1
|
Lin J, Yu Z, Gao X. Advanced Noninvasive Strategies for the Brain Delivery of Therapeutic Proteins and Peptides. ACS NANO 2024; 18:22752-22779. [PMID: 39133564 DOI: 10.1021/acsnano.4c06851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Recent years have witnessed rapid progress in the discovery of therapeutic proteins and peptides for the treatment of central nervous system (CNS) diseases. However, their clinical applications have been considerably hindered by challenges such as low biomembrane permeability, poor stability, short circulation time, and the formidable blood-brain barrier (BBB). Recently, substantial improvements have been made in understanding the dynamics of the BBB and developing efficient approaches for delivering proteins and peptides to the CNS, especially by using various nanoparticles. Herein, we present an overview of the up-to-date understanding of the BBB under physiological and pathological conditions, emphasizing their effects on brain drug delivery. We summarize advanced strategies and elucidate the underlying mechanisms for delivering proteins and peptides to the brain. We highlight the developments and applications of nanocarriers in treating CNS diseases via BBB crossing. We also provide critical opinions on the limitations and obstacles of the current strategies and put forward prospects for future research.
Collapse
Affiliation(s)
- Jiayuan Lin
- Department of Pharmacology and Chemical Biology, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Zhihua Yu
- Department of Pharmacology and Chemical Biology, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| |
Collapse
|
2
|
Scolz A, Vezzoli E, Villa M, Talpo F, Cazzola J, Raffin F, Cordiglieri C, Falqui A, Pepe G, Maglione V, Besusso D, Biella G, Zuccato C. Neuroprotection by ADAM10 inhibition requires TrkB signaling in the Huntington's disease hippocampus. Cell Mol Life Sci 2024; 81:333. [PMID: 39112663 PMCID: PMC11335257 DOI: 10.1007/s00018-024-05382-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/22/2024]
Abstract
Synaptic dysfunction is an early pathogenic event leading to cognitive decline in Huntington's disease (HD). We previously reported that the active ADAM10 level is increased in the HD cortex and striatum, causing excessive proteolysis of the synaptic cell adhesion protein N-Cadherin. Conversely, ADAM10 inhibition is neuroprotective and prevents cognitive decline in HD mice. Although the breakdown of cortico-striatal connection has been historically linked to cognitive deterioration in HD, dendritic spine loss and long-term potentiation (LTP) defects identified in the HD hippocampus are also thought to contribute to the cognitive symptoms of the disease. The aim of this study is to investigate the contribution of ADAM10 to spine pathology and LTP defects of the HD hippocampus. We provide evidence that active ADAM10 is increased in the hippocampus of two mouse models of HD, leading to extensive proteolysis of N-Cadherin, which has a widely recognized role in spine morphology and synaptic plasticity. Importantly, the conditional heterozygous deletion of ADAM10 in the forebrain of HD mice resulted in the recovery of spine loss and ultrastructural synaptic defects in CA1 pyramidal neurons. Meanwhile, normalization of the active ADAM10 level increased the pool of synaptic BDNF protein and activated ERK neuroprotective signaling in the HD hippocampus. We also show that the ADAM10 inhibitor GI254023X restored LTP defects and increased the density of mushroom spines enriched with GluA1-AMPA receptors in HD hippocampal neurons. Notably, we report that administration of the TrkB antagonist ANA12 to HD hippocampal neurons reduced the beneficial effect of GI254023X, indicating that the BDNF receptor TrkB contributes to mediate the neuroprotective activity exerted by ADAM10 inhibition in HD. Collectively, these findings indicate that ADAM10 inhibition coupled with TrkB signaling represents an efficacious strategy to prevent hippocampal synaptic plasticity defects and cognitive dysfunction in HD.
Collapse
Affiliation(s)
- Andrea Scolz
- Department of Biosciences, University of Milan, Milan, Italy
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Elena Vezzoli
- Department of Biosciences, University of Milan, Milan, Italy
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
- Advanced Light and Electron Microscopy BioImaging Centre (ALEMBIC), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Michela Villa
- Department of Biosciences, University of Milan, Milan, Italy
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Francesca Talpo
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Jessica Cazzola
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Francesca Raffin
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Chiara Cordiglieri
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Andrea Falqui
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (CIMaINa), Department of Physics, University of Milan, Milan, Italy
| | | | | | - Dario Besusso
- Department of Biosciences, University of Milan, Milan, Italy
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Gerardo Biella
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Chiara Zuccato
- Department of Biosciences, University of Milan, Milan, Italy.
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy.
| |
Collapse
|
3
|
Albini M, Krawczun-Rygmaczewska A, Cesca F. Astrocytes and brain-derived neurotrophic factor (BDNF). Neurosci Res 2023; 197:42-51. [PMID: 36780947 DOI: 10.1016/j.neures.2023.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/17/2023] [Accepted: 02/02/2023] [Indexed: 02/13/2023]
Abstract
Astrocytes are emerging in the neuroscience field as crucial modulators of brain functions, from the molecular control of synaptic plasticity to orchestrating brain-wide circuit activity for cognitive processes. The cellular pathways through which astrocytes modulate neuronal activity and plasticity are quite diverse. In this review, we focus on neurotrophic pathways, mostly those mediated by brain-derived neurotrophic factor (BDNF). Neurotrophins are a well-known family of trophic factors with pleiotropic functions in neuronal survival, maturation and activity. Within the brain, BDNF is the most abundantly expressed and most studied of all neurotrophins. While we have detailed knowledge of the effect of BDNF on neurons, much less is known about its physiology on astroglia. However, over the last years new findings emerged demonstrating that astrocytes take an active part into BDNF physiology. In this work, we discuss the state-of-the-art knowledge about astrocytes and BDNF. Indeed, astrocytes sense extracellular BDNF through its specific TrkB receptors and activate intracellular responses that greatly vary depending on the brain area, stage of development and receptors expressed. Astrocytes also uptake and recycle BDNF / proBDNF at synapses contributing to synaptic plasticity. Finally, experimental evidence is now available describing deficits in astrocytic BDNF in several neuropathologies, suggesting that astrocytic BDNF may represent a promising target for clinical translation.
Collapse
Affiliation(s)
- Martina Albini
- Department of Experimental Medicine, University of Genova, Italy; IIT Center for Synaptic Neuroscience and Technology, Genova, Italy
| | - Alicja Krawczun-Rygmaczewska
- IIT Center for Synaptic Neuroscience and Technology, Genova, Italy; Department of Life Sciences, University of Trieste, Italy
| | - Fabrizia Cesca
- IIT Center for Synaptic Neuroscience and Technology, Genova, Italy; Department of Life Sciences, University of Trieste, Italy.
| |
Collapse
|
4
|
Spies J, Covarrubias-Pinto A, Carcamo C, Arancibia Y, Salazar F, Paredes-Martinez C, Otth C, Castro M, Zambrano A. Modulation of Synaptic Plasticity Genes Associated to DNA Damage in a Model of Huntington's Disease. Neurochem Res 2023; 48:2093-2103. [PMID: 36790580 DOI: 10.1007/s11064-023-03889-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/16/2023]
Abstract
Huntington's disease (HD) is a disease characterized by the progressive degeneration of nerve cells in the brain. DNA damage has been implicated in many neurological disorders; however, the association between this damage and the impaired signaling related to neurodegeneration is still unclear. The transcription factor c-AMP-responsive element binding protein (CREB) has a relevant role in the neuronal plasticity process regulating the expression of several genes, including brain-derived neurotrophic factor (BDNF). Here we analyzed the direct link between DNA damage and the expression of genes involved in neuronal plasticity. The study was performed in model cell lines STHdhQ7 (wild type) and STHdhQ111 (HD model). Treatment with Etoposide (Eto) was used to induce double-strand breaks (DSBs) to evaluate the DNA damage response (DDR) and the expression of synaptic plasticity genes. Eto treatment induced phosphorylation of ATM (p-ATM) and H2AX (γH2AX), markers of DDR, in both cell lines. Interestingly, upon DNA damage, STHdhQ7 cells showed increased expression of activity-regulated cytoskeleton associated protein (Arc) and BDNF when compared to the HD cell line model. Additionally, Eto induced CREB activation with a differential localization of its co-activators in the cell types analyzed. These results suggest that DSBs impact differentially the gene expression patterns of plasticity genes in the normal cell line versus the HD model. This effect is mediated by the impaired localization of CREB-binding protein (CBP) and histone acetylation in the HD model. Our results highlight the role of epigenetics and DNA repair on HD and therefore we suggest that future studies should explore in depth the epigenetic landscape on neuronal pathologies with the goal to further understand molecular mechanisms and pinpoint therapeutic targets.
Collapse
Affiliation(s)
- Johana Spies
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Casilla (P. O. Box) 567, Valdivia, Chile
| | - Adriana Covarrubias-Pinto
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Casilla (P. O. Box) 567, Valdivia, Chile
| | - Constanza Carcamo
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Casilla (P. O. Box) 567, Valdivia, Chile
| | - Yennyfer Arancibia
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Casilla (P. O. Box) 567, Valdivia, Chile
| | - Fernanda Salazar
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Casilla (P. O. Box) 567, Valdivia, Chile
| | - Carolina Paredes-Martinez
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Casilla (P. O. Box) 567, Valdivia, Chile
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Carola Otth
- Facultad de Medicina, Instituto de Microbiología Clínica, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Maite Castro
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Casilla (P. O. Box) 567, Valdivia, Chile
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
- Centro Interdisciplinario de Neurociencias de Valparaíso (CINV), Valparaíso, Chile
| | - Angara Zambrano
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Casilla (P. O. Box) 567, Valdivia, Chile.
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
5
|
Razick DI, Akhtar M, Wen J, Alam M, Dean N, Karabala M, Ansari U, Ansari Z, Tabaie E, Siddiqui S. The Role of Sirtuin 1 (SIRT1) in Neurodegeneration. Cureus 2023; 15:e40463. [PMID: 37456463 PMCID: PMC10349546 DOI: 10.7759/cureus.40463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
Sirtuins (SIRT) are a class of histone deacetylases that regulate important metabolic pathways and play a role in several disease processes. Of the seven mammalian homologs currently identified, sirtuin 1 (SIRT1) is the best understood and most studied. It has been associated with several neurodegenerative diseases and cancers. As such, it has been further investigated as a therapeutic target in the treatment of disorders such as Parkinson's disease (PD), Huntington's disease (HD), and Alzheimer's disease (AD). SIRT1 deacetylates histones such as H1 lysine 26, H3 lysine 9, H3 lysine 56, and H4 lysine 16 to regulate chromatin remodeling and gene transcription. The homolog has also been observed to express contradictory responses to tumor suppression and tumor promotion. Studies have shown that SIRT1 may have anti-inflammatory properties by inhibiting the effects of NF-κB, as well as stimulating upregulation of autophagy. The SIRT1 activators resveratrol and cilostazol have been shown to improve Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog) scores in AD patients. In this review, we aim to explore the various roles of SIRT1 with regard to neuroprotection and neurodegeneration.
Collapse
Affiliation(s)
- Daniel I Razick
- Surgery, California Northstate University College of Medicine, Elk Grove, USA
| | - Muzammil Akhtar
- Surgery, California Northstate University College of Medicine, Elk Grove, USA
| | - Jimmy Wen
- Physical Medicine and Rehabilitation, California Northstate University College of Medicine, Elk Grove, USA
| | - Meraj Alam
- Internal Medicine, California Northstate University College of Medicine, Elk Grove, USA
| | - Nabeal Dean
- Internal Medicine, California Northstate University College of Medicine, Elk Grove, USA
| | - Muhammad Karabala
- Internal Medicine, California Northstate University College of Medicine, Elk Grove, USA
| | - Ubaid Ansari
- Internal Medicine, California Northstate University College of Medicine, Elk Grove, USA
| | - Zaid Ansari
- Internal Medicine, University of California Berkeley, Berkeley, USA
| | - Ethan Tabaie
- Neurosurgery, California Northstate University College of Medicine, Elk Grove, USA
| | - Shakeel Siddiqui
- Anesthesiology, OrthoMed Staffing Anesthesiology Group, Dallas, USA
| |
Collapse
|
6
|
Farzana F, McConville MJ, Renoir T, Li S, Nie S, Tran H, Hannan AJ, Hatters DM, Boughton BA. Longitudinal spatial mapping of lipid metabolites reveals pre-symptomatic changes in the hippocampi of Huntington's disease transgenic mice. Neurobiol Dis 2023; 176:105933. [PMID: 36436748 DOI: 10.1016/j.nbd.2022.105933] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022] Open
Abstract
In Huntington's disease (HD), a key pathological feature includes the development of inclusion-bodies of fragments of the mutant huntingtin protein in the neurons of the striatum and hippocampus. To examine the molecular changes associated with inclusion-body formation, we applied MALDI-mass spectrometry imaging and deuterium pulse labelling to determine lipid levels and synthesis rates in the hippocampus of a transgenic mouse model of HD (R6/1 line). The R6/1 HD mice lacked inclusions in the hippocampus at 6 weeks of age (pre-symptomatic), whereas inclusions were pervasive by 16 weeks of age (symptomatic). Hippocampal subfields (CA1, CA3 and DG), which formed the highest density of inclusion formation in the mouse brain showed a reduction in the relative abundance of neuron-enriched lipids that have roles in neurotransmission, synaptic plasticity, neurogenesis, and ER-stress protection. Lipids involved in the adaptive response to ER stress (phosphatidylinositol, phosphatidic acid, and ganglioside classes) displayed increased rates of synthesis in HD mice relative to WT mice at all the ages examined, including prior to the formation of the inclusion bodies. Our findings, therefore, support a role for ER stress occurring pre-symptomatically and potentially contributing to pathological mechanisms underlying HD.
