1
|
Tian KJ, Yang Y, Chen GS, Deng NH, Tian Z, Bai R, Zhang F, Jiang ZS. Omics research in atherosclerosis. Mol Cell Biochem 2024:10.1007/s11010-024-05139-1. [PMID: 39446251 DOI: 10.1007/s11010-024-05139-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease characterized by lipid deposition within the arterial intima, as well as fibrous tissue proliferation and calcification. AS has long been recognized as one of the primary pathological foundations of cardiovascular diseases in humans. Its pathogenesis is intricate and not yet fully elucidated. Studies have shown that AS is associated with oxidative stress, inflammatory response, lipid deposition, and changes in cell phenotype. Unfortunately, there is currently no effective prevention or targeted treatment for AS. The rapid advancement of omics technologies, including genomics, transcriptomics, proteomics, and metabolomics, has opened up novel avenues to elucidate the fundamental pathophysiology and associated mechanisms of AS. Here, we review articles published over the past decade and focus on the current status, challenges, limitations, and prospects of omics in AS research and clinical practice. Emphasizing potential targets based on omics technologies will improve our understanding of this pathological condition and assist in the development of potential therapeutic approaches for AS-related diseases.
Collapse
Affiliation(s)
- Kai-Jiang Tian
- Pathology Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China
| | - Yu Yang
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China
| | - Guo-Shuai Chen
- Emergency Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China
| | - Nian-Hua Deng
- Anesthesiology Department, Dongguan Songshanhu Central Hospital, Dongguan, 523000, China
| | - Zhen Tian
- Clinical Laboratory, Dongguan Songshanhu Central Hospital, Dongguan, 523000, China
| | - Rui Bai
- Pathology Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China
| | - Fan Zhang
- Pathology Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China
| | - Zhi-Sheng Jiang
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China.
| |
Collapse
|
2
|
Chen C, Wang J, Zhang S, Zhu X, Hu J, Liu C, Liu L. Epigenetic regulation of diverse regulated cell death modalities in cardiovascular disease: Insights into necroptosis, pyroptosis, ferroptosis, and cuproptosis. Redox Biol 2024; 76:103321. [PMID: 39186883 PMCID: PMC11388786 DOI: 10.1016/j.redox.2024.103321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/17/2024] [Accepted: 08/18/2024] [Indexed: 08/28/2024] Open
Abstract
Cell death constitutes a critical component of the pathophysiology of cardiovascular diseases. A growing array of non-apoptotic forms of regulated cell death (RCD)-such as necroptosis, ferroptosis, pyroptosis, and cuproptosis-has been identified and is intimately linked to various cardiovascular conditions. These forms of RCD are governed by genetically programmed mechanisms within the cell, with epigenetic modifications being a common and crucial regulatory method. Such modifications include DNA methylation, RNA methylation, histone methylation, histone acetylation, and non-coding RNAs. This review recaps the roles of DNA methylation, RNA methylation, histone modifications, and non-coding RNAs in cardiovascular diseases, as well as the mechanisms by which epigenetic modifications regulate key proteins involved in cell death. Furthermore, we systematically catalog the existing epigenetic pharmacological agents targeting novel forms of RCD and their mechanisms of action in cardiovascular diseases. This article aims to underscore the pivotal role of epigenetic modifications in precisely regulating specific pathways of novel RCD in cardiovascular diseases, thus offering potential new therapeutic avenues that may prove more effective and safer than traditional treatments.
Collapse
Affiliation(s)
- Cong Chen
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Jie Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China.
| | - Shan Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xueying Zhu
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jun Hu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Chao Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Lanchun Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| |
Collapse
|
3
|
Zeng Y, Bai X, Zhu G, Zhu M, Peng W, Song J, Cai H, Ye L, Chen C, Song Y, Jin M, Zhang XQ, Wang J. m 6A-mediated HDAC9 upregulation promotes particulate matter-induced airway inflammation via epigenetic control of DUSP9-MAPK axis and acts as an inhaled nanotherapeutic target. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135093. [PMID: 39088948 DOI: 10.1016/j.jhazmat.2024.135093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/15/2024] [Accepted: 07/01/2024] [Indexed: 08/03/2024]
Abstract
Exposure to particulate matter (PM) can cause airway inflammation and worsen various airway diseases. However, the underlying molecular mechanism by which PM triggers airway inflammation has not been completely elucidated, and effective interventions are lacking. Our study revealed that PM exposure increased the expression of histone deacetylase 9 (HDAC9) in human bronchial epithelial cells and mouse airway epithelium through the METTL3/m6A methylation/IGF2BP3 pathway. Functional assays showed that HDAC9 upregulation promoted PM-induced airway inflammation and activation of MAPK signaling pathway in vitro and in vivo. Mechanistically, HDAC9 modulated the deacetylation of histone 4 acetylation at K12 (H4K12) in the promoter region of dual specificity phosphatase 9 (DUSP9) to repress the expression of DUSP9 and resulting in the activation of MAPK signaling pathway, thereby promoting PM-induced airway inflammation. Additionally, HDAC9 bound to MEF2A to weaken its anti-inflammatory effect on PM-induced airway inflammation. Then, we developed a novel inhaled lipid nanoparticle system for delivering HDAC9 siRNA to the airway, offering an effective treatment for PM-induced airway inflammation. Collectively, we elucidated the crucial regulatory mechanism of HDAC9 in PM-induced airway inflammation and introduced an inhaled therapeutic approach targeting HDAC9. These findings contribute to alleviating the burden of various airway diseases caused by PM exposure.
Collapse
Affiliation(s)
- Yingying Zeng
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Allergy, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xin Bai
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guiping Zhu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Allergy, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Mengchan Zhu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wenjun Peng
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Allergy, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Juan Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hui Cai
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ling Ye
- Department of Allergy, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Cuicui Chen
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yuanlin Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Infectious Disease and Biosecurity, Shanghai 200032, China; Shanghai Respiratory Research Institute, Shanghai 200032, China
| | - Meiling Jin
- Department of Allergy, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xue-Qing Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jian Wang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
4
|
Chen Y, Lu S, Ren Y, Fan J, Bao CP, Zhang X, Shi YK, Wang Y, Yang LX. Integrating genomic profiling to clinical data: assessing the impact of CD147 expression on plaque stability. Front Cardiovasc Med 2024; 11:1425817. [PMID: 39355350 PMCID: PMC11444025 DOI: 10.3389/fcvm.2024.1425817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/29/2024] [Indexed: 10/03/2024] Open
Abstract
Background Acute Coronary Syndrome (ACS) continues to be a leading cause of death and illness worldwide. Differentiating stable from unstable coronary plaques is essential for enhancing patient outcomes. This research investigates the role of CD147 as a biomarker for plaque stability among coronary artery disease patients. Methods The study began with high-throughput sequencing of blood samples from six patients, divided equally between those with Stable Angina (SA) and Unstable Angina (UA), followed by bioinformatics analysis. Expanding upon these findings, the study included 31 SA patients and 30 patients with ACS, using flow cytometry to examine CD147 expression on platelets and monocytes. Additionally, logistic regression was utilized to integrate traditional risk factors and evaluate the predictive value of CD147 expression for plaque stability. Results Initial sequencing displayed a notable difference in CD147 expression between SA and UA groups, with a significant increase in UA patients. Further analysis confirmed that elevated platelet CD147 expression was strongly associated with unstable plaques (OR = 277.81, P < .001), after adjusting for conventional risk factors, whereas monocyte CD147 levels did not show a significant difference. Conclusion Elevated CD147 expression on platelets is a crucial biomarker for identifying unstable coronary artery plaques, offering insights into patient risk stratification and the development of targeted treatment strategies. This underscores the pivotal role of molecular research in understanding and managing coronary artery disease, paving the way for improved clinical outcomes.
Collapse
Affiliation(s)
- Yu Chen
- Department of Cardiology, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, China
| | - Si Lu
- Department of Clinical Medical College, Dali University, Dali, China
| | - Yong Ren
- Department of Clinical Medical College, Dali University, Dali, China
| | - Jun Fan
- Department of Cardiology, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, China
| | - Chun-Ping Bao
- Department of Cardiology, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, China
| | - Xin Zhang
- Department of Pulmonary and Critical Care Medicine, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, China
| | - Yan-Kun Shi
- Department of Cardiology, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, China
| | - Yan Wang
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Li-Xia Yang
- Department of Cardiology, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, China
| |
Collapse
|
5
|
Zhang M, Hu T, Ma T, Huang W, Wang Y. Epigenetics and environmental health. Front Med 2024; 18:571-596. [PMID: 38806988 DOI: 10.1007/s11684-023-1038-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/15/2023] [Indexed: 05/30/2024]
Abstract
Epigenetic modifications including DNA methylation, histone modifications, chromatin remodeling, and RNA modifications complicate gene regulation and heredity and profoundly impact various physiological and pathological processes. In recent years, accumulating evidence indicates that epigenetics is vulnerable to environmental changes and regulates the growth, development, and diseases of individuals by affecting chromatin activity and regulating gene expression. Environmental exposure or induced epigenetic changes can regulate the state of development and lead to developmental disorders, aging, cardiovascular disease, Alzheimer's disease, cancers, and so on. However, epigenetic modifications are reversible. The use of specific epigenetic inhibitors targeting epigenetic changes in response to environmental exposure is useful in disease therapy. Here, we provide an overview of the role of epigenetics in various diseases. Furthermore, we summarize the mechanism of epigenetic alterations induced by different environmental exposures, the influence of different environmental exposures, and the crosstalk between environmental variation epigenetics, and genes that are implicated in the body's health. However, the interaction of multiple factors and epigenetics in regulating the initiation and progression of various diseases complicates clinical treatments. We discuss some commonly used epigenetic drugs targeting epigenetic modifications and methods to prevent or relieve various diseases regulated by environmental exposure and epigenetics through diet.
Collapse
Affiliation(s)
- Min Zhang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ting Hu
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tianyu Ma
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Wei Huang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| | - Yan Wang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
6
|
Yan L, Wang J, Cai X, Liou Y, Shen H, Hao J, Huang C, Luo G, He W. Macrophage plasticity: signaling pathways, tissue repair, and regeneration. MedComm (Beijing) 2024; 5:e658. [PMID: 39092292 PMCID: PMC11292402 DOI: 10.1002/mco2.658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
Macrophages are versatile immune cells with remarkable plasticity, enabling them to adapt to diverse tissue microenvironments and perform various functions. Traditionally categorized into classically activated (M1) and alternatively activated (M2) phenotypes, recent advances have revealed a spectrum of macrophage activation states that extend beyond this dichotomy. The complex interplay of signaling pathways, transcriptional regulators, and epigenetic modifications orchestrates macrophage polarization, allowing them to respond to various stimuli dynamically. Here, we provide a comprehensive overview of the signaling cascades governing macrophage plasticity, focusing on the roles of Toll-like receptors, signal transducer and activator of transcription proteins, nuclear receptors, and microRNAs. We also discuss the emerging concepts of macrophage metabolic reprogramming and trained immunity, contributing to their functional adaptability. Macrophage plasticity plays a pivotal role in tissue repair and regeneration, with macrophages coordinating inflammation, angiogenesis, and matrix remodeling to restore tissue homeostasis. By harnessing the potential of macrophage plasticity, novel therapeutic strategies targeting macrophage polarization could be developed for various diseases, including chronic wounds, fibrotic disorders, and inflammatory conditions. Ultimately, a deeper understanding of the molecular mechanisms underpinning macrophage plasticity will pave the way for innovative regenerative medicine and tissue engineering approaches.
Collapse
Affiliation(s)
- Lingfeng Yan
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Jue Wang
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Xin Cai
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Yih‐Cherng Liou
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
- National University of Singapore (NUS) Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingaporeSingapore
| | - Han‐Ming Shen
- Faculty of Health SciencesUniversity of MacauMacauChina
| | - Jianlei Hao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University)Jinan UniversityZhuhaiGuangdongChina
- The Biomedical Translational Research InstituteFaculty of Medical ScienceJinan UniversityGuangzhouGuangdongChina
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospitaland West China School of Basic Medical Sciences and Forensic MedicineSichuan University, and Collaborative Innovation Center for BiotherapyChengduChina
| | - Gaoxing Luo
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Weifeng He
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| |
Collapse
|
7
|
Zhen J, Sheng X, Chen T, Yu H. Histone acetyltransferase Kat2a regulates ferroptosis via enhancing Tfrc and Hmox1 expression in diabetic cardiomyopathy. Cell Death Dis 2024; 15:406. [PMID: 38858351 PMCID: PMC11164963 DOI: 10.1038/s41419-024-06771-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/12/2024]
Abstract
Diabetic cardiomyopathy (DCM) is a prevalent myocardial microvascular complication of the myocardium with a complex pathogenesis. Investigating the pathogenesis of DCM can significantly contribute to enhancing its prevention and treatment strategies. Our study revealed an upregulation of lysine acetyltransferase 2 A (Kat2a) expression in DCM, accompanied by a decrease in N6-methyladenosine (m6A) modified Kat2a mRNA levels. Our study revealed an upregulation of lysine acetyltransferase 2 A (Kat2a) expression in DCM, accompanied by a decrease in N6-methyladenosine (m6A) modified Kat2a mRNA levels. Functionally, inhibition of Kat2a effectively ameliorated high glucose-induced cardiomyocyte injury both in vitro and in vivo by suppressing ferroptosis. Mechanistically, Demethylase alkB homolog 5 (Alkbh5) was found to reduce m6A methylation levels on Kat2a mRNA, leading to its upregulation. YTH domain family 2 (Ythdf2) played a crucial role as an m6A reader protein mediating the degradation of Kat2a mRNA. Furthermore, Kat2a promoted ferroptosis by increasing Tfrc and Hmox1 expression via enhancing the enrichment of H3K27ac and H3K9ac on their promoter regions. In conclusion, our findings unveil a novel role for the Kat2a-ferroptosis axis in DCM pathogenesis, providing valuable insights for potential clinical interventions.
