1
|
Coşar A, Özcan P, Tanoglu FB, Tok OE, Özkara G, Timur HT, Çetin Ç, Neccar D. Comparative effects of the antioxidant glutathione with metformin and Diane-35 on hormonal, metabolic, and inflammatory indicators in a DHEA-induced PCOS rat model. Gynecol Endocrinol 2024; 40:2302086. [PMID: 38254321 DOI: 10.1080/09513590.2024.2302086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
OBJECTIVE Comparison of hormonal, metabolic and inflammatory markers of glutathione with metformin and Diane-35 in a rat model of PCOS induced by dehydroepiandrosterone. METHODS Twenty-five female rats were randomized into four groups. Group 1 was administered a subcutaneous dose of 0.2 ml saline/day. Group 2 was given 0.2 ml of 1% carboxymethyl cellulose (CMC)/day orally for 28 days. A PCOS model was established with DHEA in rats. Group 3 was given 4.5 mg/kg/day of Diane-35 orally dissolved in 1% CMC for 28 days. Group 4 was given 300 mg/kg/day of metformin orally dissolved in 1 ml of saline for 28 days, and Group 5 was administered 100 mg/kg of glutathione intraperitoneally on days 35, 42, and 49. On day 56, the rats were sacrificed. Serum markers and follicle count were examined. RESULTS Serum IL-6, hs-CRP, insulin, testosterone, SHBG, and MDA values were significantly lower in the glutathione group than in the PCOS group (p = 0.0006, p = 0.023, p = 0.0082, p = 0.0007, p = 0.0048, and p < 0.0001, respectively).The number of all follicles was similar between the control and glutathione groups (p < 0.05). When we compared the other groups with the PCOS group, the number of primary, secondary, atretic, and cystic follicles was significantly lower in the metformin and glutathione groups. The number of primordial and antral follicles was significantly higher than in the PCOS group. CONCLUSIONS Glutathione plays anti-inflammatory and antioxidant roles, similar to metformin, by lowering serum IL-6, insulin, testosterone, CRP, and MDA levels; decreasing atretic/cystic follicle count; and improving antral follicle count and folliculogenesis in PCOS patients.
Collapse
Affiliation(s)
- Aslı Coşar
- Department of Obstetrics and Gynecology, Bezmialem University School of Medicine, Istanbul, Turkiye
| | - Pınar Özcan
- Department of Obstetrics and Gynecology, Bezmialem University School of Medicine, Istanbul, Turkiye
| | - Fatma Basak Tanoglu
- Department of Obstetrics and Gynecology, Bezmialem University School of Medicine, Istanbul, Turkiye
| | - Olgu Enis Tok
- School of Medicine and Research Institute for Health Sciences and Technologies, Department of Histology and Embryology, Istanbul Medipol University, Istanbul, Turkiye
| | - Gülçin Özkara
- Department of Medical Biology, Bezmialem University School of Medicine, Istanbul, Turkiye
| | - Hikmet Tunç Timur
- Deparment of Obstetrics and Gynecology, Dokuz Eylul University School of Medicine, Izmir, Turkiye
| | - Çağlar Çetin
- Department of Obstetrics and Gynecology, Bezmialem University School of Medicine, Istanbul, Turkiye
| | - Duygu Neccar
- Department of Histology and Embryology, Cerrahpaşa Medical Faculty, Istanbul University, Istanbul, Turkiye
| |
Collapse
|
2
|
Galicia-Moreno M, Monroy-Ramirez HC, Caloca-Camarena F, Arceo-Orozco S, Muriel P, Sandoval-Rodriguez A, García-Bañuelos J, García-González A, Navarro-Partida J, Armendariz-Borunda J. A new opportunity for N-acetylcysteine. An outline of its classic antioxidant effects and its pharmacological potential as an epigenetic modulator in liver diseases treatment. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03539-0. [PMID: 39436429 DOI: 10.1007/s00210-024-03539-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024]
Abstract
Liver diseases represent a worldwide health problem accountable for two million deaths per year. Oxidative stress is critical for the development of these diseases. N-acetyl cysteine (NAC) is effective in preventing liver damage, both in experimental and clinical studies, and evidence has shown that the pharmacodynamic mechanisms of NAC are related to its antioxidant nature and ability to modulate key signaling pathways. Here, we provide a comprehensive description of the beneficial effects of NAC in the treatment of liver diseases, addressing the first evidence of its role as a scavenger and precursor of reduced glutathione, along with studies showing its immunomodulatory action, as well as the ability of NAC to modulate epigenetic hallmarks. We searched the PubMed database using the following keywords: oxidative stress, liver disease, epigenetics, antioxidants, NAC, and antioxidant therapies. There was no time limit to gather all available information on the subject. NAC has shown efficacy in treating liver damage, exerting mechanisms of action different from those of free radical scavengers. Like different antioxidant therapies, its effectiveness and safety are related to the administered dose; therefore, designing new pharmacological formulations for this drug is imperative to achieve an adequate response. Finally, there is still much to explore regarding its effect on epigenetic marker characteristics of liver damage, turning it into a drug with broad therapeutic potential. According to the literature reviewed, NAC could be an appropriate option in clinical studies related to hepatic injury and, in the future, a repurposing alternative for treating liver diseases.
Collapse
Affiliation(s)
- Marina Galicia-Moreno
- Instituto de Biologia Molecular en Medicina y Terapia Génica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico
| | - Hugo Christian Monroy-Ramirez
- Instituto de Biologia Molecular en Medicina y Terapia Génica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico
| | - Fernando Caloca-Camarena
- Instituto de Biologia Molecular en Medicina y Terapia Génica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico
- Programa de Doctorado en Farmacología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico
| | - Scarlet Arceo-Orozco
- Instituto de Biologia Molecular en Medicina y Terapia Génica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico
| | - Pablo Muriel
- Laboratorio de Hepatologia Experimental, Departamento de Farmacologia, Cinvestav-IPN, 07000, Mexico City, Mexico
| | - Ana Sandoval-Rodriguez
- Instituto de Biologia Molecular en Medicina y Terapia Génica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico
| | - Jesús García-Bañuelos
- Instituto de Biologia Molecular en Medicina y Terapia Génica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico
| | | | | | - Juan Armendariz-Borunda
- Instituto de Biologia Molecular en Medicina y Terapia Génica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico.
- Tecnológico de Monterrey, EMCS, 45201, Zapopan, Jalisco, Mexico.
| |
Collapse
|
3
|
Lupu A, Fotea S, Jechel E, Starcea IM, Ioniuc I, Knieling A, Salaru DL, Sasaran MO, Cirstea O, Revenco N, Mihai CM, Lupu VV, Nedelcu AH. Is oxidative stress - antioxidants imbalance the physiopathogenic core in pediatric obesity? Front Immunol 2024; 15:1394869. [PMID: 39176098 PMCID: PMC11338799 DOI: 10.3389/fimmu.2024.1394869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Despite the early recognition of obesity as an epidemic with global implications, research on its pathogenesis and therapeutic approach is still on the rise. The literature of the 21st century records an excess weight found in up to 1/3 of children. Both the determining factors and its systemic effects are multiple and variable. Regarding its involvement in the potentiation of cardio-vascular, pulmonary, digestive, metabolic, neuro-psychic or even dermatological diseases, the information is already broadly outlined. The connection between the underlying disease and the associated comorbidities seems to be partially attributable to oxidative stress. In addition to these, and in the light of the recent COVID-19 pandemic, the role played by oxidative stress in the induction, maintenance and potentiation of chronic inflammation among overweight children and adolescents becomes a topic of interest again. Thus, this review's purpose is to update general data on obesity, with an emphasis on the physiopathological mechanisms that underlie it and involve oxidative stress. At the same time, we briefly present the latest principles of pathology diagnosis and management. Among these, we will mainly emphasize the impact played by endogenous and exogenous antioxidants in the evolutionary course of pediatric obesity. In order to achieve our objectives, we will refer to the most recent studies published in the specialized literature.
Collapse
Affiliation(s)
- Ancuta Lupu
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Silvia Fotea
- Clinical Medical Department, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, Galati, Romania
| | - Elena Jechel
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | | | - Ileana Ioniuc
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Anton Knieling
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Delia Lidia Salaru
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Maria Oana Sasaran
- Pediatrics, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, Targu Mures, Romania
| | - Olga Cirstea
- Pediatrics, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | - Neli Revenco
- Pediatrics, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | | | - Vasile Valeriu Lupu
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Alin Horatiu Nedelcu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| |
Collapse
|
4
|
Zhang J, Wang J, Xu D, Gui Y, Bai F, Huo Y, Cao L, Gui Y. Promoting Glutathione Synthesis: A Possibility for Treating Cardiomyopathy Induced by a Maternal Western Diet. Nutrients 2024; 16:2520. [PMID: 39125400 PMCID: PMC11313981 DOI: 10.3390/nu16152520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND The adverse effects of a Western diet on obesity and diabetes among reproductive-aged women pose a significant threat to the cardiovascular health of their offspring. Given the crucial role of glutathione metabolism and glutathione-related antioxidant defense systems in cardiovascular diseases through scavenging ROS and maintaining redox homeostasis, further exploration of their specific influence is imperative to develop therapeutic strategies for cardiomyopathy induced by a maternal Western diet. METHODS We developed a prenatal maternal Western diet exposure model in C57/B6 mice to investigate cardiac morphology and function through histological analysis and echocardiography. RNA sequencing and analysis were utilized to elucidate the mechanisms underlying the impact of a maternal Western diet and N-acetylcysteine treatment on cardiomyopathy. Additionally, ELISAs, transmission electron microscopy, and flow cytometry were employed to assess the antioxidant defense system and mitochondrial ROS levels in progenitor cardiomyocytes. RESULTS N-acetylcysteine significantly mitigated cardiomyocyte hypertrophy, myocardial interstitial fibrosis, collagen type I accumulation, and left ventricular remodeling induced by a maternal Western diet, particularly in male offspring. Furthermore, N-acetylcysteine reversed the increase in apoptosis and the increase in the β/α-MyHC ratio in the myocardium of offspring that results from a maternal Western diet. RNA sequencing and GSEA revealed that the beneficial effects of N-acetylcysteine were linked to its ability to modulate oxidative phosphorylation pathways. Additionally, N-acetylcysteine treatment during pregnancy can markedly elevate glutathione levels, augment glutathione peroxidase (GPx) activity, and mitigate the accumulation of mitochondrial ROS caused by a maternal Western diet. CONCLUSIONS N-acetylcysteine mitigated cardiomyopathy induced by a maternal Western diet by bolstering glutathione synthesis and enhancing GPx activity, thereby scavenging mitochondrial ROS and modulating oxidative phosphorylation pathways.
