1
|
Au E, Panganiban KJ, Wu S, Sun K, Humber B, Remington G, Agarwal SM, Giacca A, Pereira S, Hahn M. Antipsychotic-Induced Dysregulation of Glucose Metabolism Through the Central Nervous System: A Scoping Review of Animal Models. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024:S2451-9022(24)00300-8. [PMID: 39461717 DOI: 10.1016/j.bpsc.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024]
Abstract
The use of antipsychotic drugs is associated with adverse metabolic effects. Disruptions in glucose metabolism such as hyperglycemia and insulin resistance have been shown to occur with antipsychotic use, independent of changes in body weight or adiposity. The regulation of whole-body glucose metabolism is partly mediated by the central nervous system. In particular, the hypothalamus and brainstem are responsive to peripheral energy signals and subsequently mediate feedback mechanisms to maintain peripheral glucose homeostasis. In this scoping review of preclinical in vivo studies, we aimed to explore central mechanisms through which antipsychotics dysregulate glucose metabolism. A systematic search for animal studies identified 29 studies that met our eligibility criteria for qualitative synthesis. The studies suggest that antipsychotic-induced changes in autonomic nervous system activity, certain neurotransmitter systems, expression of neuropeptides, and central insulin action mediate impairments in glucose metabolism. These findings provide insight into potential targets for the mitigation of the adverse effects of antipsychotics on glucose metabolism.
Collapse
Affiliation(s)
- Emily Au
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Kristoffer J Panganiban
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Sally Wu
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Kira Sun
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Bailey Humber
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Gary Remington
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Sri Mahavir Agarwal
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Adria Giacca
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Sandra Pereira
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Margaret Hahn
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Li X, Zhao Z, He J, Shen J. Betahistine mesylate reduces the damage of blue light exposure in Drosophila model. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 259:113009. [PMID: 39141982 DOI: 10.1016/j.jphotobiol.2024.113009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/26/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024]
Abstract
Previous studies have demonstrated the efficacy of betahistine mesylate in treating vertigo and angioneurotic headache, enhancing microcirculation, and facilitating histamine release. However, limited research has been conducted on the drug's potential in mitigating blue light-induced damage. Thus, this study utilized Drosophila as the model organism and employed the Siler model to investigate the impact of various concentrations of betahistine mesylate on the lifespan, under 3000 lx blue light irradiation. At the same time we measure food intake, spontaneous activity, and sleep duration of Drosophila. The findings of this study indicate that a high concentration of betahistine mesylate can decrease the initial mortality (b0) in male flies, mitigating the damage of blue light to Drosophila. Consequently, this delays the aging process in male Drosophila and extends their average lifespan. After betahistine mesylate ingestion, locomotor activity upon blue light exposure decreased significantly in male Drosophila. In conclusion, this study offers initial evidence supporting the investigation of the regulatory mechanisms of betahistine mesylate on lifespan and its potential anti-blue light effects.
Collapse
Affiliation(s)
- Xiangyu Li
- College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Zhiwei Zhao
- College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Jianan He
- College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Jie Shen
- College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China.
| |
Collapse
|
3
|
Su Y, Cao C, Chen S, Lian J, Han M, Liu X, Deng C. Olanzapine Modulate Lipid Metabolism and Adipose Tissue Accumulation via Hepatic Muscarinic M3 Receptor-Mediated Alk-Related Signaling. Biomedicines 2024; 12:1403. [PMID: 39061977 PMCID: PMC11274235 DOI: 10.3390/biomedicines12071403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 07/28/2024] Open
Abstract
Olanzapine is an atypical antipsychotic drug and a potent muscarinic M3 receptor (M3R) antagonist. Olanzapine has been reported to cause metabolic disorders, including dyslipidemia. Anaplastic lymphoma kinase (Alk), a tyrosine kinase receptor well known in the pathogenesis of cancer, has been recently identified as a key gene in the regulation of thinness via the regulation of adipose tissue lipolysis. This project aimed to investigate whether Olanzapine could modulate the hepatic Alk pathway and lipid metabolism via M3R. Female rats were treated with Olanzapine and/or Cevimeline (an M3R agonist) for 9 weeks. Lipid metabolism and hepatic Alk signaling were analyzed. Nine weeks' treatment of Olanzapine caused metabolic disturbance including increased body mass index (BMI), fat mass accumulation, and abnormal lipid metabolism. Olanzapine treatment also led to an upregulation of Chrm3, Alk, and its regulator Ptprz1, and a downregulation of Lmo4, a transcriptional repressor of Alk in the liver. Moreover, there were positive correlations between Alk and Chrm3, Alk and Ptprz1, and a negative correlation between Alk and Lmo4. However, cotreatment with Cevimeline significantly reversed the lipid metabolic disturbance and adipose tissue accumulation, as well as the upregulation of the hepatic Alk signaling caused by Olanzapine. This study demonstrates evidence that Olanzapine may cause metabolic disturbance by modulating hepatic Alk signaling via M3R, which provides novel insight for modulating the hepatic Alk signaling and potential interventions for targeting metabolic disorders.
Collapse
Affiliation(s)
- Yueqing Su
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynaecology and Paediatrics, Fujian Medical University, Fuzhou 350005, China;
- School of Medical, Indigenous and Health Sciences, and Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia; (S.C.); (J.L.); (M.H.)
| | - Chenyun Cao
- Department of Brain Science, Faculty of Medicine, Imperial College London, London SW7 2BX, UK;
| | - Shiyan Chen
- School of Medical, Indigenous and Health Sciences, and Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia; (S.C.); (J.L.); (M.H.)
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350004, China
| | - Jiamei Lian
- School of Medical, Indigenous and Health Sciences, and Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia; (S.C.); (J.L.); (M.H.)
| | - Mei Han
- School of Medical, Indigenous and Health Sciences, and Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia; (S.C.); (J.L.); (M.H.)
| | - Xuemei Liu
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China;
| | - Chao Deng
- School of Medical, Indigenous and Health Sciences, and Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia; (S.C.); (J.L.); (M.H.)
| |
Collapse
|
4
|
Liu L, Tang L, Luo JM, Chen SY, Yi CY, Liu XM, Hu CH. Activation of the PERK-CHOP signaling pathway during endoplasmic reticulum stress contributes to olanzapine-induced dyslipidemia. Acta Pharmacol Sin 2024; 45:502-516. [PMID: 37880338 PMCID: PMC10834998 DOI: 10.1038/s41401-023-01180-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 10/03/2023] [Indexed: 10/27/2023] Open
Abstract
Olanzapine (OLZ) is a widely prescribed antipsychotic drug with a relatively ideal effect in the treatment of schizophrenia (SCZ). However, its severe metabolic side effects often deteriorate clinical therapeutic compliance and mental rehabilitation. The peripheral mechanism of OLZ-induced metabolic disorders remains abstruse for its muti-target activities. Endoplasmic reticulum (ER) stress is implicated in cellular energy metabolism and the progression of psychiatric disorders. In this study, we investigated the role of ER stress in the development of OLZ-induced dyslipidemia. A cohort of 146 SCZ patients receiving OLZ monotherapy was recruited, and blood samples and clinical data were collected at baseline, and in the 4th week, 12th week, and 24th week of the treatment. This case-control study revealed that OLZ treatment significantly elevated serum levels of endoplasmic reticulum (ER) stress markers GRP78, ATF4, and CHOP in SCZ patients with dyslipidemia. In HepG2 cells, treatment with OLZ (25, 50 μM) dose-dependently enhanced hepatic de novo lipogenesis accompanied by SREBPs activation, and simultaneously triggered ER stress. Inhibition of ER stress by tauroursodeoxycholate (TUDCA) and 4-phenyl butyric acid (4-PBA) attenuated OLZ-induced lipid dysregulation in vitro and in vivo. Moreover, we demonstrated that activation of PERK-CHOP signaling during ER stress was a major contributor to OLZ-triggered abnormal lipid metabolism in the liver, suggesting that PERK could be a potential target for ameliorating the development of OLZ-mediated lipid dysfunction. Taken together, ER stress inhibitors could be a potentially effective intervention against OLZ-induced dyslipidemia in SCZ.
Collapse
Affiliation(s)
- Lu Liu
- School of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing, 400715, China
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, Chongqing, 400715, China
- School of Mental Health, North Sichuan Medical College, Nanchong, 637100, China
| | - Lei Tang
- School of Mental Health, North Sichuan Medical College, Nanchong, 637100, China
- Mental Health Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637100, China
| | - Jia-Ming Luo
- School of Mental Health, North Sichuan Medical College, Nanchong, 637100, China
- Mental Health Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637100, China
| | - Si-Yu Chen
- Affiliated Nanchong Psychosomatic Hospital of North Sichuan Medical College, Nanchong, 637100, China
| | - Chun-Yan Yi
- Affiliated Nanchong Psychosomatic Hospital of North Sichuan Medical College, Nanchong, 637100, China
| | - Xue-Mei Liu
- School of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing, 400715, China
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, Chongqing, 400715, China
| | - Chang-Hua Hu
- School of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing, 400715, China.
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, Chongqing, 400715, China.
| |
Collapse
|
5
|
Akinola PS, Tardif I, Leclerc J. Antipsychotic-Induced Metabolic Syndrome: A Review. Metab Syndr Relat Disord 2023; 21:294-305. [PMID: 37347965 DOI: 10.1089/met.2023.0003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023] Open
Abstract
Schizophrenia, a serious psychiatric disorder, is among the top 10 global causes of disability and affects nearly 1% of the world population. Antipsychotics constitute the best treatment for patients with schizophrenia, however, this treatment class carries a high risk of metabolic syndrome, including lipid abnormalities. Indeed, the risk of metabolic syndrome would be increased in the population with schizophrenia compared to the general population. The objective is to summarize the prevalence, the mechanisms, and the potential treatments of antipsychotic-induced metabolic syndrome. This is a narrative review of the literature. We searched the electronic database Medline, accessed through PubMed, to find studies that investigated the prevalence and treatments of metabolic syndrome in the adult population using antipsychotics. The prevalence of metabolic syndrome in patients treated with antipsychotics ranges from 37% to 63%. Antipsychotic iatrogenic effects include weight gain/increased waist circumference, dyslipidemia, insulin resistance/type 2 diabetes, and hypertension. Clozapine and olanzapine are reported to precipitate the onset of metabolic syndrome features. In patients with metabolic syndrome, an antipsychotic with less metabolic side effects such as lurasidone, lumateperone, ziprasidone, and aripiprazole should be prioritized. Unlike medications, aerobic exercise and dietetic counseling were found to be efficient as the nonpharmacologic treatment of antipsychotic-induced metabolic syndrome. Few pharmacological treatments were proven effective against weight gain in this patient population. The risk of metabolic syndrome induced by antipsychotics should be early recognized and closely monitored. Primary and secondary prevention of metabolic syndrome or onset of its feature might help reduce the risk of death for patients using antipsychotics.
