1
|
Chen Z, Zheng N, Wang F, Zhou Q, Chen Z, Xie L, Sun Q, Li L, Li B. The role of ferritinophagy and ferroptosis in Alzheimer's disease. Brain Res 2025; 1850:149340. [PMID: 39586368 DOI: 10.1016/j.brainres.2024.149340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/17/2024] [Accepted: 11/16/2024] [Indexed: 11/27/2024]
Abstract
Iron is a crucial mineral element within human cells, serving as a pivotal cofactor for diverse biological enzymes. Ferritin plays a crucial role in maintaining iron homeostasis within the body through its ability to sequester and release iron. Ferritinophagy is a selective autophagic process in cells that specifically facilitates the degradation of ferritin and subsequent release of free iron, thereby regulating intracellular iron homeostasis. The nuclear receptor coactivator 4 (NCOA4) serves as a pivotal regulator in the entire process of ferritinophagy, facilitating its binding to ferritin and subsequent delivering to lysosomes for degradation, thereby enabling the release of free iron. The free iron ions within the cell undergo catalysis through the Fenton reaction, resulting in a substantial generation of reactive oxygen species (ROS). This process induces lipid peroxidation, thereby stimulating a cascade leading to cellular tissue damage and subsequent initiation of ferroptosis. Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive deterioration of emotional memory and cognitive function, accompanied by mental and behavioral aberrations. The pathology of the disease is characterized by aberrant deposition of amyloid β-protein (Aβ) and hyperphosphorylated tau protein. It has been observed that evident iron metabolism disorders and accumulation of lipid peroxides occur in AD, indicating a significant impact of ferritinophagy and ferroptosis on the pathogenesis and progression of AD. This article elucidates the process and mechanism of ferritinophagy and ferroptosis, investigating their implications in AD to identify novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Ziwen Chen
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Nan Zheng
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Fuwei Wang
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Qiong Zhou
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Zihao Chen
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Lihua Xie
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Qiang Sun
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Li Li
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China.
| | - Baohong Li
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
2
|
Shen Y, Zhang G, Wei C, Zhao P, Wang Y, Li M, Sun L. Potential role and therapeutic implications of glutathione peroxidase 4 in the treatment of Alzheimer's disease. Neural Regen Res 2025; 20:613-631. [PMID: 38886929 PMCID: PMC11433915 DOI: 10.4103/nrr.nrr-d-23-01343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/27/2023] [Accepted: 12/21/2023] [Indexed: 06/20/2024] Open
Abstract
Alzheimer's disease is an age-related neurodegenerative disorder with a complex and incompletely understood pathogenesis. Despite extensive research, a cure for Alzheimer's disease has not yet been found. Oxidative stress mediates excessive oxidative responses, and its involvement in Alzheimer's disease pathogenesis as a primary or secondary pathological event is widely accepted. As a member of the selenium-containing antioxidant enzyme family, glutathione peroxidase 4 reduces esterified phospholipid hydroperoxides to maintain cellular redox homeostasis. With the discovery of ferroptosis, the central role of glutathione peroxidase 4 in anti-lipid peroxidation in several diseases, including Alzheimer's disease, has received widespread attention. Increasing evidence suggests that glutathione peroxidase 4 expression is inhibited in the Alzheimer's disease brain, resulting in oxidative stress, inflammation, ferroptosis, and apoptosis, which are closely associated with pathological damage in Alzheimer's disease. Several therapeutic approaches, such as small molecule drugs, natural plant products, and non-pharmacological treatments, ameliorate pathological damage and cognitive function in Alzheimer's disease by promoting glutathione peroxidase 4 expression and enhancing glutathione peroxidase 4 activity. Therefore, glutathione peroxidase 4 upregulation may be a promising strategy for the treatment of Alzheimer's disease. This review provides an overview of the gene structure, biological functions, and regulatory mechanisms of glutathione peroxidase 4, a discussion on the important role of glutathione peroxidase 4 in pathological events closely related to Alzheimer's disease, and a summary of the advances in small-molecule drugs, natural plant products, and non-pharmacological therapies targeting glutathione peroxidase 4 for the treatment of Alzheimer's disease. Most prior studies on this subject used animal models, and relevant clinical studies are lacking. Future clinical trials are required to validate the therapeutic effects of strategies targeting glutathione peroxidase 4 in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Yanxin Shen
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Guimei Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Chunxiao Wei
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Panpan Zhao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Yongchun Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Mingxi Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Li Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
3
|
Lai B, Wu D, Xiao Q, Wang Z, Niu Q, Chen Q, Long Q, He L. Qiangji decoction mitigates neuronal damage, synaptic and mitochondrial dysfunction in SAMP8 mice through the regulation of ROCK2/Drp1-mediated mitochondrial dynamics. JOURNAL OF ETHNOPHARMACOLOGY 2025; 342:119424. [PMID: 39884484 DOI: 10.1016/j.jep.2025.119424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qiangji Decoction (QJD), a Chinese medicine, is widely used in Traditional Chinese Medicine to treat amnesia and Alzheimer's disease (AD), showing significant anti-AD effects. However, the precise mechanisms behind these effects are not well understood and require more research. AIM OF THE STUDY This study aims to elucidate the mechanisms by which QJD ameliorates neuronal damage, synaptic dysfunction, and mitochondrial impairment in AD through the regulation of ROCK2/Drp1-mediated mitochondrial dynamics. MATERIALS AND METHODS UPLC-Q-TOF-MS/MS was used to identify active components in QJD extract. The study used SAMP8 mice for AD modeling and SAMR1 mice as controls. Cognitive function in SAMP8 mice was assessed with the Morris Water Maze after following treatment with QJD and the mitochondrial fission inhibitor Mdivi-1. Nissl and FJB staining evaluated QJD's effect on hippocampal injury. Synaptic integrity was examined with Golgi-Cox staining, transmission electron microscopy, and immunofluorescence. Mitochondrial function in hippocampal neurons was assessed using electron microscopy, JC-1 staining, and reagent kits. Western blot analyzed expression of proteins related to mitochondrial fission (ROCK2, Drp1, Fis1, Mff) and fusion (Mfn1, Mfn2, OPA1). RESULTS The analysis of QJD extract via UPLC-Q-TOF-MS/MS led to the identification of 46 active compounds. In SAMP8 mice, administration of QJD resulted in decreased escape latency, increased platform crossings, and extended duration in the target quadrant. Additionally, QJD exhibited neuroprotective effects on the hippocampus of SAMP8 mice, effectively preventing neuronal loss and damage. QJD also facilitated the extension and thickening of dendritic spines, enhanced the ultrastructure of hippocampal synapses, and upregulated synaptic function-related proteins, including PSD95 and SYN1. Furthermore, QJD ameliorated mitochondrial damage, improved mitochondrial membrane potential and ATP content, and reduced ROS expression in hippocampal neurons of SAMP8 mice. These effects were mediated through the downregulation of ROCK2, phosphorylated Drp1 (Ser616), Fis1, and Mff, as well as the upregulation of Mfn1, Mfn2, and OPA1. CONCLUSIONS QJD may reduce neuronal damage, synaptic dysfunction, and mitochondrial impairment in SAMP8 mice by regulating mitochondrial dynamics through the ROCK2/Drp1 pathway.
Collapse
Affiliation(s)
- Bixuan Lai
- Health Medical Center, Hubei Minzu University, Enshi, Hubei, 445000, PR China
| | - Dan Wu
- Health Medical Center, Hubei Minzu University, Enshi, Hubei, 445000, PR China
| | - Qidan Xiao
- Health Medical Center, Hubei Minzu University, Enshi, Hubei, 445000, PR China
| | - Zhengyu Wang
- Health Medical Center, Hubei Minzu University, Enshi, Hubei, 445000, PR China
| | - Qixuan Niu
- Health Medical Center, Hubei Minzu University, Enshi, Hubei, 445000, PR China
| | - Qingjie Chen
- Health Medical Center, Hubei Minzu University, Enshi, Hubei, 445000, PR China; Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, Hubei, 437100, PR China.
| | - Qinghua Long
- Health Medical Center, Hubei Minzu University, Enshi, Hubei, 445000, PR China; Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Disease, Hubei Minzu University, Enshi, Hubei, 445000, PR China.
| | - Liling He
- Health Medical Center, Hubei Minzu University, Enshi, Hubei, 445000, PR China; Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Disease, Hubei Minzu University, Enshi, Hubei, 445000, PR China.
| |
Collapse
|
4
|
Wang N, Gao Z, Zhan H, Jing L, Meng F, Chen M. Salidroside alleviates doxorubicin-induced hepatotoxicity via Sestrin2/AMPK-mediated pyroptotic inhibition. Food Chem Toxicol 2025; 199:115335. [PMID: 39993461 DOI: 10.1016/j.fct.2025.115335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 02/26/2025]
Abstract
Doxorubicin (DOX) is a potent anticancer drug, while its toxic side effects involve multi-organ toxicity, including hepatotoxicity. This study aims to investigate the therapeutic potential of salidroside against DOX-induced hepatotoxicity and elucidate its underlying mechanisms. Result showed that salidroside exhibited a liver protective effect in DOX-induced hepatotoxicity in mice, represented by the decreased serum ALT, AST and LDH levels, as well as the rescue of pathological changes in mice livers. Further study showed salidroside reduced the expression level of pyroptosis-associated proteins, including NLRP3, cleaved-caspase 1, gasdermin D (GSDMD-N) and mature IL-1β in mice liver tissues. In vitro study confirmed salidroside exerted a similar effect in AML12 cells. Mechanistically, salidroside alleviated mitochondrial dysfunction by activating the PGC-1α/Mfn2 signaling pathway, and restrained the endoplasmic reticulum (ER) stress, represented by the downregulation of GRP78 and p-PERK/PERK level. Subsequent investigations revealed that salidroside activated the Sestrin2/AMPK pathway, while the application of AMPK inhibitors, PGC-1α siRNA or Sestrain2 siRNA reversed the effects of salidroside on ameliorating mitochondrial dysfunction and ER stress, suggesting salidroside could be a promising therapeutic strategy for alleviating DOX-induced hepatotoxicity.
Collapse
Affiliation(s)
- Nan Wang
- Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery system, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, PR China
| | - Zhengshan Gao
- Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Honghong Zhan
- Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Lin Jing
- Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Fancheng Meng
- Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Min Chen
- Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
5
|
Zeng Y, Yang S, Xie Z, Li Q, Wang Y, Xiong Q, Liang X, Lu H, Cheng W. Tianqi Yizhi Granule alleviates cognitive dysfunction and neurodegeneration in SAMP8 mice via the PKC/ERK pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156542. [PMID: 39986222 DOI: 10.1016/j.phymed.2025.156542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/02/2025] [Accepted: 02/16/2025] [Indexed: 02/24/2025]
Abstract
BACKGROUND Given the lack of satisfactory clinical treatments for Alzheimer's disease (AD), a neurodegenerative condition detrimental to health, developing alternative therapies is critical. Tianqi Yizhi Granule (TQYZ) is a preparation used to treat AD based on traditional Chinese medicine theory, the latent mechanisms of which await elucidation. PURPOSE This study sought to investigate the neuroprotective properties of TQYZ while exploring its potential therapeutic mechanisms using network pharmacology analyses and experimental validation. METHODS Network pharmacology analyses were performed. Cognitive and neurodegenerative alterations were evaluated through behavioral tests and histological staining. For in vivo and in vitro experiments, short hairpin RNA sequences were transfected via adeno-associated virus vectors to verify the predicted mechanism. RESULTS A total of 159 potential therapeutic targets of TQYZ overlapped with AD-related targets. In senescence-accelerated mouse prone 8 (SAMP8) mice, treatment with TQYZ significantly improved cognitive function, ameliorated neuronal damage and apoptosis, and upregulated the protein expression of PKC/ERK pathway members. TQYZ maintained the mitochondrial membrane potential, reduced the generation of reactive oxygen species, and inhibited neuronal apoptosis in Aβ25-35-induced HT22 cells. However, these neuroprotective effects were notably reduced in shRNA PRKCB-transfected HT22 cells and SAMP8 mice. CONCLUSIONS TQYZ mitigates the pathological degeneration process and cognitive impairment in SAMP8 mice and suppresses mitochondrial dysfunction and apoptosis in HT22 cells treated with Aβ25-35. Its neuroprotective mechanism is linked to PKC/ERK pathway activation. This study highlights a promising strategy for AD therapy.
Collapse
Affiliation(s)
- Yi Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, PR China; Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, Guangdong, PR China
| | - Sixia Yang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, PR China
| | - Zeping Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, PR China
| | - Qitian Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, PR China
| | - Yuhua Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, PR China
| | - Qiaowu Xiong
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, PR China
| | - Xiaotong Liang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, PR China
| | - Hui Lu
- Department of Geriatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, PR China.
| | - Weidong Cheng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, PR China.
| |
Collapse
|
6
|
Lin L, Li J, Yu Z, He J, Li Y, Jiang J, Xia Y. Nrf2 activator tertiary butylhydroquinone enhances neural stem cell differentiation and implantation in Alzheimer's disease by boosting mitochondrial function. Brain Res 2025; 1849:149341. [PMID: 39566569 DOI: 10.1016/j.brainres.2024.149341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/24/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
AIMS To investigate the effects of Nrf2 agonist tertiary butylhydroquinone (TBHQ)-stimulated neural stem cells (NSCs) transplantation (NSC(TBHQ)) on neuronal damage and cognitive deficits in an AD model and its underlying principles. METHODS BHQ-treated NSCs were examined with or without Aβ1-42 to investigate the effects of TBHQ on the proliferation and differentiation functions. The mitophagy inhibitor Cyclosporine A (CSA) was used to explore the regulation of mitophagy by TBHQ. The no-, ethanol-, and TBHQ-treated NSCs were transplanted into the bilateral hippocampal region of model mice to explore the effects of NSC(TBHQ) on neuronal, cognitive, and mitochondrial functional impairments in mice. RESULTS TBHQ reversed the Aβ1-42-caused inhibition on NSC proliferation and differentiation, as well as on levels of mitochondrial membrane potential, adenosine triphosphate (ATP), and mitochondrial fusion-associated proteins. TBHQ alleviated the Aβ1-42-induced increase in apoptosis, mitochondrial damage, mitochondria-derived reactive oxygen species (mtROS), and mitochondrial fission-related proteins. TBHQ activated the Parkin, Beclin, LC3II/I, and COXIV expression, while inhibiting the p62 expression. CSA reversed the effects of TBHQ on NSC proliferation and differentiation. After NSC(TBHQ) transplantation, it not only further extended the dwell time in the target quadrant and shorten the time and distance for finding the hidden platform, but also further decreased the Aβ and p-Tau/Tau levels, while increasing the expression of NeuN. The effects of NSC(TBHQ) transplantation on mitochondrial function were consistent with the in vitro experiments. CONCLUSIONS The study shows that NSC(TBHQ) intensifies the beneficial impact of NSCs transplantation on cognitive impairment and neuronal damage in AD models, likely due to TBHQ's role in promoting NSCs growth and differentiation via mitophagy, thus laying a theoretical foundation for improving NSCs transplantation for AD.