Collapse
Affiliation(s)
- Juan Zhen
- Department of Cadre Ward, the First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Xia Sheng
- Department of Cadre Ward, the First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Tianlong Chen
- Department of Cardiology, the First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Haitao Yu
- Department of Cardiology, the First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
8
|
Xu S, Lu F, Gao J, Yuan Y. Inflammation-mediated metabolic regulation in adipose tissue. Obes Rev 2024; 25:e13724. [PMID: 38408757 DOI: 10.1111/obr.13724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 11/04/2023] [Accepted: 01/17/2024] [Indexed: 02/28/2024]
Abstract
Chronic inflammation of adipose tissue is a prominent characteristic of many metabolic diseases. Lipid metabolism in adipose tissue is consistently dysregulated during inflammation, which is characterized by substantial infiltration by proinflammatory cells and high cytokine concentrations. Adipose tissue inflammation is caused by a variety of endogenous factors, such as mitochondrial dysfunction, reactive oxygen species (ROS) production, endoplasmic reticulum (ER) stress, cellular senescence, ceramides biosynthesis and mediators of lipopolysaccharides (LPS) signaling. Additionally, the gut microbiota also plays a crucial role in regulating adipose tissue inflammation. Essentially, adipose tissue inflammation arises from an imbalance in adipocyte metabolism and the regulation of immune cells. Specific inflammatory signals, including nuclear factor-κB (NF-κB) signaling, inflammasome signaling and inflammation-mediated autophagy, have been shown to be involved in the metabolic regulation. The pathogenesis of metabolic diseases characterized by chronic inflammation (obesity, insulin resistance, atherosclerosis and nonalcoholic fatty liver disease [NAFLD]) and recent research regarding potential therapeutic targets for these conditions are also discussed in this review.
Collapse
Affiliation(s)
- Shujie Xu
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Feng Lu
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianhua Gao
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yi Yuan
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Cheng DH, Jiang TG, Zeng WB, Li TM, Jing YD, Li ZQ, Guo YH, Zhang Y. Identification and coregulation pattern analysis of long noncoding RNAs in the mouse brain after Angiostrongylus cantonensis infection. Parasit Vectors 2024; 17:205. [PMID: 38715092 PMCID: PMC11077716 DOI: 10.1186/s13071-024-06278-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Angiostrongyliasis is a highly dangerous infectious disease. Angiostrongylus cantonensis larvae migrate to the mouse brain and cause symptoms, such as brain swelling and bleeding. Noncoding RNAs (ncRNAs) are novel targets for the control of parasitic infections. However, the role of these molecules in A. cantonensis infection has not been fully clarified. METHODS In total, 32 BALB/c mice were randomly divided into four groups, and the infection groups were inoculated with 40 A. cantonensis larvae by gavage. Hematoxylin and eosin (H&E) staining and RNA library construction were performed on brain tissues from infected mice. Differential expression of long noncoding RNAs (lncRNAs) and mRNAs in brain tissues was identified by high-throughput sequencing. The pathways and functions of the differentially expressed lncRNAs were determined by Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses. The functions of the differentially expressed lncRNAs were further characterized by lncRNA‒microRNA (miRNA) target interactions. The potential host lncRNAs involved in larval infection of the brain were validated by quantitative real-time polymerase chain reaction (qRT‒PCR). RESULTS The pathological results showed that the degree of brain tissue damage increased with the duration of infection. The transcriptome results showed that 859 lncRNAs and 1895 mRNAs were differentially expressed compared with those in the control group, and several lncRNAs were highly expressed in the middle-late stages of mouse infection. GO and KEGG pathway analyses revealed that the differentially expressed target genes were enriched mainly in immune system processes and inflammatory response, among others, and several potential regulatory networks were constructed. CONCLUSIONS This study revealed the expression profiles of lncRNAs in the brains of mice after infection with A. cantonensis. The lncRNAs H19, F630028O10Rik, Lockd, AI662270, AU020206, and Mexis were shown to play important roles in the infection of mice with A. cantonensis infection.
Collapse
Affiliation(s)
- Dong-Hui Cheng
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (National Center for Tropical Diseases Research); Key Laboratory of Parasite and Vector Biology, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases; WHO Collaborating Centre for Tropical Diseases, National Center for International Research On Tropical Diseases, Shanghai, People's Republic of China
| | - Tian-Ge Jiang
- School of Global Health, National Center for Tropical Disease Research, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Wen-Bo Zeng
- School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | - Tian-Mei Li
- Dali Prefectural Institute of Research and Control On Schistosomiasis, Yunnan, People's Republic of China
| | - Yi-Dan Jing
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (National Center for Tropical Diseases Research); Key Laboratory of Parasite and Vector Biology, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases; WHO Collaborating Centre for Tropical Diseases, National Center for International Research On Tropical Diseases, Shanghai, People's Republic of China
| | - Zhong-Qiu Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (National Center for Tropical Diseases Research); Key Laboratory of Parasite and Vector Biology, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases; WHO Collaborating Centre for Tropical Diseases, National Center for International Research On Tropical Diseases, Shanghai, People's Republic of China
| | - Yun-Hai Guo
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (National Center for Tropical Diseases Research); Key Laboratory of Parasite and Vector Biology, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases; WHO Collaborating Centre for Tropical Diseases, National Center for International Research On Tropical Diseases, Shanghai, People's Republic of China
| | - Yi Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (National Center for Tropical Diseases Research); Key Laboratory of Parasite and Vector Biology, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases; WHO Collaborating Centre for Tropical Diseases, National Center for International Research On Tropical Diseases, Shanghai, People's Republic of China.
- School of Global Health, National Center for Tropical Disease Research, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
| |
Collapse
|
10
|
Infante T, Pepin ME, Ruocco A, Trama U, Mauro C, Napoli C. CDK5R1, GSE1, HSPG2 and WDFY3 as indirect epigenetic-sensitive genes in atrial fibrillation. Eur J Clin Invest 2024; 54:e14135. [PMID: 37991085 DOI: 10.1111/eci.14135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Although mounting evidence supports that aberrant DNA methylation occurs in the hearts of patients with atrial fibrillation (AF), noninvasive epigenetic characterization of AF has not yet been defined. METHODS We investigated DNA methylome changes in peripheral blood CD4+ T cells isolated from 10 patients with AF relative to 11 healthy subjects (HS) who were enrolled in the DIANA clinical trial (NCT04371809) via reduced-representation bisulfite sequencing (RRBS). RESULTS An atrial-specific PPI network revealed 18 hub differentially methylated genes (DMGs), wherein ROC curve analysis revealed reasonable diagnostic performance of DNA methylation levels found within CDK5R1 (AUC = 0.76; p = 0.049), HSPG2 (AUC = 0.77; p = 0.038), WDFY3 (AUC = 0.78; p = 0.029), USP49 (AUC = 0.76; p = 0.049), GSE1 (AUC = 0.76; p = 0.049), AIFM1 (AUC = 0.76; p = 0.041), CDK5RAP2 (AUC = 0.81; p = 0.017), COL4A1 (AUC = 0.86; p < 0.001), SEPT8 (AUC = 0.90; p < 0.001), PFDN1 (AUC = 0.90; p < 0.01) and ACOT7 (AUC = 0.78; p = 0.032). Transcriptional profiling of the hub DMGs provided a significant overexpression of PSDM6 (p = 0.004), TFRC (p = 0.01), CDK5R1 (p < 0.001), HSPG2 (p = 0.01), WDFY3 (p < 0.001), USP49 (p = 0.004) and GSE1 (p = 0.021) in AF patients vs HS. CONCLUSIONS CDK5R1, GSE1, HSPG2 and WDFY3 resulted the best discriminatory genes both at methylation and gene expression level. Our results provide several candidate diagnostic biomarkers with the potential to advance precision medicine in AF.
Collapse
Affiliation(s)
- Teresa Infante
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mark E Pepin
- Division of Internal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Antonio Ruocco
- Cardiology Division, "A. Cardarelli" Hospital, Naples, Italy
| | - Ugo Trama
- General Direction of Health Care & Regional Health System Coordination, Drug & Device Politics, Campania Region, Naples, Italy
| | - Ciro Mauro
- Cardiology Division, "A. Cardarelli" Hospital, Naples, Italy
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
11
|
Li Z, He M, Dai D, Gao X, Liang H, Xiong L. Middle aged CAMKII-Cre:Cbs fl/fl mice: a new model for studying perioperative neurocognitive disorders. Exp Anim 2024; 73:109-123. [PMID: 37766548 PMCID: PMC10877146 DOI: 10.1538/expanim.23-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Postoperative complications, such as perioperative neurocognitive disorders (PND), have become a major issue affecting surgical outcomes. However, the mechanism of PND remains unclear, and stable animal models of middle-aged PND are lacking. S-adenosylmethionine (SAM), a cystathionine beta-synthase (CBS) allosteric activator, can reduce the level of plasma homocysteine and prevent the occurrence of PND. However, the time and resource-intensive process of constructing models of PND in elderly animals have limited progress in PND research and innovative therapy development. The present study aimed to construct a stable PND model in middle-aged CAMKII-Cre:Cbsfl/fl mice whose Cbs was specifically knocked out in CAMKII positive neurons. Behavioral tests showed that these middle-aged mice displayed cognitive deficits which were aggravated by exploratory laparotomy under isoflurane anesthesia. Compared with typical PND mice which were 18-month-old, these middle-aged mice showed similar cognitive deficits after undergoing exploratory laparotomy under isoflurane anesthesia. Though there was no significant difference in the number of neurons in either the hippocampus or the cortex, a significant increase in numbers of microglia and astrocytes in the hippocampus was observed. These indicate that middle-aged CAMKII-Cre:Cbsfl/fl mice can be used as a new PND model for mechanistic studies and therapy development for PND.
Collapse
Affiliation(s)
- Zhen Li
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P.R. China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, 200434, P.R. China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P.R. China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P.R. China
| | - Mengfan He
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P.R. China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, 200434, P.R. China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P.R. China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P.R. China
| | - Danqing Dai
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P.R. China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, 200434, P.R. China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P.R. China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P.R. China
| | - Xiaofei Gao
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P.R. China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, 200434, P.R. China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P.R. China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P.R. China
| | - Huazheng Liang
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P.R. China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, 200434, P.R. China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P.R. China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P.R. China
- Monash Suzhou Research Institute, Suzhou, Jiangsu Province, 215127, P.R. China
| | - Lize Xiong
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P.R. China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, 200434, P.R. China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P.R. China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P.R. China
| |
Collapse
|
12
|
Liu N, Su H, Lou Y, Kong J. The improvement of homocysteine-induced myocardial inflammation by vitamin D depends on activation of NFE2L2 mediated MTHFR. Int Immunopharmacol 2024; 127:111437. [PMID: 38150882 DOI: 10.1016/j.intimp.2023.111437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
OBJECTIVES Myocardial inflammation underlies a broad spectrum of conditions that cause damage to the myocardium and lead to structural and functional defects. Homocysteine (Hcy) is closely related to the occurrence and development of cardiovascular diseases. We investigated the mechanism underlying the effects of vitamin D as a prophylactic treatment for Hcy-induced cardiac inflammation. METHODS The levels of 25(OH)D3 and Hcy were assessed using ELISA kits. Expression levels of the vitamin D receptor (VDR), NFE2 like bZIP transcription factor 2 (NFE2L2), methylenetetrahydrofolate reductase (MTHFR) and inflammatory factors were examined by Western blotting, immunohistochemistry and real time polymerase chain reaction. NFE2L2/MTHFR-knockdown HL-1 cells and NFE2L2+/- mouse were used to test the effects of vitamin D. RESULTS We found the levels of Hcy in the serum and myocardial tissue of mice in the Hcy + CCE group were lower than in the Hcy groups, which was opposed to the trend exhibited by the serum 25(OH)D3 level of mice. The mRNA and protein expression levels of the inflammatory factors in cardiac tissues and cardiomyocytes were strongly decreased by the Hcy treatment, compared to the Hcy + CCE/Hcy + 1,25(OH)2D3 groups. Moreover, the results revealed that the level of nuclear NFE2L2 in Hcy + CCE/Hcy + 1,25(OH)2D3 group was increased compared to Hcy group with a reciprocal decrease in the level of cytosolic NFE2L2 in vivo and in vitro. Similarly, the MTHFR mRNA and protein expression in the Hcy + CCE group was higher than the Hcy group. We determined that NFE2L2 promoted the expression of MTHFR. However, based on Hcy treatment, the combination of 1,25(OH)2D3 and MTHFR-/- reversed the decline in IL-6 and TNFα expression caused by 1,25(OH)2D3 alone. Chromatin immunoprecipitation and luciferase reporter assays showed the up-regulation effect of VDR on NFE2L2 and NFE2L2 on MTHFR. CONCLUSIONS Our findings indicate that vitamin D/VDR could improve Hcy-induced myocardial inflammation through activation of NFE2L2 mediated MTHFR.
