1
|
Zhao Y, Fei L, Duan Y. Movement disorders related to antidiabetic medications: a real-world pharmacovigilance study. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111128. [PMID: 39181309 DOI: 10.1016/j.pnpbp.2024.111128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Diabetic Mellitus (DM) has progressively emerged as a worldwide health problem, leading to the widespread deployment of antidiabetic drugs as the primary therapy in the global population. The incidence of diabetes medications-related movement disorders (drMD) is noteworthy but underestimated by clinical practitioners. RESEARCH DESIGN AND METHODS In order to address the incidence of drMD in DM patients and realize the serious outcomes associated with drMD, we conducted a real-world pharmacovigilance study of 612,043 DM patients using the FDA Adverse Event Reporting System (FAERS) database from January 2004 to September 2023. Reporting Odd Ratio (ROR) was calculated to reflect the risk of drMD. A multivariable logistic regression analysis was employed to adjust crude ROR with the mixed factors including age, sex and various antidiabetic treatments. Afterward, a Mendelian Randomization (MR) study was performed to elucidate the underlying genetic correlation between the genetically proxied targets of antidiabetic drugs and motor disorders. RESULTS Among 11,729 cases of motor adverse events in DM patients, six categories of drMD were significantly associated with DM medications. Noticeably, metformin was revealed to drastically increase the incidence of parkinsonism (adjusted ROR:3.97; 95 %CI (3.03, 5.19), p = 5.68e-24), bradykinesia (adjusted ROR:1.69; 95 %CI (1.07,2.59), p = 0.02) and irregular hyperkinesia, including chorea, choreoathetosis and athetosis. Insulin/insulin analogues and GLP-1 analogues presented notably higher odds of tremor: the adjusted ROR (aROR) of insulin and GLP-1 analogue is respectively 1.24 (95 %CI (1.15,1.34), p = 2.51e-08) and 1.78 (95 %CI (1.65,1.91), p = 5.64e-54). The combined therapeutic effects of multiple genetic variants of metformin, especially AMP-activated protein kinase (AMPK) were markedly linked to a greater likelihood of developing secondary parkinsonism (OR:10.816, p = 0.049) according to MR analyses. CONCLUSION The use of antidiabetic medications was significantly related to an increased incidence of movement disorders in DM patients. Moreover, MR analyses provided further genetic evidence for the pharmacovigilance study. This comprehensive investigation might help physicians recognize neurological adverse events associated with antidiabetic treatments and administer effective interventions.
Collapse
Affiliation(s)
- Yingjie Zhao
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Henan Province 450053, China; Department of Geriatrics, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Henan Province 450053, China
| | - Lu Fei
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Henan Province 450053, China; Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Yongtao Duan
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Henan Province 450053, China
| |
Collapse
|
2
|
Wang T, Chen S, Sun J, Li K. Functional co-delivery nanoliposomes based on improving hypoxia for increasing photoimmunotherapy efficacy of cold tumors. Int J Pharm 2024; 663:124581. [PMID: 39137819 DOI: 10.1016/j.ijpharm.2024.124581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/04/2024] [Accepted: 08/10/2024] [Indexed: 08/15/2024]
Abstract
Cold tumors lack T cells infiltration and have low immunogenicity, resulting insufficient immunotherapy response. Therefore, how to realize the transformation from cold tumor to hot tumor is an urgent problem to be solved. Photodynamic therapy can induce immunogenic death of tumor cells (ICD) and activate T lymphocytes to produce tumor immune response. However, hypoxia in the cold tumor microenvironment limits the effectiveness of photodynamic therapy. So in this article, MET-HMME/CAT-HMME@Nlip as a functional co-delivery nanoliposomes was constructed based on overcoming the above problems. Firstly, the oxygen-deficient state could be improved by the following two ways, one is catalase loaded in CAT-HMME@Nlip can decompose high concentration hydrogen peroxide to produce oxygen, and the other is metformin loaded in MET-HMME@Nlip can decrease oxygen consumption by inhibiting of mitochondrial respiration. And then with the increase of substrate oxygen concentration, the sensitivity of photodynamic therapy can be greatly improved and the anti-tumor immune response by PDT-induced ICD can also be enhanced obviously. In addition, metformin could act as a small molecule immune checkpoint inhibitor to reduce the expression of PD-L1 on the surface of tumor cells, thereby effectively improving the specific killing ability of cytotoxic T cells to tumor cells which could not only erasing the primary tumor, but also inhibiting the growth of simulated distant tumors through the immune memory function. This study provides a new idea for improving the clinical treatment effect of hypoxic cold tumors, especially for tumors that could not benefit from immunotherapy due to low or no expression of PD-L1 protein on the surface of tumor cells.
Collapse
Affiliation(s)
- Tian Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Siqi Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Jianing Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Kexin Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| |
Collapse
|
3
|
Scafidi A, Lind-Holm Mogensen F, Campus E, Pailas A, Neumann K, Legrave N, Bernardin F, Pereira SL, Antony PM, Nicot N, Mittelbronn M, Grünewald A, Nazarov PV, Poli A, Van Dyck E, Michelucci A. Metformin impacts the differentiation of mouse bone marrow cells into macrophages affecting tumour immunity. Heliyon 2024; 10:e37792. [PMID: 39315158 PMCID: PMC11417223 DOI: 10.1016/j.heliyon.2024.e37792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024] Open
Abstract
Background Epidemiological studies suggest that metformin reduces the risk of developing several types of cancer, including gliomas, and improves the overall survival in cancer patients. Nevertheless, while the effect of metformin on cancer cells has been extensively studied, its impact on other components of the tumour microenvironment, such as macrophages, is less understood. Results Metformin-treated mouse bone marrow cells differentiate into spindle-shaped macrophages exhibiting increased phagocytic activity and tumour cell cytotoxicity coupled with modulated expression of co-stimulatory molecules displaying reduced sensitivity to inflammatory cues compared with untreated cells. Transcriptional analyses of metformin-treated mouse bone marrow-derived macrophages show decreased expression levels of pro-tumour genes, including Tgfbi and Il1β, related to enhanced mTOR/HIF1α signalling and metabolic rewiring towards glycolysis. Significance Our study provides novel insights into the immunomodulatory properties of metformin in macrophages and its potential application in preventing tumour onset and in cancer immunotherapy.
Collapse
Affiliation(s)
- Andrea Scafidi
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg
| | - Frida Lind-Holm Mogensen
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg
| | - Eleonora Campus
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg
| | - Alexandros Pailas
- Faculty of Science, Technology and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg
- DNA Repair and Chemoresistance, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
| | - Katrin Neumann
- DNA Repair and Chemoresistance, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
| | - Nathalie Legrave
- Metabolomics Platform, Department of Cancer Research, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
| | - François Bernardin
- Metabolomics Platform, Department of Cancer Research, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
| | - Sandro L. Pereira
- Molecular and Functional Neurobiology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
| | - Paul M.A. Antony
- Bioimaging Platform, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
| | - Nathalie Nicot
- LuxGen Genome Center, Luxembourg Institute of Health & Laboratoire National de Santé, L-3555 Dudelange, Luxembourg
| | - Michel Mittelbronn
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
- Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
- Luxembourg Center of Neuropathology, Laboratoire National de Santé, L-3555 Dudelange, Luxembourg
- National Center of Pathology, Laboratoire National de Santé, L-3555 Dudelange, Luxembourg
| | - Anne Grünewald
- Molecular and Functional Neurobiology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
| | - Petr V. Nazarov
- Bioinformatics and AI unit, Department of Medical Informatics, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
- Multiomics Data Science Group, Department of Cancer Research, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
| | - Aurélie Poli
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
| | - Eric Van Dyck
- DNA Repair and Chemoresistance, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
| | - Alessandro Michelucci
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
| |
Collapse
|
4
|
Hajimohammadebrahim-Ketabforoush M, Zali A, Shahmohammadi M, Hamidieh AA. Metformin and its potential influence on cell fate decision between apoptosis and senescence in cancer, with a special emphasis on glioblastoma. Front Oncol 2024; 14:1455492. [PMID: 39267853 PMCID: PMC11390356 DOI: 10.3389/fonc.2024.1455492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
Despite reaching enormous achievements in therapeutic approaches worldwide, GBM still remains the most incurable malignancy among various cancers. It emphasizes the necessity of adjuvant therapies from the perspectives of both patients and healthcare providers. Therefore, most emerging studies have focused on various complementary and adjuvant therapies. Among them, metabolic therapy has received special attention, and metformin has been considered as a treatment in various types of cancer, including GBM. It is clearly evident that reaching efficient approaches without a comprehensive evaluation of the key mechanisms is not possible. Among the studied mechanisms, one of the more challenging ones is the effect of metformin on apoptosis and senescence. Moreover, metformin is well known as an insulin sensitizer. However, if insulin signaling is facilitated in the tumor microenvironment, it may result in tumor growth. Therefore, to partially resolve some paradoxical issues, we conducted a narrative review of related studies to address the following questions as comprehensively as possible: 1) Does the improvement of cellular insulin function resulting from metformin have detrimental or beneficial effects on GBM cells? 2) If these effects are detrimental to GBM cells, which is more important: apoptosis or senescence? 3) What determines the cellular decision between apoptosis and senescence?
Collapse
Affiliation(s)
- Melika Hajimohammadebrahim-Ketabforoush
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Zali
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Shahmohammadi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Pi M, Agarwal R, Smith MD, Smith JC, Quarles LD. GPRC6A is a Potential Therapeutic Target for Metformin Regulation of Glucose Homeostasis in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608635. [PMID: 39229180 PMCID: PMC11370357 DOI: 10.1101/2024.08.19.608635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Understanding the mechanism of metformin actions in treating type 2 diabetes is limited by an incomplete knowledge of the specific protein targets mediating its metabolic effects. Metformin has structural similarities to L-Arginine (2-amino-5-guanidinopentanoic acid), which is a ligand for GPRC6A, a Family C G-protein coupled receptor that regulates energy metabolism. Ligand activation of GPRC6A results in lowering of blood glucose and other metabolic changes resembling the therapeutic effect of metformin. In the current study, we tested if metformin activates GPRC6A. We used Alphafold2 to develop a structural model for L-Arginine (L-Arg) binding to the extracellu-lar bilobed venus flytrap domain (VFT) of GPRC6A. We found that metformin docked to the site in the VFT that overlaps the binding site for L-Arg. Metformin resulted in a dose-dependent stimulation of GPRC6A activity in HEK-293 cells transfected with full-length wild-type GPRC6A but not in untransfected control cells. In addition, metformin failed to activate an alternatively spliced GPRC6A isoform lacking the putative binding site in the VFT. More specifically, mutation of the predicted metformin key binding residues Glu170 and Asp303 in the GPRC6A VFT resulted in loss of metformin receptor activation in vitro. The in vivo role of GPRC6A in mediating the effects of metformin was tested in Gprc6a-/- mice. Administration of therapeutic doses of metformin lowered blood glucose levels following a glucose tolerance test in wild-type but not Gprc6a-/- mice. Finally, we EN300, created by adding a carboxymethyl group from L-Arg to the biguanide backbone of metformin. EN300 showed dose-dependent stimulation of GPRC6A activity in vitro with greater potency than L-Arginine, but less than metformin. Thus, we suggest that GPRC6A is a potential molecular target for metformin which may be used to understand the therapeutic actions of metformin and develop novel small molecules to treat T2D.
Collapse
Affiliation(s)
- Min Pi
- Departments of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Rupesh Agarwal
- University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge, Tennessee 37830
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - Micholas Dean Smith
- University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge, Tennessee 37830
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - Jeremy C. Smith
- University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge, Tennessee 37830
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - L. Darryl Quarles
- Departments of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163
- Oak Ridge Therapeutic Discovery, LLC, Memphis, Tennessee 38137
| |
Collapse
|
6
|
Yuan R, Adlimoghaddam A, Zhu Y, Han X, Bartke A. Early Life Interventions: Impact on Aging and Longevity. Aging Dis 2024:AD.202.0516. [PMID: 39325935 DOI: 10.14336/ad.202.0516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/05/2024] [Indexed: 09/28/2024] Open
Abstract
Across mammals, lifespans vary remarkably, spanning over a hundredfold difference. Comparative studies consistently reveal a strong inverse relationship between developmental pace and lifespan, hinting at the potential for early-life interventions (ELIs) to influence aging and lifespan trajectories. Focusing on postnatal interventions in mice, this review explores how ELIs influence development, lifespan, and the underlying mechanisms. Previous ELI studies have employed a diverse array of approaches, including dietary modifications, manipulations of the somatotropic axis, and various chemical treatments. Notably, these interventions have demonstrated significant impacts on aging and lifespan in mice. The underlying mechanisms likely involve pathways related to mitochondrial function, mTOR and AMPK signaling, cellular senescence, and epigenetic alterations. Interestingly, ELI studies may serve as valuable models for investigating the complex regulatory mechanisms of development and aging, particularly regarding the interplay among somatic growth, sexual maturation, and lifespan. In addition, prior research has highlighted the intricacies of experimental design and data interpretation. Factors such as timing, sex-specific effects, administration methods, and animal husbandry practices must be carefully considered to ensure the reliability and reproducibility of results, as well as rigorous interpretation. Addressing these factors is essential for advancing our understanding of how development, aging, and lifespan are regulated, potentially opening avenues for interventions that promote healthy aging.
Collapse
Affiliation(s)
- Rong Yuan
- Division of Geriatrics Research, Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| | - Aida Adlimoghaddam
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
- Department of Neurology, Center for Alzheimer's Research and Treatment, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| | - Yun Zhu
- Division of Geriatrics Research, Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| | - Xiuqi Han
- Division of Geriatrics Research, Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| | - Andrzej Bartke
- Division of Geriatrics Research, Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| |
Collapse
|
7
|
Nangia A, Saravanan JS, Hazra S, Priya V, Sudesh R, Rana SS, Ahmad F. Exploring the clinical connections between epilepsy and diabetes mellitus: Promising therapeutic strategies utilizing agmatine and metformin. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03295-1. [PMID: 39066910 DOI: 10.1007/s00210-024-03295-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024]
Abstract
PURPOSE Diabetes mellitus (DM) and epilepsy and the psychological and socio-economic implications that are associated with their treatments can be quite perplexing. Metformin is an antihyperglycemic medication that is used to treat type 2 DM. In addition, metformin elicits protective actions against multiple diseases, including neurodegeneration and epilepsy. Recent studies indicate that metformin alters the resident gut microbiota in favor of species producing agmatine, an arginine metabolite which, in addition to beneficially altering metabolic pathways, is a potent neuroprotectant and neuromodulant. METHODS We first examine the literature for epidemiological and clinical evidences linking DM and epilepsy. Next, basing our analyses on published literature, we propose the possible complementarity of agmatine and metformin in the treatment of DM and epilepsy. RESULTS Our analyses of the clinical data suggest a significant association between pathogeneses of epilepsy and DM. Further, both agmatine and metformin appear to be multimodal therapeutic agents and have robust antiepileptogenic and antidiabetic properties. Data from animal and clinical studies largely support the use of metformin/agmatine as a double-edged pharmacotherapeutic agent against DM and epilepsy, particularly in their concurrent pathological occurrences. CONCLUSION The present review explores the evidences and available data on possible uses of metformin/agmatine as pertinent antidiabetic and antiepileptic agents. Our hope is that this will stimulate further research on the therapeutic actions of these multimodal agents, particularly for subject-specific clinical outcomes.