Collapse
Affiliation(s)
- Pelumi Samuel Akinola
- College of Pharmacy, Rady Faculty of Health sciences, University of Manitoba, Winnipeg, Canada
| | | | - Jacinthe Leclerc
- Faculté de Pharmacie, Université Laval, Québec, Canada
- Centre de Recherche, Institut Universitaire de Cardiologie de Pneumologie de Québec-Université Laval, Québec, Canada
| |
Collapse
|
6
|
Su Y, Deng C, Liu X, Lian J. Epigenetic Histone Methylation of PPARγ and CPT1A Signaling Contributes to Betahistine Preventing Olanzapine-Induced Dyslipidemia. Int J Mol Sci 2023; 24:ijms24119143. [PMID: 37298094 DOI: 10.3390/ijms24119143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/08/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
As a partial histamine H1 receptor agonist and H3 antagonist, betahistine has been reported to partially prevent olanzapine-induced dyslipidemia and obesity through a combination therapy, although the underlying epigenetic mechanisms are still not known. Recent studies have revealed that histone regulation of key genes for lipogenesis and adipogenesis in the liver is one of the crucial mechanisms for olanzapine-induced metabolic disorders. This study investigated the role of epigenetic histone regulation in betahistine co-treatment preventing dyslipidemia and fatty liver caused by chronic olanzapine treatment in a rat model. In addition to abnormal lipid metabolism, the upregulation of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein (C/EBPα), as well as the downregulation of carnitine palmitoyltransferase 1A (CPT1A) in the liver induced by olanzapine, were significantly attenuated by betahistine co-treatment. In addition, betahistine co-treatment significantly enhanced the global expression of H3K4me and the enrichment of H3K4me binding on the promoter of Cpt1a gene as revealed by ChIP-qPCR, but inhibited the expression of one of its site-specific demethylases, lysine (K)-specific demethylase 1A (KDM1A). Betahistine co-treatment also significantly enhanced the global expression of H3K9me and the enrichment of H3K9me binding on the promoter of the Pparg gene, but inhibited the expression of two of its site-specific demethylases, lysine demethylase 4B (KDM4B) and PHD finger protein 2 (PHF2). These results suggest that betahistine attenuates abnormal adipogenesis and lipogenesis triggered by olanzapine through modulating hepatic histone methylation, and thus inhibiting the PPARγ pathway-mediated lipid storage, while at the same time promoting CP1A-mediated fatty acid oxidation.
Collapse
Affiliation(s)
- Yueqing Su
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynaecology and Paediatrics, Fujian Medical University, Fuzhou 350005, China
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
- School of Medical, Indigenous and Health Sciences, and Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Chao Deng
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
- School of Medical, Indigenous and Health Sciences, and Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Xuemei Liu
- School of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Jiamei Lian
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
- School of Medical, Indigenous and Health Sciences, and Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
7
|
Ye W, Xing J, Yu Z, Hu X, Zhao Y. Mechanism and treatments of antipsychotic-induced weight gain. Int J Obes (Lond) 2023; 47:423-433. [PMID: 36959286 DOI: 10.1038/s41366-023-01291-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/25/2023]
Abstract
The long-term use of antipsychotics (APs) may cause a variety of diseases, such as metabolic syndrome, antipsychotic-induced weight gain (AIWG), and even obesity. This paper reviews the various mechanisms of AIWG and obesity in detail, involving genetics, the central nervous system, the neuroendocrine system, and the gut microbiome. The common drug and non-drug therapies used in clinical practice are also introduced, providing the basis for research on the molecular mechanisms and the future selection of treatments.
Collapse
Affiliation(s)
- Wujie Ye
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jingyu Xing
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zekai Yu
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xingang Hu
- Internal encephalopathy of traditional Chinese medicine, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, 100078, China.
| | - Yan Zhao
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
8
|
Matrisciano F, Pinna G. The Strategy of Targeting Peroxisome Proliferator-Activated Receptor (PPAR) in the Treatment of Neuropsychiatric Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:513-535. [PMID: 36949324 DOI: 10.1007/978-981-19-7376-5_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nonsteroid nuclear receptors and transcription factors that regulate several neuroinflammatory and metabolic processes, recently involved in several neuropsychiatric conditions, including Alzheimer's disease, Parkinson's disease, major depressive disorder, post-traumatic stress disorder (PTSD), schizophrenia spectrum disorders, and autism spectrum disorders. PPARs are ligand-activated receptors that, following stimulation, induce neuroprotective effects by decreasing neuroinflammatory processes through inhibition of the nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) expression and consequent suppression of pro-inflammatory cytokine production. PPARs heterodimerize with the retinoid X-receptor (RXR) and bind to PPAR-responsive regulatory elements (PPRE) in the promoter region of target genes involved in lipid metabolism, synthesis of cholesterol, catabolism of amino acids, and inflammation. Interestingly, PPARs are considered functionally part of the extended endocannabinoid (eCB) system that includes the classic eCB, anandamide, which act at cannabinoid receptor types 1 (CB1) and 2 (CB2) and are implicated in the pathophysiology of stress-related neuropsychiatric disorders. In preclinical studies, PPAR stimulation improves anxiety and depression-like behaviors by enhancing neurosteroid biosynthesis. The peculiar functional role of PPARs by exerting anti-inflammatory and neuroprotective effects and their expression localization in neurons and glial cells of corticolimbic circuits make them particularly interesting as novel therapeutic targets for several neuropsychiatric disorders characterized by underlying neuroinflammatory/neurodegenerative mechanisms. Herein, we discuss the pathological hallmarks of neuropsychiatric conditions associated with neuroinflammation, as well as the pivotal role of PPARs with a special emphasis on the subtype alpha (PPAR-α) as a suitable molecular target for therapeutic interventions.
Collapse
Affiliation(s)
- Francesco Matrisciano
- Department of Psychiatry, College of Medicine, The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, USA
| | - Graziano Pinna
- Department of Psychiatry, College of Medicine, The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
9
|
Matrisciano F. Functional Nutrition as Integrated Intervention for In- and Outpatient with Schizophrenia. Curr Neuropharmacol 2023; 21:2409-2423. [PMID: 36946488 PMCID: PMC10616917 DOI: 10.2174/1570159x21666230322160259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 03/23/2023] Open
Abstract
Schizophrenia is a chronic and progressive disorder characterized by cognitive, emotional, and behavioral abnormalities associated with neuronal development and synaptic plasticity alterations. Genetic and epigenetic abnormalities in cortical parvalbumin-positive GABAergic interneurons and consequent alterations in glutamate-mediated excitatory neurotransmission during early neurodevelopment underlie schizophrenia manifestation and progression. Also, epigenetic alterations during pregnancy or early phases of postnatal life are associated with schizophrenia vulnerability and inflammatory processes, which are at the basis of brain pathology and a higher risk of comorbidities, including cardiovascular diseases and metabolic syndrome. In addition, schizophrenia patients adopt an unhealthy lifestyle and poor nutrition, leading to premature death. Here, I explored the role of functional nutrition as an integrated intervention for the long-term management of patients with schizophrenia. Several natural bioactive compounds in plant-based whole foods, including flavonoids, phytonutrients, vitamins, fatty acids, and minerals, modulate brain functioning by targeting neuroinflammation and improving cognitive decline. Although further clinical studies are needed, a functional diet rich in natural bioactive compounds might be effective in synergism with standard treatments to improve schizophrenia symptoms and reduce the risk of comorbidities.
Collapse
Affiliation(s)
- Francesco Matrisciano
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois Chicago (UIC), Chicago, IL, USA
| |
Collapse
|
10
|
Lian J, Han M, Su Y, Hodgson J, Deng C. The long-lasting effects of early antipsychotic exposure during juvenile period on adult behaviours - A study in a poly I:C rat model. Pharmacol Biochem Behav 2022; 219:173453. [PMID: 36029928 DOI: 10.1016/j.pbb.2022.173453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 12/16/2022]
Abstract
Second generation antipsychotic drugs including aripiprazole, olanzapine and risperidone are prescribed increasingly (mostly off-label) to treat various mental disorders in children and adolescents. Early treatment with antipsychotics during this period may have long-lasting behavioural impacts, but to date there have been only limited investigations. Maternal infection could be implicated in the aetiology of various mental disorders including schizophrenia. Exposure of pregnant rodents to polyriboinosinic-polyribocytidylic acid (Poly I:C) causes schizophrenia-like behavioural abnormalities and neurodevelopmental conditions such as autism spectrum disorders in offspring. This study, using a Poly I:C rat model, investigated the long-lasting effects of early aripiprazole, olanzapine and risperidone treatment in the childhood/adolescent period (postnatal day 22-50) on adult behaviours of male rats. The study showed that early treatment with three antipsychotics had different effects on long-term behavioural changes in adults. Prenatal Poly I:C exposure (5 mg/kg) at gestation day 15 caused deficits in pre-pulse inhibition and social interaction, as well as cognitive impairments, that could be partially improved by early antipsychotic treatment in the juvenile period. Early antipsychotic treatment during the childhood-adolescent period resulted in similar long-lasting effects on pre-pulse inhibition, anxiety- and depressive-related behaviours in both Poly I:C and healthy (control) male rats. Overall, these results suggest that both prenatal Poly I:C exposure and early antipsychotic treatment in the childhood/adolescent period had long-lasting effects on adult behaviours of male rats, while early antipsychotic treatment could partly prevent the onset of behavioural abnormalities resulting from prenatal insult.
Collapse
Affiliation(s)
- Jiamei Lian
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong 2522, NSW, Australia; School of Medical, Indigenous and Health Sciences, Molecular Horizons, University of Wollongong, Wollongong 2522, NSW, Australia.
| | - Mei Han
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong 2522, NSW, Australia; School of Medical, Indigenous and Health Sciences, Molecular Horizons, University of Wollongong, Wollongong 2522, NSW, Australia
| | - Yueqing Su
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong 2522, NSW, Australia; School of Medical, Indigenous and Health Sciences, Molecular Horizons, University of Wollongong, Wollongong 2522, NSW, Australia; Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - James Hodgson
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong 2522, NSW, Australia; School of Medical, Indigenous and Health Sciences, Molecular Horizons, University of Wollongong, Wollongong 2522, NSW, Australia
| | - Chao Deng
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong 2522, NSW, Australia; School of Medical, Indigenous and Health Sciences, Molecular Horizons, University of Wollongong, Wollongong 2522, NSW, Australia
| |
Collapse
|
11
|
Han M, Lian J, Su Y, Deng C. Cevimeline co-treatment attenuates olanzapine-induced metabolic disorders via modulating hepatic M3 muscarinic receptor: AMPKα signalling pathway in female rats. J Psychopharmacol 2022; 36:202-213. [PMID: 34694173 DOI: 10.1177/02698811211050549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Olanzapine is one of the most commonly used antipsychotic drugs; however, its metabolic disorders are the main obstacle in the clinic. Olanzapine is a potent antagonist of the M3 acetylcholine muscarinic receptor (M3R), while the downregulated hepatic M3R-AMPKα signalling pathway is involved in metabolic disorders. AIM This study investigated the effects of chronic co-treatment with cevimeline (an agonist of M3Rs) in attenuating olanzapine-induced metabolic disorders and the underlying mechanisms. METHODS Forty-eight adult female Sprague-Dawley rats were treated orally with olanzapine (2 mg/kg, 3 times/day (t.i.d.)) and/or cevimeline (9 mg/kg, t.i.d.), or control (vehicle) for 9 weeks. RESULTS Cevimeline co-treatment significantly attenuated olanzapine-induced body weight gain and glucolipid metabolic disorders. Importantly, cevimeline co-treatment attenuated olanzapine-induced upregulation of M3Rs, while the co-treatment improved olanzapine-induced downregulation of AMPKα in the liver. Cevimeline co-treatment attenuated olanzapine-induced dyslipidaemia by modulating the hepatic M3R-AMPKα downstream pathways. Cevimeline co-treatment also improved lower activated AKT-GSK3β signalling to reverse impairment of glucose metabolism and insulin resistance caused by chronic olanzapine treatment. CONCLUSION These results not only support the important role of M3R antagonism and its related AMPKα and downstream pathways in antipsychotic-induced metabolic disorders but also indicate that these pathways might be promising targets for pharmacological intervention to control these side effects caused by antipsychotic therapy.
