1
|
Wang X, Wu L, Liu J, Ma C, Liu J, Zhang Q. The neuroimmune mechanism of pain induced depression in psoriatic arthritis and future directions. Biomed Pharmacother 2025; 182:117802. [PMID: 39742638 DOI: 10.1016/j.biopha.2024.117802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/16/2024] [Accepted: 12/27/2024] [Indexed: 01/03/2025] Open
Abstract
Patients suffering from psoriatic arthritis (PsA) often experience depression due to chronic joint pain, which significantly hinders their recovery process. However, the relationship between these two conditions is not well understood. Through a review of existing studies, we revealed that certain neuroendocrine hormones and neurotransmitters are involved in the neuroimmune interactions related to both PsA and depression. These include adrenocorticotropin-releasing hormone (CRH), adrenocorticotropin (ACTH), cortisol, monoamine neurotransmitters, and brain-derived neurotrophic factor (BDNF). Notably, the signalling pathway involving CRH, MCs, and Th17 cells plays a crucial role in linking PsA with depression; thus, this pathway may help clarify their connection. In this review, we outline the inflammatory immune changes associated with PsA and depression. Additionally, we explore how neuroendocrine hormones and neurotransmitters influence inflammatory responses in these two conditions. Finally, our focus will be on potential treatment strategies for patients with PsA and depression through the targeting of the CRH-MC-Th17 pathway. This review aims to provide a theoretical framework as well as new therapeutic targets for managing PsA alongside depression.
Collapse
Affiliation(s)
- Xiaoxu Wang
- Rheumatology Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China.
| | - Lingjun Wu
- Shunyi Hospital of Beijing Traditional Chinese Medicine Hospital, Beijing 101300, China
| | - Jing Liu
- Department of Oncology and Hematology, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing 100010, China
| | - Cong Ma
- Rheumatology Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Juan Liu
- Rheumatology Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Qin Zhang
- Rheumatology Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China.
| |
Collapse
|
2
|
Patel RA, Panche AN, Harke SN. Gut microbiome-gut brain axis-depression: interconnection. World J Biol Psychiatry 2025; 26:1-36. [PMID: 39713871 DOI: 10.1080/15622975.2024.2436854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 12/24/2024]
Abstract
OBJECTIVES The relationship between the gut microbiome and mental health, particularly depression, has gained significant attention. This review explores the connection between microbial metabolites, dysbiosis, and depression. The gut microbiome, comprising diverse microorganisms, maintains physiological balance and influences health through the gut-brain axis, a communication pathway between the gut and the central nervous system. METHODS Dysbiosis, an imbalance in the gut microbiome, disrupts this axis and worsens depressive symptoms. Factors like diet, antibiotics, and lifestyle can cause this imbalance, leading to changes in microbial composition, metabolism, and immune responses. This imbalance can induce inflammation, disrupt neurotransmitter regulation, and affect hormonal and epigenetic processes, all linked to depression. RESULTS Microbial metabolites, such as short-chain fatty acids and neurotransmitters, are key to gut-brain communication, influencing immune regulation and mood. The altered production of these metabolites is associated with depression. While progress has been made in understanding the gut-brain axis, more research is needed to clarify causative relationships and develop new treatments. The emerging field of psychobiotics and microbiome-targeted therapies shows promise for innovative depression treatments by harnessing the gut microbiome's potential. CONCLUSIONS Epigenetic mechanisms, including DNA methylation and histone modifications, are crucial in how the gut microbiota impacts mental health. Understanding these mechanisms offers new prospects for preventing and treating depression through the gut-brain axis.
Collapse
Affiliation(s)
- Ruhina Afroz Patel
- Institute of Biosciences and Technology, MGM University, Aurangabad, India
| | - Archana N Panche
- Institute of Biosciences and Technology, MGM University, Aurangabad, India
| | - Sanjay N Harke
- Institute of Biosciences and Technology, MGM University, Aurangabad, India
| |
Collapse
|
3
|
Kajumba MM, Kakooza-Mwesige A, Nakasujja N, Koltai D, Canli T. Treatment-resistant depression: molecular mechanisms and management. MOLECULAR BIOMEDICINE 2024; 5:43. [PMID: 39414710 PMCID: PMC11485009 DOI: 10.1186/s43556-024-00205-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/03/2024] [Indexed: 10/18/2024] Open
Abstract
Due to the heterogeneous nature of depression, the underlying etiological mechanisms greatly differ among individuals, and there are no known subtype-specific biomarkers to serve as precise targets for therapeutic efficacy. The extensive research efforts over the past decades have not yielded much success, and the currently used first-line conventional antidepressants are still ineffective for close to 66% of patients. Most clinicians use trial-and-error treatment approaches, which seem beneficial to only a fraction of patients, with some eventually developing treatment resistance. Here, we review evidence from both preclinical and clinical studies on the pathogenesis of depression and antidepressant treatment response. We also discuss the efficacy of the currently used pharmacological and non-pharmacological approaches, as well as the novel emerging therapies. The review reveals that the underlying mechanisms in the pathogenesis of depression and antidepressant response, are not specific, but rather involve an interplay between various neurotransmitter systems, inflammatory mediators, stress, HPA axis dysregulation, genetics, and other psycho-neurophysiological factors. None of the current depression hypotheses sufficiently accounts for the interactional mechanisms involved in both its etiology and treatment response, which could partly explain the limited success in discovering efficacious antidepressant treatment. Effective management of treatment-resistant depression (TRD) requires targeting several interactional mechanisms, using subtype-specific and/or personalized therapeutic modalities, which could, for example, include multi-target pharmacotherapies in augmentation with psychotherapy and/or other non-pharmacological approaches. Future research guided by interaction mechanisms hypotheses could provide more insights into potential etiologies of TRD, precision biomarker targets, and efficacious therapeutic modalities.
Collapse
Affiliation(s)
- Mayanja M Kajumba
- Department of Mental Health and Community Psychology, Makerere University, P. O. Box 7062, Kampala, Uganda.
| | - Angelina Kakooza-Mwesige
- Department of Pediatrics and Child Health, Makerere University College of Health Sciences, Kampala, Uganda
- Department of Pediatrics and Child Health, Mulago National Referral Hospital, Kampala, Uganda
| | - Noeline Nakasujja
- Department of Psychiatry, School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Deborah Koltai
- Duke Division of Global Neurosurgery and Neurology, Department of Neurosurgery, Durham, NC, USA
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, USA
| | - Turhan Canli
- Department of Psychology, Stony Brook University, New York, USA
- Department of Psychiatry, Stony Brook University, New York, USA
| |
Collapse
|
4
|
Sun Y, Cai H, Yang D, Yu N, Sun L, Xu J, Yuan H, Yang R, Song L, Liu H, Ma C, Liu Z. β-arrestin2 is indispensable for the antidepressant effects of fluoxetine via inhibiting astrocytic pyroptosis in chronic mild stress mouse model for depression. Eur J Pharmacol 2024; 976:176693. [PMID: 38834095 DOI: 10.1016/j.ejphar.2024.176693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
β-arrestin2 is a versatile protein for signaling transduction in brain physiology and pathology. Herein, we investigated the involvement of β-arrestin2 in pharmacological effects of fluoxetine for depression. A chronic mild stress (CMS) model was established using wild-type (WT) and β-arrestin2-/- mice. Behavioral results demonstrated that CMS mice showed increased immobility time in the tail suspension test and forced swimming test, elevated concentrations of pro-inflammatory factors in peripheral blood, increased expression of pyroptosis-related proteins, and increased co-labeling of glial fibrillary acidic protein and Caspase1 p10 in the hippocampus compared to the CON group. Treatment with fluoxetine (FLX) ameliorated these conditions. However, compared with the β-arrestin2-/- CMS group, these results of the β-arrestin2-/- CMS + FLX group showed no significant changes. These results suggested that the above effects of FLX could be eliminated by knocking out β-arrestin2. Mass spectrometry implying that FLX promoted the binding of β-arrestin2 to the NLRP2 inflammasome of depressed mice. Subsequently, the results of the cellular experiments suggested that the 5HT2B receptor antagonist may attenuate L-kynurenine + ATP-induced cell pyroptosis by attenuating NLRP2 binding to β-arrestin2. We further found that the lack of β-arrestin2 eliminated the anti-pyroptosis effect of fluoxetine. In conclusion, β-arrestin2 is an essential protein for fluoxetine to alleviate pyroptosis in the hippocampal astrocytes of CMS mice. Mechanistically, we found that the 5-HT2BR-β-arrestin2-NLRP2 axis is vital for maintaining the antidepressant effects of fluoxetine.
Collapse
Affiliation(s)
- Yiming Sun
- The First Affiliated Hospital of Bengbu Medical University, Changhuai Road, Bengbu, 233000, Anhui, China; School of Pharmacy, Bengbu Medical University, Donghhai Avenue, Bengbu, 233030, Anhui, China
| | - Hui Cai
- The First Affiliated Hospital of Bengbu Medical University, Changhuai Road, Bengbu, 233000, Anhui, China
| | - Daofeng Yang
- The First Affiliated Hospital of Bengbu Medical University, Changhuai Road, Bengbu, 233000, Anhui, China
| | - Nengyi Yu
- School of Pharmacy, Bengbu Medical University, Donghhai Avenue, Bengbu, 233030, Anhui, China
| | - Lejie Sun
- School of Pharmacy, Bengbu Medical University, Donghhai Avenue, Bengbu, 233030, Anhui, China
| | - Jingxuan Xu
- School of Pharmacy, Bengbu Medical University, Donghhai Avenue, Bengbu, 233030, Anhui, China
| | - Hongwei Yuan
- School of Pharmacy, Bengbu Medical University, Donghhai Avenue, Bengbu, 233030, Anhui, China
| | - Rong Yang
- School of Pharmacy, Bengbu Medical University, Donghhai Avenue, Bengbu, 233030, Anhui, China
| | - Lele Song
- The First Affiliated Hospital of Bengbu Medical University, Changhuai Road, Bengbu, 233000, Anhui, China
| | - Hao Liu
- School of Pharmacy, Bengbu Medical University, Donghhai Avenue, Bengbu, 233030, Anhui, China
| | - Chengyao Ma
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210028, China.
| | - Zhe Liu
- The First Affiliated Hospital of Bengbu Medical University, Changhuai Road, Bengbu, 233000, Anhui, China; School of Pharmacy, Bengbu Medical University, Donghhai Avenue, Bengbu, 233030, Anhui, China.
| |
Collapse
|
5
|
Ajiboye BO, Famusiwa CD, Amuda MO, Afolabi SO, Ayotunde BT, Adejumo AA, Akindele AFI, Oyinloye BE, Owolabi OV, Genovese C, Ojo OA. Attenuation of PI3K/AKT signaling pathway by Ocimum gratissimum leaf flavonoid-rich extracts in streptozotocin-induced diabetic male rats. Biochem Biophys Rep 2024; 38:101735. [PMID: 38799115 PMCID: PMC11127474 DOI: 10.1016/j.bbrep.2024.101735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Diabetes is a group of medical conditions characterized by the body's inability to effectively control blood glucose levels, due to either insufficient insulin synthesis in type 1 diabetes or inadequate insulin sensitivity in type 2 diabetes. According to this research, the PI3K/AKT pathway of Ocimum gratissimum leaf flavonoid-rich extracts in streptozotocin-induced diabetic rats was studied. We purchased and used a total of forty (40) male Wistar rats for the study. We divided the animals into five (5) different groups: normal control (Group A), diabetic control (Group B), low dose (150 mg/kg body weight) of Ocimum gratissimum flavonoid-rich leaf extract (LDOGFL) (Group C), high dose (300 mg/kg body weight) of Ocimum gratissimum flavonoid-rich leaf extract (HDOGFL) (Group D), and 200 mg/kg of metformin (MET) (Group E). Streptozotocin induced all groups except Group A, which serves as the normal control group. The experiment lasted for 21 days, following which we sacrificed the animals and harvested their brains for biochemical analysis on the 22nd day. We carried out an analysis that included reduced glutathione (GSH), glutathione transferases (GST), catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD), along with GLUT4, MDA, pro-inflammatory cytokines, NO, neurotransmitters, cholinergic enzyme activities, cardiolipin, and the gene expression of PI3K/AKT. The obtained result indicates that the flavonoid-rich extracts of O. gratissimum significantly enhanced the levels of GSH, GST, CAT, GPx, and SOD, as well as GLUT4 and cardiolipin. The levels of GSH, GST, CAT, GPx, and SOD, as well as GLUT4 and cardiolipin, were significantly increased by gratissimum. Moreover, the extracts decrease the levels of MDA, pro-inflammatory cytokines, NO, neurotransmitters, and cholinergic enzyme activities. Additionally, the flavonoid-rich extracts of O. gratissimum significantly improved the AKT and PI3K gene expressions in diabetic rats. gratissimum had their AKT and PI3K gene expressions significantly (p < 0.05) improved. The findings indicate that O. gratissimum leaf flavonoids have the potential to treat diabetes mellitus. gratissimum leaf flavonoids possess therapeutic potential in themselves and can be applied in the management of diabetes mellitus. Although further analysis can be carried out in terms of isolating, profiling, or purifying the active compounds present in the plant's extract.