Collapse
Affiliation(s)
- Aayushi Nangia
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Janani Srividya Saravanan
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Shruti Hazra
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Vijayan Priya
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Ravi Sudesh
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Sandeep Singh Rana
- Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
8
|
Halabitska I, Babinets L, Oksenych V, Kamyshnyi O. Diabetes and Osteoarthritis: Exploring the Interactions and Therapeutic Implications of Insulin, Metformin, and GLP-1-Based Interventions. Biomedicines 2024; 12:1630. [PMID: 39200096 PMCID: PMC11351146 DOI: 10.3390/biomedicines12081630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/18/2024] [Accepted: 07/21/2024] [Indexed: 09/01/2024] Open
Abstract
Diabetes mellitus (DM) and osteoarthritis (OA) are prevalent chronic conditions with shared pathophysiological links, including inflammation and metabolic dysregulation. This study investigates the potential impact of insulin, metformin, and GLP-1-based therapies on OA progression. Methods involved a literature review of clinical trials and mechanistic studies exploring the effects of these medications on OA outcomes. Results indicate that insulin, beyond its role in glycemic control, may modulate inflammatory pathways relevant to OA, potentially influencing joint health. Metformin, recognized for its anti-inflammatory properties via AMPK activation, shows promise in mitigating OA progression by preserving cartilage integrity and reducing inflammatory markers. GLP-1-based therapies, known for enhancing insulin secretion and improving metabolic profiles in DM, also exhibit anti-inflammatory effects that may benefit OA by suppressing cytokine-mediated joint inflammation and supporting cartilage repair mechanisms. Conclusions suggest that these medications, while primarily indicated for diabetes management, hold therapeutic potential in OA by targeting common underlying mechanisms. Further clinical trials are warranted to validate these findings and explore optimal therapeutic strategies for managing both DM and OA comorbidities effectively.
Collapse
Affiliation(s)
- Iryna Halabitska
- Department of Therapy and Family Medicine, I. Horbachevsky Ternopil National Medical University, Voli Square, 1, 46001 Ternopil, Ukraine
| | - Liliia Babinets
- Department of Therapy and Family Medicine, I. Horbachevsky Ternopil National Medical University, Voli Square, 1, 46001 Ternopil, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| |
Collapse
|
9
|
Kunnath AN, Parker SK, Crasta DN, Kunhiraman JP, Madhvacharya VV, Kumari S, Nayak G, Vani Lakshmi R, Modi PK, Keshava Prasad TS, Kumar A, Khandelwal A, Ghani NK, Kabekkodu SP, Adiga SK, Kalthur G. Metformin augments major cytoplasmic organization except for spindle organization in oocytes cultured under hyperglycemic and hyperlipidemic conditions: An in vitro study. Toxicol Appl Pharmacol 2024; 490:117039. [PMID: 39019093 DOI: 10.1016/j.taap.2024.117039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
The present study aimed to investigate the role of antidiabetic drug metformin on the cytoplasmic organization of oocytes. Germinal vesicle (GV) stage oocytes were collected from adult female Swiss albino mice and subjected to in vitro maturation (IVM) in various experimental groups- control, vehicle control (0.3% ethanol), metformin (50 μg/mL), high glucose and high lipid (HGHL, 10 mM glucose; 150 μM palmitic acid; 75 μM stearic acid and 200 μM oleic acid in ethanol), and HGHL supplemented with metformin. The metaphase II (MII) oocytes were analyzed for lipid accumulation, mitochondrial and endoplasmic reticulum (ER) distribution pattern, oxidative and ER stress, actin filament organization, cortical granule distribution pattern, spindle organization and chromosome alignment. An early polar body extrusion was observed in the HGHL group. However, the maturation rate at 24 h did not differ significantly among the experimental groups compared to the control. The HGHL conditions exhibited significantly higher levels of oxidative stress, ER stress, poor actin filament organization, increased lipid accumulation, altered mitochondrial distribution, spindle abnormalities, and chromosome misalignment compared to the control. Except for spindle organization, supplementation of metformin to the HGHL conditions improved all the parameters (non-significant for ER and actin distribution pattern). These results show that metformin exposure in the culture media helped to improve the hyperglycemia and hyperlipidemia-induced cytoplasmic anomalies except for spindle organization. Given the crucial role of spindle organization in proper chromosome segregation during oocyte maturation and meiotic resumption, the implications of metformin's limitations in this aspect warrant careful evaluation and further investigation.
Collapse
Affiliation(s)
- Amrutha Nedumbrakkad Kunnath
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Shravani Kanakadas Parker
- Center of Excellence in Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Daphne Norma Crasta
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Jyolsna Ponnaratta Kunhiraman
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Vanishree Vasave Madhvacharya
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Sandhya Kumari
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Guruprasad Nayak
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - R Vani Lakshmi
- Department of Data Science, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal 576104, India
| | - Prashanth Kumar Modi
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, University Road, Mangalore 575018, India
| | | | - Anujith Kumar
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Allasandra, Yelahanka, Bangalore 560065, India
| | - Ayush Khandelwal
- Department of Cell and Molecular Biology, Manipal School of Life sciences, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Nadeem Khan Ghani
- Department of Cell and Molecular Biology, Manipal School of Life sciences, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life sciences, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Satish Kumar Adiga
- Center of Excellence in Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Guruprasad Kalthur
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India.
| |
Collapse
|
10
|
Pujalte‐Martin M, Belaïd A, Bost S, Kahi M, Peraldi P, Rouleau M, Mazure NM, Bost F. Targeting cancer and immune cell metabolism with the complex I inhibitors metformin and IACS-010759. Mol Oncol 2024; 18:1719-1738. [PMID: 38214418 PMCID: PMC11223609 DOI: 10.1002/1878-0261.13583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/15/2023] [Accepted: 12/29/2023] [Indexed: 01/13/2024] Open
Abstract
Metformin and IACS-010759 are two distinct antimetabolic agents. Metformin, an established antidiabetic drug, mildly inhibits mitochondrial complex I, while IACS-010759 is a new potent mitochondrial complex I inhibitor. Mitochondria is pivotal in the energy metabolism of cells by providing adenosine triphosphate through oxidative phosphorylation (OXPHOS). Hence, mitochondrial metabolism and OXPHOS become a vulnerability when targeted in cancer cells. Both drugs have promising antitumoral effects in diverse cancers, supported by preclinical in vitro and in vivo studies. We present evidence of their direct impact on cancer cells and their immunomodulatory effects. In clinical studies, while observational epidemiologic studies on metformin were encouraging, actual trial results were not as expected. However, IACS-01075 exhibited major adverse effects, thereby causing a metabolic shift to glycolysis and elevated lactic acid concentrations. Therefore, the future outlook for these two drugs depends on preventive clinical trials for metformin and investigations into the plausible toxic effects on normal cells for IACS-01075.
Collapse
Affiliation(s)
- Marc Pujalte‐Martin
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire (C3M)NiceFrance
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
| | - Amine Belaïd
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire (C3M)NiceFrance
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
| | - Simon Bost
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
| | - Michel Kahi
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire (C3M)NiceFrance
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
| | - Pascal Peraldi
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire (C3M)NiceFrance
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
| | - Matthieu Rouleau
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
- CNRS UMR7370, LP2MNiceFrance
| | - Nathalie M. Mazure
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire (C3M)NiceFrance
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
| | - Frédéric Bost
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire (C3M)NiceFrance
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
| |
Collapse
|
11
|
Tong J, Li X, Liu T, Liu M. Metformin exposure and the incidence of lactic acidosis in critically ill patients with T2DM: A retrospective cohort study. Sci Prog 2024; 107:368504241262116. [PMID: 39053014 PMCID: PMC11282515 DOI: 10.1177/00368504241262116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
OBJECTIVE The objective of this study was to investigate the correlation between metformin exposure and the incidence of lactic acidosis in critically ill patients. METHODS The patients with type 2 diabetes mellitus (T2DM) were included from Medical Information Mart for Intensive Care IV database (MIMIC-IV). The primary outcome was the incidence of lactic acidosis. The secondary outcomes were lactate level and in-hospital mortality. Propensity score matching (PSM) method was adopted to reduce bias of the confounders. The multivariate logistic regression was used to explore the correlation between metformin exposure and the incidence of lactic acidosis. Subgroup analysis and sensitivity analysis were used to test the stability of the conclusion. RESULTS We included 4939 patients. There were 2070 patients in the metformin group, and 2869 patients in the nonmetformin group. The frequency of lactic acidosis was 5.7% (118/2070) in the metformin group and it was 4.3% (122/2869) in the nonmetformin group. There was a statistically significant difference between the two groups (P < 0.05). The lactate level in the metformin group was higher than in the nonmetformin group (2.78 ± 2.23 vs. 2.45 ± 2.24, P < 0.001). After PSM, the frequency of lactic acidosis (6.3% vs. 3.7%, P < 0.001) and lactate level (2.85 ± 2.38 vs. 2.40 ± 2.14, P < 0.001) were significantly higher in the metformin group compared with the nonmetformin group. In multivariate logistic models, the frequency of lactic acidosis was obviously increased in metformin group, and the adjusted odds ratio (OR) of metformin exposure was 1.852 (95% confidence interval (CI) = 1.298-2.643, P < 0.001). The results were consistent with subgroup analysis except for respiratory failure subgroup. Metformin exposure increased lactate level but did not affect the frequency of lactic acidosis in patients of respiratory failure with hypercapnia. However, the in-hospital mortality between metformin and nonmetformin group had no obvious difference (P = 0.215). In sensitivity analysis, metformin exposure showed similar effect as the original cohort. CONCLUSIONS In critically ill patients with T2DM, metformin exposure elevated the incidence of lactic acidosis except for patients of respiratory failure with hypercapnia, but did not affect the in-hospital mortality.
Collapse
Affiliation(s)
- Jingkai Tong
- Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Li
- Tianjin Medical University General Hospital, Tianjin, China
| | - Tong Liu
- Tianjin Medical University General Hospital, Tianjin, China
| | - Ming Liu
- Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
12
|
Lee OYA, Wong ANN, Ho CY, Tse KW, Chan AZ, Leung GPH, Kwan YW, Yeung MHY. Potentials of Natural Antioxidants in Reducing Inflammation and Oxidative Stress in Chronic Kidney Disease. Antioxidants (Basel) 2024; 13:751. [PMID: 38929190 PMCID: PMC11201162 DOI: 10.3390/antiox13060751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Chronic kidney disease (CKD) presents a substantial global public health challenge, with high morbidity and mortality. CKD patients often experience dyslipidaemia and poor glycaemic control, further exacerbating inflammation and oxidative stress in the kidney. If left untreated, these metabolic symptoms can progress to end-stage renal disease, necessitating long-term dialysis or kidney transplantation. Alleviating inflammation responses has become the standard approach in CKD management. Medications such as statins, metformin, and GLP-1 agonists, initially developed for treating metabolic dysregulation, demonstrate promising renal therapeutic benefits. The rising popularity of herbal remedies and supplements, perceived as natural antioxidants, has spurred investigations into their potential efficacy. Notably, lactoferrin, Boerhaavia diffusa, Amauroderma rugosum, and Ganoderma lucidum are known for their anti-inflammatory and antioxidant properties and may support kidney function preservation. However, the mechanisms underlying the effectiveness of Western medications and herbal remedies in alleviating inflammation and oxidative stress occurring in renal dysfunction are not completely known. This review aims to provide a comprehensive overview of CKD treatment strategies and renal function preservation and critically discusses the existing literature's limitations whilst offering insight into the potential antioxidant effects of these interventions. This could provide a useful guide for future clinical trials and facilitate the development of effective treatment strategies for kidney functions.
Collapse
Affiliation(s)
- On Ying Angela Lee
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; (O.Y.A.L.)
| | - Alex Ngai Nick Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; (O.Y.A.L.)
| | - Ching Yan Ho
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; (O.Y.A.L.)
| | - Ka Wai Tse
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; (O.Y.A.L.)
| | - Angela Zaneta Chan
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China;
| | - Yiu Wa Kwan
- The School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Martin Ho Yin Yeung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; (O.Y.A.L.)
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
13
|
Vedunova M, Borysova O, Kozlov G, Zharova AM, Morgunov I, Moskalev A. Candidate molecular targets uncovered in mouse lifespan extension studies. Expert Opin Ther Targets 2024; 28:513-528. [PMID: 38656034 DOI: 10.1080/14728222.2024.2346597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
INTRODUCTION Multiple interventions have demonstrated an increase in mouse lifespan. However, non-standardized controls, sex or strain-specific factors, and insufficient focus on targets, hinder the translation of these findings into clinical applications. AREAS COVERED We examined the effects of genetic and drug-based interventions on mice from databases DrugAge, GenAge, the Mouse Phenome Database, and publications from PubMed that led to a lifespan extension of more than 10%, identifying specific molecular targets that were manipulated to achieve the maximum lifespan in mice. Subsequently, we characterized 10 molecular targets influenced by these interventions, with particular attention given to clinical trials and potential indications for each. EXPERT OPINION To increase the translational potential of mice life-extension studies to clinical research several factors are crucial: standardization of mice lifespan research approaches, the development of clear criteria for control and experimental groups, the establishment of criteria for potential geroprotectors, and focusing on targets and their clinical application. Pinpointing the targets affected by geroprotectors helps in understanding species-specific differences and identifying potential side effects, ensuring the safety and effectiveness of clinical trials. Additionally, target review facilitates the optimization of treatment protocols and the evaluation of the clinical feasibility of translating research findings into practical therapies for humans.
