1
|
Quickfall M, Cocks M, Long HM, Di Rosa F, Andrews R, Narendran P, Hesketh K, Wadley AJ. EXTOD-Immune: a randomised controlled trial to investigate whether a remotely monitored, home-based exercise intervention can reduce disease activity in people with type 1 diabetes. BMJ Open Sport Exerc Med 2024; 10:e002144. [PMID: 39224197 PMCID: PMC11367371 DOI: 10.1136/bmjsem-2024-002144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 09/04/2024] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease in which the adaptive immune system targets insulin-producing β-cells of pancreatic islets, leading to dependence on exogenous insulin therapy. Cytotoxic (CD8+) T-cells specific for islet antigens are major players in T1D autoimmunity. Data indicate that regular exercise may preserve β-cell function in people recently diagnosed with T1D, but the role of islet-reactive CD8+ T-cells is unclear. In a randomised crossover design, this study will determine the impact of a 12-week exercise programme on the frequency and proliferative state of islet-reactive CD8+ T-cells in the peripheral blood of 20 adults diagnosed with T1D within the past 3 years. The exercise intervention will consist of three high-intensity interval training sessions per week (6-10 1 min intervals >80% maximum heart rate, with 1 min rest), the duration of which will incrementally increase from 14 to 22 min. Habitual physical activity and diet will be maintained during control and washout periods. At weeks 0, 12, 24 and 36, a fasting blood sample will be collected to quantify the frequency, phenotype and proliferative activity of islet-reactive CD8+ T-cells (primary outcome) and various clinical parameters. Glycaemic control will also be evaluated using 14-day continuous glucose monitoring at the start and end of each study arm. Findings may provide a rationale for conducting large-scale trials to evaluate the implementation of exercise into routine clinical care, particularly for people recently diagnosed with T1D when maintenance of β-cell function is critical to counteract disease progression. Trial registration number: ISRCTN79006041.
Collapse
Affiliation(s)
- Megan Quickfall
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Matthew Cocks
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Heather M Long
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Francesca Di Rosa
- Institute of Molecular Biology and Pathology, National Research Council of Italy, Rome, Italy
- The Francis Crick Institute, London, UK
| | - Robert Andrews
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Parth Narendran
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Katie Hesketh
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Alex J Wadley
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
2
|
Santus P, Saad M, Giani E, Rizzi M, Mameli C, Macedoni M, Pini S, Saderi L, Ben Nasr M, Pastore I, Lunati ME, Zuccotti GV, Sotgiu G, Fiorina P, Radovanovic D. Early lung diffusion abnormalities and airways' inflammation in children with type 1 diabetes. Acta Diabetol 2024; 61:289-295. [PMID: 37857871 DOI: 10.1007/s00592-023-02182-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/03/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND AND AIMS OF THE STUDY Type 1 diabetes (T1D) impacts lung function and exercise capacity in adults, but limited information is available in children. We hypothesize that T1D causes alterations in pulmonary function and cardiorespiratory fitness, i.e., exercise capacity, at early stages of the disease, due to the presence of inflammation and vascular damage. Therefore, we aim to investigate pulmonary function before and after exercise in children with T1D as compared to age matched healthy controls. METHOD Twenty-four children with T1D and twenty healthy controls underwent body plethysmography, diffusion lung capacity for carbon monoxide and fractional exhaled nitric oxide at rest and after cardio-pulmonary exercise test. RESULTS In children with T1D, baseline total lung capacity and diffusion lung capacity for carbon monoxide were reduced as compared to healthy controls. Children with T1D also showed a reduced exercise capacity associated with poor aerobic fitness. Accordingly, diffusion lung capacity for carbon monoxide tended to increase with exercise in healthy controls, while no change was observed in children with T1D. Fractional exhaled nitric oxide was significantly higher at baseline and tended to increase with exercise in children with T1D, while no changes were observed in healthy controls. CONCLUSIONS Altered diffusion lung capacity for carbon monoxide, increased fractional exhaled nitric oxide and a poor aerobic fitness to exercise suggests the presence of early pulmonary abnormalities in children with T1D.
Collapse
Affiliation(s)
- Pierachille Santus
- Division of Respiratory Diseases, Ospedale L. Sacco, ASST Fatebenefratelli-Sacco, Milan, Italy.
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, Milan, Italy.
| | - Marina Saad
- Division of Respiratory Diseases, Ospedale L. Sacco, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Elisa Giani
- Department of Biomedical Sciences, Humanitas Clinical and Research Center-IRCCS and Humanitas University, Milan, Italy
| | - Maurizio Rizzi
- Division of Respiratory Diseases, Ospedale L. Sacco, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Chiara Mameli
- Department of Pediatrics, V. Buzzi Children's Hospital, Università degli Studi di Milano, Milan, Italy
| | - Maddalena Macedoni
- Department of Pediatrics, V. Buzzi Children's Hospital, Università degli Studi di Milano, Milan, Italy
| | - Stefano Pini
- Division of Respiratory Diseases, Ospedale L. Sacco, ASST Fatebenefratelli-Sacco, Milan, Italy
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, Milan, Italy
| | - Laura Saderi
- Clinical Epidemiology and Medical Statistics Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Moufida Ben Nasr
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università Degli Studi Milano, Milan, Italy
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Enders Building 5th floor, Room EN511, 300 Longwood Ave Boston, Boston, MA, 02115, USA
| | - Ida Pastore
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | | | - Gian Vincenzo Zuccotti
- Department of Pediatrics, V. Buzzi Children's Hospital, Università degli Studi di Milano, Milan, Italy
| | - Giovanni Sotgiu
- Clinical Epidemiology and Medical Statistics Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Paolo Fiorina
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università Degli Studi Milano, Milan, Italy.
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Enders Building 5th floor, Room EN511, 300 Longwood Ave Boston, Boston, MA, 02115, USA.
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy.
| | - Dejan Radovanovic
- Division of Respiratory Diseases, Ospedale L. Sacco, ASST Fatebenefratelli-Sacco, Milan, Italy
| |
Collapse
|
3
|
Ashraf MN, Cheng AYY. Impact of Living with Stigma in Persons with Type 1 Diabetes: A Patient-Physician Perspective. Diabetes Ther 2024; 15:311-316. [PMID: 38227173 PMCID: PMC10838868 DOI: 10.1007/s13300-023-01528-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/21/2023] [Indexed: 01/17/2024] Open
Abstract
Type 1 diabetes mellitus (T1D) is an autoimmune disorder characterized by a complete deficiency in insulin due to the destruction of pancreatic beta cells. Globally, T1D accounts for nearly 5-10% of the total diabetes cases. Living with this life-long condition has a significant emotional, psychological, physical, mental, and social impact. Despite extensive research characterizing the underlying physiology of T1D, additional work is needed to address the psychosocial aspects associated with the condition and its effect on the quality of life (QoL) of people living with T1D. One area that warrants further exploration is the stigma-related stereotypes and prejudice of people living with T1D experience in real-life settings. Despite the acknowledgment of stigma for conditions such as obesity, mental illness, and epilepsy, its association with T1D and ensuing psychological distress remains relatively under-investigated. Health-related stigma is a huge barrier to seeking appropriate, timely support for enhanced healthcare management and engagement in such patients. Here, we provide the perspectives of an adult with over 33 years of living with T1D and an expert endocrinologist who details their experience of T1D-related stigma. The self-reported factors explored by the person living with T1D include (but are not limited to) blame, mockery of the condition/person, diabetes-related shame, exclusion, rejection, negative judgments, fear, stereotyping, and discrimination. The lived experience supported by the clinical insights of the endocrinologist highlights the urgent need to decipher the severity, extent, nature, determinants, and consequences of stigma faced by a person living with T1D. Raising societal awareness, increasing education for caregivers, access to counseling for people living with diabetes, and engaging in shared decision-making remain the path forward.
Collapse
Affiliation(s)
| | - Alice Y Y Cheng
- Trillium Health Partners & Unity Health Toronto, Toronto, Canada
- University of Toronto, Toronto, Canada
| |
Collapse
|
4
|
The clinicopathological significance of PD-L1 expression assessed by the combined positive score (CPS) in head and neck squamous cell carcinoma. Pathol Res Pract 2022; 236:153934. [DOI: 10.1016/j.prp.2022.153934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/20/2022] [Accepted: 04/29/2022] [Indexed: 12/24/2022]
|
5
|
Ben Nasr M, Robbins D, Parone P, Usuelli V, Tacke R, Seelam AJ, Driver E, Le T, Sabouri-Ghomi M, Guerrettaz L, Shoemaker D, Fiorina P. Pharmacologically Enhanced Regulatory Hematopoietic Stem Cells Revert Experimental Autoimmune Diabetes and Mitigate Other Autoimmune Disorders. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1554-1565. [PMID: 35321879 DOI: 10.4049/jimmunol.2100949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/14/2022] [Indexed: 12/19/2022]
Abstract
Type 1 diabetes (T1D) is characterized by the loss of immune self-tolerance, resulting in an aberrant immune responses against self-tissue. A few therapeutics have been partially successful in reverting or slowing down T1D progression in patients, and the infusion of autologous hematopoietic stem cells (HSCs) is emerging as an option to be explored. In this study, we proposed to pharmacologically enhance by ex vivo modulation with small molecules the immunoregulatory and trafficking properties of HSCs to provide a safer and more efficacious treatment option for patients with T1D and other autoimmune disorders. A high-throughput targeted RNA sequencing screening strategy was used to identify a combination of small molecules (16,16-dimethyl PGE2 and dexamethasone), which significantly upregulate key genes involved in trafficking (e.g., CXCR4) and immunoregulation (e.g., programmed death ligand 1). The pharmacologically enhanced, ex vivo-modulated HSCs (regulatory HSCs [HSC.Regs]) have strong trafficking properties to sites of inflammation in a mouse model of T1D, reverted autoimmune diabetes in NOD mice, and delayed experimental multiple sclerosis and rheumatoid arthritis in preclinical models. Mechanistically, HSC.Regs reduced lymphocytic infiltration of pancreatic β cells and inhibited the activity of autoreactive T cells. Moreover, when tested in clinically relevant in vitro autoimmune assays, HSC.Regs abrogated the autoimmune response. Ex vivo pharmacological modulation enhances the immunoregulatory and trafficking properties of HSCs, thus generating HSC.Regs, which mitigated autoimmune diabetes and other autoimmune disorders.
Collapse
Affiliation(s)
- Moufida Ben Nasr
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA.,International Center for T1D, Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, DIBIC L. Sacco, University of Milan, Milan, Italy
| | | | | | - Vera Usuelli
- International Center for T1D, Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, DIBIC L. Sacco, University of Milan, Milan, Italy
| | | | - Andy-Joe Seelam
- International Center for T1D, Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, DIBIC L. Sacco, University of Milan, Milan, Italy
| | | | - Thuy Le
- Fate Therapeutics, San Diego, CA; and
| | | | | | | | - Paolo Fiorina
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA; .,International Center for T1D, Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, DIBIC L. Sacco, University of Milan, Milan, Italy.,Division of Endocrinology, Fatebenefratelli-Sacco Hospital, Milan, Italy
| |
Collapse
|
6
|
Saravanakumar K, Park S, Mariadoss AVA, Sathiyaseelan A, Veeraraghavan VP, Kim S, Wang MH. Chemical composition, antioxidant, and anti-diabetic activities of ethyl acetate fraction of Stachys riederi var. japonica (Miq.) in streptozotocin-induced type 2 diabetic mice. Food Chem Toxicol 2021; 155:112374. [PMID: 34186120 DOI: 10.1016/j.fct.2021.112374] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/03/2021] [Accepted: 06/24/2021] [Indexed: 01/01/2023]
Abstract
This work analysed the chemical composition, antioxidant, and enzyme inhibitory activities of solvent extract (SJ-ME) and fractions (SJ-HF, SJ-EAF, and SJ-MF) of the Stachys riederi var. japonica (Miq.) (SJ). Furthermore, the effect of SJ-EAF in STZ induced type 2 diabetic mice was examined. Among the samples, SJ-EAF exhibited a lower IC50 concentration of 64.2 ± 0.48 μg/mL for DPPH and 82.6 ± 0.09 μg/mL for ABTS+. The SJ-EAF concentration of 2.89 ± 0.03 μg and 2.27 ± 0.98 μg was equivalent to 1 μg of acarbose mediated enzyme inhibitory effect against α-amylase and α -glucosidase, respectively. The SJ-EAF did not show cytotoxicity (<80%) to NIH3T3 nor HepG2 cells but enhanced the glucose uptake in the IR-HepG2. LC-MS/MS of SJ-EAF showed the presence of a total of 16 compounds. Among the identified compounds, rosmarinic acid, caffeic acid, oleanolic acid, and ursolic acid showed high catalytic activity of α-amylase and α-glucosidase. The treatments of SJ-EAF restored the level of blood glucose, body weight, insulin, HDL and mRNA level of IRS1, GLUT2, GLUT4 and Akt whereas it reduced the excess elevation of total cholesterol, total triglycerides, LDL, AST, ALT, ALP, BUN, and creatinine in STZ induced diabetic mice. Overall, the present study concluded that the SJ-EAF exhibited promising antidiabetic activity.