Collapse
Affiliation(s)
- Long Lin
- Department of Neurosurgery, Haikou Hospital Affiliated to Xiangya Medical College of Central South University, Haikou 470000, Hainan, China
| | - Jiameng Li
- Department of Neurosurgery, Haikou Hospital Affiliated to Xiangya Medical College of Central South University, Haikou 470000, Hainan, China
| | - Zhengtao Yu
- Department of Neurosurgery, Haikou Hospital Affiliated to Xiangya Medical College of Central South University, Haikou 470000, Hainan, China
| | - Jun He
- Department of Neurosurgery, Haikou Hospital Affiliated to Xiangya Medical College of Central South University, Haikou 470000, Hainan, China
| | - You Li
- Department of Neurosurgery, Haikou Hospital Affiliated to Xiangya Medical College of Central South University, Haikou 470000, Hainan, China
| | - Junwen Jiang
- Department of Neurosurgery, Haikou Hospital Affiliated to Xiangya Medical College of Central South University, Haikou 470000, Hainan, China
| | - Ying Xia
- Department of Neurosurgery, Haikou Hospital Affiliated to Xiangya Medical College of Central South University, Haikou 470000, Hainan, China.
| |
Collapse
|
7
|
Mi X, Li J, Feng Z, Liu Y, Zhang C, Shao Y, Wang T, Yang Z, Lv H, Liu J. G protein-coupled estrogen receptor deficiency exacerbates demyelination through microglial ferroptosis. J Biol Chem 2025:108312. [PMID: 39955059 DOI: 10.1016/j.jbc.2025.108312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/14/2024] [Accepted: 01/14/2025] [Indexed: 02/17/2025] Open
Abstract
Microglial activation is the initial pathological event that occurs in demyelination, a prevalent feature in various neurological diseases. G protein-coupled estrogen receptor (GPER1), which is highly expressed in microglia, has been reported to reduce myelin damage. However, the precise molecular mechanisms involved remain unclear. In this study, the cuprizone (CPZ) -induced demyelination model was used to investigate the relationship between GPER1 and myelin sheath injury and its mechanism. The results demonstrated that GPER1 deficiency exacerbated cognitive impairment in mice. Along with more severe myelin damage as well as fewer oligodendrocytes. Moreover, GPER1 deficiency not only directly reduced the number of microglia in CPZ mice, but also caused iron ions overload in microglia of myelin debris induced in vitro. Transcriptomic, molecular biological, and morphological analyses revealed that microglial ferroptosis caused by GPER1 deficiency contributes to the reduction of microglia number. In summary, these findings revealed that GPER1 can regulate demyelination through ferroptosis of microglia.
Collapse
Affiliation(s)
- Xiaojuan Mi
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Junjie Li
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Ziqi Feng
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Yanbo Liu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Chun Zhang
- Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan 750004, China
| | - Yu Shao
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Ting Wang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Zhilun Yang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Haowen Lv
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Juan Liu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China; General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| |
Collapse
|
8
|
Ong J, Sasaki K, Ferdousi F, Suresh M, Isoda H, Szele FG. Senescence accelerated mouse-prone 8: a model of neuroinflammation and aging with features of sporadic Alzheimer's disease. Stem Cells 2025; 43:sxae091. [PMID: 39813151 DOI: 10.1093/stmcls/sxae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/14/2024] [Indexed: 01/18/2025]
Abstract
The large majority of Alzheimer's disease (AD) cases are sporadic with unknown genetic causes. In contrast, only a small percentage of AD cases are familial, with known genetic causes. Paradoxically, there are only few validated mouse models of sporadic AD but many of familial AD. Senescence accelerated mouse-prone 8 (SAMP8) mice are a model of accelerated aging with features of sporadic AD. They exhibit a more complete suite of human AD-relevant pathologies than most familial models. SAMP8 brains are characterized by inflammation, glial activation, b-amyloid deposits, and hyperphosphorylated Tau. The excess amyloid deposits congregate around blood vessels leading to vascular impairment and leaky BBBs in these mice. SAMP8 mice also exhibit neuronal cell death, a feature not typically seen in models of familial AD. Additionally, adult hippocampal neurogenesis is decreased in SAMP8 mice and correspondingly, they have reduced cognitive ability. In line with this, hippocampal LTP is significantly compromised in SAMP8 mice. No model is perfect and SAMP8 mice are limited by the lack of clarity about their genomic differences from control Senescence Accelerated Mouse-Resistant 1 (SAMR1) mice although their transcriptomics changes are being revealed. To further complicate matters, multiple substrains of SAMP8 mice have emerged over the years, sometimes making comparisons of studies difficult. Despite these challenges, we argue that SAMP8 mice can be useful for studying AD-relevant symptoms and propose important experiments to strengthen this already useful model.
Collapse
Affiliation(s)
- Jun Ong
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX13QX, United Kingdom
| | - Kazunori Sasaki
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Farhana Ferdousi
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Institute of Life and Environmental Sciences, University of Tsukuba, Japan1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Megalakshmi Suresh
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX13QX, United Kingdom
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Institute of Life and Environmental Sciences, University of Tsukuba, Japan1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Francis G Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX13QX, United Kingdom
| |
Collapse
|
9
|
Wu X, Qiu X, Wang S, Zhang N, An L, Song P, Li X, Gao W. Xinnaoxin capsule alleviates neuropathological changes and cognitive deficits in Alzheimer's disease mouse model induced by D-galactose and aluminum chloride via reducing neuroinflammation and protecting synaptic proteins. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119323. [PMID: 39755189 DOI: 10.1016/j.jep.2025.119323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 01/06/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Originally formulated to mitigate high-altitude sickness, Xinnaoxin capsules (XNX) are composed of three traditional Chinese medicines (Rhodiola rosea L., Lycium barbarum L. and Hippophae rhamnoides) with properties of anti-hypoxia, anti-fatigue, and anti-aging. Emerging evidence now suggests that XNX may also offer therapeutic benefits in Alzheimer's disease (AD), highlighting its potential significance in the development of novel AD treatments. AIM OF THE STUDY This study aims to investigate whether XNX improves AD-related behavioral and cognitive deficits by enhancing antioxidant defenses, reducing peripheral and neuroinflammation, and protecting neurons. MATERIALS AND METHODS The AD mouse model was established using D-galactose and aluminum chloride. Spatial memory and anxiety-like behaviors were assessed via the Morris water maze and open field tests to evaluate the therapeutic effects of XNX. Biochemical markers in hippocampal tissue and serum were measured using ELISA kits, while serum chemical composition was analyzed by LC-MS. Histopathological changes and amyloid-β deposition in the hippocampus were examined through hematoxylin-eosin (HE) staining and immunofluorescence. Additionally, hippocampal expression of apoptotic proteins Bax and Caspase-3, anti-apoptotic protein Bcl-2, and synaptic proteins PSD-95 and Syn were assessed via Western blot. RESULTS Behavioral tests demonstrated that XNX significantly improved spatial learning and memory abilities, as well as reduced anxiety-like behaviors in AD mice. XNX also modulated inflammatory cytokines and oxidative stress markers in hippocampal tissue and serum, while reducing amyloid-β deposition. Further LC-MS analysis of serum revealed a marked upregulation of compounds such as adenosine following treatment, with key metabolic pathways affected, including linoleic acid metabolism and phenylalanine, tyrosine, and tryptophan biosynthesis. HE staining and immunofluorescence indicated that XNX ameliorated neuronal damage and decreased amyloid-β accumulation. Western blot analysis confirmed that XNX inhibited neuronal apoptosis and preserved synaptic proteins in the hippocampus. CONCLUSION XNX mitigates AD-induced behavioral and cognitive deficits by enhancing antioxidant defenses, reducing peripheral and neuroinflammation, and protecting neurons. Our findings provide valuable data and a theoretical foundation for the potential therapeutic application of XNX in AD treatment and its further development.
Collapse
Affiliation(s)
- Xipei Wu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Weijin Road, 300072 Tianjin, China
| | - Xiaojun Qiu
- Tibet Qizheng Tibetan Medicine Co., Ltd., 2 Tibet Nyingchi Deji Road, Bayi District, 860000, Linzhi City, Tibet Autonomous Region, China
| | - Shirui Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Weijin Road, 300072 Tianjin, China
| | - Nihui Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Weijin Road, 300072 Tianjin, China
| | - Lingzhuo An
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Weijin Road, 300072 Tianjin, China
| | - Peijie Song
- Tibet Qizheng Tibetan Medicine Co., Ltd., 2 Tibet Nyingchi Deji Road, Bayi District, 860000, Linzhi City, Tibet Autonomous Region, China
| | - Xia Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Weijin Road, 300072 Tianjin, China.
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Weijin Road, 300072 Tianjin, China.
| |
Collapse
|
10
|
Meng X, Zhao W, Yang R, Xu SQ, Wang SY, Li MM, Jiang YK, Hao ZC, Guan W, Kuang HX, Chen QS, Yao HY, Yan JJ, Yang BY, Liu Y. Lignans from Schisandra chinensis (Turcz.) Baill ameliorates cognitive impairment in Alzheimer's disease and alleviates ferroptosis by activating the Nrf2/FPN1 signaling pathway and regulating iron levels. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119335. [PMID: 39798677 DOI: 10.1016/j.jep.2025.119335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/27/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Schisandra chinensis (Turcz.) Baill (S. chinensis), first recorded in Shennong's Classic of the Materia Medica, is described as a "top grade medicine". As a traditional Chinese medicine of tonifying the kidneys and the brain, S. chinensis is widely used to treat diseases such as amnesia and dementia. Alzheimer's disease (AD) is a neurodegenerative disease, and ferroptosis is one of the essential causes of AD. Although previous studies have suggested that the lignans of S. chinensis (SCL) have neuroprotective effects, it is unclear whether SCL can alleviate AD pathology by inhibiting ferroptosis. AIM OF THE STUDY To investigate the effect of SCL on AD caused by ferroptosis and its possible molecular mechanism. MATERIALS AND METHODS This study was based on SAMR1/SAMP8 mouse models along with Erastin-induced HT22 cell lines to examine the influence of SCL on ferroptosis in AD. The S. chinensis was extracted via 75% EtOH-H2O and identified by HPLC/UPLC-QTOF-MS. MWM assessed spatial learning, while HE staining, biochemical detection, IHC, and WB analyzed AD pathology and iron metabolism. Mitochondrial changes were evaluated by TEM, and confocal imaging post-SCL treatment analyzed ROS, MMP, and Fe2+ levels in HT22 cells. IF determined the expression levels and localization of Nrf2 and FPN1. CETSA was deployed to study the interaction between SCL and Nrf2. RESULTS Treatment with SCL mitigated cognitive dysfunction and reduced p-Tau as well as neuronal loss in AD model mice. Additionally, the administration of SCL alleviated oxidative stress and maintained relatively intact mitochondrial ridges and membranes, decreased TFR and DMT1 protein expression, and upregulated FTH1. Consistent with the in vivo results, SCL inhibited Erastin-induced ferroptosis in HT22 cells. SCL promoted Nrf2 nuclear translocation and upregulated FPN1, SLC7A11, and GPX4 protein expressions while decreasing FACL4. The improvement of ferroptosis by SCL was associated with the regulation of the Nrf2/FPN1 signaling pathway. CONCLUSION The novel discoveries of this study suggest that SCL can suppress ferroptosis in the brains of AD model mice and exerts a partial protective effect against Erastin-induced ferroptosis in HT22 cells, in which the Nrf2/FPN1 signaling pathway plays a crucial role.
Collapse
Affiliation(s)
- Xin Meng
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin, 150040, People's Republic of China.
| | - Wei Zhao
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin, 150040, People's Republic of China.
| | - Rui Yang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin, 150040, People's Republic of China.
| | - Shi-Qi Xu
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin, 150040, People's Republic of China.
| | - Si-Yi Wang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin, 150040, People's Republic of China.
| | - Meng-Meng Li
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin, 150040, People's Republic of China.
| | - Yi-Kai Jiang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin, 150040, People's Republic of China.
| | - Zhi-Chao Hao
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin, 150040, People's Republic of China.
| | - Wei Guan
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin, 150040, People's Republic of China.
| | - Hai-Xue Kuang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin, 150040, People's Republic of China.
| | - Qing-Shan Chen
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Hong-Yan Yao
- Heilongjiang Jiren Pharmaceutical Co., LTD, Harbin, 150040, People's Republic of China.
| | - Jiu-Jiang Yan
- Heilongjiang Zbd Pharmaceutical Co., LTD, Harbin, 150060, People's Republic of China.
| | - Bing-You Yang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin, 150040, People's Republic of China.
| | - Yan Liu
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin, 150040, People's Republic of China.
| |
Collapse
|
11
|
Chen L, Shen Q, Liu Y, Zhang Y, Sun L, Ma X, Song N, Xie J. Homeostasis and metabolism of iron and other metal ions in neurodegenerative diseases. Signal Transduct Target Ther 2025; 10:31. [PMID: 39894843 PMCID: PMC11788444 DOI: 10.1038/s41392-024-02071-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/24/2024] [Accepted: 11/12/2024] [Indexed: 02/04/2025] Open
Abstract
As essential micronutrients, metal ions such as iron, manganese, copper, and zinc, are required for a wide range of physiological processes in the brain. However, an imbalance in metal ions, whether excessive or insufficient, is detrimental and can contribute to neuronal death through oxidative stress, ferroptosis, cuproptosis, cell senescence, or neuroinflammation. These processes have been found to be involved in the pathological mechanisms of neurodegenerative diseases. In this review, the research history and milestone events of studying metal ions, including iron, manganese, copper, and zinc in neurodegenerative diseases such as Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD), will be introduced. Then, the upstream regulators, downstream effector, and crosstalk of mental ions under both physiologic and pathologic conditions will be summarized. Finally, the therapeutic effects of metal ion chelators, such as clioquinol, quercetin, curcumin, coumarin, and their derivatives for the treatment of neurodegenerative diseases will be discussed. Additionally, the promising results and limitations observed in clinical trials of these metal ion chelators will also be addressed. This review will not only provide a comprehensive understanding of the role of metal ions in disease development but also offer perspectives on their modulation for the prevention or treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Leilei Chen
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Qingqing Shen
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yingjuan Liu
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yunqi Zhang
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Liping Sun
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Xizhen Ma
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Ning Song
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Junxia Xie
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China.
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China.
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China.
| |
Collapse
|
12
|
Ma M, Jing G, Tian Y, Yin R, Zhang M. Ferroptosis in Cognitive Impairment Associated with Diabetes and Alzheimer's Disease: Mechanistic Insights and New Therapeutic Opportunities. Mol Neurobiol 2025; 62:2435-2449. [PMID: 39112768 PMCID: PMC11772472 DOI: 10.1007/s12035-024-04417-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/30/2024] [Indexed: 01/28/2025]
Abstract
Cognitive impairment associated with diabetes and Alzheimer's disease has become a major health issue affecting older individuals, with morbidity rates growing acutely each year. Ferroptosis is a novel form of cell death that is triggered by iron-dependent lipid peroxidation. A growing body of evidence suggests a strong correlation between the progression of cognitive impairment and diabetes, Alzheimer's disease, and ferroptosis. The pharmacological modulation of ferroptosis could be a promising therapeutic intervention for cognitive impairment associated with diabetes and Alzheimer's disease. In this review, we summarize evidence on ferroptosis in the context of cognitive impairment associated with diabetes and Alzheimer's disease and provide detailed insights into the function and potential action pathways of ferroptosis. Furthermore, we discuss the therapeutic importance of natural ferroptosis products in improving the cognitive impairment associated with diabetes and Alzheimer's disease and provide new insights for clinical treatment.
Collapse
Affiliation(s)
- Mei Ma
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Guangchan Jing
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yue Tian
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Ruiying Yin
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Mengren Zhang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
13
|
Jiang X, Yu X, Zhu Z, Lyu Y, Jiang X, Liu Z, Cao J, Xiao M. Shenling Baizhu San improves spermatogenic dysfunction in hyperuricemia mice by regulating Sirt3/Nrf2 to inhibit testicular ferroptosis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119310. [PMID: 39743187 DOI: 10.1016/j.jep.2024.119310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/24/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The effect of hyperuricemia (HUA) on testicular spermatogenesis cannot be ignored. The classical Chinese medicine compound Shenling Baizhu San (SLBZS) can reduce uric acid and improve testicular spermatogenesis, while researchers have not well explored the related pathology and pharmacodynamic mechanism have. AIMS OF STUDY To investigate whether the dysfunction of testicular spermatogenesis caused by HUA and the therapeutic effect of SLBZS are related to testicular cell ferroptosis. MATERIALS AND METHODS C57BL/6 mice and C57BL/6 background Sirt3-/- mice were induced by oxazinate potassium (OXO), and HUA spermatogenic dysfunction mice model were constructed and treated with SLBZS. Sperm quality detection and testicular histopathology served for evaluating the protective mechanism of SLBZS against testicular spermatogenesis in HUA mice. Biochemical detection, transmission electron microscopy, immunohistochemistry and immunofluorescence were used to evaluate ferroptosis level of testicular cells. Western blot analysis assisted in verifying the expression of the corresponding pathway proteins. RESULTS The testes of mice with HUA spermatogenic dysfunction were subjected to OXO-induced oxidative stress and ferroptosis, and the Sirt3/Nrf2 pathway-related protein expressions were changed. SLBZS improved the testes of mice with HUA spermatogenic dysfunction in terms of their spermatogenic function, oxidative stress and ferroptosis, and promoted Sirt3/Nrf2 antioxidant pathway-related proteins to be expressed. The analysis of Sirt3-/- mice was modeled and dosed, and it was found that SLBZS could not improve the spermatogenic function, oxidative stress and ferroptosis of Sirt3-deficient model mice' testes. CONCLUSIONS OXO-induced spermatogenic dysfunction in HUA is associated with ferroptosis of testicular cells. SLBZS can be used for treating spermatogenic dysfunction in HUA possibly by activating Sirt3/Nrf2 signaling pathway, which inhibits ferroptosis due to oxidative stress.