Collapse
Affiliation(s)
- Maria Vedunova
- Institute of Biomedicine, Institute of Biogerontology, National Research Lobachevsky State University of Nizhni Novgorod (Lobachevsky University), Nizhny Novgorod, Russia
| | | | - Grigory Kozlov
- Institute of Biomedicine, Institute of Biogerontology, National Research Lobachevsky State University of Nizhni Novgorod (Lobachevsky University), Nizhny Novgorod, Russia
| | - Anna-Maria Zharova
- Institute of Biomedicine, Institute of Biogerontology, National Research Lobachevsky State University of Nizhni Novgorod (Lobachevsky University), Nizhny Novgorod, Russia
| | | | - Alexey Moskalev
- Institute of Biomedicine, Institute of Biogerontology, National Research Lobachevsky State University of Nizhni Novgorod (Lobachevsky University), Nizhny Novgorod, Russia
- Longaevus Technologies LTD, London, United Kingdom
- Russian Gerontology Research and Clinical Centre, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
14
|
Nunes PR, Oliveira PF, Rebelo I, Sandrim VC, Alves MG. Relevance of real-time analyzers to determine mitochondrial quality in endothelial cells and oxidative stress in preeclampsia. Vascul Pharmacol 2024; 155:107372. [PMID: 38583694 DOI: 10.1016/j.vph.2024.107372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Oxidative stress and mitochondrial dysfunction are important elements for the pathophysiology of preeclampsia (PE), a multisystemic hypertensive syndrome of pregnancy, characterized by endothelial dysfunction and responsible for a large part of maternal and fetal morbidity and mortality worldwide. Researchers have dedicated their efforts to unraveling the intricate ways in which certain molecules influence both energy metabolism and oxidative stress. Exploring established methodologies from existing literature, shows that these investigations predominantly focus on the placenta, identified as a pivotal source that drives the changes observed in the disease. In this review, we discuss the role of oxidative stress in pathophysiology of PE, as well as metabolic/endothelial dysfunction. We further discuss the use of seahorse analyzers to study real-time bioenergetics of endothelial cells. Although the benefits are clear, few studies have presented results using this method to assess mitochondrial metabolism in these cells. We performed a search on MEDLINE/PubMed using the terms "Seahorse assay and endothelial dysfunction in HUVEC" as well as "Seahorse assay and preeclampsia". From our research, we selected 16 original peer-review papers for discussion. Notably, the first search retrieved studies involving Human Umbilical Vein Endothelial Cells (HUVECs) but none investigating bioenergetics in PE while the second search retrieved studies exploring the technique in PE but none of the studies used HUVECs. Additional studies are required to investigate real-time mitochondrial bioenergetics in PE. Clearly, there is a need for more complete studies to examine the nuances of mitochondrial bioenergetics, focusing on the contributions of HUVECs in the context of PE.
Collapse
Affiliation(s)
- Priscila R Nunes
- Department of Pharmacology and Biophysics, Institute of Biosciences, Sao Paulo State University (Unesp), 18618-689 Sao Paulo, Brazil
| | - Pedro F Oliveira
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Irene Rebelo
- UCIBIO-REQUIMTE, Laboratory of Biochemistry, Department of Biologic Sciences, Pharmaceutical Faculty, University of Porto, 4050-313 Porto, Portugal; Associate Laboratory i4HB- Institute for Health and Bioeconomy, Laboratory of Biochemistry, Department of Biologic Sciences, Pharmaceutical Faculty, University of Porto, 4050-313 Porto, Portugal
| | - Valeria C Sandrim
- Department of Pharmacology and Biophysics, Institute of Biosciences, Sao Paulo State University (Unesp), 18618-689 Sao Paulo, Brazil
| | - Marco G Alves
- iBiMED - Institute of Biomedicine and Department of Medical Sciences University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
15
|
Kour N, Bhagat G, Singh S, Bhatti SS, Arora S, Singh B, Bhatia A. Polyphenols mediated attenuation of diabetes associated cardiovascular complications: A comprehensive review. J Diabetes Metab Disord 2024; 23:73-99. [PMID: 38932901 PMCID: PMC11196529 DOI: 10.1007/s40200-023-01326-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/29/2023] [Indexed: 06/28/2024]
Abstract
Background Diabetes mellitus is a common chronic metabolic disorder that is characterized by increased levels of glucose for prolonged periods of time. Incessant hyperglycemia leads to diabetic complications such as retinopathy, nephropathy, and neuropathy, and cardiovascular complications such as ischemic heart disease, peripheral vascular disease, diabetic cardiomyopathy, stroke, etc. There are many studies that suggest that various polyphenols affect glucose homeostasis and can help to attenuate the complications associated with diabetes. Objective This review focuses on the possible role of various dietary polyphenols in palliating diabetes-induced cardiovascular complications. This review also aims to give an overview of the interrelationship among ROS production (due to diabetes), inflammation, glycoxidative stress, and cardiovascular complications as well as the anti-hyperglycemic effects of dietary polyphenols. Methods Various scientific databases including Scopus, Web of Science, Google Scholar, PubMed, Science Direct, Springer Link, and Wiley Online Library were used for searching articles that complied with the inclusion and exclusion criteria. Results This review lists several polyphenols based on various pre-clinical and clinical studies that have anti-hyperglycemic potential as well as a protective function against cardiovascular complications. Conclusion Several pre-clinical and clinical studies suggest that various dietary polyphenols can be a promising intervention for the attenuation of diabetes-associated cardiovascular complications.
Collapse
Affiliation(s)
- Navdeep Kour
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005 Punjab India
| | - Gulshan Bhagat
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005 Punjab India
| | - Simran Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005 Punjab India
| | - Sandip Singh Bhatti
- Department of Chemistry, Lovely Professional University, Phagwara, 144001 India
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005 Punjab India
| | - Balbir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005 Punjab India
| | - Astha Bhatia
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005 Punjab India
| |
Collapse
|
16
|
Jiang S, Yuan T, Rosenberger FA, Mourier A, Dragano NRV, Kremer LS, Rubalcava-Gracia D, Hansen FM, Borg M, Mennuni M, Filograna R, Alsina D, Misic J, Koolmeister C, Papadea P, de Angelis MH, Ren L, Andersson O, Unger A, Bergbrede T, Di Lucrezia R, Wibom R, Zierath JR, Krook A, Giavalisco P, Mann M, Larsson NG. Inhibition of mammalian mtDNA transcription acts paradoxically to reverse diet-induced hepatosteatosis and obesity. Nat Metab 2024; 6:1024-1035. [PMID: 38689023 PMCID: PMC11199148 DOI: 10.1038/s42255-024-01038-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/28/2024] [Indexed: 05/02/2024]
Abstract
The oxidative phosphorylation system1 in mammalian mitochondria plays a key role in transducing energy from ingested nutrients2. Mitochondrial metabolism is dynamic and can be reprogrammed to support both catabolic and anabolic reactions, depending on physiological demands or disease states. Rewiring of mitochondrial metabolism is intricately linked to metabolic diseases and promotes tumour growth3-5. Here, we demonstrate that oral treatment with an inhibitor of mitochondrial transcription (IMT)6 shifts whole-animal metabolism towards fatty acid oxidation, which, in turn, leads to rapid normalization of body weight, reversal of hepatosteatosis and restoration of normal glucose tolerance in male mice on a high-fat diet. Paradoxically, the IMT treatment causes a severe reduction of oxidative phosphorylation capacity concomitant with marked upregulation of fatty acid oxidation in the liver, as determined by proteomics and metabolomics analyses. The IMT treatment leads to a marked reduction of complex I, the main dehydrogenase feeding electrons into the ubiquinone (Q) pool, whereas the levels of electron transfer flavoprotein dehydrogenase and other dehydrogenases connected to the Q pool are increased. This rewiring of metabolism caused by reduced mtDNA expression in the liver provides a principle for drug treatment of obesity and obesity-related pathology.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Taolin Yuan
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Florian A Rosenberger
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Arnaud Mourier
- University of Bordeaux, CNRS, Institut de Biochimie et Génétique Cellulaires (IGBC) UMR, Bordeaux, France
| | - Nathalia R V Dragano
- Institute of Experimental Genetics - German Mouse Clinic, Helmholtz Zentrum, Munich, Germany
- German Center for Diabetes Research (DZD), Oberschleißheim-Neuherberg, Neuherberg, Germany
| | - Laura S Kremer
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Diana Rubalcava-Gracia
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Fynn M Hansen
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Melissa Borg
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Mara Mennuni
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Roberta Filograna
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - David Alsina
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jelena Misic
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Camilla Koolmeister
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Polyxeni Papadea
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Martin Hrabe de Angelis
- Institute of Experimental Genetics - German Mouse Clinic, Helmholtz Zentrum, Munich, Germany
- German Center for Diabetes Research (DZD), Oberschleißheim-Neuherberg, Neuherberg, Germany
- Chair of Experimental Genetics, TUM School of Life Sciences, Technische Universität München, Freising, Germany
| | - Lipeng Ren
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Olov Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Anke Unger
- Lead Discovery Center, Dortmund, Germany
| | | | | | - Rolf Wibom
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Juleen R Zierath
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Anna Krook
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Patrick Giavalisco
- Metabolomics Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Nils-Göran Larsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
17
|
Wang Y, He X, Huang K, Cheng N. Nanozyme as a rising star for metabolic disease management. J Nanobiotechnology 2024; 22:226. [PMID: 38711066 PMCID: PMC11071342 DOI: 10.1186/s12951-024-02478-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024] Open
Abstract
Nanozyme, characterized by outstanding and inherent enzyme-mimicking properties, have emerged as highly promising alternatives to natural enzymes owning to their exceptional attributes such as regulation of oxidative stress, convenient storage, adjustable catalytic activities, remarkable stability, and effortless scalability for large-scale production. Given the potent regulatory function of nanozymes on oxidative stress and coupled with the fact that reactive oxygen species (ROS) play a vital role in the occurrence and exacerbation of metabolic diseases, nanozyme offer a unique perspective for therapy through multifunctional activities, achieving essential results in the treatment of metabolic diseases by directly scavenging excess ROS or regulating pathologically related molecules. The rational design strategies, nanozyme-enabled therapeutic mechanisms at the cellular level, and the therapies of nanozyme for several typical metabolic diseases and underlying mechanisms are discussed, mainly including obesity, diabetes, cardiovascular disease, diabetic wound healing, and others. Finally, the pharmacokinetics, safety analysis, challenges, and outlooks for the application of nanozyme are also presented. This review will provide some instructive perspectives on nanozyme and promote the development of enzyme-mimicking strategies in metabolic disease therapy.
Collapse
Affiliation(s)
- Yanan Wang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing, 100083, People's Republic of China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the PR China, Beijing, China
| | - Xiaoyun He
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing, 100083, People's Republic of China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the PR China, Beijing, China
| | - Kunlun Huang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing, 100083, People's Republic of China.
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the PR China, Beijing, China.
| | - Nan Cheng
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing, 100083, People's Republic of China.
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the PR China, Beijing, China.
| |
Collapse
|
18
|
Froldi G. View on Metformin: Antidiabetic and Pleiotropic Effects, Pharmacokinetics, Side Effects, and Sex-Related Differences. Pharmaceuticals (Basel) 2024; 17:478. [PMID: 38675438 PMCID: PMC11054066 DOI: 10.3390/ph17040478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Metformin is a synthetic biguanide used as an antidiabetic drug in type 2 diabetes mellitus, achieved by studying the bioactive metabolites of Galega officinalis L. It is also used off-label for various other diseases, such as subclinical diabetes, obesity, polycystic ovary syndrome, etc. In addition, metformin is proposed as an add-on therapy for several conditions, including autoimmune diseases, neurodegenerative diseases, and cancer. Although metformin has been used for many decades, it is still the subject of many pharmacodynamic and pharmacokinetic studies in light of its extensive use. Metformin acts at the mitochondrial level by inhibiting the respiratory chain, thus increasing the AMP/ATP ratio and, subsequently, activating the AMP-activated protein kinase. However, several other mechanisms have been proposed, including binding to presenilin enhancer 2, increasing GLP1 release, and modification of microRNA expression. Regarding its pharmacokinetics, after oral administration, metformin is absorbed, distributed, and eliminated, mainly through the renal route, using transporters for cationic solutes, since it exists as an ionic molecule at physiological pH. In this review, particular consideration has been paid to literature data from the last 10 years, deepening the study of clinical trials inherent to new uses of metformin, the differences in effectiveness and safety observed between the sexes, and the unwanted side effects. For this last objective, metformin safety was also evaluated using both VigiBase and EudraVigilance, respectively, the WHO and European databases of the reported adverse drug reactions, to assess the extent of metformin side effects in real-life use.
Collapse
Affiliation(s)
- Guglielmina Froldi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
19
|
Shou Y, Li X, Fang Q, Xie A, Zhang Y, Fu X, Wang M, Gong W, Zhang X, Yang D. Progress in the treatment of diabetic cardiomyopathy, a systematic review. Pharmacol Res Perspect 2024; 12:e1177. [PMID: 38407563 PMCID: PMC10895687 DOI: 10.1002/prp2.1177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/29/2023] [Accepted: 01/19/2024] [Indexed: 02/27/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is a condition characterized by myocardial dysfunction that occurs in individuals with diabetes, in the absence of coronary artery disease, valve disease, and other conventional cardiovascular risk factors such as hypertension and dyslipidemia. It is considered a significant and consequential complication of diabetes in the field of cardiovascular medicine. The primary pathological manifestations include myocardial hypertrophy, myocardial fibrosis, and impaired ventricular function, which can lead to widespread myocardial necrosis. Ultimately, this can progress to the development of heart failure, arrhythmias, and cardiogenic shock, with severe cases even resulting in sudden cardiac death. Despite several decades of both fundamental and clinical research conducted globally, there are currently no specific targeted therapies available for DCM in clinical practice, and the incidence and mortality rates of heart failure remain persistently high. Thus, this article provides an overview of the current treatment modalities and novel techniques pertaining to DCM, aiming to offer valuable insights and support to researchers dedicated to investigating this complex condition.