Collapse
MESH Headings
- Animals
- Antioxidants/chemistry
- Antioxidants/metabolism
- Antioxidants/therapeutic use
- Antioxidants/toxicity
- Cell Line, Tumor
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 2/chemically induced
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Gene Expression/drug effects
- Humans
- Hypoglycemic Agents/chemistry
- Hypoglycemic Agents/metabolism
- Hypoglycemic Agents/therapeutic use
- Hypoglycemic Agents/toxicity
- Male
- Mice, Inbred ICR
- Molecular Docking Simulation
- Plant Extracts/chemistry
- Plant Extracts/metabolism
- Plant Extracts/therapeutic use
- Plant Extracts/toxicity
- Protein Binding
- Stachys/chemistry
- Streptozocin
- alpha-Amylases/metabolism
- alpha-Glucosidases/metabolism
- Mice
Collapse
Affiliation(s)
- Kandasamy Saravanakumar
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - SeonJu Park
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon, 24341, Republic of Korea
| | | | - Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India
| | - SeongJung Kim
- Department of Physical Therapy, College of Health and Science, Kangwon National University. Samcheok-si, 24949, Republic of Korea.
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
7
|
Croden J, Silva JR, Huang W, Gupta N, Fu W, Matovinovic K, Black M, Li X, Chen K, Wu Y, Jhamandas J, Rayat GR. Cyanidin-3-O-Glucoside improves the viability of human islet cells treated with amylin or Aβ1-42 in vitro. PLoS One 2021; 16:e0258208. [PMID: 34614009 PMCID: PMC8494376 DOI: 10.1371/journal.pone.0258208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/22/2021] [Indexed: 02/05/2023] Open
Abstract
Islet transplantation is being considered as an alternative treatment for type 1 diabetes. Despite recent progress, transplant recipients continue to experience progressive loss of insulin independence. Cyanidin-3-O-Glucoside (C3G) has shown to be protective against damage that may lead to post-transplant islet loss. In this study, human islets cultured with or without C3G were treated with human amylin, Aβ1-42, H2O2, or rapamycin to mimic stresses encountered in the post-transplant environment. Samples of these islets were collected and assayed to determine C3G's effect on cell viability and function, reactive oxygen species (ROS), oxidative stress, amyloid formation, and the presence of inflammatory as well as autophagic markers. C3G treatment of human islets exposed to either amylin or Aβ1-42 increased cell viability (p<0.01) and inhibited amyloid formation (p<0.01). A reduction in ROS and an increase in HO-1 gene expression as well as in vitro islet function were also observed in C3G-treated islets exposed to amylin or Aβ1-42, although not significantly. Additionally, treatment with C3G resulted in a significant reduction in the protein expression of inflammatory markers IL-1β and NLRP3 (p<0.01) as well as an increase in LC3 autophagic marker (p<0.05) in human islets treated with amylin, Aβ1-42, rapamycin, or H2O2. Thus, C3G appears to have a multi-faceted protective effect on human islets in vitro, possibly through its anti-oxidant property and alteration of inflammatory as well as autophagic pathways.
Collapse
Affiliation(s)
- Jennifer Croden
- Department of Surgery, Ray Rajotte Surgical-Medical Research Institute, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Josue Rodrigues Silva
- Department of Surgery, Ray Rajotte Surgical-Medical Research Institute, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Wenlong Huang
- Department of Surgery, Ray Rajotte Surgical-Medical Research Institute, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Division of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Nancy Gupta
- Department of Surgery, Ray Rajotte Surgical-Medical Research Institute, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Wen Fu
- Department of Medicine (Neurology) and the Neuroscience Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Kaja Matovinovic
- Department of Surgery, Ray Rajotte Surgical-Medical Research Institute, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Mazzen Black
- Department of Surgery, Ray Rajotte Surgical-Medical Research Institute, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Xian Li
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Kunsong Chen
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yulian Wu
- Department of Surgery, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Jack Jhamandas
- Department of Medicine (Neurology) and the Neuroscience Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Gina R. Rayat
- Department of Surgery, Ray Rajotte Surgical-Medical Research Institute, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
8
|
Hui C, Tomilov A, Garcia C, Jiang X, Fash DM, Khdour OM, Rosso C, Filippini G, Prato M, Graham J, Hecht S, Havel P, Cortopassi G. Novel idebenone analogs block Shc's access to insulin receptor to improve insulin sensitivity. Biomed Pharmacother 2020; 132:110823. [PMID: 33045613 DOI: 10.1016/j.biopha.2020.110823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/26/2020] [Accepted: 09/26/2020] [Indexed: 10/23/2022] Open
Abstract
There has been little innovation in identifying novel insulin sensitizers. Metformin, developed in the 1920s, is still used first for most Type 2 diabetes patients. Mice with genetic reduction of p52Shc protein have improved insulin sensitivity and glucose tolerance. By high-throughput screening, idebenone was isolated as the first small molecule 'Shc Blocker'. Idebenone blocks p52Shc's access to Insulin Receptor to increase insulin sensitivity. In this work the avidity of 34 novel idebenone analogs and 3 metabolites to bind p52Shc, and to block the interaction of p52Shc with the Insulin receptor was tested. Our hypothesis was that if an idebenone analog bound and blocked p52Shc's access to insulin receptor better than idebenone, it should be a more effective insulin sensitizing agent than idebenone itself. Of 34 analogs tested, only 2 both bound p52Shc more tightly and/or blocked the p52Shc-Insulin Receptor interaction more effectively than idebenone. Of those 2 only idebenone analog #11 was a superior insulin sensitizer to idebenone. Also, the long-lasting insulin-sensitizing potency of idebenone in rodents over many hours had been puzzling, as the parent molecule degrades to metabolites within 1 h. We observed that two of the idebenone's three metabolites are insulin sensitizing almost as potently as idebenone itself, explaining the persistent insulin sensitization of this rapidly metabolized molecule. These results help to identify key SAR = structure-activity relationship requirements for more potent small molecule Shc inhibitors as Shc-targeted insulin sensitizers for type 2 diabetes.
Collapse
Affiliation(s)
- ChunKiu Hui
- Department of Molecular Biosciences, 1089 Veterinary Medicine Dr., VM3B, UC Davis, CA, 95616, USA.
| | - Alexey Tomilov
- Department of Molecular Biosciences, 1089 Veterinary Medicine Dr., VM3B, UC Davis, CA, 95616, USA.
| | - Chase Garcia
- Department of Molecular Biosciences, 1089 Veterinary Medicine Dr., VM3B, UC Davis, CA, 95616, USA.
| | - XiaoSong Jiang
- Department of Molecular Biosciences, 1089 Veterinary Medicine Dr., VM3B, UC Davis, CA, 95616, USA.
| | - David M Fash
- Center for BioEnergetics, Biodesign Institute, Arizona State University, 1001 S McAllister Ave, Tempe, AZ, 85287, USA.
| | - Omar M Khdour
- Center for BioEnergetics, Biodesign Institute, Arizona State University, 1001 S McAllister Ave, Tempe, AZ, 85287, USA.
| | - Cristian Rosso
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Center of Excellence for Nanostructured Materials, INSTM UdR, Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste, 34127, Italy.
| | - Giacomo Filippini
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Center of Excellence for Nanostructured Materials, INSTM UdR, Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste, 34127, Italy.
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Center of Excellence for Nanostructured Materials, INSTM UdR, Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste, 34127, Italy; Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014, Donostia San Sebastián, Spain; Basque Fdn Sci, Ikerbasque, Bilbao, 48013, Spain.
| | - James Graham
- Department of Molecular Biosciences, 1089 Veterinary Medicine Dr., VM3B, UC Davis, CA, 95616, USA.
| | - Sidney Hecht
- Center for BioEnergetics, Biodesign Institute, Arizona State University, 1001 S McAllister Ave, Tempe, AZ, 85287, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.
| | - Peter Havel
- Department of Molecular Biosciences, 1089 Veterinary Medicine Dr., VM3B, UC Davis, CA, 95616, USA.
| | - Gino Cortopassi
- Department of Molecular Biosciences, 1089 Veterinary Medicine Dr., VM3B, UC Davis, CA, 95616, USA.
| |
Collapse
|
9
|
Jamiołkowska-Sztabkowska M, Głowińska-Olszewska B, Łuczyński W, Konstantynowicz J, Bossowski A. Regular physical activity as a physiological factor contributing to extend partial remission time in children with new onset diabetes mellitus-Two years observation. Pediatr Diabetes 2020; 21:800-807. [PMID: 32277567 DOI: 10.1111/pedi.13018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/03/2020] [Accepted: 04/02/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Beneficial effects of physical activity (PA) are confirmed in patients with all types of long-lasting diabetes. The possibility of PA to be a factor prolonging remission phase in children with new-onset type 1 diabetes (T1D) has not yet been thoroughly studied. OBJECTIVE The aim of the study was to elucidate the influence of regular PA on prevalence of partial remission (PR), metabolic control, daily insulin requirement (DIR), and C-peptide secretion in children newly diagnosed with T1D. METHODS A total of 125 children diagnosed with T1D were studied prospectively for 2 years. Patients were controlled every 3 months and advised with PA according to ISPAD recommendations. Anthropometric parameters, HbA1c, C-peptide level and DIR were analyzed. Patients' PA level was assessed using a self-designed questionnaire. RESULTS We classified 43% of participants as physically-active. In this group, lower HbA1c after 2 years, lower DIR after 3, 6 months, and after 2 years (all P < .05) were found. At discharge from hospital, the prevalence of DIR < 0.5 U/kg/24 h with near normoglycemia was similar in both groups. Then, we observed higher PR prevalence in active group lasting over time and resulting in 44% vs 13% after 2 years (P < .001). C-peptide after 2 years was comparable in both groups, with higher prevalence of clinically significant levels (>0.2 nmoL/L) in active group: 79.6% vs 61.4% (P = .029). CONCLUSIONS These data support the view that regular PA may essentially contribute to extending PR time in pediatric diabetes, and may therefore lead to a better long-term metabolic control of the disease.
Collapse
Affiliation(s)
- Milena Jamiołkowska-Sztabkowska
- Department of Pediatrics, Endocrinology, Diabetology with Cardiology Division, Medical University of Bialystok, Bialystok, Poland.,Department of Pediatrics, Rheumatology, Immunology and Metabolic Bone Diseases, Medical University of Bialystok, Bialystok, Poland
| | - Barbara Głowińska-Olszewska
- Department of Pediatrics, Endocrinology, Diabetology with Cardiology Division, Medical University of Bialystok, Bialystok, Poland
| | - Włodzimierz Łuczyński
- Department of Pediatrics, Endocrinology, Diabetology with Cardiology Division, Medical University of Bialystok, Bialystok, Poland.,Department of Medical Simulations, Medical University of Bialystok, Bialystok, Poland
| | - Jerzy Konstantynowicz
- Department of Pediatrics, Rheumatology, Immunology and Metabolic Bone Diseases, Medical University of Bialystok, Bialystok, Poland
| | - Artur Bossowski
- Department of Pediatrics, Endocrinology, Diabetology with Cardiology Division, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
10
|
Loretelli C, Ben Nasr M, Giatsidis G, Bassi R, Lancerotto L, D'Addio F, Valderrama-Vasquez A, Scherer SS, Salvatore L, Madaghiele M, Abdelsalam A, Ippolito E, Assi E, Usuelli V, El Essawy B, Sannino A, Pietramaggiori G, Zuccotti GV, Orgill DP, Fiorina P. Embryonic stem cell extracts improve wound healing in diabetic mice. Acta Diabetol 2020; 57:883-890. [PMID: 32124076 DOI: 10.1007/s00592-020-01500-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 02/09/2020] [Indexed: 12/13/2022]
Abstract
AIMS/HYPOTHESIS Impaired wound healing significantly impacts morbidity and mortality in diabetic patients, necessitating the development of novel treatments to improve the wound healing process. We here investigated the topical use of acellular embryonic stem cell extracts (EXTs) in wound healing in diabetic db/db mice. METHODS Wounds were induced in diabetic db/db mice, which were subsequently treated with EXTs, with 3T3 fibroblast cell line protein extracts (3T3XTs) or with saline as a control. Pathology and mechanistic assays were then performed. RESULTS The in vivo topical administration of EXTs facilitates wound closure, contraction and re-epithelialization. Moreover, EXTs reduced the number of wound-infiltrating CD45+ inflammatory cells and increased the rate of repair and of angiogenesis as compared to controls. Interestingly, the EXT effect was partly enhanced by the use of a collagen-based biocompatible scaffold. In vivo, topical administration of EXTs increased the percentage of regulatory T cells in the wounded tissue, while in vitro EXT treatment reduced T cell-mediated IFN-γ production. Proteomic screening revealed 82 proteins differentially segregating in EXTs as compared to 3T3 extracts, with APEX1 identified as a key player for the observed immunomodulatory effect of EXTs. CONCLUSIONS EXTs are endowed with immunoregulatory and anti-inflammatory properties; their use improves wound healing in diabetic preclinical models.