Collapse
Affiliation(s)
- Ning Liu
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Han Su
- Department of Health Management, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yan Lou
- School of Fundamental Sciences, China Medical University, Shenyang 110122, China.
| | - Juan Kong
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
13
|
Patil RS, Maloney ME, Lucas R, Fulton DJR, Patel V, Bagi Z, Kovacs-Kasa A, Kovacs L, Su Y, Verin AD. Zinc-Dependent Histone Deacetylases in Lung Endothelial Pathobiology. Biomolecules 2024; 14:140. [PMID: 38397377 PMCID: PMC10886568 DOI: 10.3390/biom14020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/25/2024] Open
Abstract
A monolayer of endothelial cells (ECs) lines the lumen of blood vessels and, as such, provides a semi-selective barrier between the blood and the interstitial space. Compromise of the lung EC barrier due to inflammatory or toxic events may result in pulmonary edema, which is a cardinal feature of acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS). The EC functions are controlled, at least in part, via epigenetic mechanisms mediated by histone deacetylases (HDACs). Zinc-dependent HDACs represent the largest group of HDACs and are activated by Zn2+. Members of this HDAC group are involved in epigenetic regulation primarily by modifying the structure of chromatin upon removal of acetyl groups from histones. In addition, they can deacetylate many non-histone histone proteins, including those located in extranuclear compartments. Recently, the therapeutic potential of inhibiting zinc-dependent HDACs for EC barrier preservation has gained momentum. However, the role of specific HDAC subtypes in EC barrier regulation remains largely unknown. This review aims to provide an update on the role of zinc-dependent HDACs in endothelial dysfunction and its related diseases. We will broadly focus on biological contributions, signaling pathways and transcriptional roles of HDACs in endothelial pathobiology associated mainly with lung diseases, and we will discuss the potential of their inhibitors for lung injury prevention.
Collapse
Affiliation(s)
- Rahul S. Patil
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - McKenzie E. Maloney
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Rudolf Lucas
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - David J. R. Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Vijay Patel
- Department of Cardiothoracic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Zsolt Bagi
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Anita Kovacs-Kasa
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Laszlo Kovacs
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yunchao Su
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Alexander D. Verin
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
14
|
Benincasa G, Suades R, Padró T, Badimon L, Napoli C. Bioinformatic platforms for clinical stratification of natural history of atherosclerotic cardiovascular diseases. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2023; 9:758-769. [PMID: 37562936 DOI: 10.1093/ehjcvp/pvad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/19/2023] [Accepted: 08/09/2023] [Indexed: 08/12/2023]
Abstract
Although bioinformatic methods gained a lot of attention in the latest years, their use in real-world studies for primary and secondary prevention of atherosclerotic cardiovascular diseases (ASCVD) is still lacking. Bioinformatic resources have been applied to thousands of individuals from the Framingham Heart Study as well as health care-associated biobanks such as the UK Biobank, the Million Veteran Program, and the CARDIoGRAMplusC4D Consortium and randomized controlled trials (i.e. ODYSSEY, FOURIER, ASPREE, and PREDIMED). These studies contributed to the development of polygenic risk scores (PRS), which emerged as novel potent genetic-oriented tools, able to calculate the individual risk of ASCVD and to predict the individual response to therapies such as statins and proprotein convertase subtilisin/kexin type 9 inhibitor. ASCVD are the first cause of death around the world including coronary heart disease (CHD), peripheral artery disease, and stroke. To achieve the goal of precision medicine and personalized therapy, advanced bioinformatic platforms are set to link clinically useful indices to heterogeneous molecular data, mainly epigenomics, transcriptomics, metabolomics, and proteomics. The DIANA study found that differential methylation of ABCA1, TCF7, PDGFA, and PRKCZ significantly discriminated patients with acute coronary syndrome from healthy subjects and their expression levels positively associated with CK-MB serum concentrations. The ARIC Study revealed several plasma proteins, acting or not in lipid metabolism, with a potential role in determining the different pleiotropic effects of statins in each subject. The implementation of molecular high-throughput studies and bioinformatic techniques into traditional cardiovascular risk prediction scores is emerging as a more accurate practice to stratify patients earlier in life and to favour timely and tailored risk reduction strategies. Of note, radiogenomics aims to combine imaging features extracted for instance by coronary computed tomography angiography and molecular biomarkers to create CHD diagnostic algorithms useful to characterize atherosclerotic lesions and myocardial abnormalities. The current view is that such platforms could be of clinical value for prevention, risk stratification, and treatment of ASCVD.
Collapse
Affiliation(s)
- Giuditta Benincasa
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania 'Luigi Vanvitelli', 80138 Naples, Italy
- Cardiovascular Program ICCC, Research Institute of Hospital Santa Creu i Sant Pau, IIB Sant Pau, Avinguda Sant Antoni Maria Claret 167, Pavelló 11 (Antic Convent), 08049 Barcelona, Spain
| | - Rosa Suades
- Cardiovascular Program ICCC, Research Institute of Hospital Santa Creu i Sant Pau, IIB Sant Pau, Avinguda Sant Antoni Maria Claret 167, Pavelló 11 (Antic Convent), 08049 Barcelona, Spain
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV) Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Teresa Padró
- Cardiovascular Program ICCC, Research Institute of Hospital Santa Creu i Sant Pau, IIB Sant Pau, Avinguda Sant Antoni Maria Claret 167, Pavelló 11 (Antic Convent), 08049 Barcelona, Spain
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV) Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Lina Badimon
- Cardiovascular Program ICCC, Research Institute of Hospital Santa Creu i Sant Pau, IIB Sant Pau, Avinguda Sant Antoni Maria Claret 167, Pavelló 11 (Antic Convent), 08049 Barcelona, Spain
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV) Instituto de Salud Carlos III, 28029 Madrid, Spain
- Cardiovascular Research Chair, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania 'Luigi Vanvitelli', 80138 Naples, Italy
| |
Collapse
|
15
|
Zhang T, Cao Y, Zhao J, Yao J, Liu G. Assessing the causal effect of genetically predicted metabolites and metabolic pathways on stroke. J Transl Med 2023; 21:822. [PMID: 37978512 PMCID: PMC10655369 DOI: 10.1186/s12967-023-04677-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/29/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Stroke is a common neurological disorder that disproportionately affects middle-aged and elderly individuals, leading to significant disability and mortality. Recently, human blood metabolites have been discovered to be useful in unraveling the underlying biological mechanisms of neurological disorders. Therefore, we aimed to evaluate the causal relationship between human blood metabolites and susceptibility to stroke. METHODS Summary data from genome-wide association studies (GWASs) of serum metabolites and stroke and its subtypes were obtained separately. A total of 486 serum metabolites were used as the exposure. Simultaneously, 11 different stroke phenotypes were set as the outcomes, including any stroke (AS), any ischemic stroke (AIS), large artery stroke (LAS), cardioembolic stroke (CES), small vessel stroke (SVS), lacunar stroke (LS), white matter hyperintensities (WMH), intracerebral hemorrhage (ICH), subarachnoid hemorrhage (SAH), transient ischemic attack (TIA), and brain microbleeds (BMB). A two-sample Mendelian randomization (MR) study was conducted to investigate the causal effects of serum metabolites on stroke and its subtypes. The inverse variance-weighted MR analyses were conducted as causal estimates, accompanied by a series of sensitivity analyses to evaluate the robustness of the results. Furthermore, a reverse MR analysis was conducted to assess the potential for reverse causation. Additionally, metabolic pathway analysis was performed using the web-based MetOrigin. RESULTS After correcting for the false discovery rate (FDR), MR analysis results revealed remarkable causative associations with 25 metabolites. Further sensitivity analyses confirmed that only four causative associations involving three specific metabolites passed all sensitivity tests, namely ADpSGEGDFXAEGGGVR* for AS (OR: 1.599, 95% CI 1.283-1.993, p = 2.92 × 10-5) and AIS (OR: 1.776, 95% CI 1.380-2.285, p = 8.05 × 10-6), 1-linoleoylglycerophosph-oethanolamine* for LAS (OR: 0.198, 95% CI 0.091-0.428, p = 3.92 × 10-5), and gamma-glutamylmethionine* for SAH (OR: 3.251, 95% CI 1.876-5.635, p = 2.66 × 10-5), thereby demonstrating a high degree of stability. Moreover, eight causative associations involving seven other metabolites passed both sensitivity tests and were considered robust. The association result of one metabolite (glutamate for LAS) was considered non-robust. As for the remaining metabolites, we speculate that they may potentially possess underlying causal relationships. Notably, no common metabolites emerged from the reverse MR analysis. Moreover, after FDR correction, metabolic pathway analysis identified 40 significant pathways across 11 stroke phenotypes. CONCLUSIONS The identified metabolites and their associated metabolic pathways are promising circulating metabolic biomarkers, holding potential for their application in stroke screening and preventive strategies within clinical settings.
Collapse
Affiliation(s)
- Tianlong Zhang
- Department of Critical Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Yina Cao
- Department of Neurology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Jianqiang Zhao
- Department of Cardiology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Jiali Yao
- Department of Critical Care Medicine, Jinhua Hospital Affiliated to Zhejiang University, Jinhua, Zhejiang, China.
| | - Gang Liu
- Department of Infection Control, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
| |
Collapse
|
16
|
Maiese K. Cornerstone Cellular Pathways for Metabolic Disorders and Diabetes Mellitus: Non-Coding RNAs, Wnt Signaling, and AMPK. Cells 2023; 12:2595. [PMID: 37998330 PMCID: PMC10670256 DOI: 10.3390/cells12222595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Metabolic disorders and diabetes (DM) impact more than five hundred million individuals throughout the world and are insidious in onset, chronic in nature, and yield significant disability and death. Current therapies that address nutritional status, weight management, and pharmacological options may delay disability but cannot alter disease course or functional organ loss, such as dementia and degeneration of systemic bodily functions. Underlying these challenges are the onset of aging disorders associated with increased lifespan, telomere dysfunction, and oxidative stress generation that lead to multi-system dysfunction. These significant hurdles point to the urgent need to address underlying disease mechanisms with innovative applications. New treatment strategies involve non-coding RNA pathways with microRNAs (miRNAs) and circular ribonucleic acids (circRNAs), Wnt signaling, and Wnt1 inducible signaling pathway protein 1 (WISP1) that are dependent upon programmed cell death pathways, cellular metabolic pathways with AMP-activated protein kinase (AMPK) and nicotinamide, and growth factor applications. Non-coding RNAs, Wnt signaling, and AMPK are cornerstone mechanisms for overseeing complex metabolic pathways that offer innovative treatment avenues for metabolic disease and DM but will necessitate continued appreciation of the ability of each of these cellular mechanisms to independently and in unison influence clinical outcome.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY 10022, USA
| |
Collapse
|
17
|
González LDM, Romero-Orjuela SP, Rabeya FJ, del Castillo V, Echeverri D. Age and vascular aging: an unexplored frontier. Front Cardiovasc Med 2023; 10:1278795. [PMID: 38028481 PMCID: PMC10665864 DOI: 10.3389/fcvm.2023.1278795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023] Open
Abstract
Vascular age is an emerging field in cardiovascular risk assessment. This concept includes multifactorial changes in the arterial wall, with arterial stiffness as its most relevant manifestation, leading to increased arterial pressure and pulsatile flow in the organs. Today, the approved test for measuring vascular age is pulse wave velocity, which has been proven to predict cardiovascular events. Furthermore, vascular phenotypes, such as early vascular aging and "SUPERNOVA," representing phenotypic extremes of vascular aging, have been found. The identification of these phenotypes opens a new field of study in cardiovascular physiology. Lifestyle interventions and pharmacological therapy have positively affected vascular health, reducing arterial stiffness. This review aims to define the concepts related to vascular age, pathophysiology, measurement methods, clinical signs and symptoms, and treatment.
Collapse
Affiliation(s)
- Laura del Mar González
- Department of Cardiology, Fundación Cardioinfantil–Instituto de Cardiología, Bogotá, Colombia
| | | | - Fernando J. Rabeya
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Valeria del Castillo
- Department of Cardiology, Fundación Cardioinfantil–Instituto de Cardiología, Bogotá, Colombia
| | - Darío Echeverri
- Department of Cardiology, Fundación Cardioinfantil–Instituto de Cardiología, Bogotá, Colombia
| |
Collapse
|
18
|
Zhang JG, Shi W, Ma DD, Lu ZJ, Li SY, Long XB, Ying GG. Chronic Paternal/Maternal Exposure to Environmental Concentrations of Imidacloprid and Thiamethoxam Causes Intergenerational Toxicity in Zebrafish Offspring. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13384-13396. [PMID: 37651267 DOI: 10.1021/acs.est.3c04371] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Imidacloprid (IMI) and thiamethoxam (THM) are ubiquitous in aquatic ecosystems. Their negative effects on parental fish are investigated while intergenerational effects at environmentally relevant concentrations remain unclear. In this study, F0 zebrafish exposed to IMI and THM (0, 50, and 500 ng L-1) for 144 days post-fertilization (dpf) was allowed to spawn with two modes (internal mating and cross-mating), resulting in four types of F1 generations to investigate the intergenerational effects. IMI and THM affected F0 zebrafish fecundity, gonadal development, sex hormone and VTG levels, with accumulations found in F0 muscles and ovaries. In F1 generation, paternal or maternal exposure to IMI and THM also influenced sex hormones levels and elevated the heart rate and spontaneous movement rate. LncRNA-mRNA network analysis revealed that cell cycle and oocyte meiosis-related pathways in IMI groups and steroid biosynthesis related pathways in THM groups were significantly enriched in F1 offspring. Similar transcriptional alterations of dmrt1, insl3, cdc20, ccnb1, dnd1, ddx4, cox4i1l, and cox5b2 were observed in gonads of F0 and F1 generations. The findings indicated that prolonged paternal or maternal exposure to IMI and THM could severely cause intergenerational toxicity, resulting in developmental toxicity and endocrine-disrupting effects in zebrafish offspring.