Collapse
Affiliation(s)
- Farheen Farzana
- Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Victoria 3010, Australia; Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Malcolm J McConville
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia; Metabolomics Australia, The University of Melbourne, Victoria 3010, Australia
| | - Thibault Renoir
- Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Shanshan Li
- Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Shuai Nie
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Harvey Tran
- Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Victoria 3010, Australia.
| | - Danny M Hatters
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia.
| | - Berin A Boughton
- School of Biosciences, The University of Melbourne, Victoria 3010, Australia; Australian National Phenome Centre, Murdoch University, Murdoch 6150, Western Australia, Australia.
| |
Collapse
|
7
|
Clabough EBD, Aspili C, Fussy WS, Ingersoll JD, Kislyakov A, Li ES, Su MJ, Wiles DB, Watson TE, Willy AJ, Thomas Vinyard H, Mollica Iii PJ, Taylor JV, Smith CW, Roark DA, Tabrani ZP, Thomas HL, Shin M, Venton BJ, Hayes D, Sipe CW. Huntingtin Plays a Role in the Physiological Response to Ethanol in Drosophila. J Huntingtons Dis 2023; 12:241-252. [PMID: 37661891 DOI: 10.3233/jhd-230581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
BACKGROUND Huntingtin (htt) protein is an essential regulator of nervous system function through its various neuroprotective and pro-survival functions, and loss of wild-type htt function is implicated in the etiology of Huntington's disease. While its pathological role is typically understood as a toxic gain-of-function, some neuronal phenotypes also result from htt loss. Therefore, it is important to understand possible roles for htt in other physiological circumstances. OBJECTIVE To elucidate the role of htt in the context of ethanol exposure, we investigated how loss of htt impacts behavioral and physiological responses to ethanol in Drosophila. METHODS We tested flies lacking htt for ethanol sensitivity and tolerance, preference for ethanol using capillary feeder assays, and recovery of mobility after intoxication. Levels of dopamine neurotransmitter and numbers of dopaminergic cells in brains lacking dhtt were also measured. RESULTS We found that dhtt-null flies are both less sensitive and more tolerant to ethanol exposure in adulthood. Moreover, flies lacking dhtt are more averse to alcohol than controls, and they recover mobility faster following acute ethanol intoxication. We showed that dhtt mediates these effects at least in part through the dopaminergic system, as dhtt is required to maintain normal levels of dopamine in the brain and normal numbers of dopaminergic cells in the adult protocerebrum. CONCLUSIONS Our results demonstrate that htt regulates the physiological response to ethanol and indicate a novel neuroprotective role for htt in the dopaminergic system, raising the possibility that it may be involved more generally in the response to toxic stimuli.
Collapse
Affiliation(s)
- Erin B D Clabough
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Christia Aspili
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - William S Fussy
- Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, USA
| | - James D Ingersoll
- Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, USA
| | - Amy Kislyakov
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Elizabeth S Li
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Meng-Jiuan Su
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Dustin B Wiles
- Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, USA
| | - Thomas E Watson
- Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, USA
| | - Aaron J Willy
- Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, USA
| | - H Thomas Vinyard
- Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, USA
| | | | - James V Taylor
- Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, USA
| | - Cody W Smith
- Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, USA
| | - Dallas A Roark
- Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, USA
| | - Zachary P Tabrani
- Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, USA
| | - Harris L Thomas
- Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, USA
| | - Mimi Shin
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - B Jill Venton
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, USA
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - David Hayes
- Department of Biology, Shepherd University, Shepherdstown, WV, USA
- Department of Biology, Kansas State University, Manhattan, KS, USA
| | - Conor W Sipe
- Department of Biology, Shepherd University, Shepherdstown, WV, USA
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
8
|
Natale F, Fusco S, Grassi C. Dual role of brain-derived extracellular vesicles in dementia-related neurodegenerative disorders: cargo of disease spreading signals and diagnostic-therapeutic molecules. Transl Neurodegener 2022; 11:50. [PMID: 36437458 PMCID: PMC9701396 DOI: 10.1186/s40035-022-00326-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/09/2022] [Indexed: 11/28/2022] Open
Abstract
Neurodegenerative disorders are one of the most common causes of disability and represent 6.3% of the global burden of disease. Among them, Alzheimer's, Parkinson's, and Huntington's diseases cause cognitive decline, representing the most disabling symptom on both personal and social levels. The molecular mechanisms underlying the onset and progression of dementia are still poorly understood, and include secretory factors potentially affecting differentiated neurons, glial cells and neural stem cell niche. In the last decade, much attention has been devoted to exosomes as novel carriers of information exchanged among both neighbouring and distant cells. These vesicles can be generated and internalized by different brain cells including neurons, neural stem cells, astrocytes, and microglia, thereby affecting neural plasticity and cognitive functions in physiological and pathological conditions. Here, we review data on the roles of exosomes as carriers of bioactive molecules potentially involved in the pathogenesis of neurodegenerative disorders and detectable in biological fluids as biomarkers of dementia. We also discuss the experimental evidence of the therapeutic potential of stem cell-derived vesicles in experimental models of neurodegeneration-dependent cognitive decline.
Collapse
Affiliation(s)
- Francesca Natale
- grid.8142.f0000 0001 0941 3192Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy ,grid.414603.4Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Salvatore Fusco
- grid.8142.f0000 0001 0941 3192Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy ,grid.414603.4Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Claudio Grassi
- grid.8142.f0000 0001 0941 3192Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy ,grid.414603.4Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
9
|
Love CJ, Masson BA, Gubert C, Hannan AJ. The microbiota-gut-brain axis in Huntington's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 167:141-184. [DOI: 10.1016/bs.irn.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Barry J, Bui MTN, Levine MS, Cepeda C. Synaptic pathology in Huntington's disease: Beyond the corticostriatal pathway. Neurobiol Dis 2022; 162:105574. [PMID: 34848336 PMCID: PMC9328779 DOI: 10.1016/j.nbd.2021.105574] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 12/12/2022] Open
Abstract
Huntington's disease (HD) is a heritable, fatal neurodegenerative disorder caused by a mutation in the Huntingtin gene. It is characterized by chorea, as well as cognitive and psychiatric symptoms. Histopathologically, there is a massive loss of striatal projection neurons and less but significant loss in other areas throughout the cortico-basal ganglia-thalamocortical (CBGTC) loop. The mutant huntingtin protein has been implicated in numerous functions, including an important role in synaptic transmission. Most studies on anatomical and physiological alterations in HD have focused on striatum and cerebral cortex. However, based on recent CBGTC projectome evidence, the need to study other pathways has become increasingly clear. In this review, we examine the current status of our knowledge of morphological and electrophysiological alterations of those pathways in animal models of HD. Based on recent studies, there is accumulating evidence that synaptic disconnection, particularly along excitatory pathways, is pervasive and almost universal in HD, thus supporting a critical role of the huntingtin protein in synaptic transmission.
Collapse
Affiliation(s)
- Joshua Barry
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Minh T N Bui
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael S Levine
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Carlos Cepeda
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Akimov SS, Jiang M, Kedaigle AJ, Arbez N, Marque LO, Eddings CR, Ranum PT, Whelan E, Tang A, Wang R, DeVine LR, Talbot CC, Cole RN, Ratovitski T, Davidson BL, Fraenkel E, Ross CA. Immortalized striatal precursor neurons from Huntington's disease patient-derived iPS cells as a platform for target identification and screening for experimental therapeutics. Hum Mol Genet 2021; 30:2469-2487. [PMID: 34296279 PMCID: PMC8643509 DOI: 10.1093/hmg/ddab200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 11/12/2022] Open
Abstract
We have previously established induced pluripotent stem cell (iPSC) models of Huntington's disease (HD), demonstrating CAG-repeat-expansion-dependent cell biological changes and toxicity. However, the current differentiation protocols are cumbersome and time consuming, making preparation of large quantities of cells for biochemical or screening assays difficult. Here, we report the generation of immortalized striatal precursor neurons (ISPNs) with normal (33) and expanded (180) CAG repeats from HD iPSCs, differentiated to a phenotype resembling medium spiny neurons (MSN), as a proof of principle for a more tractable patient-derived cell model. For immortalization, we used co-expression of the enzymatic component of telomerase hTERT and conditional expression of c-Myc. ISPNs can be propagated as stable adherent cell lines, and rapidly differentiated into highly homogeneous MSN-like cultures within 2 weeks, as demonstrated by immunocytochemical criteria. Differentiated ISPNs recapitulate major HD-related phenotypes of the parental iPSC model, including brain-derived neurotrophic factor (BDNF)-withdrawal-induced cell death that can be rescued by small molecules previously validated in the parental iPSC model. Proteome and RNA-seq analyses demonstrate separation of HD versus control samples by principal component analysis. We identified several networks, pathways, and upstream regulators, also found altered in HD iPSCs, other HD models, and HD patient samples. HD ISPN lines may be useful for studying HD-related cellular pathogenesis, and for use as a platform for HD target identification and screening experimental therapeutics. The described approach for generation of ISPNs from differentiated patient-derived iPSCs could be applied to a larger allelic series of HD cell lines, and to comparable modeling of other genetic disorders.
Collapse
Affiliation(s)
- Sergey S Akimov
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Mali Jiang
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Amanda J Kedaigle
- Department of Biological Engineering, Computational and Systems Biology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Nicolas Arbez
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Leonard O Marque
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Chelsy R Eddings
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Paul T Ranum
- The Department of Pathology and Laboratory Medicine, The University of Pennsylvania, The Raymond G Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Emma Whelan
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Anthony Tang
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ronald Wang
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Lauren R DeVine
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Conover C Talbot
- The Johns Hopkins School of Medicine, Institute for Basic Biomedical Sciences, Baltimore, MD 21205, USA
| | - Robert N Cole
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tamara Ratovitski
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Beverly L Davidson
- The Department of Pathology and Laboratory Medicine, The University of Pennsylvania, The Raymond G Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- The Department of Pathology and Laboratory Medicine, The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ernest Fraenkel
- Department of Biological Engineering, Computational and Systems Biology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Neurology, Neuroscience and Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
12
|
Jeong YH, Kim TI, Oh YC, Ma JY. Chrysanthemum indicum Prevents Hydrogen Peroxide-Induced Neurotoxicity by Activating the TrkB/Akt Signaling Pathway in Hippocampal Neuronal Cells. Nutrients 2021; 13:nu13113690. [PMID: 34835946 PMCID: PMC8618340 DOI: 10.3390/nu13113690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 01/07/2023] Open
Abstract
Oxidative stress-mediated neuronal damage is associated with the pathogenesis and development of neurodegenerative diseases. Chrysanthemum indicum has antioxidant properties. However, the neuroprotective effects and the cellular mechanism of C. indicum ethanol extract (CIE) against oxidative damage in hippocampal neuronal cells have not been clearly elucidated. Therefore, this study investigated whether CIE has protective effects against hydrogen peroxide (H2O2)-induced oxidative toxicity in HT22 cells. CIE pretreatment significantly improved neuronal cell viability. Moreover, the formation of intracellular reactive oxygen species and apoptotic bodies, and mitochondrial depolarization were significantly reduced in HT22 cells with H2O2-induced oxidative toxicity. Furthermore, CIE increased the phosphorylation of tropomyosin-related kinase receptor B (TrkB), protein kinase B (Akt), cAMP response element-binding protein, the expression of brain-derived neurotrophic factor, antioxidant enzymes, and the nuclear translocation of nuclear factor erythroid 2-related factor 2 by activating the TrkB/Akt signaling pathway. In contrast, the addition of K252a, a TrkB inhibitor, or MK-2206, an Akt-selective inhibitor, reduced the neuroprotective and antioxidant effects of CIE. Taken together; CIE exhibits neuroprotective and antioxidant effects against oxidative damage. Therefore, it can be a potential agent for treating oxidative stress-related neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | - You-Chang Oh
- Correspondence: (Y.-C.O.); (J.Y.M.); Tel.: +82-53-940-3882 (Y.-C.O.); +82-53-940-3812 (J.Y.M.)
| | - Jin Yeul Ma
- Correspondence: (Y.-C.O.); (J.Y.M.); Tel.: +82-53-940-3882 (Y.-C.O.); +82-53-940-3812 (J.Y.M.)
| |
Collapse
|
13
|
Monk R, Connor B. Cell Reprogramming to Model Huntington's Disease: A Comprehensive Review. Cells 2021; 10:cells10071565. [PMID: 34206228 PMCID: PMC8306243 DOI: 10.3390/cells10071565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022] Open
Abstract
Huntington’s disease (HD) is a neurodegenerative disorder characterized by the progressive decline of motor, cognitive, and psychiatric functions. HD results from an autosomal dominant mutation that causes a trinucleotide CAG repeat expansion and the production of mutant Huntingtin protein (mHTT). This results in the initial selective and progressive loss of medium spiny neurons (MSNs) in the striatum before progressing to involve the whole brain. There are currently no effective treatments to prevent or delay the progression of HD as knowledge into the mechanisms driving the selective degeneration of MSNs has been hindered by a lack of access to live neurons from individuals with HD. The invention of cell reprogramming provides a revolutionary technique for the study, and potential treatment, of neurological conditions. Cell reprogramming technologies allow for the generation of live disease-affected neurons from patients with neurological conditions, becoming a primary technique for modelling these conditions in vitro. The ability to generate HD-affected neurons has widespread applications for investigating the pathogenesis of HD, the identification of new therapeutic targets, and for high-throughput drug screening. Cell reprogramming also offers a potential autologous source of cells for HD cell replacement therapy. This review provides a comprehensive analysis of the use of cell reprogramming to model HD and a discussion on recent advancements in cell reprogramming technologies that will benefit the HD field.