Collapse
Affiliation(s)
- Cristian Loretelli
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC L. Sacco, Università degli Studi di Milano, Milan, Italy
| | - Moufida Ben Nasr
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC L. Sacco, Università degli Studi di Milano, Milan, Italy
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Enders Building 5th Floor, Rm EN530, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Giorgio Giatsidis
- Tissue Engineering and Wound Healing Laboratory, Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Roberto Bassi
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Enders Building 5th Floor, Rm EN530, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Luca Lancerotto
- Department of Plastic Surgery, St. John's Hospital, NHS Lothian, Edinburgh, Scotland, UK
| | - Francesca D'Addio
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC L. Sacco, Università degli Studi di Milano, Milan, Italy
| | - Alessandro Valderrama-Vasquez
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Enders Building 5th Floor, Rm EN530, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Saja Sandra Scherer
- Tissue Engineering and Wound Healing Laboratory, Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Luca Salvatore
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - Marta Madaghiele
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - Ahmed Abdelsalam
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC L. Sacco, Università degli Studi di Milano, Milan, Italy
- Department of Biochemistry and Biotechnology, Heliopolis University, Cairo, Egypt
| | - Elio Ippolito
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC L. Sacco, Università degli Studi di Milano, Milan, Italy
| | - Emma Assi
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC L. Sacco, Università degli Studi di Milano, Milan, Italy
| | - Vera Usuelli
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC L. Sacco, Università degli Studi di Milano, Milan, Italy
| | - Basset El Essawy
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Medicine, Al-Azhar University, Cairo, Egypt
| | - Alessandro Sannino
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - Giorgio Pietramaggiori
- Tissue Engineering and Wound Healing Laboratory, Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gian Vincenzo Zuccotti
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC L. Sacco, Università degli Studi di Milano, Milan, Italy
- Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy
| | - Dennis Paul Orgill
- Tissue Engineering and Wound Healing Laboratory, Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Paolo Fiorina
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC L. Sacco, Università degli Studi di Milano, Milan, Italy.
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Enders Building 5th Floor, Rm EN530, 300 Longwood Avenue, Boston, MA, 02115, USA.
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy.
| |
Collapse
|
11
|
Loretelli C, Assi E, Seelam AJ, Ben Nasr M, Fiorina P. Cell therapy for type 1 diabetes. Expert Opin Biol Ther 2020; 20:887-897. [PMID: 32299257 DOI: 10.1080/14712598.2020.1748596] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Type 1 diabetes (T1D) is a lifelong condition resulting from autoimmune destruction of insulin-producing β-cells. Islet or whole-pancreas transplantation is limited by the shortage of donors and need for chronic immune suppression. Novel strategies are needed to prevent β-cell loss and to rescue production of endogenous insulin. AREAS COVERED This review covers the latest advances in cell-based therapies for the treatment and prevention of T1D. Topics include adoptive transfer of cells with increased immunoregulatory potential for β-cell protection, and β-cell replacement strategies such as generation of insulin-producing β-like cells from unlimited sources. EXPERT OPINION Cell therapy provides an opportunity to prevent or reverse T1D. Adoptive transfer of autologous cells having enhanced immunomodulatory properties can suppress autoimmunity and preserve β-cells. Such therapies have been made possible by a combination of genome-editing techniques and transplantation of tolerogenic cells. In-vitro modified autologous hematopoietic stem cells and tolerogenic dendritic cells may protect endogenous and newly generated β-cells from a patient's autoimmune response without hampering immune surveillance for infectious agents and malignant cellular transformations. However, methods to generate cells that meet quality and safety standards for clinical applications require further refinement.
Collapse
Affiliation(s)
- Cristian Loretelli
- International Center for T1D, Pediatric Clinical Research Center "Romeo Ed Enrica Invernizzi", Department of Biomedical and Clinical Science L. Sacco, Università Degli Studi Di Milano , Milan, Italy
| | - Emma Assi
- International Center for T1D, Pediatric Clinical Research Center "Romeo Ed Enrica Invernizzi", Department of Biomedical and Clinical Science L. Sacco, Università Degli Studi Di Milano , Milan, Italy
| | - Andy Joe Seelam
- International Center for T1D, Pediatric Clinical Research Center "Romeo Ed Enrica Invernizzi", Department of Biomedical and Clinical Science L. Sacco, Università Degli Studi Di Milano , Milan, Italy
| | - Moufida Ben Nasr
- International Center for T1D, Pediatric Clinical Research Center "Romeo Ed Enrica Invernizzi", Department of Biomedical and Clinical Science L. Sacco, Università Degli Studi Di Milano , Milan, Italy.,Nephrology Division, Boston Children's Hospital, Harvard Medical School , Boston, MA, USA
| | - Paolo Fiorina
- International Center for T1D, Pediatric Clinical Research Center "Romeo Ed Enrica Invernizzi", Department of Biomedical and Clinical Science L. Sacco, Università Degli Studi Di Milano , Milan, Italy.,Nephrology Division, Boston Children's Hospital, Harvard Medical School , Boston, MA, USA.,Division of Endocrinology, ASST Fatebenefratelli-Sacco , Milan, Italy
| |
Collapse
|
12
|
Reversal of Hyperglycemia and Suppression of Type 1 Diabetes in the NOD Mouse with Apoptotic DNA Immunotherapy™ (ADi™), ADi-100. Biomedicines 2020; 8:biomedicines8030053. [PMID: 32143316 PMCID: PMC7148463 DOI: 10.3390/biomedicines8030053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 12/11/2022] Open
Abstract
The antigen-specific apoptotic DNA immunotherapeutic, ADi-100, is designed to suppress type 1 diabetes and consists of two DNA plasmids encoding genetic sequences of the apoptosis-inducing molecule, BAX, and the secreted form of the autoantigen, glutamic acid decarboxylase 65, that is CpG hyper-methylated to avoid inflammatory signaling (msGAD55). Upon a four-day treatment with ADi-100 of young female non-obese diabetic (NOD) mice, the frequency of various tolerogenic dendritic cell populations increased in draining lymph nodes; these cells lost the capacity to stimulate glutamic acid decarboxylase (GAD)-specific CD4+ T lymphocytes and were associated with the previously demonstrated enhancement of GAD-specific regulatory T cells. The efficacy of two ADi-100 formulations containing different proportions of BAX and msGAD55, 1:4 (10/40 µg) and 1:2 (17/33 µg), was evaluated in mildly hyperglycemic pre-diabetic NOD female mice. Both formulations suppressed the incidence of diabetes by 80% in an antigen-specific manner, while all untreated mice developed diabetes. However, treatment of pre-diabetic mice with significantly higher hyperglycemia, denoting progressive disease, showed that ADi-100 1:2 strongly suppressed diabetes incidence by 80% whereas the ADi-100 1:4 was less effective (50%). As an antigen-specific monotherapy, ADi-100 is highly efficacious in reversing elevated hyperglycemia to prevent diabetes, in which increasing apoptosis-inducing BAX content is a promising immune tolerance feature.
Collapse
|
13
|
Ginsenoside Rg1 and the control of inflammation implications for the therapy of type 2 diabetes: A review of scientific findings and call for further research. Pharmacol Res 2020; 152:104630. [DOI: 10.1016/j.phrs.2020.104630] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/30/2019] [Accepted: 01/02/2020] [Indexed: 02/06/2023]
|
14
|
Abstract
Rat models of human type 1 diabetes have been shown to be of great importance for the elucidation of the mechanisms underlying the development of autoimmune diabetes. The three major well-established spontaneous rat models are the BioBreeding (BB) diabetes-prone rat, the Komeda diabetes-prone (KDP) rat, and the IDDM (LEW.1AR1-iddm) rat. Their distinctive features are described with special reference to their pathology, immunology, and genetics and compared with the situation in patients with type 1 diabetes mellitus. For all three established rat models, a distinctive genetic mutation has been identified that is responsible for the manifestation of the diabetic syndrome in these rat strains.
Collapse
Affiliation(s)
- Sigurd Lenzen
- Institute of Experimental Diabetes Research, Hannover Medical School, Hannover, Germany. .,Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
| | - Tanja Arndt
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Matthias Elsner
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Dirk Wedekind
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Anne Jörns
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| |
Collapse
|
15
|
Marchand L, Disse E, Dalle S, Reffet S, Vouillarmet J, Fabien N, Thivolet C, Cugnet-Anceau C. The multifaceted nature of diabetes mellitus induced by checkpoint inhibitors. Acta Diabetol 2019; 56:1239-1245. [PMID: 31423559 DOI: 10.1007/s00592-019-01402-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 08/05/2019] [Indexed: 12/30/2022]
Abstract
Immune checkpoint inhibitors (CPI) are increasingly being used in oncology, and many autoimmune side effects have been described. Diabetes mellitus (DM) has been reported in approximately 1% of subjects treated with programmed cell death-1 and programmed death ligand 1 (PD-1/PD-L1) inhibitors, alone or in association with CTLA-4 inhibitors. In the present mini-review, we aimed to describe different clinical pictures and pathophysiology associated with these forms of diabetes. Data on CPI-related DM was gathered from the largest case series in the literature and from our centre dedicated to immunotherapy complications (ImmuCare-Hospices Civils de Lyon). Most cases are acute autoimmune insulin-dependent diabetes which are similar to fulminant diabetes (extremely acute onset with concomitant near-normal HbA1c levels). Other cases, however, have a phenotype close to type 2 diabetes or appear as a decompensation of previously known type 2 diabetes. The occurrence of diabetes can also be a complication of autoimmune pancreatitis induced by CPI use. Finally, two cases of diabetes in a context of autoimmune lipoatrophy have recently been described. Regarding the wide variety of CPI-induced diabetes, the discovery of a glucose disorder under CPI should motivate specialised care for aetiological diagnosis and appropriate treatment.
Collapse
MESH Headings
- Autoimmune Diseases/chemically induced
- Autoimmune Diseases/epidemiology
- Autoimmune Diseases/etiology
- B7-H1 Antigen/antagonists & inhibitors
- B7-H1 Antigen/immunology
- CTLA-4 Antigen/antagonists & inhibitors
- CTLA-4 Antigen/immunology
- Cell Cycle Checkpoints/drug effects
- Cell Cycle Checkpoints/immunology
- Diabetes Mellitus, Lipoatrophic/chemically induced
- Diabetes Mellitus, Lipoatrophic/epidemiology
- Diabetes Mellitus, Lipoatrophic/immunology
- Diabetes Mellitus, Type 1/chemically induced
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/diagnosis
- Diabetes Mellitus, Type 1/epidemiology
- Diabetes Mellitus, Type 2/chemically induced
- Diabetes Mellitus, Type 2/diagnosis
- Diabetes Mellitus, Type 2/epidemiology
- Diabetes Mellitus, Type 2/immunology
- Humans
- Immunotherapy/adverse effects
- Protein Kinase Inhibitors/adverse effects
- Protein Kinase Inhibitors/therapeutic use
Collapse
Affiliation(s)
- Lucien Marchand
- Department of Endocrinology and Diabetes, St. Joseph - St. Luc Hospital, Quai Claude Bernard, 69007, Lyon, France.
| | - Emmanuel Disse
- Department of Endocrinology and Diabetes, Hospices Civils de Lyon, Lyon-Sud Hospital, Pierre-Bénite, France
- CarMeN Laboratory (INSERM U1060, INRA U1235, Université Claude Bernard Lyon1, INSA-Lyon), Lyon 1 University, Oullins, France
| | - Stéphane Dalle
- Department of Dermatology, Hospices Civils de Lyon, Lyon-Sud Hospital, Pierre-Bénite, France
- ImmuCare (Immunology Cancer Research), Hospices Civils de Lyon, Lyon, France
| | - Sophie Reffet
- Department of Endocrinology and Diabetes, Hospices Civils de Lyon, Lyon-Sud Hospital, Pierre-Bénite, France
| | - Julien Vouillarmet
- Department of Endocrinology and Diabetes, Hospices Civils de Lyon, Lyon-Sud Hospital, Pierre-Bénite, France
| | - Nicole Fabien
- Department of Immunology, Hospices Civils de Lyon, Lyon-Sud Hospital, Pierre-Bénite, France
| | - Charles Thivolet
- Department of Endocrinology and Diabetes, Hospices Civils de Lyon, Lyon-Sud Hospital, Pierre-Bénite, France
- CarMeN Laboratory (INSERM U1060, INRA U1235, Université Claude Bernard Lyon1, INSA-Lyon), Lyon 1 University, Oullins, France
| | - Christine Cugnet-Anceau
- Department of Endocrinology and Diabetes, Hospices Civils de Lyon, Lyon-Sud Hospital, Pierre-Bénite, France
- ImmuCare (Immunology Cancer Research), Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
16
|
Ungurianu A, Şeremet O, Gagniuc E, Olaru OT, Guţu C, Grǎdinaru D, Ionescu-Tȋrgovişte C, Marginǎ D, Dǎnciulescu-Miulescu R. Preclinical and clinical results regarding the effects of a plant-based antidiabetic formulation versus well established antidiabetic molecules. Pharmacol Res 2019; 150:104522. [PMID: 31698065 DOI: 10.1016/j.phrs.2019.104522] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 09/12/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022]
Abstract
Diabetes mellitus (DM) is a complex syndrome with debilitating long-term complications, comprising alterations of carbohydrate, protein and lipid metabolisms, along increased oxidative stress and chronic low-grade inflammation. Diet management and plant-based formulations can improve the metabolic status of patients, being used as adjuvants of classic antidiabetic therapy. The purpose of our study was to evaluate the impact of a plant-based antidiabetic formulation (PBAF), containing Vaccinium myrtillus, Ribes nigrum, Rosa canina and Capsicum annuum, on the increased oxidative burden found in diabetes mellitus, comparing it with the effects of metformin and gliclazide. Firstly, we characterized the individual plant-derived components of this formulation and also assessed their in vitro radical scavenging capacity. We devised a preclinical study protocol to examine the impact of the PBAF, along metformin and gliclazide, on tissue histology as well as on the redox status of tissue, mitochondria, serum and serum lipoproteins of alloxan-induced diabetic Wistar rats. Subsequently, we assessed their long-term impact on the redox status of serum and isolated serum lipoproteins of type 2 DM (T2DM) patients, taking into consideration their cardiometabolic profile. In the preclinical stage, we found that PBAF was able to enhance total serum antioxidant defense, while metformin yielded the best results regarding the advanced glycation and protein/lipid oxidation of serum and of serum lipoproteins. The latter also improved overall serum redox status and HDL redox function. Also, antidiabetic treatment seemed to increase mitochondrial redox activity, without overturning overall tissue redox balance. Histologically, liver and brain tissues of treated diabetic rats were fairly similar to those of non-diabetic rats. In T2DM patients, the most striking results involved the effects on serum lipoproteins. The tested PBAF exerted protective antioxidant effects on low-density and, especially, on high density lipoproteins. We conclude that this formulation might constitute a good addition to the well-established pharmacological approach of DM, contributing to the reduction of overall oxidative burden.
