1
|
Liss A, Siddiqi M, Podder D, Scroger M, Vessey G, Martin K, Paperny N, Vo K, Astefanous A, Belachew N, Idahor E, Varodayan F. Ethanol drinking sex-dependently alters cortical IL-1β synaptic signaling and cognitive behavior in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617276. [PMID: 39416094 PMCID: PMC11483015 DOI: 10.1101/2024.10.08.617276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Individuals with alcohol use disorder (AUD) struggle with inhibitory control, decision making, and emotional processing. These cognitive symptoms reduce treatment adherence, worsen clinical outcomes, and promote relapse. Neuroimmune activation is a key factor in the pathophysiology of AUD, and targeting this modulatory system is less likely to produce unwanted side effects compared to directly targeting neurotransmitter dysfunction. Notably, the cytokine interleukin-1β (IL-1β) has been broadly associated with the cognitive symptoms of AUD, though the underlying mechanisms are not well understood. Here we investigated how chronic intermittent 24-hour access two bottle choice ethanol drinking affects medial prefrontal cortex (mPFC)-related cognitive function and IL-1 synaptic signaling in male and female C57BL/6J mice. In both sexes, ethanol drinking decreased reference memory and increased mPFC IL-1 receptor 1 (IL-1R1) mRNA levels. In neurons, IL-1β can activate either pro-inflammatory or neuroprotective intracellular pathways depending on the isoform of the accessory protein (IL-1RAcP) recruited to the IL-1R1 complex. Moreover, ethanol drinking sex-dependently shifted mPFC IL-1RAcP isoform gene expression and IL-1β regulation of mPFC GABA synapses, both of which may contribute to female mPFC resiliency and male mPFC susceptibility. This type of signaling bias has become a recent focus of rational drug development. Therefore, in addition to increasing our understanding of how IL-1β sex-dependently contributes to mPFC dysfunction in AUD, our current findings also support the development of a new class of pharmacotherapeutics based on biased IL-1 signaling.
Collapse
|
2
|
Gano A, Wojcik H, Danseglio NC, Kelliher K, Varlinskaya EI, Deak T. Adolescent intermittent ethanol (AIE) sensitized fever in male Sprague Dawley rats exposed to poly I:C in adulthood. Brain Behav Immun 2024; 120:82-97. [PMID: 38777284 PMCID: PMC11269031 DOI: 10.1016/j.bbi.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/13/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024] Open
Abstract
Fever plays an indispensable role in host defense processes and is used as a rapid index of infection severity. Unfortunately, there are also substantial individual differences in fever reactions with biological sex, immunological history, and other demographic variables contributing to adverse outcomes of infection. The present series of studies were designed to test the hypothesis that a history of adolescent alcohol misuse may be a latent experiential variable that determines fever severity using polyinosinic:polycytidylic acid (poly I:C), a synthetic form of double-stranded RNA that mimics a viral challenge. Adult male and female Sprague Dawley rats were injected with 0 (saline) or 4 mg/kg poly I:C to first establish sex differences in fever sensitivity in Experiment 1 using implanted radiotelemetry devices for remote tracking. In Experiments 2 and 3, adolescent males and females were exposed to either water or ethanol (0 or 4 g/kg intragastrically, 3 days on, 2 days off, ∼P30-P50, 4 cycles/12 exposures total). After a period of abstinence, adult rats (∼P80-96) were then challenged with saline or poly I:C, and fever induction and maintenance were examined across a prolonged time course of 8 h using implanted probes. In Experiments 4 and 5, adult male and female subjects with a prior history of adolescent water or adolescent intermittent ethanol (AIE) were given saline or poly I:C, with tissue collected for protein and gene expression analysis at 5 h post-injection. Initial sex differences in fever sensitivity were minimal in response to the 4 mg/kg dose of poly I:C in ethanol-naïve rats. AIE exposed males injected with poly I:C showed a sensitized fever response as well as enhanced TLR3, IκBα, and IL-1β expression in the nucleus of the solitary tract. Other brain regions related to thermoregulation and peripheral organs such as spleen, liver, and blood showed generalized immune responses to poly I:C, with no differences evident between AIE and water-exposed males. In contrast, AIE did not affect responsiveness to poly I:C in females. Thus, the present findings suggest that adolescent binge drinking may produce sex-specific and long-lasting effects on fever reactivity to viral infection, with preliminary evidence suggesting that these effects may be due to centrally-mediated changes in fever regulation rather than peripheral immunological mechanisms.