Collapse
Affiliation(s)
- Mei Han
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia.,School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Jiamei Lian
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia.,School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Yueqing Su
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia.,School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia.,Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Chao Deng
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia.,School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
12
|
Mukherjee S, Skrede S, Milbank E, Andriantsitohaina R, López M, Fernø J. Understanding the Effects of Antipsychotics on Appetite Control. Front Nutr 2022; 8:815456. [PMID: 35047549 PMCID: PMC8762106 DOI: 10.3389/fnut.2021.815456] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/10/2021] [Indexed: 12/16/2022] Open
Abstract
Antipsychotic drugs (APDs) represent a cornerstone in the treatment of schizophrenia and other psychoses. The effectiveness of the first generation (typical) APDs are hampered by so-called extrapyramidal side effects, and they have gradually been replaced by second (atypical) and third-generation APDs, with less extrapyramidal side effects and, in some cases, improved efficacy. However, the use of many of the current APDs has been limited due to their propensity to stimulate appetite, weight gain, and increased risk for developing type 2 diabetes and cardiovascular disease in this patient group. The mechanisms behind the appetite-stimulating effects of the various APDs are not fully elucidated, partly because their diverse receptor binding profiles may affect different downstream pathways. It is critical to identify the molecular mechanisms underlying drug-induced hyperphagia, both because this may lead to the development of new APDs, with lower appetite-stimulating effects but also because such insight may provide new knowledge about appetite regulation in general. Hence, in this review, we discuss the receptor binding profile of various APDs in relation to the potential mechanisms by which they affect appetite.
Collapse
Affiliation(s)
- Sayani Mukherjee
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| | - Silje Skrede
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Section of Clinical Pharmacology, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Edward Milbank
- NeurObesity Group, Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición, Madrid, Spain.,SOPAM, U1063, INSERM, University of Angers, SFR ICAT, Bat IRIS-IBS, Angers, France
| | | | - Miguel López
- NeurObesity Group, Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición, Madrid, Spain
| | - Johan Fernø
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
13
|
Samy DM, Mostafa DK, Abdelmonsif DA, Ismail CA, Hassaan PS. Crosstalk of hypothalamic chemerin, histamine, and AMPK in diet-and olanzapine-induced obesity in rats. Life Sci 2021; 284:119897. [PMID: 34450172 DOI: 10.1016/j.lfs.2021.119897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/01/2021] [Accepted: 08/06/2021] [Indexed: 11/29/2022]
Abstract
AIM Contradiction overwhelms chemerin link to feeding behavior. Neither the chemerin central role on appetite regulation nor its relation to hypothalamic histamine and AMPK is verified. MAIN METHODS Food intake, body weight and hypothalamic biochemical changes were assessed after a single intra-cerebroventricular or intraperitoneal injection (ip) (1 μg/kg or 16 μg/kg, respectively) or chronic ip administration (8 μg/kg/day) of chemerin for 14 or 28 days. Hypothalamic neurobiochemical changes in chemerin/histamine/AMPK induced by either 8-week high fat diet (HFD) or food restriction were also investigated. To confirm chemerin-histamine crosstalk, these neurobiochemical changes were assessed under settings of H1-receptor agonism and/or antagonism by betahistine and/or olanzapine, respectively for 3 weeks. KEY FINDINGS Chemerin-injected rats exhibited anorexigenic behavior in both acute and chronic studies that was associated with a decreased AMPK activity in the arcuate nucleus (ARC). However, with long-term administration, chemerin anorexigenic effect gradually ceased. Contrarily to food restriction, 8-week HFD increased ARC expression of chemerin and its receptor CMKLR1, reducing food intake via an interplay of H1-receptors and AMPK activity. Blockage of H1-receptors by olanzapine disrupted chemerin signaling pathway with an increased AMPK activity, augmenting food intake. These changes were reversed to normal by betahistine coadministration. SIGNIFICANCE Chemerin is an anorexigenic adipokine, whose dysregulation is implicated in diet, and olanzapine-induced obesity through a histamine/AMPK axis in the ARC. Hypothalamic chemerin/CMKLR1 expression is a dynamic time-dependent response to changes in body weight and/or food intake. Targeting chemerin as a novel therapeutic approach against antipsychotic- or diet-induced obesity is worth to be further delineated.
Collapse
Affiliation(s)
- Doaa M Samy
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Dalia Kamal Mostafa
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Doaa A Abdelmonsif
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt; Molecular Biology and Nanomedicine Labs, Centre of Excellence for Regenerative Medicine Research, University of Alexandria, Alexandria, Egypt
| | - Cherine A Ismail
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Passainte S Hassaan
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
14
|
Li WT, Huang XF, Deng C, Zhang BH, Qian K, He M, Sun TL. Olanzapine Induces Inflammation and Immune Response via Activating ER Stress in the Rat Prefrontal Cortex. Curr Med Sci 2021; 41:788-802. [PMID: 34403105 DOI: 10.1007/s11596-021-2401-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Antipsychotics, in particular olanzapine, are first-line medications for schizophrenia. The prefrontal cortex (PFC) is an important region for antipsychotics' therapeutic effects. The PFC inflammatory and immune pathways are associated with schizophrenia pathogenesis. However, the effect of antipsychotics on the inflammatory and immune pathways in the PFC remains unclear. We aimed to examined the time-dependent effect of olanzapine on inflammatory and immune markers in the PFC of rats. Since the inflammatory and immune pathways are related to endoplasmic reticulum (ER) stress, we further investigated whether or not olanzapine-induced inflammation and immune responses were related to ER stress. METHODS Expression of pro-inflammatory markers including IkappaB kinase β (IKKβ), nuclear factor kappa B (NFκB), tumor necrosis factor α (TNF-α), interleukin-6 (IL-6) and IL-1β, and immune-related proteins including inducible nitric oxide synthase (iNOS), toll-like receptor 2 (TLR2) and cluster of differentiation 14 (CD14) were examined by Western blotting. RESULTS Olanzapine treatments for 1, 8 and 36 days significantly activated the inflammatory IKKβ/NFκB signaling, and increased the expression of TNF-α, IL-6, IL-1β and immune-related proteins such as iNOS, TLR4 and CD14. Olanzapine treatment for 1 day, 8 and 36 days also induced ER stress in the PFC. Co-treatment with an ER stress inhibitor, 4-phenylbutyrate, inhibited olanzapine-induced inflammation and the immune response in the PFC. CONCLUSION These results suggested olanzapine exposure could be a factor that induces central inflammation and immunological abnormities in schizophrenia subjects. Olanzapine induces PFC inflammation and immune response, possibly via activating ER stress signaling.
Collapse
Affiliation(s)
- Wen-Ting Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Xu-Feng Huang
- Illawarra Health and Medical Research Institute and Centre for Translational Neuroscience, School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Chao Deng
- Illawarra Health and Medical Research Institute and Centre for Translational Neuroscience, School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Bao-Hua Zhang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Kun Qian
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Meng He
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China.
| | - Tao-Lei Sun
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
15
|
Mika K, Szafarz M, Sapa J, Kotańska M. Influence of betahistine repeated administration on a weight gain and selected metabolic parameters in the model of excessive eating in rats. Biomed Pharmacother 2021; 141:111892. [PMID: 34229247 DOI: 10.1016/j.biopha.2021.111892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 01/02/2023] Open
Abstract
It is important to search for a promising therapeutic target or small molecules that can control excessive eating since limiting the intake of foods, especially tasty ones, could be effective in the treatment or prevention of obesity. Some studies indicate betahistine as an unique drug having the ability to ameliorate, for example, antipsychotic-induced weight gain. This study aimed to determine whether repeated administration of betahistine (histamine H1R agonist and H3R antagonist) could be beneficial in reducing the intake of tasty foods or the body's response to overeating via mechanisms such as by influencing the levels of hormones involved in the regulation of food intake or the levels of selected metabolic parameters. Studies were performed in the excessive eating model in rats, which perfectly illustrates the harmful high-caloric intake from freely available tasty products rich in sugar and fat. Our results indicated that repeated administration of betahistine to rats caused lower gain of body mass compared to the control rats fed palatable feed. Interestingly, betahistine treatment increased the consumption of cheese, which is a source of histamine. Although betahistine did not prevent the development of metabolic disorders, such as reduced glucose tolerance, in test animals, it significantly increased the level of high-density lipoprotein cholesterol, which could certainly be considered beneficial. Further studies should be conducted to investigate the effect of repeated administration of betahistine on satiety, gastrointestinal disorders, and the preference for histamine-containing foods.
Collapse
Affiliation(s)
- Kamil Mika
- Department of Pharmacological Screening, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Cracow, Poland
| | - Małgorzata Szafarz
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Jacek Sapa
- Department of Pharmacological Screening, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Cracow, Poland
| | - Magdalena Kotańska
- Department of Pharmacological Screening, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Cracow, Poland.
| |
Collapse
|
16
|
|
17
|
Libowitz MR, Nurmi EL. The Burden of Antipsychotic-Induced Weight Gain and Metabolic Syndrome in Children. Front Psychiatry 2021; 12:623681. [PMID: 33776816 PMCID: PMC7994286 DOI: 10.3389/fpsyt.2021.623681] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
Antipsychotic medications are critical to child and adolescent psychiatry, from the stabilization of psychotic disorders like schizophrenia, bipolar disorder, and psychotic depression to behavioral treatment of autism spectrum disorder, tic disorders, and pediatric aggression. While effective, these medications carry serious risk of adverse events-most commonly, weight gain and cardiometabolic abnormalities. Negative metabolic consequences affect up to 60% of patients and present a major obstacle to long-term treatment. Since antipsychotics are often chronically prescribed beginning in childhood, cardiometabolic risk accumulates. An increased susceptibility to antipsychotic-induced weight gain (AIWG) has been repeatedly documented in children, particularly rapid weight gain. Associated cardiometabolic abnormalities include central obesity, insulin resistance, dyslipidemia, and systemic inflammation. Lifestyle interventions and medications such as metformin have been proposed to reduce risk but remain limited in efficacy. Furthermore, antipsychotic medications touted to be weight-neutral in adults can cause substantial weight gain in children. A better understanding of the biological underpinnings of AIWG could inform targeted and potentially more fruitful treatments; however, little is known about the underlying mechanism. As yet, modest genetic studies have nominated a few risk genes that explain only a small percentage of the risk. Recent investigations have begun to explore novel potential mechanisms of AIWG, including a role for gut microbiota and microbial metabolites. This article reviews the problem of AIWG and AP metabolic side effects in pediatric populations, proposed mechanisms underlying this serious side effect, and strategies to mitigate adverse impact. We suggest future directions for research efforts that may advance the field and lead to improved clinical interventions.
Collapse
Affiliation(s)
| | - Erika L. Nurmi
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
18
|
Verhaegen AA, Van Gaal LF. Drugs Affecting Body Weight, Body Fat Distribution, and Metabolic Function-Mechanisms and Possible Therapeutic or Preventive Measures: an Update. Curr Obes Rep 2021; 10:1-13. [PMID: 33400222 DOI: 10.1007/s13679-020-00419-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/17/2020] [Indexed: 01/06/2023]
Abstract
PURPOSE OF REVIEW Weight gain and body fat redistribution are common side effects of many widely used drugs. We summarize recent literature on prevalence data and mechanisms associated with drug-induced body fat changes and mechanisms to prevent or treat metabolic side effects. RECENT FINDINGS The highest prevalence of metabolic complications is seen with antipsychotics and antiretroviral drugs used in the treatment of HIV and may, at least partly, be responsible for the increased risk for co-morbid diseases such as diabetes, steatosis of the liver, and cardiovascular disease. The pathogenetic mechanisms leading to weight gain from antipsychotics are increasingly known and help to unravel the complex interaction that exists between psychopathology and metabolic complications. Although the classic lipodystrophy mainly occurred with older HIV drugs, also with the newer HIV treatment, weight gain seems to be a major side effect. Early detection of the metabolic consequences of drugs can lead to an early diagnosis of the complications and their treatment. Different medications, including the newer antidiabetics, are being studied in the therapy of drug-induced obesity. Future research should focus on identifying individuals at risk for metabolic side effects and on early markers to identify individuals with side effects so that timely treatment of metabolic complications can be initiated.