Collapse
Affiliation(s)
- Anca Ungurianu
- "Carol Davila" University of Medicine and Pharmacy, Faculty of Pharmacy, Traian Vuia 6, Bucharest, 020956, Romania
| | - Oana Şeremet
- "Carol Davila" University of Medicine and Pharmacy, Faculty of Pharmacy, Traian Vuia 6, Bucharest, 020956, Romania
| | - Elvira Gagniuc
- University of Agronomic Sciences and Veterinary Medicine, Faculty of Veterinary Medicine, Splaiul Independenței 105, Bucharest, 050097, Romania
| | - Octavian Tudor Olaru
- "Carol Davila" University of Medicine and Pharmacy, Faculty of Pharmacy, Traian Vuia 6, Bucharest, 020956, Romania
| | - Claudia Guţu
- "Carol Davila" University of Medicine and Pharmacy, Faculty of Pharmacy, Traian Vuia 6, Bucharest, 020956, Romania
| | - Daniela Grǎdinaru
- "Carol Davila" University of Medicine and Pharmacy, Faculty of Pharmacy, Traian Vuia 6, Bucharest, 020956, Romania
| | - Constantin Ionescu-Tȋrgovişte
- "N. Paulescu" National Institute of Diabetes, Nutrition and Metabolic Diseases, Ion Movilă 5-7, Bucharest, 030167, Romania
| | - Denisa Marginǎ
- "Carol Davila" University of Medicine and Pharmacy, Faculty of Pharmacy, Traian Vuia 6, Bucharest, 020956, Romania.
| | - Rucsandra Dǎnciulescu-Miulescu
- "N. Paulescu" National Institute of Diabetes, Nutrition and Metabolic Diseases, Ion Movilă 5-7, Bucharest, 030167, Romania; "Carol Davila" University of Medicine and Pharmacy, Faculty of Dentistry, Department of Department of Endocrinology, Calea Plevnei 17-23, Bucharest, 020021, Romania
| |
Collapse
|
17
|
Dludla PV, Mazibuko-Mbeje SE, Nyambuya TM, Mxinwa V, Tiano L, Marcheggiani F, Cirilli I, Louw J, Nkambule BB. The beneficial effects of N-acetyl cysteine (NAC) against obesity associated complications: A systematic review of pre-clinical studies. Pharmacol Res 2019; 146:104332. [DOI: 10.1016/j.phrs.2019.104332] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/13/2019] [Accepted: 06/25/2019] [Indexed: 12/29/2022]
|
18
|
Ettcheto M, Cano A, Busquets O, Manzine PR, Sánchez-López E, Castro-Torres RD, Beas-Zarate C, Verdaguer E, García ML, Olloquequi J, Auladell C, Folch J, Camins A. A metabolic perspective of late onset Alzheimer's disease. Pharmacol Res 2019; 145:104255. [PMID: 31075308 DOI: 10.1016/j.phrs.2019.104255] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/11/2019] [Accepted: 04/30/2019] [Indexed: 12/13/2022]
Abstract
After decades of research, the molecular neuropathology of Alzheimer's disease (AD) is still one of the hot topics in biomedical sciences. Some studies suggest that soluble amyloid β (Aβ) oligomers act as causative agents in the development of AD and could be initiators of its complex neurodegenerative cascade. On the other hand, there is also evidence pointing to Aβ oligomers as mere aggravators, with an arguable role in the origin of the disease. In this line of research, the relative contribution of soluble Aβ oligomers to neuronal damage associated with metabolic disorders such as Type 2 Diabetes Mellitus (T2DM) and obesity is being actively investigated. Some authors have proposed the endoplasmic reticulum (ER) stress and the induction of the unfolded protein response (UPR) as important mechanisms leading to an increase in Aβ production and the activation of neuroinflammatory processes. Following this line of thought, these mechanisms could also cause cognitive impairment. The present review summarizes the current understanding on the neuropathological role of Aβ associated with metabolic alterations induced by an obesogenic high fat diet (HFD) intake. It is believed that the combination of these two elements has a synergic effect, leading to the impairement of ER and mitochondrial functions, glial reactivity status alteration and inhibition of insulin receptor (IR) signalling. All these metabolic alterations would favour neuronal malfunction and, eventually, neuronal death by apoptosis, hence causing cognitive impairment and laying the foundations for late-onset AD (LOAD). Moreover, since drugs enhancing the activation of cerebral insulin pathway can constitute a suitable strategy for the prevention of AD, we also discuss the scope of therapeutic approaches such as intranasal administration of insulin in clinical trials with AD patients.
Collapse
Affiliation(s)
- Miren Ettcheto
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain; Departament de Bioquímica i Biotecnologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain; Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Amanda Cano
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Unitat de Farmàcia, Tecnologia Farmacèutica i Fisico-química, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Spain
| | - Oriol Busquets
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain; Departament de Bioquímica i Biotecnologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain; Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Patricia Regina Manzine
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain; Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Department of Gerontology, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Elena Sánchez-López
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Unitat de Farmàcia, Tecnologia Farmacèutica i Fisico-química, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Spain
| | - Rubén D Castro-Torres
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain; Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Laboratorio de Regeneración y Desarrollo Neural, Instituto de Neurobiología, Departamento de Biología Celular y Molecular, CUCBA, Mexico
| | - Carlos Beas-Zarate
- Laboratorio de Regeneración y Desarrollo Neural, Instituto de Neurobiología, Departamento de Biología Celular y Molecular, CUCBA, Mexico
| | - Ester Verdaguer
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - María Luisa García
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Unitat de Farmàcia, Tecnologia Farmacèutica i Fisico-química, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Spain
| | - Jordi Olloquequi
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | - Carme Auladell
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Jaume Folch
- Departament de Bioquímica i Biotecnologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Antoni Camins
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain; Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|
19
|
Semisynthetic bile acids: a new therapeutic option for metabolic syndrome. Pharmacol Res 2019; 146:104333. [PMID: 31254667 DOI: 10.1016/j.phrs.2019.104333] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/14/2019] [Accepted: 06/25/2019] [Indexed: 12/11/2022]
Abstract
Bile acids are endogenous emulsifiers synthesized from cholesterol having a peculiar amphiphilic structure. Appreciation of their beneficial effects on human health, recognized since ancient times, has expanded enormously since the discovery of their role as signaling molecules. Activation of farnesoid X receptor (FXR) and Takeda G-protein receptor-5 (TGR5) signaling pathways by bile acids, regulating glucose, lipid and energy metabolism, have become attractive avenue for metabolic syndrome treatment. Therefore, extensive effort has been directed into the research and synthesis of bile acid derivatives with improved pharmacokinetic properties and high potency and selectivity for these receptors. Minor modifications in the structure of bile acids and their derivatives may result in fine-tuning modulation of their biological functions, and most importantly, in an evasion of undesired effect. A great number of semisynthetic bile acid analogues have been designed and put in preclinical and clinical settings. Obeticholic acid (INT-747) has achieved the biggest clinical success so far being in use for the treatment of primary biliary cholangitis. This review summarizes and critically evaluates the key chemical modifications of bile acids resulting in development of novel semisynthetic derivatives as well as the current status of their preclinical and clinical evaluation in the treatment of metabolic syndrome, an aspect that is so far lacking in the scientific literature. Taking into account the balance between therapeutic benefits and potential adverse effects associated with specific structure and mechanism of action, recommendations for future studies are proposed.
Collapse
|
20
|
Lei D, Chengcheng L, Xuan Q, Yibing C, Lei W, Hao Y, Xizhi L, Yuan L, Xiaoxing Y, Qian L. Quercetin inhibited mesangial cell proliferation of early diabetic nephropathy through the Hippo pathway. Pharmacol Res 2019; 146:104320. [PMID: 31220559 DOI: 10.1016/j.phrs.2019.104320] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/16/2019] [Accepted: 06/16/2019] [Indexed: 12/11/2022]
Abstract
Diabetic nephropathy (DN) is one of the most common microvascular complications of diabetes and the leading cause of end-stage renal disease. The proliferation of glomerular mesangial cells (MCs) is a common and prominent pathological change of DN, which takes place at the early stage. Quercetin, a bioflavonoid compound, possesses therapeutic efficacy in cardiovascular and kidney diseases via anti-tumour, anti-oxidation, anti-virus, and anti-proliferation effects. However, the mechanism of quercetin in the proliferation of glomerular MCs in early DN has not been reported. In the present study, we investigated the effect of quercetin on the proliferation of glomerular MCs in high glucose-induced mouse glomerular MCs and in db/db mice. On this basis, we tried to clarify the specific mechanisms underlying these effects. The in vitro results showed that the proliferation of glomerular MCs was induced by high glucose, and the Hippo pathway was highly inactivated in high glucose-cultured MCs. Decreased phosphorylation of MST1 and Lats1 promoted expression and nuclear translocation of Yes-associated protein (YAP) and subsequently increased the combination of YAP and TEA/ATS domain (TEAD), which promoted the expression of the downstream target gene such as cyclinE. Quercetin effectively inhibited the high glucose-induced MC proliferation and reactivated the Hippo pathway. In vivo, the proliferation of glomerular MCs was increased, renal function was decreased, and blood fasting glucose was elevated in db/db mice. Furthermore, the Hippo pathway was inactivated in the renal cortex of db/db mice. Eight-week treatment of quercetin retarded MC proliferation, alleviated the renal function, and reactivated Hippo pathway in the renal cortex of db/db mice at 16 weeks. Our previous study clarified that the Hippo pathway was involved in MC proliferation of DN. The results revealed that quercetin inhibited MC proliferation in high glucose-treated mouse glomerular MCs and in DN via reactivation of the Hippo pathway.
Collapse
Affiliation(s)
- Du Lei
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, China
| | - Li Chengcheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, China
| | - Qian Xuan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, China
| | - Chen Yibing
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, China
| | - Wang Lei
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, China
| | - Yang Hao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, China
| | - Li Xizhi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, China
| | - Li Yuan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, China
| | - Yin Xiaoxing
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, China.
| | - Lu Qian
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, China.
| |
Collapse
|
21
|
Yu Y, Yoon K, Kang T, Jeon H, Sim Y, Choe SH, Baek SY, Lee S, Seo K, Kang K. Therapeutic effect of long‐interval repeated intravenous administration of human umbilical cord blood‐derived mesenchymal stem cells in
DBA
/1 mice with collagen‐induced arthritis. J Tissue Eng Regen Med 2019; 13:1134-1142. [DOI: 10.1002/term.2861] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 12/20/2018] [Accepted: 02/13/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Yeonsil Yu
- Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology CenterSeoul National University Seoul South Korea
| | - Kyung‐Ae Yoon
- Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology CenterSeoul National University Seoul South Korea
| | - Tae‐Wook Kang
- Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology CenterSeoul National University Seoul South Korea
| | - Hyo‐Jin Jeon
- Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology CenterSeoul National University Seoul South Korea
| | - Yun‐Beom Sim
- Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology CenterSeoul National University Seoul South Korea
| | - Seung Hoon Choe
- Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology CenterSeoul National University Seoul South Korea
| | - Song Yi Baek
- Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology CenterSeoul National University Seoul South Korea
| | - Seunghee Lee
- Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology CenterSeoul National University Seoul South Korea
| | - Kwang‐Won Seo
- Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology CenterSeoul National University Seoul South Korea
| | - Kyung‐Sun Kang
- Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology CenterSeoul National University Seoul South Korea
- Adult Stem Cell Research Center, College of Veterinary MedicineSeoul National University Seoul South Korea
- Research Institute for Veterinary Science, College of Veterinary MedicineSeoul National University Seoul South Korea
| |
Collapse
|
22
|
Vazquez-Mateo C, Collins J, Goldberg SJ, Lawson M, Hernandez-Escalante J, Dooms H. Combining anti-IL-7Rα antibodies with autoantigen-specific immunotherapy enhances non-specific cytokine production but fails to prevent Type 1 Diabetes. PLoS One 2019; 14:e0214379. [PMID: 30908554 PMCID: PMC6433345 DOI: 10.1371/journal.pone.0214379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 03/12/2019] [Indexed: 01/09/2023] Open
Abstract
Autoantigen-specific methods to prevent and treat Type 1 Diabetes (T1D) carry high hopes to permanently cure this disease, but have largely failed in clinical trials. One suggested approach to increase the efficacy of islet antigen-specific vaccination is to combine it with a modulator of the T cell response, with the goal of reducing effector differentiation and promoting regulatory T cells (Tregs). Here we asked if addition of antibodies that block the IL-7/IL-7Rα pathway altered the T cell response to islet antigen vaccination and prevented T1D in non-obese diabetic (NOD) mice. Anti-IL-7Rα monoclonal antibodies (mAbs) reduced the numbers of islet antigen-specific T cells generated after vaccination with islet peptides and alum. However, addition of anti-IL-7Rα antibodies to peptide/alum vaccination unexpectedly increased non-specific IFN-γ, IL-2 and IL-10 cytokine production and did not result in improved prevention of T1D onset. In a second approach, we used a conjugate vaccine to deliver islet autoantigens, using Keyhole Limpet Hemocyanin (KLH) as a carrier. Islet antigen-KLH vaccination led to a significant expansion of antigen-specific Tregs and delayed diabetes onset in NOD mice. These outcomes were not further improved by addition of anti-IL-7Rα antibodies. To the contrary, blocking IL-7Rα during vaccination led to non-specific cytokine production and reduced the efficacy of a KLH-conjugated vaccine to prevent T1D. Our study thus revealed that adding anti-IL-7Rα antibodies during autoantigen immunization did not improve the efficacy of such vaccinations to prevent T1D, despite altering some aspects of the T cell response in a potentially advantageous way. Further refinement of this approach will be required to separate the beneficial from the adverse effects of anti-IL-7Rα antibodies to treat autoimmune disease.