Collapse
Affiliation(s)
- Xiaocui Jiang
- Laboratory Animal Research Center, Hubei University of Chinese Medicine, Wuhan, China; Hubei Shizhen Laboratory, Wuhan, China
| | - Xiaoming Yu
- Hubei Shizhen Laboratory, Wuhan, China; School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhongyi Zhu
- School of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Yinjuan Lyu
- Hubei Shizhen Laboratory, Wuhan, China; School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Xingyu Jiang
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Zihao Liu
- School of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Jigang Cao
- Hubei Shizhen Laboratory, Wuhan, China; School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China.
| | - Min Xiao
- Laboratory Animal Research Center, Hubei University of Chinese Medicine, Wuhan, China; Hubei Shizhen Laboratory, Wuhan, China.
| |
Collapse
|
14
|
Meng W, Chao W, Kaiwei Z, Sijia M, Jiajia S, Shijie X. Bioactive compounds from Chinese herbal plants for neurological health: mechanisms, pathways, and functional food applications. Front Nutr 2025; 12:1537363. [PMID: 39957765 PMCID: PMC11825344 DOI: 10.3389/fnut.2025.1537363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 01/20/2025] [Indexed: 02/18/2025] Open
Abstract
Neurological disorders pose significant global public health challenges, with a rising prevalence and complex pathophysiological mechanisms that impose substantial social and economic burdens. Traditional Chinese Medicine (TCM), with its holistic approach and multi-target effects, has gained increasing attention in the treatment of neurological diseases. This review explores bioactive compounds derived from Chinese herbal plants, focusing on their mechanisms of action, underlying pathways, and potential applications in functional food development. The review highlights the neuroprotective properties of flavonoids, alkaloids, polysaccharides, and polyphenols found in key TCM herbs such as Scutellaria baicalensis, Salvia miltiorrhiza, Ligusticum chuanxiong, and Gastrodia elata. These compounds have demonstrated significant anti-inflammatory, antioxidant, and neurogenic effects, making them promising candidates for the prevention and treatment of neurological conditions, including Alzheimer's disease (AD), Parkinson's disease (PD), and depression. Furthermore, the synergistic effects of TCM formulations targeting multiple signaling pathways offer advantages over single-target therapies, especially in combating neurodegenerative diseases. The review also discusses the challenges and future directions for integrating these bioactive compounds into functional foods and dietary supplements, aiming to improve neurological health and enhance clinical outcomes. Ultimately, this work aims to provide valuable insights into the potential of TCM-based interventions for promoting neurological well-being and addressing the global burden of neurological disorders.
Collapse
Affiliation(s)
- Wang Meng
- Institute of Basic Theory of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wang Chao
- Institute of Basic Theory of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhao Kaiwei
- Institute of Basic Theory of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ma Sijia
- Institute of Basic Theory of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Sang Jiajia
- Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Xu Shijie
- Institute of Basic Theory of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
15
|
Han Y, Li W, Duan H, Jia N, Liu J, Zhang H, Song W, Li M, He Y, Wu C, He Y. Ligustrazine hydrochloride Prevents Ferroptosis by Activating the NRF2 Signaling Pathway in a High-Altitude Cerebral Edema Rat Model. Int J Mol Sci 2025; 26:1110. [PMID: 39940878 PMCID: PMC11817441 DOI: 10.3390/ijms26031110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 01/19/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
High-altitude cerebral edema (HACE) is a disorder caused by low pressure and hypoxia at high altitudes. Nevertheless, as of now, there is still a scarcity of safe and effective prevention and treatment methods. The active component of Ligusticum Chuanxiong, namely Ligustrazine hydrochloride (LH), has shown potential in the prevention and treatment of HACE due to its anti-inflammatory, antioxidant, and neuroprotective effects in nervous system disorders. Consequently, the potential protective effect of LH on HACE and its mechanism still need to be further explored. Prior to modeling, 90 male Sprague-Dawley rats were pretreated with different doses of drugs, including LH (100 mg/kg and 50 mg/kg), dexamethasone (4 mg/kg), and ML385 (30 mg/kg). Subsequently, the pretreated rats were placed in a low-pressure anoxic chamber simulating a plateau environment to establish the rat HACE model. The effects and mechanisms of LH on HACE rats were further elucidated through determination of brain water content, HE staining, ELISA, immunofluorescence, molecular docking, molecular dynamics simulation, western blot, and other techniques. The results showed, first of all, that LH pretreatment can effectively reduce brain water content; down-regulate the expression of AQP4, HIF-1α, and VEGF proteins; and alleviate damage to brain tissue and nerve cells. Secondly, compared with the HACE group, LH pretreatment can significantly reduce MDA levels and increase GSH and SOD levels. Additionally, LH decreased the levels of inflammatory factors IL-1β, IL-6, and TNF-α; reduced total iron content in brain tissue; increased the expression of ferroptosis-related proteins such as SLC7A11, GPX4, and FTH1; and alleviated ferroptosis occurrence. Molecular docking and molecular dynamics simulations show that LH has a strong binding affinity for NRF2 signaling. Western blot analysis further confirmed that LH promotes the translocation of NRF2 from the cytoplasm to the nucleus and activates the NRF2 signaling pathway to exert an antioxidant effect. The NRF2 inhibitor ML385 can reverse the anti-oxidative stress effect of LH and its protective effect on HACE rat brain tissue. In summary, LH may have a protective effect on HACE rats by activating the NRF2 signaling pathway, inhibiting ferroptosis, and resisting oxidative stress.
Collapse
Affiliation(s)
- Yue Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.H.); (H.D.); (H.Z.); (W.S.); (M.L.); (Y.H.)
| | - Wenting Li
- Department of Pharmacy, The Eighth Clinical College, Sun Yat-sen University, No. 3025, Shennan Middle Rd., Futian District, Shenzhen 518033, China;
| | - Huxinyue Duan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.H.); (H.D.); (H.Z.); (W.S.); (M.L.); (Y.H.)
| | - Nan Jia
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; (N.J.); (J.L.)
| | - Junling Liu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; (N.J.); (J.L.)
| | - Hongying Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.H.); (H.D.); (H.Z.); (W.S.); (M.L.); (Y.H.)
| | - Wenqian Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.H.); (H.D.); (H.Z.); (W.S.); (M.L.); (Y.H.)
| | - Meihui Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.H.); (H.D.); (H.Z.); (W.S.); (M.L.); (Y.H.)
| | - Yang He
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.H.); (H.D.); (H.Z.); (W.S.); (M.L.); (Y.H.)
| | - Chunjie Wu
- Innovative Institute of Chinese Medicine and Pharmacy, Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yacong He
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.H.); (H.D.); (H.Z.); (W.S.); (M.L.); (Y.H.)
| |
Collapse
|
16
|
Xu A, Yuan K, Xue S, Lu W, Wu X, Liu W, Xue Q, Liu L, Hu J, Guo L, Zhang Y, Hu X, Chun Wong GT, Lu L, Huang C. Laminin-dystroglycan mediated ferroptosis in hemorrhagic shock and reperfusion induced-cognitive impairment through AMPK/Nrf2. Free Radic Biol Med 2025; 230:1-16. [PMID: 39864758 DOI: 10.1016/j.freeradbiomed.2025.01.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/01/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
Hemorrhagic shock and reperfusion (HSR) is the main cause of death following trauma. Cognitive impairment may persist after successful resuscitation from hemorrhagic shock, but the mechanisms remain elusive. This study demonstrated the presence of ferroptosis in an in vitro model of oxygen-glucose deprivation and reoxygenation (OGD/R) in HT22 neurons, and also in a murine model of HSR using 3-month-old C57BL/6 mice. The ferroptosis induced by OGD/R was characterized by transmission electron microscopy, the localization of FTH1 and TFR1 in HT22 cells. However, neuronal ferroptosis was prevented by suppressing AMPK through siRNA transfection or AMPK inhibitor pretreatment (compound C) in vitro. There was a consistent increase in Nrf2 with ROS accumulation, iron deposition, and lipid peroxidation in the hippocampal neurons and tissues. Nrf2 knockdown or overexpression significantly modulated OGD/R induced-ferroptosis. Activating ferroptosis by erastin (a ferroptosis inducer) or inhibiting it by ferrostatin-1 (a ferroptosis inhibitor) respectively enhanced or mitigated cognitive deficits as well as the ferroptosis-related changes induced by HSR. In addition to the improved cognition, single-nucleus transcriptome analysis of ipsilateral hippocampi from Nrf2-/- mice demonstrated the broad decrease of ferroptosis in neuronal cell clusters. LAMA2 and DAG1 were dominantly elevated and co-localized in the hippocampal CA3 region of Nrf2-/- mice by fluorescence in situ hybridization. The activation of astrocytes was significantly attenuated after Nrf2 knockout, associated with the increases of laminin-dystroglycan during astrocyte-neuron crosstalk. Thus, data from this study proposes a novel explanation, namely laminin-dystroglycan interactions during astrocytes-neurons crosstalk stimulating AMPK and Nrf2 induced neuronal ferroptosis, for the development of cognitive impairment after HSR.
Collapse
Affiliation(s)
- Aoxue Xu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei City, Anhui Province, China
| | - Kai Yuan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), China; National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Song Xue
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei City, Anhui Province, China
| | - Wenping Lu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei City, Anhui Province, China
| | - Xiaoli Wu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei City, Anhui Province, China
| | - Wei Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China
| | - Qi Xue
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei City, Anhui Province, China
| | - Lulu Liu
- Department of Anesthesiology, Tongzhou Maternal and Child Health Hospital of Beijing, Beijing, China
| | - Jia Hu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei City, Anhui Province, China
| | - Liyuan Guo
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ye Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei City, Anhui Province, China
| | - Xianwen Hu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei City, Anhui Province, China
| | - Gordon Tin Chun Wong
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China.
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), China; National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China; National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China.
| | - Chunxia Huang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei City, Anhui Province, China; Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
17
|
Chen D, Sun Y. Current Status of Plant-Based Bioactive Compounds as Therapeutics in Alzheimer's Diseases. J Integr Neurosci 2025; 24:23090. [PMID: 39862001 DOI: 10.31083/jin23090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 01/27/2025] Open
Abstract
Alzheimer's disease (AD) is a common central neurodegenerative disease disorder characterized primarily by cognitive impairment and non-cognitive neuropsychiatric symptoms that significantly impact patients' daily lives and behavioral functioning. The pathogenesis of AD remains unclear and current Western medicines treatment are purely symptomatic, with a singular pathway, limited efficacy, and substantial toxicity and side effects. In recent years, as research into AD has deepened, there has been a gradual increase in the exploration and application of medicinal plants for the treatment of AD. Numerous studies have shown that medicinal plants and their active ingredients can potentially mitigate AD by regulating various molecular mechanisms, including the production and aggregation of pathological proteins, oxidative stress, neuroinflammation, apoptosis, mitochondrial dysfunction, neurogenesis, neurotransmission, and the brain-gut microbiota axis. In this review, we analyzed the pathogenesis of AD and comprehensively summarized recent advancements in research on medicinal plants for the treatment of AD, along with their underlying mechanisms and clinical evidence. Ultimately, we aimed to provide a reference for further investigation into the specific mechanisms through which medicinal plants prevent and treat AD, as well as for the identification of efficacious active ingredients derived from medicinal plants.
Collapse
Affiliation(s)
- Dan Chen
- Department of General Medicine, The Second Affiliated Hospital of Dalian Medical University, 116023 Dalian, Liaoning, China
| | - Yun Sun
- Department of General Medicine, The Second Affiliated Hospital of Dalian Medical University, 116023 Dalian, Liaoning, China
| |
Collapse
|
18
|
Xiong R, Liu H, Zhang S, Wang L, Liu L, Pan S, Zhang Y, Zhu F, Liu Y, Lai X. Integrating network pharmacology and experimental verification to reveal the ferroptosis-associated mechanism of Changpu-Yizhi-Wan in the treatment of Alzheimer's disease. Metab Brain Dis 2025; 40:106. [PMID: 39820731 DOI: 10.1007/s11011-024-01504-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 12/12/2024] [Indexed: 01/19/2025]
Abstract
To explore the pharmacological mechanism of Changpu-Yizhi-Wan (CYW) in the treatment of Alzheimer's disease (AD) from the perspective of ferroptosis based on network pharmacology and experimental verification. The Encyclopedia of Traditional Chinese Medicine 2.0 (ETCM2.0) database was used to collect the active components of CYW, and the putative targets were predicted in ETCM2.0 and SwissTargetPrediction database. The AD related targets were collected from GeneCards, comparative toxicogenomics database (CTD), Online Mendelian Inheritance in Man (OMIM), DisGeNET and Therapeutic Target Database (TTD), the ferroptosis related targets were collected from FerrDb V2 database, and the common targets of CYW, AD and ferroptosis were calculated by Venny2.1 platform. Protein-protein interaction (PPI) analysis was performed by STRING database, and the active compounds-target network and the PPI network were constructed using Cytoscape software. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome pathway enrichment analysis were performed through DAVID database. RSL3 was used to induce HT22 cells to establish a neuronal ferroptosis cell model, and the inhibitory effect of CYW on neuronal ferroptosis was evaluated by cell viability assay, intracellular iron assay and lipid peroxidation staining. The ferroptosis-associated key protein expressions of Nrf2, SLC7A11, GPX4 and FTH1 were detected by Western blot. A total of 100 candidate compounds were identified from CYW, and 1129 putative targets were obtained. 3924 AD-related targets and 564 ferroptosis-related targets were collected, respectively. There were 78 common targets between them and CYW targets, which were potential targets for CYW to regulate ferroptosis in the treatment of AD. PPI network analysis identified 10 key targets, including TP53, IL6, STAT3, HIF1A, NFE2L2, and others. GO, KEGG and Reactome enrichment analysis showed that 78 potential targets were involved in the regulation of ferroptosis and Nrf2-mediated gene transcription. Molecular docking showed that some active components of CYW had good affinity with Nrf2. In RSL3-induced HT22 cells, CYW significantly improved cell viability, reduced intracellular iron levels and inhibited lipid peroxidation, and improved the protein expression of Nrf2, SLC7A11, GPX4 and FTH1. The pharmacological mechanism of CYW in the treatment of AD may be related to the regulation of Nrf2/SLC7A11/GPX4/FTH1 axis to inhibit neuronal ferroptosis.
