brain tumors for BNCT. Abstract Recently, exploitation of cerebrospinal fluid (CSF) circulation has become increasingly recognized as a feasible strategy to solve the challenges involved in drug delivery for treating brain tumors. Boron neutron capture therapy (BNCT) also faces challenges associated with the development of an efficient delivery system for boron, especially to brain tumors. Our laboratory has been developing a system for boron delivery to brain cells using CSF, which we call the “boron CSF administration method”. In our previous study, we found that boron was efficiently delivered to the brain cells of normal rats in the form of small amounts of L-p-boronophenylalanine (BPA) using the CSF administration method. In the study described here, we carried out experiments with brain tumor model rats to demonstrate the usefulness of the CSF administration method for BNCT. We first investigated the boron concentration of the brain cells every 60 min after BPA administration into the lateral ventricle of normal rats. Second, we measured and compared the boron concentration in the melanoma model rats after administering boron via either the CSF administration method or the intravenous (IV) administration method, with estimation of the T/N ratio. Our results revealed that boron injected by the CSF administration method was excreted quickly from normal cells, resulting in a high T/N ratio compared to that of IV administration. In addition, the CSF administration method resulted in high boron accumulation in tumor cells. In conclusion, we found that using our developed CSF administration method results in more selective delivery of boron to the brain tumor compared with the IV administration method.
Collapse
|
39
|
Benatti HR, Gray-Edwards HL. Adeno-Associated Virus Delivery Limitations for Neurological Indications. Hum Gene Ther 2022; 33:1-7. [PMID: 35049369 DOI: 10.1089/hum.2022.29196.hrb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Hector Ribeiro Benatti
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Heather L Gray-Edwards
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA.,Department of Radiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
40
|
Sadekar SS, Bowen M, Cai H, Jamalian S, Rafidi H, Shatz‐Binder W, Lafrance‐Vanasse J, Chan P, Meilandt WJ, Oldendorp A, Sreedhara A, Daugherty A, Crowell S, Wildsmith KR, Atwal J, Fuji RN, Horvath J. Translational approaches for brain delivery of biologics via cerebrospinal fluid. Clin Pharmacol Ther 2022; 111:826-834. [PMID: 35064573 PMCID: PMC9305158 DOI: 10.1002/cpt.2531] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/04/2022] [Indexed: 11/14/2022]
Abstract
Delivery of biologics via cerebrospinal fluid (CSF) has demonstrated potential to access the tissues of the central nervous system (CNS) by circumventing the blood‐brain barrier and blood‐CSF barrier. Developing an effective CSF drug delivery strategy requires optimization of multiple parameters, including choice of CSF access point, delivery device technology, and delivery kinetics to achieve effective therapeutic concentrations in the target brain region, whereas also considering the biologic modality, mechanism of action, disease indication, and patient population. This review discusses key preclinical and clinical examples of CSF delivery for different biologic modalities (antibodies, nucleic acid‐based therapeutics, and gene therapy) to the brain via CSF or CNS access routes (intracerebroventricular, intrathecal‐cisterna magna, intrathecal‐lumbar, intraparenchymal, and intranasal), including the use of novel device technologies. This review also discusses quantitative models of CSF flow that provide insight into the effect of fluid dynamics in CSF on drug delivery and CNS distribution. Such models can facilitate delivery device design and pharmacokinetic/pharmacodynamic translation from preclinical species to humans in order to optimize CSF drug delivery to brain regions of interest.