Collapse
Affiliation(s)
- Jialing Zhang
- Institute of Pediatrics, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai 201102, China; (J.Z.)
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai 201102, China
| | - Jiayu Wang
- Institute of Pediatrics, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai 201102, China; (J.Z.)
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai 201102, China
| | - Da Xu
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai 201102, China
- Cardiovascular Center, Children’s Hospital of Fudan University, Shanghai 201102, China
| | - Yiting Gui
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai 201102, China
- Cardiovascular Center, Children’s Hospital of Fudan University, Shanghai 201102, China
| | - Fan Bai
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai 201102, China
- Cardiovascular Center, Children’s Hospital of Fudan University, Shanghai 201102, China
| | - Yu Huo
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai 201102, China
- Cardiovascular Center, Children’s Hospital of Fudan University, Shanghai 201102, China
| | - Li Cao
- Ultrasound Department, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200090, China
| | - Yonghao Gui
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai 201102, China
- Cardiovascular Center, Children’s Hospital of Fudan University, Shanghai 201102, China
| |
Collapse
|
5
|
Behtaj D, Ghorbani A, Eslamian G, Malekpour Alamdari N, Abbasi M, Zand H, Shakery A, Shimi G, Sohouli MH, Fazeli Taherian S. Ex vivo Anti-Senescence Activity of N-Acetylcysteine in Visceral Adipose Tissue of Obese Volunteers. Obes Facts 2024; 17:355-363. [PMID: 38718763 PMCID: PMC11299969 DOI: 10.1159/000539255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 05/06/2024] [Indexed: 08/07/2024] Open
Abstract
INTRODUCTION Excessive visceral adiposity is known to drive the onset of metabolic derangements, mostly involving oxidative stress, prolonged inflammation, and cellular senescence. N-acetylcysteine (NAC) is a synthetic form of l-cysteine with potential antioxidant, anti-inflammatory, and anti-senescence properties. This ex-vivo study aimed to determine the effect of NAC on some markers of senescence including β-galactosidase activity and p16, p53, p21, IL-6, and TNF-α gene expressions in visceral adipose tissue in obese adults. METHODS This ex-vivo experimental study involved 10 obese participants who were candidates for bariatric surgery. Duplicate biopsies from the abdominal visceral adipose tissue were obtained from the omentum. The biopsies were treated with or without NAC (5 and 10 mm). To evaluate adipose tissue senescence, beta-galactosidase (β-gal) activity and the expression of P16, P21, P53, IL-6, and TNF-α were determined. ANOVA test was employed to analyze the varying markers of cellular senescence and inflammation between treatment groups. RESULTS The NAC at concentrations of 5 mm and 10 mm resulted in a noteworthy reduction β-gal activity compared to the control group (p < 0.001). Additionally, the expression of P16, P21, and IL-6 was significantly reduced following treatment with NAC (5 mm) and NAC (10 mm) compared to the control group (All p < 0.001). DISCUSSION/CONCLUSION Taken together, these data suggest the senotherapeutic effect of NAC, as it effectively reduces the activity of SA-β-gal and the expression of IL-6, P16, and P21 genes in the visceral adipose tissue of obese individuals.
Collapse
Affiliation(s)
- Diba Behtaj
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arman Ghorbani
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Eslamian
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasser Malekpour Alamdari
- School of Medicine, Department of General Surgery, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Abbasi
- School of Medicine, Department of General Surgery, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Zand
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Shakery
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Shimi
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hasan Sohouli
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Fazeli Taherian
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Castro MC, Villagarcía HG, Di Sarli Gutiérrez L, Arbeláez LG, Schinella G, Massa ML, Francini F. Akt Signaling and Nitric Oxide Synthase as Possible Mediators of the Protective Effect of N-acetyl-L-cysteine in Prediabetes Induced by Sucrose. Int J Mol Sci 2024; 25:1215. [PMID: 38279215 PMCID: PMC10817010 DOI: 10.3390/ijms25021215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/06/2023] [Accepted: 09/09/2023] [Indexed: 01/28/2024] Open
Abstract
The aim of this work was to evaluate possible mechanisms involved in the protective effect of N-acetyl-L-cysteine (NAC) on hepatic endocrine-metabolic, oxidative stress, and inflammatory changes in prediabetic rats. For that, normal male Wistar rats (60 days old) were fed for 21 days with 10% sucrose in their drinking water and 5 days of NAC administration (50 mg/kg, i.p.) and thereafter, we determined: serum glucose, insulin, transaminases, uric acid, and triglyceride levels; hepatic fructokinase and glucokinase activities, glycogen content, lipogenic gene expression; enzymatic and non-enzymatic oxidative stress, insulin signaling pathway, and inflammatory markers. Results showed that alterations evinced in sucrose-fed rats (hypertriglyceridemia, hyperinsulinemia, and high liver fructokinase activity together with increased liver lipogenic gene expression and oxidative stress and inflammatory markers) were prevented by NAC administration. P-endothelial nitric oxide synthase (P-eNOS)/eNOS and pAKT/AKT ratios, decreased by sucrose ingestion, were restored after NAC treatment. In conclusion, the results suggest that NAC administration improves glucose homeostasis, oxidative stress, and inflammation in prediabetic rats probably mediated by modulation of the AKT/NOS pathway. Administration of NAC may be an effective complementary strategy to alleviate or prevent oxidative stress and inflammatory responses observed in type 2 diabetes at early stages of its development (prediabetes).
Collapse
Affiliation(s)
- María Cecilia Castro
- CENEXA—Centro de Endocrinología Experimental y Aplicada (UNLP—CONICET CCT La Plata, FCM, CEAS CICPBA), Calle 60 y 120, La Plata 1900, Argentina; (M.C.C.); (H.G.V.); (L.D.S.G.); (M.L.M.)
| | - Hernán Gonzalo Villagarcía
- CENEXA—Centro de Endocrinología Experimental y Aplicada (UNLP—CONICET CCT La Plata, FCM, CEAS CICPBA), Calle 60 y 120, La Plata 1900, Argentina; (M.C.C.); (H.G.V.); (L.D.S.G.); (M.L.M.)
| | - Luciana Di Sarli Gutiérrez
- CENEXA—Centro de Endocrinología Experimental y Aplicada (UNLP—CONICET CCT La Plata, FCM, CEAS CICPBA), Calle 60 y 120, La Plata 1900, Argentina; (M.C.C.); (H.G.V.); (L.D.S.G.); (M.L.M.)
| | - Luisa González Arbeláez
- CIC—Centro de Investigaciones Cardiovasculares (UNLP—CONICET CCT La Plata, FCM), Calle 60 y 120, La Plata 1900, Argentina;
| | - Guillermo Schinella
- Facultad de Ciencias Médicas, UNLP, Calle 60 y 120, La Plata 1900, Argentina;
- Instituto de Ciencias de la Salud, UNAJ-CICPBA (Av. Calchaquí 6200), Florencia Varela 1888, Argentina
| | - María Laura Massa
- CENEXA—Centro de Endocrinología Experimental y Aplicada (UNLP—CONICET CCT La Plata, FCM, CEAS CICPBA), Calle 60 y 120, La Plata 1900, Argentina; (M.C.C.); (H.G.V.); (L.D.S.G.); (M.L.M.)
| | - Flavio Francini
- CENEXA—Centro de Endocrinología Experimental y Aplicada (UNLP—CONICET CCT La Plata, FCM, CEAS CICPBA), Calle 60 y 120, La Plata 1900, Argentina; (M.C.C.); (H.G.V.); (L.D.S.G.); (M.L.M.)
| |
Collapse
|
7
|
Tüfekci KK, Tatar M, Terzi F, Bakirhan EG. An investigation of the endoplasmic reticulum stress in obesity exposure in the prenatal period. J Chem Neuroanat 2023; 134:102348. [PMID: 37858742 DOI: 10.1016/j.jchemneu.2023.102348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
OBJECTIVES Exposure to maternal obesity has been shown to make offspring more prone to cognitive and metabolic disorders later in life. Although the underlying mechanisms are unclear, the role of endoplasmic reticulum (ER) stress in the fetal programming process is remarkable. ER stress can be activated by many chronic diseases, including obesity and diabetes. Therefore, our study aimed to investigate the role of ER stress caused by maternal diet-induced obesity in the offspring hippocampus. We also evaluated the protective effect of N-acetylcysteine (NAC) against ER stress. METHODS A rat obesity model was created by providing a high-fat (60 % kcal) diet. N-acetylcysteine (NAC) was administered at a dosage of 150 mg/kg via the intragastric route. The animals were mated at the age of 12 weeks. The same diet was maintained during pregnancy and lactation. The experiment was terminated on the postnatal 28th day, and the offspring's brain tissues were examined. Immunohistochemical staining for ER stress markers was performed on sections taken from tissues after routine histological procedures. RESULTS The results revealed increased GRP78, PERK, and eIF2α immunoreactivities in the hippocampal dentate gyrus (DG) and cornu ammonis 1 (CA1) regions in the obese group offspring, while the expression of those markers in those regions normalized with NAC supplementation (p < 0.01). Statistical analysis of XBP1 immunoreactivity H-scores revealed no difference between the study groups (p > 0.05). DISCUSSION These results suggest that exposure to obesity during the prenatal period may cause increased ER stress in hippocampal neurons, which have an important role in the regulation of learning, memory and behavior, and this may contribute to decreased cognitive performance. On the other hand, NAC stands out as an effective agent that can counteract hippocampal ER stress.