Collapse
Affiliation(s)
- Cristina Vazquez-Mateo
- Arthritis Center, Rheumatology Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Justin Collins
- Arthritis Center, Rheumatology Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Sarah J. Goldberg
- Arthritis Center, Rheumatology Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Maxx Lawson
- Arthritis Center, Rheumatology Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Jaileene Hernandez-Escalante
- Arthritis Center, Rheumatology Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Hans Dooms
- Arthritis Center, Rheumatology Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
23
|
Ni Q, Pham NB, Meng WS, Zhu G, Chen X. Advances in immunotherapy of type I diabetes. Adv Drug Deliv Rev 2019; 139:83-91. [PMID: 30528629 DOI: 10.1016/j.addr.2018.12.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/13/2018] [Accepted: 12/03/2018] [Indexed: 12/15/2022]
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease affecting 3 million individuals in the U.S. The pathogenesis of T1DM is driven by immune-mediated destruction of pancreatic β cells, the source of glucose regulator insulin. While T1DM can be successfully managed with insulin replacement therapy, approaches that can modify the underlying immuno-pathology of β cell destruction has been long sought after. Immunotherapy can attenuate T cell responses against β cell antigens. Given the detailed cellular and molecular definitions of T1DM immune responses, rational immunomodulation can be and have been developed in mouse models, and in some instances, tested in humans. The possibility of identifying individuals who are predisposed to T1DM through genotyping lend to the possibility of preventive vaccines. While much has been accomplished in delineating the mechanisms of immunotherapies, some of which are being tested in humans, long-term preservation of β cells and insulin independency has not been achieved. In this regard, the drug delivery field has much to offer in maximizing the benefits of immune modulators by optimizing spatiotemporal presentation of antigens and costimulatory signals. In this review, we attempt to capture the current state of T1DM immunotherapy by highlighting representative studies.
Collapse
Affiliation(s)
- Qianqian Ni
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA; Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
| | - Ngoc B Pham
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | - Wilson S Meng
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | - Guizhi Zhu
- Department of Pharmaceutics, School of Pharmacy; The Developmental Therapeutics Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
24
|
|
25
|
Tomilov A, Allen S, Hui CK, Bettaieb A, Cortopassi G. Idebenone is a cytoprotective insulin sensitizer whose mechanism is Shc inhibition. Pharmacol Res 2018; 137:89-103. [PMID: 30290222 DOI: 10.1016/j.phrs.2018.09.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/20/2018] [Accepted: 09/24/2018] [Indexed: 01/04/2023]
Abstract
When insulin binds insulin receptor, IRS1 signaling is stimulated to trigger the maximal insulin response. p52Shc protein competes directly with IRS1, thus damping and diverting maximal insulin response. Genetic reduction of p52Shc minimizes competition with IRS1, and improves insulin signaling and glucose control in mice, and improves pathophysiological consequences of hyperglycemia. Given the multiple benefits of Shc reduction in vivo, we investigated whether any of 1680 drugs used in humans may function as Shc inhibitors, and thus potentially serve as novel anti-diabetics. Of the 1680, 30 insulin sensitizers were identified by screening in vitro, and of these 30 we demonstrated that 7 bound Shc protein. Of the 7 drugs, idebenone dose-dependently bound Shc protein in the 50-100 nM range, and induced insulin sensitivity and cytoprotection in this same 100 nM range that clinically dosed idebenone reaches in human plasma. By contrast we observe mitochondrial effects of idebenone in the 5,000 nM range that are not reached in human dosing. Multiple assays of target engagement demonstrate that idebenone physically interacts with Shc protein. Idebenone sensitizes mice to insulin in two different mouse models of prediabetes. Genetic depletion of idebenone's target eliminates idebenone's ability to insulin-sensitize in vivo. Thus, idebenone is the first-in-class member of a novel category of insulin-sensitizing and cytoprotective agents, the Shc inhibitors. Idebenone is an approved drug and could be considered for other indications such as type 2 diabetes and fatty liver disease, in which insulin resistance occurs.
Collapse
Affiliation(s)
- Alexey Tomilov
- Department of Molecular Biosciences, 1089 Veterinary Medicine Dr., VM3B, UC Davis, CA, 95616, USA.
| | - Sonia Allen
- Department of Molecular Biosciences, 1089 Veterinary Medicine Dr., VM3B, UC Davis, CA, 95616, USA.
| | - Chun Kiu Hui
- Department of Molecular Biosciences, 1089 Veterinary Medicine Dr., VM3B, UC Davis, CA, 95616, USA.
| | - Ahmed Bettaieb
- Department of Nutrition, The University of Tennessee, 1215 W. Cumberland Ave, Knoxville, TN, 37996-1920, USA.
| | - Gino Cortopassi
- Department of Molecular Biosciences, 1089 Veterinary Medicine Dr., VM3B, UC Davis, CA, 95616, USA.
| |
Collapse
|
26
|
Ben Nasr M, Tezza S, D'Addio F, Mameli C, Usuelli V, Maestroni A, Corradi D, Belletti S, Albarello L, Becchi G, Fadini GP, Schuetz C, Markmann J, Wasserfall C, Zon L, Zuccotti GV, Fiorina P. PD-L1 genetic overexpression or pharmacological restoration in hematopoietic stem and progenitor cells reverses autoimmune diabetes. Sci Transl Med 2018; 9:9/416/eaam7543. [PMID: 29141886 DOI: 10.1126/scitranslmed.aam7543] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 06/01/2017] [Accepted: 08/14/2017] [Indexed: 12/13/2022]
Abstract
Immunologically based clinical trials performed thus far have failed to cure type 1 diabetes (T1D), in part because these approaches were nonspecific. Because the disease is driven by autoreactive CD4 T cells, which destroy β cells, transplantation of hematopoietic stem and progenitor cells (HSPCs) has been recently offered as a therapy for T1D. Our transcriptomic profiling of HSPCs revealed that these cells are deficient in programmed death ligand 1 (PD-L1), an important immune checkpoint, in the T1D nonobese diabetic (NOD) mouse model. Notably, the immunoregulatory molecule PD-L1 plays a determinant role in controlling/inhibiting activated T cells and thus maintains immune tolerance. Furthermore, our genome-wide and bioinformatic analysis revealed the existence of a network of microRNAs (miRNAs) controlling PD-L1 expression, and silencing one of key altered miRNAs restored PD-L1 expression in HSPCs. We therefore sought to determine whether restoration of this defect would cure T1D as an alternative to immunosuppression. Genetically engineered or pharmacologically modulated HSPCs overexpressing PD-L1 inhibited the autoimmune response in vitro, reverted diabetes in newly hyperglycemic NOD mice in vivo, and homed to the pancreas of hyperglycemic NOD mice. The PD-L1 expression defect was confirmed in human HSPCs in T1D patients as well, and pharmacologically modulated human HSPCs also inhibited the autoimmune response in vitro. Targeting a specific immune checkpoint defect in HSPCs thus may contribute to establishing a cure for T1D.
Collapse
Affiliation(s)
- Moufida Ben Nasr
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, "L. Sacco" Department of Biomedical and Clinical Sciences, University of Milan, Milan 20157, Italy
| | - Sara Tezza
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Francesca D'Addio
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, "L. Sacco" Department of Biomedical and Clinical Sciences, University of Milan, Milan 20157, Italy
| | - Chiara Mameli
- Department of Pediatrics, Buzzi Children's Hospital, Milan 20154, Italy
| | - Vera Usuelli
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, "L. Sacco" Department of Biomedical and Clinical Sciences, University of Milan, Milan 20157, Italy
| | - Anna Maestroni
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, "L. Sacco" Department of Biomedical and Clinical Sciences, University of Milan, Milan 20157, Italy
| | | | | | - Luca Albarello
- Pathology Unit, Ospedale San Raffaele, Milan 20132, Italy
| | | | | | - Christian Schuetz
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - James Markmann
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Clive Wasserfall
- Department of Pathology, University of Florida, Gainesville, FL 32611, USA
| | - Leonard Zon
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gian Vincenzo Zuccotti
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, "L. Sacco" Department of Biomedical and Clinical Sciences, University of Milan, Milan 20157, Italy.,Department of Pediatrics, Buzzi Children's Hospital, Milan 20154, Italy
| | - Paolo Fiorina
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA. .,International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, "L. Sacco" Department of Biomedical and Clinical Sciences, University of Milan, Milan 20157, Italy.,Department of Endocrinology, ASST Fatebenefratelli-Sacco, Milan 20121, Italy
| |
Collapse
|
27
|
Burrack AL, Landry LG, Siebert J, Coulombe M, Gill RG, Nakayama M. Simultaneous Recognition of Allogeneic MHC and Cognate Autoantigen by Autoreactive T Cells in Transplant Rejection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:1504-1512. [PMID: 29311365 PMCID: PMC5809255 DOI: 10.4049/jimmunol.1700856] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 12/10/2017] [Indexed: 12/15/2022]
Abstract
The autoimmune condition is a primary obstacle to inducing tolerance in type 1 diabetes patients receiving allogeneic pancreas transplants. It is unknown how autoreactive T cells that recognize self-MHC molecules contribute to MHC-disparate allograft rejection. In this report, we show the presence and accumulation of dual-reactive, that is autoreactive and alloreactive, T cells in C3H islet allografts that were transplanted into autoimmune diabetic NOD mice. Using high-throughput sequencing, we discovered that T cells prevalent in allografts share identical TCRs with autoreactive T cells present in pancreatic islets. T cells expressing TCRs that are enriched in allograft lesions recognized C3H MHC molecules, and five of six cell lines expressing these TCRs were also reactive to NOD islet cells. These results reveal the presence of autoreactive T cells that mediate cross-reactive alloreactivity, and indicate a requirement for regulating such dual-reactive T cells in tissue replacement therapies given to autoimmune individuals.
Collapse
Affiliation(s)
- Adam L Burrack
- Department of Surgery, University of Colorado School of Medicine, Aurora, CO 80045
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Laurie G Landry
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO 80045; and
| | | | - Marilyne Coulombe
- Department of Surgery, University of Colorado School of Medicine, Aurora, CO 80045
| | - Ronald G Gill
- Department of Surgery, University of Colorado School of Medicine, Aurora, CO 80045
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Maki Nakayama
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045;
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO 80045; and
| |
Collapse
|
28
|
Zongyi Y, Funian Z, Hao L, Xin W, Ying C, Jialin Z, Yongfeng L, Baifeng L. Interleukin-35 mitigates the function of murine transplanted islet cells via regulation of Treg/Th17 ratio. PLoS One 2017; 12:e0189617. [PMID: 29236782 PMCID: PMC5728515 DOI: 10.1371/journal.pone.0189617] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 11/29/2017] [Indexed: 12/19/2022] Open
Abstract
Pancreatic islet transplantation is a promising treatment for type 1 diabetes (T1D). Interleukin-35 (IL-35) is a recently discovered cytokine that exhibits potent immunosuppressive functions. However, the role of IL-35 in islet transplant rejection remains to be elucidated. In this study, we isolated islet cells of BALB/c mouse and purified CD4+ T cell subsets of a C57BL/6 mouse. The model for islet transplantation was established in vitro by co-culture of the islet cells and CD4+ T cells. IL-35 (20 ng/ml) was administered every other day. Following co-culture, the islet function and Treg/Th17 ratio were analyzed on days 1, 3, and 5. Furthermore, the Th17/Treg ratio was modulated (1:0–2), and the function of islet cells as well as proliferation of Th17 cells were analyzed. T cell sorting was performed using the magnetic bead sorting method; Treg and Th17 count using flow cytometry; cell proliferation detection using the carboxyfluorescein diacetate succinimidyl ester (CFSE) method, and islet function test using the sugar stimulation test. Results showed that Th17 counts increased in the co-culture system. However, after administration of IL-35, the number of Treg cells increased significantly compared to that in the control group (50.7% of total CD4+ T cells on day 5 in IL-35 group vs. 9.5% in control group) whereas the proliferation rate of Th17 cells was significantly inhibited (0.3% in IL-35 group vs. 7.2% in control group on day 5). Reducing the Th17/Treg ratio significantly improved the function of transplanted islets. Treg inhibited Th17 proliferation and IL-35 enhanced this inhibitory effect. IL-35 mitigates the function of murine transplanted islet cells via regulation of the Treg/Th17 ratio. This might serve as a potential therapeutic strategy for in-vivo islet transplant rejection and T1D.