Collapse
Affiliation(s)
- Jin-Ge Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Wenjun Shi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Dong-Dong Ma
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Zhi-Jie Lu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Si-Ying Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xiao-Bing Long
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|
19
|
Kanwischer L, Xu X, Saifuddin AB, Maamari S, Tan X, Alnour F, Tampe B, Meyer T, Zeisberg M, Hasenfuss G, Puls M, Zeisberg EM. Low levels of circulating methylated IRX3 are related to worse outcome after transcatheter aortic valve implantation in patients with severe aortic stenosis. Clin Epigenetics 2023; 15:149. [PMID: 37697352 PMCID: PMC10496273 DOI: 10.1186/s13148-023-01561-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Aortic stenosis (AS) is one of the most common cardiac diseases and major cause of morbidity and mortality in the elderly. Transcatheter aortic valve implantation (TAVI) is performed in such patients with symptomatic severe AS and reduces mortality for the majority of these patients. However, a significant percentage dies within the first two years after TAVI, such that there is an interest to identify parameters, which predict outcome and could guide pre-TAVI patient selection. High levels of cardiac fibrosis have been identified as such independent predictor of cardiovascular mortality after TAVI. Promoter hypermethylation commonly leads to gene downregulation, and the Iroquois homeobox 3 (IRX3) gene was identified in a genome-wide transcriptome and methylome to be hypermethylated and downregulated in AS patients. In a well-described cohort of 100 TAVI patients in which cardiac fibrosis levels were quantified histologically in cardiac biopsies, and which had a follow-up of up to two years, we investigated if circulating methylated DNA of IRX3 in the peripheral blood is associated with cardiac fibrosis and/or mortality in AS patients undergoing TAVI and thus could serve as a biomarker to add information on outcome after TAVI. RESULTS Patients with high levels of methylation in circulating IRX3 show a significantly increased survival as compared to patients with low levels of IRX3 methylation indicating that high peripheral IRX3 methylation is associated with an improved outcome. In the multivariable setting, peripheral IRX3 methylation acts as an independent predictor of all-cause mortality. While there is no significant correlation of levels of IRX3 methylation with cardiac death, there is a significant but very weak inverse correlation between circulating IRX3 promoter methylation level and the amount of cardiac fibrosis. Higher levels of peripheral IRX3 methylation further correlated with decreased cardiac IRX3 expression and vice versa. CONCLUSIONS High levels of IRX3 methylation in the blood of AS patients at the time of TAVI are associated with better overall survival after TAVI and at least partially reflect myocardial IRX3 expression. Circulating methylated IRX3 might aid as a potential biomarker to help guide both pre-TAVI patient selection and post-TAVI monitoring.
Collapse
Affiliation(s)
- Leon Kanwischer
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August-University, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- DZHK German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
| | - Xingbo Xu
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August-University, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- DZHK German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
| | - Afifa Binta Saifuddin
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August-University, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- DZHK German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
| | - Sabine Maamari
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August-University, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- DZHK German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
| | - Xiaoying Tan
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
- DZHK German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
| | - Fouzi Alnour
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August-University, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- DZHK German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
| | - Björn Tampe
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Thomas Meyer
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
- DZHK German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
| | - Michael Zeisberg
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
- DZHK German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
| | - Gerd Hasenfuss
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August-University, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- DZHK German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
| | - Miriam Puls
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August-University, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- DZHK German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
| | - Elisabeth M Zeisberg
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August-University, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
- DZHK German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany.
| |
Collapse
|
20
|
He M, Jin Q, Deng C, Fu W, Xu J, Xu L, Song Y, Wang R, Wang W, Wang L, Zhou W, Jing B, Chen Y, Gao T, Xie M, Zhang L. Amplification of Plasma MicroRNAs for Non-invasive Early Detection of Acute Rejection after Heart Transplantation With Ultrasound-Targeted Microbubble Destruction. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1647-1657. [PMID: 37120328 DOI: 10.1016/j.ultrasmedbio.2023.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 05/17/2023]
Abstract
OBJECTIVE Acute rejection (AR) screening has always been the focus of patient management in the first several years after heart transplantation (HT). As potential biomarkers for the non-invasive diagnosis of AR, microRNAs (miRNAs) are limited by their low abundance and complex origin. Ultrasound-targeted microbubble destruction (UTMD) technique could temporarily alter vascular permeability through cavitation. We hypothesized that increasing the permeability of myocardial vessels might enhance the abundance of circulating AR-related miRNAs, thus enabling the non-invasive monitoring of AR. METHODS The Evans blue assay was applied to determine efficient UTMD parameters. Blood biochemistry and echocardiographic indicators were used to ensure the safety of the UTMD. AR of the HT model was constructed using Brown-Norway and Lewis rats. Grafted hearts were sonicated with UTMD on postoperative day (POD) 3. The polymerase chain reaction was used to identify upregulated miRNA biomarkers in graft tissues and their relative amounts in the blood. RESULTS Amounts of six kinds of plasma miRNA, including miR-142-3p, miR-181a-5p, miR-326-3p, miR-182, miR-155-5p and miR-223-3p, were 10.89 ± 1.36, 13.54 ± 2.15, 9.84 ± 0.70, 8.55 ± 2.00, 12.50 ± 3.96 and 11.02 ± 3.47 times higher in the UTMD group than those in the control group on POD 3. Plasma miRNA abundance in the allograft group without UTMD did not differ from that in the isograft group on POD 3. After FK506 treatment, no miRNAs increased in the plasma after UTMD. CONCLUSION UTMD can promote the transfer of AR-related miRNAs from grafted heart tissue to the blood, allowing non-invasive early detection of AR.
Collapse
Affiliation(s)
- Mengrong He
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Qiaofeng Jin
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Cheng Deng
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Wenpei Fu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Jia Xu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Lingling Xu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yishu Song
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Rui Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Wenyuan Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Lufang Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Wuqi Zhou
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Boping Jing
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yihan Chen
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Tang Gao
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Mingxing Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Li Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China.
| |
Collapse
|
21
|
Johansson SE, Jansåker F, Sundquist K, Bygren LO. A longitudinal study of the association between attending cultural events and coronary heart disease. COMMUNICATIONS MEDICINE 2023; 3:72. [PMID: 37225790 DOI: 10.1038/s43856-023-00301-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 05/09/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND The experiences of art and music are an essential part of human life and this study aimed to examine the longitudinal association between cultural participation and coronary heart disease. METHODS This was a longitudinal study on a randomly selected representative adult cohort (n = 3296) of the Swedish population. The study period was over 36 years (1982-2017) with three separate eight-year interval measurements of cultural exposure (for example, visiting theatres and museums) starting in 1982/83. The outcome was coronary heart disease during the study period. Marginal structural Cox models with inverse probability weighting were used to account for time-varying weights of the exposure and potential confounders during the follow-up. The associations were also examined through a time-varying Cox proportional hazard regression model. RESULTS Cultural participation shows a graded association, the higher the exposure the lower the risk of coronary heart disease; the hazard ratio was 0.66 (95% confidence interval, 0.50 to 0.86) for coronary heart disease in participants with the highest level of cultural exposure compared with the lowest level. CONCLUSION Although causality cannot be determined due to the remaining risk of residual confounding and bias, the use of marginal structural Cox models with inverse probability weighting strengthens the evidence for a potentially causal association with cardiovascular health, which warrants further studies.
Collapse
Affiliation(s)
- Sven-Erik Johansson
- Center for Primary Health Care Research, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Filip Jansåker
- Center for Primary Health Care Research, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden.
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.
| | - Kristina Sundquist
- Center for Primary Health Care Research, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Department of Family Medicine and Community Health, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, USA
- Center for Community-based Healthcare Research and Education (CoHRE), Department of Functional Pathology, School of Medicine, Shimane University, Shimane, Japan
| | - Lars Olov Bygren
- Community Medicine and Rehabilitation, Umeå University, Umeå, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
22
|
Benincasa G, Napoli C, Loscalzo J, Maron BA. Pursuing functional biomarkers in complex disease: Focus on pulmonary arterial hypertension. Am Heart J 2023; 258:96-113. [PMID: 36565787 DOI: 10.1016/j.ahj.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 05/11/2023]
Abstract
A major gap in diagnosis, classification, risk stratification, and prediction of therapeutic response exists in pulmonary arterial hypertension (PAH), driven in part by a lack of functional biomarkers that are also disease-specific. In this regard, leveraging big data-omics analyses using innovative approaches that integrate network medicine and machine learning correlated with clinically useful indices or risk stratification scores is an approach well-positioned to advance PAH precision medicine. For example, machine learning applied to a panel of 48 cytokines, chemokines, and growth factors could prognosticate PAH patients with immune-dominant subphenotypes at elevated or low-risk for mortality. Here, we discuss strengths and weaknesses of the most current studies evaluating omics-derived biomarkers in PAH. Progress in this field is offset by studies with small sample size, pervasive limitations in bioinformatics, and lack of standardized methods for data processing and interpretation. Future success in this field, in turn, is likely to hinge on mechanistic validation of data outputs in order to couple functional biomarker data with target-specific therapeutics in clinical practice.
Collapse
Affiliation(s)
- Giuditta Benincasa
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA
| | - Bradley A Maron
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA.
| |
Collapse
|
23
|
Llobet MO, Johansson A, Gyllensten U, Allen M, Enroth S. Forensic prediction of sex, age, height, body mass index, hip-to-waist ratio, smoking status and lipid lowering drugs using epigenetic markers and plasma proteins. Forensic Sci Int Genet 2023; 65:102871. [PMID: 37054667 DOI: 10.1016/j.fsigen.2023.102871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/08/2023]
Abstract
The prediction of human characteristics from blood using molecular markers would be very helpful in forensic science. Such information can be particularly important in providing investigative leads in police casework from, for example, blood found at crime scenes in cases without a suspect. Here, we investigated the possibilities and limitations of predicting seven phenotypic traits (sex, age, height, body mass index [BMI], hip-to-waist [WTH] ratio, smoking status and lipid-lowering drug use) using either DNA methylation or plasma proteins separately or in combination. We developed a prediction pipeline starting with the prediction of sex followed by sex-specific, stepwise, individual age, sex-specific anthropometric traits and, finally, lifestyle-related traits. Our data revealed that age, sex and smoking status can be accurately predicted from DNA methylation alone, while the use of plasma proteins was highly accurate for prediction of the WTH ratio, and a combined analysis of the best predictions for BMI and lipid-lowering drug use. In unseen individuals, age was predicted with a standard error of 3.3 years for women and 6.5 years for men, while the accuracy in smoking prediction across both men and women was 0.86. In conclusion, we have developed a stepwise approach for the de-novo prediction of individual characteristics from plasma proteins and DNA methylation markers. These models are accurate and may provide valuable information and investigative leads in future forensic casework.
Collapse
|
24
|
Song B, Xie B, Liu M, Li H, Shi D, Zhao F. Bibliometric and visual analysis of RAN methylation in cardiovascular disease. Front Cardiovasc Med 2023; 10:1110718. [PMID: 37063953 PMCID: PMC10098125 DOI: 10.3389/fcvm.2023.1110718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/07/2023] [Indexed: 03/31/2023] Open
Abstract
BackgroundRNA methylation is associated with cardiovascular disease (CVD) occurrence and development. The purpose of this study is to visually analyze the results and research trends of global RNA methylation in CVD.MethodsArticles and reviews on RNA methylation in CVD published before 6 November 2022 were searched in the Web of Science Core Collection. Visual and statistical analysis was performed using CiteSpace 1.6.R4 advanced and VOSviewer 1.6.18.ResultsThere were 847 papers from 1,188 institutions and 63 countries/regions. Over approximately 30 years, there was a gradual increase in publications and citations on RNA methylation in CVD. America and China had the highest output (284 and 259 papers, respectively). Nine of the top 20 institutions that published articles were from China, among which Fudan University represented the most. The International Journal of Molecular Sciences was the journal with the most studies. Nature was the most co-cited journal. The most influential writers were Zhang and Wang from China and Mathiyalagan from the United States. After 2015, the primary keywords were cardiac development, heart, promoter methylation, RNA methylation, and N6-methyladenosine. Nuclear RNA, m6A methylation, inhibition, and myocardial infarction were the most common burst keywords from 2020 to the present.ConclusionsA bibliometric analysis reveals research hotspots and trends of RNA methylation in CVD. The regulatory mechanisms of RNA methylation related to CVD and the clinical application of their results, especially m6A methylation, are likely to be the focus of future research.
Collapse
Affiliation(s)
- Boce Song
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Beili Xie
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mingwang Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haohao Li
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Dazhuo Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Fuhai Zhao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
- Correspondence: Fuhai Zhao
| |
Collapse
|
25
|
Chang S, Min J, Lu X, Zhang Q, Shangguan S, Zhang T, Wang L. Effect of epigenetic activating of Dlk1-Dio3 imprinted cluster on miR-370 expression due to folate deficiency during nerve development. J Nutr Biochem 2023; 116:109297. [PMID: 36907530 DOI: 10.1016/j.jnutbio.2023.109297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 01/27/2023] [Accepted: 02/21/2023] [Indexed: 03/13/2023]
Abstract
Proper Dlk1-Dio3 imprinting plays a critical role in embryogenesis, and folic acid deficiency may affect the imprinting of this locus through epigenetic regulation. However, whether and how folic acid directly impacts the imprinting status of Dlk1-Dio3 to affect neural development remain unclear. Here, we found decreased IG-DMR (intergenic -differentially methylated regions) methylation in the folate-deficient encephalocele in humans, suggesting that abnormal Dlk1-Dio3 imprinting status is related to neural tube defects (NTDs) caused by folate deficiency. Similar results were obtained with folate-deficient embryonic stem cells. By miRNA chip analysis, folic acid deficiency led to changes in multiple miRNAs, including the upregulation of 15 miRNAs located in the Dlk1-Dio3 locus. Real-time PCR confirmed that seven of these miRNAs were upregulated, especially miR-370. In contrast to normal embryonic development, in which expression of miR-370 is highest at E9.5, the abnormally high and sustained expression of miRNA-370 in folate-deficient E13.5 embryos may contribute to NTDs. In addition, we found that DNMT3A (de novo DNA methyltransferases 3A) is a direct target gene of miR-370 in neural cells, and DNMT3A participates in the role of miR-370 in inhibiting cell migration. Finally, in the folate-deficient mouse model, Dlk1-Dio3 epigenetic activation was found in fetal brain tissue, along with the upregulation of miR-370 and the downregulation of DNMT3A. Collectively, our findings demonstrate a pivotal role of folate in the epigenetic regulation of Dlk1-Dio3 imprinting during neurogenesis, revealing an elegant mechanism for the activation of Dlk1-Dio3 locus miRNAs in folic acid deficiency.