Collapse
Affiliation(s)
- Ann A Verhaegen
- Department of Endocrinology, Diabetes and Metabolism, Antwerp University Hospital, Drie Eikenstraat 655, 2650, Edegem, Belgium.
- Department of Endocrinology, ZNA - Jan Palfijn, Lange Bremstraat 70,, 2170, Merksem, Belgium.
| | - Luc F Van Gaal
- Department of Endocrinology, Diabetes and Metabolism, Antwerp University Hospital, Drie Eikenstraat 655, 2650, Edegem, Belgium
| |
Collapse
|
19
|
Sylvester E, Yi W, Han M, Deng C. Exercise intervention for preventing risperidone-induced dyslipidemia and gluco-metabolic disorders in female juvenile rats. Pharmacol Biochem Behav 2020; 199:173064. [PMID: 33127383 DOI: 10.1016/j.pbb.2020.173064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/30/2020] [Accepted: 10/23/2020] [Indexed: 01/02/2023]
Abstract
Risperidone use in children and adolescents is associated with the development of metabolic disorders including increased accumulation of body fat, dyslipidemia, and glucose and insulin metabolism dysregulation. As pharmacological interventions are often limited in their ability to treat a range of side-effects, this study aimed to evaluate the effectiveness of daily voluntary exercise intervention to prevent metabolic side-effects induced by risperidone in juveniles. Thirty-two juvenile female Sprague Dawley rats were treated with risperidone (0.9 mg/kg; b.i.d; n = 16) or vehicle (0.3 g cookie dough pellet; n = 16). These rats were then assigned to a sedentary or voluntary exercise intervention (three hours daily access to running wheels) group (n = 8/group) for a period of four weeks. An intra-peritoneal glucose tolerance test was performed after three weeks of risperidone treatment and exercise intervention to assess glucose tolerance. During the exercise intervention, risperidone-treated rats ran significantly less than vehicle-treated rats. Risperidone treatment of sedentary rats resulted in significantly increased white adipose tissue, fasting triglyceride and fasting insulin compared to vehicle-treated sedentary rats. Exercise intervention of risperidone-treated rats prevented significant increases in these metabolic parameters compared to risperidone-treated sedentary rats. These results support voluntary exercise as an effective mitigator of metabolic side-effects associated with risperidone treatment in juvenile rats. Dyslipidemia and dysregulation of glucose and insulin metabolism are significant risk factors for morbidities and mortality later in life, therefore a focus on strategies to mitigate these adverse effects is critical. Our findings support clinical trials in exercise intervention to prevent metabolic disorders associated with antipsychotic medication in children and adolescents.
Collapse
Affiliation(s)
- Emma Sylvester
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Weijie Yi
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia; Department of Nutrition and Food Hygiene, School of Public Health and Management, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Mei Han
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Chao Deng
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia.
| |
Collapse
|
20
|
Chen X, Yu Y, Zheng P, Jin T, He M, Zheng M, Song X, Jones A, Huang XF. Olanzapine increases AMPK-NPY orexigenic signaling by disrupting H1R-GHSR1a interaction in the hypothalamic neurons of mice. Psychoneuroendocrinology 2020; 114:104594. [PMID: 32007669 DOI: 10.1016/j.psyneuen.2020.104594] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 12/22/2019] [Accepted: 01/17/2020] [Indexed: 12/11/2022]
Abstract
Second generation antipsychotics, particularly olanzapine, induce severe obesity, which is associated with their antagonistic effect on the histamine H1 receptor (H1R). We have previously demonstrated that oral administration of olanzapine increases the concentration of neuropeptide Y (NPY) in the hypothalamus of rats, accompanied by hyperphagia and weight gain. However, it is unclear if the increased NPY after olanzapine administration is due to its direct effect on hypothalamic neurons and its H1R antagonistic property. In the present study, we showed that with an inverted U-shape dose-response curve, olanzapine increased NPY expression in the NPY-GFP hypothalamic neurons; however, this was not the case in the hypothalamic neurons of H1R knockout mice. Olanzapine inhibited the interaction of H1R and GHSR1a (ghrelin receptor) in the primary mouse hypothalamic neurons and NPY-GFP neurons examined by confocal fluorescence resonance energy transfer (FRET) technology. Furthermore, an H1R agonist, FMPH inhibited olanzapine activation of GHSR1a downstream signaling pAMPK and transcription factors of NPY (pFOXO1 and pCREB) in the hypothalamic NPY-GFP cell. However, an olanzapine analogue (E-Olan) with lower affinity to H1R presented negligible enhancement of pCREB within the nucleus of NPY neurons. These findings suggest that the H1R antagonist property of olanzapine inhibits the interaction of H1R and GHSR1a, activates GHSR1a downstream signaling pAMPK-FOXO1/pCREB and increases hypothalamic NPY: this could be one of the important molecular mechanisms of H1R antagonism of olanzapine-induced obesity in antipsychotic management of psychiatric disorders.
Collapse
Affiliation(s)
- Xiaoqi Chen
- Department of Endocrinology and Rheumatology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Illawarra Health and Medical Research Institute and Molecular Horizons, School of Medicine, University of Wollongong, NSW, 2522, Australia
| | - Yinghua Yu
- Department of Pathogen Biology and Immunology, Xuzhou Medical University and Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou, Jiangsu 221004, China.
| | - Peng Zheng
- Illawarra Health and Medical Research Institute and Molecular Horizons, School of Medicine, University of Wollongong, NSW, 2522, Australia
| | - Tiantian Jin
- Illawarra Health and Medical Research Institute and Molecular Horizons, School of Medicine, University of Wollongong, NSW, 2522, Australia
| | - Meng He
- School of Chemistry, Wuhan University of Technology, Wuhan, China
| | - Mingxuan Zheng
- Department of Pathogen Biology and Immunology, Xuzhou Medical University and Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou, Jiangsu 221004, China
| | - Xueqin Song
- School of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Alison Jones
- Illawarra Health and Medical Research Institute and Molecular Horizons, School of Medicine, University of Wollongong, NSW, 2522, Australia
| | - Xu-Feng Huang
- Illawarra Health and Medical Research Institute and Molecular Horizons, School of Medicine, University of Wollongong, NSW, 2522, Australia.
| |
Collapse
|
21
|
Lian J, Deng C. The dosage-dependent effects of cevimeline in preventing olanzapine-induced metabolic side-effects in female rats. Pharmacol Biochem Behav 2020; 191:172878. [PMID: 32112786 DOI: 10.1016/j.pbb.2020.172878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/28/2020] [Accepted: 02/20/2020] [Indexed: 01/08/2023]
Abstract
Olanzapine has been used for the treatment of schizophrenia and other mental disorders. However, it is associated with serious weight gain and other metabolic side-effects. The antagonistic affinity of olanzapine to muscarinic M3 receptors has been evidenced as one of the main contributors for its weight gain and other metabolic side-effects. Therefore, this study investigated whether the co-treatment of cevimeline (a M3 receptor agonist) could prevent the metabolic side-effects associated with olanzapine medication. Female Sprague Dawley rats were treated orally with olanzapine (2 mg/kg, t.i.d.) and/or cevimeline at 3 dosages (3, 6, 9 mg/kg, t.i.d.), or vehicle for two weeks. Weight gain and food/water intake were measured throughout the drug treatment period. Intraperitoneal glucose tolerance tests and open field tests were conducted. Olanzapine-treated rats demonstrated significantly elevated body weight gain, food intake, feeding efficiency, total white fat mass, liver mass, and plasma triglyceride levels, which could be partly reversed by the co-treatment with cevimeline in a dosage-dependent manner. In general, the body weight gain can only be reversed by the co-treatment of 9 mg/kg cevimeline. The cevimeline co-treatment decreased plasma triglyceride and glucose levels compared with olanzapine only treatment. The results suggested a dosage-dependent effect of cevimeline in ameliorating olanzapine-induced weight gain and metabolic side-effects, which supports further clinical trials using cevimeline to control weight gain and metabolic side-effects caused by antipsychotic medications.
Collapse
Affiliation(s)
- Jiamei Lian
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong, 2522, NSW, Australia; School of Medicine, and Molecular Horizons, University of Wollongong, Wollongong 2522, NSW, Australia
| | - Chao Deng
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong, 2522, NSW, Australia; School of Medicine, and Molecular Horizons, University of Wollongong, Wollongong 2522, NSW, Australia.
| |
Collapse
|
22
|
Deng C, Yao JK. Editorial: Metabolic Disturbances in Mental Illness: Neuropathogenetic Mechanisms and Therapeutic Implications. Front Neurosci 2020; 14:21. [PMID: 32063831 PMCID: PMC7000652 DOI: 10.3389/fnins.2020.00021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 01/10/2020] [Indexed: 12/04/2022] Open
Affiliation(s)
- Chao Deng
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Jeffrey K Yao
- Medical Research Service, VA Pittsburgh Healthcare System, Pittsburgh, PA, United States.,Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
23
|
Singh R, Bansal Y, Sodhi RK, Singh DP, Bishnoi M, Kondepudi KK, Medhi B, Kuhad A. Berberine attenuated olanzapine-induced metabolic alterations in mice: Targeting transient receptor potential vanilloid type 1 and 3 channels. Life Sci 2020; 247:117442. [PMID: 32081663 DOI: 10.1016/j.lfs.2020.117442] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 02/14/2020] [Indexed: 02/08/2023]
Abstract
Transient receptor potential vanilloid type 1 (TRPV1) channels are emerging therapeutic targets for metabolic disorders. Berberine, which is a modulator of TRPV1, has proven antiobesity and antidiabetic potentials. The present study was aimed to investigate the protective effects of berberine in olanzapine-induced alterations in hypothalamic appetite control, inflammation and metabolic aberrations in mice targeting TRPV1 channels. Female BALB/c mice (18-23 g) were treated with olanzapine (6 mg/kg, p.o.) for six weeks to induce metabolic alterations, while berberine (100 and 200 mg/kg, p.o.) and metformin (100 mg/kg, p.o) were used as test and standard interventions respectively. Weekly assessment of feed-water intake, body temperature and body weight was done, while locomotion was measured at the end of week 1 and 6. Serum glucose and lipid profile were assessed by biochemical methods, while other serum biomarkers were assessed by ELISA. qPCR was used to quantify the mRNA expression in the hypothalamus. Olanzapine treatment significantly increased the feed intake, weight gain, adiposity index, while reduced body temperature and locomotor activity which were reversed by berberine treatment. Berberine treatment reduced serum ghrelin and leptin levels as well decrease in hypothalamic mRNA expression of orexigenic neuropeptides, inflammatory markers and ghrelin receptor in olanzapine-treated mice. Olanzapine treatment increased expression of TRPV1/TRPV3 in the hypothalamus which was significantly decreased by berberine treatment. Our results suggest that berberine, by TRPV1/TRPV3 modulation, attenuated the olanzapine-induced metabolic alterations in mice. Hence berberine supplementation in psychiatric patients could be a preventive approach to reduce the metabolic adverse effects of antipsychotics.