Collapse
|
14
|
Bang S, Lee S, Choi N, Kim HN. Emerging Brain-Pathophysiology-Mimetic Platforms for Studying Neurodegenerative Diseases: Brain Organoids and Brains-on-a-Chip. Adv Healthc Mater 2021; 10:e2002119. [PMID: 34028201 DOI: 10.1002/adhm.202002119] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/25/2021] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases are a group of disorders characterized by progressive degeneration of the structural and functional integrity of the central and peripheral nervous systems. Millions of people suffer from degenerative brain diseases worldwide, and the mortality continues to increase every year, causing a growing demand for knowledge of the underlying mechanisms and development of therapeutic targets. Conventional 2D-based cell culture platforms and animal models cannot fully recapitulate the pathophysiology, and this has limited the capability for estimating drug efficacy. Recently, engineered platforms, including brain organoids and brain-on-a-chip, have emerged. They mimic the physiology of brain tissue and reflect the fundamental pathophysiological signatures of neurodegenerative diseases, such as the accumulation of neurotoxic proteins, structural abnormalities, and functional loss. In this paper, recent advances in brain-mimetic platforms and their potential for modeling features of neurodegenerative diseases in vitro are reviewed. The development of a physiologically relevant model should help overcome unresolved neurodegenerative diseases.
Collapse
Affiliation(s)
- Seokyoung Bang
- Brain Science Institute Korea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea
| | - Songhyun Lee
- Department of Medical Engineering Yonsei University College of Medicine Seoul 03722 Republic of Korea
| | - Nakwon Choi
- Brain Science Institute Korea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea
- KU‐KIST Graduate School of Converging Science and Technology Korea University Seoul 02841 Republic of Korea
| | - Hong Nam Kim
- Brain Science Institute Korea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea
- Division of Bio‐Medical Science & Technology KIST School Korea University of Science and Technology (UST) Seoul 02792 Republic of Korea
| |
Collapse
|
15
|
Jodeiri Farshbaf M, Alviña K. Multiple Roles in Neuroprotection for the Exercise Derived Myokine Irisin. Front Aging Neurosci 2021; 13:649929. [PMID: 33935687 PMCID: PMC8086837 DOI: 10.3389/fnagi.2021.649929] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Exercise has multiple beneficial effects on health including decreasing the risk of neurodegenerative diseases. Such effects are thought to be mediated (at least in part) by myokines, a collection of cytokines and other small proteins released from skeletal muscles. As an endocrine organ, skeletal muscle synthesizes and secretes a wide range of myokines which contribute to different functions in different organs, including the brain. One such myokine is the recently discovered protein Irisin, which is secreted into circulation from skeletal muscle during exercise from its membrane bound precursor Fibronectin type III domain-containing protein 5 (FNDC5). Irisin contributes to metabolic processes such as glucose homeostasis and browning of white adipose tissue. Irisin also crosses the blood brain barrier and initiates a neuroprotective genetic program in the hippocampus that culminates with increased expression of brain derived neurotrophic factor (BDNF). Furthermore, exercise and FNDC5/Irisin have been shown to have several neuroprotective effects against injuries in ischemia and neurodegenerative disease models, including Alzheimer's disease. In addition, Irisin has anxiolytic and antidepressant effects. In this review we present and summarize recent findings on the multiple effects of Irisin on neural function, including signaling pathways and mechanisms involved. We also discuss how exercise can positively influence brain function and mental health via the "skeletal muscle-brain axis." While there are still many unanswered questions, we put forward the idea that Irisin is a potentially essential mediator of the skeletal muscle-brain crosstalk.
Collapse
Affiliation(s)
| | - Karina Alviña
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States.,Department of Neuroscience, University of Florida, Gainesville, FL, United States
| |
Collapse
|
16
|
Raj A, Powell F. Network model of pathology spread recapitulates neurodegeneration and selective vulnerability in Huntington's Disease. Neuroimage 2021; 235:118008. [PMID: 33789134 DOI: 10.1016/j.neuroimage.2021.118008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/16/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022] Open
Abstract
Huntington's Disease (HD), an autosomal dominant genetic disorder caused by a mutation in the Huntingtin gene (HTT), displays a stereotyped topography in the human brain and a stereotyped progression, initially appearing in the striatum. Like other degenerative diseases, spatial topography of HD is divorced from where implicated genes are expressed, a dissociation whose mechanistic underpinning is not currently understood. Cell autonomous molecular factors characterized by gene expression signatures, including proteolytic and post translational modifications, play a role in vulnerability to disease. Non-autonomous mechanisms, likely involving the brain's anatomic or functional connectivity patterns, might also be responsible for selective vulnerability in HD. Leveraging a large dataset of 635 subjects from a multinational study, this paper tests various cell-autonomous and non-autonomous models that can explain HD topography. We test whether the expression patterns of implicated genes is sufficient to explain regional HD atrophy, or whether the network transmission of protein products is required to explain them. We find that network models are capable of predicting, to a high degree, observed atrophy in human subjects. Lastly, we propose a model of anterograde network transmission, and show that it is the most parsimonious yet most likely to explain observed atrophy patterns in HD. Collectively, these data indicate that pathology spread in HD may be mediated by the brain's intrinsic structural network organization. This is the first study to systematically and quantitatively test multiple hypotheses of pathology spread in living human subjects with HD.
Collapse
Affiliation(s)
- Ashish Raj
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, USA; UCSF-UC Berkeley Graduate Program in BioEngineering, University of California at San Francisco, USA; Department of Radiology, Weill Cornell Medical College of Cornell University, 407 E. 61 Street, RR106, New York, NY 10065, USA.
| | - Fon Powell
- Department of Radiology, Weill Cornell Medical College of Cornell University, 407 E. 61 Street, RR106, New York, NY 10065, USA
| |
Collapse
|
17
|
Hecklau K, Mueller S, Koch SP, Mehkary MH, Kilic B, Harms C, Boehm-Sturm P, Yildirim F. The Effects of Selective Inhibition of Histone Deacetylase 1 and 3 in Huntington's Disease Mice. Front Mol Neurosci 2021; 14:616886. [PMID: 33679321 PMCID: PMC7925995 DOI: 10.3389/fnmol.2021.616886] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/27/2021] [Indexed: 01/15/2023] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease characterized by a late clinical onset of psychiatric, cognitive, and motor symptoms. Transcriptional dysregulation is an early and central disease mechanism which is accompanied by epigenetic alterations in HD. Previous studies demonstrated that targeting transcriptional changes by inhibition of histone deacetylases (HDACs), especially the class I HDACs, provides therapeutic effects. Yet, their exact mechanisms of action and the features of HD pathology, on which these inhibitors act remain to be elucidated. Here, using transcriptional profiling, we found that selective inhibition of HDAC1 and HDAC3 by RGFP109 alleviated transcriptional dysregulation of a number of genes, including the transcription factor genes Neurod2 and Nr4a2, and gene sets and programs, especially those that are associated to insulin-like growth factor pathway, in the striatum of R6/1 mice. RGFP109 treatment led to a modest improvement of the motor skill learning and coordination deficit on the RotaRod test, while it did not alter the locomotor and anxiety-like phenotypes in R6/1 animals. We also found, by volumetric MRI, a widespread brain atrophy in the R6/1 mice at the symptomatic disease stage, on which RGFP109 showed no significant effects. Collectively, our combined work suggests that specific HDAC1 and HDAC3 inhibition may offer benefits for alleviating the motor phenotypic deficits and transcriptional dysregulation in HD.
Collapse
Affiliation(s)
- Katharina Hecklau
- Department of Neuropsychiatry, Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Susanne Mueller
- NeuroCure Cluster of Excellence, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité – Universitätsmedizin Berlin, Berlin, Germany
- Charité Core Facility 7T Experimental MRIs, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan Paul Koch
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité – Universitätsmedizin Berlin, Berlin, Germany
- Charité Core Facility 7T Experimental MRIs, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Mustafa Hussain Mehkary
- Department of Neuropsychiatry, Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Busra Kilic
- Department of Neuropsychiatry, Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Harms
- NeuroCure Cluster of Excellence, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité – Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Philipp Boehm-Sturm
- NeuroCure Cluster of Excellence, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité – Universitätsmedizin Berlin, Berlin, Germany
- Charité Core Facility 7T Experimental MRIs, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Ferah Yildirim
- Department of Neuropsychiatry, Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
18
|
Chen F, Chen H, Chen Y, Wei W, Sun Y, Zhang L, Cui L, Wang Y. Dysfunction of the SNARE complex in neurological and psychiatric disorders. Pharmacol Res 2021; 165:105469. [PMID: 33524541 DOI: 10.1016/j.phrs.2021.105469] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/30/2020] [Accepted: 01/24/2021] [Indexed: 02/07/2023]
Abstract
The communication between neurons constitutes the basis of all neural activities, and synaptic vesicle exocytosis is the fundamental biological event that mediates most communication between neurons in the central nervous system. The SNARE complex is the core component of the protein machinery that facilitates the fusion of synaptic vesicles with presynaptic terminals and thereby the release of neurotransmitters. In synapses, each release event is dependent on the assembly of the SNARE complex. In recent years, basic research on the SNARE complex has provided a clearer understanding of the mechanism underlying the formation of the SNARE complex and its role in vesicle formation. Emerging evidence indicates that abnormal expression or dysfunction of the SNARE complex in synapse physiology might contribute to abnormal neurotransmission and ultimately to synaptic dysfunction. Clinical research using postmortem tissues suggests that SNARE complex dysfunction is correlated with various neurological diseases, and some basic research has also confirmed the important role of the SNARE complex in the pathology of these diseases. Genetic and pharmacogenetic studies suggest that the SNARE complex and individual proteins might represent important molecular targets in neurological disease. In this review, we summarize the recent progress toward understanding the SNARE complex in regulating membrane fusion events and provide an update of the recent discoveries from clinical and basic research on the SNARE complex in neurodegenerative, neuropsychiatric, and neurodevelopmental diseases.
Collapse
Affiliation(s)
- Feng Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Huiyi Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yanting Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wenyan Wei
- Department of Gerontology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yuanhong Sun
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Lu Zhang
- The First Clinical College, Guangdong Medical University, Zhanjiang, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| | - Yan Wang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China; Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiao tong University, Xi'an, China.
| |
Collapse
|
19
|
Kot K, Łanocha-Arendarczyk N, Kosik-Bogacka D. Immunopathogenicity of Acanthamoeba spp. in the Brain and Lungs. Int J Mol Sci 2021; 22:1261. [PMID: 33514026 PMCID: PMC7865479 DOI: 10.3390/ijms22031261] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Free-living amoebas, including Acanthamoeba spp., are widely distributed in soil, water, and air. They are capable of causing granulomatous amebic encephalitis, Acanthamoeba pneumonia, Acanthamoeba keratitis, and disseminated acanthamoebiasis. Despite low occurrence worldwide, the mortality rate of Acanthamoeba spp. infections is very high, especially in immunosuppressed hosts. Acanthamoeba infections are a medical problem, owing to limited improvement in diagnostics and treatment, which is associated with incomplete knowledge of pathophysiology, pathogenesis, and the host immune response against Acanthamoeba spp. infection. The aim of this review is to present the biochemical and molecular mechanisms of Acanthamoeba spp.-host interactions, including the expression of Toll-like receptors, mechanisms of an immune response, the activity of metalloproteinases, the secretion of antioxidant enzymes, and the expression and activity of cyclooxygenases. We show the relationship between Acanthamoeba spp. and the host at the cellular level and host defense reactions that lead to changes in the selected host's organs.
Collapse
Affiliation(s)
- Karolina Kot
- Department of Biology and Medical Parasitology, Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (K.K.); (N.Ł.-A.)
| | - Natalia Łanocha-Arendarczyk
- Department of Biology and Medical Parasitology, Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (K.K.); (N.Ł.-A.)
| | - Danuta Kosik-Bogacka
- Independent Laboratory of Pharmaceutical Botany, Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| |
Collapse
|
20
|
Brattico E, Bonetti L, Ferretti G, Vuust P, Matrone C. Putting Cells in Motion: Advantages of Endogenous Boosting of BDNF Production. Cells 2021; 10:cells10010183. [PMID: 33477654 PMCID: PMC7831493 DOI: 10.3390/cells10010183] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/24/2020] [Accepted: 01/08/2021] [Indexed: 12/16/2022] Open
Abstract
Motor exercise, such as sport or musical activities, helps with a plethora of diseases by modulating brain functions in neocortical and subcortical regions, resulting in behavioural changes related to mood regulation, well-being, memory, and even cognitive preservation in aging and neurodegenerative diseases. Although evidence is accumulating on the systemic neural mechanisms mediating these brain effects, the specific mechanisms by which exercise acts upon the cellular level are still under investigation. This is particularly the case for music training, a much less studied instance of motor exercise than sport. With regards to sport, consistent neurobiological research has focused on the brain-derived neurotrophic factor (BDNF), an essential player in the central nervous system. BDNF stimulates the growth and differentiation of neurons and synapses. It thrives in the hippocampus, the cortex, and the basal forebrain, which are the areas vital for memory, learning, and higher cognitive functions. Animal models and neurocognitive experiments on human athletes converge in demonstrating that physical exercise reliably boosts BDNF levels. In this review, we highlight comparable early findings obtained with animal models and elderly humans exposed to musical stimulation, showing how perceptual exposure to music might affect BDNF release, similar to what has been observed for sport. We subsequently propose a novel hypothesis that relates the neuroplastic changes in the human brains after musical training to genetically- and exercise-driven BDNF levels.