Collapse
Affiliation(s)
- Rui Xiong
- Department of Pharmacy, Jiangbei Campus of The First Affiliated Hospital of Army Medical University (No. 958 Hospital of PLA Army), Chongqing, 400020, China
| | - Hengxu Liu
- Department of Pharmacy, Jiangbei Campus of The First Affiliated Hospital of Army Medical University (No. 958 Hospital of PLA Army), Chongqing, 400020, China
| | - Shipeng Zhang
- Department of Pharmacy, Jiangbei Campus of The First Affiliated Hospital of Army Medical University (No. 958 Hospital of PLA Army), Chongqing, 400020, China
| | - Lu Wang
- Department of Pharmacy, Jiangbei Campus of The First Affiliated Hospital of Army Medical University (No. 958 Hospital of PLA Army), Chongqing, 400020, China
| | - Lu Liu
- Department of Pharmacy, Jiangbei Campus of The First Affiliated Hospital of Army Medical University (No. 958 Hospital of PLA Army), Chongqing, 400020, China
| | - Sicen Pan
- Department of Pharmacy, Jiangbei Campus of The First Affiliated Hospital of Army Medical University (No. 958 Hospital of PLA Army), Chongqing, 400020, China
| | - Yu Zhang
- Department of Pharmacy, Jiangbei Campus of The First Affiliated Hospital of Army Medical University (No. 958 Hospital of PLA Army), Chongqing, 400020, China
| | - Fengying Zhu
- Department of Pharmacy, Jiangbei Campus of The First Affiliated Hospital of Army Medical University (No. 958 Hospital of PLA Army), Chongqing, 400020, China
| | - Yao Liu
- Department of Pharmacy, Daping Hospital, Army Medical University, 400042, Chongqing, China.
| | - Xiaodan Lai
- Department of Pharmacy, Jiangbei Campus of The First Affiliated Hospital of Army Medical University (No. 958 Hospital of PLA Army), Chongqing, 400020, China.
| |
Collapse
|
19
|
Li Z, Lu Y, Zhen Y, Jin W, Ma X, Yuan Z, Liu B, Zhou XL, Zhang L. Avicularin inhibits ferroptosis and improves cognitive impairments in Alzheimer's disease by modulating the NOX4/Nrf2 axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156209. [PMID: 39515096 DOI: 10.1016/j.phymed.2024.156209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/16/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a widespread neurodegenerative disorder for which effective therapies remain elusive, primarily due to the complexity of its underlying pathophysiology. In recent years, natural products have gained attention for their therapeutic potential in AD, owing to their multi-targeted actions and low toxicity profiles. Avicularin (Avi), a flavonoid derived from the peels of Zanthoxylum bungeanum Maxim., has shown promise as an anti-AD agent. However, the specific mechanisms by which Avi mitigates oxidative stress and inhibits ferroptosis in AD models remain insufficiently understood. Further investigation is required to elucidate its therapeutic potential in these pathways. PURPOSE Therefore, this study aims to elucidate the neuroprotective effects of Avi in AD by investigating its impact on the NOX4/Nrf2 signaling pathway, as well as its role in modulating oxidative stress and ferroptosis. METHODS In this study, an in vitro H2O2-induced oxidative stress model in SH-SY5Y cells was utilized to evaluate the pharmacological efficacy and underlying mechanisms of Avi. Molecular docking, cellular thermal shift assay and bio-layer interferometry assays were conducted to identify potential molecular targets of Avi. Additionally, in vivo models, including scopolamine (SCOP)-induced and APP/PS1 transgenic mice, were employed to assess the cognitive effects of Avi and further explore its associated molecular mechanisms. RESULTS Our study demonstrates that Avi effectively attenuates H2O2-induced toxicity in SH-SY5Y cells by reducing apoptosis and enhancing cellular antioxidant defenses. This neuroprotective effect is mediated through the inhibition of NOX4 and the promotion of Nrf2 nuclear translocation. Furthermore, Avi improves cognitive function and mitigates ferroptosis in both SCOP-induced and APP/PS1 transgenic mouse models of AD. CONCLUSION Avi emerges as an effective neuroprotective agent against AD, offering a promising therapeutic approach by targeting the NOX4/Nrf2 signaling axis to alleviate oxidative stress and ferroptosis.
Collapse
Affiliation(s)
- Zixiang Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; Key Laboratory of Advanced Technologies of Material, Minister of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yingying Lu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yongqi Zhen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenke Jin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xuelan Ma
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ziyue Yuan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Bo Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xian-Li Zhou
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
20
|
Yan X, Bai X, Sun G, Duan Z, Fu R, Zeng W, Zhu C, Fan D. Ginsenoside compound K alleviates brain aging by inhibiting ferroptosis through modulation of the ASK1-MKK7-JNK signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156239. [PMID: 39547099 DOI: 10.1016/j.phymed.2024.156239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/26/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Aging of the brain is a major contributor to the onset and progression of neurodegenerative diseases. Conventional treatments for these diseases are often limited by significant side effects and a lack of efficacy in halting disease progression. Ginsenoside compound K (CK), a bioactive secondary metabolite derived from ginseng, has shown promise because of its potent antioxidant properties. PURPOSE This study aimed to elucidate the molecular mechanisms underlying the impact of CK on brain senescence, with a particular focus on its role in modulating oxidative stress and related signaling pathways. METHODS We employed a d-galactose (D-gal)-induced PC-12 senescent cell model and a mouse brain aging model to explore the antioxidant properties of CK in the context of brain aging. The effects of CK on mitochondrial dysfunction associated with brain aging were assessed using immunofluorescence and western blotting techniques. The potential molecular mechanisms by CK influences brain aging were investigated using transcriptomic analysis and western blotting. Additionally, CK's regulatory effect on apoptosis signal-regulating kinase 1 (ASK1) was validated by molecular docking, microscale thermophoresis, and small interfering RNA transfection. RESULTS Our findings demonstrate that CK effectively alleviates cognitive decline associated with brain aging. CK reduces the number of senescent cells, alleviates neuronal damage, and enhances the activity of key antioxidant enzymes, including catalase, superoxide dismutase, and glutathione peroxidase. Additionally, CK restores mitochondrial function and upregulated the expression of solute carrier family 7 member 11 and glutathione peroxidase 4, thereby inhibiting ferroptosis. Furthermore, CK targets ASK1 and suppresses the hyperphosphorylation of MAPK kinase 7 (MKK7) and c-Jun N-terminal kinase (JNK). This suppression promotes the nuclear accumulation of nuclear factor erythroid 2-related factor 2 (Nrf2), effectively reducing ferroptosis and oxidative damage linked to brain aging. CONCLUSION In summary, our research demonstrates that CK effectively delays brain aging by inhibiting the ASK1-MKK7-JNK signaling pathway, enhancing nuclear Nrf2 expression, and suppressing the ferroptosis response. These findings highlight CK as a promising therapeutic agent for slowing brain aging and alleviating neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaojun Yan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China
| | - Xue Bai
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Guanghui Sun
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China
| | - Zhiguang Duan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China
| | - Rongzhan Fu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China
| | - Wen Zeng
- Honghui Hospital, Xi' an Jiaotong University 710054, China
| | - Chenhui Zhu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China.
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China.
| |
Collapse
|
21
|
Zhang G, Hu F, Huang T, Ma X, Cheng Y, Liu X, Jiang W, Dong B, Fu C. The recent development, application, and future prospects of muscle atrophy animal models. MEDCOMM – FUTURE MEDICINE 2024; 3. [DOI: 10.1002/mef2.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/01/2024] [Indexed: 01/06/2025]
Abstract
AbstractMuscle atrophy, characterized by the loss of muscle mass and function, is a hallmark of sarcopenia and cachexia, frequently associated with aging, malignant tumors, chronic heart failure, and malnutrition. Moreover, it poses significant challenges to human health, leading to increased frailty, reduced quality of life, and heightened mortality risks. Despite extensive research on sarcopenia and cachexia, consensus in their assessment remains elusive, with inconsistent conclusions regarding their molecular mechanisms. Muscle atrophy models are crucial tools for advancing research in this field. Currently, animal models of muscle atrophy used for clinical and basic scientific studies are induced through various methods, including aging, genetic editing, nutritional modification, exercise, chronic wasting diseases, and drug administration. Muscle atrophy models also include in vitro and small organism models. Despite their value, each of these models has certain limitations. This review focuses on the limitations and diverse applications of muscle atrophy models to understand sarcopenia and cachexia, and encourage their rational use in future research, therefore deepening the understanding of underlying pathophysiological mechanisms, and ultimately advancing the exploration of therapeutic strategies for sarcopenia and cachexia.
Collapse
Affiliation(s)
- Gongchang Zhang
- Geriatric Health Care and Medical Research Center West China Hospital, Sichuan University Chengdu Sichuan Province China
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
| | - Fengjuan Hu
- Geriatric Health Care and Medical Research Center West China Hospital, Sichuan University Chengdu Sichuan Province China
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
| | - Tingting Huang
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
| | - Xiaoqing Ma
- Longkou People Hospital Longkou Shandong Province China
| | - Ying Cheng
- Geriatric Health Care and Medical Research Center West China Hospital, Sichuan University Chengdu Sichuan Province China
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
| | - Xiaolei Liu
- Geriatric Health Care and Medical Research Center West China Hospital, Sichuan University Chengdu Sichuan Province China
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
| | - Wenzhou Jiang
- Longkou People Hospital Longkou Shandong Province China
| | - Birong Dong
- Geriatric Health Care and Medical Research Center West China Hospital, Sichuan University Chengdu Sichuan Province China
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
| | - Chenying Fu
- Geriatric Health Care and Medical Research Center West China Hospital, Sichuan University Chengdu Sichuan Province China
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
- Department of Laboratory of Aging and Geriatric Medicine National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University Chengdu Sichuan Province China
| |
Collapse
|
22
|
Zhou Z, Yu Y, Miao J, Wang G, Wang Y, Wang T, Ji H, Tan L. Research Progress of Traditional Chinese Medicine in Treating Central Nervous System Diseases by Modulating Ferroptosis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1989-2019. [PMID: 39558555 DOI: 10.1142/s0192415x24500770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
A newly proposed form of programmed cell death, ferroptosis, is distinct in cellular morphology, biochemical characteristics, and genetic characteristics from apoptosis, autophagy, and necrosis. Its mechanisms primarily encompass iron overload, lipid peroxidation, and amino acid metabolisms. Extensive research confirms that ferroptosis is linked to the onset and progression of various diseases that pose a threat to the central nervous system (CNS), offering new directions and targets for the mechanistic study and pharmacotherapy of CNS diseases. Traditional Chinese Medicine (TCM), encompassing herbal medicines (extracts, compound formulations, injections, etc.), acupuncture, and moxibustion, boasts advantages over other treatments, such as multi-pathway and multi-target approaches and high safety. TCM has also demonstrated good efficacy in treating CNS diseases. Numerous studies indicate that TCM can modulate ferroptosis to treat CNS diseases, showing promising research prospects. This paper briefly outlines the pathways and mechanisms of ferroptosis and systematically summarizes the current status and progress of TCM in regulating various CNS diseases through the ferroptosis pathway, providing new insights and directions for future TCM treatments of CNS diseases.
Collapse
Affiliation(s)
- Zhiyu Zhou
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Yajun Yu
- Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Jingchao Miao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, P. R. China
| | - Guan Wang
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Yixi Wang
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Tianlin Wang
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Hongchang Ji
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, P. R. China
| | - Lijun Tan
- Tianjin First Hospital, Tianjin, P. R. China
| |
Collapse
|
23
|
Sun D, Li X, Xu S, Cao S, Quan Y, Cui S, Xu D. Dazhu Hongjingtian injection attenuated alcohol-induced depressive symptoms by inhibiting hippocampus oxidative stress and inflammation through Nrf2/HO-1/NLRP3 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118564. [PMID: 38996946 DOI: 10.1016/j.jep.2024.118564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/18/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alcoholic depression, a disorder of the central nervous system, is characterized by alcohol abuse, which causes blood-brain barrier disruption and oxidative damage in the brain. The rhizome of Rhodiola crenulate, from which Dazhu Hongjingtian Injection (DZHJTI) is derived, has been traditionally employed in ethnopharmacology to treat neurological disorders due to its neuroprotective, anti-inflammatory, and antioxidant properties. However, the exact mechanism by which DZHJTI alleviates alcoholic depression remains unclear. AIM OF THE STUDY This study aimed to investigate the antidepressant effects of DZHJTI and its underlying mechanisms in a mouse model of alcohol-induced depression. MATERIALS AND METHODS A model of alcoholic depression was established using C57BL/6J mice, and the effects of DZHJTI on depression-like behaviors induced by alcohol exposure were assessed through behavioral experiments. Histopathological examination was conducted to observe nerve cell damage and microglial activation in the hippocampal region. Oxidative stress indices in the hippocampus, inflammatory factors, and serum levels of dopamine (DA) and 5-hydroxytryptamine (5-HT) were measured using ELISA. Expression of proteins related to the Nrf2/HO-1/NLRP3 signaling pathway was determined by Western blot analysis. RESULTS DZHJTI attenuated depression-like behaviors, neuronal cell damage, oxidative stress levels, inflammatory responses, and microglial activation. It also restored levels of brain-derived neurotrophic factor, brain myelin basic protein, DA, and 5-HT in mice with chronic alcohol exposure. After DZHJTI treatment, the expressions of Nuclear Respiratory Factor 2 (Nrf2) and Heme Oxygenase-1 (HO-1) increased in the hippocampus, whereas the levels of NOD-like receptor thermal protein domain-associated protein 3 (NLRP3), apoptosis-associated speck-like protein containing CARD, cleaved caspase-1, interleukin (IL)-1β, and IL-18 decreased. CONCLUSIONS DZHJTI ameliorates alcohol-induced depressive symptoms in mice through its antioxidant and anti-inflammatory effects, involving mechanisms associated with the Nrf2/HO-1/NLRP3 signaling pathway. This study highlights the potential of DZHJTI as a therapeutic option for alcohol-related depression and suggests the scope for future research to further elucidate its mechanisms and broader clinical applications.
Collapse
Affiliation(s)
- Dingchun Sun
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China
| | - Xiangdan Li
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China
| | - Songji Xu
- Department of Preventive Medicine, School of Medicine, Yanbian University, Yanji, China
| | - Shuxia Cao
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China
| | - Yingshi Quan
- Department of Anesthesiology, Yanbian University Hospital, Yanji, Jilin, China
| | - Songbiao Cui
- Department of Neurology, Yanbian University Hospital, Yanji, Jilin, China.
| | - Dongyuan Xu
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China.
| |
Collapse
|
24
|
Ru Q, Li Y, Chen L, Wu Y, Min J, Wang F. Iron homeostasis and ferroptosis in human diseases: mechanisms and therapeutic prospects. Signal Transduct Target Ther 2024; 9:271. [PMID: 39396974 PMCID: PMC11486532 DOI: 10.1038/s41392-024-01969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/08/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Iron, an essential mineral in the body, is involved in numerous physiological processes, making the maintenance of iron homeostasis crucial for overall health. Both iron overload and deficiency can cause various disorders and human diseases. Ferroptosis, a form of cell death dependent on iron, is characterized by the extensive peroxidation of lipids. Unlike other kinds of classical unprogrammed cell death, ferroptosis is primarily linked to disruptions in iron metabolism, lipid peroxidation, and antioxidant system imbalance. Ferroptosis is regulated through transcription, translation, and post-translational modifications, which affect cellular sensitivity to ferroptosis. Over the past decade or so, numerous diseases have been linked to ferroptosis as part of their etiology, including cancers, metabolic disorders, autoimmune diseases, central nervous system diseases, cardiovascular diseases, and musculoskeletal diseases. Ferroptosis-related proteins have become attractive targets for many major human diseases that are currently incurable, and some ferroptosis regulators have shown therapeutic effects in clinical trials although further validation of their clinical potential is needed. Therefore, in-depth analysis of ferroptosis and its potential molecular mechanisms in human diseases may offer additional strategies for clinical prevention and treatment. In this review, we discuss the physiological significance of iron homeostasis in the body, the potential contribution of ferroptosis to the etiology and development of human diseases, along with the evidence supporting targeting ferroptosis as a therapeutic approach. Importantly, we evaluate recent potential therapeutic targets and promising interventions, providing guidance for future targeted treatment therapies against human diseases.
Collapse
Affiliation(s)
- Qin Ru
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Chen
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China.