Collapse
Affiliation(s)
- Basiru Olaitan Ajiboye
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State, Nigeria
| | - Courage Dele Famusiwa
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State, Nigeria
| | - Monsurah Oluwaseyifunmi Amuda
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State, Nigeria
| | - Stephen Oluwaseun Afolabi
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State, Nigeria
| | - Benjamin Temidayo Ayotunde
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State, Nigeria
| | - Adedeji A. Adejumo
- Department of Environmental Management and Toxicology, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State, Nigeria
| | - Ajoke Fehintola Idayat Akindele
- Department of Biosciences and Biotechnology, Environmental Management and Toxicology Unit, Faculty of Sciences, University of Medical Sciences, Ondo City, Ondo State, Nigeria
| | - Babatunji Emmanuel Oyinloye
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, South Africa
| | - Olutunmise Victoria Owolabi
- Medical Biochemistry Unit, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Claudia Genovese
- National Research Council of Italy, Institute for Agriculture and Forestry Systems in the Mediterranean Via Empedocle, 58,95128, Catania, Italy
| | - Oluwafemi Adeleke Ojo
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo, 232101, Osun State, Nigeria
- Good Health and Well being (SDG 03) Research Clusters, Bowen University, Iwo, Nigeria
| |
Collapse
|
6
|
Dragon J, Obuchowicz E. How depression and antidepressant drugs affect endocannabinoid system?-review of clinical and preclinical studies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4511-4536. [PMID: 38280009 DOI: 10.1007/s00210-023-02938-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 12/30/2023] [Indexed: 01/29/2024]
Abstract
As major depressive disorder is becoming a more and more common issue in modern society, it is crucial to discover new possible grip points for its diagnosis and antidepressive therapy. One of them is endocannabinoid system, which has been proposed as a manager of emotional homeostasis, and thus, endocannabinoid alterations have been found in animals undergoing various preclinical models of depression procedures as well as in humans suffering from depressive-like disorders. In this review article, studies regarding those alterations have been summed up and analyzed. Another important issue raised by the researchers is the impact of currently used antidepressive drugs on endocannabinoid system so that it would be possible to predict reversibility of endocannabinoid alterations following stress exposure and, in the future, to be able to design individually personalized therapies. Preclinical studies investigating this topic have been analyzed and described in this article. Unfortunately, too few clinical studies in this field exist, what indicates an urgent need for collecting such data, so that it would be possible to compare them with preclinical outcomes and draw reliable conclusions.
Collapse
Affiliation(s)
- Jonasz Dragon
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków Street 18, 40-752, Katowice, Poland.
| | - Ewa Obuchowicz
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków Street 18, 40-752, Katowice, Poland
| |
Collapse
|
7
|
Patel KH, Chrisinger B. Effectiveness of primary care interventions in conjointly treating comorbid chronic pain and depression: a systematic review and meta-analysis. Fam Pract 2024; 41:234-245. [PMID: 37530738 DOI: 10.1093/fampra/cmad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Chronic pain and depression are highly comorbid, but the lack of consensus on the best treatment strategies puts patients at high risk of suboptimal care-coordination as well as health and social complications. Therefore, this study aims to quantitatively assesses how effective different primary care interventions have been in treating the comorbid state of chronic pain and depression. In particular, this study evaluates both short-term outcomes-based specifically on measures of chronic pain and depression during an intervention itself-and long-term outcomes or measures of pain and depression in the months after conclusion of the formal study intervention. METHODS This study is a systematic review and meta-analysis of randomised-controlled trials (RCTs) enrolling patients with concurrent chronic pain and depression. Intensity and severity of pain and depression symptoms were the primary outcomes. The main inclusion criteria were RCTs that: (i) enrolled patients diagnosed with depression and chronic pain, (ii) occurred in primary care settings, (iii) reported baseline and post-intervention outcomes for chronic pain and depression, (iv) lasted at least 8 weeks, and (v) used clinically validated outcome measures. Risk of bias was appraised with the Risk of Bias 2 tool, and GRADE guidelines were used to evaluate the quality of evidence. RESULTS Of 692 screened citations, 7 multicomponent primary care interventions tested across 891 patients were included. Meta-analyses revealed significant improvements in depression at post-intervention (SMD = 0.44, 95% CI [0.17, 0.71], P = 0.0014) and follow-up (SMD = 0.41, 95% CI [0.01, 0.81], P = 0.0448). Non-significant effects were observed for chronic pain at post-intervention (SMD = 0.27, 95% CI [-0.08, 0.61], P = 0.1287) and follow-up (SMD = 0.13, 95% CI [-0.3, 0.56], P = 0.5432). CONCLUSIONS Based on the results of the meta-analysis, primary care interventions largely yielded small to moderate positive effects for depressive symptoms and no significant effects on pain. In one study, stepped-care to be more effective in treatment of comorbid chronic pain and depression than other interventions both during the intervention and upon post-intervention follow-up. As such, depression appears more amenable to treatment than pain, but the number of published RCTs assessing both conditions is limited. More research is needed to further develop optimal treatment strategies.
Collapse
Affiliation(s)
- Krishna H Patel
- Department of Social Policy Intervention, University of Oxford, Oxford, United Kingdom
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Benjamin Chrisinger
- Department of Social Policy Intervention, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
Zeng NX, Li H, Su MY, Chen X, Yang XY, Shen M. Therapeutic potential of Erxian decoction and its special chemical markers in depression: a review of clinical and preclinical studies. Front Pharmacol 2024; 15:1377079. [PMID: 38915473 PMCID: PMC11194323 DOI: 10.3389/fphar.2024.1377079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/15/2024] [Indexed: 06/26/2024] Open
Abstract
The increasing prevalence of depression is a major societal burden. The etiology of depression involves multiple mechanisms. Thus, the outcomes of the currently used treatment for depression are suboptimal. The anti-depression effects of traditional Chinese medicine (TCM) formulations have piqued the interest of the scientific community owing to their multi-ingredient, multi-target, and multi-link characteristics. According to the TCM theory, the functioning of the kidney is intricately linked to that of the brain. Clinical observations have indicated the therapeutic potential of the kidney-tonifying formula Erxian Decoction (EXD) in depression. This review aimed to comprehensively search various databases to summarize the anti-depression effects of EXD, explore the underlying material basis and mechanisms, and offer new suggestions and methods for the clinical treatment of depression. The clinical and preclinical studies published before 31 August 2023, were searched in PubMed, Google Scholar, China National Knowledge Infrastructure, and Wanfang Database. This review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Clinical studies have demonstrated that EXD exhibits therapeutic properties in patients with menopausal depression, postpartum depression, and maintenance hemodialysis-associated depression. Meanwhile, preclinical studies have reported that EXD and its special chemical markers exert anti-depression effects by modulating monoamine neurotransmitter levels, inhibiting neuroinflammation, augmenting synaptic plasticity, exerting neuroprotective effects, regulating the hypothalamic-pituitary-adrenal axis, promoting neurogenesis, and altering cerebrospinal fluid composition. Thus, the anti-depression effects of EXD are mediated through multiple ingredients, targets, and links. However, further clinical and animal studies are needed to investigate the anti-depression effects of EXD and the underlying mechanisms and offer additional evidence and recommendations for its clinical application. Moreover, strategies must be developed to improve the quality control of EXD. This review provides an overview of EXD and guidance for future research direction.
Collapse
Affiliation(s)
- Ning-Xi Zeng
- Department of Rehabilitation Medicine, People’s Hospital of Longhua, Shenzhen, China
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Han Li
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Pharmacy, Shenzhen Bao’an Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Meng-Yuan Su
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Urology Surgery, Guangzhou Baiyun District Maternal and Child Health Hospital, Guangzhou, China
| | - Xin Chen
- Department of Rehabilitation Medicine, People’s Hospital of Longhua, Shenzhen, China
| | - Xiao-Yan Yang
- Department of Rehabilitation Medicine, People’s Hospital of Longhua, Shenzhen, China
| | - Mei Shen
- Department of Rehabilitation Medicine, People’s Hospital of Longhua, Shenzhen, China
| |
Collapse
|
9
|
Liu M, Wang W, Chen Y, Guo M, Wei Y, Yang S, Xiang X. Genetically predicted processed meat, red meat intake, and risk of mental disorders: A multivariable Mendelian randomization analysis. J Affect Disord 2024; 354:603-610. [PMID: 38503356 DOI: 10.1016/j.jad.2024.03.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND Previous observational studies have highlighted potential links between the consumption of processed meat and red meat (such as pork, mutton, and beef intake) and the occurrence of mental disorders. However, it is unclear whether a causal association exists. Therefore, we employed the Mendelian randomization (MR) study to investigate the causal effects of genetically predicted processed meat and red meat on mood disorders (MD), anxiety disorders (AD), and major depressive disorder (MDD). METHODS Genetic instruments for processed and red meat were selected from the Genome-Wide Association Study (GWAS) of the UK Biobank Study. Their associations with MD (42,746 cases 254,976), AD (35,385 cases and 254,976 controls), and MDD (38,225 cases and 299,886 controls) were obtained from the FinnGen Consortium. The inverse variance weighted (IVW) method was the primary method for two-sample MR analysis. Additionally, we employed complementary analysis to assess the robustness of our MR findings (eg, MR Egger and weighted median). We also conducted multiple sensitivity analyses to investigate horizontal pleiotropy and heterogeneity. Moreover, we performed a univariate and multivariable MR (MVMR) study to evaluate these associations. RESULTS In our univariate MR analysis, we observed that genetically predicted beef intake was associated with a reduced risk of MD [odds ratio (OR) = 0.403, 95 % confidence interval (CI) = 0.246-0.659; PIVW = 4.428 × 10-5], AD (OR = 0.443, 95 % CI = 0.267-0.734; PIVW = 1.563 × 10-3), and MDD (OR = 0.373, 95 % CI = 0.216-0.643; PIVW = 3.878 × 10-4). After adjusting for processed meat, pork, and mutton intake in the MVMR analysis, the protective association of beef intake against MD and MDD remained. However, there was no substantial evidence indicating a significant causal relationship between processed meat, pork, and mutton intake and the occurrence of mental disorders. Furthermore, our sensitivity analysis revealed no significant evidence of horizontal pleiotropy. CONCLUSION These findings support a causal relationship between genetically predicted beef intake and reducing the risk of MD and MDD.
Collapse
Affiliation(s)
- Mingkun Liu
- Department of radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai 201499, China
| | - Wenwen Wang
- Shanghai Eighth People's Hospital, No.8. Caobao Road, Xuhui District, Shanghai 200235, China
| | - Yi Chen
- Department of PET-CT Imaging Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, No. 6600 Nanfeng Highway, Fengxian District, Shanghai 201499, China
| | - Meixiang Guo
- Department of PET-CT Imaging Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, No. 6600 Nanfeng Highway, Fengxian District, Shanghai 201499, China
| | - Yuanhao Wei
- School of Public Health, Harbin Medical University, Harbin 150076, China
| | - Shaoling Yang
- Shanghai Eighth People's Hospital, No.8. Caobao Road, Xuhui District, Shanghai 200235, China.
| | - Xiqiao Xiang
- Department of PET-CT Imaging Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, No. 6600 Nanfeng Highway, Fengxian District, Shanghai 201499, China.
| |
Collapse
|
10
|
Hebert SV, Green MA, Mashaw SA, Brouillette WD, Nguyen A, Dufrene K, Shelvan A, Patil S, Ahmadzadeh S, Shekoohi S, Kaye AD. Assessing Risk Factors and Comorbidities in the Treatment of Chronic Pain: A Narrative Review. Curr Pain Headache Rep 2024; 28:525-534. [PMID: 38558165 DOI: 10.1007/s11916-024-01249-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
PURPOSE OF REVIEW Chronic pain affects a significant portion of the population globally, making it a leading cause of disability. Understanding the multifaceted nature of chronic pain, its various types, and the intricate relationship it shares with risk factors, comorbidities, and mental health issues like depression and anxiety is critical for comprehensive patient care. Factors such as socioeconomic status (SES), age, gender, and obesity collectively add layers of complexity to chronic pain experiences and pose management challenges. RECENT FINDINGS Low SES presents barriers to effective pain care, while gender differences and the prevalence of chronic pain in aging adults emphasize the need for tailored approaches. The association between chronic pain and physical comorbidities like cardiovascular disease, chronic obstructive pulmonary disease (COPD), and diabetes mellitus reveals shared risk factors and further highlights the importance of integrated treatment strategies. Chronic pain and mental health are intricately linked through biochemical mechanisms, profoundly affecting overall quality of life. This review explores pharmacologic treatment for chronic pain, particularly opioid analgesia, with attention to the risk of substance misuse and the ongoing opioid epidemic. We discuss the potential role of medical cannabis as an alternative treatment with a nuanced perspective on its impact on opioid use. Addressing the totality and complexity of pain states is crucial to individualizing chronic pain management. With different types of pain having different underlying mechanisms, considerations should be made when approaching their treatment. Moreover, the synergistic relationship that pain states can have with other comorbidities further complicates chronic pain conditions.
Collapse
Affiliation(s)
- Sage V Hebert
- School of Medicine, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, 71103, USA
| | - Melanie A Green
- School of Medicine, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, 71103, USA
| | - Sydney A Mashaw
- School of Medicine, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, 71103, USA
| | - William D Brouillette
- School of Medicine, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, 71103, USA
| | - Angela Nguyen
- School of Medicine, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, 71103, USA
| | - Kylie Dufrene
- School of Medicine, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, 71103, USA
| | - Anitha Shelvan
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, 71103, USA
| | - Shilpadevi Patil
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, 71103, USA
| | - Shahab Ahmadzadeh
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, 71103, USA
| | - Sahar Shekoohi
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, 71103, USA.
| | - Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, 71103, USA
- Department of Pharmacology, Louisiana State University Health Sciences Center at Shreveport, Toxicology, and Neurosciences, Shreveport, LA, 71103, USA
| |
Collapse
|
11
|
Nakamura M, Yoshimi A, Tokura T, Kimura H, Kishi S, Miyauchi T, Iwamoto K, Ito M, Sato-Boku A, Mouri A, Nabeshima T, Ozaki N, Noda Y. Duloxetine improves chronic orofacial pain and comorbid depressive symptoms in association with reduction of serotonin transporter protein through upregulation of ubiquitinated serotonin transporter protein. Pain 2024; 165:1177-1186. [PMID: 38227563 DOI: 10.1097/j.pain.0000000000003124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 10/26/2023] [Indexed: 01/18/2024]
Abstract
ABSTRACT Chronic orofacial pain (COP) is relieved by duloxetine (DLX) and frequently causes depressive symptoms. The aim of this study was to confirm effects of DLX on pain and depressive symptoms, and to associate with their effectiveness in platelet serotonin transporter (SERT) expression, which is a target molecule of DLX and plasma serotonin concentration in COP patients with depressive symptoms. We assessed for the severity of pain and depressive symptoms using the Visual Analog Scale (VAS) and 17-item Hamilton Depression Rating Scale (HDRS), respectively. Chronic orofacial pain patients were classified into 2 groups based on their HDRS before DLX-treatment: COP patients with (COP-D) and without (COP-ND) depressive symptoms. We found that the VAS and HDRS scores of both groups were significantly decreased after DLX treatment compared with those before DLX treatment. Upregulation of total SERT and downregulation of ubiquitinated SERT were observed before DLX treatment in both groups compared with healthy controls. After DLX treatment, there were no differences in total SERT of both groups and in ubiquitinated SERT of COP-D patients compared with healthy controls; whereas, ubiquitinated SERT of COP-ND patients remained downregulated. There were positive correlations between changes of serotonin concentrations and of VAS or HDRS scores in only COP-D patients. Our findings indicate that DLX improves not only pain but also comorbid depressive symptoms of COP-D patients. Duloxetine also reduces platelet SERT through upregulation of ubiquitinated SERT. As the result, decrease of plasma serotonin concentrations may be related to the efficacy of DLX in relieving pain and depression in COP patients.