Collapse
Affiliation(s)
- Kıymet Kübra Tüfekci
- Department of Histology and Embryology, Faculty of Medicine, Kastamonu University, Turkiye.
| | - Musa Tatar
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Kastamonu University, Turkiye
| | - Funda Terzi
- Department of Pathology, Faculty of Veterinary Medicine, Kastamonu University, Turkiye
| | - Elfide Gizem Bakirhan
- Department of Histology and Embryology, Faculty of Medicine, Adıyaman University, Turkiye
| |
Collapse
|
8
|
Marín-Romero A, Pernagallo S. A comprehensive review of Dynamic Chemical Labelling on Luminex xMAP technology: a journey towards Drug-Induced Liver Injury testing. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6139-6149. [PMID: 37965948 DOI: 10.1039/d3ay01481a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Drug-Induced Liver Injury (DILI) is a grave global adverse event that can result in fatal consequences, causing drug failures, market withdrawals, and regulatory warnings, leading to substantial financial losses. The early detection of DILI remains a significant challenge in global healthcare. Although circulating microRNAs (miRs) show promise as clinical biomarkers for DILI, the current analytical methods for their measurement are insufficient. There is a pressing need for rapid and reliable miR detection methods that eliminate the need for nucleic acid extraction and PCR-based amplification. This review highlights recent advancements achieved by integrating Dynamic Chemical Labelling (DCL) with Luminex xMAP technology. This powerful combination has resulted in groundbreaking bead-based assays that allow (1) the direct, multiplex detection of miRs, and (2) the simultaneous testing of miR and protein biomarkers. This triple capability enables a comprehensive assessment that significantly enhances the detection and analysis of crucial biomarkers, thus improving the understanding and diagnosis of DILI. In conclusion, this review offers valuable insights into the capabilities and potential applications of these groundbreaking assays in DILI research, as well as their potential use in other diagnostic and research domains that require direct or multiplex analysis of miRs or analysis of miRs in combination with proteins.
Collapse
Affiliation(s)
- Antonio Marín-Romero
- DESTINA Genomica S.L., Parque Tecnológico Ciencias de la Salud (PTS), Avenida de la Innovación 1, Edificio BIC, Armilla, Granada 18100, Spain.
| | - Salvatore Pernagallo
- DESTINA Genomica S.L., Parque Tecnológico Ciencias de la Salud (PTS), Avenida de la Innovación 1, Edificio BIC, Armilla, Granada 18100, Spain.
| |
Collapse
|
9
|
Montaldo L, Gallo A, Rocha G, Csernoch C, Marzi MD, Guerra LN. Anthocyanin-enriched extract from Ribes nigrum inhibits triglyceride and cholesterol accumulation in adipocytes. Ther Deliv 2023; 14:675-687. [PMID: 38018449 DOI: 10.4155/tde-2023-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
Aim: Obesity is a chronic pathology of epidemic proportions. Mature adipocytes from a 3T3-L1 cell line were used as in vitro obesity model to test different bioactive compounds. We aim to evaluate cassis (Ribes nigrum) extract antioxidant activity and its antiadipogenic effect on mature adipocytes. Results: We produced an extract by using enzyme that combines cellulase and pectinase; we obtained high yield of the bioactive compound anthocyanin. Extract showed high antioxidant capacity. We conducted in vitro assays by adding the extract to adipocytes culture medium. Extract reduced intracellular levels of triglyceride by 62% and cholesterol by 32%. Conclusion: Enzymatic extract's high antioxidant activity was likely attributable to its high concentration of anthocyanin. This extract inhibits lipid accumulation in adipocytes.
Collapse
Affiliation(s)
- Laura Montaldo
- Universidad Nacional de Luján, Departamento de Ciencias Básicas, Av Constitución y Ruta 5, Luján, Buenos Aires, 6700, Argentina
| | - Alicia Gallo
- Universidad Nacional de Luján, Departamento de Tecnología, Av Constitución y Ruta 5, Luján, Buenos Aires, 6700, Argentina
| | - Gabriela Rocha
- Universidad Nacional de Luján, Departamento de Ciencias Básicas, Av Constitución y Ruta 5, Luján, Buenos Aires, 6700, Argentina
- CONICET-INEDES, Grupo de Investigación Básica y Clínica en Inmunología y Bioactivos (GIBAIB), Av Constitución y Ruta 5, Luján, Buenos Aires, 6700, Argentina
| | - Cecilia Csernoch
- Universidad Nacional de Luján, Departamento de Tecnología, Av Constitución y Ruta 5, Luján, Buenos Aires, 6700, Argentina
| | - Mauricio De Marzi
- Universidad Nacional de Luján, Departamento de Ciencias Básicas, Av Constitución y Ruta 5, Luján, Buenos Aires, 6700, Argentina
- CONICET-INEDES, Grupo de Investigación Básica y Clínica en Inmunología y Bioactivos (GIBAIB), Av Constitución y Ruta 5, Luján, Buenos Aires, 6700, Argentina
| | - Liliana N Guerra
- Universidad Nacional de Luján, Departamento de Ciencias Básicas, Av Constitución y Ruta 5, Luján, Buenos Aires, 6700, Argentina
- CONICET-INEDES, Grupo de Investigación Básica y Clínica en Inmunología y Bioactivos (GIBAIB), Av Constitución y Ruta 5, Luján, Buenos Aires, 6700, Argentina
| |
Collapse
|
10
|
Hassan GS, Flores Molina M, Shoukry NH. The multifaceted role of macrophages during acute liver injury. Front Immunol 2023; 14:1237042. [PMID: 37736102 PMCID: PMC10510203 DOI: 10.3389/fimmu.2023.1237042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/15/2023] [Indexed: 09/23/2023] Open
Abstract
The liver is situated at the interface of the gut and circulation where it acts as a filter for blood-borne and gut-derived microbes and biological molecules, promoting tolerance of non-invasive antigens while driving immune responses against pathogenic ones. Liver resident immune cells such as Kupffer cells (KCs), a subset of macrophages, maintain homeostasis under physiological conditions. However, upon liver injury, these cells and others recruited from circulation participate in the response to injury and the repair of tissue damage. Such response is thus spatially and temporally regulated and implicates interconnected cells of immune and non-immune nature. This review will describe the hepatic immune environment during acute liver injury and the subsequent wound healing process. In its early stages, the wound healing immune response involves a necroinflammatory process characterized by partial depletion of resident KCs and lymphocytes and a significant infiltration of myeloid cells including monocyte-derived macrophages (MoMFs) complemented by a wave of pro-inflammatory mediators. The subsequent repair stage includes restoring KCs, initiating angiogenesis, renewing extracellular matrix and enhancing proliferation/activation of resident parenchymal and mesenchymal cells. This review will focus on the multifaceted role of hepatic macrophages, including KCs and MoMFs, and their spatial distribution and roles during acute liver injury.
Collapse
Affiliation(s)
- Ghada S. Hassan
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Manuel Flores Molina
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Naglaa H. Shoukry
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de médecine, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
11
|
Mahboob A, Samuel SM, Mohamed A, Wani MY, Ghorbel S, Miled N, Büsselberg D, Chaari A. Role of flavonoids in controlling obesity: molecular targets and mechanisms. Front Nutr 2023; 10:1177897. [PMID: 37252233 PMCID: PMC10213274 DOI: 10.3389/fnut.2023.1177897] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/13/2023] [Indexed: 05/31/2023] Open
Abstract
Obesity presents a major health challenge that increases the risk of several non-communicable illnesses, such as but not limited to diabetes, hypertension, cardiovascular diseases, musculoskeletal and neurological disorders, sleep disorders, and cancers. Accounting for nearly 8% of global deaths (4.7 million) in 2017, obesity leads to diminishing quality of life and a higher premature mortality rate among affected individuals. Although essentially dubbed as a modifiable and preventable health concern, prevention, and treatment strategies against obesity, such as calorie intake restriction and increasing calorie burning, have gained little long-term success. In this manuscript, we detail the pathophysiology of obesity as a multifactorial, oxidative stress-dependent inflammatory disease. Current anti-obesity treatment strategies, and the effect of flavonoid-based therapeutic interventions on digestion and absorption, macronutrient metabolism, inflammation and oxidative stress and gut microbiota has been evaluated. The use of several naturally occurring flavonoids to prevent and treat obesity with a long-term efficacy, is also described.
Collapse
Affiliation(s)
- Anns Mahboob
- Department of Pre-medical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Arif Mohamed
- College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | | | - Sofiane Ghorbel
- Science and Arts at Khulis, University of Jeddah, Jeddah, Saudi Arabia
| | - Nabil Miled
- College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Ali Chaari
- Department of Pre-medical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| |
Collapse
|
12
|
Ziqubu K, Mazibuko-Mbeje SE, Mthembu SXH, Mabhida SE, Jack BU, Nyambuya TM, Nkambule BB, Basson AK, Tiano L, Dludla PV. Anti-Obesity Effects of Metformin: A Scoping Review Evaluating the Feasibility of Brown Adipose Tissue as a Therapeutic Target. Int J Mol Sci 2023; 24:ijms24032227. [PMID: 36768561 PMCID: PMC9917329 DOI: 10.3390/ijms24032227] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
Brown adipose tissue (BAT) is increasingly recognized as the major therapeutic target to promote energy expenditure and ameliorate diverse metabolic complications. There is a general interest in understanding the pleiotropic effects of metformin against metabolic complications. Major electronic databases and search engines such as PubMed/MEDLINE, Google Scholar, and the Cochrane library were used to retrieve and critically discuss evidence reporting on the impact of metformin on regulating BAT thermogenic activity to ameliorate complications linked with obesity. The summarized evidence suggests that metformin can reduce body weight, enhance insulin sensitivity, and improve glucose metabolism by promoting BAT thermogenic activity in preclinical models of obesity. Notably, this anti-diabetic agent can affect the expression of major thermogenic transcriptional factors such as uncoupling protein 1 (UCP1), nuclear respiratory factor 1 (NRF1), and peroxisome-proliferator-activated receptor gamma coactivator 1-alpha (PGC1-α) to improve BAT mitochondrial function and promote energy expenditure. Interestingly, vital molecular markers involved in glucose metabolism and energy regulation such as AMP-activated protein kinase (AMPK) and fibroblast growth factor 21 (FGF21) are similarly upregulated by metformin treatment in preclinical models of obesity. The current review also discusses the clinical relevance of BAT and thermogenesis as therapeutic targets. This review explored critical components including effective dosage and appropriate intervention period, consistent with the beneficial effects of metformin against obesity-associated complications.