Collapse
Affiliation(s)
- Shaoyan Chang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China, 100020
| | - Jie Min
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China, 100020; Department 2 of Nephrology, Beijing Children's Hospital Affiliated to Capital Medical University, Beijing Key Laboratory for Chronic Renal Disease and Blood Purification, Key Laboratory of Major Diseases in Children, National Center for Children's Health, Beijing, China, 100045
| | - Xiaolin Lu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China, 100020
| | - Qingyu Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China, 100020
| | - Shaofang Shangguan
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China, 100020
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China, 100020
| | - Li Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China, 100020.
| |
Collapse
|
26
|
Henry JA. Culture intelligent workflow, structure, and steps. Front Artif Intell 2023; 6:985469. [PMID: 36925615 PMCID: PMC10011165 DOI: 10.3389/frai.2023.985469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 02/06/2023] [Indexed: 03/08/2023] Open
Abstract
Introduction Technologies abstract intelligence and provide predictor and precision insight in workflows that manage disorders, similar to cardiology and hematological disease. Positive perceptions of Artificial Intelligence (AI) that support Machine Learning (ML) and Deep Learning (DL) manage transformations with a safe system that improves wellbeing. In sections, workflow introduces an eXamination (X = AI) as an end-to-end structure to culture workstreams in a step-by-step design to manage populace health in a governed system. Method To better healthcare outcomes, communities and personnel benefit from an explanation and an interpretive that elucidates workflow for citizens or practitioners to comprehend personalized platforms. Therefore, the author undertook structure and practice reviews and appraised perspectives that impact the management of AI in public health and medicine. Results Figures for the management of AI workflow illustrate and inform on the model, structure, culture, assurance, process steps, values, and governance required for abstract insights in public health and medicine. The papers' end-to-end structure with explanans in a work culture interprets the step-by-step designs that manage the success of AI. Personalized care graphics offer an explanandum in the management of biological analytic value. Discussion Healthcare leadership collaboratives plan population health with an upstream, workplace and workstream format. Secure workflow and safety wellbeing system requirements prove that genomics and AI improve medicine. Therefore, the paper discusses group understanding of current practice, ethics, policy, and legality. Conclusion "Culture, intelligent workflow, structure, and steps" improve wellbeing with personalized care and align a percept for national opportunities, regional control, and local needs. Personalized practice cultures support analytic systems to describe, predict, precision, and prescript medicine in population health management eXaminations.
Collapse
Affiliation(s)
- James Andrew Henry
- Institute of Biomedical Sciences, London, United Kingdom
- Society for Advanced Blood Management, Mount Royal, NJ, United States
- British Blood Transfusion Society, Birmingham, United Kingdom
| |
Collapse
|
27
|
Sethi Y, Patel N, Kaka N, Kaiwan O, Kar J, Moinuddin A, Goel A, Chopra H, Cavalu S. Precision Medicine and the future of Cardiovascular Diseases: A Clinically Oriented Comprehensive Review. J Clin Med 2023; 12:1799. [PMID: 36902588 PMCID: PMC10003116 DOI: 10.3390/jcm12051799] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/26/2023] Open
Abstract
Cardiac diseases form the lion's share of the global disease burden, owing to the paradigm shift to non-infectious diseases from infectious ones. The prevalence of CVDs has nearly doubled, increasing from 271 million in 1990 to 523 million in 2019. Additionally, the global trend for the years lived with disability has doubled, increasing from 17.7 million to 34.4 million over the same period. The advent of precision medicine in cardiology has ignited new possibilities for individually personalized, integrative, and patient-centric approaches to disease prevention and treatment, incorporating the standard clinical data with advanced "omics". These data help with the phenotypically adjudicated individualization of treatment. The major objective of this review was to compile the evolving clinically relevant tools of precision medicine that can help with the evidence-based precise individualized management of cardiac diseases with the highest DALY. The field of cardiology is evolving to provide targeted therapy, which is crafted as per the "omics", involving genomics, transcriptomics, epigenomics, proteomics, metabolomics, and microbiomics, for deep phenotyping. Research for individualizing therapy in heart diseases with the highest DALY has helped identify novel genes, biomarkers, proteins, and technologies to aid early diagnosis and treatment. Precision medicine has helped in targeted management, allowing early diagnosis, timely precise intervention, and exposure to minimal side effects. Despite these great impacts, overcoming the barriers to implementing precision medicine requires addressing the economic, cultural, technical, and socio-political issues. Precision medicine is proposed to be the future of cardiovascular medicine and holds the potential for a more efficient and personalized approach to the management of cardiovascular diseases, contrary to the standardized blanket approach.
Collapse
Affiliation(s)
- Yashendra Sethi
- PearResearch, Dehradun 248001, India
- Department of Medicine, Government Doon Medical College, HNB Uttarakhand Medical Education University, Dehradun 248001, India
| | - Neil Patel
- PearResearch, Dehradun 248001, India
- Department of Medicine, GMERS Medical College, Himmatnagar 383001, India
| | - Nirja Kaka
- PearResearch, Dehradun 248001, India
- Department of Medicine, GMERS Medical College, Himmatnagar 383001, India
| | - Oroshay Kaiwan
- PearResearch, Dehradun 248001, India
- Department of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Jill Kar
- PearResearch, Dehradun 248001, India
- Department of Medicine, Lady Hardinge Medical College, New Delhi 110001, India
| | - Arsalan Moinuddin
- Vascular Health Researcher, School of Sports and Exercise, University of Gloucestershire, Cheltenham GL50 4AZ, UK
| | - Ashish Goel
- Department of Medicine, Government Doon Medical College, HNB Uttarakhand Medical Education University, Dehradun 248001, India
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| |
Collapse
|
28
|
Bygren LO, Jansåker F, Sundquist K, Johansson SE. Association between attending cultural events and all-cause mortality: a longitudinal study with three measurements (1982-2017). BMJ Open 2023; 13:e065714. [PMID: 36810171 PMCID: PMC9945101 DOI: 10.1136/bmjopen-2022-065714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
OBJECTIVES To examine the association between cultural attendance and all-cause mortality. DESIGN A longitudinal cohort study over 36 years (1982-2017) with three 8-year interval measurements of exposure (1982/1983, 1990/1991 and 1998/1999) to cultural attendance and a follow-up period to 31 December 2017. SETTING Sweden. PARTICIPANTS The study included 3311 randomly selected individuals from the Swedish population with complete data for all three measurements. PRIMARY OUTCOME MEASUREMENTS All-cause mortality during the study period in relation to level of cultural attendance. Cox regression models with time-varying covariates were used to estimate HRs adjusted for potential confounders. RESULTS The HRs of cultural attendance in the lowest and middle levels compared with the highest level (reference; HR=1) were 1.63 (95% CI 1.34 to 2.00) and 1.25 (95% CI 1.03 to 1.51), respectively. CONCLUSION Attending cultural events has a suggested gradient, the lesser cultural exposure the higher all-cause mortality during the follow-up.
Collapse
Affiliation(s)
- Lars Olov Bygren
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
- Community Medicine and Rehabilitation, Umeå University, Umeå, Sweden
| | - Filip Jansåker
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University, Malmö, Sweden
- Department of Clinical Microbiology, Rigshospitalet, Kobenhavn, Denmark
| | - Kristina Sundquist
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Sven-Erik Johansson
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University, Malmö, Sweden
| |
Collapse
|
29
|
Liu H, Huang Y, Lu S, Yuan D, Liu J. Global Trends of Lipid Metabolism Research in Epigenetics Field: A Bibliometric Analysis from 2012-2021. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20032382. [PMID: 36767748 PMCID: PMC9915870 DOI: 10.3390/ijerph20032382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 05/13/2023]
Abstract
Most common diseases are characterized by metabolic changes, among which lipid metabolism is a hotspot. Numerous studies have demonstrated a strong correlation between epigenetics and lipid metabolism. This study of publications on the epigenetics of lipid metabolism searched in the Web of Science Core Collection from 2012 to 2022, and a total of 3685 publications were retrieved. Much of our work focused on collecting the data of annual outputs, high-yielding countries and authors, vital journals, keywords and citations for qualitative and quantitative analysis. In the past decade, the overall number of publications has shown an upward trend. China (1382, 26.69%), the United States (1049, 20.26%) and Italy (206, 3.98%) were the main contributors of outputs. The Chinese Academy of Sciences and Yale University were significant potential cooperation institutions. Articles were mainly published in the "International Journal of Molecular Sciences". In addition to typical liver-related diseases, "ferroptosis", "diabetes" and "atherosclerosis" were identified as potential research topics. "NF-κB" and "oxidative stress" were referred to frequently in publications. METTL3 and ALKBH5 were the most discussed m6A-related enzymes in 2022. Our study revealed research hotspots and new trends in the epigenetics of lipid metabolism, hoping to provide significant information and inspiration for researchers to further explore new directions.
Collapse
|
30
|
Komal S, Han SN, Cui LG, Zhai MM, Zhou YJ, Wang P, Shakeel M, Zhang LR. Epigenetic Regulation of Macrophage Polarization in Cardiovascular Diseases. Pharmaceuticals (Basel) 2023; 16:141. [PMID: 37259293 PMCID: PMC9963081 DOI: 10.3390/ph16020141] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 08/17/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of hospitalization and death worldwide, especially in developing countries. The increased prevalence rate and mortality due to CVDs, despite the development of several approaches for prevention and treatment, are alarming trends in global health. Chronic inflammation and macrophage infiltration are key regulators of the initiation and progression of CVDs. Recent data suggest that epigenetic modifications, such as DNA methylation, posttranslational histone modifications, and RNA modifications, regulate cell development, DNA damage repair, apoptosis, immunity, calcium signaling, and aging in cardiomyocytes; and are involved in macrophage polarization and contribute significantly to cardiac disease development. Cardiac macrophages not only trigger damaging inflammatory responses during atherosclerotic plaque formation, myocardial injury, and heart failure but are also involved in tissue repair, remodeling, and regeneration. In this review, we summarize the key epigenetic modifications that influence macrophage polarization and contribute to the pathophysiology of CVDs, and highlight their potential for the development of advanced epigenetic therapies.
Collapse
Affiliation(s)
- Sumra Komal
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Sheng-Na Han
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Liu-Gen Cui
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Miao-Miao Zhai
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yue-Jiao Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Pei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Muhammad Shakeel
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Li-Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
31
|
Montisci A, Palmieri V, Vietri MT, Sala S, Maiello C, Donatelli F, Napoli C. Big Data in cardiac surgery: real world and perspectives. J Cardiothorac Surg 2022; 17:277. [PMID: 36309702 PMCID: PMC9617748 DOI: 10.1186/s13019-022-02025-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 10/14/2022] [Indexed: 11/10/2022] Open
Abstract
Big Data, and the derived analysis techniques, such as artificial intelligence and machine learning, have been considered a revolution in the modern practice of medicine. Big Data comes from multiple sources, encompassing electronic health records, clinical studies, imaging data, registries, administrative databases, patient-reported outcomes and OMICS profiles. The main objective of such analyses is to unveil hidden associations and patterns. In cardiac surgery, the main targets for the use of Big Data are the construction of predictive models to recognize patterns or associations better representing the individual risk or prognosis compared to classical surgical risk scores. The results of these studies contributed to kindle the interest for personalized medicine and contributed to recognize the limitations of randomized controlled trials in representing the real world. However, the main sources of evidence for guidelines and recommendations remain RCTs and meta-analysis. The extent of the revolution of Big Data and new analytical models in cardiac surgery is yet to be determined.
Collapse
|
32
|
Xu J, Wang J, Long F, Zhong W, Su H, Su Z, Liu X. Inhibition of the cardiac fibroblast-enriched histone methyltransferase Dot1L prevents cardiac fibrosis and cardiac dysfunction. Cell Biosci 2022; 12:134. [PMID: 35986422 PMCID: PMC9392317 DOI: 10.1186/s13578-022-00877-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Background Cardiac fibrosis is characterized by excessive extracellular matrix deposition that contributes to compromised cardiac function and potentially heart failure. Disruptor of telomeric silencing 1-like (Dot1L) is the catalytic enzyme required for histone H3K79 methylation which has been demonstrated to play a role in transcriptional activation. However, the functions of Dot1L in the process of cardiac fibrosis still remain unknown. Results In the present study, we found that endogenous Dot1L is upregulated in cardiac fibroblasts (CFs) treated with angiotensin II (Ang II) or transforming growth factor (TGF)-β1, along with elevated extracellular matrix (ECM) such as fibronectin, collagen I and III. Silencing or inhibiting Dot1L mitigated Ang II-induced myofibroblast generation and fibrogenesis. We identified the transcription factor-forkhead box O (FoxO) 3a as a novel substrate of Dot1L, the transcriptional activating mark H3K79me3 level on the promoter of FoxO3a was increase in activated-CFs, and inhibition of Dot1L markedly decreased FoxO3a transcription accompanied by a significant decrease in the expression of fibrogenic gene. Knockdown of FoxO3a could alleviate ECM deposition induced by Ang II, on the contrary, overexpression FoxO3a resulting in CFs activation. Consistently, in vivo Dot1L ablation rescued myocardial ischemia-induced cardiac fibrosis and improved cardiac function. Conclusions Our findings conclude that upregulation of Dot1L results in activation of the cardiac fibroblasts to promote profibrotic gene, eventually causes cardiac fibrosis. Pharmacological targeting for Dot1L might represent a promising therapeutic approach for the treatment of human cardiac fibrosis and other fibrotic diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00877-5.