Collapse
Affiliation(s)
- Anny Gano
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, 13902-6000, USA
| | - Hannah Wojcik
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, 13902-6000, USA
| | - Nina C Danseglio
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, 13902-6000, USA
| | - Kaitlyn Kelliher
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, 13902-6000, USA
| | - Elena I Varlinskaya
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, 13902-6000, USA
| | - Terrence Deak
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, 13902-6000, USA.
| |
Collapse
|
3
|
Turner BRH, Jenkinson PI, Huttman M, Mullish BH. Inflammation, oxidative stress and gut microbiome perturbation: A narrative review of mechanisms and treatment of the alcohol hangover. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:1451-1465. [PMID: 38965644 DOI: 10.1111/acer.15396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/17/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024]
Abstract
Alcohol is the most widely abused substance in the world, the leading source of mortality in 15-49-year-olds, and a major risk factor for heart disease, liver disease, diabetes, and cancer. Despite this, alcohol is regularly misused in wider society. Consumers of excess alcohol often note a constellation of negative symptoms, known as the alcohol hangover. However, the alcohol hangover is not considered to have long-term clinical significance by clinicians or consumers. We undertook a critical review of the literature to demonstrate the pathophysiological mechanisms of the alcohol hangover. Hereafter, the alcohol hangover is re-defined as a manifestation of sickness behavior secondary to alcohol-induced inflammation, using the Bradford-Hill criteria to demonstrate causation above correlation. Alcohol causes inflammation through oxidative stress and endotoxemia. Alcohol metabolism is oxidative and increased intake causes relative tissue hypoxia and increased free radical generation. Tissue damage ensues through lipid peroxidation and the formation of DNA/protein adducts. Byproducts of alcohol metabolism such as acetaldehyde and congeners, sleep deprivation, and the activation of nonspecific inducible CYP2E1 in alcohol-exposed tissues exacerbate free radical generation. Tissue damage and cell death lead to inflammation, but in the intestine loss of epithelial cells leads to intestinal permeability, allowing the translocation of pathogenic bacteria to the systemic circulation (endotoxemia). This leads to a well-characterized cascade of systemic inflammation, additionally activating toll-like receptor 4 to induce sickness behavior. Considering the evidence, it is suggested that hangover frequency and severity may be predictors of the development of later alcohol-related diseases, meriting formal confirmation in prospective studies. In light of the mechanisms of alcohol-mediated inflammation, research into gut permeability and the gut microbiome may be an exciting future therapeutic avenue to prevent alcohol hangover and other alcohol-related diseases.
Collapse
Affiliation(s)
| | - Poppy I Jenkinson
- Department of Anaesthetics, Royal Surrey County Hospital, Surrey, UK
| | - Marc Huttman
- Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
| | - Benjamin H Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
4
|
Karadayian AG, Czerniczyniec A, Lores-Arnaiz S. Apoptosis Due to After-effects of Acute Ethanol Exposure in Brain Cortex: Intrinsic and Extrinsic Signaling Pathways. Neuroscience 2024; 544:39-49. [PMID: 38423164 DOI: 10.1016/j.neuroscience.2024.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
Alcohol hangover is the combination of negative mental and physical symptoms which can be experienced after a single episode of alcohol consumption, starting when blood alcohol concentration approaches zero. We previously demonstrated that hangover provokes mitochondrial dysfunction, oxidative stress, imbalance in antioxidant defenses, and impairment in cellular bioenergetics. Chronic and acute ethanol intake induces neuroapoptosis but there are no studies which evaluated apoptosis at alcohol hangover. The aim of the present work was to study alcohol residual effects on intrinsic and extrinsic apoptotic signaling pathways in mice brain cortex. Male Swiss mice received i.p. injection of ethanol (3.8 g/kg) or saline. Six hours after injection, at alcohol hangover onset, mitochondria and tissue lysates were obtained from brain cortex. Results indicated that during alcohol hangover a loss of granularity of mitochondria and a strong increment in mitochondrial permeability were observed, indicating the occurrence of swelling. Alcohol-treated mice showed a significant 35% increase in Bax/Bcl-2 ratio and a 5-fold increase in the ratio level of cytochrome c between mitochondria and cytosol. Caspase 3, 8 and 9 protein expressions were 32%, 33% and 20% respectively enhanced and the activity of caspase 3 and 6 was 30% and 20% increased also due to the hangover condition. Moreover, 38% and 32% increments were found in PARP1 and p53 protein expression respectively and on the contrary, SIRT-1 was almost 50% lower than controls due to the hangover condition. The present work demonstrates that alcohol after-effects could result in the activation of mitochondrial and non-mitochondrial apoptosis pathways.