Collapse
Affiliation(s)
- Shraddha S Sadekar
- Genentech Research and Early Development Genentech, Inc., a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Mayumi Bowen
- Pharma Technical Development. Genentech, Inc, a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Hao Cai
- Genentech Research and Early Development Genentech, Inc., a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Samira Jamalian
- Genentech Research and Early Development Genentech, Inc., a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Hanine Rafidi
- Genentech Research and Early Development Genentech, Inc., a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Whitney Shatz‐Binder
- Genentech Research and Early Development Genentech, Inc., a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Julien Lafrance‐Vanasse
- Genentech Research and Early Development Genentech, Inc., a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Pamela Chan
- Genentech Research and Early Development Genentech, Inc., a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - William J. Meilandt
- Genentech Research and Early Development Genentech, Inc., a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Amy Oldendorp
- Genentech Research and Early Development Genentech, Inc., a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Alavattam Sreedhara
- Pharma Technical Development. Genentech, Inc, a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Ann Daugherty
- Pharma Technical Development. Genentech, Inc, a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Susan Crowell
- Genentech Research and Early Development Genentech, Inc., a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Kristin R. Wildsmith
- Clinical pharmacology and translational medicine Neurology business Eisai, Nutley NJ 07110 USA
| | - Jasvinder Atwal
- Genentech Research and Early Development Genentech, Inc., a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Reina N. Fuji
- Genentech Research and Early Development Genentech, Inc., a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Josh Horvath
- Pharma Technical Development. Genentech, Inc, a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| |
Collapse
|
41
|
Anantha J, Goulding SR, Tuboly E, O'Mahony AG, Moloney GM, Lomansey G, McCarthy CM, Collins LM, Sullivan AM, O'Keeffe GW. NME1 Protects Against Neurotoxin-, α-Synuclein- and LRRK2-Induced Neurite Degeneration in Cell Models of Parkinson's Disease. Mol Neurobiol 2022; 59:61-76. [PMID: 34623600 PMCID: PMC8786793 DOI: 10.1007/s12035-021-02569-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 09/14/2021] [Indexed: 11/26/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterised by the progressive degeneration of midbrain dopaminergic neurons, coupled with the intracellular accumulation of α-synuclein. Axonal degeneration is a central part of the pathology of PD. While the majority of PD cases are sporadic, some are genetic; the G2019S mutation in leucine-rich repeat kinase 2 (LRRK2) is the most common genetic form. The application of neurotrophic factors to protect dopaminergic neurons is a proposed experimental therapy. One such neurotrophic factor is growth differentiation factor (GDF)5. GDF5 is a dopaminergic neurotrophic factor that has been shown to upregulate the expression of a protein called nucleoside diphosphate kinase A (NME1). However, whether NME1 is neuroprotective in cell models of axonal degeneration of relevance to PD is unknown. Here we show that treatment with NME1 can promote neurite growth in SH-SY5Y cells, and in cultured dopaminergic neurons treated with the neurotoxin 6-hydroxydopamine (6-OHDA). Similar effects of NME1 were found in SH-SY5Y cells and dopaminergic neurons overexpressing human wild-type α-synuclein, and in stable SH-SY5Y cell lines carrying the G2019S LRRK2 mutation. We found that the effects of NME1 require the RORα/ROR2 receptors. Furthermore, increased NF-κB-dependent transcription was partially required for the neurite growth-promoting effects of NME1. Finally, a combined bioinformatics and biochemical analysis of the mitochondrial oxygen consumption rate revealed that NME1 enhanced mitochondrial function, which is known to be impaired in PD. These data show that recombinant NME1 is worthy of further study as a potential therapeutic agent for axonal protection in PD.
Collapse
Affiliation(s)
- Jayanth Anantha
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Susan R Goulding
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Eszter Tuboly
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Adam G O'Mahony
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard M Moloney
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Gareth Lomansey
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Cathal M McCarthy
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Louise M Collins
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
- Parkinson's Disease Research Cluster (PDRC), University College Cork, Cork, Ireland
| | - Aideen M Sullivan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Parkinson's Disease Research Cluster (PDRC), University College Cork, Cork, Ireland.
| | - Gerard W O'Keeffe
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Parkinson's Disease Research Cluster (PDRC), University College Cork, Cork, Ireland.
| |
Collapse
|
42
|
Seven-year follow-up of durability and safety of AAV CNS gene therapy for a lysosomal storage disorder in a large animal. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 23:370-389. [PMID: 34761052 PMCID: PMC8550992 DOI: 10.1016/j.omtm.2021.09.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/25/2021] [Accepted: 09/29/2021] [Indexed: 12/15/2022]
Abstract
Delivery of adeno-associated viral vectors (AAVs) to cerebrospinal fluid (CSF) has emerged as a promising approach to achieve widespread transduction of the central nervous system (CNS) and peripheral nervous system (PNS), with direct applicability to the treatment of a wide range of neurological diseases, particularly lysosomal storage diseases. Although studies in small animal models have provided proof of concept and experiments in large animals demonstrated feasibility in bigger brains, there is not much information on long-term safety or durability of the effect. Here, we report a 7-year study in healthy beagle dogs after intra-CSF delivery of a single, clinically relevant dose (2 × 1013 vg/dog) of AAV9 vectors carrying the canine sulfamidase, the enzyme deficient in mucopolysaccharidosis type IIIA. Periodic monitoring of CSF and blood, clinical and neurological evaluations, and magnetic resonance and ultrasound imaging of target organs demonstrated no toxicity related to treatment. AAV9-mediated gene transfer resulted in detection of sulfamidase activity in CSF throughout the study. Analysis at tissue level showed widespread sulfamidase expression and activity in the absence of histological findings in any region of encephalon, spinal cord, or dorsal root ganglia. Altogether, these results provide proof of durability of expression and long-term safety for intra-CSF delivery of AAV-based gene transfer vectors encoding therapeutic proteins to the CNS.