Collapse
Affiliation(s)
- Raghunath Singh
- Pharmacology Research Lab, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India
| | - Yashika Bansal
- Pharmacology Research Lab, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India
| | - Rupinder Kaur Sodhi
- Pharmacology Research Lab, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India
| | - Dhirendra Pratap Singh
- Pharmacology Research Lab, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India; Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab 140306, India; ICMR-National Institute of Occupational Health (NIOH), Ahmedabad 380016, India
| | - Mahendra Bishnoi
- Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab 140306, India
| | - Kanthi Kiran Kondepudi
- Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab 140306, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Anurag Kuhad
- Pharmacology Research Lab, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India.
| |
Collapse
|
24
|
Zhao YX, Pan JB, Wang YN, Zou Y, Guo L, Tang QQ, Qian SW. Stimulation of histamine H4 receptor participates in cold-induced browning of subcutaneous white adipose tissue. Am J Physiol Endocrinol Metab 2019; 317:E1158-E1171. [PMID: 31550180 DOI: 10.1152/ajpendo.00131.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Although many studies have shown that histamine and its signaling regulate energy homeostasis through the central nervous system, their roles in adipose tissues remain poorly understood. Here, we identified that the histamine H4 receptor (HrH4) was highly expressed in adipocytes at a level higher than that of the other three receptors (i.e., HrH1, HrH2, and HrH3). The HrH4 expression in adipocytes responded to cold through thermogenesis and lipolysis, supported by results from both mouse and cell models. When HrH4 expression was knocked down in the subcutaneous white adipose tissue (scWAT), browning and lipolysis effects triggered by cold were ablated, and the oxygen consumption was also lowered both at the normal and cold conditions. Moreover, mice exhibited browned scWAT, accelerated metabolic rates, and tolerance to hypothermia when 4-methylhistamine (4MH), a selective HrH4 agonist, was adjacently injected to the scWAT. Consistent with these findings, 4MH also triggered the browning and lipolytic effects in cultured C3H10T1/2 adipocytes. Mechanically, we demonstrated that p38/MAPK and ERK/MAPK pathways were involved in these processes. In conclusion, our findings have uncovered an effective role of HrH4 in adipose tissue browning.
Collapse
Affiliation(s)
- Ya-Xin Zhao
- Institute of Stem Cell Research and Regenerative Medicine of Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jia-Bao Pan
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi-Na Wang
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying Zou
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liang Guo
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qi-Qun Tang
- Institute of Stem Cell Research and Regenerative Medicine of Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shu-Wen Qian
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Betahistine-Associated Weight Loss and Improved Cognitive and Negative Symptoms: Domain in Early-Onset Schizophrenia. Am J Ther 2019; 26:e790-e792. [DOI: 10.1097/mjt.0000000000000965] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Food craving and consumption evolution in patients starting treatment with clozapine. Psychopharmacology (Berl) 2019; 236:3317-3327. [PMID: 31197435 DOI: 10.1007/s00213-019-05291-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 05/30/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Antipsychotic-induced weight gain has been especially related to clozapine and olanzapine. Underlying mechanisms in relation to food preferences with an increased food craving and consumption of specific nutrients have not been extensively studied in patients with serious mental illness (SMI). We aim to describe specific food preferences (craving) and subsequent food consumption in SMI patients starting clozapine, as well as their possible relation to weight and body mass index (BMI). METHODS An observational prospective follow-up study (18 weeks) was conducted in a cohort of 34 SMI patients who started clozapine due to resistant-psychotic symptoms. Anthropometric measures, Food Craving Inventory (FCI), and a food consumption frequency questionnaire were evaluated at baseline, weeks 8 and 18 of treatment. Statistical analysis included generalized estimating equations models with adjustment for potential confounding factors. RESULTS No longitudinal changes over time were found across the different food craving scores after 18 weeks of treatment. However, adjusted models according to BMI status showed that the normal weight (NW) group presented an increased score for the "complex carbohydrates/proteins" food cravings (- 0.67; 95% CI [- 1.15, - 0.19]; P = 0.010), while baseline scores for "fast-food fats" cravings were significantly higher in the overweight/obese (OWO) group in comparison with NW patients (NW, 2.05; 95% CI [1.60, 2.49]; OWO, 2.81, 95% CI [2.37, 3.25]; P = 0.016). When considering if food craving could predict weight gain, only increments in "fast-food fats" cravings were associated (β = - 5.35 ± 1.67; 95% CI [- 8.64, - 2.06]; P = 0.001). CONCLUSIONS No longitudinal differences were found for any of the food craving scores evaluated; however, in the NW group, food craving for "complex carbohydrates/proteins" changed. Thus, changes in "fast-food fats" cravings predicted weight increase in this sample. Interventions targeting food preferences may help to mitigate weight gain in patients starting treatment with clozapine.
Collapse
|
27
|
Marteene W, Winckel K, Hollingworth S, Kisely S, Gallagher E, Hahn M, Ebdrup BH, Firth J, Siskind D. Strategies to counter antipsychotic-associated weight gain in patients with schizophrenia. Expert Opin Drug Saf 2019; 18:1149-1160. [PMID: 31564170 DOI: 10.1080/14740338.2019.1674809] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: Patients living with schizophrenia have a marked risk of clinically significant weight gain and obesity compared to the general population. The risks have been highlighted following the introduction of second-generation antipsychotics. In turn, obesity is associated with a higher prevalence of cardiovascular disease, the most common cause of premature mortality in patients with schizophrenia.Areas covered: In this review, the authors outline possible mechanisms that induce obesity in patients with schizophrenia taking antipsychotics. The authors discuss the safety and effectiveness of three main approaches for attenuating antipsychotic-associated weight gain (AAWG), including lifestyle interventions, switching antipsychotics, and augmentation with other medications.Expert opinion: When selecting antipsychotics, effective treatment of psychotic symptoms should be highest priority but obesity and related metabolic comorbidities associated with antipsychotics should not be neglected. Further research into mechanisms of weight gain associated with antipsychotics will guide future treatments for AAWG and development of antipsychotics that produce minimal metabolic adverse effects. With current strategies only producing modest weight loss in already overweight and obese individuals, clinicians should transition to an approach where they aim to prevent weight gain when initiating antipsychotic treatment.
Collapse
Affiliation(s)
- Wade Marteene
- University of Queensland School of Pharmacy, Brisbane, Australia
| | - Karl Winckel
- University of Queensland School of Pharmacy, Brisbane, Australia.,Department of Pharmacy, Princess Alexandra Hospital, Brisbane, Australia
| | - Sam Hollingworth
- University of Queensland School of Pharmacy, Brisbane, Australia
| | - Steve Kisely
- Metro South Addiction and Mental Health Service, Brisbane, Australia.,School of Medicine, University of Queensland, Brisbane, Australia
| | - Erin Gallagher
- Metro South Addiction and Mental Health Service, Brisbane, Australia.,School of Medicine, University of Queensland, Brisbane, Australia
| | - Margaret Hahn
- Department of Psychiatry, University of Toronto, Toronto, Canada.,Centre for Addiction and Mental Health, Toronto, Canada
| | - Bjørn H Ebdrup
- Center for Neuropsychiatric Schizophrenia Research, CNSR, and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Glostrup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Joseph Firth
- NICM Health Research Institute, Western Sydney University, Westmead, Australia.,Division of Psychology and Mental Health, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Dan Siskind
- Metro South Addiction and Mental Health Service, Brisbane, Australia.,School of Medicine, University of Queensland, Brisbane, Australia
| |
Collapse
|
28
|
Tiwari AK, Zhang D, Pouget JG, Zai CC, Chowdhury NI, Brandl EJ, Qin L, Freeman N, Lieberman JA, Meltzer HY, Kennedy JL, Müller DJ. Impact of histamine receptors H1 and H3 polymorphisms on antipsychotic-induced weight gain. World J Biol Psychiatry 2019; 19:S97-S105. [PMID: 27855565 DOI: 10.1080/15622975.2016.1262061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVES A positive correlation between antipsychotic-induced weight gain (AIWG) and the antagonist effect of antipsychotic drugs at the histamine H1 receptor (HRH1) as well as the agonist effect at the histamine H3 receptor (HRH3) in the brain has been consistently demonstrated. We investigated the potential impact of single-nucleotide polymorphisms (SNPs) in HRH1 and HRH3 genes on AIWG. METHODS We analysed 40 tagSNPs in HRH1 (n = 34) and HRH3 (n = 6) in schizophrenia/schizoaffective disorder patients (n = 193) primarily treated with clozapine or olanzapine for up to 14 weeks. Linear regression was used to evaluate the association between SNPs and AIWG, with baseline weight and treatment duration as covariates. RESULTS In HRH1, a nominal association of rs7639145 with AIWG was observed in patients of European ancestry treated with either clozapine or olanzapine (P = 0.043; β = 1.658; n = 77). We observed nominal association for two HRH1 SNPs rs346074 (P = 0.002; β = -5.024) and rs13064530 (P = 0.004; β = -5.158) in patients of African ancestry treated with either clozapine or olanzapine (n = 37). However, the above associations are not significant after correcting for multiple testing. In HRH3, we did not observe association in either ancestry. CONCLUSIONS The current study suggests that SNPs in HRH1 and HRH3 may not have a major role in AIWG.
Collapse
Affiliation(s)
- Arun K Tiwari
- a Neurogenetics Section, Neuroscience Department , Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health , Toronto , ON , Canada.,b Department of Psychiatry , University of Toronto , Toronto , ON , Canada
| | - Danning Zhang
- a Neurogenetics Section, Neuroscience Department , Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health , Toronto , ON , Canada
| | - Jennie G Pouget
- a Neurogenetics Section, Neuroscience Department , Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health , Toronto , ON , Canada.,b Department of Psychiatry , University of Toronto , Toronto , ON , Canada
| | - Clement C Zai
- a Neurogenetics Section, Neuroscience Department , Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health , Toronto , ON , Canada.,b Department of Psychiatry , University of Toronto , Toronto , ON , Canada
| | - Nabilah I Chowdhury
- a Neurogenetics Section, Neuroscience Department , Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health , Toronto , ON , Canada
| | - Eva J Brandl
- a Neurogenetics Section, Neuroscience Department , Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health , Toronto , ON , Canada.,c Department of Psychiatry and Psychotherapy , Campus Mitte, Charité Universitätsmedizin Berlin , Berlin , Germany
| | - Li Qin
- a Neurogenetics Section, Neuroscience Department , Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health , Toronto , ON , Canada
| | - Natalie Freeman
- a Neurogenetics Section, Neuroscience Department , Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health , Toronto , ON , Canada
| | - Jeffrey A Lieberman
- d Department of Psychiatry, College of Physicians and Surgeons , Columbia University and the New York State Psychiatric Institute , New York City , NY , USA
| | - Herbert Y Meltzer
- e Northwestern University Feinberg School of Medicine , Chicago , IL , USA
| | - James L Kennedy
- a Neurogenetics Section, Neuroscience Department , Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health , Toronto , ON , Canada.,b Department of Psychiatry , University of Toronto , Toronto , ON , Canada
| | - Daniel J Müller
- a Neurogenetics Section, Neuroscience Department , Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health , Toronto , ON , Canada.,b Department of Psychiatry , University of Toronto , Toronto , ON , Canada
| |
Collapse
|
29
|
Singh R, Bansal Y, Sodhi RK, Saroj P, Medhi B, Kuhad A. Modeling of antipsychotic-induced metabolic alterations in mice: An experimental approach precluding psychosis as a predisposing factor. Toxicol Appl Pharmacol 2019; 378:114643. [DOI: 10.1016/j.taap.2019.114643] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/17/2019] [Accepted: 06/25/2019] [Indexed: 02/06/2023]
|
30
|
Simvastatin improves olanzapine-induced dyslipidemia in rats through inhibiting hepatic mTOR signaling pathway. Acta Pharmacol Sin 2019; 40:1049-1057. [PMID: 30728467 DOI: 10.1038/s41401-019-0212-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 01/07/2019] [Indexed: 12/14/2022] Open
Abstract
Second-generation antipsychotic drug (SGA)-induced metabolic abnormalities, such as dyslipidemia, are a major clinical problem for antipsychotic therapy. Accumulated evidences have shown the efficacy of statins in reducing SGA-induced dyslipidemia, but the underlying mechanisms are unclear. In this study, we explored whether mTOR signaling was involved in olanzapine (OLZ)-induced dyslipidemia as well as the lipid-lowering effects of cotreatment of simvastatin (Sim) in rats. Model rats received OLZ (1.0 mg/kg, t.i.d.) for 7 weeks; from the third week a group of model rats were cotreatment of Sim (3.0 mg/kg, t.i.d.) for 5 weeks. We found that OLZ treatment significantly increased the plasma triglyceride (TG) and total cholesterol (TC) levels, and promoted lipid accumulation in the liver, whereas cotreatment of Sim reversed OLZ-induced dyslipidemia. Hepatic mTORC1 and p-mTORC1 expression was accelerated in the OLZ treatment group, with upregulation of mRNA expression of sterol regulatory element-binding protein 1c (SREBP1c) and its target genes, whereas these alterations were ameliorated by Sim cotreatment. In HepG2 cells, rapamycin (a mTOR inhibitor) significantly reduced the OLZ-stimulated hepatocellular lipid contents and weakened the ability of Sim to lower lipids via a mechanism associated with the upregulation of SREBP1c-mediated de novo lipogenesis. Our data suggest that OLZ induces lipid accumulation in both plasma and liver, and Sim ameliorates OLZ-induced lipid metabolic dysfunction through its effects on mTOR signaling via reducing SREBP1c activation and the downregulation of gene expression involved in lipogenesis. These data provide a new insight into the prevention of metabolic side effects induced by antipsychotic drugs.