Collapse
Affiliation(s)
- Khanyisani Ziqubu
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
| | - Sithandiwe E. Mazibuko-Mbeje
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
- Correspondence: (S.E.M.-M.); (P.V.D.); Tel.: +27-21-938-0333 (P.V.D.)
| | - Sinenhlanhla X. H. Mthembu
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
| | - Sihle E. Mabhida
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Babalwa U. Jack
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Tawanda M. Nyambuya
- Department of Health Sciences, Namibia University of Science and Technology, Windhoek 9000, Namibia
| | - Bongani B. Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Albertus K. Basson
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3880, South Africa
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Phiwayinkosi V. Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3880, South Africa
- Correspondence: (S.E.M.-M.); (P.V.D.); Tel.: +27-21-938-0333 (P.V.D.)
| |
Collapse
|
13
|
Padoei F, Mamsharifi P, Hazegh P, Boroumand H, Ostadmohammady F, Abbaszadeh-Mashkani S, Banafshe HR, Matini AH, Ghaderi A, Dehkohneh SG. The therapeutic effect of N-acetylcysteine as an add-on to methadone maintenance therapy medication in outpatients with substance use disorders: A randomized, double-blind, placebo-controlled clinical trial. Brain Behav 2023; 13:e2823. [PMID: 36448959 PMCID: PMC9847617 DOI: 10.1002/brb3.2823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/20/2022] [Accepted: 11/01/2022] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE Patients with substance use disorders (SUD) under methadone maintenance therapy (MMT) are susceptible to a number of complications (psychological and metabolic disorders). Evidence studies have shown the roles of the glutamatergic system in addiction. N-Acetylcysteine (NAC) enhances extracellular glutamate, and is effective in the treatment of neuropsychiatric disorders. We assessed oral NAC as an add-on to MMT medication for the treatment of SUD. METHODS In the current randomized, double-blind, placebo-controlled clinical trial, outpatients with SUD under MMT who were 18-60 years old received 2400 mg/day NAC (n = 30) or placebo (n = 30) for 12 weeks. Psychological status and metabolic biomarkers were assessed at baseline and the end of the trial. RESULTS Compared with the placebo group, NAC treatment resulted in a significant improvement in depression score (β -2.36; 95% CI, -3.97, -0.76; p = .005), and anxiety score (β -1.82; 95% CI, -3.19, -0.44; p = .01). Furthermore, NAC treatment resulted in a significant elevation in total antioxidant capacity levels (β 72.28 mmol/L; 95% CI, 11.36, 133.19; p = .02), total glutathione (GSH) levels (β 81.84 μmol/L; 95% CI, 15.40, 148.28; p = .01), and a significant reduction in high-sensitivity C-reactive protein levels (β -0.89 mg/L; 95% CI, -1.50, -0.28; p = .005), and homeostasis model of assessment-insulin resistance (β -0.33; 95% CI, -0.65, -0.009; p = .04), compared with the placebo group. CONCLUSION In the current study, improvement in depression and anxiety symptoms as well as some metabolic profiles with NAC treatment for 12 weeks in outpatients with SUD under MMT was detected.
Collapse
Affiliation(s)
- Fateme Padoei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Peyman Mamsharifi
- Department of Psychology, Allameh Tabataba'i University, Tehran, Iran
| | - Pooya Hazegh
- Department of Psychiatry, Kashan University of Medical Sciences, Kashan, Iran
| | - Homa Boroumand
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | | | | | - Hamid Reza Banafshe
- Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Hassan Matini
- Department of Clinical Pathology, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Ghaderi
- Department of Addiction studies, School of Medical, Kashan University of Medical Sciences, Kashan, Iran.,Clinical Research Development Unit-Matini/Kargarnejad Hospital, Kashan University of Medical Sciences, Kashan, Iran
| | - Somayeh Ghadami Dehkohneh
- Department of Pharmacy, Acharya BM ready college of Pharmacy, Rajiv Gandhi University of Health Sciences, Bangalore, Karnataka, India
| |
Collapse
|
14
|
The effects of N-acetylcysteine administration on metabolic status and serum adiponectin levels in patients with metabolic syndrome: A randomized, double-blind, placebo-controlled trial. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
15
|
Aggarwal H, Pathak P, Gupta SK, Kumar Y, Jagavelu K, Dikshit M. Serum and cecal metabolic profile of the insulin resistant and dyslipidemic p47 phox knockout mice. Free Radic Res 2022; 56:483-497. [PMID: 36251883 DOI: 10.1080/10715762.2022.2133705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Involvement of NOX-dependent oxidative stress in the pathophysiology of metabolic disorders as well as in the maintenance of metabolic homeostasis has been demonstrated previously. In the present study, the metabolic profile in p47phox-/- and WT mice fed on a chow diet was evaluated to assess the role of metabolites in glucose intolerance and dyslipidemia under altered oxidative stress conditions. p47phox-/- mice displayed glucose intolerance, dyslipidemia, hyperglycemia, insulin resistance (IR), hyperinsulinemia, and altered energy homeostasis without any significant change in gluconeogenesis. The expression of genes involved in lipid synthesis and uptake was enhanced in the liver, adipose tissue, and intestine tissues. Similarly, the expression of genes associated with lipid efflux in the liver and intestine was also enhanced. Enhanced gut permeability, inflammation, and shortening of the gut was evident in p47phox-/- mice. Circulating levels of pyrimidines, phosphatidylglycerol lipids, and 3-methyl-2-oxindole were augmented, while level of purine was reduced in the serum. Moreover, the cecal metabolome was also altered, as was evident with the increase in indole-3-acetamide, N-acetyl galactosamine, glycocholate, and a decrease in hippurate, indoxyl sulfate, and indigestible sugars (raffinose and melezitose). Treatment of p47phox-/- mice with pioglitazone, marginally improved glucose intolerance, and dyslipidemia, with an increase in PUFAs (linoleate, docosahexaenoic acid, and arachidonic acid). Overall, the results obtained in p47phox-/- mice indicate an association of IR and dyslipidemia with altered serum and cecal metabolites (both host and bacterial-derived), implying a critical role of NOX-derived ROS in metabolic homeostasis.
Collapse
Affiliation(s)
- Hobby Aggarwal
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India.,Non-Communicable Diseases Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Priya Pathak
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sonu Kumar Gupta
- Non-Communicable Diseases Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Yashwant Kumar
- Non-Communicable Diseases Division, Translational Health Science and Technology Institute, Faridabad, India
| | | | - Madhu Dikshit
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India.,Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
16
|
Ntamo Y, Ziqubu K, Chellan N, Nkambule BB, Nyambuya TM, Mazibuko-Mbeje SE, Gabuza KB, Orlando P, Tiano L, Dludla PV. Clinical use of N-acetyl cysteine during liver transplantation: Implications of oxidative stress and inflammation as therapeutic targets. Biomed Pharmacother 2022; 147:112638. [DOI: 10.1016/j.biopha.2022.112638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 02/09/2023] Open
|
17
|
Guerini M, Condrò G, Friuli V, Maggi L, Perugini P. N-acetylcysteine (NAC) and Its Role in Clinical Practice Management of Cystic Fibrosis (CF): A Review. Pharmaceuticals (Basel) 2022; 15:ph15020217. [PMID: 35215328 PMCID: PMC8879903 DOI: 10.3390/ph15020217] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 12/16/2022] Open
Abstract
N-acetylcysteine is the acetylated form of the amino acid L-cysteine and a precursor to glutathione (GSH). It has been known for a long time as a powerful antioxidant and as an antidote for paracetamol overdose. However, other activities related to this molecule have been discovered over the years, making it a promising drug for diseases such as cystic fibrosis (CF). Its antioxidant activity plays a key role in CF airway inflammation and redox imbalance. Furthermore, this molecule appears to play an important role in the prevention and eradication of biofilms resulting from CF airway infections, in particular that of Pseudomonas aeruginosa. The aim of this review is to provide an overview of CF and the role that NAC could play in preventing and eliminating biofilms, as a modulator of inflammation and as an antioxidant, restoring the redox balance within the airways in CF patients. To do this, NAC can act alone, but it can also be used as an adjuvant molecule to known drugs (antibiotics/anti-inflammatories) to increase their activity.
Collapse
Affiliation(s)
- Marta Guerini
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (G.C.); (V.F.); (L.M.); (P.P.)
- Correspondence:
| | - Giorgia Condrò
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (G.C.); (V.F.); (L.M.); (P.P.)
| | - Valeria Friuli
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (G.C.); (V.F.); (L.M.); (P.P.)
| | - Lauretta Maggi
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (G.C.); (V.F.); (L.M.); (P.P.)
| | - Paola Perugini
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (G.C.); (V.F.); (L.M.); (P.P.)