Collapse
Affiliation(s)
- Yiyi Shou
- Department of Clinical MedicineAffiliated Hospital of Hangzhou Normal University, Hangzhou Normal UniversityHangzhouChina
| | - Xingyu Li
- Department of Clinical MedicineAffiliated Hospital of Hangzhou Normal University, Hangzhou Normal UniversityHangzhouChina
| | - Quan Fang
- Department of Clinical MedicineAffiliated Hospital of Hangzhou Normal University, Hangzhou Normal UniversityHangzhouChina
| | - Aqiong Xie
- Department of Clinical MedicineAffiliated Hospital of Hangzhou Normal University, Hangzhou Normal UniversityHangzhouChina
| | - Yinghong Zhang
- Department of ImmunologyAffiliated Hospital of Hangzhou Normal UniversityHangzhouChina
| | - Xinyan Fu
- Department of CardiologyAffiliated Hospital of Hangzhou Normal UniversityHangzhouChina
| | - Mingwei Wang
- Department of CardiologyAffiliated Hospital of Hangzhou Normal UniversityHangzhouChina
| | - Wenyan Gong
- Department of Clinical MedicineAffiliated Hospital of Hangzhou Normal University, Hangzhou Normal UniversityHangzhouChina
- Department of CardiologyAffiliated Hospital of Hangzhou Normal UniversityHangzhouChina
| | - Xingwei Zhang
- Department of Clinical MedicineAffiliated Hospital of Hangzhou Normal University, Hangzhou Normal UniversityHangzhouChina
- Department of CardiologyAffiliated Hospital of Hangzhou Normal UniversityHangzhouChina
| | - Dong Yang
- Department of Clinical MedicineAffiliated Hospital of Hangzhou Normal University, Hangzhou Normal UniversityHangzhouChina
- Department of CardiologyAffiliated Hospital of Hangzhou Normal UniversityHangzhouChina
| |
Collapse
|
20
|
Pan S, Yang L, Zhong W, Wang H, Lan Y, Chen Q, Yu S, Yang F, Yan P, Peng H, Liu X, Gao X, Song J. Integrated analyses revealed the potential role and immune link of mitochondrial dysfunction between periodontitis and type 2 diabetes mellitus. Int Immunopharmacol 2024; 130:111796. [PMID: 38452412 DOI: 10.1016/j.intimp.2024.111796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
There is a reciprocal comorbid relationship between periodontitis and type 2 diabetes mellitus (T2DM). Recent studies have suggested that mitochondrial dysfunction (MD) could be the key driver underlying this comorbidity. The aim of this study is to provide novel understandings into the potential molecular mechanisms between MD and the comorbidity, and identify potential therapeutic targets for personalized clinical management. MD-related differentially expressed genes (MDDEGs) were identified. Enrichment analyses and PPI network analysis were then conducted. Six algorithms were used to explore the hub MDDEGs, and these were validated by ROC analysis and qRT-PCR. Co-expression and potential drug targeting analyses were then performed. Potential biomarkers were identified using LASSO regression. The immunocyte infiltration levels in periodontitis and T2DM were evaluated via CIBERSORTx and validated in mouse models. Subsequently, MD-related immune-related genes (MDIRGs) were screened by WGCNA. The in vitro experiment verified that MD was closely associated with this comorbidity. GO and KEGG analyses demonstrated that the connection between periodontitis and T2DM was mainly enriched in immuno-inflammatory pathways. In total, 116 MDDEGs, eight hub MDDEGs, and two biomarkers were identified. qRT-PCR revealed a distinct hub MDDEG expression pattern in the comorbidity group. Altered immunocytes in disease samples were identified, and their correlations were explored. The in vivo examination revealed higher infiltration levels of inflammatory immunocytes. The findings of this study provide insight into the mechanism underlying the gene-mitochondria-immunocyte network and provide a novel reference for future research into the function of mitochondria in periodontitis and T2DM.
Collapse
Affiliation(s)
- Shengyuan Pan
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - LanXin Yang
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Wenjie Zhong
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - He Wang
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Yuyan Lan
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Qiyue Chen
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Simin Yu
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Fengze Yang
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Pingping Yan
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Houli Peng
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Xuan Liu
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Xiang Gao
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| |
Collapse
|
21
|
Mohammadnia A, Cui QL, Weng C, Yaqubi M, Fernandes MGF, Hall JA, Dudley R, Srour M, Kennedy TE, Stratton JA, Antel JP. Age-dependent effects of metformin on human oligodendrocyte lineage cell ensheathment capacity. Brain Commun 2024; 6:fcae109. [PMID: 38601917 PMCID: PMC11005772 DOI: 10.1093/braincomms/fcae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/26/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024] Open
Abstract
Metformin restores the myelination potential of aged rat A2B5+ oligodendrocyte progenitor cells and may enhance recovery in children with post-radiation brain injury. Human late progenitor cells (O4+A2B5+) have a superior capacity to ensheath nanofibres compared to mature oligodendrocytes, with cells from paediatric sources exceeding adults. In this study, we assessed the effects of metformin on ensheathment capacity of human adult and paediatric progenitors and mature oligodendrocytes and related differences to transcriptional changes. A2B5+ progenitors and mature cells, derived from surgical tissues by immune-magnetic separation, were assessed for ensheathment capacity in nanofibre plates over 2 weeks. Metformin (10 µM every other day) was added to selected cultures. RNA was extracted from treated and control cultures after 2 days. For all ages, ensheathment by progenitors exceeded mature oligodendrocytes. Metformin enhanced ensheathment by adult donor cells but reduced ensheathment by paediatric cells. Metformin marginally increased cell death in paediatric progenitors. Metformin-induced changes in gene expression are distinct for each cell type. Adult progenitors showed up-regulation of pathways involved in the process of outgrowth and promoting lipid biosynthesis. Paediatric progenitors showed a relatively greater proportion of down- versus up-regulated pathways, these involved cell morphology, development and synaptic transmission. Metformin-induced AMP-activated protein kinase activation in all cell types; AMP-activated protein kinase inhibitor BML-275 reduced functional metformin effects only with adult cells. Our results indicate age and differentiation stage-related differences in human oligodendroglia lineage cells in response to metformin. Clinical trials for demyelinating conditions will indicate how these differences translate in vivo.
Collapse
Affiliation(s)
- Abdulshakour Mohammadnia
- Neuroimmunology Unit, Montreal Neurological Institute and Department of Neurology and Neurosurgery, McGill University, Montreal H3A 2B4, Canada
| | - Qiao-Ling Cui
- Neuroimmunology Unit, Montreal Neurological Institute and Department of Neurology and Neurosurgery, McGill University, Montreal H3A 2B4, Canada
| | - Chao Weng
- Neuroimmunology Unit, Montreal Neurological Institute and Department of Neurology and Neurosurgery, McGill University, Montreal H3A 2B4, Canada
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Moein Yaqubi
- Neuroimmunology Unit, Montreal Neurological Institute and Department of Neurology and Neurosurgery, McGill University, Montreal H3A 2B4, Canada
| | - Milton G F Fernandes
- Neuroimmunology Unit, Montreal Neurological Institute and Department of Neurology and Neurosurgery, McGill University, Montreal H3A 2B4, Canada
| | - Jeffery A Hall
- Department of Neurosurgery, McGill University Health Centre and Department of Neurology and Neurosurgery, Montreal H3A 2B4, Canada
| | - Roy Dudley
- Department of Pediatric Neurosurgery, Montreal Children’s Hospital, Montreal H4A 3J1, Canada
| | - Myriam Srour
- Division of Pediatric Neurology, Montreal Children’s Hospital, Montreal H3A 2B4, Canada
| | - Timothy E Kennedy
- Neuroimmunology Unit, Montreal Neurological Institute and Department of Neurology and Neurosurgery, McGill University, Montreal H3A 2B4, Canada
| | - Jo Anne Stratton
- Neuroimmunology Unit, Montreal Neurological Institute and Department of Neurology and Neurosurgery, McGill University, Montreal H3A 2B4, Canada
| | - Jack P Antel
- Neuroimmunology Unit, Montreal Neurological Institute and Department of Neurology and Neurosurgery, McGill University, Montreal H3A 2B4, Canada
| |
Collapse
|
22
|
Li C, Wu C, Li F, Xu W, Zhang X, Huang Y, Xia D. Targeting Neutrophil Extracellular Traps in Gouty Arthritis: Insights into Pathogenesis and Therapeutic Potential. J Inflamm Res 2024; 17:1735-1763. [PMID: 38523684 PMCID: PMC10960513 DOI: 10.2147/jir.s460333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
Gouty arthritis (GA) is an immune-mediated disorder characterized by severe inflammation due to the deposition of monosodium urate (MSU) crystals in the joints. The pathophysiological mechanisms of GA are not yet fully understood, and therefore, the identification of effective therapeutic targets is of paramount importance. Neutrophil extracellular traps (NETs), an intricate structure of DNA scaffold, encompassing myeloperoxidase, histones, and elastases - have gained significant attention as a prospective therapeutic target for gouty arthritis, due to their innate antimicrobial and immunomodulatory properties. Hence, exploring the therapeutic potential of NETs in gouty arthritis remains an enticing avenue for further investigation. During the process of gouty arthritis, the formation of NETs triggers the release of inflammatory cytokines, thereby contributing to the inflammatory response, while MSU crystals and cytokines are sequestered and degraded by the aggregation of NETs. Here, we provide a concise summary of the inflammatory processes underlying the initiation and resolution of gouty arthritis mediated by NETs. Furthermore, this review presents an overview of the current pharmacological approaches for treating gouty arthritis and summarizes the potential of natural and synthetic product-based inhibitors that target NET formation as novel therapeutic options, alongside elucidating the intrinsic challenges of these inhibitors in NETs research. Lastly, the limitations of HL-60 cell as a suitable substitute of neutrophils in NETs research are summarized and discussed. Series of recommendations are provided, strategically oriented towards guiding future investigations to effectively address these concerns. These findings will contribute to an enhanced comprehension of the interplay between NETs and GA, facilitating the proposition of innovative therapeutic strategies and novel approaches for the management of GA.
Collapse
Affiliation(s)
- Cantao Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Chenxi Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Fenfen Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Wenjing Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Xiaoxi Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Yan Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Daozong Xia
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
23
|
Ni F, Wang F, Li J, Liu Y, Sun X, Chen J, Li J, Zhang Y, Jin J, Ye X, Tu M, Chen J, Chen C, Zhang D. BNC1 deficiency induces mitochondrial dysfunction-triggered spermatogonia apoptosis through the CREB/SIRT1/FOXO3 pathway: the therapeutic potential of nicotinamide riboside and metformin†. Biol Reprod 2024; 110:615-631. [PMID: 38079523 DOI: 10.1093/biolre/ioad168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/14/2023] [Accepted: 02/06/2023] [Indexed: 03/16/2024] Open
Abstract
Male infertility is a global health problem that disturbs numerous couples worldwide. Basonuclin 1 (BNC1) is a transcription factor mainly expressed in proliferative keratinocytes and germ cells. A frameshift mutation of BNC1 was identified in a large Chinese primary ovarian insufficiency pedigree. The expression of BNC1 was significantly decreased in the testis biopsies of infertile patients with nonobstructive azoospermia. Previous studies have revealed that mice with BNC1 deficiency are generally subfertile and undergo gradual spermatogenic failure. We observed that apoptosis of spermatogonia is tightly related to spermatogenic failure in mice with a Bnc1 truncation mutation. Such impairment is related to mitochondrial dysfunction causing lower mitochondrial membrane potential and higher reactive oxygen species. We showed that downregulation of CREB/SIRT1/FOXO3 signaling participates in the above impairment. Administration of nicotinamide riboside or metformin reversed mitochondrial dysfunction and inhibited apoptosis in Bnc1-knockdown spermatogonia by stimulating CREB/SIRT1/FOXO3 signaling. Dietary supplementation with nicotinamide riboside or metformin in mutated mice increased SIRT1 signaling, improved the architecture of spermatogenic tubules, inhibited apoptosis of the testis, and improved the fertility of mice with a Bnc1 truncation mutation. Our data establish that oral nicotinamide riboside or metformin can be useful for the treatment of spermatogenic failure induced by Bnc1 mutation.
Collapse
Affiliation(s)
- Feida Ni
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Feixia Wang
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jingyi Li
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yifeng Liu
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiao Sun
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianpeng Chen
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiaqun Li
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yanye Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiani Jin
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaohang Ye
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Mixue Tu
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianhua Chen
- Department of Pathology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chuan Chen
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| |
Collapse
|
24
|
Huang Y, Ji W, Zhang J, Huang Z, Ding A, Bai H, Peng B, Huang K, Du W, Zhao T, Li L. The involvement of the mitochondrial membrane in drug delivery. Acta Biomater 2024; 176:28-50. [PMID: 38280553 DOI: 10.1016/j.actbio.2024.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/23/2023] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
Treatment effectiveness and biosafety are critical for disease therapy. Bio-membrane modification facilitates the homologous targeting of drugs in vivo by exploiting unique antibodies or antigens, thereby enhancing therapeutic efficacy while ensuring biosafety. To further enhance the precision of disease treatment, future research should shift focus from targeted cellular delivery to targeted subcellular delivery. As the cellular powerhouses, mitochondria play an indispensable role in cell growth and regulation and are closely involved in many diseases (e.g., cancer, cardiovascular, and neurodegenerative diseases). The double-layer membrane wrapped on the surface of mitochondria not only maintains the stability of their internal environment but also plays a crucial role in fundamental biological processes, such as energy generation, metabolite transport, and information communication. A growing body of evidence suggests that various diseases are tightly related to mitochondrial imbalance. Moreover, mitochondria-targeted strategies hold great potential to decrease therapeutic threshold dosage, minimize side effects, and promote the development of precision medicine. Herein, we introduce the structure and function of mitochondrial membranes, summarize and discuss the important role of mitochondrial membrane-targeting materials in disease diagnosis/treatment, and expound the advantages of mitochondrial membrane-assisted drug delivery for disease diagnosis, treatment, and biosafety. This review helps readers understand mitochondria-targeted therapies and promotes the application of mitochondrial membranes in drug delivery. STATEMENT OF SIGNIFICANCE: Bio-membrane modification facilitates the homologous targeting of drugs in vivo by exploiting unique antibodies or antigens, thereby enhancing therapeutic efficacy while ensuring biosafety. Compared to cell-targeted treatment, targeting of mitochondria for drug delivery offers higher efficiency and improved biosafety and will promote the development of precision medicine. As a natural material, the mitochondrial membrane exhibits excellent biocompatibility and can serve as a carrier for mitochondria-targeted delivery. This review provides an overview of the structure and function of mitochondrial membranes and explores the potential benefits of utilizing mitochondrial membrane-assisted drug delivery for disease treatment and biosafety. The aim of this review is to enhance readers' comprehension of mitochondrial targeted therapy and to advance the utilization of mitochondrial membrane in drug delivery.