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
25
|
Li S, Yang J. Pathogenesis of Alzheimer's disease and therapeutic strategies involving traditional Chinese medicine. RSC Med Chem 2024; 15:d4md00660g. [PMID: 39430949 PMCID: PMC11484936 DOI: 10.1039/d4md00660g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
Alzheimer's disease (AD) is a prevalent degenerative disorder affecting the central nervous system of the elderly. Patients primarily manifest cognitive decline and non-cognitive neuro-psychiatric symptoms. Currently, western medications for AD primarily include cholinesterase inhibitors and glutamate receptor inhibitors, which have limited efficacy and accompanied by significant toxic side effects. Given the intricate pathogenesis of AD, the use of single-target inhibitors is limited. In recent years, as research on AD has progressed, traditional Chinese medicine (TCM) and its active ingredients have increasingly played a crucial role in clinical treatment. Numerous studies demonstrate that TCM and its active ingredients can exert anti-Alzheimer's effects by modulating pathological protein production and deposition, inhibiting tau protein hyperphosphorylation, apoptosis, inflammation, and oxidative stress, while enhancing the central cholinergic system, protecting neurons and synapses, and optimizing energy metabolism. This article summarizes extracts from TCM and briefly elucidates their pharmacological mechanisms against AD, aiming to provide a foundation for further research into the specific mechanisms of TCM in the prevention and treatment of the disease, as well as the identification of efficacious active ingredients.
Collapse
Affiliation(s)
- Shutang Li
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine Qingdao 266041 China
| | - Jinfei Yang
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine Qingdao 266041 China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences Qingdao 266113 China
| |
Collapse
|
26
|
Chu X, Liu S, Qu B, Xin Y, Lu L. Salidroside may target PPARα to exert preventive and therapeutic activities on NASH. Front Pharmacol 2024; 15:1433076. [PMID: 39415834 PMCID: PMC11479876 DOI: 10.3389/fphar.2024.1433076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Background Salidroside (SDS), a phenylpropanoid glycoside, is an antioxidant component isolated from the traditional Chinese medicine Rhodiola rosea and has multifunctional bioactivities, particularly possessing potent hepatoprotective function. Non-alcoholic steatohepatitis (NASH) is one of the most prevalent chronic liver diseases worldwide, but it still lacks efficient drugs. This study aimed to assess the preventive and therapeutic effects of SDS on NASH and its underlying mechanisms in a mouse model subjected to a methionine- and choline-deficient (MCD) diet. Methods C57BL/6J mice were fed an MCD diet to induce NASH. During or after the formation of the MCD-induced NASH model, SDS (24 mg/kg/day) was supplied as a form of diet for 4 weeks. The histopathological changes were evaluated by H&E staining. Oil Red O staining and Sirius Red staining were used to quantitatively determine the lipid accumulation and collagen fibers in the liver. Serum lipid and liver enzyme levels were measured. The morphology of autophagic vesicles and autophagosomes was observed by transmission electron microscopy (TEM), and qRT-PCR and Western blotting were used to detect autophagy-related factor levels. Immunohistochemistry and TUNEL staining were used to evaluate the apoptosis of liver tissues. Flow cytometry was used to detect the composition of immune cells. ELISA was used to evaluate the expression of serum inflammatory factors. Transcript-proteome sequencing, molecular docking, qRT-PCR, and Western blotting were performed to explore the mechanism and target of SDS in NASH. Results The oral administration of SDS demonstrated comprehensive efficacy in NASH. SDS showed both promising preventive and therapeutic effects on NASH in vivo. SDS could upregulate autophagy, downregulate apoptosis, rebalance immunity, and alleviate inflammation to exert anti-NASH properties. Finally, the results of transcript-proteome sequencing, molecular docking evaluation, and experimental validation showed that SDS might exert its multiple effects through targeting PPARα. Conclusion Our findings revealed that SDS could regulate liver autophagy and apoptosis, regulating both innate immunity and adaptive immunity and alleviating inflammation in NASH prevention and therapy via the PPAR pathway, suggesting that SDS could be a potential anti-NASH drug in the future.
Collapse
Affiliation(s)
- Xueru Chu
- Department of Infectious Disease, Qingdao Municipal Hospital, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao, China
| | - Shousheng Liu
- Clinical Research Center, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Baozhen Qu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Yongning Xin
- Department of Infectious Disease, Qingdao Municipal Hospital, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao, China
| | - Linlin Lu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
27
|
Zhang Y, Luo C, Huang P, Cheng Y, Ma Y, Gao J, Ding H. Diosmetin Ameliorates HFD-induced Cognitive Impairments via Inhibiting Metabolic Disorders, Mitochondrial Dysfunction and Neuroinflammation in Male SD Rats. Mol Neurobiol 2024; 61:8069-8085. [PMID: 38460078 DOI: 10.1007/s12035-024-04083-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/28/2024] [Indexed: 03/11/2024]
Abstract
Currently, accumulating evidence has indicated that overnutrition-associated obesity may result in not only metabolic dysregulations, but also cognitive impairments. This study aimed to investigate the protective effects of Diosmetin, a bioflavonoid compound with multiple biological functions, on cognitive deficits induced by a high fat diet (HFD) and the potential mechanisms. In the present study, oral administration of Diosmetin (25, 50 and 100 mg/kg) for 12 weeks significantly reduced the body weight, restored glucose tolerance and normalized lipid profiles in the serum and liver in HFD-induced obese rats. Diosmetin also significantly ameliorated depression-like behaviors and impaired spatial memory in multiple behavioral tests, including the open field test, elevated plus-maze and Morris water maze, which was in accordance with the decreased pathological changes and neuronal damage in different regions of hippocampus as suggested by H&E and Nissl staining. Notably, our results also indicated that Diosmetin could significantly improve mitochondrial dysfunction induced by HFD through upregulating genes involved in mitochondrial biogenesis and dynamics, increasing mitochondrial ATP levels and inhibiting oxidative stress. Moreover, the levels of key enzymes involved in the TCA cycle were also significantly increased upon Diosmetin treatment. Meanwhile, Diosmetin inhibited HFD-induced microglial overactivation and down-regulated inflammatory cytokines both in the serum and hippocampus. In conclusion, these results indicated that Diosmetin might be a novel nutritional intervention to prevent the occurrence and development of obesity-associated cognitive dysfunction via metabolic regulation and anti-inflammation.
Collapse
Affiliation(s)
- Yiyuan Zhang
- Department of Pharmaceutical Science, Wuhan University, 430000, Wuhan, China
| | - Chunyun Luo
- Department of Pharmaceutical Science, Wuhan University, 430000, Wuhan, China
| | - Puxin Huang
- Department of Pharmaceutical Science, Wuhan University, 430000, Wuhan, China
| | - Yahong Cheng
- Department of Pharmaceutical Science, Wuhan University, 430000, Wuhan, China
| | - Yufang Ma
- Department of Pharmaceutical Science, Wuhan University, 430000, Wuhan, China
| | - Jiefang Gao
- Department of Pharmaceutical Science, Wuhan University, 430000, Wuhan, China
| | - Hong Ding
- Department of Pharmaceutical Science, Wuhan University, 430000, Wuhan, China.
| |
Collapse
|
28
|
Tian L, Liu Q, Wang X, Chen S, Li Y. Fighting ferroptosis: Protective effects of dexmedetomidine on vital organ injuries. Life Sci 2024; 354:122949. [PMID: 39127318 DOI: 10.1016/j.lfs.2024.122949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Vital organ injury is one of the leading causes of global mortality and socio-economic burdens. Current treatments have limited efficacy, and new strategies are needed. Dexmedetomidine (DEX) is a highly selective α2-adrenergic receptor that protects multiple organs by reducing inflammation and preventing cell death. However, its exact mechanism is not yet fully understood. Understanding the underlying molecular mechanisms of its protective effects is crucial as it could provide a basis for designing highly targeted and more effective drugs. Ferroptosis is the primary mode of cell death during organ injury, and recent studies have shown that DEX can protect vital organs from this process. This review provides a detailed analysis of preclinical in vitro and in vivo studies and gains a better understanding of how DEX protects against vital organ injuries by inhibiting ferroptosis. Our findings suggest that DEX can potentially protect vital organs mainly by regulating iron metabolism and the antioxidant defense system. This is the first review that summarizes all evidence of ferroptosis's role in DEX's protective effects against vital organ injuries. Our work aims to provide new insights into organ therapy with DEX and accelerate its translation from the laboratory to clinical settings.
Collapse
Affiliation(s)
- Lei Tian
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Qian Liu
- Department of Anesthesiology, Zigong First People's Hospital, Zigong, China
| | - Xing Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Suheng Chen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Yulan Li
- Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou, China.
| |
Collapse
|
29
|
Li XN, Lin L, Li XW, Zhu Q, Xie ZY, Hu YZ, Long QS, Wei XB, Wen YQ, Zhang LY, Zhang QK, Jing YC, Wei XH, Li XS. BSA-stabilized selenium nanoparticles ameliorate intracerebral hemorrhage's-like pathology by inhibiting ferroptosis-mediated neurotoxicology via Nrf2/GPX4 axis activation. Redox Biol 2024; 75:103268. [PMID: 39032396 PMCID: PMC11314897 DOI: 10.1016/j.redox.2024.103268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024] Open
Abstract
Intracerebral hemorrhage (ICH) is a prevalent hemorrhagic cerebrovascular emergency. Alleviating neurological damage in the early stages of ICH is critical for enhancing patient prognosis and survival rate. A novel form of cell death called ferroptosis is intimately linked to hemorrhage-induced brain tissue injury. Although studies have demonstrated the significant preventive impact of bovine serum albumin-stabilized selenium nanoparticles (BSA-SeNPs) against disorders connected to the neurological system, the neuroprotective effect on the hemorrhage stroke and the mechanism remain unknown. Therefore, based on the favorable biocompatibility of BSA-SeNPs, h-ICH (hippocampus-intracerebral hemorrhage) model was constructed to perform BSA-SeNPs therapy. As expected, these BSA-SeNPs could effectively improve the cognitive deficits and ameliorate the damage of hippocampal neuron. Furthermore, BSA-SeNPs reverse the morphology of mitochondria and enhanced the mitochondrial function, evidenced by mitochondrial respiration function (OCR) and mitochondrial membrane potential (MMP). Mechanistically, BSA-SeNPs could efficiently activate the Nrf2 to enhance the expression of antioxidant GPX4 at mRNA and protein levels, and further inhibit lipid peroxidation production in erastin-induced ferroptotic damages. Taken together, this study not only sheds light on the clinical application of BSA-SeNPs, but also provides its newly theoretical support for the strategy of the intervention and treatment of neurological impairment following ICH.
Collapse
Affiliation(s)
- Xiao-Na Li
- Department of Neurosurgery, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou, 516002, Guangdong, China; Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510632, China
| | - Li Lin
- Department of Neurosurgery, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou, 516002, Guangdong, China
| | - Xiao-Wei Li
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Qian Zhu
- Department of Neurosurgery, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou, 516002, Guangdong, China
| | - Zhen-Yan Xie
- Department of Neurosurgery, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou, 516002, Guangdong, China
| | - Yong-Zhen Hu
- Department of Neurosurgery, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou, 516002, Guangdong, China
| | - Qing-Shan Long
- Department of Neurosurgery, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou, 516002, Guangdong, China
| | - Xiao-Bing Wei
- Department of Neurosurgery, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou, 516002, Guangdong, China
| | - Yi-Qi Wen
- Department of Neurosurgery, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou, 516002, Guangdong, China
| | - Li-Yang Zhang
- Department of Neurosurgery, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou, 516002, Guangdong, China
| | - Qi-Keng Zhang
- Department of Neurosurgery, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou, 516002, Guangdong, China
| | - Ying-Chao Jing
- Department of Neurosurgery, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou, 516002, Guangdong, China
| | - Xin-Hua Wei
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510632, China.
| | - Xue-Song Li
- Department of Neurosurgery, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou, 516002, Guangdong, China.
| |
Collapse
|
30
|
Khan S, Bano N, Ahamad S, John U, Dar NJ, Bhat SA. Excitotoxicity, Oxytosis/Ferroptosis, and Neurodegeneration: Emerging Insights into Mitochondrial Mechanisms. Aging Dis 2024:AD.2024.0125-1. [PMID: 39122453 DOI: 10.14336/ad.2024.0125-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Mitochondrial dysfunction plays a pivotal role in the development of age-related diseases, particularly neurodegenerative disorders. The etiology of mitochondrial dysfunction involves a multitude of factors that remain elusive. This review centers on elucidating the role(s) of excitotoxicity, oxytosis/ferroptosis and neurodegeneration within the context of mitochondrial bioenergetics, biogenesis, mitophagy and oxidative stress and explores their intricate interplay in the pathogenesis of neurodegenerative diseases. The effective coordination of mitochondrial turnover processes, notably mitophagy and biogenesis, is assumed to be critically important for cellular resilience and longevity. However, the age-associated decrease in mitophagy impedes the elimination of dysfunctional mitochondria, consequently impairing mitochondrial biogenesis. This deleterious cascade results in the accumulation of damaged mitochondria and deterioration of cellular functions. Both excitotoxicity and oxytosis/ferroptosis have been demonstrated to contribute significantly to the pathophysiology of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's Disease (HD), Amyotrophic Lateral Sclerosis (ALS) and Multiple Sclerosis (MS). Excitotoxicity, characterized by excessive glutamate signaling, initiates a cascade of events involving calcium dysregulation, energy depletion, and oxidative stress and is intricately linked to mitochondrial dysfunction. Furthermore, emerging concepts surrounding oxytosis/ferroptosis underscore the importance of iron-dependent lipid peroxidation and mitochondrial engagement in the pathogenesis of neurodegeneration. This review not only discusses the individual contributions of excitotoxicity and ferroptosis but also emphasizes their convergence with mitochondrial dysfunction, a key driver of neurodegenerative diseases. Understanding the intricate crosstalk between excitotoxicity, oxytosis/ferroptosis, and mitochondrial dysfunction holds potential to pave the way for mitochondrion-targeted therapeutic strategies. Such strategies, with a focus on bioenergetics, biogenesis, mitophagy, and oxidative stress, emerge as promising avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Sameera Khan
- Department of Zoology, Aligarh Muslim University, Aligarh-202002, India
| | - Nargis Bano
- Department of Zoology, Aligarh Muslim University, Aligarh-202002, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh-202002, India
| | - Urmilla John
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India; School of Studies in Zoology, Jiwaji University, Gwalior, India
| | - Nawab John Dar
- CNB, SALK Institute of Biological Sciences, La Jolla, CA 92037, USA
| | | |
Collapse
|
31
|
Haridevamuthu B, Ranjan Nayak SPR, Murugan R, Pachaiappan R, Ayub R, Aljawdah HM, Arokiyaraj S, Guru A, Arockiaraj J. Prophylactic effects of apigenin against hyperglycemia-associated amnesia via activation of the Nrf2/ARE pathway in zebrafish. Eur J Pharmacol 2024; 976:176680. [PMID: 38810716 DOI: 10.1016/j.ejphar.2024.176680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/27/2024] [Accepted: 05/27/2024] [Indexed: 05/31/2024]
Abstract
The escalating focus on ageing-associated disease has generated substantial interest in the phenomenon of cognitive impairment linked to diabetes. Hyperglycemia exacerbates oxidative stress, contributes to β-amyloid accumulation, disrupts mitochondrial function, and impairs cognitive function. Existing therapies have certain limitations, and apigenin (AG), a natural plant flavonoid, has piqued interest due to its antioxidant, anti-inflammatory, and anti-hyperglycemic properties. So, we anticipate that AG might be a preventive medicine for hyperglycemia-associated amnesia. To test our hypothesis, naïve zebrafish were trained to acquire memory and pretreated with AG. Streptozotocin (STZ) was administered to mimic hyperglycemia-induced memory dysfunction. Spatial memory was assessed by T-maze and object recognition through visual stimuli. Acetylcholinesterase (AChE) activity, antioxidant enzyme status, and neuroinflammatory genes were measured, and histopathology was performed in the brain to elucidate the neuroprotective mechanism. AG exhibits a prophylactic effect and improves spatial learning and discriminative memory of STZ-induced amnesia in zebrafish under hyperglycemic conditions. AG also reduces blood glucose levels, brain oxidative stress, and AChE activity, enhancing cholinergic neurotransmission. AG prevented neuronal damage by regulating brain antioxidant response elements (ARE), collectively contributing to neuroprotective properties. AG demonstrates a promising effect in alleviating memory dysfunction and mitigating pathological changes via activation of the Nrf2/ARE mechanism. These findings underscore the therapeutic potential of AG in addressing memory dysfunction and neurodegenerative changes associated with hyperglycemia.