Collapse
Affiliation(s)
- Elvira Brattico
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, 8000 Aarhus, Denmark; (L.B.); (P.V.)
- Department of Education, Psychology, Communication, University of Bari “Aldo Moro”, 70121 Bari, Italy
- Correspondence: (E.B.); (C.M.)
| | - Leonardo Bonetti
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, 8000 Aarhus, Denmark; (L.B.); (P.V.)
| | - Gabriella Ferretti
- Unit of Pharmacology, Department of Neuroscience, Faculty of Medicine, University of Naples Federico II, via Pansini 5, 80131 Naples, Italy;
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, 8000 Aarhus, Denmark; (L.B.); (P.V.)
| | - Carmela Matrone
- Unit of Pharmacology, Department of Neuroscience, Faculty of Medicine, University of Naples Federico II, via Pansini 5, 80131 Naples, Italy;
- Correspondence: (E.B.); (C.M.)
| |
Collapse
|
21
|
Potential role of TrkB agonist in neuronal survival by promoting CREB/BDNF and PI3K/Akt signaling in vitro and in vivo model of 3-nitropropionic acid (3-NP)-induced neuronal death. Apoptosis 2020; 26:52-70. [PMID: 33226552 DOI: 10.1007/s10495-020-01645-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2020] [Indexed: 02/06/2023]
Abstract
Striatal neurons depends on an afferent supply of brain-derived neurotrophic factor-(BDNF) that explicitly interacts with tropomyosin receptor kinase B (TrkB) receptor and performs sundry functions including synaptic plasticity, neuronal differentiation and growth. Therefore, we aimed to scrutinize an active molecule that functions identical to BDNF in activating TrkB receptor and it's downstream targets for restoring neuronal survival in Huntington disease (HD). Data from in vitro Neuro-2a cell line showed that treatment with 7,8-dihydroxyflavone (7,8-DHF), improved 3-nitropropionic acid (3-NP) induced neuronal death by stabilizing the loss of mitochondrial membrane potential and transiently increased the activity of cAMP-response element-binding protein (CREB) and BDNF via TrkB receptor activation. Consistent with in vitro findings, our in vivo results stated that treatment with 7,8-DHF at a dose of 10 mg/kg body weight ameliorated various behavior alterations caused by 3-NP intoxication. Further histopathological and electron microscopy evidences from striatal region of 3-NP mice brain treated with 7,8-DHF showed more improved neurons with intact mitochondria and less autophagic vacuoles. Protein expression analysis of both in vitro and in vivo study showed that 7,8-DHF promotes neuronal survival through upregulation and phosphorylation of phosphatidylinositol 3-kinase (PI3K) and Akt at serine-473/threonine-308). Akt phosphorylation additionally phosphorylates Bad at serine-136 and inhibits its translocation to mitochondria thereby promoting mitochondrial biogenesis, enhanced ATP production and inhibit apoptosis mediated neuronal death. These aforementioned findings help in strengthening our hypothesis and has come up with a novel neuroprotective mechanism of 7,8-DHF against 3-NP induced neuronal death.
Collapse
|
22
|
Cepeda C, Levine MS. Synaptic Dysfunction in Huntington's Disease: Lessons from Genetic Animal Models. Neuroscientist 2020; 28:20-40. [PMID: 33198566 DOI: 10.1177/1073858420972662] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The understanding of the functional and structural changes occurring in the cerebral cortex and basal ganglia in Huntington's disease (HD) has benefited considerably from the generation of genetic animal models. Most studies of synaptic alterations in HD models have focused on the striatum, but a more complete picture of synaptic dysfunction in the cortico-basal ganglia-cortical loop is emerging. Here, we provide a review and analysis of current developments in the study of synaptic alterations in these areas using HD rodent models. Recent evidence indicates that cortical maldevelopment plays a role in synaptic dysfunction along the corticostriatal pathway that may have its roots in the way mutant huntingtin interacts with synaptic proteins. Furthermore, a progressive disconnection in the corticostriatal pathway leads to abnormal function engaging extrasynaptic N-methyl-D-aspartate glutamate receptors that contribute to eventual cell degeneration. In addition, biphasic increases followed by decreases in glutamate and dopamine release in the striatum could explain contrasting symptomatology in early and late stages of the disease. Changes in striatal output regions also are beginning to be examined. Finally, we highlight some therapeutic avenues aimed at rescuing synaptic dysfunction.
Collapse
Affiliation(s)
- Carlos Cepeda
- IDDRC, Jane and Terry Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Michael S Levine
- IDDRC, Jane and Terry Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
23
|
Manickam N, Radhakrishnan RK, Vergil Andrews JF, Selvaraj DB, Kandasamy M. Cell cycle re-entry of neurons and reactive neuroblastosis in Huntington's disease: Possibilities for neural-glial transition in the brain. Life Sci 2020; 263:118569. [PMID: 33049278 DOI: 10.1016/j.lfs.2020.118569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023]
Abstract
Huntington's disease (HD) is an autosomal dominant pathogenic condition that causes progressive degeneration of GABAergic neurons in the brain. The abnormal expansion of the CAG repeats in the exon 1 of the Huntingtin gene (HTT gene) has been associated with the onset and progression of movement disorders, psychiatric disturbance and cognitive decline in HD. Microglial activation and reactive astrogliosis have been recognized as the key pathogenic cellular events in the brains of HD subjects. Besides, HD has been characterized by induced quiescence of neural stem cells (NSCs), reactive neuroblastosis and reduced survival of newborn neurons in the brain. Strikingly, the expression of the mutant HTT gene has been reported to induce the cell cycle re-entry of neurons in HD brains. However, the underlying basis for the induction of cell cycle in neurons and the fate of dedifferentiating neurons in the pathological brain remain largely unknown. Thus, this review article revisits the reports on the regulation of key signaling pathways responsible for altered cell cycle events in diseased brains, with special reference to HD and postulates the occurrence of reactive neuroblastosis as a consequential cellular event of dedifferentiation of neurons. Meanwhile, a substantial number of studies indicate that many neuropathogenic events are associated with the expression of potential glial cell markers by neuroblasts. Taken together, this article represents a hypothesis that transdifferentiation of neurons into glial cells might be highly possible through the transient generation of reactive neuroblasts in the brain upon certain pathological conditions.
Collapse
Affiliation(s)
- Nivethitha Manickam
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Risna Kanjirassery Radhakrishnan
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Jemi Feiona Vergil Andrews
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Divya Bharathi Selvaraj
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Mahesh Kandasamy
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India; Faculty Recharge Programme, University Grants Commission (UGC-FRP), New Delhi 110002, India.
| |
Collapse
|
24
|
Saba J, López Couselo F, Turati J, Carniglia L, Durand D, de Laurentiis A, Lasaga M, Caruso C. Astrocytes from cortex and striatum show differential responses to mitochondrial toxin and BDNF: implications for protection of striatal neurons expressing mutant huntingtin. J Neuroinflammation 2020; 17:290. [PMID: 33023623 PMCID: PMC7542133 DOI: 10.1186/s12974-020-01965-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/24/2020] [Indexed: 12/30/2022] Open
Abstract
Background Evidence shows significant heterogeneity in astrocyte gene expression and function. We previously demonstrated that brain-derived neurotrophic factor (BDNF) exerts protective effects on whole brain primary cultured rat astrocytes treated with 3-nitropropionic acid (3NP), a mitochondrial toxin widely used as an in vitro model of Huntington’s disease (HD). Therefore, we now investigated 3NP and BDNF effects on astrocytes from two areas involved in HD: the striatum and the entire cortex, and their involvement in neuron survival. Methods We prepared primary cultured rat cortical or striatal astrocytes and treated them with BDNF and/or 3NP for 24 h. In these cells, we assessed expression of astrocyte markers, BDNF receptor, and glutamate transporters, and cytokine release. We prepared astrocyte-conditioned medium (ACM) from cortical and striatal astrocytes and tested its effect on a cellular model of HD. Results BDNF protected astrocytes from 3NP-induced death, increased expression of its own receptor, and activation of ERK in both cortical and striatal astrocytes. However, BDNF modulated glutamate transporter expression differently by increasing GLT1 and GLAST expression in cortical astrocytes but only GLT1 expression in striatal astrocytes. Striatal astrocytes released higher amounts of tumor necrosis factor-α than cortical astrocytes in response to 3NP but BDNF decreased this effect in both populations. 3NP decreased transforming growth factor-β release only in cortical astrocytes, whereas BDNF treatment increased its release only in striatal astrocytes. Finally, we evaluated ACM effect on a cellular model of HD: the rat striatal neuron cell line ST14A expressing mutant human huntingtin (Q120) or in ST14A cells expressing normal human huntingtin (Q15). Neither striatal nor cortical ACM modified the viability of Q15 cells. Only ACM from striatal astrocytes treated with BDNF and ACM from 3NP + BDNF-treated striatal astrocytes protected Q120 cells, whereas ACM from cortical astrocytes did not. Conclusions Data suggest that cortical and striatal astrocytes respond differently to mitochondrial toxin 3NP and BDNF. Moreover, striatal astrocytes secrete soluble neuroprotective factors in response to BDNF that selectively protect neurons expressing mutant huntingtin implicating that BDNF modulation of striatal astrocyte function has therapeutic potential against neurodegeneration. Graphical abstract ![]()
Collapse
Affiliation(s)
- Julieta Saba
- Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Federico López Couselo
- Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juan Turati
- Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Lila Carniglia
- Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniela Durand
- Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Andrea de Laurentiis
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO). UBA-CONICET, Paraguay 2155, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mercedes Lasaga
- Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carla Caruso
- Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
25
|
Kim HS, Jeon I, Noh JE, Lee H, Hong KS, Lee N, Pei Z, Song J. Intracerebral Transplantation of BDNF-overexpressing Human Neural Stem Cells (HB1.F3.BDNF) Promotes Migration, Differentiation and Functional Recovery in a Rodent Model of Huntington's Disease. Exp Neurobiol 2020; 29:130-137. [PMID: 32408403 PMCID: PMC7237270 DOI: 10.5607/en20011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023] Open
Abstract
Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder caused by abnormally expanded CAG repeats in the huntingtin gene. The huntingtin gene mutation leads to the progressive degeneration of striatal GABAergic medium spiny neurons (MSN) and reduces the level of brain-derived neurotrophic factor (BDNF) in HD patient's brain. BDNF is an essential neurotrophic factor for the cortico-striatal synaptic activity and the survival of GABAergic neurons. In this study, we transplanted BDNF-overexpressing human neural stem cells (HB1.F3.BDNF) into the contra-lateral side of unilateral quinolinic acid (QA)-lesioned striatum of HD rat model. The results of in vivo transplantation were monitored using various behavioral tests, 4.7 T animal magnetic resonance imaging (MRI) and immunohistochemical staining. We observed that the QA-lesioned rats receiving HB1.F3.BDNF cells exhibited significant behavioral improvements in the stepping, rotarod and apomorphine-induced rotation tests. Interestingly, contralaterally transplanted cells were migrated to the QA-lesioned striatum and the size of lateral ventricle was reduced. Histological analyses further revealed that the transplanted cells, which had migrated to the QA lesion site, were differentiated into the cells of GABAergic, MSN-type neurons expressing DARPP-32, and neural networks were established between the transplanted cells and the host brain, as revealed by retrograde tracing. Finally, there was a significant reduction of inflammatory response in HB1.F3.BDNF-transplanted HD animal model, compared with vehicle-transplanted group. Taken together, these results suggest that HB1.F3.BDNF can be an effective therapeutic strategy to treat HD patients in the future.
Collapse
Affiliation(s)
- Hyun Sook Kim
- Department of Neurology, CHA Bundang Medical Center, CHA University, Seongnam 3496, Korea
| | - Iksoo Jeon
- CHA Stem Cell Institute, Department of Biomedical Science, CHA University, Seongnam 13488, Korea
| | - Jeong-Eun Noh
- CHA Stem Cell Institute, Department of Biomedical Science, CHA University, Seongnam 13488, Korea
| | - Hyunseung Lee
- Division of Magnetic Imaging Resonance, Korea Basic Science Institute, Cheongju 28119, Korea
| | - Kwan Soo Hong
- Division of Magnetic Imaging Resonance, Korea Basic Science Institute, Cheongju 28119, Korea
| | - Nayeon Lee
- CHA Stem Cell Institute, Department of Biomedical Science, CHA University, Seongnam 13488, Korea
| | - Zhong Pei
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affi liated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Jihwan Song
- CHA Stem Cell Institute, Department of Biomedical Science, CHA University, Seongnam 13488, Korea
- iPS Bio, Inc., Seongnam 1322, Korea
| |
Collapse
|
26
|
Crevier-Sorbo G, Rymar VV, Crevier-Sorbo R, Sadikot AF. Thalamostriatal degeneration contributes to dystonia and cholinergic interneuron dysfunction in a mouse model of Huntington's disease. Acta Neuropathol Commun 2020; 8:14. [PMID: 32033588 PMCID: PMC7007676 DOI: 10.1186/s40478-020-0878-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/03/2020] [Indexed: 01/18/2023] Open
Abstract
Huntington’s disease (HD) is an autosomal dominant trinucleotide repeat disorder characterized by choreiform movements, dystonia and striatal neuronal loss. Amongst multiple cellular processes, abnormal neurotransmitter signalling and decreased trophic support from glutamatergic cortical afferents are major mechanisms underlying striatal degeneration. Recent work suggests that the thalamostriatal (TS) system, another major source of glutamatergic input, is abnormal in HD although its phenotypical significance is unknown. We hypothesized that TS dysfunction plays an important role in generating motor symptoms and contributes to degeneration of striatal neuronal subtypes. Our results using the R6/2 mouse model of HD indicate that neurons of the parafascicular nucleus (PF), the main source of TS afferents, degenerate at an early stage. PF lesions performed prior to motor dysfunction or striatal degeneration result in an accelerated dystonic phenotype and are associated with premature loss of cholinergic interneurons. The progressive loss of striatal medium spiny neurons and parvalbumin-positive interneurons observed in R6/2 mice is unaltered by PF lesions. Early striatal cholinergic ablation using a mitochondrial immunotoxin provides evidence for increased cholinergic vulnerability to cellular energy failure in R6/2 mice, and worsens the dystonic phenotype. The TS system therefore contributes to trophic support of striatal interneuron subtypes in the presence of neurodegenerative stress, and TS deafferentation may be a novel cell non-autonomous mechanism contributing to the pathogenesis of HD. Furthermore, behavioural experiments demonstrate that the TS system and striatal cholinergic interneurons are key motor-network structures involved in the pathogenesis of dystonia. This work suggests that treatments aimed at rescuing the TS system may preserve important elements of striatal structure and function and provide symptomatic relief in HD.