Collapse
Affiliation(s)
- Analía G Karadayian
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Fisicoquímica, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular Prof. Alberto Boveris (IBIMOL) Buenos Aires, Argentina
| | - Analia Czerniczyniec
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Fisicoquímica, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular Prof. Alberto Boveris (IBIMOL) Buenos Aires, Argentina
| | - Silvia Lores-Arnaiz
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Fisicoquímica, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular Prof. Alberto Boveris (IBIMOL) Buenos Aires, Argentina.
| |
Collapse
|
5
|
Polak-Szczybyło E, Tabarkiewicz J. Influence of dietary and lifestyle factors on levels of inflammatory markers (IL-6, IFN-γ and TNF-α) in obese subjects. Cent Eur J Immunol 2024; 49:19-25. [PMID: 38812610 PMCID: PMC11130986 DOI: 10.5114/ceji.2024.138748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/04/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction The low-grade inflammation occurring in obese individuals leads to many diseases, including cardiovascular disease (CVD). Dietary patterns, food groups or nutrients in a well-balanced diet may reduce the level of pro-inflammatory markers and the risk of obesity-related morbidities. Our study aims to describe three cytokines in obese patients in relation to dietary habits, lifestyle and body composition. Material and methods Serum samples were collected from 84 obese adult volunteer subjects [body mass index (BMI) ≥ 30 kg/m2] to analyze the concentrations of interleukin 6 (IL-6), tumor necrosis factor α (TNF-α) and interferon γ (IFN-γ). The subjects were tested by bioelectrical impedance analysis (BIA) and completed a three-day food diary and original questionnaire with the FFQ-6 food consumption frequency questionnaire. Results and conclusions Higher serum levels of IL-6 and IFN-γ were found in patients with atherosclerosis, but the group was too small for a reliable correlation. Subcutaneous but not visceral adipose tissue correlated positively with IL-6 levels. Dietary factors such as amount of sugars, including galactose and sucrose, in the diet and the frequency of consumption of sweet flavored dairy products correlated positively with the levels of IL-6 and TNF-α, while the frequency of alcohol consumption negatively correlated with the level of IL-6. The greater the frequency of sports, the higher was the level of IL-6. In obese individuals, the level of pro-inflammatory cytokines could predispose to atherosclerosis and is associated with dietary factors and lifestyle.
Collapse
|
6
|
Anton PE, Rutt LN, Kaufman ML, Busquet N, Kovacs EJ, McCullough RL. Binge ethanol exposure in advanced age elevates neuroinflammation and early indicators of neurodegeneration and cognitive impairment in female mice. Brain Behav Immun 2024; 116:303-316. [PMID: 38151165 PMCID: PMC11446185 DOI: 10.1016/j.bbi.2023.12.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 12/29/2023] Open
Abstract
Binge drinking is rising among aged adults (>65 years of age), however the contribution of alcohol misuse to neurodegenerative disease development is not well understood. Both advanced age and repeated binge ethanol exposure increase neuroinflammation, which is an important component of neurodegeneration and cognitive dysfunction. Surprisingly, the distinct effects of binge ethanol exposure on neuroinflammation and associated degeneration in the aged brain have not been well characterized. Here, we establish a model of intermittent binge ethanol exposure in young and aged female mice to investigate the effects of advanced age and binge ethanol on these outcomes. Following intermittent binge ethanol exposure, expression of pro-inflammatory mediators (tnf-α, il-1β, ccl2) was distinctly increased in isolated hippocampal tissue by the combination of advanced age and ethanol. Binge ethanol exposure also increased measures of senescence, the nod like receptor pyrin domain containing 3 (NLRP3) inflammasome, and microglia reactivity in the brains of aged mice compared to young. Binge ethanol exposure also promoted neuropathology in the hippocampus of aged mice, including tau hyperphosphorylation and neuronal death. We further identified advanced age-related deficits in contextual memory that were further negatively impacted by ethanol exposure. These data suggest binge drinking superimposed with advanced age promotes early markers of neurodegenerative disease development and cognitive decline, which may be driven by heightened neuroinflammatory responses to ethanol. Taken together, we propose this novel exposure model of intermittent binge ethanol can be used to identify therapeutic targets to prevent advanced age- and ethanol-related neurodegeneration.