Collapse
Grants
- 21H04815 Ministry of Education, Culture, Sports, Science and Technology
- 17K10325 Ministry of Education, Culture, Sports, Science and Technology
- 21K06719 Ministry of Education, Culture, Sports, Science and Technology
- 19K17108 Ministry of Education, Culture, Sports, Science and Technology
- JP21dk0307103, Japan Agency for Medical Research and Development
- JP21dk0307087 Japan Agency for Medical Research and Development
- P21wm0425007 Japan Agency for Medical Research and Development
- JP21dm0207075 Japan Agency for Medical Research and Development
- JP21ek0109498 Japan Agency for Medical Research and Development
- AS251Z03018 Adaptable and Seamless Technology Transfer Program through Target-Driven R and D
Collapse
Affiliation(s)
- Mariko Nakamura
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, Nagoya, Japan
| | - Akira Yoshimi
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, Nagoya, Japan
- Clinical OMICs and Translation Research Center, Meijo University, Nagoya, Japan
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tatsuya Tokura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroyuki Kimura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinichi Kishi
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoya Miyauchi
- Department of Psychiatry, KACHI Memorial Hospital, Toyohashi, Japan
| | - Kunihiro Iwamoto
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mikiko Ito
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Aiji Sato-Boku
- Department of Anesthesiology, School of Dentistry, Aichi Gakuin University, Nagoya Japan
| | - Akihiro Mouri
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals and Devices, Graduate School of Health Science, Fujita Health University, Aichi, Japan
- Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan
| | - Toshitaka Nabeshima
- Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan
- Laboratory of Health and Medical Science Innovation, Graduate School of Health Sciences, Fujita Health University, Aichi, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukihiro Noda
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, Nagoya, Japan
- Clinical OMICs and Translation Research Center, Meijo University, Nagoya, Japan
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Laboratory of Health and Medical Science Innovation, Graduate School of Health Sciences, Fujita Health University, Aichi, Japan
| |
Collapse
|
12
|
Dunham KE, Venton BJ. Electrochemical and biosensor techniques to monitor neurotransmitter changes with depression. Anal Bioanal Chem 2024; 416:2301-2318. [PMID: 38289354 PMCID: PMC10950978 DOI: 10.1007/s00216-024-05136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 03/21/2024]
Abstract
Depression is a common mental illness. However, its current treatments, like selective serotonin reuptake inhibitors (SSRIs) and micro-dosing ketamine, are extremely variable between patients and not well understood. Three neurotransmitters: serotonin, histamine, and glutamate, have been proposed to be key mediators of depression. This review focuses on analytical methods to quantify these neurotransmitters to better understand neurological mechanisms of depression and how they are altered during treatment. To quantitatively measure serotonin and histamine, electrochemical techniques such as chronoamperometry and fast-scan cyclic voltammetry (FSCV) have been improved to study how specific molecular targets, like transporters and receptors, change with antidepressants and inflammation. Specifically, these studies show that different SSRIs have unique effects on serotonin reuptake and release. Histamine is normally elevated during stress, and a new inflammation hypothesis of depression links histamine and cytokine release. Electrochemical measurements revealed that stress increases histamine, decreases serotonin, and leads to changes in cytokines, like interleukin-6. Biosensors can also measure non-electroactive neurotransmitters, including glutamate and cytokines. In particular, new genetic sensors have shown how glutamate changes with chronic stress, as well as with ketamine treatment. These techniques have been used to characterize how ketamine changes glutamate and serotonin, and to understand how it is different from SSRIs. This review briefly outlines how these electrochemical techniques work, but primarily highlights how they have been used to understand the mechanisms of depression. Future studies should explore multiplexing techniques and personalized medicine using biomarkers in order to investigate multi-analyte changes to antidepressants.
Collapse
Affiliation(s)
- Kelly E Dunham
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - B Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA.
| |
Collapse
|
13
|
Xie Z, Xie H, Peng X, Hu J, Chen L, Li X, Qi H, Zeng J, Zeng N. The antidepressant-like effects of Danzhi Xiaoyao San and its active ingredients. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:155015. [PMID: 37597362 DOI: 10.1016/j.phymed.2023.155015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/08/2023] [Accepted: 08/06/2023] [Indexed: 08/21/2023]
Abstract
BACKGROUND Depression is a severe mental illness that endangers human health. Depressed individuals are prone to sleep less and to the loss of appetite for food; their thinking and cognition processes, as well as mood, may even be affected. Danzhi Xiaoyao San (DXS), documented in the Internal Medicine Summary, has been used for hundreds of years in China and is widely applied traditionally to treat liver qi stagnation, liver and spleen blood deficiency, menstrual disorders, and spontaneous and night sweating. DXS can also clear heat and drain the liver. Presently, it is used frequently in the treatment of depression based on its ability to clear the liver and alleviate depression. PURPOSE To summarize clinical and preclinical studies on the antidepressant-like effects of DXS, understand the material basis and mechanisms of these effects, and offer new suggestions and methods for the clinical treatment of depression. METHODS "Danzhi Xiaoyao", "Danzhixiaoyao", "Xiaoyao", "depression" and active ingredients were entered as keywords in PubMed, Google Scholar, CNKI and WANFANG DATA databases in the search for material on DXS and its active ingredients. The PRISMA guidelines were followed in this review process. RESULTS Per clinical reports, DXS has a therapeutic effect on patients with depression but few side effects. DXS and its active ingredients allegedly produce their neuroprotective antidepressant-like effects by modulating monoamine neurotransmitter levels, inhibiting the hypothalamic-pituitary-adrenal (HPA) axis hyperfunction, reducing neuroinflammation and increasing neurotrophic factors. CONCLUSION Overall, DXS influences multiple potential mechanisms to exert its antidepressant-like effects thanks to its multicomponent character. Because depression is not caused by a single mechanism, probing the antidepressant-like effects of DXS could further help understand the pathogenesis of depression and discover new antidepressant drugs.
Collapse
Affiliation(s)
- Zhiqiang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Hongxiao Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Xi Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jingwen Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Li Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; Department of Pharmacy, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Xiangyu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Hu Qi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jiuseng Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| |
Collapse
|
14
|
Støier JF, Jørgensen TN, Sparsø T, Rasmussen HB, Kumar V, Newman AH, Blakely RD, Werge T, Gether U, Herborg F. Disruptive mutations in the serotonin transporter associate serotonin dysfunction with treatment-resistant affective disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.29.23294386. [PMID: 37693601 PMCID: PMC10491376 DOI: 10.1101/2023.08.29.23294386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Affective or mood disorders are a leading cause of disability worldwide. The serotonergic system has been heavily implicated in the complex etiology and serves as a therapeutic target. The serotonin transporter (SERT) is a major regulator of serotonin neurotransmission, yet the disease-relevance of impaired SERT function remains unknown. Here, we present the first identification and functional characterization of disruptive coding SERT variants found in patients with psychiatric diseases. In a unique cohort of 144 patients characterized by treatment-resistant chronic affective disorders with a lifetime history of electroconvulsive therapy, we identified two previously uncharacterized coding SERT variants: SERT-N217S and SERT-A500T. Both variants were significantly enriched in the patient cohort compared to GnomAD (SERT-N217S: OR = 151, P = 0.0001 and SERT-A500T: OR = 1348, P = 0.0022) and ethnicity-matched healthy controls (SERT-N217S: OR ≥ 17.7, P ≤ 0.013 and SERT-A500T: OR = ∞, P = 0.029). Functional investigations revealed that the mutations exert distinct perturbations to SERT function, but their overall effects converge on a partial loss-of-function molecular phenotype. Thus, the SERT-A500T variant compromises the catalytic activity, while SERT-N217S disrupts proper glycosylation of SERT with a resulting dominant-negative trafficking deficiency. Moreover, we demonstrate that the trafficking deficiency of SERT-N217S is amenable to pharmacochaperoning by noribogaine. Collectively, our findings describe the first disease-associated loss-of-function SERT variants and implicate serotonergic disturbances arising from SERT dysfunction as a risk factor for chronic affective disorders.
Collapse
|
15
|
Quan Z, Li H, Quan Z, Qing H. Appropriate Macronutrients or Mineral Elements Are Beneficial to Improve Depression and Reduce the Risk of Depression. Int J Mol Sci 2023; 24:7098. [PMID: 37108261 PMCID: PMC10138658 DOI: 10.3390/ijms24087098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Depression is a common mental disorder that seriously affects the quality of life and leads to an increasing global suicide rate. Macro, micro, and trace elements are the main components that maintain normal physiological functions of the brain. Depression is manifested in abnormal brain functions, which are considered to be tightly related to the imbalance of elements. Elements associated with depression include glucose, fatty acids, amino acids, and mineral elements such as lithium, zinc, magnesium, copper, iron, and selenium. To explore the relationship between these elements and depression, the main literature in the last decade was mainly searched and summarized on PubMed, Google Scholar, Scopus, Web of Science, and other electronic databases with the keywords "depression, sugar, fat, protein, lithium, zinc, magnesium, copper, iron, and selenium". These elements aggravate or alleviate depression by regulating a series of physiological processes, including the transmission of neural signals, inflammation, oxidative stress, neurogenesis, and synaptic plasticity, which thus affect the expression or activity of physiological components such as neurotransmitters, neurotrophic factors, receptors, cytokines, and ion-binding proteins in the body. For example, excessive fat intake can lead to depression, with possible mechanisms including inflammation, increased oxidative stress, reduced synaptic plasticity, and decreased expression of 5-Hydroxytryptamine (5-HT), Brain Derived Neurotrophic Factor (BDNF), Postsynaptic density protein 95(PSD-95), etc. Supplementing mineral elements, such as selenium, zinc, magnesium, or lithium as a psychotropic medication is mostly used as an auxiliary method to improve depression with other antidepressants. In general, appropriate nutritional elements are essential to treat depression and prevent the risk of depression.
Collapse
Affiliation(s)
| | | | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
16
|
Markov DD, Dolotov OV, Grivennikov IA. The Melanocortin System: A Promising Target for the Development of New Antidepressant Drugs. Int J Mol Sci 2023; 24:ijms24076664. [PMID: 37047638 PMCID: PMC10094937 DOI: 10.3390/ijms24076664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Major depression is one of the most prevalent mental disorders, causing significant human suffering and socioeconomic loss. Since conventional antidepressants are not sufficiently effective, there is an urgent need to develop new antidepressant medications. Despite marked advances in the neurobiology of depression, the etiology and pathophysiology of this disease remain poorly understood. Classical and newer hypotheses of depression suggest that an imbalance of brain monoamines, dysregulation of the hypothalamic-pituitary-adrenal axis (HPAA) and immune system, or impaired hippocampal neurogenesis and neurotrophic factors pathways are cause of depression. It is assumed that conventional antidepressants improve these closely related disturbances. The purpose of this review was to discuss the possibility of affecting these disturbances by targeting the melanocortin system, which includes adrenocorticotropic hormone-activated receptors and their peptide ligands (melanocortins). The melanocortin system is involved in the regulation of various processes in the brain and periphery. Melanocortins, including peripherally administered non-corticotropic agonists, regulate HPAA activity, exhibit anti-inflammatory effects, stimulate the levels of neurotrophic factors, and enhance hippocampal neurogenesis and neurotransmission. Therefore, endogenous melanocortins and their analogs are able to complexly affect the functioning of those body’s systems that are closely related to depression and the effects of antidepressants, thereby demonstrating a promising antidepressant potential.
Collapse
Affiliation(s)
- Dmitrii D. Markov
- National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia
| | - Oleg V. Dolotov
- National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 119234 Moscow, Russia
| | - Igor A. Grivennikov
- National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia
| |
Collapse
|
17
|
Wu H, Wang J, Teng T, Yin B, He Y, Jiang Y, Liu X, Yu Y, Li X, Zhou X. Biomarkers of intestinal permeability and blood-brain barrier permeability in adolescents with major depressive disorder. J Affect Disord 2023; 323:659-666. [PMID: 36493942 DOI: 10.1016/j.jad.2022.11.058] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/28/2022] [Accepted: 11/20/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND The etiology in major depressive disorder (MDD) has not been fully understood. Accumulating evidence suggests an association between altered intestinal and blood-brain barrier (BBB) permeability and psychiatric disorders, while its changes in adolescent MDD populations have been received less attention. In this study, our aim was to explore the differences in plasma levels of intestinal and blood-brain barrier permeability markers in adolescents with MDD compared with healthy controls (HCs). METHODS We enrolled MDD (n = 50), and HCs (n = 40) with the age of 13-18 years old. The plasma level of zonulin, I-FABP, LPS, and claudin-5 were quantified. The Hamilton Depression Scale 17 items (HAMD-17) and Hamilton Anxiety Scale 14 items (HAMA-14) were used for symptom assessments. RESULTS The plasma levels of zonulin, I-FABP, LPS, and claudin-5 in the MDD group were significantly higher than those in the HCs. Plasma I-FABP levels in MDD with moderate to severe anxiety were significantly higher than those in MDD without moderate to severe anxiety and HCs. In addition, these four biomarkers (alone or combined) can be used as diagnostic markers for MDD in adolescents. LIMITATIONS The key limitation of this study is the blood measurements at a single time point with a relatively small sample size. CONCLUSIONS These findings advance our understanding of the pathophysiology of intestinal barrier injury, bacterial translocation, and blood-brain barrier injury involved in adolescents with MDD.