Collapse
|
33
|
Schiano C, Balbi C, Burrello J, Ruocco A, Infante T, Fiorito C, Panella S, Barile L, Mauro C, Vassalli G, Napoli C. De novo DNA methylation induced by circulating extracellular vesicles from acute coronary syndrome patients. Atherosclerosis 2022; 354:41-52. [PMID: 35830762 DOI: 10.1016/j.atherosclerosis.2022.06.1026] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/25/2022] [Accepted: 06/29/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND AND AIMS DNA methylation is associated with gene silencing, but its clinical role in cardiovascular diseases (CVDs) remains to be elucidated. We hypothesized that extracellular vesicles (EVs) may carry epigenetic changes, showing themselves as a potentially valuable non-invasive diagnostic liquid biopsy. We isolated and characterized circulating EVs of acute coronary syndrome (ACS) patients and assessed their role on DNA methylation in epigenetic modifications. METHODS EVs were recovered from plasma of 19 ACS patients and 50 healthy subjects (HS). Flow cytometry, qRT-PCR, and Western blot (WB) were performed to evaluate both intra-vesicular and intra-cellular signals. ShinyGO, PANTHER, and STRING tools were used to perform GO and PPI network analyses. RESULTS ACS-derived EVs showed increased levels of DNA methyltransferases (DNMTs) (p<0.001) and Ten-eleven translocation (TET) genes reduction. Specifically, de novo methylation transcripts, as DNMT3A and DNMT3B, were significantly increased in plasma ACS-EVs. DNA methylation analysis on PBMCs from healthy donors treated with HS- and ACS-derived EVs showed an important role of DNMTs carried by EVs. PPI network analysis evidenced that ACS-EVs induced changes in PBMC methylome. In the most enriched subnetwork, the hub gene SRC was connected to NOTCH1, FOXO3, CDC42, IKBKG, RXRA, DGKG, BAIAP2 genes that were showed to have many molecular effects on various cell types into onset of several CVDs. Modulation in gene expression after ACS-EVs treatment was confirmed for SRC, NOTCH1, FOXO3, RXRA, DGKG and BAIAP2 (p<0.05). CONCLUSIONS Our data showed an important role for ACS-derived EVs in gene expression modulation through de novo DNA methylation signals, and modulating signalling pathways in target cells.
Collapse
Affiliation(s)
- Concetta Schiano
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania Luigi Vanvitelli, Naples, Italy; Cellular and Molecular Cardiology lab Istituto Cardiocentro Ticino-EOC, Lugano, Switzerland; Laboratories for Translation Research, EOC, Bellinzona, Switzerland.
| | - Carolina Balbi
- Cellular and Molecular Cardiology lab Istituto Cardiocentro Ticino-EOC, Lugano, Switzerland; Laboratories for Translation Research, EOC, Bellinzona, Switzerland; Center for Molecular Cardiology, Zurich, Switzerland
| | - Jacopo Burrello
- Laboratories for Translation Research, EOC, Bellinzona, Switzerland; Cardiovascular Theranostics, Istituto Cardiocentro Ticino-EOC, Lugano, Switzerland
| | - Antonio Ruocco
- Unit of Cardiovascular Diseases and Arrhythmias, Antonio Cardarelli Hospital, Naples, Italy
| | - Teresa Infante
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania Luigi Vanvitelli, Naples, Italy
| | | | - Stefano Panella
- Laboratories for Translation Research, EOC, Bellinzona, Switzerland; Cardiovascular Theranostics, Istituto Cardiocentro Ticino-EOC, Lugano, Switzerland
| | - Lucio Barile
- Laboratories for Translation Research, EOC, Bellinzona, Switzerland; Cardiovascular Theranostics, Istituto Cardiocentro Ticino-EOC, Lugano, Switzerland
| | - Ciro Mauro
- Unit of Cardiovascular Diseases and Arrhythmias, Antonio Cardarelli Hospital, Naples, Italy
| | - Giuseppe Vassalli
- Cellular and Molecular Cardiology lab Istituto Cardiocentro Ticino-EOC, Lugano, Switzerland; Laboratories for Translation Research, EOC, Bellinzona, Switzerland; Center for Molecular Cardiology, Zurich, Switzerland
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania Luigi Vanvitelli, Naples, Italy; Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology (SIMT), Regional Reference Laboratory of Transplant Immunology (LIT), Azienda Universitaria Policlinico (AOU), Naples, Italy
| |
Collapse
|
34
|
Zhang C, Chen C, Zhao X, Lu J, Zhang M, Qiu H, Yue X, Wang H. New insight into methamphetamine-associated heart failure revealed by transcriptomic analyses: Circadian rhythm disorder. Toxicol Appl Pharmacol 2022; 451:116172. [PMID: 35863504 DOI: 10.1016/j.taap.2022.116172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 11/19/2022]
Abstract
Methamphetamine (METH) abuse is a significant public health concern globally. Cardiac toxicity is one of the important characteristics of METH, in addition to its effects on the nervous system. However, to date, research on the cardiotoxic injury induced by METH consumption has been insufficient. To systematically analyze the potential molecular mechanism of cardiac toxicity in METH-associated heart failure (HF), a rat model was constructed with a dose of 10 mg/kg of METH consumption. Cardiac function was evaluated by echocardiography, and HE staining was used to clarify the myocardial histopathological changes. Integrated analyses, including mRNA, miRNA and lncRNA, was performed to analyze the RNA expression profile and the potential molecular mechanisms involved in METH-associated HF. The results showed that METH caused decreased myocardial contractility, with a decreased percent ejection fraction (%EF). Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses of the RNAs with expression changes revealed abnormal circadian rhythm regulation in the METH groups, with circadian rhythm-related genes and their downstream effectors expressed differentially, especially the aryl hydrocarbon receptor nuclear translocator-like (Arntl). Competing endogenous RNA (ceRNA) networks associated with circadian rhythm, including Arntl, was also observed. Therefore, this study revealed that long-term METH consumption was associated with the HF in a rat model by decreasing the %EF, and that the abnormal circadian rhythm could provide new directions for investigating the METH-associated HF, and that the differentially expressed genes in this model could provide candidate genes for the identification and assessment of cardiac toxicity in METH-associated HF, which is fundamental for further understanding of the disease.
Collapse
Affiliation(s)
- Cui Zhang
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Chuanxiang Chen
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xu Zhao
- The Seventh Affiliated Hospital, Southern Medical University, Foshan 528200, China
| | - Jiancong Lu
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Manting Zhang
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Hai Qiu
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xia Yue
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Huijun Wang
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; The Seventh Affiliated Hospital, Southern Medical University, Foshan 528200, China..
| |
Collapse
|
35
|
Wang T, Jiang X, Ruan Y, Li L, Chu L. The mechanism of action of the combination of Astragalus membranaceus and Ligusticum chuanxiong in the treatment of ischemic stroke based on network pharmacology and molecular docking. Medicine (Baltimore) 2022; 101:e29593. [PMID: 35839049 PMCID: PMC11132396 DOI: 10.1097/md.0000000000029593] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/29/2022] [Indexed: 11/26/2022] Open
Abstract
Since 1990, the incidence of stroke has been rising to become the second leading cause of death in the world, posing a huge burden and challenge to society and families. Astragalus membranaceus and Ligusticum chuanxiong (A&L) have been used as traditional Chinese medicine (TCM) prescriptions to treat and prevent the occurrence of ischemic stroke (IS), but their mechanism of action on the disease has not been fully elucidated. The main objective of this study was to reveal the pharmacological mechanism of A&L in the treatment of IS and to perform preliminary validation. The active ingredients of A&L were obtained from the systematic pharmacology platform of traditional Chinese medicine (TCMSP) database, whereas the genes of IS were obtained from 2 major databases, DrugBank and GeneCards. Cytoscape_v3.8.2 was used to construct the TCM-active ingredient and TCM-active ingredient-cross-target-disease relationship maps, and the MCODE plug-in was used to obtain the core genes, whereas the protein-protein interaction maps were obtained from the STRING database. The results of gene ontology and Kyoto encyclopedia of genes and genomes enrichment were obtained using the Hiplot online tool, and the small molecules in the relevant signalling pathways were verified by molecular docking using AutoDock. A&L contained a total of 26 eligible active ingredients, sharing 161 common targets with IS. A total of 58 core genes with 1326 edges were obtained using the MCODE plug-in. Gene ontology and Kyoto encyclopedia of genes and genomes enrichment results showed association with interleukin-17 signaling pathway, lipid and atherosclerosis, tumor necrosis factor signaling pathway, and Toll-like receptor signaling pathway, which mainly mediates the development of inflammatory responses. Furthermore, molecular docking was conducted and most of the components were found to have good binding to the receptors. This study demonstrates that A&L can be used to treat IS by controlling the inflammatory response through multiple targets and multiple pathways, and provides a reference for subsequent trials.
Collapse
Affiliation(s)
- Tianyue Wang
- The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinyu Jiang
- The 1st Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanmin Ruan
- The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lin Li
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lisheng Chu
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
36
|
Studying Epigenetics of Cardiovascular Diseases on Chip Guide. CARDIOGENETICS 2022. [DOI: 10.3390/cardiogenetics12030021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Epigenetics is defined as the study of inheritable changes in the gene expressions and phenotypes that occurs without altering the normal DNA sequence. These changes are mainly due to an alteration in chromatin or its packaging, which changes the DNA accessibility. DNA methylation, histone modification, and noncoding or microRNAs can best explain the mechanism of epigenetics. There are various DNA methylated enzymes, histone-modifying enzymes, and microRNAs involved in the cause of various CVDs (cardiovascular diseases) such as cardiac hypertrophy, heart failure, and hypertension. Moreover, various CVD risk factors such as diabetes mellitus, hypoxia, aging, dyslipidemia, and their epigenetics are also discussed together with CVDs such as CHD (coronary heart disease) and PAH (pulmonary arterial hypertension). Furthermore, different techniques involved in epigenetic chromatin mapping are explained. Among these techniques, the ChIP-on-chip guide is explained with regard to its role in cardiac hypertrophy, a final form of heart failure. This review focuses on different epigenetic factors that are involved in causing cardiovascular diseases.
Collapse
|
37
|
Tong KL, Tan KE, Lim YY, Tien XY, Wong PF. CircRNA-miRNA interactions in atherogenesis. Mol Cell Biochem 2022; 477:2703-2733. [PMID: 35604519 DOI: 10.1007/s11010-022-04455-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/27/2022] [Indexed: 11/30/2022]
Abstract
Atherosclerosis is the major cause of coronary artery disease (CAD) which includes unstable angina, myocardial infarction, and heart failure. The onset of atherogenesis, a process of atherosclerotic lesion formation in the intima of arteries, is driven by lipid accumulation, a vicious cycle of reactive oxygen species (ROS)-induced oxidative stress and inflammatory reactions leading to endothelial cell (EC) dysfunction, vascular smooth muscle cell (VSMC) activation, and foam cell formation which further fuel plaque formation and destabilization. In recent years, there is a surge in the number of publications reporting the involvement of circular RNAs (circRNAs) in the pathogenesis of cardiovascular diseases, cancers, and metabolic syndromes. These studies have advanced our understanding on the biological functions of circRNAs. One of the most common mechanism of action of circRNAs reported is the sponging of microRNAs (miRNAs) by binding to the miRNAs response element (MRE), thereby indirectly increases the transcription of their target messenger RNAs (mRNAs). Individual networks of circRNA-miRNA-mRNA associated with atherogenesis have been extensively reported, however, there is a need to connect these findings for a complete overview. This review aims to provide an update on atherogenesis-related circRNAs and analyze the circRNA-miRNA-mRNA interactions in atherogenesis. The atherogenic mechanisms and clinical relevance of each atherogenesis-related circRNA were systematically discussed for better understanding of the knowledge gap in this area.
Collapse
Affiliation(s)
- Kind-Leng Tong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ke-En Tan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yat-Yuen Lim
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Xin-Yi Tien
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
38
|
Li X, Kosanovic D, Wang XJ, Cao Y. Editorial: Progresses in the Drug Treatment of Chronic Cardiopulmonary Diseases. Front Pharmacol 2022; 13:910212. [PMID: 35662696 PMCID: PMC9160424 DOI: 10.3389/fphar.2022.910212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Xiaohui Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Science, Central South University, Changsha, China
- *Correspondence: Xiaohui Li,
| | - Djuro Kosanovic
- Department of Pulmonology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Xiao-Jian Wang
- Key Laboratory of Pulmonary Vascular Medicine, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yunshan Cao
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
39
|
Anti-fibrotic mechanism of SPP1 knockdown in atrial fibrosis associates with inhibited mitochondrial DNA damage and TGF-β/SREBP2/PCSK9 signaling. Cell Death Dis 2022; 8:246. [PMID: 35508610 PMCID: PMC9068627 DOI: 10.1038/s41420-022-00895-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 01/10/2022] [Accepted: 01/21/2022] [Indexed: 11/09/2022]
Abstract
Atrial fibrosis occurs frequently with structural heart disease and is considered as a major cause of arrhythmia. Microarray-based profiling predicted the differential expression of SPP1 in atrial fibrosis. Herein, we aimed to analyze the role of shRNA-mediated SPP1 knockdown in the progression of atrial fibrosis as well as the downstream mechanism. In vivo model in mice and in vitro HL-1 cell model of atrial fibrosis were developed by the angiotensin II (Ang II) method, where SPP1 expression was validated by RT-qPCR. Gain- and loss-of-function experiments were performed in Ang II-induced mice and HL-1 cells to evaluate the effect of the SPP1/TGF-β/SREBP2/PCSK9 axis on cell viability, apoptosis, collagen production and mitochondrial DNA (mtDNA) damage in atrial fibrosis. Expression of SPP1, TGF-β, SREBP2 and PCSK9 was increased in Ang II-induced mice and HL-1 cells. Silencing of SPP1 inhibited the occurrence of atrial fibrosis, as reflected by attenuated cell viability and collagen production as well as increased cell apoptosis. Conversely, upregulated SPP1 enhanced atrial fibrosis, which was related to upregulation of TGF-β. In addition, TGF-β elevated the expression of SREBP2, which promoted mtDNA damage and the consequent atrial fibrosis by augmenting the expression of PCSK9. This study uncovers previously unrecognized pro-fibrotic activities of SPP1 in atrial fibrosis, which is achieved through activation of the TGF-β/SREBP2/PCSK9 signaling pathway and promotion of mtDNA damage.