Collapse
Affiliation(s)
- B Haridevamuthu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - S P Ramya Ranjan Nayak
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Raghul Murugan
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Raman Pachaiappan
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Rashid Ayub
- College of Science, King Saud University, P.O. Box 2454, Riyadh, 11451, Saudi Arabia
| | - Hossam M Aljawdah
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul, 05006, South Korea
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
32
|
Liu Y, Wang C, Chen Z, Yuan H, Lei R, Li X, Ma S, Liu C. Distribution of active ingredients and quality control of Forsythia suspensa with AP-MALDI mass spectrometry imaging. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5073. [PMID: 38989767 DOI: 10.1002/jms.5073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/12/2024]
Abstract
The fruits of Forsythia suspensa (F. suspensa) have been used as a traditional Chinese medicine for 2000 years. Currently, the quality control of F. suspensa strictly follows the instructions of Chinese Pharmacopeia, which mainly controls the content of forsythoside A, phillyrin, and volatile oil. In this study, air pressure MALDI mass spectrometry imaging (AP-MALDI MSI) was used to evaluate the quality of F. suspensa fruits and the distribution of dozens of active ingredients. The variation of active ingredients was measured for more than 30 batches of samples, regarding harvest time, cultivated environment, shelf-life, and habitat. Fifty-three active ingredients could be detected in F. suspensa fruits with AP-MALDI MSI. Seven active ingredients were upregulated, four ingredients downregulated, and 15 ingredients did not change in ripe fruits. A sharp variation of active ingredients in late September was observed for the Caochuan fruits harvested in 2019, which is closely related to the appearance of the ginger color of the pericarp under the microscope observation. The microscope observation is a reliable way to classify ripe and green fruits instead of outlook. Just considering forsythoside A and phillyrin, it is found that wild fruits are better than cultivated fruits, but cultivated fruits have high contents of other ingredients. The shelf-life of F. suspensa fruits is proposed to be 3 years, considering the 26 ingredients investigated. It was found that Luoning wild fruits are better than those from Caochuan with a new evaluation method. Mass spectrometry imaging is an easy, objective, and effective method to evaluate the quality of F. suspensa fruits.
Collapse
Affiliation(s)
- Yongli Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
- Hebei Institute for Drug and Medical Device Control, Shijiazhuang, 050227, China
| | - Cheng Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zhenhe Chen
- Shimadzu China Innovation Center, Shimadzu China, Beijing, 100020, China
| | - Hao Yuan
- Hebei Institute for Drug and Medical Device Control, Shijiazhuang, 050227, China
| | - Rong Lei
- Hebei Institute for Drug and Medical Device Control, Shijiazhuang, 050227, China
| | - Xiaodong Li
- Shimadzu China Innovation Center, Shimadzu China, Beijing, 100020, China
| | - Shuangcheng Ma
- National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Changxiao Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
- Tianjin Institute of Pharmaceutical Research, Tianjin, 300462, China
| |
Collapse
|
33
|
Yang J, Zhao H, Qu S. Phytochemicals targeting mitophagy: Therapeutic opportunities and prospects for treating Alzheimer's disease. Biomed Pharmacother 2024; 177:117144. [PMID: 39004063 DOI: 10.1016/j.biopha.2024.117144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder and the leading cause of age-related cognitive decline. Recent studies have established a close relationship between mitophagy and the pathogenesis of AD. Various phytochemicals have shown promising therapeutic effects in mitigating the onset and progression of AD. This review offers a comprehensive overview of the typical features of mitophagy and the underlying mechanisms leading to its occurrence in AD, highlighting its significance in the disease's pathogenesis and progression. Additionally, we examine the therapeutic mechanisms of synthetic drugs that induce mitophagy in AD. Finally, we summarize recent advances in research on phytochemicals that regulate mitophagy in the treatment of AD, potentially guiding the development of new anti-AD drugs.
Collapse
Affiliation(s)
- Jing Yang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China.
| | - He Zhao
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China.
| | - Shengtao Qu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China.
| |
Collapse
|
34
|
Lu XY, Lai MY, Qin P, Zheng YC, Liao JY, Zhang ZJ, Xu JH, Yu HL. Facilitating secretory expression of apple seed β-glucosidase in Komagataella phaffii for the efficient preparation of salidroside. Biotechnol J 2024; 19:e2400347. [PMID: 39167556 DOI: 10.1002/biot.202400347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024]
Abstract
Plant-derived β-glucosidases hold promise for glycoside biosynthesis via reverse hydrolysis because of their excellent glucose tolerance and robust stability. However, their poor heterologous expression hinders the development of large-scale production and applications. In this study, we overexpressed apple seed β-glucosidase (ASG II) in Komagataella phaffii and enhanced its production from 289 to 4322 U L-1 through expression cassette engineering and protein engineering. Upon scaling up to a 5-L high cell-density fermentation, the resultant mutant ASG IIV80A achieved a maximum protein concentration and activity in the secreted supernatant of 2.3 g L-1 and 41.4 kU L-1, respectively. The preparative biosynthesis of salidroside by ASG IIV80A exhibited a high space-time yield of 33.1 g L-1 d-1, which is so far the highest level by plant-derived β-glucosidase. Our work addresses the long-standing challenge of the heterologous expression of plant-derived β-glucosidase in microorganisms and presents new avenues for the efficient production of salidroside and other natural glycosides.
Collapse
Affiliation(s)
- Xin-Yi Lu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Ming-Yuan Lai
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Peng Qin
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Yu-Cong Zheng
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Jia-Yi Liao
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Zhi-Jun Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
35
|
Feng W, Jiang Y, Zeng L, Ouyang Y, Li H, Tang Y, Luo L, Ouyang L, Xie L, Tan Y, Li Y. SPACA6P-AS: a trailblazer in breast cancer pathobiology and therapeutics. Cell Biol Toxicol 2024; 40:49. [PMID: 38922500 PMCID: PMC11208203 DOI: 10.1007/s10565-024-09870-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/23/2024] [Indexed: 06/27/2024]
Abstract
OBJECTIVE The primary objective of this investigation is to delve into the involvement of the long noncoding RNA (lncRNA) SPACA6P-AS in breast cancer (BC) development, focusing on its expression pattern, association with clinical-pathological features, impact on prognosis, as well as its molecular and immunological implications. METHODS Bioinformatics analysis was conducted utilizing RNA sequencing data of 1083 BC patients from the TCGA database. Functional exploration of SPACA6P-AS was carried out through the construction of survival curves, GO and KEGG enrichment analysis, and single-sample gene set enrichment analysis (ssGSEA). Furthermore, its functionality was validated through in vitro cell experiments and in vivo nude mouse model experiments. RESULTS SPACA6P-AS showed a remarkable increase in expression levels in BC tissues (p < 0.001) and demonstrated a close relationship to poor prognosis (overall survival HR = 1.616, progression-free interval HR = 1.40, disease-specific survival HR = 1.54). Enrichment analysis revealed that SPACA6P-AS could impact biological functions such as protease regulation, endopeptidase inhibitor activity, taste receptor activity, taste transduction, and maturity-onset diabetes of the young pathway. ssGSEA analysis indicated a negative correlation between SPACA6P-AS expression and immune cell infiltration like dendritic cells and neutrophils, while a positive correlation was observed with central memory T cells and T helper 2 cells. Results from in vitro and in vivo experiments illustrated that silencing SPACA6P-AS significantly inhibited the proliferation, migration, and invasion capabilities of BC cells. In vitro experiments also highlighted that dendritic cells with silenced SPACA6P-AS exhibited enhanced capabilities in promoting the proliferation of autologous CD3 + T cells and cytokine secretion. These discoveries elucidate the potential multifaceted roles of SPACA6P-AS in BC, including its potential involvement in modulating immune cell infiltration in the tumor microenvironment. CONCLUSION The high expression of lncRNA SPACA6P-AS in BC is closely linked to poor prognosis and may facilitate tumor progression by influencing specific biological processes, signaling pathways, and the immune microenvironment. The regulatory role of SPACA6P-AS positions it as a prospective biomarker and target for therapeutic approaches for BC diagnosis and intervention.
Collapse
Affiliation(s)
- Wenjie Feng
- Department of Oncology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, People's Republic of China
| | - Yiling Jiang
- Department of Oncology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, People's Republic of China
| | - Lijun Zeng
- Department of Oncology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, People's Republic of China
| | - Yuhan Ouyang
- Department of Oncology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, People's Republic of China
| | - Hailong Li
- Department of Pathology, Changde Hospital, Xiangya School of Medicine, Central South University, the First People's Hospital of Changde City, Changde, Hunan, People's Republic of China
| | - Yuanbin Tang
- Department of Oncology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, People's Republic of China
| | - Lunqi Luo
- Department of Oncology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, People's Republic of China
| | - Lianjie Ouyang
- Department of Oncology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, People's Republic of China
| | - Liming Xie
- Department of Oncology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, People's Republic of China.
| | - Yeru Tan
- Department of Oncology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, People's Republic of China.
| | - Yuehua Li
- Department of Oncology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, People's Republic of China.
| |
Collapse
|
36
|
He S, Li H, Zhang Q, Zhao W, Li W, Dai C, Li B, Cheng J, Wu S, Zhou Z, Yang J, Li S. Berberine alleviates inflammation in polycystic ovary syndrome by inhibiting hyaluronan synthase 2 expression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155456. [PMID: 38537446 DOI: 10.1016/j.phymed.2024.155456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/03/2024] [Accepted: 02/14/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a heterogeneous metabolic and endocrine disorder that causes anovulatory infertility and abnormal folliculogenesis in women of reproductive age. Several studies have revealed inflammation in PCOS follicles, and recent evidence suggests that Berberine (BBR) effectively reduces inflammatory responses in PCOS, however, the underlying mechanisms remain unclear. PURPOSE To determine the underlying mechanisms by which BBR alleviates inflammation in PCOS. STUDY DESIGN Primary human GCs from healthy women and women with PCOS, and KGN cells were used for in vitro studies. ICR mice were used for in vivo studies. METHODS Gene expression was measured using RT-qPCR. HAS2, inflammatory cytokines, and serum hormones were assayed by ELISA. Protein expression profiles were assayed by Western blot. Chronic low-grade inflammatory mouse models were developed by intraperitoneal injection with LPS, and PCOS mouse models were established by subcutaneous intraperitoneal injection of DHEA. BBR and 4-MU were administered by gavage. Ovarian morphologic changes were evaluated using H&E staining. HAS2 expression in the ovary was assayed using Western blot and immunohistochemistry. RESULTS Our results confirmed that HAS2 expression and hyaluronan (HA) accumulation are closely associated with inflammatory responses in PCOS. Data obtained from in vitro studies showed that HAS2 and inflammatory genes (e.g., MCP-1, IL-1β, and IL-6) are significantly upregulated in PCOS samples and LPS-induced KGN cells compared to their control groups. In addition, these effects were reversed by blocking HAS2 expression or HA synthesis using BBR or 4-MU, respectively. Furthermore, HAS2 overexpression induces the expression of inflammatory genes in PCOS. These results were further confirmed in LPS- and DHEA-induced mouse models, where inflammatory genes were reduced by BBR or 4-MU, and ovarian morphology was restored. CONCLUSIONS Our results define previously unknown links between HAS2 and chronic low-grade inflammation in the follicles of women with PCOS. BBR exerts its anti-inflammatory effects by down-regulating HAS2. This study provides a novel therapeutic target for alleviating ovarian inflammation in women with PCOS.
Collapse
Affiliation(s)
- Shaojing He
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Hui Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Jiangsu Provincial Engineering Research Center for Precision Animal Breeding, Nanjing, 210014, China
| | - Qianjie Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Weimin Zhao
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Jiangsu Provincial Engineering Research Center for Precision Animal Breeding, Nanjing, 210014, China
| | - Wei Li
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Chaohui Dai
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Jiangsu Provincial Engineering Research Center for Precision Animal Breeding, Nanjing, 210014, China
| | - Bixia Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Jiangsu Provincial Engineering Research Center for Precision Animal Breeding, Nanjing, 210014, China
| | - Jinhua Cheng
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Jiangsu Provincial Engineering Research Center for Precision Animal Breeding, Nanjing, 210014, China
| | - Shuang Wu
- Hubei Provincial Hospital of Traditional Chinese Medicine Affiliated to Hubei University of Traditional Chinese Medicine, Wuhan, 430060, China
| | - Zhongming Zhou
- Hubei Provincial Hospital of Traditional Chinese Medicine Affiliated to Hubei University of Traditional Chinese Medicine, Wuhan, 430060, China
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Saijiao Li
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China.
| |
Collapse
|
37
|
Song C, Chu Z, Dai J, Xie D, Qin T, Xie L, Zhai Z, Huang S, Xu Y, Sun T. Water extract of moschus alleviates erastin-induced ferroptosis by regulating the Keap1/Nrf2 pathway in HT22 cells. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117937. [PMID: 38423409 DOI: 10.1016/j.jep.2024.117937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/02/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Moschus, first described in the Shennong's Classic of the Materia medicine, is a scarce and precious animal medicine. Modern pharmacological researches have suggested that Moschus has neuroprotective actions, and its mechanism is related to anti-inflammatory, antioxidant, and anti-apoptosis effects. Ferroptosis is one of the major pathologies of Alzheimer's disease (AD) and is widely implicated in the pathogenesis and progression of AD. Although previous studies have suggested that Moschus possesses neuroprotective effect, whether Moschus could mitigate neuronal damages by inhibiting the onset of ferroptosis is unknown in model cells of AD. AIM OF THE STUDY The aim of study was to explore the water extract of Moschus (WEM) on ferroptosis caused by erastin and the potential mechanism. MATERIALS AND METHODS Erastin was used to stimulate HT22 cells to form ferroptosis model to evaluate the anti-ferroptosis effect of WEM by cell counting kit-8 and lactic dehydrogenase (LDH) tests. The malondialdehyde (MDA) and glutathione (GSH) kits are used for detection of MDA and GSH levels, and 2',7'-dichlorofluorescein diacetate and C11 BODIPY 581/591 fluorescence probe are used for evaluation of reactive oxygen species (ROS) and lipid peroxide (LOOH) levels. And Western blot was used to test nuclear factor erythroid 2-related factor 2 (Nrf2), Kelch-like ECH-associated protein 1 (Keap1), heme oxygenase-1 (HO-1), and ferroptosis associated proteins including glutathione peroxidase 4 (GPX4), cystine/glutamate antiporter subunit (SLC7A11), ferritin heavy chain 1 (FTH1), ferroportin1 (FPN1), transferrin receptor (TFRC). In addition, the Nrf2 inhibitor ML385 was applied to verify whether WEM prevents erastin-induced ferroptosis by activating the Keap1/Nrf2 pathway. RESULTS After WEM treatment, erastin-induced HT22 cell survival was significantly elevated, the accumulation of intracellular MDA, ROS, and LOOH were significantly reduced, the level of GSH and expressions of ferroptosis inhibitors GPX4 and SLC7A11 were significantly increased, and iron metabolism-related proteins TFRC, FPN1, and FTH1 were regulated. These effects of WEM are implemented by activating the Keap1/Nrf2 pathway. CONCLUSIONS This study demonstrated that WEM could perform neuroprotective effects by alleviating ferroptosis, verified that WEM treatment of AD can be mediated by the Keap1/Nrf2 pathway, and provided theoretical support for the application of WEM in the treatment of AD.