Collapse
|
31
|
Beneficial Effect of Betahistine, a Structural Analog of Histamine, in Clozapine-Related Sedation. Clin Neuropharmacol 2019; 42:145. [DOI: 10.1097/wnf.0000000000000346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Luo C, Wang X, Huang H, Mao X, Zhou H, Liu Z. Effect of Metformin on Antipsychotic-Induced Metabolic Dysfunction: The Potential Role of Gut-Brain Axis. Front Pharmacol 2019; 10:371. [PMID: 31024322 PMCID: PMC6465968 DOI: 10.3389/fphar.2019.00371] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/26/2019] [Indexed: 12/31/2022] Open
Abstract
Antipsychotics are the first-line medications prescribed for patients with schizophrenia or other mental disorders. Cumulative evidence has revealed that metabolic dysfunctions frequently occur in patients receiving antipsychotics, especially second-generation antipsychotics, and these effects may decrease patient compliance and increase health costs. Metformin is an effective pharmaceutical adjuvant for ameliorating antipsychotic-induced metabolic dysfunction (AIMD) in clinical practice. However, the mechanism of the effects of metformin on AIMD remains unclear. The gut-brain axis is a bidirectional communication system between the gastrointestinal tract and the central nervous system and has been associated with many pathological and physiological conditions, such as those related to metabolism. Antipsychotics interact with and have affinity for dopamine receptors and other receptors in the brain, and treatment with these antipsychotics has been shown to influence gut microbiota metabolism and composition, as observed in both animal and human studies. Metformin exerts an antidiabetic effect that is correlated with activation of AMP-kinase in the hypothalamus, and metformin also influences gut flora. Therefore, the gut-brain axis may play a role in the effect of metformin on AIMD. Since no direct evidence is available, this perspective may provide a direction for further research.
Collapse
Affiliation(s)
- Chao Luo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,School of Life Sciences, Central South University, Changsha, China
| | - Xu Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Hanxue Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Xiaoyuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
33
|
Yang CP, Wang YY, Lin SY, Hong YJ, Liao KY, Hsieh SK, Pan PH, Chen CJ, Chen WY. Olanzapine Induced Dysmetabolic Changes Involving Tissue Chromium Mobilization in Female Rats. Int J Mol Sci 2019; 20:E640. [PMID: 30717287 PMCID: PMC6387243 DOI: 10.3390/ijms20030640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 12/30/2022] Open
Abstract
Atypical antipsychotics, such as olanzapine, are commonly prescribed to patients with schizophrenic symptoms and other psychiatric disorders. However, weight gain and metabolic disturbance cause adverse effects, impair patient compliance and limit clinical utility. Thus, a better understanding of treatment-acquired adverse effects and identification of targets for therapeutic intervention are believed to offer more clinical benefits for patients with schizophrenia. Beyond its nutritional effects, studies have indicated that supplementation of chromium brings about beneficial outcomes against numerous metabolic disorders. In this study, we investigated whether olanzapine-induced weight gain and metabolic disturbance involved chromium dynamic mobilization in a female Sprague-Dawley rat model, and whether a dietary supplement of chromium improved olanzapine-acquired adverse effects. Olanzapine medicated rats experienced weight gain and adiposity, as well as the development of hyperglycemia, hyperinsulinemia, insulin resistance, hyperlipidemia, and inflammation. The olanzapine-induced metabolic disturbance was accompanied by a decrease in hepatic Akt and AMP-activated Protein Kinase (AMPK) actions, as well as an increase in serum interleukin-6 (IL-6), along with tissue chromium depletion. A daily intake of chromium supplements increased tissue chromium levels and thermogenic uncoupling protein-1 (UCP-1) expression in white adipose tissues, as well as improved both post-olanzapine weight gain and metabolic disturbance. Our findings suggest that olanzapine medicated rats showed a disturbance of tissue chromium homeostasis by inducing tissue depletion and urinary excretion. This loss may be an alternative mechanism responsible for olanzapine-induced weight gain and metabolic disturbance.
Collapse
Affiliation(s)
- Ching-Ping Yang
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan.
| | - Ya-Yu Wang
- Department of Family Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan.
| | - Shih-Yi Lin
- Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung 407, Taiwan.
| | - Yi-Jheng Hong
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan.
| | - Keng-Ying Liao
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan.
| | - Sheng-Kuo Hsieh
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan.
| | - Ping-Ho Pan
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan.
- Department of Pediatrics, Tungs' Taichung Metro Harbor Hospital, Taichung 435, Taiwan.
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 447, Taiwan.
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
34
|
Youssef DA, El-Fayoumi HM, Mahmoud MF. Beta-caryophyllene alleviates diet-induced neurobehavioral changes in rats: The role of CB2 and PPAR-γ receptors. Biomed Pharmacother 2019; 110:145-154. [DOI: 10.1016/j.biopha.2018.11.039] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/30/2018] [Accepted: 11/10/2018] [Indexed: 11/16/2022] Open
|
35
|
Chen ZP, Zhang XY, Peng SY, Yang ZQ, Wang YB, Zhang YX, Chen X, Wang JJ, Zhu JN. Histamine H1 Receptor Contributes to Vestibular Compensation. J Neurosci 2019; 39:420-433. [PMID: 30413645 PMCID: PMC6335742 DOI: 10.1523/jneurosci.1350-18.2018] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 11/21/2022] Open
Abstract
Vestibular compensation is responsible for the spontaneous recovery of postural, locomotor, and oculomotor dysfunctions in patients with peripheral vestibular lesion or posterior circulation stroke. Mechanism investigation of vestibular compensation is of great importance in both facilitating recovery of vestibular function and understanding the postlesion functional plasticity in the adult CNS. Here, we report that postsynaptic histamine H1 receptor contributes greatly to facilitating vestibular compensation. The expression of H1 receptor is restrictedly increased in the ipsilesional rather than contralesional GABAergic projection neurons in the medial vestibular nucleus (MVN), one of the most important centers for vestibular compensation, in unilateral labyrinthectomized male rats. Furthermore, H1 receptor mediates an asymmetric excitation of the commissural GABAergic but not glutamatergic neurons in the ipsilesional MVN, which may help to rebalance bilateral vestibular systems and promote vestibular compensation. Selective blockage of H1 receptor in the MVN significantly retards the recovery of both static and dynamic vestibular symptoms following unilateral labyrinthectomy, and remarkably attenuates the facilitation of betahistine, whose effect has traditionally been attributed to its antagonistic action on the presynaptic H3 receptor, on vestibular compensation. These results reveal a previously unknown role for histamine H1 receptor in vestibular compensation and amelioration of vestibular motor deficits, as well as an involvement of H1 receptor in potential therapeutic effects of betahistine. The findings provide not only a new insight into the postlesion neuronal circuit plasticity and functional recovery in the CNS, but also a novel potential therapeutic target for vestibular disorders.SIGNIFICANCE STATEMENT Vestibular disorders manifest postural imbalance, nystagmus, and vertigo. Vestibular compensation is critical for facilitating recovery from vestibular disorders, and of great importance in understanding the postlesion functional plasticity in the adult CNS. Here, we show that postsynaptic H1 receptor in the medial vestibular nucleus (MVN) contributes greatly to the recovery of both static and dynamic symptoms following unilateral vestibular lesion. H1 receptor selectively mediates the asymmetric activation of commissural inhibitory system in the ipsilesional MVN and actively promotes vestibular compensation. The findings provide not only a new insight into the postlesion neuronal circuit plasticity and functional recovery of CNS, but also a novel potential therapeutic target for promoting vestibular compensation and ameliorating vestibular disorders.
Collapse
Affiliation(s)
- Zhang-Peng Chen
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, and
| | - Xiao-Yang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, and
| | - Shi-Yu Peng
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, and
| | - Zhong-Qin Yang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, and
| | - Yan-Bo Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, and
| | - Yang-Xun Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, and
| | - Xi Chen
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, and
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, and
- Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, and
- Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
36
|
Citrome L, McEvoy JP, Todtenkopf MS, McDonnell D, Weiden PJ. A commentary on the efficacy of olanzapine for the treatment of schizophrenia: the past, present, and future. Neuropsychiatr Dis Treat 2019; 15:2559-2569. [PMID: 31564881 PMCID: PMC6733343 DOI: 10.2147/ndt.s209284] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 08/20/2019] [Indexed: 01/29/2023] Open
Abstract
Olanzapine is a second-generation atypical antipsychotic with proven efficacy for the treatment of schizophrenia. Approved in 1996, olanzapine is one of the most studied antipsychotics, resulting in a considerable amount of clinical data across diverse patient populations. Despite the fact that olanzapine is associated with a known risk of metabolic side effects, including weight gain, many clinicians continue to prescribe olanzapine for the treatment of schizophrenia with the expectation of additional therapeutic antipsychotic efficacy relative to other first-line atypical antipsychotics. The goal of this narrative is to revisit the role of oral olanzapine in the management of patients with schizophrenia, including those with recently diagnosed schizophrenia ("first-episode"), those with an established schizophrenia diagnosis who experience acute exacerbations, those receiving long-term antipsychotic treatment as a maintenance intervention, and those with suboptimal response to antipsychotic treatment, including treatment resistance. Collectively, data from published literature support the favorable efficacy of olanzapine compared with other first- and second-generation antipsychotics, including lower rates of treatment discontinuation and clinically meaningful improvements in the symptoms of schizophrenia. The development of antipsychotic medications with the favorable efficacy of olanzapine, but with reduced weight gain, could address a major unmet need in the treatment of schizophrenia.