Collapse
Affiliation(s)
- Yinghui Huang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China
| | - Wenhui Ji
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China
| | - Jiaxin Zhang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Ze Huang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China; Future Display Institute in Xiamen, Xiamen 361005, China
| | - Aixiang Ding
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Kai Huang
- Future Display Institute in Xiamen, Xiamen 361005, China
| | - Wei Du
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.
| | - Tingting Zhao
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.
| | - Lin Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China; Future Display Institute in Xiamen, Xiamen 361005, China.
| |
Collapse
|
25
|
Naja K, Anwardeen N, Malki AM, Elrayess MA. Metformin increases 3-hydroxy medium chain fatty acids in patients with type 2 diabetes: a cross-sectional pharmacometabolomic study. Front Endocrinol (Lausanne) 2024; 15:1313597. [PMID: 38370354 PMCID: PMC10869496 DOI: 10.3389/fendo.2024.1313597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/18/2024] [Indexed: 02/20/2024] Open
Abstract
Background Metformin is a drug with a long history of providing benefits in diabetes management and beyond. The mechanisms of action of metformin are complex, and continue to be actively debated and investigated. The aim of this study is to identify metabolic signatures associated with metformin treatment, which may explain the pleiotropic mechanisms by which metformin works, and could lead to an improved treatment and expanded use. Methods This is a cross-sectional study, in which clinical and metabolomic data for 146 patients with type 2 diabetes were retrieved from Qatar Biobank. Patients were categorized into: Metformin-treated, treatment naïve, and non-metformin treated. Orthogonal partial least square discriminate analysis and linear models were used to analyze differences in the level of metabolites between the metformin treated group with each of the other two groups. Results Patients on metformin therapy showed, among other metabolites, a significant increase in 3-hydroxyoctanoate and 3-hydroxydecanoate, which may have substantial effects on metabolism. Conclusions This is the first study to report an association between 3-hydroxy medium chain fatty acids with metformin therapy in patients with type 2 diabetes. This opens up new directions towards repurposing metformin by comprehensively understanding the role of these metabolites.
Collapse
Affiliation(s)
- Khaled Naja
- Biomedical Research Center, Qatar University, Doha, Qatar
| | | | - Ahmed M. Malki
- Biomedical Science Department, College of Health Sciences, Qatar University (QU) Health, Qatar University, Doha, Qatar
| | - Mohamed A. Elrayess
- Biomedical Research Center, Qatar University, Doha, Qatar
- Biomedical Science Department, College of Health Sciences, Qatar University (QU) Health, Qatar University, Doha, Qatar
| |
Collapse
|
26
|
Liu YB, Hong JR, Jiang N, Jin L, Zhong WJ, Zhang CY, Yang HH, Duan JX, Zhou Y. The Role of Mitochondrial Quality Control in Chronic Obstructive Pulmonary Disease. J Transl Med 2024; 104:100307. [PMID: 38104865 DOI: 10.1016/j.labinv.2023.100307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity, mortality, and health care use worldwide with heterogeneous pathogenesis. Mitochondria, the powerhouses of cells responsible for oxidative phosphorylation and energy production, play essential roles in intracellular material metabolism, natural immunity, and cell death regulation. Therefore, it is crucial to address the urgent need for fine-tuning the regulation of mitochondrial quality to combat COPD effectively. Mitochondrial quality control (MQC) mainly refers to the selective removal of damaged or aging mitochondria and the generation of new mitochondria, which involves mitochondrial biogenesis, mitochondrial dynamics, mitophagy, etc. Mounting evidence suggests that mitochondrial dysfunction is a crucial contributor to the development and progression of COPD. This article mainly reviews the effects of MQC on COPD as well as their specific regulatory mechanisms. Finally, the therapeutic approaches of COPD via MQC are also illustrated.
Collapse
Affiliation(s)
- Yu-Biao Liu
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jie-Ru Hong
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Nan Jiang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Ling Jin
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Wen-Jing Zhong
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Chen-Yu Zhang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Hui-Hui Yang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jia-Xi Duan
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Yong Zhou
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| |
Collapse
|
27
|
Du N, Yang R, Jiang S, Niu Z, Zhou W, Liu C, Gao L, Sun Q. Anti-Aging Drugs and the Related Signal Pathways. Biomedicines 2024; 12:127. [PMID: 38255232 PMCID: PMC10813474 DOI: 10.3390/biomedicines12010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/16/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Aging is a multifactorial biological process involving chronic diseases that manifest from the molecular level to the systemic level. From its inception to 31 May 2022, this study searched the PubMed, Web of Science, EBSCO, and Cochrane library databases to identify relevant research from 15,983 articles. Multiple approaches have been employed to combat aging, such as dietary restriction (DR), exercise, exchanging circulating factors, gene therapy, and anti-aging drugs. Among them, anti-aging drugs are advantageous in their ease of adherence and wide prevalence. Despite a shared functional output of aging alleviation, the current anti-aging drugs target different signal pathways that frequently cross-talk with each other. At present, six important signal pathways were identified as being critical in the aging process, including pathways for the mechanistic target of rapamycin (mTOR), AMP-activated protein kinase (AMPK), nutrient signal pathway, silent information regulator factor 2-related enzyme 1 (SIRT1), regulation of telomere length and glycogen synthase kinase-3 (GSK-3), and energy metabolism. These signal pathways could be targeted by many anti-aging drugs, with the corresponding representatives of rapamycin, metformin, acarbose, nicotinamide adenine dinucleotide (NAD+), lithium, and nonsteroidal anti-inflammatory drugs (NSAIDs), respectively. This review summarized these important aging-related signal pathways and their representative targeting drugs in attempts to obtain insights into and promote the development of mechanism-based anti-aging strategies.
Collapse
Affiliation(s)
- Nannan Du
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing 100071, China
| | - Ruigang Yang
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing 100071, China
- Nanhu Laboratory, Jiaxing 314002, China
| | - Shengrong Jiang
- The Meta-Center, 29 Xierqi Middle Rd, Beijing 100193, China;
| | - Zubiao Niu
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing 100071, China
- Nanhu Laboratory, Jiaxing 314002, China
| | - Wenzhao Zhou
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing 100071, China
| | - Chenyu Liu
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Lihua Gao
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
| | - Qiang Sun
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing 100071, China
- Nanhu Laboratory, Jiaxing 314002, China
| |
Collapse
|
28
|
Chen C, Yang L, Peng Y, Zhang WJ, Yang XX, Zhou W. Autophagic blockage by metformin-loaded PLGA nanoparticles causes cell cycle arrest of HepG2 cells. Nanomedicine (Lond) 2024; 19:43-58. [PMID: 38197371 DOI: 10.2217/nnm-2023-0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
Aim: To fabricate and characterize metformin-loaded PLGA nanoparticles and investigate their inhibitory effect on HepG2 cells. Materials & methods: The nanoparticles were prepared using a double emulsification method, then characterized and subjected to a series of in vitro assays on HepG2 cells. Results: The nanoparticles were ~277.9 nm in size, and the entrapment efficiency and drug loading of metformin were 31.3 and 14.4%, respectively. In vitro studies suggested that the nanoparticles showed a higher inhibitory effect on HepG2 cells compared with metformin alone, mainly attributed to its blockage of autophagy, and ultimately result in cell cycle inhibition. Conclusion: The metformin-loaded PLGA nanoparticles could inhibit mTOR activity, increase p53 levels and decrease HIF1A levels, which ultimately caused HepG2 cell cycle arrest.
Collapse
Affiliation(s)
- Chen Chen
- School of Food & Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Li Yang
- School of Food & Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Ying Peng
- Key Laboratory of Metabolism & Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food & Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Wen Jie Zhang
- School of Food & Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Xiao Xiao Yang
- Key Laboratory of Metabolism & Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food & Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Wei Zhou
- School of Food & Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| |
Collapse
|
29
|
Shin S, Kim J, Lee JY, Kim J, Oh CM. Mitochondrial Quality Control: Its Role in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). J Obes Metab Syndr 2023; 32:289-302. [PMID: 38049180 PMCID: PMC10786205 DOI: 10.7570/jomes23054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/27/2023] [Accepted: 09/30/2023] [Indexed: 12/06/2023] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease, is characterized by hepatic steatosis and metabolic dysfunction and is often associated with obesity and insulin resistance. Recent research indicates a rapid escalation in MASLD cases, with projections suggesting a doubling in the United States by 2030. This review focuses on the central role of mitochondria in the pathogenesis of MASLD and explores potential therapeutic interventions. Mitochondria are dynamic organelles that orchestrate hepatic energy production and metabolism and are critically involved in MASLD. Dysfunctional mitochondria contribute to lipid accumulation, inflammation, and liver fibrosis. Genetic associations further underscore the relationship between mitochondrial dynamics and MASLD susceptibility. Although U.S. Food and Drug Administration-approved treatments for MASLD remain elusive, ongoing clinical trials have highlighted promising strategies that target mitochondrial dysfunction, including vitamin E, metformin, and glucagon-like peptide-1 receptor agonists. In preclinical studies, novel therapeutics, including nicotinamide adenine dinucleotide+ precursors, urolithin A, spermidine, and mitoquinone, have shown beneficial effects, such as improving mitochondrial quality control, reducing oxidative stress, and ameliorating hepatic steatosis and inflammation. In conclusion, mitochondrial dysfunction is central to MASLD pathogenesis. The innovative mitochondria-targeted approaches discussed in this review offer a promising avenue for reducing the burden of MASLD and improving global quality of life.
Collapse
Affiliation(s)
- Soyeon Shin
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Jaeyoung Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Ju Yeon Lee
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Jun Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| |
Collapse
|
30
|
Isop LM, Neculau AE, Necula RD, Kakucs C, Moga MA, Dima L. Metformin: The Winding Path from Understanding Its Molecular Mechanisms to Proving Therapeutic Benefits in Neurodegenerative Disorders. Pharmaceuticals (Basel) 2023; 16:1714. [PMID: 38139841 PMCID: PMC10748332 DOI: 10.3390/ph16121714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/25/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Metformin, a widely prescribed medication for type 2 diabetes, has garnered increasing attention for its potential neuroprotective properties due to the growing demand for treatments for Alzheimer's, Parkinson's, and motor neuron diseases. This review synthesizes experimental and clinical studies on metformin's mechanisms of action and potential therapeutic benefits for neurodegenerative disorders. A comprehensive search of electronic databases, including PubMed, MEDLINE, Embase, and Cochrane library, focused on key phrases such as "metformin", "neuroprotection", and "neurodegenerative diseases", with data up to September 2023. Recent research on metformin's glucoregulatory mechanisms reveals new molecular targets, including the activation of the LKB1-AMPK signaling pathway, which is crucial for chronic administration of metformin. The pleiotropic impact may involve other stress kinases that are acutely activated. The precise role of respiratory chain complexes (I and IV), of the mitochondrial targets, or of the lysosomes in metformin effects remains to be established by further research. Research on extrahepatic targets like the gut and microbiota, as well as its antioxidant and immunomodulatory properties, is crucial for understanding neurodegenerative disorders. Experimental data on animal models shows promising results, but clinical studies are inconclusive. Understanding the molecular targets and mechanisms of its effects could help design clinical trials to explore and, hopefully, prove its therapeutic effects in neurodegenerative conditions.
Collapse
Affiliation(s)
- Laura Mihaela Isop
- Department of Fundamental, Prophylactic and Clinical Sciences, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania; (L.M.I.)
| | - Andrea Elena Neculau
- Department of Fundamental, Prophylactic and Clinical Sciences, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania; (L.M.I.)
| | - Radu Dan Necula
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania
| | - Cristian Kakucs
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania
| | - Marius Alexandru Moga
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania
| | - Lorena Dima
- Department of Fundamental, Prophylactic and Clinical Sciences, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania; (L.M.I.)
| |
Collapse
|
31
|
Roth L, Dogan S, Tuna BG, Aranyi T, Benitez S, Borrell-Pages M, Bozaykut P, De Meyer GRY, Duca L, Durmus N, Fonseca D, Fraenkel E, Gillery P, Giudici A, Jaisson S, Johansson M, Julve J, Lucas-Herald AK, Martinet W, Maurice P, McDonnell BJ, Ozbek EN, Pucci G, Pugh CJA, Rochfort KD, Roks AJM, Rotllan N, Shadiow J, Sohrabi Y, Spronck B, Szeri F, Terentes-Printzios D, Tunc Aydin E, Tura-Ceide O, Ucar E, Yetik-Anacak G. Pharmacological modulation of vascular ageing: A review from VascAgeNet. Ageing Res Rev 2023; 92:102122. [PMID: 37956927 DOI: 10.1016/j.arr.2023.102122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
Vascular ageing, characterized by structural and functional changes in blood vessels of which arterial stiffness and endothelial dysfunction are key components, is associated with increased risk of cardiovascular and other age-related diseases. As the global population continues to age, understanding the underlying mechanisms and developing effective therapeutic interventions to mitigate vascular ageing becomes crucial for improving cardiovascular health outcomes. Therefore, this review provides an overview of the current knowledge on pharmacological modulation of vascular ageing, highlighting key strategies and promising therapeutic targets. Several molecular pathways have been identified as central players in vascular ageing, including oxidative stress and inflammation, the renin-angiotensin-aldosterone system, cellular senescence, macroautophagy, extracellular matrix remodelling, calcification, and gasotransmitter-related signalling. Pharmacological and dietary interventions targeting these pathways have shown potential in ameliorating age-related vascular changes. Nevertheless, the development and application of drugs targeting vascular ageing is complicated by various inherent challenges and limitations, such as certain preclinical methodological considerations, interactions with exercise training and sex/gender-related differences, which should be taken into account. Overall, pharmacological modulation of endothelial dysfunction and arterial stiffness as hallmarks of vascular ageing, holds great promise for improving cardiovascular health in the ageing population. Nonetheless, further research is needed to fully elucidate the underlying mechanisms and optimize the efficacy and safety of these interventions for clinical translation.