Collapse
Affiliation(s)
- Caiyou Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhili Chu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jingyi Dai
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Danni Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tao Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Linjiang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhenwei Zhai
- The Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Sha Huang
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ying Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Tao Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
38
|
Jiang YP, Liu BG, Dang Y, Liu LJ, Pang Y, Bai XD, Sun F, Kang TH, Zhao ZH. Integrative analysis of transcriptomics and metabolomics reveals the protective effect and mechanism of salidroside on testicular ischemia-reperfusion injury. Front Pharmacol 2024; 15:1377836. [PMID: 38818379 PMCID: PMC11137215 DOI: 10.3389/fphar.2024.1377836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/26/2024] [Indexed: 06/01/2024] Open
Abstract
Testicular torsion is a critical urologic condition for which testicular detorsion surgery is considered irreplaceable as well as the golden method of reversal. However, the surgical treatment is equivalent to a blood reperfusion process, and no specific drugs are available to treat blood reperfusion injuries. Salidroside (SAL) is one of the main effective substances in rhodiola, which has been shown to have antioxidant and antiapoptosis activities. This study was designed to determine whether SAL exerted a protective effect on testicular ischemia-reperfusion (I/R) injury. In this study, the I/R injury model of the testes and reoxygenation (OGD/R) model were used for verification, and SAL was administered at doses of 100 mg/kg and 0.05 mmol/L, respectively. After the experiments, the testicular tissue and TM4 Sertoli cells were collected for histopathologic and biochemical analyses. The results revealed that SAL improves the structure of testicular tissue and regulates the oxidation-antioxidation system. To further understand the molecular mechanisms of SAL in treating testicular I/R injuries, transcriptomics and metabonomics analyses were integrated. The results show that the Nfr2/HO-1/GPX4/ferroptosis signaling pathway is enriched significantly, indicating that it may be the main regulatory pathway for SAL in the treatment of testicular I/R injuries. Thereafter, transfection with Nrf2 plasmid-liposome was used to reverse verify that the Nfr2/HO-1/GPX4/ferroptosis signaling pathway was the main pathway for SAL anti-testicular I/R injury treatment. Thus, it is suggested that SAL can protect against testicular I/R injuries by regulating the Nfr2/HO-1/GPX4 signaling pathway to inhibit ferroptosis and that SAL may be a potential drug for the treatment of testicular I/R injuries.
Collapse
Affiliation(s)
- Ya Ping Jiang
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Shaanxi, China
- Department of Pharmacy, Xianyang Hospital of Yan’an University, Shaanxi, China
| | - Bao Gui Liu
- Department of Pharmacy, Xianyang Hospital of Yan’an University, Shaanxi, China
| | - Yi Dang
- Department of Clinical Research, Xianyang Hospital of Yan’an University, Shaanxi, China
| | - Lin Jie Liu
- Department of Pharmacy, Xianyang Hospital of Yan’an University, Shaanxi, China
| | - Yang Pang
- Department of Pharmacy, Xianyang Hospital of Yan’an University, Shaanxi, China
| | - Xiao Dong Bai
- Department of Clinical Research, Xianyang Hospital of Yan’an University, Shaanxi, China
| | - Feng Sun
- Department of Science and Education, Xianyang Hospital of Yan’an University, Shaanxi, China
| | - Tian Hong Kang
- Department of Pharmacy, Xianyang Hospital of Yan’an University, Shaanxi, China
| | - Zheng Hang Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Shaanxi, China
| |
Collapse
|
39
|
Gu Q, An Y, Xu M, Huang X, Chen X, Li X, Shan H, Zhang M. Disulfidptosis, A Novel Cell Death Pathway: Molecular Landscape and Therapeutic Implications. Aging Dis 2024:AD.2024.0083. [PMID: 38739940 DOI: 10.14336/ad.2024.0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
Programmed cell death is pivotal for several physiological processes, including immune defense. Further, it has been implicated in the pathogenesis of developmental disorders and the onset of numerous diseases. Multiple modes of programmed cell death, including apoptosis, pyroptosis, necroptosis, and ferroptosis, have been identified, each with their own unique characteristics and biological implications. In February 2023, Liu Xiaoguang and his team discovered "disulfidptosis," a novel pathway of programmed cell death. Their findings demonstrated that disulfidptosis is triggered in glucose-starved cells exhibiting high expression of a protein called SLC7A11. Furthermore, disulfidptosis is marked by a drastic imbalance in the NADPH/NADP+ ratio and the abnormal accumulation of disulfides like cystine. These changes ultimately lead to the destabilization of the F-actin network, causing cell death. Given that high SLC7A11 expression is a key feature of certain cancers, these findings indicate that disulfidptosis could serve as the basis of innovative anti-cancer therapies. Hence, this review delves into the discovery of disulfidptosis, its underlying molecular mechanisms and metabolic regulation, and its prospective applications in disease treatment.
Collapse
Affiliation(s)
- Qiuyang Gu
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China
| | - Yumei An
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China
| | - Mingyuan Xu
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China
| | - Xinqi Huang
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China
| | - Xueshi Chen
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China
| | - Xianzhe Li
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China
| | - Haiyan Shan
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Mingyang Zhang
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China
| |
Collapse
|
40
|
Gong G, Ganesan K, Liu Y, Huang Y, Luo Y, Wang X, Zhang Z, Zheng Y. Danggui Buxue Tang improves therapeutic efficacy of doxorubicin in triple negative breast cancer via ferroptosis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117655. [PMID: 38158099 DOI: 10.1016/j.jep.2023.117655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/14/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Danggui Buxue Tang (DBT) has been used for over 800 years to enhance Qi and nourish Blood, and it is particularly beneficial for cancer patients. Recent research has shown that combining DBT with chemotherapy agents leads to superior anti-cancer effects, thereby enhancing therapeutic efficacy. AIM OF THE STUDY The aim of this study was to evaluate the effectiveness of a combination therapy involving doxorubicin (DOX) and Danggui Buxue Tang (DBT) in the treatment of triple-negative breast cancer (TNBC) and to elucidate the underlying mechanisms of action. MATERIALS AND METHODS In vitro experiments were performed using MDA-MB-231 and 4T1 cells, while in vivo experiments were carried out using MDA-MB-231 xenograft mice. The therapeutic effects of the combination therapy were evaluated using various techniques, including MTT assay, colony formation assay, flow cytometry, transwell assay, immunofluorescence, transmission electron microscopy (TEM), histological analysis, western blotting, and bioluminescence assay. RESULTS DBT was found to enhance DOX's anti-TNBC activity in vitro by promoting ferroptosis, as evidenced by the observed mitochondrial morphological changes using TEM. The combination therapy was also found to reduce the expression of Nrf2, HO-1, and GPX4, which are all targets for ferroptosis induction, while simultaneously increasing ROS production. Additionally, the combination therapy reduced nuclear accumulation and constitutive activation of Nrf2, which is a significant cause of chemotherapy resistance and promotes cancer growth. In vivo experiments using an MDA-MB-231 xenograft animal model revealed that the combination therapy significantly reduced tumor cell proliferation and accelerated TNBC deaths by modulating the Nrf2/HO-1/GPX4 axis, with no evidence of tissue abnormalities. Moreover, the combination therapy exhibited a liver protective effect, and administration of Fer-1 was able to reduce the ROS formation produced by the DBT + DOX combination therapy. CONCLUSION This study provides evidence that the combination therapy of DOX and DBT has the potential to treat TNBC by promoting ferroptosis through the Nrf2/HO-1/GPX4 axis.
Collapse
Affiliation(s)
- Guowei Gong
- Department of Bioengineering, Zunyi Medical University, Zhuhai Campus, Zhuhai, Guangdong, 519041, China; Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, Guangdong 521041, China.
| | - Kumar Ganesan
- School of Chinese Medicine, The Hong Kong University, Hong Kong SAR, 999077, China
| | - Yaqun Liu
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, Guangdong 521041, China
| | - Yongping Huang
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, Guangdong 521041, China
| | - Yuting Luo
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, Guangdong 521041, China
| | - Xuexu Wang
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, Guangdong 521041, China
| | - Zhenxia Zhang
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, Guangdong 521041, China
| | - Yuzhong Zheng
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, Guangdong 521041, China; Guangdong East Drug and Food & Health Branch, Chaozhou, Guangdong, 521041, China.
| |
Collapse
|
41
|
Long Q, Li T, Zhu Q, He L, Zhao B. SuanZaoRen decoction alleviates neuronal loss, synaptic damage and ferroptosis of AD via activating DJ-1/Nrf2 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117679. [PMID: 38160863 DOI: 10.1016/j.jep.2023.117679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/03/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE SuanZaoRen Decoction (SZRD), a famous herbal prescription, and has been widely proven to have positive therapeutic effects on insomnia, depression and Alzheimer's disease (AD). However, the anti-AD molecular mechanism of SZRD remains to be further investigated. AIM OF THE STUDY To elucidate the molecular mechanism of SZRD's improvement in AD's neuronal loss, synaptic damage and ferroptosis by regulating DJ-1/Nrf2 signaling pathway. MATERIALS AND METHODS LC-MS/MS was used to detect the active ingredients from SZRD. APP/PS1 mice was treated with SZRD and a ferroptosis inhibitor (Liproxstatin-1), respectively. Upon the completion of behavioral tests, Nissl staining, FJB staining, Golgi staining, immunofluorescence, immunohistochemistry, and transmission electron microscopy were preformed to evaluate the effects of SZRD on neuronal loss, synaptic damage, Aβ deposition. Iron staining, transmission electron microscopy, and iron assay kit was performed to estimate the effects of SZRD on ferroptosis. SOD kit, MDA kit, GSH kit, and GSH/GSSG kit were utilized to measure the oxidative stress levels in the hippocampus. The protein expression of TfR1, FTH1, FTL, FPN1, DJ-1, Nrf2, GPX4, SLC7A11, and ACSL4 were detected by Western blot. RESULTS A total of 16 active ingredients were identified from SZRD extract. SZRD SZRD significantly alleviated learning and memory impairment in APP/PS1 mice. SZRD improved the hippocampal neuronal loss and degenerated neurons in APP/PS1 mice via inhibiting the Aβ deposit. SZRD mitigated the hippocampal synaptic damage in APP/PS1 mice. SZRD inhibited iron accumulation, and alleviated the oxidative stress level in the hippocampus of APP/PS1 mice. Meanwhile, SZRD could up-regulate the protein expression level of FPN1, DJ-1, Nrf2, GPX4 and SLC7A11 in the hippocampus, and inhibit TfR1, FTH1, FTL, and ACSL4 protein expression. CONCLUSION SZRD alleviated neuronal loss, synaptic damage and ferroptosis in AD via activating DJ-1/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Qinghua Long
- Health Medical Center, Hubei Minzu University, Enshi, 445000, China; Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Disease, Hubei Minzu University, Enshi, 445000, China
| | - Tong Li
- Health Medical Center, Hubei Minzu University, Enshi, 445000, China
| | - Qihang Zhu
- Health Medical Center, Hubei Minzu University, Enshi, 445000, China; Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Disease, Hubei Minzu University, Enshi, 445000, China
| | - Liling He
- Health Medical Center, Hubei Minzu University, Enshi, 445000, China.
| | - Binbin Zhao
- Basic Medicine College, Hubei University of Chinese Medicine, Wuhan, 430065, China; Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430065, China.
| |
Collapse
|
42
|
Zhang T, Jia C, Ran L, Shi J, Amarmend T, Li H. The alleviative effects comparison of four flavonoids from bamboo leaves on ulcerative colitis in an Alzheimer mouse model. CNS Neurosci Ther 2024; 30:e14620. [PMID: 38334213 PMCID: PMC10853884 DOI: 10.1111/cns.14620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/09/2024] [Accepted: 01/14/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Clinically, patients with dementia are at high risk of developing enteritis, especially those with AD. This study explored the potential therapeutic benefits of bamboo leaf flavonoids (BLF) for ulcerative colitis (UC) treatment in Alzheimer's disease (AD) mouse model. METHODS Various methods were employed, including pathological staining of brain/colon tissue, inflammatory cytokine detection in serum, and oxidative stress indicator assessment to compare ulcerative enteritis (UC) injury in normal and AD mice and determine whether AD mice were susceptible to colitis. Then, the effects of BLF on UC and AD were investigated via several unique indices further to determine whether it alleviated colitis injury and possessed beneficial properties. Moreover, four main components of BLF were utilized to treat primary colon epithelial cells and neuron cells to compare their effects in alleviating inflammation and oxidation. Furthermore, homoorientin embedded with ursolic acid was detected by HPLC and the in vitro release simulation experiments of the nanoparticles were performed. RESULTS BLF complexes positively impacted ulcerative colitis by reducing disease activity, it also helped to reduce inflammation. Moreover, the BLF complexes decreased oxidative stress in the brain and colon tissues, indicating its potential as a neuroprotective agent. The flavonoid complexes reduced the expression levels of GFAP, Iba-1, and Aβ in the brain tissue, highlighting its role in attenuating neuroinflammation and AD pathology. Additionally, the embedded homoorientin coated with ursolic acid showed stronger bioactivities when compared with the uncoated group. CONCLUSION These results suggest that BLF complexes and its four main chemicals may be useful for treating AD- and UC-related complications, the embedded homoorientin coated with ursolic acid even demonstrated stronger bioavailability than homoorientin. Considering BLF complexes were verified to suppress the progressions of AD and UC for the first time, and the embedded homoorientin was never reported in published articles, the present study might provide a new perspective on its potential applications.
Collapse
Affiliation(s)
- Taiyu Zhang
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in ForestryBeijing Forestry UniversityBeijingChina
| | - Cuicui Jia
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in ForestryBeijing Forestry UniversityBeijingChina
| | - Longyi Ran
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in ForestryBeijing Forestry UniversityBeijingChina
| | - Jiarui Shi
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in ForestryBeijing Forestry UniversityBeijingChina
| | - Tsendsuren Amarmend
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in ForestryBeijing Forestry UniversityBeijingChina
| | - Huiying Li
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in ForestryBeijing Forestry UniversityBeijingChina
| |
Collapse
|
43
|
Zhang N, Nao J, Dong X. Neuroprotective Mechanisms of Salidroside in Alzheimer's Disease: A Systematic Review and Meta-analysis of Preclinical Studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17597-17614. [PMID: 37934032 DOI: 10.1021/acs.jafc.3c06672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease of the central nervous system that occurs in old age and pre-aging, characterized by progressive cognitive dysfunction and behavioral impairment. Salidroside (Sal) is a phenylpropanoid mainly isolated from Rhodiola species with various pharmacological effects. However, the exact anti-AD mechanism of Sal has not been clearly elucidated. This meta-analysis aims to investigate the possible mechanisms by which Sal exerts its anti-AD effects by evaluating behavioral indicators and biochemical characteristics. A total of 20 studies were included, and the results showed that the Sal treatment significantly improved behavior abnormalities in AD animal models. With regard to neurobiochemical indicators, Sal treatment could effectively increase the antioxidant enzyme superoxide dismutase, decrease the oxidative stress indicator malondialdehyde, and decrease the inflammatory indicators interleukin 1β, interleukin 6, and tumor necrosis factor α. Sal treatment was effective in reducing neuropathological indicators, such as amyloid-β levels and the number of apoptotic cells. When the relevant literature on the treatment of rodent AD models is combined with Sal, the therapeutic potential of Sal through multiple mechanisms was confirmed. However, further confirmation by higher quality studies, larger sample sizes, and more comprehensive outcome evaluations in clinical trials is needed in the future.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Neurology, Seventh Clinical College of China Medical University, 24 Central Street, Xinfu District, Fushun, Liaoning 113000, People's Republic of China
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110000, People's Republic of China
| | - Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110000, People's Republic of China
| |
Collapse
|
44
|
Wu W, Huang J, Han P, Zhang J, Wang Y, Jin F, Zhou Y. Research Progress on Natural Plant Molecules in Regulating the Blood-Brain Barrier in Alzheimer's Disease. Molecules 2023; 28:7631. [PMID: 38005352 PMCID: PMC10674591 DOI: 10.3390/molecules28227631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder. With the aging population and the continuous development of risk factors associated with AD, it will impose a significant burden on individuals, families, and society. Currently, commonly used therapeutic drugs such as Cholinesterase inhibitors, N-methyl-D-aspartate antagonists, and multiple AD pathology removal drugs have been shown to have beneficial effects on certain pathological conditions of AD. However, their clinical efficacy is minimal and they are associated with certain adverse reactions. Furthermore, the underlying pathological mechanism of AD remains unclear, posing a challenge for drug development. In contrast, natural plant molecules, widely available, offer multiple targeting pathways and demonstrate inherent advantages in modifying the typical pathologic features of AD by influencing the blood-brain barrier (BBB). We provide a comprehensive review of recent in vivo and in vitro studies on natural plant molecules that impact the BBB in the treatment of AD. Additionally, we analyze their specific mechanisms to offer novel insights for the development of safe and effective targeted drugs as well as guidance for experimental research and the clinical application of drugs for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Weidong Wu
- Basic Theory of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (W.W.); (J.Z.); (Y.W.)