Collapse
Affiliation(s)
- Paige E Anton
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Alcohol Research Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Lauren N Rutt
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Alcohol Research Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Michael L Kaufman
- RNA Bioscience Initiative, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Nicolas Busquet
- Animal Behavior and In Vivo Neurophysiology Core, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Elizabeth J Kovacs
- GI and Liver Innate Immune Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Division of GI Trauma and Endocrine Surgery, Department of Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Alcohol Research Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Rebecca L McCullough
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; GI and Liver Innate Immune Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Alcohol Research Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.
| |
Collapse
|
7
|
Melbourne JK, Wooden JI, Carlson ER, Anasooya Shaji C, Nixon K. Neuroimmune Activation and Microglia Reactivity in Female Rats Following Alcohol Dependence. Int J Mol Sci 2024; 25:1603. [PMID: 38338883 PMCID: PMC10855949 DOI: 10.3390/ijms25031603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 02/12/2024] Open
Abstract
The rates of alcohol use disorder among women are growing, yet little is known about how the female brain is affected by alcohol. The neuroimmune system, and specifically microglia, have been implicated in mediating alcohol neurotoxicity, but most preclinical studies have focused on males. Further, few studies have considered changes to the microglial phenotype when examining the effects of ethanol on brain structure and function. Therefore, we quantified microglial reactivity in female rats using a binge model of alcohol dependence, assessed through morphological and phenotypic marker expression, coupled with regional cytokine levels. In a time- and region-dependent manner, alcohol altered the microglial number and morphology, including the soma and process area, and the overall complexity within the corticolimbic regions examined, but no significant increases in the proinflammatory markers MHCII or CD68 were observed. The majority of cytokine and growth factor levels examined were similarly unchanged. However, the expression of the proinflammatory cytokine TNFα was increased, and the anti-inflammatory IL-10, decreased. Thus, female rats showed subtle differences in neuroimmune reactivity compared to past work in males, consistent with reports of enhanced neuroimmune responses in females across the literature. These data suggest that specific neuroimmune reactions in females may impact their susceptibility to alcohol neurotoxicity and other neurodegenerative events with microglial contributions.
Collapse
Affiliation(s)
| | | | | | | | - Kimberly Nixon
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (J.K.M.)
| |
Collapse
|
8
|
Vore AS, Marsland P, Barney TM, Varlinskaya EI, Landin JD, Healey KL, Kibble S, Swartzwelder HS, Chandler LJ, Deak T. Adolescent intermittent ethanol (AIE) produces lasting, sex-specific changes in rat body fat independent of changes in white blood cell composition. Front Physiol 2024; 15:1285376. [PMID: 38332987 PMCID: PMC10851431 DOI: 10.3389/fphys.2024.1285376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024] Open
Abstract
Early initiation of alcohol use during adolescence, and adolescent binge drinking are risk factors for the development of alcohol use disorder later in life. Adolescence is a time of rapid sex-dependent neural, physiological, and behavioral changes as well as a period of heightened vulnerability to many effects of alcohol. The goal of the present studies was to determine age-related changes in blood (leukocyte populations) and body composition across adolescence and early adulthood, and to investigate whether adolescent intermittent ethanol (AIE) exposure would alter the trajectory of adolescent development on these broad physiological parameters. We observed significant ontogenetic changes in leukocyte populations that were mirrored by an age-related increase in cytokine expression among mixed populations of circulating leukocytes. Despite these developmental changes, AIE did not significantly alter overall leukocyte numbers or cytokine gene expression. However, AIE led to sex-specific changes in body fat mass and fat percentage, with AIE-exposed male rats showing significantly decreased fat levels and female rats showing significantly increased fat levels relative to controls. These changes suggest that while AIE may not alter overall leukocyte levels, more complex phenotypic changes in leukocyte populations could underlie previously reported differences in cytokine expression. Coupled with long-term shifts in adipocyte levels, this could have long-lasting effects on innate immunity and the capacity of individuals to respond to later immunological and physiological threats.