Collapse
Affiliation(s)
- Lynn Roth
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium.
| | - Soner Dogan
- Department of Medical Biology, School of Medicine, Yeditepe University, Istanbul, Turkiye
| | - Bilge Guvenc Tuna
- Department of Biophysics, School of Medicine, Yeditepe University, Istanbul, Turkiye
| | - Tamas Aranyi
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary; Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Sonia Benitez
- CIBER de Diabetes y enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Cardiovascular Biochemistry, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - Maria Borrell-Pages
- Cardiovascular Program ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
| | - Perinur Bozaykut
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkiye
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Laurent Duca
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), Reims, France
| | - Nergiz Durmus
- Department of Pharmacology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkiye
| | - Diogo Fonseca
- Laboratory of Pharmacology and Pharmaceutical Care, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Emil Fraenkel
- 1st Department of Internal Medicine, University Hospital, Pavol Jozef Šafárik University of Košice, Košice, Slovakia
| | - Philippe Gillery
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), Reims, France; Laboratoire de Biochimie-Pharmacologie-Toxicologie, Centre Hospitalier et Universitaire de Reims, Reims, France
| | - Alessandro Giudici
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, the Netherlands; GROW School for Oncology and Reproduction, Maastricht University, the Netherlands
| | - Stéphane Jaisson
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), Reims, France; Laboratoire de Biochimie-Pharmacologie-Toxicologie, Centre Hospitalier et Universitaire de Reims, Reims, France
| | | | - Josep Julve
- CIBER de Diabetes y enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Endocrinology, Diabetes and Nutrition group, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | | | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Pascal Maurice
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), Reims, France
| | - Barry J McDonnell
- Centre for Cardiovascular Health and Ageing, Cardiff Metropolitan University, Cardiff, UK
| | - Emine Nur Ozbek
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Turkiye
| | - Giacomo Pucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Christopher J A Pugh
- Centre for Cardiovascular Health and Ageing, Cardiff Metropolitan University, Cardiff, UK
| | - Keith D Rochfort
- School of Nursing, Psychotherapy, and Community Health, Dublin City University, Dublin, Ireland
| | - Anton J M Roks
- Department of Internal Medicine, Division of Vascular Disease and Pharmacology, Erasmus Medical Center, Erasmus University, Rotterdam, the Netherlands
| | - Noemi Rotllan
- CIBER de Diabetes y enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Pathophysiology of lipid-related diseases, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - James Shadiow
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Yahya Sohrabi
- Molecular Cardiology, Dept. of Cardiology I - Coronary and Peripheral Vascular Disease, University Hospital Münster, Westfälische Wilhelms-Universität, 48149 Münster, Germany; Department of Medical Genetics, Third Faculty of Medicine, Charles University, 100 00 Prague, Czechia
| | - Bart Spronck
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, the Netherlands; Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Australia
| | - Flora Szeri
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Dimitrios Terentes-Printzios
- First Department of Cardiology, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Elif Tunc Aydin
- Department of Cardiology, Hospital of Ataturk Training and Research Hospital, Katip Celebi University, Izmir, Turkiye
| | - Olga Tura-Ceide
- Biomedical Research Institute-IDIBGI, Girona, Spain; Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias, Madrid, Spain
| | - Eda Ucar
- Department of Biophysics, School of Medicine, Yeditepe University, Istanbul, Turkiye
| | - Gunay Yetik-Anacak
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Turkiye; Department of Pharmacology, Faculty of Pharmacy, Acıbadem Mehmet Aydinlar University, Istanbul, Turkiye.
| |
Collapse
|
32
|
Sokolov S, Zyrina A, Akimov S, Knorre D, Severin F. Toxic Effects of Penetrating Cations. MEMBRANES 2023; 13:841. [PMID: 37888013 PMCID: PMC10608470 DOI: 10.3390/membranes13100841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/08/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
As mitochondria are negatively charged organelles, penetrating cations are used as parts of chimeric molecules to deliver specific compounds into mitochondria. In other words, they are used as electrophilic carriers for such chemical moieties as antioxidants, dyes, etc., to transfer them inside mitochondria. However, unmodified penetrating cations affect different aspects of cellular physiology as well. In this review, we have attempted to summarise the data about the side effects of commonly used natural (e.g., berberine) and artificial (e.g., tetraphenylphosphonium, rhodamine, methylene blue) penetrating cations on cellular physiology. For instance, it was shown that such types of molecules can (1) facilitate proton transport across membranes; (2) react with redox groups of the respiratory chain; (3) induce DNA damage; (4) interfere with pleiotropic drug resistance; (5) disturb membrane integrity; and (6) inhibit enzymes. Also, the products of the biodegradation of penetrating cations can be toxic. As penetrating cations accumulate in mitochondria, their toxicity is mostly due to mitochondrial damage. Mitochondria from certain types of cancer cells appear to be especially sensitive to penetrating cations. Here, we discuss the molecular mechanisms of the toxic effects and the anti-cancer activity of penetrating cations.
Collapse
Affiliation(s)
- Svyatoslav Sokolov
- Department of Molecular Energetics of Microorganisms, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1–40 Leninskie Gory, 119991 Moscow, Russia; (S.S.); (D.K.)
| | - Anna Zyrina
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Premises 8, Bldg. 1, Village of Institute of Poliomyelitis, Settlement “Moskovskiy”, 108819 Moscow, Russia;
| | - Sergey Akimov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 LeninskiyProspekt, 119071 Moscow, Russia;
| | - Dmitry Knorre
- Department of Molecular Energetics of Microorganisms, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1–40 Leninskie Gory, 119991 Moscow, Russia; (S.S.); (D.K.)
| | - Fedor Severin
- Department of Molecular Energetics of Microorganisms, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1–40 Leninskie Gory, 119991 Moscow, Russia; (S.S.); (D.K.)
| |
Collapse
|
33
|
Feng J, Zheng Y, Guo M, Ares I, Martínez M, Lopez-Torres B, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez MA. Oxidative stress, the blood-brain barrier and neurodegenerative diseases: The critical beneficial role of dietary antioxidants. Acta Pharm Sin B 2023; 13:3988-4024. [PMID: 37799389 PMCID: PMC10547923 DOI: 10.1016/j.apsb.2023.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/16/2023] [Accepted: 06/13/2023] [Indexed: 10/07/2023] Open
Abstract
In recent years, growing awareness of the role of oxidative stress in brain health has prompted antioxidants, especially dietary antioxidants, to receive growing attention as possible treatments strategies for patients with neurodegenerative diseases (NDs). The most widely studied dietary antioxidants include active substances such as vitamins, carotenoids, flavonoids and polyphenols. Dietary antioxidants are found in usually consumed foods such as fresh fruits, vegetables, nuts and oils and are gaining popularity due to recently growing awareness of their potential for preventive and protective agents against NDs, as well as their abundant natural sources, generally non-toxic nature, and ease of long-term consumption. This review article examines the role of oxidative stress in the development of NDs, explores the 'two-sidedness' of the blood-brain barrier (BBB) as a protective barrier to the nervous system and an impeding barrier to the use of antioxidants as drug medicinal products and/or dietary antioxidants supplements for prevention and therapy and reviews the BBB permeability of common dietary antioxidant suplements and their potential efficacy in the prevention and treatment of NDs. Finally, current challenges and future directions for the prevention and treatment of NDs using dietary antioxidants are discussed, and useful information on the prevention and treatment of NDs is provided.
Collapse
Affiliation(s)
- Jin Feng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
| | - Youle Zheng
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Mingyue Guo
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| |
Collapse
|
34
|
Lao A, Wu J, Li D, Shen A, Li Y, Zhuang Y, Lin K, Wu J, Liu J. Functionalized Metal-Organic Framework-Modified Hydrogel That Breaks the Vicious Cycle of Inflammation and ROS for Repairing of Diabetic Bone Defects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206919. [PMID: 37183293 DOI: 10.1002/smll.202206919] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/24/2023] [Indexed: 05/16/2023]
Abstract
The regeneration of diabetic bone defects remains challenging. Hyperglycemia causes inflammation state and excessive reactive oxygen species (ROS) during bone regeneration period. These two effects reinforce one another and create an endless loop that is also accompanied by mitochondrial dysfunction. However, there is still no effective and inclusive method targeting at the two aspects and breaking the vicious cycle. Herein, nanoparticles-Met@ZIF-8(metformin loaded zeolitic imidazolate frameworks) modified hydrogel that is capable of releasing metformin and Zn elements are constructed. This hydrogel treats hyperglycemia while also controlling mitochondrial function, reducing inflammation, and restoring homeostasis. In addition, the synergetic effect from metformin and Zn ions inhibits ROS-inflammation cascade generation and destroys the continuous progress by taking effects in both ROS and inflammation and further keeping organelles' homeostasis. Furthermore, with the recovery of mitochondria and breakdown of the ROS-inflammation cascade cycle, osteogenesis under a diabetic microenvironment is enhanced in vivo and in vitro. In conclusion, the study provides critical insight into the biological mechanism and potential therapy for diabetic bone regeneration.
Collapse
Affiliation(s)
- An Lao
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200120, China
- Department of Stomatology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jiaqing Wu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200120, China
| | - Dejian Li
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200120, China
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201301, China
| | - Aili Shen
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200120, China
| | - Yaxin Li
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200120, China
| | - Yu Zhuang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200120, China
| | - Kaili Lin
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200120, China
| | - Jianyong Wu
- Department of Stomatology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jiaqiang Liu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200120, China
| |
Collapse
|
35
|
Hong CY, Lin SK, Wang HW, Shun CT, Yang CN, Lai EHH, Cheng SJ, Chen MH, Yang H, Lin HY, Wu FY, Kok SH. Metformin Reduces Bone Resorption in Apical Periodontitis Through Regulation of Osteoblast and Osteoclast Differentiation. J Endod 2023; 49:1129-1137. [PMID: 37454872 DOI: 10.1016/j.joen.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
INTRODUCTION We have previously demonstrated that auxiliary metformin therapy promotes healing of apical periodontitis. Here we aimed to investigate the effects of metformin on osteoblast differentiation and osteoclast formation in cultured cells and rat apical periodontitis. METHODS Murine pre-osteoblasts MC3T3-E1 and macrophages RAW264.7 were cultured under hypoxia (2% oxygen) or normoxia (21% oxygen) and stimulated with receptor activator of nuclear factor-κB ligand (RANKL) when indicated. Metformin was added to the cultures to evaluate its anti-hypoxic effects. Expressions of osteoblast differentiation regulator runt-related transcription factor 2 (RUNX2), RANKL, and osteoclast marker tartrate-resistant acid phosphatase (TRAP) were assessed by Western blot. Apical periodontitis was induced in mandibular first molars of 10 Sprague-Dawley rats. Root canal therapy with or without metformin supplement was performed. Periapical bone resorption was measured by micro-computed tomography. Immunohistochemistry was used to examine RUNX2, RANKL, and TRAP expressions. RESULTS Hypoxia suppressed RUNX2 expression and enhanced RANKL synthesis in pre-osteoblasts. TRAP production increased in macrophages after hypoxia and/or RANKL stimulation. Metformin reversed hypoxia-induced RUNX2 suppression and RANKL synthesis in pre-osteoblasts. Metformin also inhibited hypoxia and RANKL-enhanced TRAP synthesis in macrophages. Intracanal metformin diminished bone loss in rat apical periodontitis. Comparing with vehicle control, cells lining bone surfaces in metformin-treated lesions had significantly stronger expression of RUNX2 and decreased synthesis of RANKL and TRAP. CONCLUSIONS Alleviation of bone resorption by intracanal metformin was associated with enhanced osteoblast differentiation and diminished osteoclast formation in rat apical periodontitis. Our results endorsed the role of metformin as an effective medicament for inflammatory bone diseases.
Collapse
Affiliation(s)
- Chi-Yuan Hong
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan; College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Sze-Kwan Lin
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Han-Wei Wang
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Clinical Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Tung Shun
- Department of Forensic Medicine and Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Cheng-Ning Yang
- Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Eddie Hsiang-Hua Lai
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shih-Jung Cheng
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mu-Hsiung Chen
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsiang Yang
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Hung-Ying Lin
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Fang-Yu Wu
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Sang-Heng Kok
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
36
|
Caddye E, Pineau J, Reyniers J, Ronen I, Colasanti A. Lactate: A Theranostic Biomarker for Metabolic Psychiatry? Antioxidants (Basel) 2023; 12:1656. [PMID: 37759960 PMCID: PMC10526106 DOI: 10.3390/antiox12091656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/01/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
Alterations in neurometabolism and mitochondria are implicated in the pathophysiology of psychiatric conditions such as mood disorders and schizophrenia. Thus, developing objective biomarkers related to brain mitochondrial function is crucial for the development of interventions, such as central nervous system penetrating agents that target brain health. Lactate, a major circulatory fuel source that can be produced and utilized by the brain and body, is presented as a theranostic biomarker for neurometabolic dysfunction in psychiatric conditions. This concept is based on three key properties of lactate that make it an intriguing metabolic intermediate with implications for this field: Firstly, the lactate response to various stimuli, including physiological or psychological stress, represents a quantifiable and dynamic marker that reflects metabolic and mitochondrial health. Second, lactate concentration in the brain is tightly regulated according to the sleep-wake cycle, the dysregulation of which is implicated in both metabolic and mood disorders. Third, lactate universally integrates arousal behaviours, pH, cellular metabolism, redox states, oxidative stress, and inflammation, and can signal and encode this information via intra- and extracellular pathways in the brain. In this review, we expand on the above properties of lactate and discuss the methodological developments and rationale for the use of functional magnetic resonance spectroscopy for in vivo monitoring of brain lactate. We conclude that accurate and dynamic assessment of brain lactate responses might contribute to the development of novel and personalized therapies that improve mitochondrial health in psychiatric disorders and other conditions associated with neurometabolic dysfunction.