| | - Jiahao Huang
- Department of Chinese Pharmacology, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Pengfei Han
- Science and Education Section, Zhangjiakou First Hospital, Zhangjiakou 075041, China;
| | - Jian Zhang
- Basic Theory of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (W.W.); (J.Z.); (Y.W.)
| | - Yuxin Wang
- Basic Theory of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (W.W.); (J.Z.); (Y.W.)
| | - Fangfang Jin
- Department of Internal Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yanyan Zhou
- Basic Theory of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (W.W.); (J.Z.); (Y.W.)
| |
Collapse
|
45
|
Feng S, Tang D, Wang Y, Li X, Bao H, Tang C, Dong X, Li X, Yang Q, Yan Y, Yin Z, Shang T, Zheng K, Huang X, Wei Z, Wang K, Qi S. The mechanism of ferroptosis and its related diseases. MOLECULAR BIOMEDICINE 2023; 4:33. [PMID: 37840106 PMCID: PMC10577123 DOI: 10.1186/s43556-023-00142-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/23/2023] [Indexed: 10/17/2023] Open
Abstract
Ferroptosis, a regulated form of cellular death characterized by the iron-mediated accumulation of lipid peroxides, provides a novel avenue for delving into the intersection of cellular metabolism, oxidative stress, and disease pathology. We have witnessed a mounting fascination with ferroptosis, attributed to its pivotal roles across diverse physiological and pathological conditions including developmental processes, metabolic dynamics, oncogenic pathways, neurodegenerative cascades, and traumatic tissue injuries. By unraveling the intricate underpinnings of the molecular machinery, pivotal contributors, intricate signaling conduits, and regulatory networks governing ferroptosis, researchers aim to bridge the gap between the intricacies of this unique mode of cellular death and its multifaceted implications for health and disease. In light of the rapidly advancing landscape of ferroptosis research, we present a comprehensive review aiming at the extensive implications of ferroptosis in the origins and progress of human diseases. This review concludes with a careful analysis of potential treatment approaches carefully designed to either inhibit or promote ferroptosis. Additionally, we have succinctly summarized the potential therapeutic targets and compounds that hold promise in targeting ferroptosis within various diseases. This pivotal facet underscores the burgeoning possibilities for manipulating ferroptosis as a therapeutic strategy. In summary, this review enriched the insights of both investigators and practitioners, while fostering an elevated comprehension of ferroptosis and its latent translational utilities. By revealing the basic processes and investigating treatment possibilities, this review provides a crucial resource for scientists and medical practitioners, aiding in a deep understanding of ferroptosis and its effects in various disease situations.
Collapse
Affiliation(s)
- Shijian Feng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Dan Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yichang Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiang Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Hui Bao
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Chengbing Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiuju Dong
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xinna Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Qinxue Yang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yun Yan
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zhijie Yin
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Tiantian Shang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Kaixuan Zheng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiaofang Huang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zuheng Wei
- Chengdu Jinjiang Jiaxiang Foreign Languages High School, Chengdu, People's Republic of China
| | - Kunjie Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Shiqian Qi
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
46
|
Shi YS, Chen JC, Lin L, Cheng YZ, Zhao Y, Zhang Y, Pan XD. Dendrobine rescues cognitive dysfunction in diabetic encephalopathy by inhibiting ferroptosis via activating Nrf2/GPX4 axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:154993. [PMID: 37567006 DOI: 10.1016/j.phymed.2023.154993] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/09/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023]
Abstract
BACKGROUND Ferroptosis playsa crucial role in the development of dementia and dendrobine (Den)possesseshypoglycemic and neuroprotective effects. However, the character of ferroptosis in diabetic encephalopathy (DE) and Den's therapeutic effect remains unclear. PURPOSE This study aimed to verify the effects of Den on ferroptosis in treating DE and underlying mechanisms. STUDY DESIGN Den's therapeutic effect was assessed in db/db mice and advanced glycation end products (AGEs)-induced HT22 cells. METHODS After oral administration with Den orMetformin for 8-week, behavioral tests were used to assess cognitive capacity. Then, biochemical analysis was preformed to detect glucose and lipid metabolism levels; histological analysis and transmission electron microscope were applied to evaluate pathological injuries. Meanwhile, EdU staining and flow cytometry were applied to test cell apoptosis. Furthermore, mitochondrial dynamics, iron transport, and Nrf2/GPX4 axis related proteins were detected by western blot or immunofluorescence. RESULTS Our results demonstrated that Den remarkably alleviated glucose and lipid metabolism disorders, as well as ameliorated mnemonic deficits of db/db mice. Meanwhile, Den could protect AGEs-induced HT22 cells from death and apoptosis. In addition, we noted that Den inhibited lipid peroxidation by restoring mitochondrial function and reducing reactive oxygen species production. Furthermore, ferroptosis was proven to exist in db/db mice brain and Den could inhibit it via activating Nrf2/GPX4 axis. CONCLUSION These findings indicated that Den could rescue cognitive dysfunction in DE by inhibiting ferroptosis via activating Nrf2/GPX4 axis.
Collapse
Affiliation(s)
- Yu-Sheng Shi
- Department of Neurology, Center for Cognitive Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou 350001, China; Institute of Clinical Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou 350001, China; Hong Kong Baptist University, Hong Kong 999077, China
| | - Ji-Cong Chen
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lin Lin
- Department of Neurology, Center for Cognitive Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou 350001, China; Institute of Clinical Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou 350001, China; Fujian Key Laboratory of Vascular Aging, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Ying-Zhe Cheng
- Department of Neurology, Center for Cognitive Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou 350001, China; Institute of Clinical Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou 350001, China; Fujian Key Laboratory of Vascular Aging, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Yang Zhao
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yan Zhang
- Department of Neurology, Center for Cognitive Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou 350001, China; Institute of Clinical Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou 350001, China; Hong Kong Baptist University, Hong Kong 999077, China.
| | - Xiao-Dong Pan
- Department of Neurology, Center for Cognitive Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou 350001, China; Institute of Clinical Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou 350001, China; Fujian Key Laboratory of Vascular Aging, Fujian Medical University, Fuzhou, Fujian 350001, China.
| |
Collapse
|
47
|
Zhang JB, Jia X, Cao Q, Chen YT, Tong J, Lu GD, Li DJ, Han T, Zhuang CL, Wang P. Ferroptosis-Regulated Cell Death as a Therapeutic Strategy for Neurodegenerative Diseases: Current Status and Future Prospects. ACS Chem Neurosci 2023; 14:2995-3012. [PMID: 37579022 DOI: 10.1021/acschemneuro.3c00406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023] Open
Abstract
Ferroptosis is increasingly being recognized as a key element in the pathogenesis of diverse diseases. Recent studies have highlighted the intricate links between iron metabolism and neurodegenerative disorders. Emerging evidence suggests that iron homeostasis, oxidative stress, and neuroinflammation all contribute to the regulation of both ferroptosis and neuronal health. However, the precise molecular mechanisms underlying the involvement of ferroptosis in the pathological processes of neurodegeneration and its impact on neuronal dysfunction remain incompletely understood. In our Review, we provide a comprehensive analysis and summary of the potential molecular mechanisms underlying ferroptosis in neurodegenerative diseases, aiming to elucidate the disease progression of neurodegeneration. Additionally, we discuss potential therapeutic agents that modulate ferroptosis with the goal of identifying novel drug molecules for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Jia-Bao Zhang
- Department of Pharmacology, College of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
- National Experimental Teaching Demonstration Center of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| | - Xiuqin Jia
- Department of Radiology, Beijing Chao Yang Hospital, Capital Medical University, Chaoyang District, Beijing 100020, China
| | - Qi Cao
- Department of Pharmacology, College of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
- National Experimental Teaching Demonstration Center of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| | - Yi-Ting Chen
- Department of Pharmacology, College of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| | - Jie Tong
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Guo-Dong Lu
- Department of Pharmacology, College of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| | - Dong-Jie Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ting Han
- Department of Pharmacology, College of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| | - Chun-Lin Zhuang
- Department of Pharmacology, College of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| | - Pei Wang
- Department of Pharmacology, College of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
- National Experimental Teaching Demonstration Center of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
48
|
Wang Y, Wu S, Li Q, Sun H, Wang H. Pharmacological Inhibition of Ferroptosis as a Therapeutic Target for Neurodegenerative Diseases and Strokes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300325. [PMID: 37341302 PMCID: PMC10460905 DOI: 10.1002/advs.202300325] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/23/2023] [Indexed: 06/22/2023]
Abstract
Emerging evidence suggests that ferroptosis, a unique regulated cell death modality that is morphologically and mechanistically different from other forms of cell death, plays a vital role in the pathophysiological process of neurodegenerative diseases, and strokes. Accumulating evidence supports ferroptosis as a critical factor of neurodegenerative diseases and strokes, and pharmacological inhibition of ferroptosis as a therapeutic target for these diseases. In this review article, the core mechanisms of ferroptosis are overviewed and the roles of ferroptosis in neurodegenerative diseases and strokes are described. Finally, the emerging findings in treating neurodegenerative diseases and strokes through pharmacological inhibition of ferroptosis are described. This review demonstrates that pharmacological inhibition of ferroptosis by bioactive small-molecule compounds (ferroptosis inhibitors) could be effective for treatments of these diseases, and highlights a potential promising therapeutic avenue that could be used to prevent neurodegenerative diseases and strokes. This review article will shed light on developing novel therapeutic regimens by pharmacological inhibition of ferroptosis to slow down the progression of these diseases in the future.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care MedicineAerospace Center HospitalPeking University Aerospace School of Clinical MedicineBeijing100049P. R. China
| | - Shuang Wu
- Department of NeurologyZhongnan Hospital of Wuhan UniversityWuhan430000P. R. China
| | - Qiang Li
- Department of NeurologyThe Affiliated Hospital of Chifeng UniversityChifeng024005P. R. China
| | - Huiyan Sun
- Chifeng University Health Science CenterChifeng024000P. R. China
| | - Hongquan Wang
- Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin300060P. R. China
| |
Collapse
|
49
|
Jin G, Ma M, Yang C, Zhen L, Feng M. Salidroside suppresses the multiple oncogenic activates and immune escape of lung adenocarcinoma through the circ_0009624-mediated PD-L1 pathway. Thorac Cancer 2023; 14:2493-2503. [PMID: 37423604 PMCID: PMC10447170 DOI: 10.1111/1759-7714.15034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/11/2023] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is a fatal malignancy all over the world. Salidroside (SAL) is an active component extracted from Rhodiola rosea that has been reported to exert antitumor activity against several human cancers, containing lung adenocarcinoma (LUAD). The purpose of this study was to explore the effect and underlying mechanism of SAL in LUAD. METHODS Cell viability, proliferation, migration, and invasion were measured using cell counting kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), and transwell assays. Effects of LUAD cells on the cytotoxicity, percentage, and death of CD8+ cells were detected using lactate dehydrogenase (LDH) and flow cytometry assays. Programmed cell death ligand 1 (PD-L1) protein level was examined using western blot. Circ_0009624, enolase 1 (ENO1), and PD-L1 levels were determined using real-time quantitative polymerase chain reaction (RT-qPCR). The biological role of SAL on LUAD tumor growth was assessed using the xenograft tumor model in vivo. RESULTS SAL restrained LUAD cell proliferation, migration, invasion, and immune escape in vitro via modulating PD-L1. Circ_0009624 expression was increased in LUAD. Applying SAL repressed circ_0009624 and PD-L1 expression in LUAD cells. SAL treatment hindered suppressed various oncogenic activates and immune escape of LUAD cells by regulating the circ_0009624/PD-L1 pathway. SAL blocked LUAD xenograft growth in vivo. CONCLUSION Applying SAL might constrain malignant phenotypes and immune escape of LUAD cells partially through the circ_0009624-mediated PD-L1 pathway, providing a novel insight for LUAD treatment.
Collapse
Affiliation(s)
- Guilin Jin
- University of Tibetan MedicineLhasaChina
| | - Mi Ma
- University of Tibetan MedicineLhasaChina
| | | | - Luo Zhen
- University of Tibetan MedicineLhasaChina
| | | |
Collapse
|
50
|
Li X, Chen J, Feng W, Wang C, Chen M, Li Y, Chen J, Liu X, Liu Q, Tian J. Berberine ameliorates iron levels and ferroptosis in the brain of 3 × Tg-AD mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154962. [PMID: 37506403 DOI: 10.1016/j.phymed.2023.154962] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/25/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND Berberine (BBR) is a natural alkaloid extracted from the herb Coptis chinensis. This compound has the ability to penetrate the blood-brain barrier (BBB) and exhibit neuroprotective value in the treatment of Alzheimer's disease (AD). AD is a neurodegenerative disease characterized by β-amyloid (Aβ) deposition, hyperphosphorylated tau and other characters. Iron accumulation and ferroptosis were also detected in AD brain, which can result in neuronal damage. However, it is still unclear whether BBR can suppress ferroptosis in AD and alleviate its underlying pathology. PURPOSE This study investigated whether BBR may affect ferroptosis and related signaling pathways in triple transgenic AD (3 × Tg-AD) mice. METHODS Four-month-old 3 × Tg-AD mice received oral administration of BBR at a dose of 50 mg/kg for 7.5 months. Cognitive function and anxiety levels in mice were assessed using the morris water maze test, open field test, and novel object recognition test. Western blot, immunohistochemistry, and ICP-MS were employed to assess the pathology of AD, brain iron metabolism, and ferroptosis signaling pathways. Transmission electron microscopy was used to detect mitochondrial changes. The synergistic effects of BBR combined with Nrf2 were investigated using molecular docking programs and surface plasmon resonance technology. Co-inmunoprecipitation assay was used to examine the effect of BBR on the binding ability of Nrf2 and Keap1. RESULTS The results indicated that chronic treatment of BBR mitigated cognitive disorders in 3 × Tg-AD model mice. Reductions in Aβ plaque, hyperphosphorylated tau protein, neuronal loss, and ferroptosis in the brains of 3 × Tg-AD mice suggested that BBR could alleviate brain injury. In addition, BBR treatment attenuated ferroptosis, as evidenced by decreased levels of iron, MDA, and ROS, while enhancing SOD, GSH, GPX4, and SLC7A11. Consistent with the in vivo assay, BBR inhibited RSL3-induced ferroptosis in N2a-sw cells. BBR increased the expression levels of GPX4, FPN1 and SLC7A11 by regulating Nrf2 transcription levels, thereby inhibiting ferroptosis. Molecular docking programs and surface plasmon resonance technology demonstrated the direct combination of BBR with Nrf2. Co-inmunoprecipitation analysis showed that BBR inhibited the interaction between Keap1 and Nrf2. CONCLUSION For the first time, these results showed that BBR could inhibit iron levels and ferroptosis in the brains of 3 × Tg-AD model mice and partially protect against RSL3-induced ferroptosis via the activation of Nrf2 signaling.
Collapse
Affiliation(s)
- Xinlu Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jianfeng Chen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Wennuo Feng
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China; Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
| | - Chao Wang
- Chemical Analysis & Physical Testing Institute, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, China
| | - Minyu Chen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Yifan Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Jinghong Chen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Xinwei Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jing Tian
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China.
| |
Collapse
|