Collapse
|
27
|
Blumenstock S, Dudanova I. Cortical and Striatal Circuits in Huntington's Disease. Front Neurosci 2020; 14:82. [PMID: 32116525 PMCID: PMC7025546 DOI: 10.3389/fnins.2020.00082] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/21/2020] [Indexed: 12/28/2022] Open
Abstract
Huntington's disease (HD) is a hereditary neurodegenerative disorder that typically manifests in midlife with motor, cognitive, and/or psychiatric symptoms. The disease is caused by a CAG triplet expansion in exon 1 of the huntingtin gene and leads to a severe neurodegeneration in the striatum and cortex. Classical electrophysiological studies in genetic HD mouse models provided important insights into the disbalance of excitatory, inhibitory and neuromodulatory inputs, as well as progressive disconnection between the cortex and striatum. However, the involvement of local cortical and striatal microcircuits still remains largely unexplored. Here we review the progress in understanding HD-related impairments in the cortical and basal ganglia circuits, and outline new opportunities that have opened with the development of modern circuit analysis methods. In particular, in vivo imaging studies in mouse HD models have demonstrated early structural and functional disturbances within the cortical network, and optogenetic manipulations of striatal cell types have started uncovering the causal roles of certain neuronal populations in disease pathogenesis. In addition, the important contribution of astrocytes to HD-related circuit defects has recently been recognized. In parallel, unbiased systems biology studies are providing insights into the possible molecular underpinnings of these functional defects at the level of synaptic signaling and neurotransmitter metabolism. With these approaches, we can now reach a deeper understanding of circuit-based HD mechanisms, which will be crucial for the development of effective and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Sonja Blumenstock
- Department of Molecules – Signaling – Development, Max Planck Institute of Neurobiology, Martinsried, Germany
- Molecular Neurodegeneration Group, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Irina Dudanova
- Molecular Neurodegeneration Group, Max Planck Institute of Neurobiology, Martinsried, Germany
| |
Collapse
|
28
|
Creus-Muncunill J, Ehrlich ME. Cell-Autonomous and Non-cell-Autonomous Pathogenic Mechanisms in Huntington's Disease: Insights from In Vitro and In Vivo Models. Neurotherapeutics 2019; 16:957-978. [PMID: 31529216 PMCID: PMC6985401 DOI: 10.1007/s13311-019-00782-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Huntington's disease (HD) is an autosomal dominant disorder caused by an expansion in the trinucleotide CAG repeat in exon-1 in the huntingtin gene, located on chromosome 4. When the number of trinucleotide CAG exceeds 40 repeats, disease invariably is manifested, characterized by motor, cognitive, and psychiatric symptoms. The huntingtin (Htt) protein and its mutant form (mutant huntingtin, mHtt) are ubiquitously expressed but although multiple brain regions are affected, the most vulnerable brain region is the striatum. Striatal medium-sized spiny neurons (MSNs) preferentially degenerate, followed by the cortical pyramidal neurons located in layers V and VI. Proposed HD pathogenic mechanisms include, but are not restricted to, excitotoxicity, neurotrophic support deficits, collapse of the protein degradation mechanisms, mitochondrial dysfunction, transcriptional alterations, and disorders of myelin. Studies performed in cell type-specific and regionally selective HD mouse models implicate both MSN cell-autonomous properties and cell-cell interactions, particularly corticostriatal but also with non-neuronal cell types. Here, we review the intrinsic properties of MSNs that contribute to their selective vulnerability and in addition, we discuss how astrocytes, microglia, and oligodendrocytes, together with aberrant corticostriatal connectivity, contribute to HD pathophysiology. In addition, mHtt causes cell-autonomous dysfunction in cell types other than MSNs. These findings have implications in terms of therapeutic strategies aimed at preventing neuronal dysfunction and degeneration.
Collapse
Affiliation(s)
- Jordi Creus-Muncunill
- Department of Neurology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, 10029, USA
| | - Michelle E Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, 10029, USA.
| |
Collapse
|
29
|
Brito V, Giralt A, Masana M, Royes A, Espina M, Sieiro E, Alberch J, Castañé A, Girault JA, Ginés S. Cyclin-Dependent Kinase 5 Dysfunction Contributes to Depressive-like Behaviors in Huntington's Disease by Altering the DARPP-32 Phosphorylation Status in the Nucleus Accumbens. Biol Psychiatry 2019; 86:196-207. [PMID: 31060804 DOI: 10.1016/j.biopsych.2019.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/15/2019] [Accepted: 03/04/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Depression is the most common psychiatric condition in Huntington's disease (HD), with rates more than twice those found in the general population. At the present time, there is no established molecular evidence to use as a basis for depression treatment in HD. Indeed, in some patients, classic antidepressant drugs exacerbate chorea or anxiety. Cyclin-dependent kinase 5 (Cdk5) has been involved in processes associated with anxiety and depression. This study evaluated the involvement of Cdk5 in the development and prevalence of depressive-like behaviors in HD and aimed to validate Cdk5 as a target for depression treatment. METHODS We evaluated the impact of pharmacological inhibition of Cdk5 in depressive-like and anxiety-like behaviors in Hdh+/Q111 knock-in mutant mice by using a battery of behavioral tests. Biochemical and morphological studies were performed to define the molecular mechanisms acting downstream of Cdk5 activation. A double huntingtin/DARPP-32 (dopamine- and cAMP-regulated phosphoprotein 32) knock-in mutant mouse was generated to analyze the role of DARPP-32 in HD depression. RESULTS We found that Hdh+/Q111 mutant mice exhibited depressive-like, but not anxiety-like, behaviors starting at 2 months of age. Cdk5 inhibition by roscovitine infusion prevented depressive-like behavior and reduced DARPP-32 phosphorylation at Thr75 in the nucleus accumbens. Hdh+/Q111 mice heterozygous for DARPP-32 Thr75Ala point mutation were resistant to depressive-like behaviors. We identified β-adducin phosphorylation as a Cdk5 downstream mechanism potentially mediating structural spine plasticity changes in the nucleus accumbens and depressive-like behavior. CONCLUSIONS These results point to Cdk5 in the nucleus accumbens as a critical contributor to depressive-like behaviors in HD mice by altering DARPP-32/β-adducin signaling and disrupting the dendritic spine cytoskeleton.
Collapse
Affiliation(s)
- Veronica Brito
- Department of Biomedical Science, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Albert Giralt
- Department of Biomedical Science, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Mercè Masana
- Department of Biomedical Science, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Aida Royes
- Department of Biomedical Science, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Marc Espina
- Department of Biomedical Science, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Esther Sieiro
- Department of Biomedical Science, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Jordi Alberch
- Department of Biomedical Science, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Anna Castañé
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Department of Neurochemistry and Neuropharmacology, CSIC-Institut d'Investigacions Biomèdiques de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain
| | - Jean-Antoine Girault
- Inserm UMR-S 839, Paris, France; Sorbonne Université, Paris, France; Institut du Fer a Moulin, Paris, France
| | - Silvia Ginés
- Department of Biomedical Science, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain.
| |
Collapse
|
30
|
Cho IK, Yang B, Forest C, Qian L, Chan AWS. Amelioration of Huntington's disease phenotype in astrocytes derived from iPSC-derived neural progenitor cells of Huntington's disease monkeys. PLoS One 2019; 14:e0214156. [PMID: 30897183 PMCID: PMC6428250 DOI: 10.1371/journal.pone.0214156] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/07/2019] [Indexed: 11/30/2022] Open
Abstract
Huntington’s disease (HD) is a devastating monogenic, dominant, hereditary, neurodegenerative disease. HD is caused by the expansion of CAG repeats in exon 1 of the huntingtin (HTT) gene, IT15, resulting in an expanded polyglutamine (polyQ) residue in the N-terminus of the HTT protein. HD is characterized by the accumulation of mutant HTT (mHTT) in neural and somatic cells. Progressive brain atrophy occurs initially in the striatum and extends to different brain regions with progressive decline in cognitive, behavioral and motor functions. Astrocytes are the most abundant cell type in the brain and play an essential role in neural development and maintaining homeostasis in the central nervous system (CNS). There is increasing evidence supporting the involvement of astrocytes in the development of neurodegenerative diseases such as Parkinson’s disease (PD), Huntington’s disease (HD), Alzheimer’s disease (AD), and amyotrophic lateral sclerosis (ALS). We have generated neural progenitor cells (NPCs) from induced pluripotent stem cells (iPSCs) of transgenic HD monkeys as a model for studying HD pathogenesis. We have reported that NPCs can be differentiated in vitro into mature neural cells, such as neurons and glial cells, and are an excellent tool to study the pathogenesis of HD. To better understand the role of astrocytes in HD pathogenesis and discover new therapies to treat HD, we have developed an astrocyte differentiation protocol and evaluated the efficacy of RNAi to ameliorate HD phenotypes in astrocytes. The resultant astrocytes expressed canonical astrocyte-specific markers examined by immunostaining and real-time PCR. Flow cytometry (FACS) analysis showed that the majority of the differentiated NPCs (95.7%) were positive for an astrocyte specific marker, glial fibrillary acidic protein (GFAP). Functionalities of astrocytes were evaluated by glutamate uptake assay and electrophysiology. Expression of mHTT in differentiated astrocytes induced cytosolic mHTT aggregates and nuclear inclusions, suppressed the expression of SOD2 and PGC1, reduced ability to uptake glutamate, decreased 4-aminopyridine (4-AP) response, and shifted I/V plot measured by electrophysiology, which are consistent with previous reports on HD astrocytes and patient brain samples. However, expression of small-hairpin RNA against HTT (shHD) ameliorated and reversed aforementioned HD phenotypes in astrocytes. This represents a demonstration of a novel non-human primate (NHP) astrocyte model for studying HD pathogenesis and a platform for discovering novel HD treatments.
Collapse
Affiliation(s)
- In Ki Cho
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- * E-mail: (IKC); (AWSC)
| | - Bo Yang
- Neuroscience Core, Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Craig Forest
- Neuroscience Core, Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Lu Qian
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Anthony W. S. Chan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- * E-mail: (IKC); (AWSC)
| |
Collapse
|
31
|
Modulation of Phospho-CREB by Systemically Administered Recombinant BDNF in the Hippocampus of the R6/2 Mouse Model of Huntington's Disease. NEUROSCIENCE JOURNAL 2019; 2019:8363274. [PMID: 30881980 PMCID: PMC6381568 DOI: 10.1155/2019/8363274] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/02/2018] [Accepted: 12/13/2018] [Indexed: 01/07/2023]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease due to an expansion of a trinucleotide repeats in IT15 gene encoding for the protein huntingtin. Motor dysfunction, cognitive decline, and psychiatric disorder are typical clinical signs of HD. In HD, mutated huntingtin causes a major loss of brain derived neurotrophic factor (BDNF), causing striatal atrophy. Moreover, a key involvement of BDNF was observed in the synaptic plasticity that controls the acquisition and/or consolidation of certain forms of memory. We studied changes in hippocampal BDNF and in CREB in the R6/2 mouse model of HD. Moreover, we investigated if the beneficial effects of systemically administered recombinant BDNF observed in the striatum and cortex had an effect also on the hippocampus. Osmotic minipumps that chronically released recombinant BDNF or saline solution from 4 weeks of age until euthanasia were implanted into R6/2 and wild type mice. Our data show that BDNF is severely decreased in the hippocampus of R6/2 mice, while BDNF treatment restored its physiological levels. Moreover, the chronic administration of recombinant BDNF promoted the increment of phosphorylated CREB protein. Our study demonstrates the involvement of hippocampus in the pathology of R6/2 model of HD and correlates the beneficial effects of BDNF administration with increased hippocampal levels of BDNF and pCREB.