- Etichub, Academic Spin-Off, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
18
|
Shipman ML, Corbit LH. Diet-induced deficits in goal-directed control are rescued by agonism of group II metabotropic glutamate receptors in the dorsomedial striatum. Transl Psychiatry 2022; 12:42. [PMID: 35091538 PMCID: PMC8799694 DOI: 10.1038/s41398-022-01807-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 11/09/2022] Open
Abstract
Many overweight or obese people struggle to sustain the behavioural changes necessary to achieve and maintain weight loss. In rodents, obesogenic diet can disrupt goal-directed control of responding for food reinforcers, which may indicate that diet can disrupt brain regions associated with behavioural control. We investigated a potential glutamatergic mechanism to return goal-directed control to rats who had been given an obesogenic diet prior to operant training. We found that an obesogenic diet reduced goal-directed control and that systemic injection of LY379268, a Group II metabotropic glutamate receptor (mGluR2/3) agonist, returned goal-directed responding in these rats. Further, we found that direct infusion of LY379268 into the dorsomedial striatum, a region associated with goal-directed control, also restored goal-directed responding in the obesogenic-diet group. This indicates that one mechanism through which obesogenic diet disrupts goal-directed control is glutamatergic, and infusion of a mGluR2/3 agonist into the DMS is sufficient to ameliorate deficits in goal-directed control.
Collapse
Affiliation(s)
- Megan L Shipman
- University of Toronto Department of Psychology, 100 St. George Street, Toronto, ON, M5S 3G3, Canada
| | - Laura H Corbit
- University of Toronto Department of Psychology, 100 St. George Street, Toronto, ON, M5S 3G3, Canada.
| |
Collapse
|
19
|
Drug-Induced Liver Injury: Clinical Evidence of N-Acetyl Cysteine Protective Effects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3320325. [PMID: 34912495 PMCID: PMC8668310 DOI: 10.1155/2021/3320325] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/12/2021] [Accepted: 11/22/2021] [Indexed: 12/29/2022]
Abstract
Oxidative stress is a key pathological feature implicated in both acute and chronic liver diseases, including drug-induced liver injury (DILI). The latter describes hepatic injury arising as a direct toxic effect of administered drugs or their metabolites. Although still underreported, DILI remains a significant cause of liver failure, especially in developed nations. Currently, it is understood that mitochondrial-generated oxidative stress and abnormalities in phase I/II metabolism, leading to glutathione (GSH) suppression, drive the onset of DILI. N-Acetyl cysteine (NAC) has attracted a lot of interest as a therapeutic agent against DILI because of its strong antioxidant properties, especially in relation to enhancing endogenous GSH content to counteract oxidative stress. Thus, in addition to updating information on the pathophysiological mechanisms implicated in oxidative-induced hepatic injury, the current review critically discusses clinical evidence on the protective effects of NAC against DILI, including the reduction of patient mortality. Besides injury caused by paracetamol, NAC can also improve liver function in relation to other forms of liver injury such as those induced by excessive alcohol intake. The implicated therapeutic mechanisms of NAC extend from enhancing hepatic GSH levels to reducing biomarkers of paracetamol toxicity such as keratin-18 and circulating caspase-cleaved cytokeratin-18. However, there is still lack of evidence confirming the benefits of using NAC in combination with other therapies in patients with DILI.
Collapse
|
20
|
Sandhu JK, Waqar A, Jain A, Joseph C, Srivastava K, Ochuba O, Alkayyali T, Ruo SW, Poudel S. Oxidative Stress in Polycystic Ovarian Syndrome and the Effect of Antioxidant N-Acetylcysteine on Ovulation and Pregnancy Rate. Cureus 2021; 13:e17887. [PMID: 34660086 PMCID: PMC8502752 DOI: 10.7759/cureus.17887] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/10/2021] [Indexed: 11/19/2022] Open
Abstract
Polycystic ovarian syndrome (PCOS) is an endocrinological condition that leads to infertility in many females. N-acetylcysteine (NAC), a novel antioxidant, is being used as an adjuvant to treat infertility in females suffering from PCOS. This review aims to evaluate oxidative stress in females suffering from PCOS and assess whether the anti-oxidizing properties of NAC are beneficial in enhancing the rate of ovulation and pregnancy in infertile PCOS females. A literature search was conducted manually on PubMed and Google Scholar databases using the following keywords: “N-Acetylcysteine,” “PCOS,” “Oxidative stress,” “Antioxidants,” and “infertility” alone and/or in combination for data collection. The studies were manually screened and, after applying inclusion-exclusion criteria, 32 studies consisting of 2466 females of the reproductive age group are included in this review. Our review revealed that females suffering from PCOS tend to show elevated levels of inflammatory markers and a decrease in antioxidant capacity. When used in combination with clomiphene citrate or letrozole, NAC increases ovulation and pregnancy rate in infertile females suffering from PCOS and positively affects the quality of oocytes and number of follicles ≥18mm. Moreover, its side effect profile is low. It also results in a mild increase in endometrial thickness in some females. Future studies on a large sample size using NAC alone are highly recommended to evaluate its role as a single-drug therapy for treating infertility in females suffering from PCOS.
Collapse
Affiliation(s)
- Jasmine K Sandhu
- Obstetrics and Gynecology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ahsan Waqar
- Family Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ashish Jain
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Christine Joseph
- Urology/Obstetrics and Gynecology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Kosha Srivastava
- Neurology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Olive Ochuba
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Tasnim Alkayyali
- Internal Medicine, Marmara University, Istanbul, TUR.,Pathology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sheila W Ruo
- General Surgery, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sujan Poudel
- Psychiatry and Behavioral Sciences, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
21
|
Lau BK, Murphy-Royal C, Kaur M, Qiao M, Bains JS, Gordon GR, Borgland SL. Obesity-induced astrocyte dysfunction impairs heterosynaptic plasticity in the orbitofrontal cortex. Cell Rep 2021; 36:109563. [PMID: 34407401 DOI: 10.1016/j.celrep.2021.109563] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 05/03/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022] Open
Abstract
Overconsumption of highly palatable, energy-dense food is considered a key driver of the obesity pandemic. The orbitofrontal cortex (OFC) is critical for reward valuation of gustatory signals, yet how the OFC adapts to obesogenic diets is poorly understood. Here, we show that extended access to a cafeteria diet impairs astrocyte glutamate clearance, which leads to a heterosynaptic depression of GABA transmission onto pyramidal neurons of the OFC. This decrease in GABA tone is due to an increase in extrasynaptic glutamate, which acts via metabotropic glutamate receptors to liberate endocannabinoids. This impairs the induction of endocannabinoid-mediated long-term plasticity. The nutritional supplement, N-acetylcysteine rescues this cascade of synaptic impairments by restoring astrocytic glutamate transport. Together, our findings indicate that obesity targets astrocytes to disrupt the delicate balance between excitatory and inhibitory transmission in the OFC.
Collapse
Affiliation(s)
- Benjamin K Lau
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, 3330 Hospital Dr. NW, Calgary, Alberta T2N 4N1, Canada
| | - Ciaran Murphy-Royal
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, 3330 Hospital Dr. NW, Calgary, Alberta T2N 4N1, Canada
| | - Manpreet Kaur
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, 3330 Hospital Dr. NW, Calgary, Alberta T2N 4N1, Canada
| | - Min Qiao
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, 3330 Hospital Dr. NW, Calgary, Alberta T2N 4N1, Canada
| | - Jaideep S Bains
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, 3330 Hospital Dr. NW, Calgary, Alberta T2N 4N1, Canada
| | - Grant R Gordon
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, 3330 Hospital Dr. NW, Calgary, Alberta T2N 4N1, Canada
| | - Stephanie L Borgland
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, 3330 Hospital Dr. NW, Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
22
|
Sketriene D, Battista D, Perry CJ, Sumithran P, Lawrence AJ, Brown RM. N-acetylcysteine reduces addiction-like behaviour towards high-fat high-sugar food in diet-induced obese rats. Eur J Neurosci 2021; 54:4877-4887. [PMID: 34028895 DOI: 10.1111/ejn.15321] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 04/05/2021] [Accepted: 05/20/2021] [Indexed: 01/15/2023]
Abstract
Compulsive forms of eating displayed by some obese individuals share similarities with compulsive drug-taking behaviour, a hallmark feature of substance use disorder. This raises the possibility that drug addiction treatments may show utility in the treatment of compulsive overeating. N-Acetylcysteine (NAC) is a cysteine pro-drug which has experienced some success in clinical trials, reducing cocaine, marijuana and cigarette use, as well as compulsive behaviours such as gambling and trichotillomania. We assessed the impact of NAC on addiction-like behaviour towards highly palatable food in a rat model of diet-induced obesity. Adult male Sprague-Dawley rats were placed on a high-fat high-sugar diet for 8 weeks and then assigned to diet-induced obesity-prone (DIO) or diet-induced obesity-resistant (DR) groups based on weight gain. DIO and DR rats were subjected to an operant conditioning paradigm whereby rats could lever press for high-fat high-sugar food pellets. This alternated with periods of signalled reward unavailability. Before treatment DIO rats ate more in their home cage, earned more food pellets in operant sessions, and responded more during periods that signalled reward unavailability (suggestive of compulsive-like food seeking) compared with DR rats. This persistent responding in the absence of reward displayed by DIO rats was ameliorated by daily injections of NAC (100 mg/kg, i.p.) for 14 days. By the end of the treatment period, lever-pressing by NAC-treated DIO rats resembled that of DR rats. These findings suggest that NAC reduces addiction-like behaviour towards food in rats and supports the potential use of this compound in compulsive overeating.