Collapse
Affiliation(s)
- Yin Zongyi
- Department of Hepatobiliary Surgery and Organ Transplantation, the First Hospital of China Medical University, Shenyang, China
- Department of Hepatobiliary Surgery, Shenzhen University General Hospital, Shenzhen, China
| | - Zou Funian
- Department of Hepatobiliary Surgery and Organ Transplantation, the First Hospital of China Medical University, Shenyang, China
| | - Li Hao
- Department of Hepatobiliary Surgery and Organ Transplantation, the First Hospital of China Medical University, Shenyang, China
| | - Wang Xin
- Department of Hepatobiliary Surgery and Organ Transplantation, the First Hospital of China Medical University, Shenyang, China
| | - Cheng Ying
- Department of Hepatobiliary Surgery and Organ Transplantation, the First Hospital of China Medical University, Shenyang, China
- National Key Lab. of General Surgery, the First Hospital of China Medical University, Shenyang, China
- Multiple Organ Transplantation Institute of the First Hospital of China Medical University, Shenyang, China
| | - Zhang Jialin
- Department of Hepatobiliary Surgery and Organ Transplantation, the First Hospital of China Medical University, Shenyang, China
- National Key Lab. of General Surgery, the First Hospital of China Medical University, Shenyang, China
- Multiple Organ Transplantation Institute of the First Hospital of China Medical University, Shenyang, China
| | - Liu Yongfeng
- Department of Hepatobiliary Surgery and Organ Transplantation, the First Hospital of China Medical University, Shenyang, China
- National Key Lab. of General Surgery, the First Hospital of China Medical University, Shenyang, China
- Multiple Organ Transplantation Institute of the First Hospital of China Medical University, Shenyang, China
| | - Li Baifeng
- Department of Hepatobiliary Surgery and Organ Transplantation, the First Hospital of China Medical University, Shenyang, China
- National Key Lab. of General Surgery, the First Hospital of China Medical University, Shenyang, China
- Multiple Organ Transplantation Institute of the First Hospital of China Medical University, Shenyang, China
- * E-mail:
| |
Collapse
|
29
|
Korf H, Breser L, Van Hoeck J, Godoy J, Cook DP, Stijlemans B, De Smidt E, Moyson C, Monteiro Carvalho Mori Cunha JP, Rivero V, Gysemans C, Mathieu C. MIF inhibition interferes with the inflammatory and T cell-stimulatory capacity of NOD macrophages and delays autoimmune diabetes onset. PLoS One 2017; 12:e0187455. [PMID: 29095944 PMCID: PMC5667746 DOI: 10.1371/journal.pone.0187455] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 10/22/2017] [Indexed: 12/21/2022] Open
Abstract
Macrophages contribute in the initiation and progression of insulitis during type 1 diabetes (T1D). However, the mechanisms governing their recruitment into the islets as well as the manner of retention and activation are incompletely understood. Here, we investigated a role for macrophage migration inhibitory factor (MIF) and its transmembrane receptor, CD74, in the progression of T1D. Our data indicated elevated MIF concentrations especially in long-standing T1D patients and mice. Additionally, NOD mice featured increased MIF gene expression and CD74+ leukocyte frequencies in the pancreas. We identified F4/80+ macrophages as the main immune cells in the pancreas expressing CD74 and showed that MIF antagonism of NOD macrophages prevented their activation-induced cytokine production. The physiological importance was highlighted by the fact that inhibition of MIF delayed the onset of autoimmune diabetes in two different diabetogenic T cell transfer models. Mechanistically, macrophages pre-conditioned with the MIF inhibitor featured a refractory capacity to trigger T cell activation by keeping them in a naïve state. This study underlines a possible role for MIF/CD74 signaling pathways in promoting macrophage-mediated inflammation in T1D. As therapies directed at the MIF/CD74 pathway are in clinical development, new opportunities may be proposed for arresting T1D progression.
Collapse
Affiliation(s)
- Hannelie Korf
- Laboratory of Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
- * E-mail:
| | - Laura Breser
- Center for Research in Clinical Biochemistry and Immunology, Department of Clinical Biochemistry, National University of Cordoba, Cordoba, Argentina
| | - Jelter Van Hoeck
- Laboratory of Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Janet Godoy
- Center for Research in Clinical Biochemistry and Immunology, Department of Clinical Biochemistry, National University of Cordoba, Cordoba, Argentina
| | - Dana P. Cook
- Laboratory of Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Benoit Stijlemans
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Elien De Smidt
- Laboratory of Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Carolien Moyson
- Laboratory of Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | | | - Virginia Rivero
- Center for Research in Clinical Biochemistry and Immunology, Department of Clinical Biochemistry, National University of Cordoba, Cordoba, Argentina
| | - Conny Gysemans
- Laboratory of Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Chantal Mathieu
- Laboratory of Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| |
Collapse
|
30
|
Lenzen S. Animal models of human type 1 diabetes for evaluating combination therapies and successful translation to the patient with type 1 diabetes. Diabetes Metab Res Rev 2017; 33. [PMID: 28692149 DOI: 10.1002/dmrr.2915] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 12/22/2022]
Abstract
Animal models of human type 1 diabetes will be of a great importance for the evaluation of new combination therapies with curative potential. However, reliable predictive power for successful translation to patients with type 1 diabetes is crucial. This will be particularly important in the future when evaluating success of new combination therapies that show great promise for preservation and restoration of beta cell mass and thereby reverse the type 1 diabetic hyperglycaemia. But not all spontaneous animal models are equally well suited for this purpose. The advantages and disadvantages of the three spontaneous rat models (BioBreeding diabetes-prone [BB] rat, Komeda [KDP] rat, and LEW.1AR1-iddm [IDDM] rat) as well as the NOD mouse, compared with the characteristics of human type 1 diabetes, are considered in this review.
Collapse
Affiliation(s)
- Sigurd Lenzen
- Institute of Experimental Diabetes Research, Hannover Medical School, Hannover, Germany
| |
Collapse
|
31
|
De Riva A, Wållberg M, Ronchi F, Coulson R, Sage A, Thorne L, Goodfellow I, McCoy KD, Azuma M, Cooke A, Busch R. Regulation of type 1 diabetes development and B-cell activation in nonobese diabetic mice by early life exposure to a diabetogenic environment. PLoS One 2017; 12:e0181964. [PMID: 28771521 PMCID: PMC5542673 DOI: 10.1371/journal.pone.0181964] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 07/10/2017] [Indexed: 12/12/2022] Open
Abstract
Microbes, including viruses, influence type 1 diabetes (T1D) development, but many such influences remain undefined. Previous work on underlying immune mechanisms has focussed on cytokines and T cells. Here, we compared two nonobese diabetic (NOD) mouse colonies, NODlow and NODhigh, differing markedly in their cumulative T1D incidence (22% vs. 90% by 30 weeks in females). NODhigh mice harbored more complex intestinal microbiota, including several pathobionts; both colonies harbored segmented filamentous bacteria (SFB), thought to suppress T1D. Young NODhigh females had increased B-cell activation in their mesenteric lymph nodes. These phenotypes were transmissible. Co-housing of NODlow with NODhigh mice after weaning did not change T1D development, but T1D incidence was increased in female offspring of co-housed NODlow mice, which were exposed to the NODhigh environment both before and after weaning. These offspring also acquired microbiota and B-cell activation approaching those of NODhigh mice. In NODlow females, the low rate of T1D was unaffected by cyclophosphamide but increased by PD-L1 blockade. Thus, environmental exposures that are innocuous later in life may promote T1D progression if acquired early during immune development, possibly by altering B-cell activation and/or PD-L1 function. Moreover, T1D suppression in NOD mice by SFB may depend on the presence of other microbial influences. The complexity of microbial immune regulation revealed in this murine model may also be relevant to the environmental regulation of human T1D.
Collapse
Affiliation(s)
- Alessandra De Riva
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Maja Wållberg
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Francesca Ronchi
- Maurice Müller Laboratories (DKF), Universitätsklinik für Viszerale Chirurgie und Medizin Inselspital, University of Bern, Bern, Switzerland
| | - Richard Coulson
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Andrew Sage
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Lucy Thorne
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Ian Goodfellow
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Kathy D. McCoy
- Maurice Müller Laboratories (DKF), Universitätsklinik für Viszerale Chirurgie und Medizin Inselspital, University of Bern, Bern, Switzerland
| | - Miyuki Azuma
- Department of Molecular Immunology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Anne Cooke
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Robert Busch
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Life Sciences, University of Roehampton, London, United Kingdom
| |
Collapse
|
32
|
Frumento D, Ben Nasr M, El Essawy B, D'Addio F, Zuccotti GV, Fiorina P. Immunotherapy for type 1 diabetes. J Endocrinol Invest 2017; 40:803-814. [PMID: 28260183 DOI: 10.1007/s40618-017-0641-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 02/13/2017] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Although many approaches have been tested to overcome the insulin dependence caused by the pancreatic β-cells destruction observed in individuals affected by type 1 diabetes (T1D), medical research has largely failed to halt the onset or to reverse T1D. METHODS In this work, the state of the art of immunotherapy will be examined, and the most important achievement in the field will be critically discussed. Particularly, we will focus on the clinical aspect, thus avoiding the tedious preclinical work done in NOD mice, which has been so poorly translated to the bedside. CONCLUSIONS Stem cell therapies achieved thus this far the most promising results, while immune ablation and standard immunosuppressants did not maintain the premises of preclinical results. The next step will be to generate a feasible and safe clinical approach in order to cure the thousands of patients affected by T1D.
Collapse
Affiliation(s)
| | - Moufida Ben Nasr
- International Center for T1D, Pediatric Clinical Research Center Fondazione Romeo e Enrica Invernizzi, Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Enders Building 5th floor Room EN511, 300 Longwood Ave, Boston, MA, USA
| | | | - Francesca D'Addio
- DITID, San Raffaele Hospital, Milan, Italy
- International Center for T1D, Pediatric Clinical Research Center Fondazione Romeo e Enrica Invernizzi, Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy
| | - Gian Vincenzo Zuccotti
- Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy
| | - Paolo Fiorina
- International Center for T1D, Pediatric Clinical Research Center Fondazione Romeo e Enrica Invernizzi, Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy.
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Enders Building 5th floor Room EN511, 300 Longwood Ave, Boston, MA, USA.
| |
Collapse
|
33
|
Loretelli C, Moore RF, Ben Nasr M, Dellepiane S, Balan M, Mounayar M, Usuelli V, El Essawy B, D'Addio F, Stemmer-Rachamimov AO, Zuccotti GV, Pal S, Fiorina P, Abdi R. Immunoevasion rather than intrinsic oncogenicity may confer MSCs from non-obese diabetic mice the ability to generate neural tumors. Acta Diabetol 2017; 54:707-712. [PMID: 28224274 DOI: 10.1007/s00592-017-0967-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/20/2017] [Indexed: 10/20/2022]
Affiliation(s)
- Cristian Loretelli
- International Center for T1D, Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy
| | - Robert F Moore
- Nephrology Division, Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, LMRC Building, Room 310, 221 Longwood Avenue, Boston, MA, USA
| | - Moufida Ben Nasr
- International Center for T1D, Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Enders Building 5th floor Room EN511, 300 Longwood Ave, Boston, MA, USA
| | - Sergio Dellepiane
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Enders Building 5th floor Room EN511, 300 Longwood Ave, Boston, MA, USA
| | - Murugabaskar Balan
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Enders Building 5th floor Room EN511, 300 Longwood Ave, Boston, MA, USA
| | - Marwan Mounayar
- Nephrology Division, Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, LMRC Building, Room 310, 221 Longwood Avenue, Boston, MA, USA
| | - Vera Usuelli
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Enders Building 5th floor Room EN511, 300 Longwood Ave, Boston, MA, USA
| | | | - Francesca D'Addio
- International Center for T1D, Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy
| | | | - Gian Vincenzo Zuccotti
- International Center for T1D, Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy
- Department of Pediatrics, Ospedale dei Bambini-V. Buzzi, Milan, Italy
| | - Soumitro Pal
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Enders Building 5th floor Room EN511, 300 Longwood Ave, Boston, MA, USA
| | - Paolo Fiorina
- International Center for T1D, Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy.