Collapse
Affiliation(s)
- Hongyan Wu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Wang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Teng Teng
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bangmin Yin
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuqian He
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanliang Jiang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xueer Liu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Yu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Li
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinyu Zhou
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
18
|
Deciphering the Effect of Different Genetic Variants on Hippocampal Subfield Volumes in the General Population. Int J Mol Sci 2023; 24:ijms24021120. [PMID: 36674637 PMCID: PMC9861136 DOI: 10.3390/ijms24021120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
The aim of this study was to disentangle the effects of various genetic factors on hippocampal subfield volumes using three different approaches: a biologically driven candidate gene approach, a hypothesis-free GWAS approach, and a polygenic approach, where AD risk alleles are combined with a polygenic risk score (PRS). The impact of these genetic factors was investigated in a large dementia-free general population cohort from the Study of Health in Pomerania (SHIP, n = 1806). Analyses were performed using linear regression models adjusted for biological and environmental risk factors. Hippocampus subfield volume alterations were found for APOE ε4, BDNF Val, and 5-HTTLPR L allele carriers. In addition, we were able to replicate GWAS findings, especially for rs17178139 (MSRB3), rs1861979 (DPP4), rs7873551 (ASTN2), and rs572246240 (MAST4). Interaction analyses between the significant SNPs as well as the PRS for AD revealed no significant results. Our results confirm that hippocampal volume reductions are influenced by genetic variation, and that different variants reveal different association patterns that can be linked to biological processes in neurodegeneration. Thus, this study underlines the importance of specific genetic analyses in the quest for acquiring deeper insights into the biology of hippocampal volume loss, memory impairment, depression, and neurodegenerative diseases.
Collapse
|
19
|
Acute restraint stress impairs histamine type 2 receptor ability to increase the excitability of medium spiny neurons in the nucleus accumbens. Neurobiol Dis 2022; 175:105932. [DOI: 10.1016/j.nbd.2022.105932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
|
20
|
Eli I, Zigler-Garburg A, Winocur E, Friedman-Rubin P, Shalev-Antsel T, Levartovsky S, Emodi-Perlman A. Temporomandibular Disorders and Bruxism among Sex Workers-A Cross Sectional Study. J Clin Med 2022; 11:jcm11226622. [PMID: 36431098 PMCID: PMC9694590 DOI: 10.3390/jcm11226622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Sex workers are a highly underprivileged population which is present all around the world. Sex work is associated with negative social stigma which affects all aspects of the sex workers' lives including healthcare, service providers and police. The stigma may result in increased stress, mental health problems, feelings of isolation and social exclusion. In the present study, 36 sex workers (SW) and 304 subjects from the general population in Israel (GP) were evaluated for the presence of bruxism and Temporomandibular disorders (TMD), with the use of Diagnostic Criteria for Temporomandibular Disorders (DC/TMD- Axis I). When compared to the general population, sex workers presented larger maximal assisted mouth opening and higher prevalence of the following TMD diagnoses: Disc displacement with reduction, Myalgia, Myofascial pain with referral, Arthralgia (left and right) and Headache attributed to TMD. The odds of sex workers suffering from one of these diagnoses were twice to five times higher than those of the general population. The study shows that health problems of sex workers go beyond venereal diseases, HIV and mental disorders which are commonly studied. Oral health, TMD and oral parafunctions are some of the additional health issues that should be addressed and explored in this population.
Collapse
|
21
|
Zhu Y, Li D, Zhou Y, Hu Y, Xu Z, Lei L, Xu F, Wang J. Systematic Review and Meta-Analysis of High-Frequency rTMS over the Dorsolateral Prefrontal Cortex .on Chronic Pain and Chronic-Pain-Accompanied Depression. ACS Chem Neurosci 2022; 13:2547-2556. [PMID: 35969469 DOI: 10.1021/acschemneuro.2c00395] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The effect of high-frequency (HF) repetitive transcranial magnetic stimulation (rTMS) on the dorsolateral prefrontal cortex (DLPFC) can relieve chronic pain and accompanying depressive symptoms. However, in recent years, some high-quality studies have challenged this view. Therefore, it is necessary to update the data and analyze the effects of HF rTMS on the DLPFC on chronic pain and accompanying depression. We performed a systematic review and meta-analysis to evaluate the effect of HF rTMS on the DLPFC on chronic pain and accompanying depression. We searched PubMed, Medline, Web of Science, and Cochrane through September 2021. The search strings searched were : "pain" AND ("TMS" OR "transcranial magnetic stimulation") AND "prefrontal cortex". The inclusion criteria according to PICOS was as follows: P, patient with chronic pain; I, HF (≥5 Hz) rTMS on the DLPFC; C, included a sham treatment condition; O, pain indicators; S, pre-/poststudies, crossover, or parallel-group. We extracted the pain and accompanying depression evaluation indicators. The short-term analgesic effect of HF rTMS over the left DLPFC is not significant (WMD = 0.34, 95% CI: [-1.60, 2.28]) but has a significant mid-term and long-term analgesic effect on chronic pain (WMD = -0.50, 95% CI: [-0.99, -0.01]; WMD = -1.10, 95% CI: [-2.00, -0.19], respectively). HF rTMS over the DLPFC can effectively alleviate the depressive symptoms of patients with chronic pain (WMD = -0.83, 95% CI: [-3.01, 1.36]). Thus, HF rTMS on the left DLPFC can relieve chronic pain and accompanying depressive symptoms.
Collapse
Affiliation(s)
- Yuanliang Zhu
- Rehabilitation Medicine Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China.,Rehabilitation Medicine Department, NO.1 Orthopedics Hospital of Chengdu, Chengdu, Sichuan 610015, People's Republic of China
| | - Dan Li
- Rehabilitation Medicine Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Yucheng Zhou
- Graduate School of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Yue Hu
- Rehabilitation Medicine Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Zhangyu Xu
- Rehabilitation Medicine Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Lei Lei
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, People's Republic of China
| | - Fangyuan Xu
- Rehabilitation Medicine Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Jianxiong Wang
- Rehabilitation Medicine Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, People's Republic of China.,Laboratory of Neurological Diseases and Brain Function, Luzhou, Sichuan 646000, People's Republic of China
| |
Collapse
|
22
|
Lee YH, Auh QS. Clinical factors affecting depression in patients with painful temporomandibular disorders during the COVID-19 pandemic. Sci Rep 2022; 12:14667. [PMID: 36038574 PMCID: PMC9421627 DOI: 10.1038/s41598-022-18745-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 08/18/2022] [Indexed: 01/16/2023] Open
Abstract
Temporomandibular disorders (TMD) are a multifactorial condition associated with both physical and psychological factors. Stress has been known to trigger or worsens TMD. We aimed to investigate whether the novel coronavirus disease-2019 (COVID-19) pandemic aggravates depression in patients with painful TMD, and the factors that affect their level of depression. We included 112 patients with painful TMD (74 females, 38 males; mean age: 35.90 ± 17.60 years; myalgia [n = 38], arthralgia [n = 43], mixed joint-muscle TMD pain [n = 31]). TMD was diagnosed based on the Diagnostic Criteria for TMD Axis I. Physical pain intensity was recorded using the visual analog scale (VAS); psycho-emotional status (depression: Beck Depression Inventory [BDI], anxiety: Beck Anxiety Inventory [BAI], and generalized stress related to COVID19: Global Assessment of Recent Stress [GARS]) was investigated twice (before [BC] and after COVID-19 [AC]). Additionally, factors affecting BDI-AC were investigated. BDI (p < 0.001), BAI (p < 0.001), GARS (p < 0.001), and VAS (p < 0.01) scores were significantly increased at AC than BC. The depression, anxiety, and stress levels were significantly positively correlated, and the AC and BC values of each factor showed a high correlation. In the mixed TMD group, BDI-AC was positively correlated with VAS-AC (p < 0.001). In the multiple regression analysis, clenching habit was the strongest predictor of an increase in the BDI scores from moderate to severe, followed by psychological distress, muscle stiffness, female sex, BAI-AC, and TMJ sounds. COVID-19 has negatively affected the psycho-emotional state of patients with painful TMD, and several clinical factors, including female sex and clenching habits, have influenced depression.
Collapse
Affiliation(s)
- Yeon-Hee Lee
- Department of Orofacial Pain and Oral Medicine Kyung Hee University Dental Hospital, Kyung Hee University, #613 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, South Korea.
| | - Q-Schick Auh
- Department of Orofacial Pain and Oral Medicine Kyung Hee University Dental Hospital, Kyung Hee University, #613 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, South Korea
| |
Collapse
|
23
|
Hersey M, Reneaux M, Berger SN, Mena S, Buchanan AM, Ou Y, Tavakoli N, Reagan LP, Clopath C, Hashemi P. A tale of two transmitters: serotonin and histamine as in vivo biomarkers of chronic stress in mice. J Neuroinflammation 2022; 19:167. [PMID: 35761344 PMCID: PMC9235270 DOI: 10.1186/s12974-022-02508-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 06/01/2022] [Indexed: 12/12/2022] Open
Abstract
Background Stress-induced mental illnesses (mediated by neuroinflammation) pose one of the world’s most urgent public health challenges. A reliable in vivo chemical biomarker of stress would significantly improve the clinical communities’ diagnostic and therapeutic approaches to illnesses, such as depression. Methods Male and female C57BL/6J mice underwent a chronic stress paradigm. We paired innovative in vivo serotonin and histamine voltammetric measurement technologies, behavioral testing, and cutting-edge mathematical methods to correlate chemistry to stress and behavior. Results Inflammation-induced increases in hypothalamic histamine were co-measured with decreased in vivo extracellular hippocampal serotonin in mice that underwent a chronic stress paradigm, regardless of behavioral phenotype. In animals with depression phenotypes, correlations were found between serotonin and the extent of behavioral indices of depression. We created a high accuracy algorithm that could predict whether animals had been exposed to stress or not based solely on the serotonin measurement. We next developed a model of serotonin and histamine modulation, which predicted that stress-induced neuroinflammation increases histaminergic activity, serving to inhibit serotonin. Finally, we created a mathematical index of stress, Si and predicted that during chronic stress, where Si is high, simultaneously increasing serotonin and decreasing histamine is the most effective chemical strategy to restoring serotonin to pre-stress levels. When we pursued this idea pharmacologically, our experiments were nearly identical to the model’s predictions. Conclusions This work shines the light on two biomarkers of chronic stress, histamine and serotonin, and implies that both may be important in our future investigations of the pathology and treatment of inflammation-induced depression. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02508-9.
Collapse
Affiliation(s)
- Melinda Hersey
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.,Department of Pharmacology, Physiology, & Neuroscience, University of South Carolina School of Medicine, Columbia, SC, 29209, USA
| | - Melissa Reneaux
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Shane N Berger
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Sergio Mena
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Anna Marie Buchanan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Yangguang Ou
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Navid Tavakoli
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Lawrence P Reagan
- Department of Pharmacology, Physiology, & Neuroscience, University of South Carolina School of Medicine, Columbia, SC, 29209, USA.,Columbia VA Health Care Systems, Columbia, SC, 29208, USA
| | - Claudia Clopath
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Parastoo Hashemi
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA. .,Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
24
|
Alhusaini M, Eissa N, Saad AK, Beiram R, Sadek B. Revisiting Preclinical Observations of Several Histamine H3 Receptor Antagonists/Inverse Agonists in Cognitive Impairment, Anxiety, Depression, and Sleep-Wake Cycle Disorder. Front Pharmacol 2022; 13:861094. [PMID: 35721194 PMCID: PMC9198498 DOI: 10.3389/fphar.2022.861094] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/22/2022] [Indexed: 12/25/2022] Open
Abstract
A relationship appears to exist between dysfunction of brain histamine (HA) and various neuropsychiatric brain disorders. The possible involvement of brain HA in neuropathology has gained attention recently, and its role in many (patho)physiological brain functions including memory, cognition, and sleep-wake cycle paved the way for further research on the etiology of several brain disorders. Histamine H3 receptor (H3R) evidenced in the brains of rodents and humans remains of special interest, given its unique position as a pre- and postsynaptic receptor, controlling the synthesis and release of HA as well as different other neurotransmitters in different brain regions, respectively. Despite several disappointing outcomes for several H3R antagonists/inverse agonists in clinical studies addressing their effectiveness in Alzheimer's disease (AD), Parkinson's disease (PD), and schizophrenia (SCH), numerous H3R antagonists/inverse agonists showed great potentials in modulating memory and cognition, mood, and sleep-wake cycle, thus suggesting its potential role in neurocognitive and neurodegenerative diseases such as AD, PD, SCH, narcolepsy, and major depression in preclinical rodent models. In this review, we present preclinical applications of selected H3R antagonists/inverse agonists and their pharmacological effects on cognitive impairment, anxiety, depression, and sleep-wake cycle disorders. Collectively, the current review highlights the behavioral impact of developments of H3R antagonists/inverse agonists, aiming to further encourage researchers in the preclinical drug development field to profile the potential therapeutic role of novel antagonists/inverse agonists targeting histamine H3Rs.