Collapse
|
43
|
Achar A, Myers R, Ghosh C. Drug Delivery Challenges in Brain Disorders across the Blood-Brain Barrier: Novel Methods and Future Considerations for Improved Therapy. Biomedicines 2021; 9:1834. [PMID: 34944650 PMCID: PMC8698904 DOI: 10.3390/biomedicines9121834] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
Due to the physiological and structural properties of the blood-brain barrier (BBB), the delivery of drugs to the brain poses a unique challenge in patients with central nervous system (CNS) disorders. Several strategies have been investigated to circumvent the barrier for CNS therapeutics such as in epilepsy, stroke, brain cancer and traumatic brain injury. In this review, we summarize current and novel routes of drug interventions, discuss pharmacokinetics and pharmacodynamics at the neurovascular interface, and propose additional factors that may influence drug delivery. At present, both technological and mechanistic tools are devised to assist in overcoming the BBB for more efficient and improved drug bioavailability in the treatment of clinically devastating brain disorders.
Collapse
Affiliation(s)
- Aneesha Achar
- Cerebrovascular Research, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (R.M.)
| | - Rosemary Myers
- Cerebrovascular Research, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (R.M.)
| | - Chaitali Ghosh
- Cerebrovascular Research, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (R.M.)
- Department of Biomedical Engineering and Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| |
Collapse
|
44
|
Zanon D, Selmin F, Centin G, Maximova N, Casiraghi A, Minghetti P. Stability of high concentrated triple intrathecal therapy for pediatrics and mitigation strategies. Eur J Pharm Sci 2021; 167:106039. [PMID: 34644599 DOI: 10.1016/j.ejps.2021.106039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/16/2021] [Accepted: 08/25/2021] [Indexed: 10/20/2022]
Abstract
Stringent formulation requirements are defined to intrathecally administer drug substances, avoiding neurological complications. In case of pediatric patients, these are further complicated due to the limited volumes of the celebrospinal fluid and, therefore, high concentrated solutions of methotrexate (MTX), cytarabine and corticosteroids (i.e., methylprednisolone or hydrocortisone) are prepared based on the patient's age. This work aims to assess the chemical and physical stability of triple intrathecal mixtures differing in volume and composition by a bracketing approach and to identify possible stress causes and mitigation strategies. Low solubility of MTX was the main factor limiting the physical stability of triple mixtures. Regarding solutions containing methylprednisolone, the amount of MTX remaining was about 95% in the solution at highest concentrations with the concomitant formation of a visible particulate sizing bigger than 1 µm after 24 h of storage at 25 °C. This behavior was mainly driven by the pH reduction due to the pH value of the cytarabine solution used; the shear stress also induced drug precipitation. In the case of the hydrocortisone based mixtures, the precipitate formation occurred at a slow rate. To improve the physical stability, a better control of the mixture pH (optimal value ≈ 7) is required or, as an alternative, the addition of the cytarabine solution to a pre-mixed binary mixture containing MTX and a corticosteroid should be preferred.
Collapse
Affiliation(s)
- Davide Zanon
- Department of Pharmacy and Clinical Pharmacology, Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Via dell'Istria 65/1, 34137 Trieste, Italy
| | - Francesca Selmin
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Giuseppe Colombo 71, 20133 Milan, Italy
| | - Giorgio Centin
- Department of Pharmacy and Clinical Pharmacology, Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Via dell'Istria 65/1, 34137 Trieste, Italy; Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Giuseppe Colombo 71, 20133 Milan, Italy
| | - Natalia Maximova
- Department of Pharmacy and Clinical Pharmacology, Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Via dell'Istria 65/1, 34137 Trieste, Italy
| | - Antonella Casiraghi
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Giuseppe Colombo 71, 20133 Milan, Italy
| | - Paola Minghetti
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Giuseppe Colombo 71, 20133 Milan, Italy.