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Enders Building 5th floor Room EN511, 300 Longwood Ave, Boston, MA, USA.
| | - Reza Abdi
- Nephrology Division, Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, LMRC Building, Room 310, 221 Longwood Avenue, Boston, MA, USA.
| |
Collapse
|
34
|
Garbossa SG, Folli F. Vitamin D, sub-inflammation and insulin resistance. A window on a potential role for the interaction between bone and glucose metabolism. Rev Endocr Metab Disord 2017; 18:243-258. [PMID: 28409320 DOI: 10.1007/s11154-017-9423-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vitamin D is a key hormone involved in the regulation of calcium/phosphorous balance and recently it has been implicated in the pathogenesis of sub-inflammation, insulin resistance and obesity. The two main forms of vitamin D are cholecalciferol (Vitamin D3) and ergocalciferol (Vitamin D2): the active form (1,25-dihydroxyvitamin D) is the result of two hydroxylations that take place in liver, kidney, pancreas and immune cells. Vitamin D increases the production of some anti-inflammatory cytokines and reduces the release of some pro-inflammatory cytokines. Low levels of Vitamin D are also associated with an up-regulation of TLRs expression and a pro-inflammatory state. Regardless of the effect on inflammation, Vitamin D seems to directly increase insulin sensitivity and secretion, through different mechanisms. Considering the importance of low grade chronic inflammation in metabolic syndrome, obesity and diabetes, many authors hypothesized the involvement of this nutrient/hormone in the pathogenesis of these diseases. Vitamin D status could alter the balance between pro and anti-inflammatory cytokines and thus affect insulin action, lipid metabolism and adipose tissue function and structure. Numerous studies have shown that Vitamin D concentrations are inversely associated with pro-inflammatory markers, insulin resistance, glucose intolerance and obesity. Interestingly, some longitudinal trials suggested also an inverse association between vitamin D status and incident type 2 diabetes mellitus. However, vitamin D supplementation in humans showed controversial effects: with some studies demonstrating improvements in insulin sensitivity, glucose and lipid metabolism while others showing no beneficial effect on glycemic control and on inflammation. In conclusion, although the evidences of a significant role of Vitamin D on inflammation, insulin resistance and insulin secretion in the pathogenesis of obesity, metabolic syndrome and type 2 diabetes, its potential function in treatment and prevention of type 2 diabetes mellitus is unclear. Encouraging results have emerged from Vitamin D supplementation trials on patients at risk of developing diabetes and further studies are needed to fully explore and understand its clinical applications.
Collapse
Affiliation(s)
- Stefania Giuliana Garbossa
- Department of Internal Medicine, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Ospedale San Paolo, Via A. Di Rudini 8, Milan, 20142, Italy
- Program in Nutritional Science, Universitá degli Studi di Milano, Milan, Italy
| | - Franco Folli
- Department of Internal Medicine, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Ospedale San Paolo, Via A. Di Rudini 8, Milan, 20142, Italy.
- Endocrinology and Metabolism, Department of Health Science, Universitá degli Studi di Milano, San Paolo Hospital, Room #737, Via A. Di Rudiní 8, 20142, Milan, Italy.
- Department of Medicine, Diabetes Division, University of Texas Health System, 7703 Floyd Curl Drive, San Antonio, 78229, TX, USA.
| |
Collapse
|
35
|
Itoh A, Ridgway WM. Targeting innate immunity to downmodulate adaptive immunity and reverse type 1 diabetes. Immunotargets Ther 2017; 6:31-38. [PMID: 28580341 PMCID: PMC5448691 DOI: 10.2147/itt.s117264] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Type 1 diabetes (T1D) is characterized by specific destruction of pancreatic insulin-producing beta cells accompanied by evidence of beta-cell-directed autoimmunity such as autoreactive T cells and islet autoantibodies (IAAs). Currently, T1D cannot be prevented or reversed in humans. T1D is easy to prevent in the nonobese diabetic (NOD) spontaneous mouse model but reversing new-onset T1D in mice is more difficult. Since the discovery of the T-cell receptor in the 1980s and the subsequent identification of autoreactive T cells directed toward beta-cell antigens (eg, insulin, glutamic acid decarboxylase), the dream of antigen-specific immunotherapy has dominated the field with its promise of specificity and limited side effects. While such approaches have worked in the NOD mouse, however, dozens of human trials have failed. Broader immunosuppressive approaches (originally cyclosporine, subsequently anti-CD3 antibody) have shown partial successes (e.g., prolonged C peptide preservation) but no major therapeutic efficacy or disease reversal. Human prevention trials have failed, despite the ease of such approaches in the NOD mouse. In the past 50 years, the incidence of T1D has increased dramatically, and one explanation is the “hygiene hypothesis”, which suggests that decreased exposure of the innate immune system to environmental immune stimulants (e.g., bacterial products such as Toll-like receptor (TLR) 4-stimulating lipopolysaccharide [LPS]) dramatically affects the adaptive immune system and increases subsequent autoimmunity. We have tested the role of innate immunity in autoimmune T1D by treating acute-onset T1D in NOD mice with anti-TLR4/MD-2 agonistic antibodies and have shown a high rate of disease reversal. The TLR4 antibodies do not directly stimulate T cells but induce tolerogenic antigen-presenting cells (APCs) that mediate decreased adaptive T-cell responses. Here, we review our current knowledge and suggest future prospects for targeting innate immunity in T1D immunotherapy.
Collapse
Affiliation(s)
- Arata Itoh
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - William M Ridgway
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
36
|
Perri V, Pellegrino M, Ceccacci F, Scipioni A, Petrini S, Gianchecchi E, Lo Russo A, De Santis S, Mancini G, Fierabracci A. Use of short interfering RNA delivered by cationic liposomes to enable efficient down-regulation of PTPN22 gene in human T lymphocytes. PLoS One 2017; 12:e0175784. [PMID: 28437437 PMCID: PMC5402975 DOI: 10.1371/journal.pone.0175784] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 04/01/2017] [Indexed: 12/13/2022] Open
Abstract
Type 1 diabetes and thyroid disease are T cell-dependent autoimmune endocrinopathies. The standard substitutive administration of the deficient hormones does not halt the autoimmune process; therefore, development of immunotherapies aiming to preserve the residual hormonal cells, is of crucial importance. PTPN22 C1858T mutation encoding for the R620W lymphoid tyrosine phosphatase variant, plays a potential pathophysiological role in autoimmunity. The PTPN22 encoded protein Lyp is a negative regulator of T cell antigen receptor signaling; R620W variant, leading to a gain of function with paradoxical reduced T cell activation, may represent a valid therapeutic target. We aimed to develop novel wild type PTPN22 short interfering RNA duplexes (siRNA) and optimize their delivery into Jurkat T cells and PBMC by using liposomal carriers. Conformational stability, size and polydispersion of siRNA in lipoplexes was measured by CD spectroscopy and DLS. Lipoplexes internalization and toxicity evaluation was assessed by confocal microscopy and flow cytometry analysis. Their effect on Lyp expression was evaluated by means of Western Blot and confocal microscopy. Functional assays through engagement of TCR signaling were established to evaluate biological consequences of down-modulation. Both Jurkat T cells and PBMC were efficiently transfected by stable custom lipoplexes. Jurkat T cell morphology and proliferation was not affected. Lipoplexes incorporation was visualized in CD3+ but also in CD3- peripheral blood immunotypes without signs of toxicity, damage or apoptosis. Efficacy in affecting Lyp protein expression was demonstrated in both transfected Jurkat T cells and PBMC. Moreover, impairment of Lyp inhibitory activity was revealed by increase of IL-2 secretion in culture supernatants of PBMC following anti-CD3/CD28 T cell receptor-driven stimulation. The results of our study open the pathway to future trials for the treatment of autoimmune diseases based on the selective inhibition of variant PTPN22 allele using lipoplexes of siRNA antisense oligomers.
Collapse
Affiliation(s)
- Valentina Perri
- Type 1 Diabetes Centre, Infectivology and Clinical Trials Area, Children’s Hospital Bambino Gesù, Rome, Italy
| | - Marsha Pellegrino
- Type 1 Diabetes Centre, Infectivology and Clinical Trials Area, Children’s Hospital Bambino Gesù, Rome, Italy
| | - Francesca Ceccacci
- CNR Chemical Methodologies Institute-Section Mechanisms of reaction (CNR-IMC-SMR) c/o Sapienza University, Rome, Italy
| | - Anita Scipioni
- Department of Chemistry, Sapienza University, Rome, Italy
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Research Laboratories, Children’s Hospital Bambino Gesù, Rome, Italy
| | - Elena Gianchecchi
- Type 1 Diabetes Centre, Infectivology and Clinical Trials Area, Children’s Hospital Bambino Gesù, Rome, Italy
| | - Anna Lo Russo
- Type 1 Diabetes Centre, Infectivology and Clinical Trials Area, Children’s Hospital Bambino Gesù, Rome, Italy
| | | | | | - Alessandra Fierabracci
- Type 1 Diabetes Centre, Infectivology and Clinical Trials Area, Children’s Hospital Bambino Gesù, Rome, Italy
| |
Collapse
|
37
|
Hu S, Zhang M, Sun F, Ren L, He X, Hua J, Peng S. miR-375 controls porcine pancreatic stem cell fate by targeting 3-phosphoinositide-dependent protein kinase-1 (Pdk1). Cell Prolif 2017; 49:395-406. [PMID: 27218665 DOI: 10.1111/cpr.12263] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/10/2016] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES miR-375 is one of the highly expressed microRNAs (miRNAs) found in pancreatic islets of both humans and mice. In this study, we investigated functions of miRNA miR-375 in porcine pancreatic stem cells (PSC). MATERIALS AND METHODS We transfected mimic and inhibitor of miR-375 in PSCs to measure functional roles of the microRNA and its effects on cell cycle proliferation and cell differentiation were determined. Luciferase assays were also performed to reveal the target gene of miR-375. RESULTS Overexpression of miR-375 suppressed proliferation, promoted apoptosis and inhibited differentiation into islet-like cells. PDK1 was identified as being a target of miR-375. Furthermore, we found that overexpression of miR-375 inhibited activation of the PDK1-AKT signalling pathway. CONCLUSION miR-375 directly targeted PDK1 in porcine PSCs, suppressing cell proliferation and differentiation into islet-like cells.
Collapse
Affiliation(s)
- Shuxian Hu
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering and Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China, Northwest A&F University, Yangling, Shaanxi, China
| | - Mingzhi Zhang
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering and Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China, Northwest A&F University, Yangling, Shaanxi, China
| | - Fen Sun
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering and Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China, Northwest A&F University, Yangling, Shaanxi, China
| | - Lipeng Ren
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering and Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China, Northwest A&F University, Yangling, Shaanxi, China
| | - Xin He
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering and Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China, Northwest A&F University, Yangling, Shaanxi, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering and Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China, Northwest A&F University, Yangling, Shaanxi, China
| | - Sha Peng
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering and Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
38
|
Azzi J, Thueson L, Moore R, Abdoli R, Reijonen H, Abdi R. PI3Kγ Deficient NOD-Mice Are Protected from Diabetes by Restoring the Balance of Regulatory to Effector-T-Cells. PLoS One 2017; 12:e0169695. [PMID: 28081180 PMCID: PMC5231340 DOI: 10.1371/journal.pone.0169695] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/20/2016] [Indexed: 11/18/2022] Open
Abstract
With a steady increase in its incidence and lack of curative treatment, type 1 diabetes (T1D) has emerged as a major health problem worldwide. To design novel effective therapies, there is a pressing need to identify regulatory targets controlling the balance of autoreactive to regulatory-T-cells (Tregs). We previously showed that the inhibition of the γ-subunit of the Phosphoinositide-3-kinase (PI3K), significantly suppress autoimmune-diabetes. To further delineate the mechanisms and the selectivity of specific immune modulation by PI3Kγ-inhibition, we developed a new NOD mouse model of T1D lacking the γ-subunit of PI3K. Strikingly, the loss of PI3Kγ protected 92% of the NOD-mice from developing spontaneous diabetes. The NOD.PI3Kγ-/- mice are protected from insulitis secondary to a defect in CD4 and CD8 autoreactive-T-cells activation and survival. In addition, PI3Kγ-deficiency promoted Treg generation in-vitro and in-vivo. Furthermore, PI3Kγ-inhibitor (AS605240) inhibited proliferation and cytokine production of a human CD4+ T-cell clone specific for GAD555-567 peptide that was isolated from a patient with T1D. These studies demonstrate the key role of the PI3Kγ pathway in regulating autoimmune-diabetes and provide rationales for future devise of anti- PI3Kγ therapy in T1D.
Collapse
Affiliation(s)
- Jamil Azzi
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (JA); (RA)
| | - Lindsay Thueson
- Benaroya Research Institute, Seattle, Washington, United States of America
| | - Robert Moore
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rozita Abdoli
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Helena Reijonen
- Benaroya Research Institute, Seattle, Washington, United States of America
| | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (JA); (RA)
| |
Collapse
|
39
|
Ben Nasr M, Bassi R, Usuelli V, Valderrama-Vasquez A, Tezza S, D'Addio F, Fiorina P. The use of hematopoietic stem cells in autoimmune diseases. Regen Med 2016; 11:395-405. [PMID: 27165670 DOI: 10.2217/rme-2015-0057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Hematopoietic stem cells (HSCs) have been shown recently to hold much promise in curing autoimmune diseases. Newly diagnosed Type 1 diabetes individuals have been successfully reverted to normoglycemia by administration of autologous HSCs in association with a nonmyeloablative regimen (antithymocyte globulin + cyclophasmide). Furthermore, recent trials reported positive results by using HSCs in treatment of systemic sclerosis, multiple sclerosis and rheumatoid arthritis as well. Early data suggested that HSCs possess immunological properties that may be harnessed to alleviate the symptoms of individuals with autoimmune disorders and possibly induce remission of autoimmune diseases. Mechanistically, HSCs may facilitate the generation of regulatory T cells, may inhibit the function of autoreactive T-cell function and may reshape the immune system.