Collapse
Affiliation(s)
- Diana Sketriene
- The Florey Institute of Neuroscience and Mental Health, Mental Health Research Theme, Parkville/Melbourne, Victoria, Australia.,The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville/Melbourne, Victoria, Australia
| | - Damien Battista
- The Florey Institute of Neuroscience and Mental Health, Mental Health Research Theme, Parkville/Melbourne, Victoria, Australia
| | - Christina J Perry
- The Florey Institute of Neuroscience and Mental Health, Mental Health Research Theme, Parkville/Melbourne, Victoria, Australia
| | - Priya Sumithran
- Department of Medicine (Austin), University of Melbourne, Melbourne, Victoria, Australia.,Department of Endocrinology, Austin Health, Heidelberg, Victoria, Australia
| | - Andrew J Lawrence
- The Florey Institute of Neuroscience and Mental Health, Mental Health Research Theme, Parkville/Melbourne, Victoria, Australia
| | - Robyn M Brown
- The Florey Institute of Neuroscience and Mental Health, Mental Health Research Theme, Parkville/Melbourne, Victoria, Australia.,The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville/Melbourne, Victoria, Australia
| |
Collapse
|
23
|
Schwalfenberg GK. N-Acetylcysteine: A Review of Clinical Usefulness (an Old Drug with New Tricks). J Nutr Metab 2021; 2021:9949453. [PMID: 34221501 PMCID: PMC8211525 DOI: 10.1155/2021/9949453] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/26/2021] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE To review the clinical usefulness of N-acetylcysteine (NAC) as treatment or adjunctive therapy in a number of medical conditions. Use in Tylenol overdose, cystic fibrosis, and chronic obstructive lung disease has been well documented, but there is emerging evidence many other conditions would benefit from this safe, simple, and inexpensive intervention. Quality of Evidence. PubMed, several books, and conference proceedings were searched for articles on NAC and health conditions listed above reviewing supportive evidence. This study uses a traditional integrated review format, and clinically relevant information is assessed using the American Family Physician Evidence-Based Medicine Toolkit. A table summarizing the potential mechanisms of action for N-acetylcysteine in these conditions is presented. Main Message. N-acetylcysteine may be useful as an adjuvant in treating various medical conditions, especially chronic diseases. These conditions include polycystic ovary disease, male infertility, sleep apnea, acquired immune deficiency syndrome, influenza, parkinsonism, multiple sclerosis, peripheral neuropathy, stroke outcomes, diabetic neuropathy, Crohn's disease, ulcerative colitis, schizophrenia, bipolar illness, and obsessive compulsive disorder; it can also be useful as a chelator for heavy metals and nanoparticles. There are also a number of other conditions that may show benefit; however, the evidence is not as robust. CONCLUSION The use of N-acetylcysteine should be considered in a number of conditions as our population ages and levels of glutathione drop. Supplementation may contribute to reducing morbidity and mortality in some chronic conditions as outlined in the article.
Collapse
Affiliation(s)
- Gerry K. Schwalfenberg
- Department of Family Medicine, University of Alberta, No. 301, 9509-156 Street, Edmonton T5P 4J5, AB, Canada
| |
Collapse
|
24
|
Abstract
Background: The addition of 5 mM N-acetylcysteine (NAC) to 3T3-L1 adipocytes culture inhibits the accumulation of triglycerides (Tg) by 50%, but after 48 h uptake was only 16% of total NAC available. Based on these results, the aim of this study is to increase the NAC cellular uptake by encapsulating it in silica nanoparticles (NPs). Materials & methods: Silica NPs, 20 ± 4.5 nm in size, were developed, with an inner cavity loaded with 5 mM NAC. At 48 h after treatment, there was a dose-dependent cytotoxic effect. We attempted to reduce the cytotoxicity of silica NPs by coating them with bovine serum albumin. Results: While we obtained nontoxic bovine serum albumin coated NPs, their effect on Tg cellular accumulation was also reduced.
Collapse
|
25
|
N-Acetyl Cysteine Overdose Inducing Hepatic Steatosis and Systemic Inflammation in Both Propacetamol-Induced Hepatotoxic and Normal Mice. Antioxidants (Basel) 2021; 10:antiox10030442. [PMID: 33809388 PMCID: PMC8000488 DOI: 10.3390/antiox10030442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
Acetaminophen (APAP) overdose induces acute liver damage and even death. The standard therapeutic dose of N-acetyl cysteine (NAC) cannot be applied to every patient, especially those with high-dose APAP poisoning. There is insufficient evidence to prove that increasing NAC dose can treat patients who failed in standard treatment. This study explores the toxicity of NAC overdose in both APAP poisoning and normal mice. Two inbred mouse strains with different sensitivities to propacetamol-induced hepatotoxicity (PIH) were treated with different NAC doses. NAC therapy decreased PIH by reducing lipid oxidation, protein nitration and inflammation, and increasing glutathione (GSH) levels and antioxidative enzyme activities. However, the therapeutic effects of NAC on PIH were dose-dependent from 125 (N125) to 275 mg/kg (N275). Elevated doses of NAC (400 and 800 mg/kg, N400 and N800) caused additional deaths in both propacetamol-treated and normal mice. N800 treatments significantly decreased hepatic GSH levels and induced inflammatory cytokines and hepatic microvesicular steatosis in both propacetamol-treated and normal mice. Furthermore, both N275 and N400 treatments decreased serum triglyceride (TG) and induced hepatic TG, whereas N800 treatment significantly increased interleukin-6, hepatic TG, and total cholesterol levels. In conclusion, NAC overdose induces hepatic and systemic inflammations and interferes with fatty acid metabolism.
Collapse
|
26
|
Ammendola R, Parisi M, Esposito G, Cattaneo F. Pro-Resolving FPR2 Agonists Regulate NADPH Oxidase-Dependent Phosphorylation of HSP27, OSR1, and MARCKS and Activation of the Respective Upstream Kinases. Antioxidants (Basel) 2021; 10:antiox10010134. [PMID: 33477989 PMCID: PMC7835750 DOI: 10.3390/antiox10010134] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Formyl peptide receptor 2 (FPR2) is involved in the pathogenesis of chronic inflammatory diseases, being activated either by pro-resolving or proinflammatory ligands. FPR2-associated signal transduction pathways result in phosphorylation of several proteins and in NADPH oxidase activation. We, herein, investigated molecular mechanisms underlying phosphorylation of heat shock protein 27 (HSP27), oxidative stress responsive kinase 1 (OSR1), and myristolated alanine-rich C-kinase substrate (MARCKS) elicited by the pro-resolving FPR2 agonists WKYMVm and annexin A1 (ANXA1). Methods: CaLu-6 cells or p22phoxCrispr/Cas9 double nickase CaLu-6 cells were incubated for 5 min with WKYMVm or ANXA1, in the presence or absence of NADPH oxidase inhibitors. Phosphorylation at specific serine residues of HSP27, OSR1, and MARCKS, as well as the respective upstream kinases activated by FPR2 stimulation was analysed. Results: Blockade of NADPH oxidase functions prevents WKYMVm- and ANXA1-induced HSP-27(Ser82), OSR1(Ser339) and MARCKS(Ser170) phosphorylation. Moreover, NADPH oxidase inhibitors prevent WKYMVm- and ANXA1-dependent activation of p38MAPK, PI3K and PKCδ, the kinases upstream to HSP-27, OSR1 and MARCKS, respectively. The same results were obtained in p22phoxCrispr/Cas9 cells. Conclusions: FPR2 shows an immunomodulatory role by regulating proinflammatory and anti-inflammatory activities and NADPH oxidase is a key regulator of inflammatory pathways. The activation of NADPH oxidase-dependent pro-resolving downstream signals suggests that FPR2 signalling and NADPH oxidase could represent novel targets for inflammation therapeutic intervention.
Collapse
Affiliation(s)
| | | | | | - Fabio Cattaneo
- Correspondence: ; Tel.: +39-081-746-2036; Fax: +39-081-746-4359
| |
Collapse
|
27
|
Dludla PV, Nkambule BB, Mazibuko-Mbeje SE, Nyambuya TM, Silvestri S, Orlando P, Mxinwa V, Louw J, Tiano L. The impact of dimethyl sulfoxide on oxidative stress and cytotoxicity in various experimental models. Toxicology 2021. [DOI: 10.1016/b978-0-12-819092-0.00025-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
Dludla PV, Nkambule BB, Mazibuko-Mbeje SE, Nyambuya TM, Marcheggiani F, Cirilli I, Ziqubu K, Shabalala SC, Johnson R, Louw J, Damiani E, Tiano L. N-Acetyl Cysteine Targets Hepatic Lipid Accumulation to Curb Oxidative Stress and Inflammation in NAFLD: A Comprehensive Analysis of the Literature. Antioxidants (Basel) 2020; 9:E1283. [PMID: 33339155 PMCID: PMC7765616 DOI: 10.3390/antiox9121283] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023] Open
Abstract
Impaired adipose tissue function and insulin resistance remain instrumental in promoting hepatic lipid accumulation in conditions of metabolic syndrome. In fact, enhanced lipid accumulation together with oxidative stress and an abnormal inflammatory response underpin the development and severity of non-alcoholic fatty liver disease (NAFLD). There are currently no specific protective drugs against NAFLD, and effective interventions involving regular exercise and healthy diets have proved difficult to achieve and maintain. Alternatively, due to its antioxidant and anti-inflammatory properties, there has been growing interest in understanding the therapeutic effects of N-acetyl cysteine (NAC) against metabolic complications, including NAFLD. Here, reviewed evidence suggests that NAC blocks hepatic lipid accumulation in preclinical models of NAFLD. This is in part through the effective regulation of a fatty acid scavenger molecule (CD36) and transcriptional factors such as sterol regulatory element-binding protein (SREBP)-1c/-2 and peroxisome proliferator-activated receptor gamma (PPARγ). Importantly, NAC appears effective in improving liver function by reducing pro-inflammatory markers such as interleukin (IL)-6 IL-1β, tumour necrosis factor alpha (TNF-α) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). This was primarily through the attenuation of lipid peroxidation and enhancements in intracellular response antioxidants, particularly glutathione. Very few clinical studies support the beneficial effects of NAC against NAFLD-related complications, thus well-organized randomized clinical trials are still necessary to confirm its therapeutic potential.
Collapse
Affiliation(s)
- Phiwayinkosi V. Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; (S.C.S.); (R.J.); (J.L.)