Collapse
|
32
|
Suelves N, Miguez A, López-Benito S, Barriga GGD, Giralt A, Alvarez-Periel E, Arévalo JC, Alberch J, Ginés S, Brito V. Early Downregulation of p75 NTR by Genetic and Pharmacological Approaches Delays the Onset of Motor Deficits and Striatal Dysfunction in Huntington's Disease Mice. Mol Neurobiol 2019; 56:935-953. [PMID: 29804232 DOI: 10.1007/s12035-018-1126-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/11/2018] [Indexed: 11/26/2022]
Abstract
Deficits in striatal brain-derived neurotrophic factor (BDNF) delivery and/or BDNF/tropomyosin receptor kinase B (TrkB) signaling may contribute to neurotrophic support reduction and selective early degeneration of striatal medium spiny neurons in Huntington's disease (HD). Furthermore, we and others have demonstrated that TrkB/p75NTR imbalance in vitro increases the vulnerability of striatal neurons to excitotoxic insults and induces corticostriatal synaptic alterations. We have now expanded these studies by analyzing the consequences of BDNF/TrkB/p75NTR imbalance in the onset of motor behavior and striatal neuropathology in HD mice. Our findings demonstrate for the first time that the onset of motor coordination abnormalities, in a full-length knock-in HD mouse model (KI), correlates with the reduction of BDNF and TrkB levels, along with an increase in p75NTR expression. Genetic normalization of p75NTR expression in KI mutant mice delayed the onset of motor deficits and striatal neuropathology, as shown by restored levels of striatal-enriched proteins and dendritic spine density and reduced huntingtin aggregation. We found that the BDNF/TrkB/p75NTR imbalance led to abnormal BDNF signaling, manifested as a diminished activation of TrkB-phospholipase C-gamma pathway but upregulation of c-Jun kinase pathway. Moreover, we confirmed the contribution of the proper balance of BDNF/TrkB/p75NTR on HD pathology by a pharmacological approach using fingolimod. We observed that chronic infusion of fingolimod normalizes p75NTR levels, which is likely to improve motor coordination and striatal neuropathology in HD transgenic mice. We conclude that downregulation of p75NTR expression can delay disease progression suggesting that therapeutic approaches aimed to restore the balance between BDNF, TrkB, and p75NTR could be promising to prevent motor deficits in HD.
Collapse
Affiliation(s)
- Nuria Suelves
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Andrés Miguez
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Saray López-Benito
- Department of Cell Biology and Pathology, Instituto de Neurociencias de Castilla y León (INCyL), University of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Gerardo García-Díaz Barriga
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Albert Giralt
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Elena Alvarez-Periel
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Juan Carlos Arévalo
- Department of Cell Biology and Pathology, Instituto de Neurociencias de Castilla y León (INCyL), University of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Jordi Alberch
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Silvia Ginés
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Verónica Brito
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Barcelona, Spain.
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
33
|
Abstract
Huntington's disease (HD) is a dominantly inherited neurodegenerative disease that results in motor, cognitive and psychiatric dysfunction. It is caused by a polyglutamine repeat expansion mutation in the widely expressed HTT protein. The clinical manifestations of HD have been largely attributed to the neurodegeneration of specific neuronal cell types in the brain. However, it has become clear that other cell types, including astrocytes, play important roles in the pathogenesis of HD. The mutant HTT (mHTT) protein is present in neuronal and non-neuronal cell types throughout the nervous system. Studies designed to understand the contribution of mHTT expression in non-neuronal cell types to HD pathogenesis has lagged considerably behind those focused on neurons. However, the role of astrocytes in HD has received more attention over the last 5-10 years. In this chapter we present an overview of HD and our current understanding of astrocytic involvement in this disease. We describe the neuropathological features of HD and provide evidence of morphological and molecular changes in mHTT expressing astrocytes. We review data from animal models and HD patients that implicate mHTT expressing astrocytes to the progression of HD.
Collapse
Affiliation(s)
- Michelle Gray
- Department of Neurology and Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, 1720 2nd Ave S, CIRC 425B, Birmingham, AL 35294, USA.
| |
Collapse
|
34
|
Weishäupl D, Schneider J, Peixoto Pinheiro B, Ruess C, Dold SM, von Zweydorf F, Gloeckner CJ, Schmidt J, Riess O, Schmidt T. Physiological and pathophysiological characteristics of ataxin-3 isoforms. J Biol Chem 2018; 294:644-661. [PMID: 30455355 DOI: 10.1074/jbc.ra118.005801] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/08/2018] [Indexed: 12/18/2022] Open
Abstract
Ataxin-3 is a deubiquitinating enzyme and the affected protein in the neurodegenerative disorder Machado-Joseph disease (MJD). The ATXN3 gene is alternatively spliced, resulting in protein isoforms that differ in the number of ubiquitin-interacting motifs. Additionally, nonsynonymous SNPs in ATXN3 cause amino acid changes in ataxin-3, and one of these polymorphisms introduces a premature stop codon in one isoform. Here, we examined the effects of different ataxin-3 isoforms and of the premature stop codon on ataxin-3's physiological function and on main disease mechanisms. At the physiological level, we show that alternative splicing and the premature stop codon alter ataxin-3 stability and that ataxin-3 isoforms differ in their enzymatic deubiquitination activity, subcellular distribution, and interaction with other proteins. At the pathological level, we found that the expansion of the polyglutamine repeat leads to a stabilization of ataxin-3 and that ataxin-3 isoforms differ in their aggregation properties. Interestingly, we observed a functional interaction between normal and polyglutamine-expanded ATXN3 allelic variants. We found that interactions between different ATXN3 allelic variants modify the physiological and pathophysiological properties of ataxin-3. Our findings indicate that alternative splicing and interactions between different ataxin-3 isoforms affect not only major aspects of ataxin-3 function but also MJD pathogenesis. Our results stress the importance of considering isoforms of disease-causing proteins and their interplay with the normal allelic variant as disease modifiers in MJD and autosomal-dominantly inherited diseases in general.
Collapse
Affiliation(s)
- Daniel Weishäupl
- From the Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany.,the Center for Rare Diseases, 72076 Tübingen, Germany.,the NGS Competence Center, 72076 Tübingen, Germany.,the Graduate Training Center of Neuroscience, 72074 Tübingen, Germany
| | - Juliane Schneider
- From the Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany.,the Center for Rare Diseases, 72076 Tübingen, Germany.,the NGS Competence Center, 72076 Tübingen, Germany
| | - Barbara Peixoto Pinheiro
- From the Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany.,the Center for Rare Diseases, 72076 Tübingen, Germany.,the NGS Competence Center, 72076 Tübingen, Germany
| | - Corinna Ruess
- From the Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany.,the Center for Rare Diseases, 72076 Tübingen, Germany.,the NGS Competence Center, 72076 Tübingen, Germany
| | - Sandra Maria Dold
- From the Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany.,the Center for Rare Diseases, 72076 Tübingen, Germany.,the NGS Competence Center, 72076 Tübingen, Germany
| | - Felix von Zweydorf
- the German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany, and
| | - Christian Johannes Gloeckner
- the German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany, and.,the Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, 72076 Tübingen, Germany
| | - Jana Schmidt
- From the Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany.,the Center for Rare Diseases, 72076 Tübingen, Germany.,the NGS Competence Center, 72076 Tübingen, Germany
| | - Olaf Riess
- From the Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany.,the Center for Rare Diseases, 72076 Tübingen, Germany.,the NGS Competence Center, 72076 Tübingen, Germany
| | - Thorsten Schmidt
- From the Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany, .,the Center for Rare Diseases, 72076 Tübingen, Germany.,the NGS Competence Center, 72076 Tübingen, Germany
| |
Collapse
|
35
|
Simmons DA. Modulating Neurotrophin Receptor Signaling as a Therapeutic Strategy for Huntington's Disease. J Huntingtons Dis 2018; 6:303-325. [PMID: 29254102 PMCID: PMC5757655 DOI: 10.3233/jhd-170275] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder caused by CAG repeat expansions in the IT15 gene which encodes the huntingtin (HTT) protein. Currently, no treatments capable of preventing or slowing disease progression exist. Disease modifying therapeutics for HD would be expected to target a comprehensive set of degenerative processes given the diverse mechanisms contributing to HD pathogenesis including neuroinflammation, excitotoxicity, and transcription dysregulation. A major contributor to HD-related degeneration is mutant HTT-induced loss of neurotrophic support. Thus, neurotrophin (NT) receptors have emerged as therapeutic targets in HD. The considerable overlap between NT signaling networks and those dysregulated by mutant HTT provides strong theoretical support for this approach. This review will focus on the contributions of disrupted NT signaling in HD-related neurodegeneration and how targeting NT receptors to augment pro-survival signaling and/or to inhibit degenerative signaling may combat HD pathologies. Therapeutic strategies involving NT delivery, peptidomimetics, and the targeting of specific NT receptors (e.g., Trks or p75NTR), particularly with small molecule ligands, are discussed.
Collapse
Affiliation(s)
- Danielle A Simmons
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
36
|
Holley SM, Kamdjou T, Reidling JC, Fury B, Coleal-Bergum D, Bauer G, Thompson LM, Levine MS, Cepeda C. Therapeutic effects of stem cells in rodent models of Huntington's disease: Review and electrophysiological findings. CNS Neurosci Ther 2018; 24:329-342. [PMID: 29512295 DOI: 10.1111/cns.12839] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 02/13/2018] [Accepted: 02/13/2018] [Indexed: 01/01/2023] Open
Abstract
The principal symptoms of Huntington's disease (HD), chorea, cognitive deficits, and psychiatric symptoms are associated with the massive loss of striatal and cortical projection neurons. As current drug therapies only partially alleviate symptoms, finding alternative treatments has become peremptory. Cell replacement using stem cells is a rapidly expanding field that offers such an alternative. In this review, we examine recent studies that use mesenchymal cells, as well as pluripotent, cell-derived products in animal models of HD. Additionally, we provide further electrophysiological characterization of a human neural stem cell line, ESI-017, which has already demonstrated disease-modifying properties in two mouse models of HD. Overall, the field of regenerative medicine represents a viable and promising avenue for the treatment of neurodegenerative disorders including HD.
Collapse
Affiliation(s)
- Sandra M Holley
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Talia Kamdjou
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Jack C Reidling
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, CA, USA
| | - Brian Fury
- Institute for Regenerative Cures, University of California, Davis, Sacramento, CA, USA
| | - Dane Coleal-Bergum
- Institute for Regenerative Cures, University of California, Davis, Sacramento, CA, USA
| | - Gerhard Bauer
- Institute for Regenerative Cures, University of California, Davis, Sacramento, CA, USA
| | - Leslie M Thompson
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, CA, USA.,Department of Neurobiology & Behavior and Department of Psychiatry & Human Behavior, University of California, Irvine, CA, USA.,Sue and Bill Gross Stem Cell Center, University of California, Irvine, CA, USA
| | - Michael S Levine
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| |
Collapse
|
37
|
He K, Qi F, Guo C, Zhan S, Xu H, Liu J, Yang X. Movement deficits and neuronal loss in basal ganglia in TRPC1 deficient mice. Oncotarget 2018; 7:69337-69346. [PMID: 27738307 PMCID: PMC5342481 DOI: 10.18632/oncotarget.12567] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/03/2016] [Indexed: 11/25/2022] Open
Abstract
Transient receptor potential cation (TRPC) channel proteins are abundantly expressed in brain. However, the functions of these TRPC proteins such as TRPC1 are largely unclear. In this study, we reported that TRPC1 deficiency caused movement disorder as measured by swimming test, modified open field test and sunflower seeds eating test. Immunofluorescent staining showed significant loss of both NeuN-positive cells and tyrosine hydroxylase (TH) -positive cells in the caudate putamen (CPu), the external globus pallidus (GPe), and the substantia nigra pars reticulata (SNr) in 5-month-old TRPC1 knockout mice (TRPC1-/-) compared to the wild type (WT) mice. TUNEL staining further revealed that TUNEL-positive cells were significantly increased in the CPu, GPe, and SNr of TRPC1-/- mice. Taken together, these data suggests that TRPC1 is involved in the control of motor function by inhibiting the apoptosis of neuronal cells of basal ganglia.
Collapse
Affiliation(s)
- Kaiwu He
- College of Pharmacy, Jinan University, Guangzhou, China.,Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Fei Qi
- Department of Respiratory Medicine, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Chunni Guo
- Department of Neurology, ShanghaiFirst People's HospitalAffiliated toShanghai Jiaotong University, Shanghai, China
| | - Shuqin Zhan
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Hua Xu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Jianjun Liu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| |
Collapse
|
38
|
Puigdellívol M, Saavedra A, Pérez-Navarro E. Cognitive dysfunction in Huntington's disease: mechanisms and therapeutic strategies beyond BDNF. Brain Pathol 2018; 26:752-771. [PMID: 27529673 DOI: 10.1111/bpa.12432] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 07/08/2016] [Indexed: 12/15/2022] Open
Abstract
One of the main focuses in Huntington's disease (HD) research, as well as in most neurodegenerative diseases, is the development of new therapeutic strategies, as currently there is no treatment to delay or prevent the progression of the disease. Neuronal dysfunction and neuronal death in HD are caused by a combination of interrelated pathogenic processes that lead to motor, cognitive and psychiatric symptoms. Understanding how mutant huntingtin impacts on a plethora of cellular functions could help to identify new molecular targets. Although HD has been classically classified as a neurodegenerative disease affecting voluntary movement, lately cognitive dysfunction is receiving increased attention as it is very invalidating for patients. Thus, an ambitious goal in HD research is to find altered molecular mechanisms that contribute to cognitive decline. In this review, we have focused on those findings related to corticostriatal and hippocampal cognitive dysfunction in HD, as well as on the underlying molecular mechanisms, which constitute potential therapeutic targets. These include alterations in synaptic plasticity, transcriptional machinery and neurotrophic and neurotransmitter signaling.