Collapse
Affiliation(s)
- Moufida Ben Nasr
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Transplant Medicine Division, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Roberto Bassi
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Transplant Medicine Division, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Vera Usuelli
- Transplant Medicine Division, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Sara Tezza
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Francesca D'Addio
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Transplant Medicine Division, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Paolo Fiorina
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Transplant Medicine Division, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
40
|
Mishra A, Dayal D, Sachdeva N, Attri SV. Effect of 6-months' vitamin D supplementation on residual beta cell function in children with type 1 diabetes: a case control interventional study. J Pediatr Endocrinol Metab 2016; 29:395-400. [PMID: 26244673 DOI: 10.1515/jpem-2015-0088] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/18/2015] [Indexed: 01/11/2023]
Abstract
BACKGROUND The aim of this study was to evaluate the effect of short-term vitamin D supplementation on the decline of residual beta cell function (RBCF) in children with type 1 diabetes (T1D). METHODS The study involved an intervention group (cholecalciferol 2000 IU/day and calcium 25 mg/kg/day for 6 months) comprising 15 children aged 6-12 years and within 1-2 years of diagnosis of T1D. Fifteen age-matched T1D patients were followed up as controls. Stimulated C-peptide levels were estimated at baseline and 6 months. RESULTS The mean decrease in stimulated C-peptide levels in the intervention group was lower (-0.048±0.15 ng/mL) as compared with the controls (-0.107±0.23 ng/mL) but did not reach statistical significance (p=0.472). The percent decrease in stimulated C-peptide from baseline to endpoint (8.3% vs. 20.3%, p=0.357) and the monthly decrease (0.008 ng/mL vs. 0.017 ng/mL, p=0.22) were non-significantly lower in the intervention group compared with the control group. Three (20%) patients progressed to undetectable stimulated C-peptide (≤0.01 ng/mL) over the study period in the control group as compared with one (6%) in the intervention group (p-value 0.260). CONCLUSIONS There was a trend towards lesser decline of RBCF with short term cholecalciferol supplementation in children with T1D. Further larger studies are urgently needed to explore the beneficial effects of the relatively inexpensive vitamin D supplementation on RBCF.
Collapse
Affiliation(s)
- Atindra Mishra
- Pediatric Endocrinology and Diabetes Unit, Department of Pediatrics , Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Devi Dayal
- Additional Professor, Pediatric Endocrinology and Diabetes Unit, Department of Pediatrics , Advanced Pediatrics Center, Postgraduate Institute of Medical Education and Research, Chandigarh-160012, India
| | - Naresh Sachdeva
- Postgraduate Institute of Medical Education and Research, Department of Endocrinology , Chandigarh, India
| | - Savita Verma Attri
- Postgraduate Institute of Medical Education and Research, Department of Pediatrics , Chandigarh, India
| |
Collapse
|
41
|
Al-awar A, Kupai K, Veszelka M, Szűcs G, Attieh Z, Murlasits Z, Török S, Pósa A, Varga C. Experimental Diabetes Mellitus in Different Animal Models. J Diabetes Res 2016; 2016:9051426. [PMID: 27595114 PMCID: PMC4993915 DOI: 10.1155/2016/9051426] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 12/16/2022] Open
Abstract
Animal models have historically played a critical role in the exploration and characterization of disease pathophysiology and target identification and in the evaluation of novel therapeutic agents and treatments in vivo. Diabetes mellitus disease, commonly known as diabetes, is a group of metabolic disorders characterized by high blood glucose levels for a prolonged time. To avoid late complications of diabetes and related costs, primary prevention and early treatment are therefore necessary. Due to its chronic symptoms, new treatment strategies need to be developed, because of the limited effectiveness of the current therapies. We overviewed the pathophysiological features of diabetes in relation to its complications in type 1 and type 2 mice along with rat models, including Zucker Diabetic Fatty (ZDF) rats, BB rats, LEW 1AR1/-iddm rats, Goto-Kakizaki rats, chemically induced diabetic models, and Nonobese Diabetic mouse, and Akita mice model. The advantages and disadvantages that these models comprise were also addressed in this review. This paper briefly reviews the wide pathophysiological and molecular mechanisms associated with type 1 and type 2 diabetes, particularly focusing on the challenges associated with the evaluation and predictive validation of these models as ideal animal models for preclinical assessments and discovering new drugs and therapeutic agents for translational application in humans.
Collapse
Affiliation(s)
- Amin Al-awar
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Kozep Fasor 52, 6726 Szeged, Hungary
| | - Krisztina Kupai
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Kozep Fasor 52, 6726 Szeged, Hungary
- *Krisztina Kupai:
| | - Médea Veszelka
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Kozep Fasor 52, 6726 Szeged, Hungary
| | - Gergő Szűcs
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Kozep Fasor 52, 6726 Szeged, Hungary
| | - Zouhair Attieh
- Department of Laboratory Science and Technology, Faculty of Health Sciences, American University of Science and Technology, Alfred Naccache Avenue, Beirut 1100, Lebanon
| | | | - Szilvia Török
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Kozep Fasor 52, 6726 Szeged, Hungary
| | - Anikó Pósa
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Kozep Fasor 52, 6726 Szeged, Hungary
| | - Csaba Varga
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Kozep Fasor 52, 6726 Szeged, Hungary
| |
Collapse
|
42
|
Haller MJ, Atkinson MA, Wasserfall CH, Brusko TM, Mathews CE, Hulme M, Cintron M, Shuster J, McGrail K, Posgai A, Schatz D. Mobilization without immune depletion fails to restore immunological tolerance or preserve beta cell function in recent onset type 1 diabetes. Clin Exp Immunol 2015; 183:350-7. [PMID: 26462724 DOI: 10.1111/cei.12731] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2015] [Indexed: 12/12/2022] Open
Abstract
Granulocyte colony-stimulating factor (G-CSF) has been used to restore immune competence following chemoablative cancer therapy and to promote immunological tolerance in certain settings of autoimmunity. Therefore, we tested the potential of G-CSF to impact type 1 diabetes (T1D) progression in patients with recent-onset disease [n = 14; n = 7 (placebo)] and assessed safety, efficacy and mechanistic effects on the immune system. We hypothesized that pegylated G-CSF (6 mg administered subcutaneously every 2 weeks for 12 weeks) would promote regulatory T cell (Treg) mobilization to a degree capable of restoring immunological tolerance, thus preventing further decline in C-peptide production. Although treatment was well tolerated, G-CSF monotherapy did not affect C-peptide production, glycated haemoglobin (HbA1c) or insulin dose. Mechanistically, G-CSF treatment increased circulating neutrophils during the 12-week course of therapy (P < 0·01) but did not alter Treg frequencies. No effects were observed for CD4(+) : CD8(+) T cell ratio or the ratio of naive : memory (CD45RA(+)/CD45RO(+)) CD4(+) T cells. As expected, manageable bone pain was common in subjects receiving G-CSF, but notably, no severe adverse events such as splenomegaly occurred. This study supports the continued exploration of G-CSF and other mobilizing agents in subjects with T1D, but only when combined with immunodepleting agents where synergistic mechanisms of action have previously demonstrated efficacy towards the preservation of C-peptide.
Collapse
Affiliation(s)
- M J Haller
- Departments of Pediatric Endocrinology, University of Florida, Gainesville, FL, USA
| | - M A Atkinson
- Departments of Pediatric Endocrinology, University of Florida, Gainesville, FL, USA.,Immunology, Pathology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - C H Wasserfall
- Immunology, Pathology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - T M Brusko
- Immunology, Pathology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - C E Mathews
- Immunology, Pathology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - M Hulme
- Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - M Cintron
- Departments of Pediatric Endocrinology, University of Florida, Gainesville, FL, USA
| | - J Shuster
- Health Outcomes and Policy, University of Florida, Gainesville, FL, USA
| | - K McGrail
- Immunology, Pathology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - A Posgai
- Immunology, Pathology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - D Schatz
- Departments of Pediatric Endocrinology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
43
|
Mameli C, Mazzantini S, Ben Nasr M, Fiorina P, Scaramuzza AE, Zuccotti GV. Explaining the increased mortality in type 1 diabetes. World J Diabetes 2015; 6:889-895. [PMID: 26185597 PMCID: PMC4499523 DOI: 10.4239/wjd.v6.i7.889] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/07/2015] [Accepted: 04/20/2015] [Indexed: 02/05/2023] Open
Abstract
Despite large improvements in the management of glucose levels and in the treatment of cardiovascular risk factors, the mortality rate in individuals with type 1 diabetes (T1D) is still high. Recently, Lind et al found that T1D individuals with glycated hemoglobin levels of 6.9% or lower had a risk of death from any cause or from cardiovascular causes that is twice as high as the risk for matched controls. T1D is a chronic disease with an early onset (e.g., pediatric age) and thus in order to establish a clear correlation between death rate and the glycometabolic control, the whole history of glycemic control should be considered; particularly in the early years of diabetes. The switch from a normo- to hyperglycemic milieu in an individual with T1D in the pediatric age, represents a stressful event that may impact outcomes and death rate many years later. In this paper we will discuss the aforementioned issues, and offer our view on these findings, paying a particular attention to the several alterations occurring in the earliest phases of T1D and to the many factors that may be associated with the chronic history of T1D. This may help us to better understand the recently published death rate data and to develop future innovative and effective preventive strategies.
Collapse
|
44
|
Atkinson MA, von Herrath M, Powers AC, Clare-Salzler M. Current concepts on the pathogenesis of type 1 diabetes--considerations for attempts to prevent and reverse the disease. Diabetes Care 2015; 38:979-88. [PMID: 25998290 PMCID: PMC4439528 DOI: 10.2337/dc15-0144] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Mark A Atkinson
- Department of Pathology, University of Florida, Gainesville, FL Department of Pediatrics, University of Florida, Gainesville, FL
| | - Matthias von Herrath
- La Jolla Institute for Allergy and Immunology, San Diego, CA Novo Nordisk R&D Center, Seattle, WA
| | - Alvin C Powers
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University, Nashville, TN Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN VA Tennessee Valley Healthcare System, Nashville, TN
| | | |
Collapse
|
45
|
Raikwar SP, Kim EM, Sivitz WI, Allamargot C, Thedens DR, Zavazava N. Human iPS cell-derived insulin producing cells form vascularized organoids under the kidney capsules of diabetic mice. PLoS One 2015; 10:e0116582. [PMID: 25629318 PMCID: PMC4309616 DOI: 10.1371/journal.pone.0116582] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/11/2014] [Indexed: 12/11/2022] Open
Abstract
Type 1 diabetes (T1D) is caused by autoimmune disease that leads to the destruction of pancreatic β-cells. Transplantation of cadaveric pancreatic organs or pancreatic islets can restore normal physiology. However, there is a chronic shortage of cadaveric organs, limiting the treatment of the majority of patients on the pancreas transplantation waiting list. Here, we hypothesized that human iPS cells can be directly differentiated into insulin producing cells (IPCs) capable of secreting insulin. Using a series of pancreatic growth factors, we successfully generated iPS cells derived IPCs. Furthermore, to investigate the capability of these cells to secrete insulin in vivo, the differentiated cells were transplanted under the kidney capsules of diabetic immunodeficient mice. Serum glucose levels gradually declined to either normal or near normal levels over 150 days, suggesting that the IPCs were secreting insulin. In addition, using MRI, a 3D organoid appeared as a white patch on the transplanted kidneys but not on the control kidneys. These organoids showed neo-vascularization and stained positive for insulin and glucagon. All together, these data show that a pancreatic organ can be created in vivo providing evidence that iPS cells might be a novel option for the treatment of T1D.
Collapse
Affiliation(s)
- Sudhanshu P. Raikwar
- Department of Internal Medicine, Division of Immunology, University of Iowa, Iowa City, IA, United States of America
- Veterans Affairs Medical Center, Iowa City, IA, United States of America
| | - Eun-Mi Kim
- Department of Internal Medicine, Division of Immunology, University of Iowa, Iowa City, IA, United States of America
- Veterans Affairs Medical Center, Iowa City, IA, United States of America
| | - William I. Sivitz
- Division of Endocrinology & Metabolism, University of Iowa, Iowa City, IA, United States of America
| | - Chantal Allamargot
- Central Microscopy Research facility, University of Iowa, Iowa City, IA, United States of America
| | - Daniel R. Thedens
- Department of Radiology, University of Iowa, Iowa City, IA, United States of America
| | - Nicholas Zavazava
- Department of Internal Medicine, Division of Immunology, University of Iowa, Iowa City, IA, United States of America
- Veterans Affairs Medical Center, Iowa City, IA, United States of America
| |
Collapse
|