| |
Collapse
|
45
|
Xu K, Jiang X, Ariston Gabriel AN, Li X, Wang Y, Xu S. Evolving Landscape of Long Non-coding RNAs in Cerebrospinal Fluid: A Key Role From Diagnosis to Therapy in Brain Tumors. Front Cell Dev Biol 2021; 9:737670. [PMID: 34692695 PMCID: PMC8529119 DOI: 10.3389/fcell.2021.737670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/31/2021] [Indexed: 11/23/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a type of non-coding RNAs that act as molecular fingerprints and modulators of many pathophysiological processes, particularly in cancer. Specifically, lncRNAs can be involved in the pathogenesis and progression of brain tumors, affecting stemness/differentiation, replication, invasion, survival, DNA damage response, and chromatin dynamics. Furthermore, the aberrations in the expressions of these transcripts can promote treatment resistance, leading to tumor recurrence. The development of next-generation sequencing technologies and the creation of lncRNA-specific microarrays have boosted the study of lncRNA etiology. Cerebrospinal fluid (CSF) directly mirrors the biological fluid of biochemical processes in the brain. It can be enriched for small molecules, peptides, or proteins released by the neurons of the central nervous system (CNS) or immune cells. Therefore, strategies that identify and target CSF lncRNAs may be attractive as early diagnostic and therapeutic options. In this review, we have reviewed the studies on CSF lncRNAs in the context of brain tumor pathogenesis and progression and discuss their potential as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Kanghong Xu
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Xinquan Jiang
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | | | - Xiaomeng Li
- Department of Hematology, Jining First People's Hospital, Jining, China
| | - Yunshan Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China
| | - Shuo Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Key Laboratory of Brain Function Remodeling, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
46
|
Guttman M, Pedrazzoli M, Ponomareva M, Pelletier M, Townson L, Mukelabai K, Levine A, Nordström AL, Reilmann R, Burgunder JM. The Impact of Upcoming Treatments in Huntington's Disease: Resource Capacity Limitations and Access to Care Implications. J Huntingtons Dis 2021; 10:303-311. [PMID: 33843690 PMCID: PMC8293639 DOI: 10.3233/jhd-200462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The most advanced disease-modifying therapies (DMTs) in development for Huntington's disease (HD) require intrathecal (IT) administration, which may create or exacerbate bottlenecks in resource capacity. OBJECTIVE To understand the readiness of healthcare systems for intrathecally administered HD DMTs in terms of resource capacity dynamics and implications for patients' access to treatment. METHODS Forty HD centres across 12 countries were included. Qualitative and quantitative data on current capacity in HD centres and anticipated capacity needs following availability of a DMT were gathered via interviews with healthcare professionals (HCPs). Data modelling was used to estimate the current capacity gap in HD centres. RESULTS From interviews with 218 HCPs, 25% of HD centres are estimated to have the three components required for IT administration (proceduralists, nurses and facilities). On average, 114 patients per centre per year are anticipated to receive intrathecally administered DMTs in the future. At current capacity, six of the sampled centres are estimated to be able to deliver DMTs to all the anticipated patients based on current resources. The estimated waiting time for IT administration at current capacity will average 60 months (5 years) by the second year after DMT availability. CONCLUSION Additional resources are needed in HD centres for future DMTs to be accessible to all anticipated patients. Timely collaboration by the HD community will be needed to address capacity gaps. Healthcare policymakers and payers will need to address costs and navigate challenges arising from country- or region-specific healthcare delivery schemes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ralf Reilmann
- George Huntington Institute, Muenster, Germany.,Department of Clinical Radiology, University of Muenster, Muenster, Germany.,Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | - Jean-Marc Burgunder
- Swiss Huntington's Disease Centre, Siloah, Gümligen, Switzerland.,Department of Neurology, University of Bern, Bern, Switzerland
| |
Collapse
|
47
|
Naseri Kouzehgarani G, Feldsien T, Engelhard HH, Mirakhur KK, Phipps C, Nimmrich V, Clausznitzer D, Lefebvre DR. Harnessing cerebrospinal fluid circulation for drug delivery to brain tissues. Adv Drug Deliv Rev 2021; 173:20-59. [PMID: 33705875 DOI: 10.1016/j.addr.2021.03.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/10/2021] [Accepted: 03/01/2021] [Indexed: 12/31/2022]
Abstract
Initially thought to be useful only to reach tissues in the immediate vicinity of the CSF circulatory system, CSF circulation is now increasingly viewed as a viable pathway to deliver certain therapeutics deeper into brain tissues. There is emerging evidence that this goal is achievable in the case of large therapeutic proteins, provided conditions are met that are described herein. We show how fluid dynamic modeling helps predict infusion rate and duration to overcome high CSF turnover. We posit that despite model limitations and controversies, fluid dynamic models, pharmacokinetic models, preclinical testing, and a qualitative understanding of the glymphatic system circulation can be used to estimate drug penetration in brain tissues. Lastly, in addition to highlighting landmark scientific and medical literature, we provide practical advice on formulation development, device selection, and pharmacokinetic modeling. Our review of clinical studies suggests a growing interest for intra-CSF delivery, particularly for targeted proteins.