Collapse
Affiliation(s)
- Mar Puigdellívol
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red (CIBER) sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Ana Saavedra
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red (CIBER) sobre Enfermedades Neurodegenerativas (CIBERNED), Spain.,Institut de Neurociències, Universitat de Barcelona, Catalonia, Spain
| | - Esther Pérez-Navarro
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red (CIBER) sobre Enfermedades Neurodegenerativas (CIBERNED), Spain.,Institut de Neurociències, Universitat de Barcelona, Catalonia, Spain
| |
Collapse
|
39
|
Aguiar S, van der Gaag B, Cortese FAB. RNAi mechanisms in Huntington's disease therapy: siRNA versus shRNA. Transl Neurodegener 2017; 6:30. [PMID: 29209494 PMCID: PMC5702971 DOI: 10.1186/s40035-017-0101-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/30/2017] [Indexed: 12/19/2022] Open
Abstract
Huntington's Disease (HD) is a genetically dominant trinucleotide repeat disorder resulting from CAG repeats within the Huntingtin (HTT) gene exceeding a normal range (> 36 CAGs). Symptoms of the disease manifest in middle age and include chorea, dystonia, and cognitive decline. Typical latency from diagnosis to death is 20 years. There are currently no disease-modifying therapies available to HD patients. RNAi is a potentially curative therapy for HD. A popular line of research employs siRNA or antisense oligonucleotides (ASO) to knock down mutant Huntingtin mRNA (mHTT). Unfortunately, this modality requires repeated dosing, commonly exhibit off target effects (OTEs), and exert renal and hepatic toxicity. In contrast, a single AAV-mediated short-hairpin RNA (shRNA) dose can last years with low toxicity. In addition, we highlight research indicating that shRNA elicits fewer OTEs than siRNA when tested head-to-head. Despite this promise, shRNA therapy has been held back by difficulties controlling expression (oversaturating cells with toxic levels of RNA construct). In this review, we compare RNAi modalities for HD and propose novel methods of optimizing shRNA expression and on-target fidelity.
Collapse
Affiliation(s)
- Sebastian Aguiar
- Molecular Neuroscience Laboratory, Swammerdam Institute for Life Sciences (SILS-CNS), University of Amsterdam, Amsterdam, Netherlands
- Fulbright Program, US Department of State (IIE), New York City, NY USA
| | - Bram van der Gaag
- Molecular Neuroscience Laboratory, Swammerdam Institute for Life Sciences (SILS-CNS), University of Amsterdam, Amsterdam, Netherlands
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Francesco Albert Bosco Cortese
- Biogerontology Research Foundation (BGRF), Oxford, UK
- Department of Biomedical and Molecular Sciences, Queen’s University School of Medicine, Queen’s University, Kingston, Canada
| |
Collapse
|
40
|
Mutant Huntingtin Impairs BDNF Release from Astrocytes by Disrupting Conversion of Rab3a-GTP into Rab3a-GDP. J Neurosci 2017; 36:8790-801. [PMID: 27559163 DOI: 10.1523/jneurosci.0168-16.2016] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 06/06/2016] [Indexed: 02/03/2023] Open
Abstract
UNLABELLED Brain-derived neurotrophic factor (BDNF) is essential for neuronal differentiation and survival. We know that BDNF levels decline in the brains of patients with Huntington's disease (HD), a neurodegenerative disease caused by the expression of mutant huntingtin protein (mHtt), and furthermore that administration of BDNF in HD mice is protective against HD neuropathology. BDNF is produced in neurons, but astrocytes are also an important source of BDNF in the brain. Nonetheless, whether mHtt affects astrocytic BDNF in the HD brain remains unknown. Here we investigated astrocytes from HD140Q knock-in mice and uncovered evidence that mHtt decreases BDNF secretion from astrocytes, which is mediated by exocytosis in astrocytes. Our results demonstrate that mHtt associates with Rab3a, a small GTPase localized on membranes of dense-core vesicles, and prevents GTP-Rab3a from binding to Rab3-GAP1, disrupting the conversion of GTP-Rab3a into GDP-Rab3a and thus impairing the docking of BDNF vesicles on plasma membranes of astrocytes. Importantly, overexpression of Rab3a rescues impaired BDNF vesicle docking and secretion from HD astrocytes. Moreover, ATP release and the number of ATP-containing dense-core vesicles docking are decreased in HD astrocytes, suggesting that the exocytosis of dense-core vesicles is impaired by mHtt in HD astrocytes. Further, Rab3a overexpression reduces reactive astrocytes in the striatum of HD140Q knock-in mice. Our results indicate that compromised exocytosis of BDNF in HD astrocytes contributes to the decreased BDNF levels in HD brains and underscores the importance of improving glial function in the treatment of HD. SIGNIFICANCE STATEMENT Huntington's disease (HD) is an inherited neurodegenerative disorder that affects one in every 10,000 Americans. To date, there is no effective treatment for HD, in part because the pathogenic mechanism driving the disease is not fully understood. The dysfunction of astrocytes is known to contribute to the pathogenesis of HD. One important role of astrocytes is to synthesize and release brain-derived neurotrophic factor (BDNF), which is vital for neuronal survival, development, and function. We found that mutant huntingtin protein (mHtt) at the endogenous level decreases BDNF secretion from astrocytes by disrupting the conversion of GTP-Rab3a into GDP-Rab3a and that overexpressing Rab3a can rescue this deficient BDNF release and early neuropathology in HD knock-in mouse brain. Our study suggests that astrocytic Rab3a is a potential therapeutic target for HD treatment.
Collapse
|
41
|
Kim J, Lee S, Kang S, Kim SH, Kim JC, Yang M, Moon C. Brain-derived neurotropic factor and GABAergic transmission in neurodegeneration and neuroregeneration. Neural Regen Res 2017; 12:1733-1741. [PMID: 29171440 PMCID: PMC5696856 DOI: 10.4103/1673-5374.217353] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neurotoxicity induced by stress, radiation, chemicals, or metabolic diseases, is commonly associated with excitotoxicity, oxidative stress, and neuroinflammation. The pathological process of neurotoxicity induces neuronal death, interrupts synaptic plasticity in the brain, and is similar to that of diverse neurodegenerative diseases. Animal models of neurotoxicity have revealed that clinical symptoms and brain lesions can recover over time via neuroregenerative processes. Specifically, brain-derived neurotropic factor (BDNF) and gamma-aminobutyric acid (GABA)-ergic transmission are related to both neurodegeneration and neuroregeneration. This review summarizes the accumulating evidences that suggest a pathogenic role of BDNF and GABAergic transmission, their underlying mechanisms, and the relationship between BDNF and GABA in neurodegeneration and neuroregeneration. This review will provide a comprehensive overview of the underlying mechanisms of neuroregeneration that may help in developing potential strategies for pharmacotherapeutic approaches to treat neurotoxicity and neurodegenerative disease.
Collapse
Affiliation(s)
- Jinwook Kim
- Departments of Veterinary Anatomy and Veterinary Toxicology, College of Veterinary Medicine and BK21 PLUS Project Team, Chonnam National University, Gwangju, South Korea
| | - Sueun Lee
- Departments of Veterinary Anatomy and Veterinary Toxicology, College of Veterinary Medicine and BK21 PLUS Project Team, Chonnam National University, Gwangju, South Korea
| | - Sohi Kang
- Departments of Veterinary Anatomy and Veterinary Toxicology, College of Veterinary Medicine and BK21 PLUS Project Team, Chonnam National University, Gwangju, South Korea
| | - Sung-Ho Kim
- Departments of Veterinary Anatomy and Veterinary Toxicology, College of Veterinary Medicine and BK21 PLUS Project Team, Chonnam National University, Gwangju, South Korea
| | - Jong-Choon Kim
- Departments of Veterinary Anatomy and Veterinary Toxicology, College of Veterinary Medicine and BK21 PLUS Project Team, Chonnam National University, Gwangju, South Korea
| | - Miyoung Yang
- Department of Anatomy, School of Medicine and Institute for Environmental Science, Wonkwang University, Jeonbuk, South Korea
| | - Changjong Moon
- Departments of Veterinary Anatomy and Veterinary Toxicology, College of Veterinary Medicine and BK21 PLUS Project Team, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
42
|
Bartlett DM, Cruickshank TM, Hannan AJ, Eastwood PR, Lazar AS, Ziman MR. Neuroendocrine and neurotrophic signaling in Huntington’s disease: Implications for pathogenic mechanisms and treatment strategies. Neurosci Biobehav Rev 2016; 71:444-454. [DOI: 10.1016/j.neubiorev.2016.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/29/2016] [Accepted: 09/12/2016] [Indexed: 11/25/2022]
|
43
|
TRiC subunits enhance BDNF axonal transport and rescue striatal atrophy in Huntington's disease. Proc Natl Acad Sci U S A 2016; 113:E5655-64. [PMID: 27601642 DOI: 10.1073/pnas.1603020113] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Corticostriatal atrophy is a cardinal manifestation of Huntington's disease (HD). However, the mechanism(s) by which mutant huntingtin (mHTT) protein contributes to the degeneration of the corticostriatal circuit is not well understood. We recreated the corticostriatal circuit in microfluidic chambers, pairing cortical and striatal neurons from the BACHD model of HD and its WT control. There were reduced synaptic connectivity and atrophy of striatal neurons in cultures in which BACHD cortical and striatal neurons were paired. However, these changes were prevented if WT cortical neurons were paired with BACHD striatal neurons; synthesis and release of brain-derived neurotrophic factor (BDNF) from WT cortical axons were responsible. Consistent with these findings, there was a marked reduction in anterograde transport of BDNF in BACHD cortical neurons. Subunits of the cytosolic chaperonin T-complex 1 (TCP-1) ring complex (TRiC or CCT for chaperonin containing TCP-1) have been shown to reduce mHTT levels. Both CCT3 and the apical domain of CCT1 (ApiCCT1) decreased the level of mHTT in BACHD cortical neurons. In cortical axons, they normalized anterograde BDNF transport, restored retrograde BDNF transport, and normalized lysosomal transport. Importantly, treating BACHD cortical neurons with ApiCCT1 prevented BACHD striatal neuronal atrophy by enhancing release of BDNF that subsequently acts through tyrosine receptor kinase B (TrkB) receptor on striatal neurons. Our findings are evidence that TRiC reagent-mediated reductions in mHTT enhanced BDNF delivery to restore the trophic status of BACHD striatal neurons.
Collapse
|
44
|
Pollock K, Dahlenburg H, Nelson H, Fink KD, Cary W, Hendrix K, Annett G, Torrest A, Deng P, Gutierrez J, Nacey C, Pepper K, Kalomoiris S, D Anderson J, McGee J, Gruenloh W, Fury B, Bauer G, Duffy A, Tempkin T, Wheelock V, Nolta JA. Human Mesenchymal Stem Cells Genetically Engineered to Overexpress Brain-derived Neurotrophic Factor Improve Outcomes in Huntington's Disease Mouse Models. Mol Ther 2016; 24:965-77. [PMID: 26765769 PMCID: PMC4881765 DOI: 10.1038/mt.2016.12] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 12/05/2015] [Indexed: 12/15/2022] Open
Abstract
Huntington's disease (HD) is a fatal degenerative autosomal dominant neuropsychiatric disease that causes neuronal death and is characterized by progressive striatal and then widespread brain atrophy. Brain-derived neurotrophic factor (BDNF) is a lead candidate for the treatment of HD, as it has been shown to prevent cell death and to stimulate the growth and migration of new neurons in the brain in transgenic mouse models. BDNF levels are reduced in HD postmortem human brain. Previous studies have shown efficacy of mesenchymal stem/stromal cells (MSC)/BDNF using murine MSCs, and the present study used human MSCs to advance the therapeutic potential of the MSC/BDNF platform for clinical application. Double-blinded studies were performed to examine the effects of intrastriatally transplanted human MSC/BDNF on disease progression in two strains of immune-suppressed HD transgenic mice: YAC128 and R6/2. MSC/BDNF treatment decreased striatal atrophy in YAC128 mice. MSC/BDNF treatment also significantly reduced anxiety as measured in the open-field assay. Both MSC and MSC/BDNF treatments induced a significant increase in neurogenesis-like activity in R6/2 mice. MSC/BDNF treatment also increased the mean lifespan of the R6/2 mice. Our genetically modified MSC/BDNF cells set a precedent for stem cell-based neurotherapeutics and could potentially be modified for other neurodegenerative disorders such as amyotrophic lateral sclerosis, Alzheimer's disease, and some forms of Parkinson's disease. These cells provide a platform delivery system for future studies involving corrective gene-editing strategies.
Collapse
Affiliation(s)
- Kari Pollock
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Heather Dahlenburg
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Haley Nelson
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Kyle D Fink
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Whitney Cary
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Kyle Hendrix
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Geralyn Annett
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Audrey Torrest
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Peter Deng
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Joshua Gutierrez
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Catherine Nacey
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Karen Pepper
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Stefanos Kalomoiris
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Johnathon D Anderson
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Jeannine McGee
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - William Gruenloh
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Brian Fury
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Gerhard Bauer
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Alexandria Duffy
- Department of Neurology, University of California Davis Health System, Sacramento, California, USA
| | - Theresa Tempkin
- Department of Neurology, University of California Davis Health System, Sacramento, California, USA
| | - Vicki Wheelock
- Department of Neurology, University of California Davis Health System, Sacramento, California, USA
| | - Jan A Nolta
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| |
Collapse
|
45
|
Nguyen KQ, Rymar VV, Sadikot AF. Impaired TrkB Signaling Underlies Reduced BDNF-Mediated Trophic Support of Striatal Neurons in the R6/2 Mouse Model of Huntington's Disease. Front Cell Neurosci 2016; 10:37. [PMID: 27013968 PMCID: PMC4783409 DOI: 10.3389/fncel.2016.00037] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 02/01/2016] [Indexed: 11/13/2022] Open
Abstract
The principal projection neurons of the striatum are critically dependent on an afferent supply of brain derived neurotrophic factor (BDNF) for neurotrophic support. These neurons express TrkB, the cognate receptor for BDNF, which activates signaling pathways associated with neuronal survival and phenotypic maintenance. Impairment of the BDNF-TrkB pathway is suspected to underlie the early dysfunction and prominent degeneration of striatal neurons in Huntington disease (HD). Some studies in HD models indicate that BDNF supply is reduced, while others suggest that TrkB signaling is impaired earlier in disease progression. It remains important to determine whether a primary defect in TrkB signaling underlies reduced neurotrophic support and the early vulnerability of striatal neurons in HD. Using the transgenic R6/2 mouse model of HD we found that prior to striatal degeneration there are early deficits in striatal protein levels of activated phospho-TrkB and the downstream-regulated protein DARPP-32. In contrast, total-TrkB and BDNF protein levels remained normal. Primary neurons cultured from R6/2 striatum exhibited reduced survival in response to exogenous BDNF applications. Moreover, BDNF activation of phospho-TrkB and downstream signal transduction was attenuated in R6/2 striatal cultures. These results suggest that neurotrophic support of striatal neurons is attenuated early in disease progression due to defects in TrkB signal transduction in the R6/2 model of HD.