Collapse
|
40
|
Ambrosini S, Gorica E, Mohammed SA, Costantino S, Ruschitzka F, Paneni F. Epigenetic remodeling in heart failure with preserved ejection fraction. Curr Opin Cardiol 2022; 37:219-226. [PMID: 35275888 PMCID: PMC9415220 DOI: 10.1097/hco.0000000000000961] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW In this review, we critically address the role of epigenetic processing and its therapeutic modulation in heart failure with preserved ejection fraction (HFpEF). RECENT FINDINGS HFpEF associates with a poor prognosis and the identification of novel molecular targets and therapeutic approaches are in high demand. Emerging evidence indicates a key involvement of epigenetic signals in the regulation of transcriptional programs underpinning features of HFpEF. The growing understanding of chromatin dynamics has led to the development of selective epigenetic drugs able to reset transcriptional changes thus delaying or preventing the progression toward HFpEF. Epigenetic information in the setting of HFpEF can be employed to: (i) dissect novel epigenetic networks and chromatin marks contributing to HFpEF; (ii) unveil circulating and cell-specific epigenetic biomarkers; (iii) build predictive models by using computational epigenetics and deep machine learning; (iv) develop new chromatin modifying drugs for personalized management of HFpEF. SUMMARY Acquired epigenetic signatures during the lifetime can contribute to derail molecular pathways involved in HFpEF. A scrutiny investigation of the individual epigenetic landscape will offer opportunities to develop personalized epigenetic biomarkers and therapies to fight HFpEF in the decades to come.
Collapse
Affiliation(s)
- Samuele Ambrosini
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Era Gorica
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | - Sarah Costantino
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | | | - Francesco Paneni
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
- University Heart Center, Cardiology
- Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
41
|
Sun H, Xu J, Hu B, Liu Y, Zhai Y, Sun Y, Sun H, Li F, Wang J, Feng A, Tang Y, Zhao J. Association of DNA Methylation Patterns in 7 Novel Genes With Ischemic Stroke in the Northern Chinese Population. Front Genet 2022; 13:844141. [PMID: 35480311 PMCID: PMC9035884 DOI: 10.3389/fgene.2022.844141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Ischemic stroke is a highly complex disorder. This study aims to identify novel methylation changes in ischemic stroke.Methods: We carried out an epigenome-wide study of ischemic stroke using an Infinium HumanMethylation 850K array (cases:controls = 4:4). 10 CpG sites in 8 candidate genes from gene ontology analytics top-ranked pathway were selected to validate 850K BeadChip results (cases:controls = 20:20). We further qualified the methylation level of promoter regions in 8 candidate genes (cases:controls = 188:188). Besides, we performed subgroup analysis, dose-response relationship and diagnostic prediction polygenic model of candidate genes.Results: In the discovery stage, we found 462 functional DNA methylation positions to be associated with ischemic stroke. Gene ontology analysis highlighted the “calcium-dependent cell-cell adhesion via plasma membrane cell adhesion molecules” item, including 8 candidate genes (CDH2/PCDHB10/PCDHB11/PCDHB14/PCDHB16/PCDHB3/PCDHB6/PCDHB9). In the replication stage, we identified 5 differentially methylated loci in 20 paired samples and 7 differentially methylated genes (CDH2/PCDHB10/PCDHB11/PCDHB14/PCDHB16/PCDHB3/PCDHB9) in 188 paired samples. Subgroup analysis showed that the methylation level of above 7 genes remained significantly different in the male subgroup, large-artery atherosclerosis subgroup and right hemisphere subgroup. The methylation level of each gene was grouped into quartiles, and Q4 groups of the 7 genes were associated with higher risk of ischemic stroke than Q1 groups (p < 0.05). Besides, the polygenic model showed high diagnostic specificity (0.8723), sensitivity (0.883), and accuracy (0.8777).Conclusion: Our results demonstrate that DNA methylation plays a crucial part in ischemic stroke. The methylation of these 7 genes may be potential diagnostic biomarker for ischemic stroke.
Collapse
Affiliation(s)
- Hongwei Sun
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jia Xu
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Bifeng Hu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yue Liu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yun Zhai
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanyan Sun
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongwei Sun
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fang Li
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiamin Wang
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Anqi Feng
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Ying Tang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Jingbo Zhao, ; Ying Tang,
| | - Jingbo Zhao
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
- *Correspondence: Jingbo Zhao, ; Ying Tang,
| |
Collapse
|
42
|
Cai K, Wang F, Lu JQ, Shen AN, Zhao SM, Zang WD, Gui YH, Zhao JY. Nicotinamide Mononucleotide Alleviates Cardiomyopathy Phenotypes Caused by Short-Chain Enoyl-Coa Hydratase 1 Deficiency. JACC Basic Transl Sci 2022; 7:348-362. [PMID: 35540099 PMCID: PMC9079797 DOI: 10.1016/j.jacbts.2021.12.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 02/08/2023]
Abstract
ECHS1 hydrates medium- and short-chain enoyl CoAs and catalyzes the oxidation of fatty acids and branched-chain amino acids. The mechanism driving ECHS1 deficiency–associated cardiomyopathy was investigated using conventional biochemistry and molecular biology methods, including immunoprecipitation and polymerase chain reaction. Echs1 heterogeneous knockout mice displayed cardiac dysfunction as evaluated by echocardiography. ECHS1 deficiency causes cardiomyopathy by enhancing p300-mediated H3K9ac. ECHS1 deficiency–induced cardiomyopathy can be prevented using an intervention approach targeting H3K9ac.
Short-chain enoyl-CoA hydratase 1 (ECHS1) deficiency plays a role in cardiomyopathy. Whether ECHS1 deficiency causes or is only associated with cardiomyopathy remains unclear. By using Echs1 heterogeneous knockout (Echs1+/-) mice, we found that ECHS1 deficiency caused cardiac dysfunction, as evidenced by diffuse myocardial fibrosis and upregulated fibrosis-related genes. Mechanistically, ECHS1 interacts with the p300 nuclear localization sequence, preventing its nuclear translocation in fibroblasts. ECHS1 deficiency promotes p300 nuclear translocation, leading to increased H3K9 acetylation, a known risk factor for cardiomyopathy. Nicotinamide mononucleotide–mediated acetylation targeting suppressed ECHS1 deficiency–induced cardiomyopathy phenotypes in Echs1+/- mice. Thus, enhancing p300-mediated H3K9ac is a potential interventional approach for preventing ECHS1 deficiency–induced cardiomyopathy.
Collapse
Key Words
- ANP, atrial natriuretic peptide
- BCAA, branched-chain amino acid
- BNP, brain natriuretic peptide
- DCM, dilated cardiomyopathy
- ECHS1, short-chain enoyl-CoA hydratase 1
- FA, fatty acid
- HCM, hypertrophic cardiomyopathy
- HFF, human foreskin fibroblast
- IVSd, interventricular septum in end-diastole
- IVSs, interventricular septum in end-systole
- LVEF, left ventricular ejection fraction
- LVFS, left ventricular fractional shortening
- LVIDd, left ventricular internal dimension in end-diastole
- LVIDs, left ventricular internal dimension in end-systole
- LVPWd, left ventricular posterior wall in end-diastole
- LVPWs, left ventricular posterior wall in end-systole
- NMN, nicotinamide mononucleotide
- acetylation of H3K9
- cardiomyopathy
- enoyl-CoA hydratase 1
- nicotinamide mononucleotide
- p300
- α-SMA, smooth muscle actin-α
Collapse
Affiliation(s)
- Ke Cai
- NHC Key Laboratory of Neonatal Diseases, Cardiovascular Center, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, and School of Life Sciences, Fudan University, Shanghai, China
| | - Feng Wang
- NHC Key Laboratory of Neonatal Diseases, Cardiovascular Center, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, and School of Life Sciences, Fudan University, Shanghai, China
| | - Jia-Quan Lu
- NHC Key Laboratory of Neonatal Diseases, Cardiovascular Center, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, and School of Life Sciences, Fudan University, Shanghai, China
| | - An-Na Shen
- NHC Key Laboratory of Neonatal Diseases, Cardiovascular Center, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, and School of Life Sciences, Fudan University, Shanghai, China
| | - Shi-Min Zhao
- NHC Key Laboratory of Neonatal Diseases, Cardiovascular Center, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, and School of Life Sciences, Fudan University, Shanghai, China.,Key Laboratory of Reproduction Regulation of NPFPC, Fudan University, Shanghai, China
| | - Wei-Dong Zang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yong-Hao Gui
- NHC Key Laboratory of Neonatal Diseases, Cardiovascular Center, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, and School of Life Sciences, Fudan University, Shanghai, China
| | - Jian-Yuan Zhao
- NHC Key Laboratory of Neonatal Diseases, Cardiovascular Center, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, and School of Life Sciences, Fudan University, Shanghai, China.,School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
43
|
Quiles-Jiménez A, Dahl TB, Bjørås M, Alseth I, Halvorsen B, Gregersen I. Epitranscriptome in Ischemic Cardiovascular Disease: Potential Target for Therapies. Stroke 2022; 53:2114-2122. [PMID: 35240858 DOI: 10.1161/strokeaha.121.037581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The global risk of cardiovascular disease, including ischemic disease such as stroke, remains high, and cardiovascular disease is the cause of one-third of all deaths worldwide. The main subjacent cause, atherosclerosis, is not fully understood. To improve early diagnosis and therapeutic strategies, it is crucial to unveil the key molecular mechanisms that lead to atherosclerosis development. The field of epitranscriptomics is blossoming and quickly advancing in fields like cancer research, nevertheless, poorly understood in the context of cardiovascular disease. Epitranscriptomic modifications are shown to regulate the metabolism and function of RNA molecules, which are important for cell functions such as cell proliferation, a key aspect in atherogenesis. As such, epitranscriptomic regulatory mechanisms can serve as novel checkpoints in gene expression during disease development. In this review, we describe examples of the latest research investigating epitranscriptomic modifications, in particular A-to-I editing and the covalent modification N6-methyladenosine and their regulatory proteins, in the context of cardiovascular disease. We additionally discuss the potential of these mechanisms as therapeutic targets and novel treatment options.
Collapse
Affiliation(s)
- Ana Quiles-Jiménez
- Research Institute for Internal Medicine, Oslo University Hospital, Rikshospitalet, Norway. (A.Q.-J., T.B.D., B.H., I.G.).,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway (A.Q.-J., B.H.)
| | - Tuva B Dahl
- Research Institute for Internal Medicine, Oslo University Hospital, Rikshospitalet, Norway. (A.Q.-J., T.B.D., B.H., I.G.).,Division of Critical Care and Emergencies, Oslo University Hospital, Rikshospitalet, Norway. (T.B.D.)
| | - Magnar Bjørås
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, Norway. (M.B., I.A.).,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway (M.B.)
| | - Ingrun Alseth
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, Norway. (M.B., I.A.)
| | - Bente Halvorsen
- Research Institute for Internal Medicine, Oslo University Hospital, Rikshospitalet, Norway. (A.Q.-J., T.B.D., B.H., I.G.).,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway (A.Q.-J., B.H.)
| | - Ida Gregersen
- Research Institute for Internal Medicine, Oslo University Hospital, Rikshospitalet, Norway. (A.Q.-J., T.B.D., B.H., I.G.)
| |
Collapse
|
44
|
Dai Y, Chen D, Xu T. DNA Methylation Aberrant in Atherosclerosis. Front Pharmacol 2022; 13:815977. [PMID: 35308237 PMCID: PMC8927809 DOI: 10.3389/fphar.2022.815977] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/24/2022] [Indexed: 12/20/2022] Open
Abstract
Atherosclerosis (AS) is a pathological process involving lipid oxidation, immune system activation, and endothelial dysfunction. The activated immune system could lead to inflammation and oxidative stress. Risk factors like aging and hyperhomocysteinemia also promote the progression of AS. Epigenetic modifications, including DNA methylation, histone modification, and non-coding RNA, are involved in the modulation of genes between the environment and AS formation. DNA methylation is one of the most important epigenetic mechanisms in the pathogenesis of AS. However, the relationship between the progression of AS and DNA methylation is not completely understood. This review will discuss the abnormal changes of DNA methylation in AS, including genome-wide hypermethylation dominating in AS with an increase of age, hypermethylation links with methyl supply and generating hyperhomocysteinemia, and the influence of oxidative stress with the demethylation process by interfering with the hydroxyl-methylation of TET proteins. The review will also summarize the current status of epigenetic treatment, which may provide new direction and potential therapeutic targets for AS.