Collapse
Affiliation(s)
- Mera Alhusaini
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Nermin Eissa
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Ali K Saad
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Rami Beiram
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
25
|
Razi O, Tartibian B, Laher I, Govindasamy K, Zamani N, Rocha-Rodrigues S, Suzuki K, Zouhal H. Multimodal Benefits of Exercise in Patients With Multiple Sclerosis and COVID-19. Front Physiol 2022; 13:783251. [PMID: 35492581 PMCID: PMC9048028 DOI: 10.3389/fphys.2022.783251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 03/31/2022] [Indexed: 11/24/2022] Open
Abstract
Multiple sclerosis (MS) is a demyelinating disease characterized by plaque formation and neuroinflammation. The plaques can present in various locations, causing a variety of clinical symptoms in patients with MS. Coronavirus disease-2019 (COVID-19) is also associated with systemic inflammation and a cytokine storm which can cause plaque formation in several areas of the brain. These concurring events could exacerbate the disease burden of MS. We review the neuro-invasive properties of SARS-CoV-2 and the possible pathways for the entry of the virus into the central nervous system (CNS). Complications due to this viral infection are similar to those occurring in patients with MS. Conditions related to MS which make patients more susceptible to viral infection include inflammatory status, blood-brain barrier (BBB) permeability, function of CNS cells, and plaque formation. There are also psychoneurological and mood disorders associated with both MS and COVID-19 infections. Finally, we discuss the effects of exercise on peripheral and central inflammation, BBB integrity, glia and neural cells, and remyelination. We conclude that moderate exercise training prior or after infection with SARS-CoV-2 can produce health benefits in patients with MS patients, including reduced mortality and improved physical and mental health of patients with MS.
Collapse
Affiliation(s)
- Omid Razi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Razi University, Kermanshah, Iran
| | - Bakhtyar Tartibian
- Department of Sports Injuries, Faculty of Physical Education and Sports Sciences, Allameh Tabataba’i University, Tehran, Iran
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Karuppasamy Govindasamy
- Department of Physical Education & Sports Science, SRM Institute of Science and Technology, Kattankulathur, India
| | - Nastaran Zamani
- Department of Biology, Faculty of Science, Payame-Noor University, Tehran, Iran
| | - Silvia Rocha-Rodrigues
- Escola Superior de Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Viana do Castelo, Portugal
- Research Centre in Sports Sciences, Health Sciences and Human Development (CIDESD), Quinta de Prados, Edifício Ciências de Desporto, Vila Real, Portugal
- Tumor & Microenvironment Interactions Group, i3S, Porto, Portugal
| | | | - Hassane Zouhal
- Laboratoire Mouvement, Sport, Santé, University of Rennes, Rennes, France
- Institut International des Sciences du Sport (2I2S), Irodouer, France
| |
Collapse
|
26
|
Chai Y, Cai Y, Fu Y, Wang Y, Zhang Y, Zhang X, Zhu L, Miao M, Yan T. Salidroside Ameliorates Depression by Suppressing NLRP3-Mediated Pyroptosis via P2X7/NF-κB/NLRP3 Signaling Pathway. Front Pharmacol 2022; 13:812362. [PMID: 35496273 PMCID: PMC9039222 DOI: 10.3389/fphar.2022.812362] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/28/2022] [Indexed: 12/27/2022] Open
Abstract
Depression is a common and serious mental disorder. Data on its pathogenesis remain unclear and the options of drug treatments are limited. Here, we explored the role of pyroptosis, a novel pro-inflammatory programmed cell death process, in depression as well as the anti-depression effects and mechanisms of salidroside (Sal), a bioactive extract from Rhodiola rosea L. We established a corticosterone (CORT)-induced or lipopolysaccharide (LPS)-induced mice in vivo, and CORT, or nigericin (NLRP3 agonist)-induced PC12 cells in vitro. Our findings demonstrated that Sal profoundly mediated CORT or LPS-induced depressive behavior and improved synaptic plasticity by upregulating the expression of brain-derived neurotrophic factor (BDNF) gene. The data showed upregulation of proteins associated with NLRP3-mediated pyroptosis, including NLRP3, cleaved Caspase-1, IL-1β, IL-18, and cleaved GSDMD. The molecular docking simulation predicted that Sal would interact with P2X7 of the P2X7/NF-κB/NLRP3 signaling pathway. In addition, our findings showed that the NLRP3-mediated pyroptosis was regulated by P2X7/NF-κB/NLRP3 signaling pathway. Interestingly, Sal was shown to ameliorate depression via suppression of the P2X7/NF-κB/NLRP3 mediated pyroptosis, and rescued nigericin-induced pyroptosis in the PC12 cells. Besides, knock down of the NLRP3 gene by siRNA markedly increased the inhibitory effects of Sal on pyroptosis and proinflammatory responses. Taken together, our findings demonstrated that pyroptosis plays a crucial role in depression, and Sal ameliorates depression by suppressing the P2X7/NF-κB/NLRP3-mediated pyroptosis. Thus, our study provides new insights into the potential treatment options for depression.
Collapse
Affiliation(s)
- Yuhui Chai
- Department of Physiology and Pharmacology, China Pharmaceutic University, Nanjing, China
| | - Yawen Cai
- Department of Physiology and Pharmacology, China Pharmaceutic University, Nanjing, China
| | - Yu Fu
- Department of Physiology and Pharmacology, China Pharmaceutic University, Nanjing, China
| | - Yingdi Wang
- Department of Physiology and Pharmacology, China Pharmaceutic University, Nanjing, China
| | - Yiming Zhang
- Department of Physiology and Pharmacology, China Pharmaceutic University, Nanjing, China
| | - Xue Zhang
- Department of Physiology and Pharmacology, China Pharmaceutic University, Nanjing, China
| | - Lingpeng Zhu
- Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
- *Correspondence: Lingpeng Zhu, ; Mingxing Miao, ; Tianhua Yan,
| | - Mingxing Miao
- Center of National Pharmaceutical Experimental Teaching Demonstration, China Pharmaceutic University, Nanjing, China
- *Correspondence: Lingpeng Zhu, ; Mingxing Miao, ; Tianhua Yan,
| | - Tianhua Yan
- Department of Physiology and Pharmacology, China Pharmaceutic University, Nanjing, China
- *Correspondence: Lingpeng Zhu, ; Mingxing Miao, ; Tianhua Yan,
| |
Collapse
|
27
|
Daniel WA, Bromek E, Danek PJ, Haduch A. The mechanisms of interactions of psychotropic drugs with liver and brain cytochrome P450 and their significance for drug effect and drug-drug interactions. Biochem Pharmacol 2022; 199:115006. [PMID: 35314167 DOI: 10.1016/j.bcp.2022.115006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 02/08/2023]
Abstract
Cytochrome P450 (CYP) plays an important role in psychopharmacology. While liver CYP enzymes are responsible for the biotransformation of psychotropic drugs, brain CYP enzymes are involved in the local metabolism of these drugs and endogenous neuroactive substances, such as neurosteroids, and in alternative pathways of neurotransmitter biosynthesis including dopamine and serotonin. Recent studies have revealed a relation between the brain nervous system and cytochrome P450, indicating that CYP enzymes metabolize endogenous neuroactive substances in the brain, while the brain nervous system is engaged in the central neuroendocrine and neuroimmune regulation of cytochrome P450 in the liver. Therefore, the effect of neuroactive drugs on cytochrome P450 should be investigated not only in vitro, but also at in vivo conditions, since only in vivo all mechanisms of drug-enzyme interaction can be observed, including neuroendocrine and neuroimmune modulation. Psychotropic drugs can potentially affect cytochrome P450 via a number of mechanisms operating at the level of the nervous, hormonal and immune systems, and the liver. Their effect on cytochrome P450 in the brain is often different than in the liver and region-dependent. Since psychotropic drugs can affect cytochrome P450 both in the liver and brain, they can modify their own pharmacological effect at both pharmacokinetic and pharmacodynamic level. The article describes the mechanisms by which psychotropic drugs can change the expression/activity of cytochrome P450 in the liver and brain, and discusses the significance of those mechanisms for drug action and drug-drug interactions. Moreover, the brain CYP2D6 is considered as a potential target for psychotropics.
Collapse
Affiliation(s)
- Władysława A Daniel
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland.
| | - Ewa Bromek
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Przemysław J Danek
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Anna Haduch
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| |
Collapse
|
28
|
Harder JA, Fichorova RN, Srivastava A, Wiley A, Burdick KE, Locascio JJ, Joffe H. Brain-derived neurotrophic factor and mood in perimenopausal depression. J Affect Disord 2022; 300:145-149. [PMID: 34954335 PMCID: PMC8935344 DOI: 10.1016/j.jad.2021.12.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/18/2021] [Accepted: 12/18/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Previous work implicates high pro-inflammatory biomarkers in mood disturbance and low brain-derived neurotrophic factor (BDNF) levels in major depression. However, in hormonally-sensitive premenstrual dysphoric disorder (PMDD), BDNF levels are higher when mood is worse. Perimenopausal depression has not been studied to date. We evaluated whether BDNF and inflammatory cytokines predict mood symptoms across the menstrual cycle in hormonally-sensitive perimenopausal depression symptoms. METHODS Data from 49 time points derived from mid-to-late follicular phase [M/L-FP] and peri‑menstrual assessments of 14 perimenopausal women ages 38-52 with ovulatory menstrual cycles 24-35 days long across 1-2 cycles for mood symptoms, BDNF levels, cytokines, gonadal steroids. Depression was assessed with Montgomery-Åsberg Depression Rating Scale (MADRS), Beck Depression Inventory (BDI); irritability with Kellner Symptom Questionnaire Anger-Hostility subscale (SQ); overall psychological distress with Profile of Mood States (POMS). Mixed models were run on dependent measures of MADRS (primary endpoint) and other mood outcomes (BDI, POMS, SQ) with independent variables of interest (each biomarker, cycle phase), controlling for cycle number and participant. RESULTS After FDR adjustment, BDNF levels showed consistent significant positive relationships to MADRS (β=0.00053; p = 0.0028), POMS (β=0.00153; p = 0.0394), SQ (β=0.00053; p = 0.0067), and BDI (β=0.00039; p = 0.0231). Cycle phase did not affect this relationship. No other biomarker consistently predicted affective symptom severity. LIMITATIONS Small sample size and large number of comparisons. CONCLUSION In women with perimenopausal depression symptoms, BDNF is elevated in association with more severe mood symptomatology, resembling the pattern in hormonally-sensitive PMDD and suggesting a hormonally-sensitive mood disorder biomarker profile distinct from that of major depression.
Collapse
Affiliation(s)
- Jessica A. Harder
- Department of Psychiatry, Brigham and Women’s
Hospital, Harvard Medical School
| | - Raina N. Fichorova
- Department of Obstetrics and Gynecology, Brigham and
Women’s Hospital, Harvard Medical School
| | - Akanksha Srivastava
- Department of Psychiatry, Brigham and Women’s
Hospital, Harvard Medical School
| | - Aleta Wiley
- Department of Psychiatry, Brigham and Women’s
Hospital, Harvard Medical School
| | | | - Joseph J. Locascio
- Department of Neurology, Massachusetts General Hospital,
Harvard Medical School
| | - Hadine Joffe
- Department of Psychiatry, Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115, United States; Connors Center for Women's Health and Gender Biology, Harvard Medical School, Brigham and Women's Hospital, United States.
| |
Collapse
|
29
|
Zou Z, Huang J, Yang Q, Zhang Y, Xu B, Wang P, Chen G. Repeated Yueju, But Not Fluoxetine, Induced Sustained Antidepressant Activity in a Mouse Model of Chronic Learned Helplessness: Involvement of CaMKII Signaling in the Hippocampus. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:1442578. [PMID: 35251201 PMCID: PMC8894000 DOI: 10.1155/2022/1442578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/11/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Depression is characterized with long disease length, whereas one major disadvantage of current mainstream treatment of depression is a high rate of relapse and recurrence. A sustained antidepressant activity is proposed to facilitate the prevention of relapse/recurrence. Here we compared the long-term antidepressant effect of Yueju, a traditional Chinese medicine formula, and a conventional antidepressant, fluoxetine, as well as revealing the underlying mechanism of long-term antidepressant effect of Yueju. METHODS Clinical long-term depression condition was modelled by using chronic learned helplessness (cLH) protocol in ICR strain mice. The short-term and long-term antidepressant effects of drugs were assessed with learned helplessness (LH), tail suspension test (TST), forced swim test (FST), and novelty-suppressed feeding (NSF) test. The expression of PKA, CaMKII signaling, and NR1, the NMDA receptor subunit, in hippocampus was determined. A CaMKII inhibitor (KN-62) was used to assess the role of CaMKII signaling in antidepressant effects of Yueju or fluoxetine. RESULTS In the mice exposed to chronic learned helplessness (cLH) procedure, administration of Yueju or fluoxetine for 3 weeks elicited comparable antidepressant effects, indicated by learned helplessness test, as well as TST and NSF. However, 5 days after termination of the 3-week-long drug administration, only mice previously treated with Yueju still showed the alleviation of depressive-like behaviors. At this time, the downregulation of PKA and p-CaMKII/CaMKII and upregulation of NMDA receptor subunit NR1 in the hippocampus were normalized in animals previously treated with Yueju. In contrast, none of the expressions of these proteins were changed in mice previously treated with fluoxetine. Interestingly, an administration of KN-62 blunted the antidepressant effect of Yueju. CONCLUSION These findings showed the sustained antidepressant efficacy of chronic treatment with routine dose of Yueju and the CaMKII signaling activation may play a critical role in the sustained antidepressant response.