Collapse
Affiliation(s)
- Khanh Q Nguyen
- Cone Laboratory, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University Montreal, QC, Canada
| | - Vladimir V Rymar
- Cone Laboratory, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University Montreal, QC, Canada
| | - Abbas F Sadikot
- Cone Laboratory, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University Montreal, QC, Canada
| |
Collapse
|
46
|
Zhu Y, Chen X, Liu Z, Peng YP, Qiu YH. Interleukin-10 Protection against Lipopolysaccharide-Induced Neuro-Inflammation and Neurotoxicity in Ventral Mesencephalic Cultures. Int J Mol Sci 2015; 17:ijms17010025. [PMID: 26729090 PMCID: PMC4730272 DOI: 10.3390/ijms17010025] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 11/13/2015] [Accepted: 12/18/2015] [Indexed: 01/02/2023] Open
Abstract
Interleukin (IL)-10, an anti-inflammatory cytokine, is expressed in the brain and can inhibit microglial activation. Herein, we utilized lipopolysaccharide (LPS)-induced inflammatory Parkinson’s disease (PD) cell model to determine whether microglia and astrocytes are necessary targets for IL-10 neuroprotection. Primary ventral mesencephalic (VM) cultures with different composition of neurons, microglia and astrocytes were prepared. The cells were exposed to IL-10 (15, 50 or 150 ng/mL) 1 h prior to LPS (50 ng/mL) treatment. LPS induced dopaminergic and non-dopaminergic neuronal loss in VM cultures, VM neuron-enriched cultures, and neuron-microglia co-cultures, but not in neuron-astrocyte co-cultures. IL-10 reduced LPS-induced neuronal loss particularly in single VM neuron cultures. Pro-inflammatory mediators (TNF-α, IL-1β, inducible nitric oxide synthase and cyclooxygenase-2) were upregulated in both neuron-microglia and neuron-astrocyte co-cultures by LPS. In contrast, neurotrophic factors (brain-derived neurotrophic factor, insulin-like growth factor-1 or glial cell-derived neurotrophic factor) were downregulated in neuron-microglia co-cultures, but upregulated in neuron-astrocyte co-cultures by LPS. IL-10 reduced both the increase in production of the pro-inflammatory mediators and the decrease in production of the neurotrophic factors induced by LPS. These results suggest that astrocytes can balance LPS neurotoxicity by releasing more neurotrophic factors and that IL-10 exerts neuroprotective property by an extensive action including direct on neurons and indirect via inhibiting microglial activation.
Collapse
Affiliation(s)
- Yan Zhu
- School of Biological & Basic Medical Sciences, Soochow University, 199 Renai Road, Suzhou 215123, China.
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong 226001, China.
| | - Xiao Chen
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong 226001, China.
| | - Zhan Liu
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong 226001, China.
| | - Yu-Ping Peng
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong 226001, China.
| | - Yi-Hua Qiu
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong 226001, China.
| |
Collapse
|
47
|
Connor B, Sun Y, von Hieber D, Tang SK, Jones KS, Maucksch C. AAV1/2-mediated BDNF gene therapy in a transgenic rat model of Huntington's disease. Gene Ther 2015; 23:283-95. [PMID: 26704721 DOI: 10.1038/gt.2015.113] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 12/10/2015] [Accepted: 12/15/2015] [Indexed: 12/19/2022]
Abstract
Reduced expression and disrupted corticostriatal transportation of brain-derived neurotrophic factor (BDNF) is proposed to contribute to the selective vulnerability of medium spiny striatal projection neurons (MSNs) in Huntington's disease (HD). We have previously demonstrated that BDNF overexpression in the quinolinic acid lesioned rat striatum attenuates motor impairment and reduces the extent of MSN cell loss. To further investigate the potential therapeutic properties of BDNF for HD, the current study examines the effect of bilateral AAV1/2-mediated BDNF expression in the striatum of a transgenic rat model of HD. Transfer of the BDNF gene to striatal neurons using an AAV1/2 serotype vector enhanced BDNF protein levels in the striatum. Bilateral BDNF expression attenuated the impairment of both motor and cognitive function when compared with AAV1/2-vehicle- or YFP-treated transgenic HD rats. Interestingly, a gender effect was apparent with female transgenic HD rats exhibiting less functional impairment than males. Quantification of NeuN and DARRP32 immunoreactivity and striatal volume revealed limited disease phenotype between wild type and transgenic HD animals. However, AAV1/2-BDNF-treated transgenic HD rats showed evidence of greater striatal volume and increased NeuN+ cell numbers compared with wild-type vehicle- and AAV1/2-vehicle- or YFP-treated transgenic HD rats. We propose BDNF holds considerable therapeutic potential for alleviating behavioral dysfunction and neuronal degeneration in HD, with further work required to examine the role of BDNF-TrkB signaling and the preservation of axonal and synaptic function.
Collapse
Affiliation(s)
- B Connor
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Y Sun
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - D von Hieber
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - S K Tang
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - K S Jones
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - C Maucksch
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
48
|
Kerkis I, Haddad MS, Valverde CW, Glosman S. Neural and mesenchymal stem cells in animal models of Huntington's disease: past experiences and future challenges. Stem Cell Res Ther 2015; 6:232. [PMID: 26667114 PMCID: PMC4678723 DOI: 10.1186/s13287-015-0248-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Huntington's disease (HD) is an inherited disease that causes progressive nerve cell degeneration. It is triggered by a mutation in the HTT gene that strongly influences functional abilities and usually results in movement, cognitive and psychiatric disorders. HD is incurable, although treatments are available to help manage symptoms and to delay the physical, mental and behavioral declines associated with the condition. Stem cells are the essential building blocks of life, and play a crucial role in the genesis and development of all higher organisms. Ablative surgical procedures and fetal tissue cell transplantation, which are still experimental, demonstrate low rates of recovery in HD patients. Due to neuronal cell death caused by accumulation of the mutated huntingtin (mHTT) protein, it is unlikely that such brain damage can be treated solely by drug-based therapies. Stem cell-based therapies are important in order to reconstruct damaged brain areas in HD patients. These therapies have a dual role: stem cell paracrine action, stimulating local cell survival, and brain tissue regeneration through the production of new neurons from the intrinsic and likely from donor stem cells. This review summarizes current knowledge on neural stem/progenitor cell and mesenchymal stem cell transplantation, which has been carried out in several animal models of HD, discussing cell distribution, survival and differentiation after transplantation, as well as functional recovery and anatomic improvements associated with these approaches. We also discuss the usefulness of this information for future preclinical and clinical studies in HD.
Collapse
Affiliation(s)
- Irina Kerkis
- Laboratório de Genética, Instituto Butantan, 1500 Av. Vital Brasil, São Paulo, 05503-900, Brazil.
| | - Monica Santoro Haddad
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, 455 Av. Dr. Arnaldao, São Paulo, 01246903, Brazil
| | | | - Sabina Glosman
- SoluBest Ltd, Weizmann Science Park, POB 4053 18 Einstein Street, Ness Ziona, 74140, Israel
| |
Collapse
|
49
|
Ma Q, Yang J, Li T, Milner TA, Hempstead BL. Selective reduction of striatal mature BDNF without induction of proBDNF in the zQ175 mouse model of Huntington's disease. Neurobiol Dis 2015; 82:466-477. [PMID: 26282324 PMCID: PMC4819334 DOI: 10.1016/j.nbd.2015.08.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 08/02/2015] [Accepted: 08/12/2015] [Indexed: 02/02/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder characterized by massive loss of medium spiny neurons in the striatum. However, the mechanisms by which mutant huntingtin leads to this selective neuronal death remain incompletely understood. Brain-derived neurotrophic factor (BDNF) has been shown to be neuroprotective on HD striatal neurons both in vitro and in vivo. ProBDNF, the precursor of mature BDNF (mBDNF), also can be secreted but promotes apoptosis of neurons expressing p75(NTR) and sortilin receptors. Although a reduction of total striatal BDNF protein has been reported in HD patients and mouse models, it remains unclear whether conversion of proBDNF to mBDNF is altered in HD, and whether the proBDNF receptors, p75(NTR) and sortilin are dysregulated, leading to impaired striatal neuron survival. To test these hypotheses, we generated bdnf-HA knock-in (KI) mice on the zQ175 HD background to accurately quantitate the levels of both proBDNF and mBDNF in the HD striatum. In aged zQ175 HD mice, we observed a significant loss of mBDNF and decreased TrkB activation, but no increase of proBDNF or p75(NTR) levels either in the sensorimotor cortex or the striatum. However, immunoreactivities of p75(NTR) and sortilin receptor are both increased in immature striatal oligodendrocytes, which associate with significant myelin defects in the HD striatum. Taken together, the present study indicates that diminished mature BDNF trophic signaling through the TrkB receptor, rather than an induction in proBDNF, is a main contributing factor to the vulnerability of striatal neurons in the zQ175 HD mouse model.
Collapse
Affiliation(s)
- Qian Ma
- Graduate Program of Neuroscience, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Jianmin Yang
- Department of Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Thomas Li
- Department of Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA; Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Barbara L Hempstead
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA; Department of Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
50
|
Ragot A, Pietropaolo S, Vincent J, Delage P, Zhang H, Allinquant B, Leinekugel X, Fischer A, Cho YH. Genetic deletion of the Histone Deacetylase 6 exacerbates selected behavioral deficits in the R6/1 mouse model for Huntington's disease. Brain Behav 2015; 5:e00361. [PMID: 26445700 PMCID: PMC4589808 DOI: 10.1002/brb3.361] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 05/14/2015] [Accepted: 05/19/2015] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION The inhibition of the Histone Deacetylase 6 (HDAC6) increases tubulin acetylation, thus stimulating intracellular vesicle trafficking and brain-derived neurotrophic factor (BDNF) release, that is, cellular processes markedly reduced in Huntington's disease (HD). METHODS We therefore tested that reducing HDAC6 levels by genetic manipulation would attenuate early cognitive and behavioral deficits in R6/1 mice, a mouse model which develops progressive HD-related phenotypes. RESULTS In contrast to our initial hypothesis, the genetic deletion of HDAC6 did not reduce the weight loss or the deficits in cognitive abilities and nest-building behavior shown by R6/1 mice, and even worsened their social impairments, hypolocomotion in the Y-maze, and reduced ultrasonic vocalizations. CONCLUSIONS These results weaken the validity of HDAC6 reduction as a possible therapeutic strategy for HD. The data are discussed in terms of additional cellular consequences and anatomical specificity of HDAC6 that could explain these unexpected effects.
Collapse
Affiliation(s)
- Alienor Ragot
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287 Avenue des Facultés, 33405, Talence Cedex, France ; University of Bordeaux 146, rue Léo-Saignat, 33077, Bordeaux, France
| | - Susanna Pietropaolo
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287 Avenue des Facultés, 33405, Talence Cedex, France ; University of Bordeaux 146, rue Léo-Saignat, 33077, Bordeaux, France
| | - Jean Vincent
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287 Avenue des Facultés, 33405, Talence Cedex, France ; University of Bordeaux 146, rue Léo-Saignat, 33077, Bordeaux, France
| | - Pauline Delage
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287 Avenue des Facultés, 33405, Talence Cedex, France ; University of Bordeaux 146, rue Léo-Saignat, 33077, Bordeaux, France
| | - Hongyu Zhang
- University of Bordeaux 146, rue Léo-Saignat, 33077, Bordeaux, France ; Interdisciplinary Institute for Neuroscience, CNRS UMR 5297 33000, Bordeaux, France
| | - Bernadette Allinquant
- Faculté de Médecine, Laboratoire INSERM, UMR 894- Université Paris Descartes, Sorbonne Paris Cité Paris, France
| | - Xavier Leinekugel
- University of Bordeaux 146, rue Léo-Saignat, 33077, Bordeaux, France ; Neurocentre Magendie 146, rue Léo-Saignat, 33077, Bordeaux, France
| | - André Fischer
- Department for Psychiatry and Psychotherapy, University Medical Center Göttingen Grisebachstr. 5, 37077, Göttingen, Germany ; German Center for Neurodegenerative Diseases (DZNE) Göttingen Grisebachstr. 5, 37077, Göttingen, Germany
| | - Yoon H Cho
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287 Avenue des Facultés, 33405, Talence Cedex, France ; University of Bordeaux 146, rue Léo-Saignat, 33077, Bordeaux, France
| |
Collapse
|