Collapse
|
45
|
Li Y, Wang B. Circular RNA circCHFR downregulation protects against oxidized low-density lipoprotein-induced endothelial injury via regulation of microRNA-15b-5p/growth arrest and DNA damage inducible gamma. Bioengineered 2022; 13:4481-4492. [PMID: 35137664 PMCID: PMC8973773 DOI: 10.1080/21655979.2022.2032967] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 12/26/2022] Open
Abstract
Atherosclerosis is the leading cause of coronary heart disease. In recent years, circ_0029589 (circCHFR) has been found to be associated with atherosclerosis development. However, the molecular mechanism of circCHFR action in atherosclerosis development is unknown. This study was aimed to investigate the function and action mechanism of circCHFR in atherosclerosis development. An atherosclerosis cell model was created by exposing human vascular endothelial cells (HUVECs) to oxidized low-density lipoprotein. The expression of circCHFR, microRNA(miR)-15b-5p, growth arrest and DNA damage inducible gamma (GADD45G), and their associated proteins was evaluated using quantitative reverse transcription-polymerase chain reaction and Western blotting. Additionally, cell viability, apoptosis, and cytokine levels were determined using Cell Counting Kit-8 (CCK8) assay, flow cytometry, and enzyme-linked immunosorbent assay, respectively. circCHFR expression was upregulated in patients with atherosclerosis and oxidized low-density lipoprotein (ox-LDL)-exposed HUVECs, whereas miR-15b-5p expression was downregulated. circCHFR silencing significantly improved viability and reduced apoptosis of HUVECs. In addition, the pro-apoptotic protein Bax and atherosclerosis-associated cytokines (interleukin-1β, interleukin-6, and tumor necrosis factor-α) were significantly downregulated, whereas the anti-apoptotic protein Bcl-2 was upregulated. Further, we discovered that circCHFR serves as a molecular sponge of miR-15b-5p. GADD45G was found to be an important target of miR-15b-5p; miR-15b-5p mimic inhibited GADD45G expression, reduced apoptosis and proinflammatory cytokine secretion, and improved cell survival. However, these effects of miR-15b-5p on (ox-LDL) induced HUVECs were reversed with GADD45G plasmid co-transfection. In conclusion, circCHFR promotes atherosclerosis progression via the miR-15b-5p/GADD45G axis and may be an important target for atherosclerosis treatment.
Collapse
Affiliation(s)
- Yang Li
- Department of Vascular Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bing Wang
- Department of Vascular Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
46
|
Lin Z, Ding Q, Li X, Feng Y, He H, Huang C, Zhu Y. Targeting Epigenetic Mechanisms in Vascular Aging. Front Cardiovasc Med 2022; 8:806988. [PMID: 35059451 PMCID: PMC8764463 DOI: 10.3389/fcvm.2021.806988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/30/2021] [Indexed: 12/28/2022] Open
Abstract
Environment, diseases, lack of exercise, and aged tendency of population have becoming crucial factors that induce vascular aging. Vascular aging is unmodifiable risk factor for diseases like diabetes, hypertension, atherosclerosis, and hyperlipidemia. Effective interventions to combat this vascular function decline is becoming increasingly urgent as the rising hospitalization rate caused by vascular aging-related diseases. Fortunately, recent transformative omics approaches have enabled us to examine vascular aging mechanisms at unprecedented levels and precision, which make our understanding of slowing down or reversing vascular aging become possible. Epigenetic viz. DNA methylation, histone modifications, and non-coding RNA-based mechanisms, is a hallmark of vascular aging, its deregulation leads to aberrant transcription changes in tissues. Epigenetics mechanisms by mediating covalent modifications to DNA and histone proteins, consequently, influence the sensitivity and activities of signaling pathways in cells and tissues. A growing body of evidence supports correlations between epigenetic changes and vascular aging. In this article, we will provide a comprehensive overview of epigenetic changes associated with vascular aging based on the recent findings with a focus on molecular mechanisms of action, strategies to reverse epigenetic changes, and future perspectives.
Collapse
Affiliation(s)
- Zhongxiao Lin
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macao SAR, China
- Key Laboratory of Molecular Target and Clinical Pharmacology and National Key Laboratory of Respiratory Diseases, School of Pharmaceutic Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qian Ding
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macao SAR, China
| | - Xinzhi Li
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macao SAR, China
| | - Yuliang Feng
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, United Kingdom
| | - Hao He
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macao SAR, China
| | - Chuoji Huang
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macao SAR, China
| | - YiZhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macao SAR, China
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
47
|
Martín Giménez VM, Chuffa LGA, Simão VA, Reiter RJ, Manucha W. Protective actions of vitamin D, anandamide and melatonin during vascular inflammation: Epigenetic mechanisms involved. Life Sci 2022; 288:120191. [PMID: 34856208 DOI: 10.1016/j.lfs.2021.120191] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/13/2021] [Accepted: 11/26/2021] [Indexed: 12/11/2022]
Abstract
Vascular inflammation is one of the main activating stimuli of cardiovascular disease and its uncontrolled development may worsen the progression and prognosis of these pathologies. Therefore, the search for new therapeutic options to treat this condition is undoubtedly needed. In this regard, it may be better to repurpose endogenous anti-inflammatory compounds already known, in addition to synthesizing new compounds for therapeutic purposes. It is well known that vitamin D, anandamide, and melatonin are promising endogenous substances with powerful and wide-spread anti-inflammatory properties. Currently, the epigenetic mechanisms underlying these effects are often unknown. This review summarizes the potential epigenetic mechanisms by which vitamin D, anandamide, and melatonin attenuate vascular inflammation. This information could contribute to the improvement in the therapeutic management of multiple pathologies associated with blood vessel inflammation, through the pharmacological manipulation of new target sites that until now have not been addressed.
Collapse
Affiliation(s)
- Virna Margarita Martín Giménez
- Instituto de Investigaciones en Ciencias Químicas, Facultad de Ciencias Químicas y Tecnológicas, Universidad Católica de Cuyo, Sede San Juan, Argentina
| | - Luiz Gustavo A Chuffa
- Department of Structural and Functional Biology, UNESP-São Paulo State University, Institute of Biosciences, Botucatu 18618-689, São Paulo, Brazil
| | - Vinícius Augusto Simão
- Department of Structural and Functional Biology, UNESP-São Paulo State University, Institute of Biosciences, Botucatu 18618-689, São Paulo, Brazil
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX, USA
| | - Walter Manucha
- Laboratorio de Farmacología Experimental Básica y Traslacional. Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina; Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigación Científica y Tecnológica (IMBECU-CONICET), Argentina.
| |
Collapse
|
48
|
Yu Y, Soohoo M, Sørensen HT, Li J, Arah OA. Gestational Diabetes Mellitus and the Risks of Overall and Type-Specific Cardiovascular Diseases: A Population- and Sibling-Matched Cohort Study. Diabetes Care 2022; 45:151-159. [PMID: 34764208 PMCID: PMC8753767 DOI: 10.2337/dc21-1018] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/15/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To evaluate associations between gestational diabetes mellitus (GDM) and various incident cardiovascular disease (CVD) end points, considering the effects of the mediating role of type 2 diabetes and shared environmental/familial factors. RESEARCH DESIGN AND METHODS This population-based cohort study included 10,02,486 parous women in Denmark during 1978-2016. We used Cox regression to 1) examine the associations of GDM with overall and type-specific CVDs using full-cohort and sibling-matched analysis, 2) quantify the impact of type 2 diabetes after GDM using mediation analysis, and 3) assess whether these associations were modified by prepregnancy obesity or maternal history of CVD. RESULTS Women with a history of GDM had a 40% increased overall CVD risk (hazard ratio [HR] 1.40, 95% CI 1.35-1.45). Sibling-matched analyses yielded similar results (HR 1.44, 95% CI 1.28-1.62). The proportion of association between GDM and overall CVD explained by subsequent type 2 diabetes was 23.3% (15.4-32.8%). We observed increased risks of specific CVDs, including 65% increased stroke risk and more than twofold risks for myocardial infarction, heart failure, and peripheral artery disease. The elevated overall risks were more pronounced among women with GDM and prepregnancy obesity or maternal history of CVD. CONCLUSIONS A history of GDM was associated with increased risks of overall and specific CVDs. Increased risks were partly explained by subsequent type 2 diabetes, and the need to identify other pathways remains important. Continuous monitoring of women with a history of GDM, especially those with prepregnancy obesity or maternal history of CVD, may provide better opportunities to reduce their cardiovascular risk.
Collapse
Affiliation(s)
- Yongfu Yu
- 1Department of Biostatistics, School of Public Health and The Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China.,2Department of Clinical Medicine-Department of Clinical Epidemiology, Aarhus University, Aarhus, Denmark.,3Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles (UCLA), Los Angeles, CA
| | - Melissa Soohoo
- 3Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles (UCLA), Los Angeles, CA
| | - Henrik Toft Sørensen
- 2Department of Clinical Medicine-Department of Clinical Epidemiology, Aarhus University, Aarhus, Denmark
| | - Jiong Li
- 2Department of Clinical Medicine-Department of Clinical Epidemiology, Aarhus University, Aarhus, Denmark
| | - Onyebuchi A Arah
- 3Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles (UCLA), Los Angeles, CA.,4Department of Statistics, College of Letters and Science, University of California, Los Angeles (UCLA), Los Angeles, CA.,5Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
49
|
Leptidis S, Papakonstantinou E, Diakou KI, Pierouli K, Mitsis T, Dragoumani K, Bacopoulou F, Sanoudou D, Chrousos GP, Vlachakis D. Epitranscriptomics of cardiovascular diseases (Review). Int J Mol Med 2022; 49:9. [PMID: 34791505 PMCID: PMC8651226 DOI: 10.3892/ijmm.2021.5064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/20/2021] [Indexed: 11/09/2022] Open
Abstract
RNA modifications have recently become the focus of attention due to their extensive regulatory effects in a vast array of cellular networks and signaling pathways. Just as epigenetics is responsible for the imprinting of environmental conditions on a genetic level, epitranscriptomics follows the same principle at the RNA level, but in a more dynamic and sensitive manner. Nevertheless, its impact in the field of cardiovascular disease (CVD) remains largely unexplored. CVD and its associated pathologies remain the leading cause of death in Western populations due to the limited regenerative capacity of the heart. As such, maintenance of cardiac homeostasis is paramount for its physiological function and its capacity to respond to environmental stimuli. In this context, epitranscriptomic modifications offer a novel and promising therapeutic avenue, based on the fine‑tuning of regulatory cascades, necessary for cardiac function. This review aimed to provide an overview of the most recent findings of key epitranscriptomic modifications in both coding and non‑coding RNAs. Additionally, the methods used for their detection and important associations with genetic variations in the context of CVD were summarized. Current knowledge on cardiac epitranscriptomics, albeit limited still, indicates that the impact of epitranscriptomic editing in the heart, in both physiological and pathological conditions, holds untapped potential for the development of novel targeted therapeutic approaches in a dynamic manner.
Collapse
Affiliation(s)
- Stefanos Leptidis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Eleni Papakonstantinou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Kalliopi Io Diakou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Katerina Pierouli
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Thanasis Mitsis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Konstantina Dragoumani
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Flora Bacopoulou
- Laboratory of Molecular Endocrinology, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- First Department of Pediatrics, Center for Adolescent Medicine and UNESCO Chair on Adolescent Health Care, Medical School, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Despina Sanoudou
- Fourth Department of Internal Medicine, Clinical Genomics and Pharmacogenomics Unit, Medical School, 'Attikon' Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George P. Chrousos
- Laboratory of Molecular Endocrinology, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- First Department of Pediatrics, Center for Adolescent Medicine and UNESCO Chair on Adolescent Health Care, Medical School, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
- Laboratory of Molecular Endocrinology, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- First Department of Pediatrics, Center for Adolescent Medicine and UNESCO Chair on Adolescent Health Care, Medical School, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
- School of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, London WC2R 2LS, UK
| |
Collapse
|
50
|
Infante T, Cavaliere C, Punzo B, Grimaldi V, Salvatore M, Napoli C. Radiogenomics and Artificial Intelligence Approaches Applied to Cardiac Computed Tomography Angiography and Cardiac Magnetic Resonance for Precision Medicine in Coronary Heart Disease: A Systematic Review. Circ Cardiovasc Imaging 2021; 14:1133-1146. [PMID: 34915726 DOI: 10.1161/circimaging.121.013025] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The risk of coronary heart disease (CHD) clinical manifestations and patient management is estimated according to risk scores accounting multifactorial risk factors, thus failing to cover the individual cardiovascular risk. Technological improvements in the field of medical imaging, in particular, in cardiac computed tomography angiography and cardiac magnetic resonance protocols, laid the development of radiogenomics. Radiogenomics aims to integrate a huge number of imaging features and molecular profiles to identify optimal radiomic/biomarker signatures. In addition, supervised and unsupervised artificial intelligence algorithms have the potential to combine different layers of data (imaging parameters and features, clinical variables and biomarkers) and elaborate complex and specific CHD risk models allowing more accurate diagnosis and reliable prognosis prediction. Literature from the past 5 years was systematically collected from PubMed and Scopus databases, and 60 studies were selected. We speculated the applicability of radiogenomics and artificial intelligence through the application of machine learning algorithms to identify CHD and characterize atherosclerotic lesions and myocardial abnormalities. Radiomic features extracted by cardiac computed tomography angiography and cardiac magnetic resonance showed good diagnostic accuracy for the identification of coronary plaques and myocardium structure; on the other hand, few studies exploited radiogenomics integration, thus suggesting further research efforts in this field. Cardiac computed tomography angiography resulted the most used noninvasive imaging modality for artificial intelligence applications. Several studies provided high performance for CHD diagnosis, classification, and prognostic assessment even though several efforts are still needed to validate and standardize algorithms for CHD patient routine according to good medical practice.
Collapse
Affiliation(s)
- Teresa Infante
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy (T.I., C.N.)
| | | | - Bruna Punzo
- IRCCS SDN, Naples, Italy (C.C., B.P., V.G., M.S., C.N.)
| | | | | | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy (T.I., C.N.).,IRCCS SDN, Naples, Italy (C.C., B.P., V.G., M.S., C.N.)
| |
Collapse
|