Collapse
Affiliation(s)
- Leslie Citrome
- Department of Psychiatry and Behavioral Sciences, New York Medical College, Valhalla, NY, USA
| | - Joseph P McEvoy
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | | | | | | |
Collapse
|
37
|
Perez-Gomez A, Carretero M, Weber N, Peterka V, To A, Titova V, Solis G, Osborn O, Petrascheck M. A phenotypic Caenorhabditis elegans screen identifies a selective suppressor of antipsychotic-induced hyperphagia. Nat Commun 2018; 9:5272. [PMID: 30532051 PMCID: PMC6288085 DOI: 10.1038/s41467-018-07684-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 11/12/2018] [Indexed: 12/30/2022] Open
Abstract
Antipsychotic (AP) drugs are used to treat psychiatric disorders but are associated with significant weight gain and metabolic disease. Increased food intake (hyperphagia) appears to be a driving force by which APs induce weight gain but the mechanisms are poorly understood. Here we report that administration of APs to C. elegans induces hyperphagia by a mechanism that is genetically distinct from basal food intake. We exploit this finding to screen for adjuvant drugs that suppress AP-induced hyperphagia in C. elegans and mice. In mice AP-induced hyperphagia is associated with a unique hypothalamic gene expression signature that is abrogated by adjuvant drug treatment. Genetic analysis of this signature using C. elegans identifies two transcription factors, nhr-25/Nr5a2 and nfyb-1/NFYB to be required for AP-induced hyperphagia. Our study reveals that AP-induced hyperphagia can be selectively suppressed without affecting basal food intake allowing for novel drug discovery strategies to combat AP-induced metabolic side effects.
Collapse
Affiliation(s)
- Anabel Perez-Gomez
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Maria Carretero
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Natalie Weber
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Veronika Peterka
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Alan To
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Viktoriya Titova
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Gregory Solis
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Olivia Osborn
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| | - Michael Petrascheck
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
38
|
Singh R, Bansal Y, Medhi B, Kuhad A. Antipsychotics-induced metabolic alterations: Recounting the mechanistic insights, therapeutic targets and pharmacological alternatives. Eur J Pharmacol 2018; 844:231-240. [PMID: 30529195 DOI: 10.1016/j.ejphar.2018.12.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 12/02/2018] [Accepted: 12/05/2018] [Indexed: 12/14/2022]
Abstract
Atypical antipsychotics (AAPs) are the drug of choice in the management of mental illnesses by virtue of their advantage over typical antipsychotics i.e. least tendency of producing extrapyramidal motor symptoms (EPS) or pseudoparkinsonism. Despite the clinical efficacy, AAPs produces troublesome adverse effects, particularly hyperphagia, hyperglycemia, dyslipidemia weight gain, diabetes mellitus, insulin resistance and QT prolongation which further develops metabolic and cardiac complications with subsequent reduction in life expectancy, poor patient compliance, and sudden death. AAPs-induced weight gain and metabolic alterations are increasing at an alarming rate and became an utmost matter of concern for psychopharmacotherapy. Diverse underlying mechanisms have been explored such as the interaction of AAPs with neurotransmitter receptors, alteration in food reward anticipation behavior, altered expressions of hypothalamic orexigenic and anorexigenic neuropeptides, histamine H1 receptor-mediated hypothalamic AMP-activated protein kinase (AMPK) activation, increased blood leptin, ghrelin, pro-inflammatory cytokines. Antipsychotics induced imbalance in energy homeostasis, reduction in energy expenditure which is linked to altered expression of uncoupling proteins (UCP-1) in brown adipose tissue and reduced hypothalamic orexin expressions are emerging insights. In addition, alteration in gut-microbiota and subsequent inflammation, dyslipidemia, obesity, and diabetes after AAPs treatment are also associated with weight gain and metabolic alterations. Oral hypoglycemics and lipid-lowering drugs are mainly prescribed in the clinical management of weight gain associated with AAPs while many other pharmacological and nonpharmacological interventions also have been explored in different clinical and preclinical studies. In this review, we critically discuss the current scenario, mechanistic insights, biomarkers, and therapeutic alternatives for metabolic alterations associated with antipsychotics.
Collapse
Affiliation(s)
- Raghunath Singh
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study (UGC-CAS), Panjab University, Chandigarh 160014, India
| | - Yashika Bansal
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study (UGC-CAS), Panjab University, Chandigarh 160014, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Anurag Kuhad
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study (UGC-CAS), Panjab University, Chandigarh 160014, India.
| |
Collapse
|
39
|
Betahistine effects on weight-related measures in patients treated with antipsychotic medications: a double-blind placebo-controlled study. Psychopharmacology (Berl) 2018; 235:3545-3558. [PMID: 30382354 DOI: 10.1007/s00213-018-5079-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/16/2018] [Indexed: 12/31/2022]
Abstract
RATIONALE Weight gain during treatment with antipsychotics is a prominent side-effect, especially with some second-generation antipsychotics, such as olanzapine and clozapine, and pharmacological treatments which ameliorate this side-effect are important to investigate. Decreases in histaminergic transmission in the brain induced by antipsychotics may be one of the mechanisms contributing to weight gain. Since betahistine is a histaminergic agonist, it may potentially counteract the weight gain effects of antipsychotics. METHOD We conducted a double-blind placebo-controlled study to evaluate the effects of 12 weeks of treatment with betahistine (N = 29) or placebo (N = 22) in adolescents and adults on anthropomorphically measured weight-related parameters, appetite, and fasting glucose-lipid and leptin levels in 51 patients treated with first and/or second-generation antipsychotics who had gained weight during treatment or had high body-mass-index (BMI). Psychopathology and side-effects were also assessed with relevant scales. RESULTS In a sub-group of patients being treated with olanzapine or clozapine (n = 26), betahistine was significantly (P < .05) better than placebo in preventing increases in weight (3.1 kg less weight gain than placebo), BMI, and waist circumference. Betahistine did not decrease weight or BMI in patients treated with other antipsychotics. There was also no effect of betahistine on preventing weight or BMI gain in the total combined sample of all subjects. Betahistine did not significantly improve appetite or glucose-lipid measures in either subgroup. There were no significant differences in side-effects or psychopathology changes in the betahistine- vs. placebo-treated patients. CONCLUSIONS These results suggest that betahistine may potentially be a useful adjunctive drug for decreasing weight gain in patients treated with antipsychotics that are potent histamine antagonists, such as olanzapine or clozapine, but may not be useful for this purpose in patients on other antipsychotic medications. The results justify larger placebo-controlled studies to further confirm these effects before specific recommendations can be made for routine use.
Collapse
|
40
|
Manolis TA, Manolis AA, Manolis AS. Cardiovascular Safety of Psychiatric Agents: A Cautionary Tale. Angiology 2018; 70:103-129. [PMID: 29874922 DOI: 10.1177/0003319718780145] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Psychiatric agents are among the most commonly prescribed medications. Despite the advent of newer generation agents, patients receiving them still experience cardiovascular (CV) side effects. However, these agents may have heterogeneous properties, calling for an individualized approach based on efficacy and also on the particular side effect profile of each specific agent. Proarrhythmic effects arising from drug-induced long-QT syndrome and consequent potentially life-threatening polymorphic ventricular arrhythmias in the form of torsade de pointes, the metabolic syndrome contributing to atherosclerosis and acute coronary syndromes, and drug-induced orthostatic hypotension raise major concerns. Of course, it is also crucial that fear of potential CV adverse effects does not deprive psychiatric patients of appropriate drug therapy. Modification of CV risk factors in psychiatric patients together with optimal management of their CV diseases and appropriate selection of psychotropic agents with greater efficacy and least CV toxicity are of paramount importance in mitigating CV risks and enhancing safety. Identifying patients at high risk of CV complications and close monitoring of all patients receiving these agents are crucial steps to prevent and manage such complications. All these issues are herein reviewed, relevant guidelines are discussed, and schemas are depicted that illustrate the interrelated connections among the psychotropic agents and their CV effects.
Collapse
Affiliation(s)
| | | | - Antonis S Manolis
- 3 Third Department of Cardiology, Athens University School of Medicine, Athens, Greece
| |
Collapse
|
41
|
Chen J, Huang XF, Shao R, Chen C, Deng C. Molecular Mechanisms of Antipsychotic Drug-Induced Diabetes. Front Neurosci 2017; 11:643. [PMID: 29209160 PMCID: PMC5702456 DOI: 10.3389/fnins.2017.00643] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/06/2017] [Indexed: 12/23/2022] Open
Abstract
Antipsychotic drugs (APDs) are widely prescribed to control various mental disorders. As mental disorders are chronic diseases, these drugs are often used over a life-time. However, APDs can cause serious glucometabolic side-effects including type 2 diabetes and hyperglycaemic emergency, leading to medication non-compliance. At present, there is no effective approach to overcome these side-effects. Understanding the mechanisms for APD-induced diabetes should be helpful in prevention and treatment of these side-effects of APDs and thus improve the clinical outcomes of APDs. In this review, the potential mechanisms for APD-induced diabetes are summarized so that novel approaches can be considered to relieve APD-induced diabetes. APD-induced diabetes could be mediated by multiple mechanisms: (1) APDs can inhibit the insulin signaling pathway in the target cells such as muscle cells, hepatocytes and adipocytes to cause insulin resistance; (2) APD-induced obesity can result in high levels of free fatty acids (FFA) and inflammation, which can also cause insulin resistance. (3) APDs can cause direct damage to β-cells, leading to dysfunction and apoptosis of β-cells. A recent theory considers that both β-cell damage and insulin resistance are necessary factors for the development of diabetes. In high-fat diet-induced diabetes, the compensatory ability of β-cells is gradually damaged, while APDs cause direct β-cell damage, accounting for the severe form of APD-induced diabetes. Based on these mechanisms, effective prevention of APD-induced diabetes may need an integrated approach to combat various effects of APDs on multiple pathways.