Collapse
|
48
|
Phipps MD, Sanders VA, Deri MA. Current State of Targeted Radiometal-Based Constructs for the Detection and Treatment of Disease in the Brain. Bioconjug Chem 2021; 32:1331-1347. [PMID: 34015928 DOI: 10.1021/acs.bioconjchem.1c00180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The continual development of radiopharmaceutical agents for the field of nuclear medicine is integral to promoting the necessity of personalized medicine. One way to greatly expand the selection of radiopharmaceuticals available is to broaden the range of radionuclides employed in such agents. Widening the scope of development to include radiometals with their variety of physical decay characteristics and chemical properties opens up a myriad of possibilities for new actively targeted molecules and bioconjugates. This is especially true to further advance the imaging and treatment of disease in the brain. Over the past few decades, imaging of disease in the brain has heavily relied on agents which exploit metabolic uptake. However, through utilizing the broad range of physical characteristics that radiometals offer, the ability to target other processes has become more available. The varied chemistries of radiometals also allows for them to incorporated into specifically designed diverse constructs. A major limitation to efficient treatment of disease in the brain is the ability for relevant agents to penetrate the blood-brain barrier. Thus, along with efficient disease targeting, there must be intentional thought put into overcoming this challenge. Here, we review the current field of radiometal-based agents aimed at either imaging or therapy of brain disease that have been evaluated through at least in vivo studies.
Collapse
Affiliation(s)
- Michael D Phipps
- Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, New York 10016, United States.,Department of Chemistry, Lehman College of the City University of New York, New York, New York 10468, United States.,Department of Chemistry, Hunter College of the City University of New York, New York, New York 10065, United States.,Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Vanessa A Sanders
- Collider Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Melissa A Deri
- Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, New York 10016, United States.,Department of Chemistry, Lehman College of the City University of New York, New York, New York 10468, United States
| |
Collapse
|
49
|
A physiologically-based pharmacokinetic model to describe antisense oligonucleotide distribution after intrathecal administration. J Pharmacokinet Pharmacodyn 2021; 48:639-654. [PMID: 33991294 DOI: 10.1007/s10928-021-09761-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/03/2021] [Indexed: 10/21/2022]
Abstract
Antisense oligonucleotides (ASOs) are promising therapeutic agents for a variety of neurodegenerative and neuromuscular disorders, e.g., Alzheimer's, Parkinson's and Huntington's diseases, spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS), caused by genetic abnormalities or increased protein accumulation. The blood-brain barrier (BBB) represents a challenge to the delivery of systemically administered ASOs to the relevant sites of action within the central nervous system (CNS). Intrathecal (IT) delivery, in which drugs are administered directly into the cerebrospinal fluid (CSF) space, enables to bypass the BBB. Several IT-administered ASO therapeutics have already demonstrated clinical effect, e.g., nusinersen (SMA) and tofersen (ALS). Due to novelty of IT dosing for ASOs, very limited pharmacokinetic (PK) data is available and only a few modeling reports have been generated. The objective of this work is to advance fundamental understanding of whole-body distribution of IT-administered ASOs. We propose a physiologically-based pharmacokinetic modeling approach to describe the distribution along the neuroaxis based on PK data from non-human primate (NHP) studies. We aim to understand the key processes that drive and limit ASO access to the CNS target tissues. To elucidate the trade-off between parameter identifiability and physiological plausibility of the model, several alternative model structures were chosen and fitted to the NHP data. The model analysis of the NHP data led to important qualitative conclusions that can inform projection to human. In particular, the model predicts that the maximum total exposure in the CNS tissues, including the spinal cord and brain, is achieved within two days after the IT injection, and the maximum amount absorbed by the CNS tissues is about 4% of the administered IT dose. This amount greatly exceeds the CNS exposures delivered by systemic administration of ASOs. Clearance from the CNS is controlled by the rate of transfer from the CNS tissues back to CSF, whereas ASO degradation in tissues is very slow and can be neglected. The model also describes local differences in ASO concentration emerging along the spinal CSF canal. These local concentrations need to be taken into account when scaling the NHP model to human: due to the lengthier human spinal column, inhomogeneity along the spinal CSF may cause even higher gradients and delays potentially limiting ASO access to target CNS tissues.
Collapse
|
50
|
Extracellular vesicles isolated from mesenchymal stromal cells primed with neurotrophic factors and signaling modifiers as potential therapeutics for neurodegenerative diseases. Curr Res Transl Med 2021; 69:103286. [DOI: 10.1016/j.retram.2021.103286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 02/10/2021] [Accepted: 03/01/2021] [Indexed: 12/17/2022]
|