Collapse
Affiliation(s)
- Zhilu Zou
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou 510632, China
- Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou 510632, China
- Co-innovation Center of Neurodegeneration, Nantong University, Nantong 226001, China
| | - Jiaru Huang
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou 510632, China
| | - Qingqing Yang
- Center for Translational Systems Biology and Neuroscience, Key Laboratory of Integrative Biomedicine for Brain Diseases, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuxuan Zhang
- Center for Translational Systems Biology and Neuroscience, Key Laboratory of Integrative Biomedicine for Brain Diseases, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Bo Xu
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Ping Wang
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Gang Chen
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou 510632, China
- Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou 510632, China
- Co-innovation Center of Neurodegeneration, Nantong University, Nantong 226001, China
| |
Collapse
|
30
|
Teng T, Clarke G, Maes M, Jiang Y, Wang J, Li X, Yin B, Xiang Y, Fan L, Liu X, Wang J, Liu S, Huang Y, Licinio J, Zhou X, Xie P. Biogeography of the large intestinal mucosal and luminal microbiome in cynomolgus macaques with depressive-like behavior. Mol Psychiatry 2022; 27:1059-1067. [PMID: 34719692 PMCID: PMC9054659 DOI: 10.1038/s41380-021-01366-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 12/15/2022]
Abstract
Most previous studies in the pathophysiology of major depressive disorder (MDD) focused on fecal samples, which limit the identification of the gut mucosal and luminal microbiome in depression. Here, we address this knowledge gap. Male cynomolgus macaques (Macaca fascicularis) were randomly assigned to a chronic unpredictable mild stress (CUMS) group, or to an unstressed control group. Behavioral tests were completed in both groups. At endpoint, microbe composition of paired mucosal and luminal samples from cecum, ascending, transverse, and descending colons were determined by 16S ribosomal RNA gene sequencing. The levels of 34 metabolites involved in carbohydrate or energy metabolism in luminal samples were measured by targeted metabolomics profiling. CUMS macaques demonstrated significantly more depressive-like behaviors than controls. We found differences in mucosal and luminal microbial composition between the two groups, which were characterized by Firmicutes and Bacteriodetes at the phylum level, as well as Prevotellaceae and Lachnospiraceae at the family level. The majority of discriminative microbes correlated with the depressive-like behavioral phenotype. In addition, we found 27 significantly different microbiome community functions between the two groups in mucosa, and one in lumen, which were mainly involved in carbohydrate and energy metabolism. A total of nine metabolites involved in these pathways were depleted in CUMS animals. Together, CUMS macaques with depressive-like behaviors associated with distinct alterations of covarying microbiota, carbohydrate and energy metabolism in mucosa and lumen. Further studies should focus on the mucosal and luminal microbiome to provide a deeper spatiotemporal perspective of microbial alterations in the pathogenesis of MDD.
Collapse
Affiliation(s)
- Teng Teng
- grid.452206.70000 0004 1758 417XDepartment of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China ,grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Gerard Clarke
- grid.7872.a0000000123318773Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland ,grid.7872.a0000000123318773APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Michael Maes
- grid.7922.e0000 0001 0244 7875Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand ,grid.35371.330000 0001 0726 0380Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria ,grid.1021.20000 0001 0526 7079School of Medicine, IMPACT Strategic Research Centre, Deakin University, Geelong, VIC Australia
| | - Yuanliang Jiang
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China ,grid.452206.70000 0004 1758 417XDepartment of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Wang
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xuemei Li
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China ,grid.452206.70000 0004 1758 417XDepartment of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bangmin Yin
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China ,grid.452206.70000 0004 1758 417XDepartment of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yajie Xiang
- grid.452206.70000 0004 1758 417XDepartment of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China ,grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Fan
- grid.452206.70000 0004 1758 417XDepartment of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China ,grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xueer Liu
- grid.452206.70000 0004 1758 417XDepartment of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China ,grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Wang
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China ,grid.452206.70000 0004 1758 417XDepartment of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shouhuan Liu
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China ,grid.452206.70000 0004 1758 417XDepartment of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunqing Huang
- Shanghai Applied Protein Technology Co., Ltd, Shanghai, China
| | - Julio Licinio
- grid.411023.50000 0000 9159 4457Department of Psychiatry and Behavioral Sciences, College of Medicine, State University of New York (SUNY) Upstate Medical University, Syracuse, NY USA ,grid.411023.50000 0000 9159 4457Department of Neuroscience & Physiology, College of Medicine, SUNY Upstate Medical University, Syracuse, NY USA
| | - Xinyu Zhou
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China. .,Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China. .,NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
31
|
Al Shukaili M, Al Alawi M, Al Huseini S, Al Shukaili A, Al Muharrami M, Al Abdali M, Al Harthi H, Al Saadi A, Al Balushi R, Al Kasbi F, Al-Fahdi A, Panchatcharam SM, Cucchi A, Al-Adawi S. Exploring Factors Associated With Depressive Symptoms Among Patients With Chronic Pain: A Cross-Sectional Multicenter Study. J Nerv Ment Dis 2022; 210:45-53. [PMID: 34510085 DOI: 10.1097/nmd.0000000000001409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT This cross-sectional study examined the factors associated with depression among people with chronic pain (PwCP) attending specialized pain clinics in Muscat, Oman. Two-hundred eighty-seven participants were recruited for the study, and univariate analyses were used to investigate the difference between individuals who scored above/below the cutoff points for depressive symptoms. A multiple regression analysis was used to detect the independent predictors. Twenty-six percent of participants scored above the cutoff point. Further analysis indicated that unstable family relationships pre-existing depressive symptoms (odds ratio [OR], 2.86; p = 0.044), a family history of depression (OR, 4.75; p = 0.019), severe pain (OR, 4.21; p < 0.006), having fibromyalgia (OR, 28.29; p = 0.005), and lumbago/truck (OR, 2.41; p = 0.039) were independent predictors of depressive symptoms. This study indicates that one in four patients with chronic pain also presents with depressive symptoms. However, the role of culture needs to be taken into consideration when interpreting these findings and when building on these data.
Collapse
Affiliation(s)
| | - Mohammed Al Alawi
- Department of Behavioural Medicine, Sultan Qaboos University Hospital
| | | | | | | | | | - Hiba Al Harthi
- Psychiatry Residency Program, Oman Medical Speciality Board
| | | | | | - Fatma Al Kasbi
- Department of Pain Medicine, Sultan Qaboos University Hospital
| | - Amal Al-Fahdi
- Sultan Qaboos Comprehensive Cancer Care and Research Centre
| | | | - Angie Cucchi
- School of Social Sciences, Department of Psychology, London Metropolitan University, London, United Kingdom
| | - Samir Al-Adawi
- Department of Behavioural Medicine, Sultan Qaboos University Hospital
| |
Collapse
|
32
|
Ekong MB, Iniodu CF. Nutritional therapy can reduce the burden of depression management in low income countries: A review. IBRO Neurosci Rep 2021; 11:15-28. [PMID: 34939062 PMCID: PMC8664701 DOI: 10.1016/j.ibneur.2021.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/06/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022] Open
Abstract
Depression is a serious mental and mood disorder with global health and economic burden. This burden may be overwhelming in low income countries, although there are insufficient data. Most antidepressant formulations are predicated on the monoamine, neuroendocrine and neuro-inflammation hypotheses, with little or no cognizance to other neurochemicals altered in depression. A nutritional strategy with or without conventional antidepressants is recommended, as nutrition plays vital roles in the onset, severity and duration of depression, with poor nutrition contributing to its pathogenesis. This review discusses nutritional potentials of utilizing omega-3 fatty acids, proteins, vitamins, minerals and herbs or their phytochemicals in the management of depression with the aim of reducing depression burden. Literature search of empirical data in books and journals in data bases including but not limited to PubMed, Scopus, Science Direct, Web of Science and Google Scholar that might contain discussions of sampling were sought, their full text obtained, and searched for relevant content to determine eligibility. Omega-3 fatty and amino acids had significant positive anti-depression outcomes, while vitamins and minerals although essential, enhanced omega-3 fatty and amino acids activities. Some herbs either as whole extracts or their phytochemicals/metabolites had significant positive anti-depression efficacy. Nutrition through the application of necessary food classes or herbs as well as their phytochemicals, may go a long way to effectively manage depression. This therefore will provide inexpensive, natural, and non-invasive therapeutic means with reduced adverse effects that can also be applied alongside clinical management. This nutritional strategy should be given more attention in research, assessment and treatment for those with depression and other mental illness in low income countries, especially in Africa.
Collapse
Affiliation(s)
- Moses B Ekong
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Uyo, Nigeria
| | - Clementina F Iniodu
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Uyo, Nigeria
| |
Collapse
|
33
|
Shaygan M, Yazdanpanah M. Depression and work-family conflict mediating the effects of job stress on chronic pain: A structural equation modelling approach. INTERNATIONAL JOURNAL OF OCCUPATIONAL SAFETY AND ERGONOMICS 2021; 28:2551-2558. [PMID: 34789081 DOI: 10.1080/10803548.2021.2008130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE The majority of research studying the relationship between job stress and chronic pain has relied on physiological responses. This study aims to determine psycho-social mechanisms by which job stress can influence chronic pain in workers. METHODS This cross-sectional study was carried out among 793 workers in gas and oil platforms or petroleum refinery plants in southern Iran. Structural equation modelling was applied to evaluate the direct, indirect, and total effects of job stress on chronic pain in the presence of mediating variables (work-family conflict and depression). RESULTS According to the results, job stress (B=0.024, β=0.477), 95% CI [0.016, 0.032], work-family conflict (B=0.031, β=0.446), 95% CI [0.023, 0.038], depression (B=0.046, β=0.224), 95% CI [0.028, 0.064], and work experience (B=0.083, β=0.380), 95% CI [0.065, 0.101] had significant direct effects on chronic pain. The indirect paths from job stress to chronic pain via depression (B=0.002, β=0.042), 95%CI [0.001, 0.003] and work-family conflict (B=0.004, β=0.085), 95%CI [0.003, 0.006] were significant. CONCLUSIONS Given that depression and work-family conflict mediate the effects of job stress on pain, stress management programs for workers might include various strategies to reduce negative thoughts as well as cognitive biases and minimize role conflicts between work and private life.
Collapse
Affiliation(s)
- Maryam Shaygan
- Community Based Psychiatric Care Research Center, Faculty of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Yazdanpanah
- Faculty of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
34
|
Luo K, Xing Y, Wang M. Identifying the effectual-combination ingredients of Zhi-zi-Hou-po decoction based on metabolic difference-oriented network regulation strategy. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1184:122980. [PMID: 34653845 DOI: 10.1016/j.jchromb.2021.122980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/07/2021] [Accepted: 10/01/2021] [Indexed: 12/23/2022]
Abstract
Zhi-zi-Hou-po decoction (ZZHPD) has been used to treat depression in the clinic for thousand years in China. However, the pharmacodynamic substance of ZZHPD is still not totally clear due to its complex components. The objective of this study was to identify the effectual combination ingredients (ECIs) of ZZHPD, which could represent the antidepressant effect of the original formula. Firstly, differential plasma absorbed components with different variable importance in projection (VIP) value in chronic unpredictable mild stress (CUMS)-induced depression and control rat were revealed by untargeted metabolomics-driven strategy based on HPLC-ESI-TOF/MS, XCMS online and SIMCA-p software. Secondly, network topology scores (NTS) of plasma absorbed components were exposed by protein-protein interaction (PPI) network analysis based on components-related genes and depression-related genes, which were performed by network pharmacology tools. Finally, the ECIs were screened by considered of VIP value and NTS. Then the bioactivity was evaluated by cell viability and expression of glial fibrillary acid protein (GFAP), tumor necrosis factor α (TNFα) and interleukin 1β (IL-1β) of a lipopolysaccharide-induced astrocyte depression model. An effective combination composed with 12 components was filtrated as ECIs of ZZHPD, exposed to which the cell viability effect, the expression of GFAP and IL-1β in astrocytes were essentially equivalent with original ZZHPD (p > 0.05), and that both characteristic constituents and trace compounds of ZZHPD might exert synergistic actions through multi-targets. The result of this study provided useful information for the clinical application and modern development of ZZHPD, and the proposed strategy could be regard as an alternative solution for effective combination screening of herbal medicines.
Collapse
Affiliation(s)
- Kaiwen Luo
- School of Pharmacy, Bengbu Medical University, No. 2600 Donghai Avenue, Bengbu 233030, China.
| | - Yadong Xing
- School of Pharmacy, Bengbu Medical University, No. 2600 Donghai Avenue, Bengbu 233030, China
| | - Mengdie Wang
- School of Pharmacy, Bengbu Medical University, No. 2600 Donghai Avenue, Bengbu 233030, China
| |
Collapse
|
35
|
Ding Y, Bu F, Chen T, Shi G, Yuan X, Feng Z, Duan Z, Wang R, Zhang S, Wang Q, Zhou J, Chen Y. A next-generation probiotic: Akkermansia muciniphila ameliorates chronic stress-induced depressive-like behavior in mice by regulating gut microbiota and metabolites. Appl Microbiol Biotechnol 2021; 105:8411-8426. [PMID: 34617139 DOI: 10.1007/s00253-021-11622-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 12/19/2022]
Abstract
Major depressive disorder (MDD) is a neurasthenic disease, which is the second-largest burden of disease globally. Increasing studies have revealed that depression is associated with abnormalities in gut microbiota and metabolites. Several species of bacteria have been classified as psychobiotics, which confer mental health benefits through interactions with commensal gut microbiota. Therefore, it is essential to identify new psychobiotics and elucidate their mechanisms in the treatment of depression. This study aims to evaluate the antidepressant effect of Akkermansia muciniphila (AKK) in a mouse model of depression induced by chronic restraint stress (CRS). C57BL/6 male mice were divided into three groups: mice subjected to CRS, mice not subjected to CRS, and mice treated with AKK for 3 weeks. Behavioral tests were performed, and hormone, neurotransmitter, and brain-derived neurotrophic factor (BDNF) levels were measured. Cecal microbiota was analyzed using 16S rRNA gene sequencing, and serum metabolites were detected using untargeted metabolomics. In addition, correlations between altered gut microbiota and metabolites with significant variations in serum associated with AKK ameliorating depression were analyzed using Pearson's correlation coefficient. The results revealed that AKK significantly ameliorated depressive-like behavior and restored abnormal variations in depression-related molecular (corticosterone, dopamine, and BDNF). Moreover, AKK altered chronic stress-induced gut microbial abnormalities. Untargeted metabolomics analysis revealed 23 potential biomarkers in serum that could be associated with the mechanisms underlying CRS-induced depression and the therapeutic effects of AKK. Pearson's correlation coefficient analysis revealed that AKK predominantly upregulated β-alanyl-3-methyl-L-histidine and edaravone to relieve depression. Furthermore, β-alanyl-3-methyl-L-histidine and edaravone exhibited the antidepressant phenotype in mice subjected to CRS. In conclusion, the study demonstrated that AKK ameliorates chronic stress-induced depressive symptoms in mice by regulating gut microbiota and metabolites. KEY POINTS: • AKK reduces depressive-like behaviors induced by chronic stress. • AKK regulates the gut microbial structure and metabolomics of serum under the chronic stress. • Antidepressant effect of AKK correlates with the increase of β-alanyl-3-methyl-l-histidine and edaravone.