Collapse
Affiliation(s)
- Jiezhong Chen
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia.,School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Xu-Feng Huang
- School of Medicine, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Renfu Shao
- Faculty of Science, Health, Education and Engineering, GeneCology Research Centre, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Chen Chen
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Chao Deng
- School of Medicine, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| |
Collapse
|
42
|
Liu Z, Cui C, Xu P, Dang R, Cai H, Liao D, Yang M, Feng Q, Yan X, Jiang P. Curcumin Activates AMPK Pathway and Regulates Lipid Metabolism in Rats Following Prolonged Clozapine Exposure. Front Neurosci 2017; 11:558. [PMID: 29046626 PMCID: PMC5632657 DOI: 10.3389/fnins.2017.00558] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/22/2017] [Indexed: 12/30/2022] Open
Abstract
Clozapine (CLO) remains an ultimate option for patients with treatment resistant schizophrenia. However, the atypical antipsychotic is often associated with serious metabolic side effects, such as dyslipidemia. Hepatic sterol regulatory element-binding proteins (SREBPs) are central in the allosteric control of a variety of lipid biosynthetic pathways. There is emerging evidence that CLO can activate SREBP pathway and enhance downstream lipogenesis, whereas curcumin (CUR), a major active compound of Curcuma longa, contains hypolipidemic properties. Therefore, in the present study, we examined the protective effects of CUR against CLO-induced lipid disturbance and analyzed the expression of key components in hepatic lipid metabolism. Our data showed that 4-week treatment of CLO (15 mg/kg/day) markedly elevated serum lipid levels and resulted in hepatic lipid accumulation, whereas co-treatment of CUR (80 mg/kg/day) alleviated the CLO-induced dyslipidemia. We further demonstrated that CUR appears to be a novel AMP-activated protein kinase (AMPK) agonist, which enhanced AMPK phosphorylation and mitigated CLO-induced SREBP overexpression. Additionally, CUR also modulated the downstream SREBP-targeted genes involved in fatty acid synthesis and cholesterol metabolism, including fatty acid synthase (FAS) and HMG-CoA reductase (HMGCR). In summary, our study suggests that the suppressed AMPK activity and thereby enhanced SREBP-dependent lipid synthesis could be associated with the antipsychotic-stimulated dyslipidemia, whereas CUR may maintain lipid homeostasis by directly binding to AMPK, indicating that adjunctive use of CUR could be a promising preventive strategy for the drug-induced lipogenesis.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Pharmacy, Affiliated Hospital of Jining Medical University, Jining, China
| | - Changmeng Cui
- Department of Pharmacy, Affiliated Hospital of Jining Medical University, Jining, China
| | - Pengfei Xu
- Institute of Clinical Pharmacy and Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Ruili Dang
- Institute of Clinical Pharmacy and Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Hualin Cai
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - Dehua Liao
- Department of Pharmacy, Hunan Cancer Hospital, Central South University, Changsha, China
| | - Mengqi Yang
- Institute of Clinical Pharmacy and Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Qingyan Feng
- Institute of Clinical Pharmacy and Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Xin Yan
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Pei Jiang
- Institute of Clinical Pharmacy and Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, China
| |
Collapse
|
43
|
Shi H, Wang B, Niu L, Cao M, Kang W, Lian K, Zhang P. Trace level determination of 5-hydroxytryptamine and its related indoles in amniotic fluid by gas chromatography–mass spectrometry. J Pharm Biomed Anal 2017; 143:176-182. [DOI: 10.1016/j.jpba.2017.05.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/25/2017] [Accepted: 05/27/2017] [Indexed: 10/19/2022]
|
44
|
Li Q, Guo D, Yang H, Ye Z, Huang J, Shu Y. Metabolic Response to Olanzapine in Healthy Chinese Subjects with rs7093146 Polymorphism in Transcription Factor 7-like 2 Gene (TCF7L2): A Prospective Study. Basic Clin Pharmacol Toxicol 2017; 120:601-609. [PMID: 27983772 DOI: 10.1111/bcpt.12727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 12/02/2016] [Indexed: 12/20/2022]
Abstract
Olanzapine is a widely used atypical antipsychotic with significant weight gain and other metabolic side effects. The locus of the transcription factor 7-like 2 (TCF7L2) gene is strongly associated with type 2 diabetes (T2D). The goal of this study was to determine whether polymorphic TCF7L2 is involved in the susceptibility to the metabolic changes associated with the atypical antipsychotic agents (AAPs). In this study, a parallel clinical study with 3-day consecutive administration of olanzapine (10 mg/day) was conducted in 17 healthy subjects with a genotype of TCF7L2 rs7903146 CC (N = 10) or CT (N = 7). Olanzapine caused rapid metabolic changes including body-weight gain, increased triglycerides level and reduced HDL-cholesterol level in the healthy subjects. rs7093146 T carriers (CT) were found to have greater AUC0-2 hr of insulin during OGTT compared to those (CC) bearing only reference alleles before and after olanzapine treatment. However, the triglyceride level in the subjects with the CT genotype was found to be significantly lower than that in the subjects with CC genotype. Moreover, a significant interaction between the effect by genotype and that by olanzapine treatment on triglyceride level was identified. Acute olanzapine treatment also significantly caused total protein, albumin and haemoglobin decrease and uric acid increase in the healthy subjects. In conclusion, even acute olanzapine treatment induces significant and rapid metabolic changes, and TCF7L2 polymorphism is a genetic risk factor of olanzapine-associated metabolic side effects.
Collapse
Affiliation(s)
- Qing Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Hunan, China
| | - Dong Guo
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Baltimore, MD, USA
| | - Hong Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Baltimore, MD, USA
| | - Zhi Ye
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Hunan, China
| | - Jin Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Hunan, China
| | - Yan Shu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Baltimore, MD, USA
| |
Collapse
|
45
|
Connor CJ. Management of the psychological comorbidities of dermatological conditions: practitioners' guidelines. Clin Cosmet Investig Dermatol 2017; 10:117-132. [PMID: 28458571 PMCID: PMC5404497 DOI: 10.2147/ccid.s111041] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dermatological disease can be devastating for patients, and although dermatologists are focused on remedying the cutaneous manifestations of these conditions, it is easy to miss the psychological suffering lurking below. Studies reveal that psychiatric comorbidity in dermatology is highly prevalent. Undetected psychopathology can greatly decrease a patient's quality of life and even contribute significantly to the clinical severity of their skin disease. For these reasons, it is vital that practitioners learn to detect psychological distress when it is present, and it is equally essential that they understand the treatment options available for effective intervention. Without training in psychiatric diagnosis and psychopharmacology, dermatologists can easily feel overwhelmed or out of their comfort zone when faced with the need to manage such conditions, but with the negative stigma associated with psychiatric disease in general, a psychiatric referral is often refused by patients, and the dermatologist is thus left with the responsibility. Uncertainty abounds in such situations, but this review seeks to alleviate the discomfort with psychodermatological disease and share practical and impactful recommendations to assist in diagnosis and treatment. In a busy dermatology clinic, the key is effective and efficient screening, combined with a repertoire of pharmacological and non-pharmacological treatment options that can be dispersed through an algorithmic approach according to the specific findings of that screening. By implementing these recommendations into practice, dermatologists may begin to gain comfort with the management of psychocutaneous disease and, as a specialty, may expand to fill a hole in patient care that is truly significant for patients, their families, and our communities as a whole.
Collapse
Affiliation(s)
- Cody J Connor
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
46
|
Dayabandara M, Hanwella R, Ratnatunga S, Seneviratne S, Suraweera C, de Silva VA. Antipsychotic-associated weight gain: management strategies and impact on treatment adherence. Neuropsychiatr Dis Treat 2017; 13:2231-2241. [PMID: 28883731 PMCID: PMC5574691 DOI: 10.2147/ndt.s113099] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Antipsychotic-induced weight gain is a major management problem for clinicians. It has been shown that weight gain and obesity lead to increased cardiovascular and cerebrovascular morbidity and mortality, reduced quality of life and poor drug compliance. This narrative review discusses the propensity of various antipsychotics to cause weight gain, the pharmacologic and nonpharmacologic interventions available to counteract this effect and its impact on adherence. Most antipsychotics cause weight gain. The risk appears to be highest with olanzapine and clozapine. Weight increases rapidly in the initial period after starting antipsychotics. Patients continue to gain weight in the long term. Children appear to be particularly vulnerable to antipsychotic-induced weight gain. Tailoring antipsychotics according to the needs of the individual and close monitoring of weight and other metabolic parameters are the best preventive strategies at the outset. Switching to an agent with lesser tendency to cause weight gain is an option, but carries the risk of relapse of the illness. Nonpharmacologic interventions of dietary counseling, exercise programs and cognitive and behavioral strategies appear to be equally effective in individual and group therapy formats. Both nonpharmacologic prevention and intervention strategies have shown modest effects on weight. Multiple compounds have been investigated as add-on medications to cause weight loss. Metformin has the best evidence in this respect. Burden of side effects needs to be considered when prescribing weight loss medications. There is no strong evidence to recommend routine prescription of add-on medication for weight reduction. Heterogeneity of study methodologies and other confounders such as lifestyle, genetic and illness factors make interpretation of data difficult.
Collapse
Affiliation(s)
| | - Raveen Hanwella
- Department of Psychiatry, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Suhashini Ratnatunga
- Department of Psychiatry, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Sudarshi Seneviratne
- Department of Psychiatry, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Chathurie Suraweera
- Department of Psychiatry, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Varuni A de Silva
- Department of Psychiatry, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
47
|
Salvi V, Mencacci C, Barone-Adesi F. H1-histamine receptor affinity predicts weight gain with antidepressants. Eur Neuropsychopharmacol 2016; 26:1673-7. [PMID: 27593622 DOI: 10.1016/j.euroneuro.2016.08.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/23/2016] [Accepted: 08/22/2016] [Indexed: 11/26/2022]
Abstract
Weight gain and metabolic abnormalities are extensively found in patients taking psychotropic medications. Although mainly antipsychotics have been implicated, also antidepressants carry the potential to induce weight gain, with tricyclics and mirtazapine being associated with the greatest weight gain. It has been suggested that this could be due to the different ability of antidepressants to block adrenergic, cholinergic, and histaminergic postsynaptic receptors. To date, however, the link between antidepressant-induced weight gain and their receptor affinity profile has not been established. We reanalysed data from a previous meta-analysis to evaluate whether weight change is associated with specific receptor affinity of antidepressants. We retrieved data from the only meta-analysis that assessed weight change with antidepressants. We searched in the Psychoactive Drug Screening Program (PDSP) Ki database data on the affinities of antidepressants to receptors hypothetically linked with weight change: H1-histamine, 5HT2c, M3-muscarinic, and α1A-adrenergic receptors. The association between weight change and receptor affinities was estimated using meta-regression. We found a significant association between the affinity of antidepressants to H1-receptor and weight gain (p value: <0.001). An association between weight gain and receptor affinity was also observed in the models for 5HT2c, M3, and α1A receptors. However, the association disappeared when H1-receptor was included in the models. This reanalysis of data demonstrates that anti-histaminergic activity is the strongest predictor of weight gain with antidepressants. These results further stress a reclassification of antidepressants according to their pharmacodynamic properties, and suggest avoiding prescribing antidepressants with an anti-histaminergic profile to patients at risk for cardio-metabolic disturbances.
Collapse
Affiliation(s)
- Virginio Salvi
- Department of Neuroscience, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Claudio Mencacci
- Department of Neuroscience, ASST Fatebenefratelli-Sacco, Milan, Italy
| | | |
Collapse
|
48
|
Khanfar MA, Affini A, Lutsenko K, Nikolic K, Butini S, Stark H. Multiple Targeting Approaches on Histamine H3 Receptor Antagonists. Front Neurosci 2016; 10:201. [PMID: 27303254 PMCID: PMC4884744 DOI: 10.3389/fnins.2016.00201] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/25/2016] [Indexed: 01/23/2023] Open
Abstract
With the very recent market approval of pitolisant (Wakix®), the interest in clinical applications of novel multifunctional histamine H3 receptor antagonists has clearly increased. Since histamine H3 receptor antagonists in clinical development have been tested for a variety of different indications, the combination of pharmacological properties in one molecule for improved pharmacological effects and reduced unwanted side-effects is rationally based on the increasing knowledge on the complex neurotransmitter regulations. The polypharmacological approaches on histamine H3 receptor antagonists on different G-protein coupled receptors, transporters, enzymes as well as on NO-signaling mechanism are described, supported with some lead structures.
Collapse
Affiliation(s)
- Mohammad A Khanfar
- Stark Lab, Institut fuer Pharmazeutische and Medizinische Chemie, Heinrich-Heine-Universitaet DuesseldorfDuesseldorf, Germany; Faculty of Pharmacy, The University of JordanAmman, Jordan
| | - Anna Affini
- Stark Lab, Institut fuer Pharmazeutische and Medizinische Chemie, Heinrich-Heine-Universitaet Duesseldorf Duesseldorf, Germany
| | - Kiril Lutsenko
- Stark Lab, Institut fuer Pharmazeutische and Medizinische Chemie, Heinrich-Heine-Universitaet Duesseldorf Duesseldorf, Germany
| | - Katarina Nikolic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade Belgrade, Serbia
| | - Stefania Butini
- Department of Biotechnology, Chemistry, and Pharmacy, European Research Centre for Drug Discovery and Development, University of Siena Siena, Italy
| | - Holger Stark
- Stark Lab, Institut fuer Pharmazeutische and Medizinische Chemie, Heinrich-Heine-Universitaet Duesseldorf Duesseldorf, Germany
| |
Collapse
|