Collapse
Affiliation(s)
- Edward Caddye
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK
| | - Julien Pineau
- Independent Researcher, Florianópolis 88062-300, Brazil
| | - Joshua Reyniers
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK
- School of Life Sciences, University of Sussex, Falmer BN1 9RR, UK
| | - Itamar Ronen
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK
| | - Alessandro Colasanti
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK
| |
Collapse
|
37
|
Hu M, Chen Y, Ma T, Jing L. Repurposing Metformin in hematologic tumor: State of art. Curr Probl Cancer 2023; 47:100972. [PMID: 37364455 DOI: 10.1016/j.currproblcancer.2023.100972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/19/2023] [Accepted: 04/25/2023] [Indexed: 06/28/2023]
Abstract
Metformin is an ancient drug for the treatment of type 2 diabetes, and many studies now suggested that metformin can be used as an adjuvant drug in the treatment of many types of tumors. The mechanism of action of metformin for tumor treatment mainly involves: 1. activation of AMPK signaling pathway 2. inhibition of DNA damage repair in tumor cells 3. downregulation of IGF-1 expression 4. inhibition of chemoresistance and enhancement of chemotherapy sensitivity in tumor cells 5. enhancement of antitumor immunity 6. inhibition of oxidative phosphorylation (OXPHOS). Metformin also plays an important role in the treatment of hematologic tumors, especially in leukemia, lymphoma, and multiple myeloma (MM). The combination of metformin and chemotherapy enhances the efficacy of chemotherapy, and metformin reduces the progression of monoclonal gammopathy of undetermined significance (MGUS) to MM. The purpose of this review is to summarize the anticancer mechanism of metformin and the role and mechanism of action of metformin in hematologic tumors. We mainly summarize the studies related to metformin in hematologic tumors, including cellular experiments and animal experiments, as well as controlled clinical studies and clinical trials. In addition, we also focus on the possible side effects of metformin. Although a large number of preclinical and clinical studies have been performed and the role of metformin in preventing the progression of MGUS to MM has been demonstrated, metformin has not been approved for the treatment of hematologic tumors, which is related to the adverse effects of its high-dose application. Low-dose metformin reduces adverse effects and has been shown to alter the tumor microenvironment and enhance antitumor immune response, which is one of the main directions for future research.
Collapse
Affiliation(s)
- Min Hu
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yan Chen
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Tao Ma
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Li Jing
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
38
|
Miki K, Yagi M, Noguchi N, Do Y, Otsuji R, Kuga D, Kang D, Yoshimoto K, Uchiumi T. Induction of glioblastoma cell ferroptosis using combined treatment with chloramphenicol and 2-deoxy-D-glucose. Sci Rep 2023; 13:10497. [PMID: 37380755 DOI: 10.1038/s41598-023-37483-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023] Open
Abstract
Glioblastoma, a malignant tumor, has no curative treatment. Recently, mitochondria have been considered a potential target for treating glioblastoma. Previously, we reported that agents initiating mitochondrial dysfunction were effective under glucose-starved conditions. Therefore, this study aimed to develop a mitochondria-targeted treatment to achieve normal glucose conditions. This study used U87MG (U87), U373, and patient-derived stem-like cells as well as chloramphenicol (CAP) and 2-deoxy-D-glucose (2-DG). We investigated whether CAP and 2-DG inhibited the growth of cells under normal and high glucose concentrations. In U87 cells, 2-DG and long-term CAP administration were more effective under normal glucose than high-glucose conditions. In addition, combined CAP and 2-DG treatment was significantly effective under normal glucose concentration in both normal oxygen and hypoxic conditions; this was validated in U373 and patient-derived stem-like cells. 2-DG and CAP acted by influencing iron dynamics; however, deferoxamine inhibited the efficacy of these agents. Thus, ferroptosis could be the underlying mechanism through which 2-DG and CAP act. In conclusion, combined treatment of CAP and 2-DG drastically inhibits cell growth of glioblastoma cell lines even under normal glucose conditions; therefore, this treatment could be effective for glioblastoma patients.
Collapse
Affiliation(s)
- Kenji Miki
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-Ku, Fukuoka, 812-8582, Japan
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Mikako Yagi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-Ku, Fukuoka, 812-8582, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Naoki Noguchi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yura Do
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Ryosuke Otsuji
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Daisuke Kuga
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-Ku, Fukuoka, 812-8582, Japan.
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Higashi-Ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
39
|
Nehlin JO. Senolytic and senomorphic interventions to defy senescence-associated mitochondrial dysfunction. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 136:217-247. [PMID: 37437979 DOI: 10.1016/bs.apcsb.2023.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
The accumulation of senescent cells in the aging individual is associated with an increase in the occurrence of age-associated pathologies that contribute to poor health, frailty, and mortality. The number and type of senescent cells is viewed as a contributor to the body's senescence burden. Cellular models of senescence are based on induction of senescence in cultured cells in the laboratory. One type of senescence is triggered by mitochondrial dysfunction. There are several indications that mitochondria defects contribute to body aging. Senotherapeutics, targeting senescent cells, have been shown to induce their lysis by means of senolytics, or repress expression of their secretome, by means of senomorphics, senostatics or gerosuppressors. An outline of the mechanism of action of various senotherapeutics targeting mitochondria and senescence-associated mitochondria dysfunction will be here addressed. The combination of geroprotective interventions together with senotherapeutics will help to strengthen mitochondrial energy metabolism, biogenesis and turnover, and lengthen the mitochondria healthspan, minimizing one of several molecular pathways contributing to the aging phenotype.
Collapse
Affiliation(s)
- Jan O Nehlin
- Department of Clinical Research, Copenhagen University Hospital, Amager and Hvidovre, Hvidovre, Denmark.
| |
Collapse
|
40
|
Seo DS, Joo S, Baek S, Kang J, Kwon TK, Jang Y. Metformin Resistance Is Associated with Expression of Inflammatory and Invasive Genes in A549 Lung Cancer Cells. Genes (Basel) 2023; 14:genes14051014. [PMID: 37239373 DOI: 10.3390/genes14051014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Metformin, the most commonly used drug for type 2 diabetes, has recently been shown to have beneficial effects in patients with cancer. Despite growing evidence that metformin can inhibit tumor cell proliferation, invasion, and metastasis, studies on drug resistance and its side effects are lacking. Here, we aimed to establish metformin-resistant A549 human lung cancer cells (A549-R) to determine the side effects of metformin resistance. Toward this, we established A549-R by way of prolonged treatment with metformin and examined the changes in gene expression, cell migration, cell cycle, and mitochondrial fragmentation. Metformin resistance is associated with increased G1-phase cell cycle arrest and impaired mitochondrial fragmentation in A549 cells. We demonstrated that metformin resistance highly increased the expression of proinflammatory and invasive genes, including BMP5, CXCL3, VCAM1, and POSTN, using RNA-seq analysis. A549-R exhibited increased cell migration and focal adhesion formation, suggesting that metformin resistance may potentially lead to metastasis during anti-cancer therapy with metformin. Taken together, our findings indicate that metformin resistance may lead to invasion in lung cancer cells.
Collapse
Affiliation(s)
- Dong Soo Seo
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, Republic of Korea
| | - Sungmin Joo
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, Republic of Korea
| | - Seungwoo Baek
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, Republic of Korea
| | - Jaehyeon Kang
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Younghoon Jang
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, Republic of Korea
| |
Collapse
|
41
|
Su Y, Hou C, Wang M, Ren K, Zhou D, Liu X, Zhao S, Liu X. Metformin induces mitochondrial fission and reduces energy metabolism by targeting respiratory chain complex I in hepatic stellate cells to reverse liver fibrosis. Int J Biochem Cell Biol 2023; 157:106375. [PMID: 36716817 DOI: 10.1016/j.biocel.2023.106375] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/27/2022] [Accepted: 01/26/2023] [Indexed: 01/30/2023]
Abstract
The activation and proliferation of hepatic stellate cells (HSCs) are critical processes for the treatment of liver fibrosis. It is necessary to identify effective drugs for the treatment of liver fibrosis and elucidate their mechanisms of action. Metformin can inhibit HSCs; however, no systematic studies demonstrating the effects of metformin on mitochondria in HSCs have been reported. This study demonstrated that metformin induces mitochondrial fission by phosphorylating AMPK/DRP1 (S616) in HSCs to decrease the expression of α-SMA and collagen. Additionally, metformin repressed the total ATP production rate, especially the production rate of ATP produced through mitochondrial oxidative phosphorylation, by inhibiting the enzymatic activity of complex I. Further analysis revealed that metformin strongly constrained the transcription of mitochondrial genes (ND1-ND6 and ND4L) that encode the core subunits of respiratory chain I. Upregulation of the mRNA expression of HK2 and GLUT1 slightly enhanced glycolysis. Additionally, metformin increased mitochondrial DNA (mtDNA) copy number to suppress the proliferation and activation of HSCs, indicating that mtDNA copy number can alter the fate of HSCs. In conclusion, metformin can induce mitochondrial fragmentation and low-level energy metabolism in HSCs, thereby suppressing HSCs activation and proliferation to reverse liver fibrosis.
Collapse
Affiliation(s)
- Ying Su
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Chenjian Hou
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Meili Wang
- Department of Pathology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Kehan Ren
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Danmei Zhou
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xiaoli Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Shanyu Zhao
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xiuping Liu
- Department of Pathology, Shanghai Fifth People's Hospital, School of Basic Medical Sciences, Fudan University, Shanghai 200240, China.
| |
Collapse
|
42
|
An injectable and pH-responsive hyaluronic acid hydrogel as metformin carrier for prevention of breast cancer recurrence. Carbohydr Polym 2023; 304:120493. [PMID: 36641175 DOI: 10.1016/j.carbpol.2022.120493] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
To achieve the pH-responsive release of metformin in tumor acidic microenvironment, we prepared OHA-Met by covalently grafting metformin (Met) onto oxidized hyaluronic acid (OHA) through imine bonds, and then prepared carboxymethyl chitosan (CMCS)/OHA-Met drug loaded hydrogels. The CMCS/OHA-Met hydrogels showed the in-situ injection performance. At pH = 7.4, the cumulative release rate of metformin from CMCS/OHA-Met20 hydrogel was 42.7 ± 2.6 % in 6 h, and the release tended to balance after 72 h. At pH = 5.5, the release kept constant and the cumulative release rate was 79.3 ± 4.7 % at 6 h, showing good pH-responsive behavior. Metformin induced apoptosis of MCF-7 cells through the caspase 3/PARP pathway. CMCS/OHA-Met20 hydrogel could effectively kill MCF-7 cells, while reducing the cytotoxicity of free metformin to L929 cells. In vivo breast cancer recurrence experiments showed CMCS/OHA-Met20 hydrogel could achieve local injection and pH-responsive smart drug delivery at the tumor resection site, inhibiting breast cancer recurrence. Compared with direct administration, CMCS/OHA-Met20 hydrogel reduced the metformin dosage, frequency of administration and systemic side effects.
Collapse
|
43
|
Placental Mitochondrial Function and Dysfunction in Preeclampsia. Int J Mol Sci 2023; 24:ijms24044177. [PMID: 36835587 PMCID: PMC9963167 DOI: 10.3390/ijms24044177] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
The placenta is a vital organ of pregnancy, regulating adaptation to pregnancy, gestational parent/fetal exchange, and ultimately, fetal development and growth. Not surprisingly, in cases of placental dysfunction-where aspects of placental development or function become compromised-adverse pregnancy outcomes can result. One common placenta-mediated disorder of pregnancy is preeclampsia (PE), a hypertensive disorder of pregnancy with a highly heterogeneous clinical presentation. The wide array of clinical characteristics observed in pregnant individuals and neonates of a PE pregnancy are likely the result of distinct forms of placental pathology underlying the PE diagnosis, explaining why no one common intervention has proven effective in the prevention or treatment of PE. The historical paradigm of placental pathology in PE highlights an important role for utero-placental malperfusion, placental hypoxia and oxidative stress, and a critical role for placental mitochondrial dysfunction in the pathogenesis and progression of the disease. In the current review, the evidence of placental mitochondrial dysfunction in the context of PE will be summarized, highlighting how altered mitochondrial function may be a common feature across distinct PE subtypes. Further, advances in this field of study and therapeutic targeting of mitochondria as a promising intervention for PE will be discussed.
Collapse
|
44
|
Fromenty B, Roden M. Mitochondrial alterations in fatty liver diseases. J Hepatol 2023; 78:415-429. [PMID: 36209983 DOI: 10.1016/j.jhep.2022.09.020] [Citation(s) in RCA: 109] [Impact Index Per Article: 109.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/29/2022] [Accepted: 09/17/2022] [Indexed: 11/07/2022]
Abstract
Fatty liver diseases can result from common metabolic diseases, as well as from xenobiotic exposure and excessive alcohol use, all of which have been shown to exert toxic effects on hepatic mitochondrial functionality and dynamics. Invasive or complex methodology limits large-scale investigations of mitochondria in human livers. Nevertheless, abnormal mitochondrial function, such as impaired fatty acid oxidation and oxidative phosphorylation, drives oxidative stress and has been identified as an important feature of human steatohepatitis. On the other hand, hepatic mitochondria can be flexible and adapt to the ambient metabolic condition to prevent triglyceride and lipotoxin accumulation in obesity. Experience from studies on xenobiotics has provided important insights into the regulation of hepatic mitochondria. Increasing awareness of the joint presence of metabolic disease-related (lipotoxic) and alcohol-related liver diseases further highlights the need to better understand their mutual interaction and potentiation in disease progression. Recent clinical studies have assessed the effects of diets or bariatric surgery on hepatic mitochondria, which are also evolving as an interesting therapeutic target in non-alcoholic fatty liver disease. This review summarises the current knowledge on hepatic mitochondria with a focus on fatty liver diseases linked to obesity, type 2 diabetes and xenobiotics.
Collapse
Affiliation(s)
- Bernard Fromenty
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000, Rennes, France
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany.
| |
Collapse
|
45
|
Gharoonpour A, Simiyari D, Yousefzadeh A, Badragheh F, Rahmati M. Autophagy modulation in breast cancer utilizing nanomaterials and nanoparticles. Front Oncol 2023; 13:1150492. [PMID: 37213283 PMCID: PMC10196239 DOI: 10.3389/fonc.2023.1150492] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/19/2023] [Indexed: 05/23/2023] Open
Abstract
Autophagy regenerates cellular nutrients, recycles metabolites, and maintains hemostasis through multistep signaling pathways, in conjunction with lysosomal degradation mechanisms. In tumor cells, autophagy has been shown to play a dual role as both tumor suppressor and tumor promoter, leading to the discovery of new therapeutic strategies for cancer. Therefore, regulation of autophagy is essential during cancer progression. In this regard, the use of nanoparticles (NPs) is a promising technique in the clinic to modulate autophagy pathways. Here, we summarized the importance of breast cancer worldwide, and we discussed its classification, current treatment strategies, and the strengths and weaknesses of available treatments. We have also described the application of NPs and nanocarriers (NCs) in breast cancer treatment and their capability to modulate autophagy. Then the advantages and disadvantaged of NPs in cancer therapy along with future applications will be disscussed. The purpose of this review is to provide up-to-date information on NPs used in breast cancer treatment and their impacts on autophagy pathways for researchers.