Collapse
Affiliation(s)
- Yang Ding
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Fan Bu
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Tuo Chen
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Guoping Shi
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| | - Xiaomin Yuan
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zeyu Feng
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zhenglan Duan
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Rong Wang
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Sumin Zhang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qiong Wang
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jinyong Zhou
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yugen Chen
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
36
|
Abd El-Halim SM, Mamdouh MA, Eid SM, Ibrahim BMM, Aly Labib DA, Soliman SM. The Potential Synergistic Activity of Zolmitriptan Combined in New Self-Nanoemulsifying Drug Delivery Systems: ATR-FTIR Real-Time Fast Dissolution Monitoring and Pharmacodynamic Assessment. Int J Nanomedicine 2021; 16:6395-6412. [PMID: 34566412 PMCID: PMC8456549 DOI: 10.2147/ijn.s325697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/05/2021] [Indexed: 12/21/2022] Open
Abstract
Purpose The current work aimed to overcome the poor permeability and undesirable adverse effects of Zolmitriptan (ZMT) and to increase its efficacy in the treatment of acute migraine by exploiting the synergistic effect of the essential oil, lavender, to fabricate ZMT self-nanoemulsifying drug delivery systems (ZMT-SNEDDS). Methods ZMT-SNEDDS were fabricated based on full factorial design (32) to statistically assess the impact of oil and surfactant concentrations on the nanoemulsion globule size, zeta potential and percentage drug dissolution efficiency. An ATR-FTIR method was developed and validated for continuous real-time monitoring of ZMT dissolution and permeation. The dose of the optimized ZMT-SNEDDS used in the efficacy study was selected according to the acute toxicity study. The efficacy study was performed on migraineous rats induced by nitroglycerin and was evaluated by the activity cage and thermal tests, electroencephalogram, electroconvulsive stimulation, and biochemical analysis of brain tissue. Finally, histopathological and immunohistochemical examinations of the cerebra were carried out. Results Upon dilution, the optimized ZMT-SNEDDS (F5) exhibited nanosized spherical droplets of 19.59±0.17 nm with narrow size distribution, zeta potential (-23.5±1.17mV) and rapid emulsification characteristics. ATR-FTIR spectra elucidated the complete time course of dissolution and permeation, confirming F5 superior performance. Moreover, ZMT-SNEDDS (F5) showed safety in an acute toxicity study. ZMT concentration in rat brain tissues derived from F5 was lower compared to that of ZMT solution, yet its effect was better on the psychological state, algesia, as well as maintaining normal brain electrical activity and delayed convulsions. It counteracted the cerebral biochemical alternations induced by nitroglycerin, which was confirmed by histopathological examination. Conclusion In a nutshell, these findings corroborated the remarkable synergistic efficacy and the high potency of lavender oil-based ZMT-SNEDDS in migraine management compared to the traditional zolmitriptan solution.
Collapse
Affiliation(s)
- Shady M Abd El-Halim
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, 6th of October City, Giza, 12585, Egypt
| | - Mohamed A Mamdouh
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, 6th of October City, Giza, 12585, Egypt
| | - Sherif M Eid
- Analytical Chemistry, Faculty of Pharmacy, October 6 University, 6th of October City, Giza, 12585, Egypt
| | - Bassant M M Ibrahim
- Department of Pharmacology, Medical Research Division, National Research Centre, Giza, 12622, Egypt
| | - Dina A Aly Labib
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Cairo, 11559, Egypt
| | - Sara M Soliman
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, 6th of October City, Giza, 12585, Egypt
| |
Collapse
|
37
|
Haase J, Jones AKC, Mc Veigh CJ, Brown E, Clarke G, Ahnert-Hilger G. Sex and brain region-specific regulation of serotonin transporter activity in synaptosomes in guanine nucleotide-binding protein G(q) alpha knockout mice. J Neurochem 2021; 159:156-171. [PMID: 34309872 DOI: 10.1111/jnc.15482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Abstract
The regulation of the serotonin transporter (SERT) by guanine nucleotide-binding protein alpha (Gα) q was investigated using Gαq knockout mice. In the absence of Gαq, SERT-mediated uptake of 5-hydroxytryptamine (5HT) was enhanced in midbrain and frontal cortex synaptosomes, but only in female mice. The mechanisms underlying this sexual dimorphism were investigated using quantitative western blot analysis revealing brain region-specific differences. In the frontal cortex, SERT protein expression was decreased in male knockout mice, seemingly explaining the sex-dependent variation in SERT activity. The differential expression of Gαi1 in female mice contributes to the sex differences in the midbrain. In fact, Gαi1 levels inversely correlate with 5HT uptake rates across both sexes and genotypes. Likely due to differential SERT regulation as well as sex differences in the expression of tryptophan hydroxylase 2, Gαq knockout mice also displayed sex- and genotype-dependent alterations in total 5HT tissue levels as determined by high-performance liquid chromatography. Gαq inhibitors, YM-254890 and BIM-46187, differentially affected SERT activity in both, synaptosomes and cultured cells. YM-254890 treatment mimicked the effect of Gαq knockout in the frontal cortex. BIM-46187, which promotes the nucleotide-free form of Gα proteins, substantially inhibited 5HT uptake, prompting us to hypothesise that Gαq interacts with SERT similarly as with G-protein-coupled receptors and inhibits SERT activity by modulating transport-associated conformational changes. Taken together, our findings reveal a novel mechanism of SERT regulation and impact our understanding of sex differences in diseases associated with dysregulation of serotonin transmission, such as depression and anxiety.
Collapse
Affiliation(s)
- Jana Haase
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Aimée K C Jones
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Conor J Mc Veigh
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Eric Brown
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland and Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Gudrun Ahnert-Hilger
- Institute of Integrative Neuroanatomy, Charité University Medicine Berlin and Max-Planck-Institute for Biophysical Chemistry Göttingen, Göttingen, Germany
| |
Collapse
|
38
|
Hersey M, Hashemi P, Reagan LP. Integrating the monoamine and cytokine hypotheses of depression: Is histamine the missing link? Eur J Neurosci 2021; 55:2895-2911. [PMID: 34265868 DOI: 10.1111/ejn.15392] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 06/26/2021] [Accepted: 07/06/2021] [Indexed: 12/28/2022]
Abstract
Psychiatric diseases, like depression, largely affect the central nervous system (CNS). While the underlying neuropathology of depressive illness remains to be elucidated, several hypotheses have been proposed as molecular underpinnings for major depressive disorder, including the monoamine hypothesis and the cytokine hypothesis. The monoamine hypothesis has been largely supported by the pharmaceuticals that target monoamine neurotransmitters as a treatment for depression. However, these antidepressants have come under scrutiny due to their limited clinical efficacy, side effects, and delayed onset of action. The more recent, cytokine hypothesis of depression is supported by the ability of immune-active agents to induce "sickness behaviour" akin to that seen with depression. However, treatments that more selectively target inflammation have yielded inconsistent antidepressive results. As such, neither of these hypotheses can fully explain depressive illness pathology, implying that the underlying neuropathological mechanisms may encompass aspects of both theories. The goal of the current review is to integrate these two well-studied hypotheses and to propose a role for histamine as a potential unifying factor that links monoamines to cytokines. Additionally, we will focus on stress-induced depression, to provide an updated perspective of depressive illness research and thereby identify new potential targets for the treatment of major depressive disorder.
Collapse
Affiliation(s)
- Melinda Hersey
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, USA.,Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Parastoo Hashemi
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina, USA.,Department of Bioengineering, Imperial College, London, UK
| | - Lawrence P Reagan
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, USA.,WJB Dorn Veterans Affairs Medical Center, Columbia, South Carolina, USA
| |
Collapse
|
39
|
Abstract
BACKGROUND Pain and depression have a high impact on caring for the people who need palliative care, but both of these are neglected compared with the approach for other symptoms encountered by these patients. AREAS OF UNCERTAINTY There are few studies in humans that support the existence of common neural circuits between depression and pain that also explore the use of drugs with effects in both conditions. More knowledge is needed about the relationship of these clinical entities that will lead to the optimization of the treatment and improvement of quality of life. DATA SOURCES We conducted a search in PubMed to identify relevant articles and reviews that have been published in the last 5 years, concerning the topic of common pathways between depression and pain (2014-April 2019). THERAPEUTIC ADVANCES The connections between the 2 clinical entities start at the level of the cortical regions. The hippocampus is the main site of neural changes, modification of the immune system, neuromodulators, neurotransmitters, and signaling pathways implicated in both conditions. Increased levels of peripheral proinflammatory cytokines and neuroinflammatory changes are related to the physiopathology of these entities. Inflammation links depression and pain by altering neural circuits and changes in their common cortical regions. Antidepressants are used to treat depression and chronic, pain but more experimental studies are needed to determine which antidepressant drugs are the most effective in treating the 2 entities. CONCLUSIONS Pharmacological and nonpharmacological interventions targeting cortical changes in pain and depression are promising, but more clinical studies are needed to validate their usefulness.
Collapse
|
40
|
Han Q, Du G, Liu L, Wang L, Li W, Zhang H, Sun Y, Zhu P, Hao R, Ma S. Molecular mechanisms of seasonal photoperiod effects of the pineal gland on the hippocampus in rats. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2021. [DOI: 10.1016/j.jtcms.2021.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
41
|
Targeting the dysfunction of glutamate receptors for the development of novel antidepressants. Pharmacol Ther 2021; 226:107875. [PMID: 33901503 DOI: 10.1016/j.pharmthera.2021.107875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2021] [Indexed: 12/19/2022]
Abstract
Increasing evidence indicates that dysfunction of glutamate receptors is involved in the pathophysiology of major depressive disorder (MDD). Although accumulating efforts have been made to elucidate the applications and mechanisms underlying antidepressant-like effects of ketamine, a non-selective antagonist of N-methyl-d-aspartate receptor (NMDAR), the role of specific glutamate receptor subunit in regulating depression is not completely clear. The current review aims to discuss the relationships between glutamate receptor subunits and depressive-like behaviors. Research literatures were searched from inception to July 2020. We summarized the alterations of glutamate receptor subunits in patients with MDD and animal models of depression. Animal behaviors in response to dysfunction of glutamate receptor subunits were also surveyed. To fully understand mechanisms underlying antidepressant-like effects of modulators targeting glutamate receptors, we discussed effects of each glutamate receptor subunit on serotonin system, synaptic plasticity, neurogenesis and neuroinflammation. Finally, we collected most recent clinical applications of glutamate receptor modulators and pointed out the limitations of these candidates in the treatment of MDD.
Collapse
|
42
|
Sun X, Zu Y, Li X, Zhao S, Sun X, Li L, Zhang X, Wang W, Liang Y, Wang W, Liang X, Gao M, Sun C, Guan X, Tang M. Corticosterone-induced Hippocampal 5-HT Responses were Muted in Depressive-like State. ACS Chem Neurosci 2021; 12:845-856. [PMID: 33586968 DOI: 10.1021/acschemneuro.0c00334] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Interactions between the hypothalamic-pituitary-adrenal axis and the central 5-HT system in the depressive state remain largely unknown. The present study investigated corticosterone (CORT) regulations of extracellular 5-HT in the hippocampal CA3 in a mouse model of depression. Basal dialysate 5-HT, true extracellular 5-HT, 5-HT reuptake efficiency, and time courses of dialysate 5-HT following CORT injections at 10, 20, and 40 mg/kg were determined at baseline, depressive-like state and after subsequent fluoxetine (FLX) treatment using in vivo microdialysis in male C57BL/6 mice. Behavioral tests were used to determine behavioral phenotypes and therapeutic responses to FLX. Depressed mice showed decreased extracellular 5-HT, increased 5-HT reuptake efficiency, and absence of the increase in dialysate 5-HT response to CORT injections, which were all reversed in FLX-responsive mice. Surprisingly, the FLX nonresponsive mice continued to worsen behaviorally and exhibited lower extracellular 5-HT and higher 5-HT reuptake efficiency. Our study indicates that abolished-CORT induced 5-HT response, decreased extracellular 5-HT, and increased 5-HT reuptake efficiency might be the signature features associated with depressive-like state. Increased 5-HT reuptake efficiency was one of the underlying mechanisms, with target effectors remaining to be explored. The findings in the FLX nonresponsive mice suggest distinct neuromechanisms, which might be genetically predetermined.
Collapse
Affiliation(s)
- Xianan Sun
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yi Zu
- Department of Academic Quality Assurance, China Medical University, Shenyang 110122, China
| | - Xiang Li
- Department of Pharmacy, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Shulei Zhao
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Xiao Sun
- Department of Internal Medicine, Shenyang Women’s and Children’s Hospital, Shenyang 110011, China
| | - Lu Li
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xinjing Zhang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Wei Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yuezhu Liang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Wenyao Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xuankai Liang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Mingqi Gao
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Chi Sun
- Department of Academic Quality Assurance, China Medical University, Shenyang 110122, China
| | - Xue Guan
- Department of Academic Quality Assurance, China Medical University, Shenyang 110122, China
| | - Man Tang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| |
Collapse
|
43
|
Yang KC, Liu MN, Liou YJ, Hu LY, Yang BH, Chou YH. Interleukin-1 family and serotonin transporter in first-episode, drug-naive major depressive disorder: A pilot study. J Psychiatr Res 2021; 135:174-180. [PMID: 33493946 DOI: 10.1016/j.jpsychires.2021.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/13/2020] [Accepted: 01/15/2021] [Indexed: 12/28/2022]
Abstract
Abnormalities of neuroinflammatory process and serotonergic system have been reported in major depressive disorder (MDD). However, most previous studies were performed in recurrent MDD and only a few studies explored the interaction of the two systems. This study examined both systems concurrently and their clinical relevance in first-episode drug-naive MDD. Thirty-four MDD patients and 34 age and gender matched healthy controls (HC) were recruited. Plasma concentrations of the cytokines of interleukin-1 (IL-1) family, including IL-1α, IL-1β, IL-1 receptor antagonist (IL-1Ra) and IL-1 receptor type 2 (IL-1R2) were measured using enzyme-linked immune-sorbent assays. The serotonin transporter (SERT) availability in midbrain, thalamus, caudate, and putamen was examined by single-photon emission computed tomography with 123I-ADAM. There were significantly lower concentrations of pro-inflammatory IL-1β and its inhibitor, IL-1R2 in MDD than HC. The SERT availability was at the same level between groups. A negative association between IL-1Ra concentration and the SERT availability in midbrain was observed in MDD but not in HC. Both IL-1β concentration and the SERT availability in caudate negatively correlated with depression severity and the effect of IL-1β was not moderated or mediated by the SERT. In conclusion, this study demonstrated the involvement of IL-1 family in the early stage of MDD, especially for IL-1β. SERT was not the main central target of altered IL-1β and these two systems might contribute to MDD by different mechanisms. The pathophysiology might be varied between early and recurrent MDD and tuning treatment strategies at different clinical stages might be needed.