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (F.M.); (I.C.); (E.D.); (L.T.)
| | - Bongani B. Nkambule
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (B.B.N.); (T.M.N.)
| | - Sithandiwe E. Mazibuko-Mbeje
- Department of Biochemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2745, South Africa; (S.E.M.-M.); (K.Z.)
| | - Tawanda M. Nyambuya
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (B.B.N.); (T.M.N.)
- Department of Health Sciences, Faculty of Health and Applied Sciences, Namibia University of Science and Technology, Windhoek 9000, Namibia
| | - Fabio Marcheggiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (F.M.); (I.C.); (E.D.); (L.T.)
| | - Ilenia Cirilli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (F.M.); (I.C.); (E.D.); (L.T.)
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Khanyisani Ziqubu
- Department of Biochemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2745, South Africa; (S.E.M.-M.); (K.Z.)
| | - Samukelisiwe C. Shabalala
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; (S.C.S.); (R.J.); (J.L.)
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3880, South Africa
| | - Rabia Johnson
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; (S.C.S.); (R.J.); (J.L.)
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
| | - Johan Louw
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; (S.C.S.); (R.J.); (J.L.)
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3880, South Africa
| | - Elisabetta Damiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (F.M.); (I.C.); (E.D.); (L.T.)
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (F.M.); (I.C.); (E.D.); (L.T.)
| |
Collapse
|
29
|
Zarei M, Zarezadeh M, Khademi F, Adeli S, Abbaszade F, Nikpayam O, Janmohammadi P, Mohammadzadeh Honarvar N, Hazhir Karzar N, Ghoreishi Z, Ostadrahimi A. What are the effects of N-acetylcysteine supplementation on anthropometric indices? A systematic review and meta-analysis of clinical trials. PHARMANUTRITION 2020. [DOI: 10.1016/j.phanu.2020.100238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
30
|
Atefi N, Behrangi E, Mozafarpoor S, Seirafianpour F, Peighambari S, Goodarzi A. N-acetylcysteine and coronavirus disease 2019: May it work as a beneficial preventive and adjuvant therapy? A comprehensive review study. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2020; 25:109. [PMID: 33824674 PMCID: PMC8019127 DOI: 10.4103/jrms.jrms_777_20] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/11/2020] [Accepted: 09/25/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Coronaviruses are major pathogens of respiratory system causing different disorders, including the common cold, Middle East respiratory syndrome, and severe acute respiratory syndrome. Today's global pandemic coronavirus disease 2019 (COVID-19) has high mortality rate, with an approximate of 20% in some studies, and is 30-60 times more fatal than the common annual influenza, However, there is still no gold standard treatment for it. N-acetylcysteine (NAC) is a well-known multi-potential drug with hypothetically probable acceptable effect on COVID-related consequences, which we completely focused in this comprehensive review. MATERIALS AND METHODS PubMed, Scopus, Science Direct, and Google Scholar have been searched. Study eligibility criteria: efficacy of NAC in various subclasses of pathogenic events which may occur during COVID-19 infection. Efficacy of NAC for managing inflammatory or any symptoms similar to symptoms of COVID-19 was reviewed and symptom improvements were assessed. RESULTS Randomized clinical trials introduced NAC as an antioxidant glutathione analog and detoxifying agent promoted for different medical conditions and pulmonary disorders to alleviate influenza and reduce mortality by 50% in influenza-infected animals. The beneficial effects of NAC on viral disorders, including Epstein-Barr virus, HIV and hepatitis, and well-known vital organ damages were also exist and reported. CONCLUSION We classified the probable effects of NAC as oxidative-regulatory and apoptotic-regulatory roles, antiviral activities, anti-inflammatory roles, preventive and therapeutic roles in lung disorders and better oxygenation functions, supportive roles in intensive care unit admitted patients and in sepsis, positive role in other comorbidities and nonpulmonary end-organ damages or failures and even in primary COVID-associated cutaneous manifestations. Based on different beneficial effects of NAC, it could be administered as a potential adjuvant therapy for COVID-19 considering patient status, contraindications, and possible drug-related adverse events.
Collapse
Affiliation(s)
- Najmolsadat Atefi
- Department of Dermatology, Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Behrangi
- Department of Dermatology, Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Samaneh Mozafarpoor
- Department of Dermatology, Skin Disease and Leishmaniasis Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farnoosh Seirafianpour
- Department of General Medicine, Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran
| | - Shadi Peighambari
- Department of Internal Medicine, San Joaquin General Hospital, CA, USA
| | - Azadeh Goodarzi
- Department of Dermatology, Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Sulforaphane suppresses obesity-related glomerulopathy-induced damage by enhancing autophagy via Nrf2. Life Sci 2020; 258:118153. [PMID: 32738361 DOI: 10.1016/j.lfs.2020.118153] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/18/2020] [Accepted: 07/23/2020] [Indexed: 01/14/2023]
Abstract
AIMS Obesity-related glomerulopathy (ORG) is characterized by glomerulomegaly with or without focal and segmental glomerulosclerosis lesions. Isothiocyanate sulforaphane (SFN) can protect kidneys from ORG-related damages. In this study, we investigated the effects of SFN as a preventive therapy or intervention for ORG to reveal its mechanism of action. MAIN METHODS We established a mouse obesity model with preventive SFN or N-acetylcysteine treatment for 2 months. Thereafter, we used nuclear factor erythroid 2-related factor 2-deficient (Nrf2-/-) and wild type mice in our ORG model with SFN treatment. Finally, we generated a corresponding mouse podocyte model in vitro. The body weight, wet weight of perirenal-and peritesticular fat, and urinary albumin/creatinine ratio were assessed. We used periodic acid-Schiff staining and electron microscopy to assess the function of the kidneys and podocytes. In addition, we evaluated the expression of Nrf2 and podocyte-specific proteins by western blotting. KEY FINDINGS Treatment with SFN reduced body weight, organ-associated fat weight, and urinary albumin/creatinine ratio in both the preventive treatment and disease intervention regimens. SFN treated mice exhibited higher expression levels of podocyte-specific proteins and better podocyte function. However, treatment with SFN did not affect these parameters in obese Nrf2-/- mice. Light chain 3 of microtubule-associated protein 1-II and metallothionein had higher expression in the wild type than in the Nrf2-/- mice. SIGNIFICANCE Treatment with SFN limited ORG-induced damage by enhancing podocyte autophagy via Nrf2.
Collapse
|
32
|
Coenzyme Q 10 Supplementation Improves Adipokine Levels and Alleviates Inflammation and Lipid Peroxidation in Conditions of Metabolic Syndrome: A Meta-Analysis of Randomized Controlled Trials. Int J Mol Sci 2020; 21:ijms21093247. [PMID: 32375340 PMCID: PMC7247332 DOI: 10.3390/ijms21093247] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
Evidence from randomized controlled trials (RCTs) suggests that coenzyme Q10 (CoQ10) can regulate adipokine levels to impact inflammation and oxidative stress in conditions of metabolic syndrome. Here, prominent electronic databases such as MEDLINE, Cochrane Library, and EMBASE were searched for eligible RCTs reporting on any correlation between adipokine levels and modulation of inflammation and oxidative stress in individuals with metabolic syndrome taking CoQ10. The risk of bias was assessed using the modified Black and Downs checklist, while the Grading of Recommendations Assessment, Development and Evaluation (GRADE) tool was used to evaluate the quality of evidence. Results from the current meta-analysis, involving 318 participants, showed that CoQ10 supplementation in individuals with metabolic syndrome increased adiponectin levels when compared to those on placebo (SMD: 1.44 [95% CI: -0.13, 3.00]; I2 = 96%, p < 0.00001). Moreover, CoQ10 supplementation significantly lowered inflammation markers in individuals with metabolic syndrome in comparison to those on placebo (SMD: -0.31 [95% CI: -0.54, -0.08]; I2 = 51%, p = 0.07). Such benefits with CoQ10 supplementation were related to its ameliorative effects on lipid peroxidation by reducing malondialdehyde levels, concomitant to improving glucose control and liver function. The overall findings suggest that optimal regulation of adipokine function is crucial for the beneficial effects of CoQ10 in improving metabolic health.
Collapse
|
33
|
Dludla PV, Nyambuya TM, Orlando P, Silvestri S, Mxinwa V, Mokgalaboni K, Nkambule BB, Louw J, Muller CJF, Tiano L. The impact of coenzyme Q 10 on metabolic and cardiovascular disease profiles in diabetic patients: A systematic review and meta-analysis of randomized controlled trials. Endocrinol Diabetes Metab 2020; 3:e00118. [PMID: 32318636 PMCID: PMC7170462 DOI: 10.1002/edm2.118] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/02/2020] [Indexed: 11/30/2022] Open
Abstract
AIMS Coenzyme Q10 (CoQ10) is well known for its beneficial effects in cardiovascular disease (CVD); however, reported evidence has not been precisely synthesized to better inform on its impact in protecting against cardiovascular-related complications in diabetic patients. MATERIALS AND METHODOLOGY The current meta-analysis included randomized controlled trials published in the past 5 years reporting on the effect of CoQ10 on metabolic and CVD-related risk profiles in individuals with diabetes or metabolic syndrome. We searched electronic databases such as MEDLINE, Cochrane Library, Scopus and EMBASE for eligible studies. In addition to assessing the risk of bias and quality of evidence, the random and fixed-effect models were used to calculate the standardized mean difference and 95% confidence intervals for metabolic parameters and CVD outcomes. RESULTS Overall, 12 studies met the inclusion criteria, enrolling a total of 650 patients. Although CoQ10 supplementation did not statistically affect all metabolic profiles measured, it significantly reduced CVD-risk-related indexes such as total cholesterol and low-density lipoprotein (LDL) levels in diabetic patients when compared to those on placebo [SMD = 0.13, 95% CI (0.03; 0.23), Chi2 = 43.62 and I 2 = 29%, P = .07]. CONCLUSIONS The overall results demonstrated that supplementation with CoQ10 shows an enhanced potential to lower CVD risk in diabetic patients by reducing total cholesterol and LDL. Moreover, the beneficial effects of CoQ10 in lowering the CVD risk are associated with its ameliorative properties against oxidative stress and improving endothelial health.