Collapse
|
46
|
Sehgal SA, Wu H, Sajid M, Sohail S, Ahsan M, Parveen G, Riaz M, Khan MS, Iqbal MN, Malik A. Pharmacological Progress of Mitophagy Regulation. Curr Neuropharmacol 2023; 21:1026-1041. [PMID: 36918785 PMCID: PMC10286582 DOI: 10.2174/1570159x21666230314140528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 03/16/2023] Open
Abstract
With the advancement in novel drug discovery, biologically active compounds are considered pharmacological tools to understand complex biological mechanisms and the identification of potent therapeutic agents. Mitochondria boast a central role in different integral biological processes and mitochondrial dysfunction is associated with multiple pathologies. It is, therefore, prudent to target mitochondrial quality control mechanisms by using pharmacological approaches. However, there is a scarcity of biologically active molecules, which can interact with mitochondria directly. Currently, the chemical compounds used to induce mitophagy include oligomycin and antimycin A for impaired respiration and acute dissipation of mitochondrial membrane potential by using CCCP/FCCP, the mitochondrial uncouplers. These chemical probes alter the homeostasis of the mitochondria and limit our understanding of the energy regulatory mechanisms. Efforts are underway to find molecules that can bring about selective removal of defective mitochondria without compromising normal mitochondrial respiration. In this report, we have tried to summarize and status of the recently reported modulators of mitophagy.
Collapse
Affiliation(s)
- Sheikh Arslan Sehgal
- Department of Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
- Department of Bioinformatics, University of Okara, Okara, Pakistan
| | - Hao Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, China
| | - Muhammad Sajid
- Department of Biotechnology, University of Okara, Okara, Pakistan
| | - Summar Sohail
- Department of Forestry, Kohsar University Murree, Pakistan
| | - Muhammad Ahsan
- Institute of Environmental and Agricultural Sciences, University of Okara, Okara, Punjab, Pakistan
| | | | - Mehreen Riaz
- Department of Zoology, Women University, Swabi, Pakistan
| | | | - Muhammad Nasir Iqbal
- Department of Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Abbeha Malik
- Department of Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| |
Collapse
|
47
|
Lascu A, Ionică LN, Buriman DG, Merce AP, Deaconu L, Borza C, Crețu OM, Sturza A, Muntean DM, Feier HB. Metformin and empagliflozin modulate monoamine oxidase-related oxidative stress and improve vascular function in human mammary arteries. Mol Cell Biochem 2022:10.1007/s11010-022-04633-8. [PMID: 36583793 DOI: 10.1007/s11010-022-04633-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/05/2022] [Indexed: 12/31/2022]
Abstract
Monoamine oxidases (MAOs), mitochondrial enzymes with two isoforms, A and B, have been recently recognized as significant contributors to oxidative stress in the cardiovascular system. The present study was purported to assess the effect of metformin and empagliflozin on MAO expression, oxidative stress and vascular reactivity in internal mammary arteries harvested from overweight patients with coronary heart disease subjected to bypass grafting. Vascular rings were prepared and acutely incubated (12 h) with high glucose (GLUC, 400 mg/dL) or angiotensin II (AII, 100 nM) and metformin (10 µM) and/or empagliflozin (10 µM) and used for the assessment of MAO expression (qRT-PCR and immune histochemistry), reactive oxygen species (ROS, confocal microscopy and spectrophotometry), and vasomotor function (myograph). Ex vivo stimulation with GLUC or AII increased both MAOs expression, ROS production and impaired relaxation to acetylcholine (ACh) of the vascular rings. All effects were alleviated by incubation with each antidiabetic drug; no cumulative effect was obtained when the drugs were applied together. In conclusion, MAO-A and B are upregulated in mammary arteries after acute stimulation with GLUC and AII. Endothelial dysfunction and oxidative stress were alleviated by either metformin or empagliflozin in both stimulated and non-stimulated vascular samples harvested from overweight cardiac patients.
Collapse
Affiliation(s)
- Ana Lascu
- Department III Functional Sciences-Pathophysiology, "Victor Babeș" University of Medicine and Pharmacy From Timișoara, Eftimie Murgu Sq. No. 2, 300041, Timișoara, Romania.,Centre for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy From Timișoara, Eftimie Murgu Sq. No. 2, 300041, Timișoara, Romania.,Institute of Cardiovascular Diseases Timișoara, "Victor Babeș" University of Medicine and Pharmacy From Timișoara, Eftimie Murgu Sq. No. 2, 300041, Timișoara, Romania
| | - Loredana N Ionică
- Centre for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy From Timișoara, Eftimie Murgu Sq. No. 2, 300041, Timișoara, Romania.,Doctoral School Medicine-Pharmacy, "Victor Babeș" University of Medicine and Pharmacy From Timișoara, Eftimie Murgu Sq. No. 2, 300041, Timișoara, Romania
| | - Darius G Buriman
- Centre for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy From Timișoara, Eftimie Murgu Sq. No. 2, 300041, Timișoara, Romania.,Doctoral School Medicine-Pharmacy, "Victor Babeș" University of Medicine and Pharmacy From Timișoara, Eftimie Murgu Sq. No. 2, 300041, Timișoara, Romania
| | - Adrian P Merce
- Centre for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy From Timișoara, Eftimie Murgu Sq. No. 2, 300041, Timișoara, Romania.,Institute of Cardiovascular Diseases Timișoara, "Victor Babeș" University of Medicine and Pharmacy From Timișoara, Eftimie Murgu Sq. No. 2, 300041, Timișoara, Romania
| | - Loredana Deaconu
- Department VII Internal Medicine-Diabetes, Nutrition and Metabolic Diseases, "Victor Babeș" University of Medicine and Pharmacy From Timișoara, Eftimie Murgu Sq. No. 2, 300041, Timișoara, Romania
| | - Claudia Borza
- Department III Functional Sciences-Pathophysiology, "Victor Babeș" University of Medicine and Pharmacy From Timișoara, Eftimie Murgu Sq. No. 2, 300041, Timișoara, Romania.,Centre for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy From Timișoara, Eftimie Murgu Sq. No. 2, 300041, Timișoara, Romania
| | - Octavian M Crețu
- Department IX Surgery-Surgical Semiotics I, "Victor Babeș" University of Medicine and Pharmacy From Timișoara, Eftimie Murgu Sq. No. 2, 300041, Timișoara, Romania.,Centre for Hepato-Biliary and Pancreatic Surgery, "Victor Babeș" University of Medicine and Pharmacy From Timișoara, Eftimie Murgu Sq. No. 2, 300041, Timișoara, Romania
| | - Adrian Sturza
- Department III Functional Sciences-Pathophysiology, "Victor Babeș" University of Medicine and Pharmacy From Timișoara, Eftimie Murgu Sq. No. 2, 300041, Timișoara, Romania. .,Centre for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy From Timișoara, Eftimie Murgu Sq. No. 2, 300041, Timișoara, Romania.
| | - Danina M Muntean
- Department III Functional Sciences-Pathophysiology, "Victor Babeș" University of Medicine and Pharmacy From Timișoara, Eftimie Murgu Sq. No. 2, 300041, Timișoara, Romania.,Centre for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy From Timișoara, Eftimie Murgu Sq. No. 2, 300041, Timișoara, Romania
| | - Horea B Feier
- Institute of Cardiovascular Diseases Timișoara, "Victor Babeș" University of Medicine and Pharmacy From Timișoara, Eftimie Murgu Sq. No. 2, 300041, Timișoara, Romania.,Department VI Cardiology-Cardiovascular Surgery, "Victor Babeș" University of Medicine and Pharmacy From Timișoara, Eftimie Murgu Sq. No. 2, 300041, Timișoara, Romania
| |
Collapse
|
48
|
Du Y, Zhu YJ, Zhou YX, Ding J, Liu JY. Metformin in therapeutic applications in human diseases: its mechanism of action and clinical study. MOLECULAR BIOMEDICINE 2022; 3:41. [PMID: 36484892 PMCID: PMC9733765 DOI: 10.1186/s43556-022-00108-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
Metformin, a biguanide drug, is the most commonly used first-line medication for type 2 diabetes mellites due to its outstanding glucose-lowering ability. After oral administration of 1 g, metformin peaked plasma concentration of approximately 20-30 μM in 3 h, and then it mainly accumulated in the gastrointestinal tract, liver and kidney. Substantial studies have indicated that metformin exerts its beneficial or deleterious effect by multiple mechanisms, apart from AMPK-dependent mechanism, also including several AMPK-independent mechanisms, such as restoring of redox balance, affecting mitochondrial function, modulating gut microbiome and regulating several other signals, such as FBP1, PP2A, FGF21, SIRT1 and mTOR. On the basis of these multiple mechanisms, researchers tried to repurpose this old drug and further explored the possible indications and adverse effects of metformin. Through investigating with clinical studies, researchers concluded that in addition to decreasing cardiovascular events and anti-obesity, metformin is also beneficial for neurodegenerative disease, polycystic ovary syndrome, aging, cancer and COVID-19, however, it also induces some adverse effects, such as gastrointestinal complaints, lactic acidosis, vitamin B12 deficiency, neurodegenerative disease and offspring impairment. Of note, the dose of metformin used in most studies is much higher than its clinically relevant dose, which may cast doubt on the actual effects of metformin on these disease in the clinic. This review summarizes these research developments on the mechanism of action and clinical evidence of metformin and discusses its therapeutic potential and clinical safety.
Collapse
Affiliation(s)
- Yang Du
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Ya-Juan Zhu
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yi-Xin Zhou
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Jing Ding
- grid.54549.390000 0004 0369 4060Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan China
| | - Ji-Yan Liu
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| |
Collapse
|
49
|
Bețiu AM, Noveanu L, Hâncu IM, Lascu A, Petrescu L, Maack C, Elmér E, Muntean DM. Mitochondrial Effects of Common Cardiovascular Medications: The Good, the Bad and the Mixed. Int J Mol Sci 2022; 23:13653. [PMID: 36362438 PMCID: PMC9656474 DOI: 10.3390/ijms232113653] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 07/25/2023] Open
Abstract
Mitochondria are central organelles in the homeostasis of the cardiovascular system via the integration of several physiological processes, such as ATP generation via oxidative phosphorylation, synthesis/exchange of metabolites, calcium sequestration, reactive oxygen species (ROS) production/buffering and control of cellular survival/death. Mitochondrial impairment has been widely recognized as a central pathomechanism of almost all cardiovascular diseases, rendering these organelles important therapeutic targets. Mitochondrial dysfunction has been reported to occur in the setting of drug-induced toxicity in several tissues and organs, including the heart. Members of the drug classes currently used in the therapeutics of cardiovascular pathologies have been reported to both support and undermine mitochondrial function. For the latter case, mitochondrial toxicity is the consequence of drug interference (direct or off-target effects) with mitochondrial respiration/energy conversion, DNA replication, ROS production and detoxification, cell death signaling and mitochondrial dynamics. The present narrative review aims to summarize the beneficial and deleterious mitochondrial effects of common cardiovascular medications as described in various experimental models and identify those for which evidence for both types of effects is available in the literature.
Collapse
Affiliation(s)
- Alina M. Bețiu
- Doctoral School Medicine-Pharmacy, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Lavinia Noveanu
- Department of Functional Sciences—Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Iasmina M. Hâncu
- Doctoral School Medicine-Pharmacy, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Ana Lascu
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Department of Functional Sciences—Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Lucian Petrescu
- Doctoral School Medicine-Pharmacy, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Christoph Maack
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, 97078 Würzburg, Germany
- Department of Internal Medicine 1, University Clinic Würzburg, 97078 Würzburg, Germany
| | - Eskil Elmér
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, BMC A13, 221 84 Lund, Sweden
- Abliva AB, Medicon Village, 223 81 Lund, Sweden
| | - Danina M. Muntean
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Department of Functional Sciences—Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| |
Collapse
|
50
|
Panconesi R, Widmer J, Carvalho MF, Eden J, Dondossola D, Dutkowski P, Schlegel A. Mitochondria and ischemia reperfusion injury. Curr Opin Organ Transplant 2022; 27:434-445. [PMID: 35950880 DOI: 10.1097/mot.0000000000001015] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW This review describes the role of mitochondria in ischemia-reperfusion-injury (IRI). RECENT FINDINGS Mitochondria are the power-house of our cells and play a key role for the success of organ transplantation. With their respiratory chain, mitochondria are the main energy producers, to fuel metabolic processes, control cellular signalling and provide electrochemical integrity. The mitochondrial metabolism is however severely disturbed when ischemia occurs. Cellular energy depletes rapidly and various metabolites, including Succinate accumulate. At reperfusion, reactive oxygen species are immediately released from complex-I and initiate the IRI-cascade of inflammation. Prior to the development of novel therapies, the underlying mechanisms should be explored to target the best possible mitochondrial compound. A clinically relevant treatment should recharge energy and reduce Succinate accumulation before organ implantation. While many interventions focus instead on a specific molecule, which may inhibit downstream IRI-inflammation, mitochondrial protection can be directly achieved through hypothermic oxygenated perfusion (HOPE) before transplantation. SUMMARY Mitochondria are attractive targets for novel molecules to limit IRI-associated inflammation. Although dynamic preservation techniques could serve as delivery tool for new therapeutic interventions, their own inherent mechanism should not only be studied, but considered as key treatment to reduce mitochondrial injury, as seen with the HOPE-approach.
Collapse
Affiliation(s)
- Rebecca Panconesi
- General Surgery 2U-Liver Transplant Unit, Department of Surgery, A.O.U. Città della Salute e della Scienza di Torino, University of Turin, Turin
- Hepatobiliary Unit, Careggi University Hospital, University of Florence, Florence, Italy
| | - Jeannette Widmer
- Swiss HPB and Transplant Center, Department of Visceral Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| | | | - Janina Eden
- Swiss HPB and Transplant Center, Department of Visceral Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| | - Daniele Dondossola
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Center for Preclinical Research, Milan, Italy
| | - Philipp Dutkowski
- Swiss HPB and Transplant Center, Department of Visceral Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| | - Andrea Schlegel
- Hepatobiliary Unit, Careggi University Hospital, University of Florence, Florence, Italy
- Swiss HPB and Transplant Center, Department of Visceral Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Center for Preclinical Research, Milan, Italy
| |
Collapse
|