Collapse
Affiliation(s)
- Kai-Chun Yang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Mu-N Liu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ying-Jay Liou
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Li-Yu Hu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Bang-Hung Yang
- Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Yuan-Hwa Chou
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Center for Quality Management, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
44
|
Seno S, Tomura S, Miyazaki H, Sato S, Saitoh D. Effects of Selective Serotonin Reuptake Inhibitors on Depression-Like Behavior in a Laser-Induced Shock Wave Model. Front Neurol 2021; 12:602038. [PMID: 33643190 PMCID: PMC7902879 DOI: 10.3389/fneur.2021.602038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/20/2021] [Indexed: 11/13/2022] Open
Abstract
Primary blast injury can result in depression-like behavior in the long-term. However, the effects of the selective serotonin reuptake inhibitor (SSRI) on the depression induced by mild blast traumatic brain injury (bTBI) in the long-term remain unclear. We generated a mouse model of mild bTBI using laser-induced shock wave (LISW) and administered an SSRI to mice by oral gavage for 14 days after LISW exposure. This study aimed to investigate the mechanisms of SSRI-mediated alleviation of depression-like behavior induced by mild bTBI. Animals were divided into three groups: sham, LISW-Vehicle, and LISW-SSRI. LISW was applied to the head of anesthetized mice at 0.5 J/cm2. Twenty-eight days after the LISW, mice in the LISW-SSRI group exhibited reduced depression-like behavior, a significant increase in the number of cells co-stained for 5-bromo-2'-deoxyuridine (Brd-U) and doublecortin (DCX) in the dentate gyrus (DG) as well as increased brain-derived neurotrophic factor (BDNF) and serotonin levels in the hippocampus compared to the sham and LISW-Vehicle groups. Additionally, levels of phosphorylated cAMP response element binding protein (pCREB) in the DG were significantly decreased in the LISW-Vehicle group compared to that in the sham group. Importantly, pCREB levels were not significantly different between LISW-SSRI and sham groups suggesting that SSRI treatment may limit the downregulation of pCREB induced by mild bTBI. In conclusion, recovery from depression-like behavior after mild bTBI may be mediated by hippocampal neurogenesis induced by increased BDNF and serotonin levels as well as the inhibition of pCREB downregulation in the hippocampus.
Collapse
Affiliation(s)
- Soichiro Seno
- Division of Traumatology, Research Institute, National Defense Medical College, Saitama, Japan
| | - Satoshi Tomura
- Division of Traumatology, Research Institute, National Defense Medical College, Saitama, Japan
| | - Hiromi Miyazaki
- Division of Traumatology, Research Institute, National Defense Medical College, Saitama, Japan
| | - Shunichi Sato
- Division of Bioinformation and Therapeutic Systems, Research Institute, National Defense Medical College, Saitama, Japan
| | - Daizoh Saitoh
- Division of Traumatology, Research Institute, National Defense Medical College, Saitama, Japan
| |
Collapse
|
45
|
Singh L, Kaur A, Garg S, Bhatti R. Skimmetin/osthole mitigates pain-depression dyad via inhibiting inflammatory and oxidative stress-mediated neurotransmitter dysregulation. Metab Brain Dis 2021; 36:111-121. [PMID: 32870425 DOI: 10.1007/s11011-020-00604-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 07/20/2020] [Indexed: 12/14/2022]
Abstract
Pain and depression are often co-existing pathological states that promote mutual severity resulting in limited efficacy of current treatment strategies. Thus, there is a need to develop an efficacious alternate treatment regimen for pain-depression dyad. Skimmetin and osthole are molecules of natural origin that have been explored for an anti-hyperglycemic, anti-bacterial, anti-fungal, and anti-diabetic activities in preclinical studies. in animal models. The current study has been designed to explore the beneficial effect of skimmetin/osthole in reserpine-induced pain-depression dyad in mice. Female Swiss albino mice (n = 6) were challenged with reserpine (0.5 mg/kg s.c.) for the first 3 days to induce a pain-depression dyad-like state. Skimmetin (10 mg/kg i.p.) and osthole (10 mg/kg i.p.) were administered for 5 days consecutively, starting from the first day of study. Reserpine treatment significantly reduced the pain threshold in the pressure application measurement (PAM) and electronic von frey (eVF) test. In forced swim test (FST) and Morris water maze (MWM) test mice displayed an increased immobility time and latency to reach platform respectively. Biochemical results showed an increased level of TNF-α, IL-1β, TBARS, glutamate, and reduced level of GSH, norepinephrine, and serotonin in the reserpine treated group. Reserpine treatment also increased brain MAO-A activity. Skimmetin/osthole treatment was found to attenuate the behavioral and biochemical alterations induced by reserpine. The results of the current investigation delineated that skimmetin/osthole may exert anti-nociceptive, anti-depressant, and improved cognition via inhibiting inflammatory and oxidative stress-mediated neurotransmitter dysregulation.
Collapse
Affiliation(s)
- Lovedeep Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Anudeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Saweta Garg
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Rajbir Bhatti
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India.
| |
Collapse
|
46
|
García Bueno B, MacDowell K, Madrigal J, Leza J. Neuroinflammation and depression. THE NEUROSCIENCE OF DEPRESSION 2021:131-142. [DOI: 10.1016/b978-0-12-817933-8.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
47
|
Elsworthy RJ, Aldred S. Depression in Alzheimer's Disease: An Alternative Role for Selective Serotonin Reuptake Inhibitors? J Alzheimers Dis 2020; 69:651-661. [PMID: 31104017 DOI: 10.3233/jad-180780] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Depression is a common co-morbidity seen in people with Alzheimer's disease (AD). However, the successful treatment of depressive symptoms in people with AD is rarely seen. In fact, multiple randomized controlled trials have shown selective serotonin reuptake inhibitors (SSRIs), the current best recommended treatment for depression, to be ineffective in treating depressive symptoms in people with AD. One explanation for this lack of treatment effect may be that depressive symptoms can reflect the progression of AD, rather than clinical depression and are a consequence of more severe neurodegeneration. This raises several questions regarding not only the efficacy of SSRIs in the treatment of depression in people with AD but also regarding the accuracy of diagnosis of depression in AD. However, there may be a rationale for the prescription of SSRIs in early AD. Even in the absence of depression, SSRIs have been shown to slow the conversion from mild cognitive impairment to AD. This may be attributed to the effect of SSRIs on the processing of amyloid-β precursor protein, which may cause a reduction in the accumulation of amyloid-β. Thus, although SSRIs may lack efficacy in treating depression in people with AD, they may hold therapeutic potential for treating and delaying the progression of AD especially if treatment begins in the early stages of AD. This article reviews the current consensus for SSRI treatment of depression in people with AD and highlights the possibility of SSRIs being a treatment option for delaying the progression of AD.
Collapse
Affiliation(s)
- Richard J Elsworthy
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, UK
| | - Sarah Aldred
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, UK
| |
Collapse
|
48
|
Dattilo V, Amato R, Perrotti N, Gennarelli M. The Emerging Role of SGK1 (Serum- and Glucocorticoid-Regulated Kinase 1) in Major Depressive Disorder: Hypothesis and Mechanisms. Front Genet 2020; 11:826. [PMID: 32849818 PMCID: PMC7419621 DOI: 10.3389/fgene.2020.00826] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/09/2020] [Indexed: 12/28/2022] Open
Abstract
Major depressive disorder (MDD) is a heterogeneous psychiatric disease characterized by persistent low mood, diminished interests, and impaired cognitive and social functions. The multifactorial etiology of MDD is still largely unknown because of the complex genetic and environmental interactions involved. Therefore, no established mechanism can explain all the aspects of the disease. In this light, an extensive research about the pathophysiology of MDD has been carried out. Several pathogenic hypotheses, such as monoamines deficiency and neurobiological alterations in the stress-responsive system, including the hypothalamic-pituitary-adrenal (HPA) axis and the immune system, have been proposed for MDD. Over time, remarkable studies, mainly on preclinical rodent models, linked the serum- and glucocorticoid-regulated kinase 1 (SGK1) to the main features of MDD. SGK1 is a serine/threonine kinase belonging to the AGK Kinase family. SGK1 is ubiquitously expressed, which plays a pivotal role in the hormonal regulation of several ion channels, carriers, pumps, and transcription factors or regulators. SGK1 expression is modulated by cell stress and hormones, including gluco- and mineralocorticoids. Compelling evidence suggests that increased SGK1 expression or function is related to the pathogenic stress hypothesis of major depression. Therefore, the first part of the present review highlights the putative role of SGK1 as a critical mediator in the dysregulation of the HPA axis, observed under chronic stress conditions, and its controversial role in the neuroinflammation as well. The second part depicts the negative regulation exerted by SGK1 in the expression of both the brain-derived neurotrophic factor (BDNF) and the vascular endothelial growth factor (VEGF), resulting in an anti-neurogenic activity. Finally, the review focuses on the antidepressant-like effects of anti-oxidative nutraceuticals in several preclinical model of depression, resulting from the restoration of the physiological expression and/or activity of SGK1, which leads to an increase in neurogenesis. In summary, the purpose of this review is a systematic analysis of literature depicting SGK1 as molecular junction of the complex mechanisms underlying the MDD in an effort to suggest the kinase as a potential biomarker and strategic target in modern molecular antidepressant therapy.
Collapse
Affiliation(s)
- Vincenzo Dattilo
- Genetic Unit, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Rosario Amato
- Department of Health Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy.,Medical Genetics Unit, Mater Domini University Hospital, Catanzaro, Italy
| | - Nicola Perrotti
- Department of Health Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy.,Medical Genetics Unit, Mater Domini University Hospital, Catanzaro, Italy
| | - Massimo Gennarelli
- Genetic Unit, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
49
|
Campos ACP, Antunes GF, Matsumoto M, Pagano RL, Martinez RCR. Neuroinflammation, Pain and Depression: An Overview of the Main Findings. Front Psychol 2020; 11:1825. [PMID: 32849076 PMCID: PMC7412934 DOI: 10.3389/fpsyg.2020.01825] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/02/2020] [Indexed: 12/23/2022] Open
Abstract
Chronic pain is a serious public health problem with a strong affective-motivational component that makes it difficult to treat. Most patients with chronic pain suffer from severe depression; hence, both conditions coexist and exacerbate one another. Brain inflammatory mediators are critical for maintaining depression-pain syndrome and could be substrates for it. The goal of our paper was to review clinical and preclinical findings to identify the neuroinflammatory profile associated with the cooccurrence of pain and depression. In addition, we aimed to explore the regulatory effect of neuronal reorganization on the inflammatory response in pain and depression. We conducted a quantitative review supplemented by manual screening. Our results revealed inflammatory signatures in different preclinical models and clinical articles regarding depression-pain syndrome. We also identified that improvements in depressive symptoms and amelioration of pain can be modulated through direct targeting of inflammatory mediators, such as cytokines and molecular inhibitors of the inflammatory cascade. Additionally, therapeutic targets that improve and regulate the synaptic environment and its neurotransmitters may act as anti-inflammatory compounds, reducing local damage-associated molecular patterns and inhibiting the activation of immune and glial cells. Taken together, our data will help to better elucidate the neuroinflammatory profile in pain and depression and may help to identify pharmacological targets for effective management of depression-pain syndrome.
Collapse
Affiliation(s)
| | | | - Marcio Matsumoto
- Anesthesiology Medical Center, Hospital Sirio-Libanes, São Paulo, Brazil
| | | | - Raquel Chacon Ruiz Martinez
- Division of Neuroscience, Hospital Sirio-Libanes, São Paulo, Brazil.,LIM 23, Institute of Psychiatry, University of São Paulo School of Medicine, São Paulo, Brazil
| |
Collapse
|
50
|
Swann OG, Kilpatrick M, Breslin M, Oddy WH. Dietary fiber and its associations with depression and inflammation. Nutr Rev 2020; 78:394-411. [PMID: 31750916 DOI: 10.1093/nutrit/nuz072] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Dietary fiber is a crucial component of a healthy diet, with benefits that can be attributed to processes in the gut microbiota and the resulting by-products. Observational studies support associations between dietary fiber intake and depression and inflammation, but the potential mechanisms are poorly understood. This review examines evidence of the effects of dietary fiber on depression and inflammation and considers plausible mechanisms linking dietary fiber and depression, including microbiota-driven modification of gene expression and increased production of neurotransmitters. Additionally, inflammation may mediate the relationship between dietary fiber intake and depression. A high-fiber diet potentially lowers inflammation by modifying both the pH and the permeability of the gut. The resultant reduction in inflammatory compounds may alter neurotransmitter concentrations to reduce symptoms of depression. Further research into the link between dietary fiber intake and inflammation and depression is essential, as findings could potentially provide guidance for improvement in or prevention of inflammatory and depressive disorders.
Collapse
Affiliation(s)
- Olivia G Swann
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Michelle Kilpatrick
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Monique Breslin
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Wendy H Oddy
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|