Collapse
Affiliation(s)
- Phiwayinkosi V. Dludla
- Biomedical Research and Innovation PlatformSouth African Medical Research CouncilTygerbergSouth Africa
- Department of Life and Environmental SciencesPolytechnic University of MarcheAnconaItaly
| | - Tawanda M. Nyambuya
- School of Laboratory Medicine and Medical SciencesCollege of Health SciencesUniversity of KwaZulu‐NatalDurbanSouth Africa
- Department of Health SciencesFaculty of Health and Applied SciencesNamibia University of Science and TechnologyWindhoekNamibia
| | - Patrick Orlando
- Department of Life and Environmental SciencesPolytechnic University of MarcheAnconaItaly
| | - Sonia Silvestri
- Department of Life and Environmental SciencesPolytechnic University of MarcheAnconaItaly
| | - Vuyolwethu Mxinwa
- School of Laboratory Medicine and Medical SciencesCollege of Health SciencesUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Kabelo Mokgalaboni
- School of Laboratory Medicine and Medical SciencesCollege of Health SciencesUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Bongani B. Nkambule
- School of Laboratory Medicine and Medical SciencesCollege of Health SciencesUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Johan Louw
- Biomedical Research and Innovation PlatformSouth African Medical Research CouncilTygerbergSouth Africa
- Department of Biochemistry and MicrobiologyUniversity of ZululandKwaDlangezwaSouth Africa
| | - Christo J. F. Muller
- Biomedical Research and Innovation PlatformSouth African Medical Research CouncilTygerbergSouth Africa
- Department of Biochemistry and MicrobiologyUniversity of ZululandKwaDlangezwaSouth Africa
- Division of Medical PhysiologyFaculty of Health SciencesStellenbosch UniversityTygerbergSouth Africa
| | - Luca Tiano
- Department of Life and Environmental SciencesPolytechnic University of MarcheAnconaItaly
| |
Collapse
|
34
|
Exploring the Comparative Efficacy of Metformin and Resveratrol in the Management of Diabetes-associated Complications: A Systematic Review of Preclinical Studies. Nutrients 2020; 12:nu12030739. [PMID: 32168855 PMCID: PMC7146424 DOI: 10.3390/nu12030739] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 02/07/2023] Open
Abstract
Food-derived bioactive compounds such as resveratrol are increasingly explored for their protective effects against metabolic complications. Evidence supports the strong antioxidant properties and therapeutic effects of resveratrol in managing diabetes and its associated complications. However, evidence informing on the comparative or combination effects of this natural compound with an accomplished and well-characterized antidiabetic agent like metformin has not been revised. Thus, we conducted a comprehensive systematic search of the major electronic databases which included MEDLINE, Cochrane Library, and EMBASE. The cumulative evidence strongly supports the comparative effects of metformin and resveratrol in ameliorating diabetes-associated complications in preclinical settings. In particular, both compounds showed strong ameliorative effects against hyperglycemia, dyslipidemia, insulin resistance, a pro-inflammatory response, and lipid peroxidation in various experimental models of diabetes. Enhancing intracellular antioxidant capacity in addition to activating NAD-dependent deacetylase sirtuin-1 (SIRT1) and AMP-activated protein kinase (AMPK) are the prime mechanisms involved in the therapeutic effects of these compounds. Of interest, preclinical evidence also demonstrates that the combination treatment with these compounds may have a greater efficacy in protecting against diabetes. Thus, confirmation of such evidence in well-organized clinical trials remains crucial to uncover novel therapeutic strategies to manage diabetes and its linked complications.
Collapse
|
35
|
Keshk WA, Ibrahim MA, Shalaby SM, Zalat ZA, Elseady WS. Redox status, inflammation, necroptosis and inflammasome as indispensable contributors to high fat diet (HFD)-induced neurodegeneration; Effect of N-acetylcysteine (NAC). Arch Biochem Biophys 2019; 680:108227. [PMID: 31838118 DOI: 10.1016/j.abb.2019.108227] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/03/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
Adequate dietary intake has a crucial effect on brain health. High fat diet (HFD) rich in saturated fatty acids is linked to obesity and its complications as neurodegeneration via inducing oxidative stress and inflammation. The present study aimed to evaluate the effect of HFD on cerebral cortex in addition to shedding the light on the modulatory role of N-acetylcytsteine (NAC) and its possible underlying biochemical and molecular mechanisms. Twenty eight male Wistar rats were equally and randomly divided into four groups. Group III, and group IV were fed on HFD (45% kcal from fat) for 10 weeks. Group II and group IV were treated with NAC in a dose of 150 mg/kg body weight via intraperitoneal route. Body weight, blood glucose, serum insulin, insulin resistance index, cerebral cortex redox and inflammatory status were evaluated. Cerebral cortex receptor-interacting serine/threonine-protein kinase3 (RIPK3), mixed-lineage kinase domain-like protein (MLKL), nod like receptor protein 3 (NLRP3), interleukin (IL)-18 levels were determined by immunoassay. In addition, apoptosis-associated speck-like proteins (ASC) expression by real-time PCR; inducible nitric oxide synthase (iNOS), glial fibrillary activating protein (GFAP) and matrix metalloproteinase-9 (MMP-9) expression by immunohistochemistry were evaluated. NAC supplementation protected against HFD-induced gain of weights, hyperglycemia, and insulin resistance. Furthermore, NAC improved redox and inflammatory status; decreased levels of RIPK3, MLKL, NLRP3, IL-18; down-regulated ASC, iNOS, GFAP and MMP-9 expression; and decreased myeloperoxidase activity in cerebral cortex. NAC could protect against HFD-induced neurodegeneration via improving glycemic status and peripheral insulin resistance, disrupting oxidative stress/neuroinflammation/necroptosis/inflammasome activation axis in cerebral cortex. NAC may represent a promising strategy for conserving brain health against metabolic diseases-induced neurodegeneration.
Collapse
Affiliation(s)
- Walaa A Keshk
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Egypt.
| | - Marwa A Ibrahim
- Department of Histology & Cell Biology, Faculty of Medicine, Tanta University, Egypt
| | - Shahinaz M Shalaby
- Department of Pharmacology, Faculty of Medicine, Tanta University, Egypt
| | - Zeinab A Zalat
- Department of Clinical Pharmacy, Faculty of Pharmacy for Girls, Al-Azhar University, Cairo, Egypt
| | - Walaa S Elseady
- Department of Anatomy, Faculty of Medicine, Tanta University, Egypt
| |
Collapse
|
36
|
Dludla PV, Orlando P, Silvestri S, Mazibuko-Mbeje SE, Johnson R, Marcheggiani F, Cirilli I, Muller CJF, Louw J, Obonye N, Nyawo T, Nkambule BB, Tiano L. N-Acetyl cysteine ameliorates hyperglycemia-induced cardiomyocyte toxicity by improving mitochondrial energetics and enhancing endogenous Coenzyme Q 9/10 levels. Toxicol Rep 2019; 6:1240-1245. [PMID: 31799124 PMCID: PMC6883304 DOI: 10.1016/j.toxrep.2019.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/23/2019] [Accepted: 11/01/2019] [Indexed: 12/15/2022] Open
Abstract
Hyperglycemia is known to accelerate oxidative stress-induced myocardial injury. Mitochondrial energetics is an important mechanism to explore in the diabetic heart. NAC protects against hyperglycemia-induced cardiomyocyte toxicity. NAC improves mitochondrial energetics and enhances endogenous CoQ levels. CoQ supports the process of bioenergetics in addition to its antioxidant activities.
The diabetic heart has been linked with reduced endogenous levels of coenzyme Q9/10 (CoQ), an important antioxidant and component of the electron transport chain. Although CoQ has displayed cardioprotective potential in experimental models of diabetes, the impact of N-acetyl cysteine (NAC) on mitochondrial energetics and endogenous levels of CoQ remains to be clarified. To explore these effects, high glucose-exposed H9c2 cardiomyocytes were used as an experimental model of hyperglycemia-induced cardiac injury. The results showed that high glucose exposure caused an increased production of reactive oxygen species (ROS), which was associated with impaired mitochondrial energetics as confirmed by a reduction of maximal respiration rate and depleted ATP levels. These detrimental effects were consistent with significantly reduced endogenous CoQ levels and accelerated cell toxicity. Although metformin demonstrated similar effects on mitochondrial energetics and cell viability, NAC demonstrated a more pronounced effect in ameliorating cytosolic and mitochondrial ROS production. Interestingly, the ameliorative effects of NAC against hyperglycemia-induced injury were linked with its capability to enhance endogenous CoQ levels. Although such data are to be confirmed in other models, especially in vivo studies, the overall findings provide additional evidence on the therapeutic mechanisms by which NAC protects against diabetes-induced cardiac injury.
Collapse
Key Words
- ATP, adenosine triphosphate
- CoQ9/10, Coenzyme Q9/10
- Coenzyme Q
- DCFH-DA, dichlorofluorescein diacetate
- DMEM, Dulbecco’s Modified Eagle’s Medium
- Diabetes
- ECAR, extracellular acidification rates
- FBS, fetal bovine serum
- HPLC, high-performance liquid chromatograph
- Hyperglycemia
- MET, metformin
- MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
- Mitochondrial energetics
- N-Acetyl cysteine
- NAC, N-acetyl cysteine
- PBS, Phosphate buffered saline
- ROS, reactive oxygen species
- Reactive oxygen species
Collapse
Affiliation(s)
- Phiwayinkosi V Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa.,Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Patrick Orlando
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Sonia Silvestri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Sithandiwe E Mazibuko-Mbeje
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa.,Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
| | - Rabia Johnson
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa.,Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
| | - Fabio Marcheggiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Ilenia Cirilli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Christo J F Muller
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa.,Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa.,Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Johan Louw
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa.,Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Nnini Obonye
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa.,Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
| | - Thembeka Nyawo
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa.,Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
| | - Bongani B Nkambule
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| |
Collapse
|