Collapse
Affiliation(s)
- Andrew S. Vore
- Developmental Exposure Alcohol Research Center, Binghamton University-SUNY, Binghamton, NY, United States
| | - Paige Marsland
- Developmental Exposure Alcohol Research Center, Binghamton University-SUNY, Binghamton, NY, United States
| | - Thaddeus M. Barney
- Developmental Exposure Alcohol Research Center, Binghamton University-SUNY, Binghamton, NY, United States
| | - Elena I. Varlinskaya
- Developmental Exposure Alcohol Research Center, Binghamton University-SUNY, Binghamton, NY, United States
| | - Justine D. Landin
- Department of Neurosciences, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, United States
| | - Kati L. Healey
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, United States
| | - Sandra Kibble
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, United States
| | - H. S. Swartzwelder
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, United States
| | - Lawrence J. Chandler
- Department of Neurosciences, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, United States
| | - Terrence Deak
- Developmental Exposure Alcohol Research Center, Binghamton University-SUNY, Binghamton, NY, United States
| |
Collapse
|
9
|
Gano A, Barney TM, Vore AS, Mondello JE, Varlinskaya EI, Pautassi RM, Deak T. Cues associated with a single ethanol exposure elicit conditioned corticosterone responses in adolescent male but not female Sprague-Dawley rats. Dev Psychobiol 2024; 66:e22442. [PMID: 38131243 PMCID: PMC10752265 DOI: 10.1002/dev.22442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/19/2023] [Accepted: 11/01/2023] [Indexed: 12/23/2023]
Abstract
It has been shown that ethanol-induced interleukin-6 (IL-6) in adult male Sprague-Dawley rats was sensitized by environmental stimuli paired with ethanol and was accompanied by a conditioned increase in corticosterone (CORT). Adolescent males showed ethanol-induced IL-6 conditioning more readily than adults. The present studies examined whether female adolescents display IL-6 conditioning and whether adolescents of either sex show CORT conditioning. Male and female (N = 212, n = 6-10) adolescent (postnatal day 33-40) rats were given ethanol (2 g/kg intraperitoneal injection; the unconditioned stimulus), either paired with a lavender-scented novel context (the conditioned stimulus) or explicitly unpaired from context. Rats were tested in the context without ethanol and brains/blood were collected. Adolescent females did not show signs of neuroimmune (Experiment 1) or CORT conditioning (Experiments 2-4). Paired males showed enhanced CORT to the scented context relative to unpaired counterparts when the interoceptive cue of a saline injection was used on test day (Experiment 2). Experiment 5 used a delayed conditioning procedure and showed that male paired adolescents showed significantly higher CORT in response to context, showing that classically conditioned CORT response was precipitated by environmental cues alone. These findings indicate that adolescent males may be predisposed to form conditioned associations between alcohol and environmental cues, contributing to adolescent vulnerability to long-lasting ethanol effects.
Collapse
Affiliation(s)
- Anny Gano
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton NY 13902-6000
| | - Thaddeus M. Barney
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton NY 13902-6000
| | - Andrew S. Vore
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton NY 13902-6000
| | - Jamie E. Mondello
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton NY 13902-6000
| | - Elena I. Varlinskaya
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton NY 13902-6000
| | - Ricardo M. Pautassi
- Instituto de Investigación Médica M. y M. Ferreyra (INIMEC–CONICET-Universidad Nacional de Córdoba) and Facultad de Psicología, UNC, Córdoba, CP 5000, Argentina
| | - Terrence Deak
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton NY 13902-6000
| |
Collapse
|
10
|
Davis AB, Lloyd KR, Bollinger JL, Wohleb ES, Reyes TM. Adolescent high fat diet alters the transcriptional response of microglia in the prefrontal cortex in response to stressors in both male and female mice. Stress 2024; 27:2365864. [PMID: 38912878 PMCID: PMC11228993 DOI: 10.1080/10253890.2024.2365864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/28/2024] [Indexed: 06/25/2024] Open
Abstract
Both obesity and high fat diets (HFD) have been associated with an increase in inflammatory gene expression within the brain. Microglia play an important role in early cortical development and may be responsive to HFD, particularly during sensitive windows, such as adolescence. We hypothesized that HFD during adolescence would increase proinflammatory gene expression in microglia at baseline and potentiate the microglial stress response. Two stressors were examined, a physiological stressor [lipopolysaccharide (LPS), IP] and a psychological stressor [15 min restraint (RST)]. From 3 to 7 weeks of age, male and female mice were fed standard control diet (SC, 20% energy from fat) or HFD (60% energy from fat). On P49, 1 h before sacrifice, mice were randomly assigned to either stressor exposure or control conditions. Microglia from the frontal cortex were enriched using a Percoll density gradient and isolated via fluorescence-activated cell sorting (FACS), followed by RNA expression analysis of 30 genes (27 target genes, three housekeeping genes) using Fluidigm, a medium throughput qPCR platform. We found that adolescent HFD induced sex-specific transcriptional response in cortical microglia, both at baseline and in response to a stressor. Contrary to our hypothesis, adolescent HFD did not potentiate the transcriptional response to stressors in males, but rather in some cases, resulted in a blunted or absent response to the stressor. This was most apparent in males treated with LPS. However, in females, potentiation of the LPS response was observed for select proinflammatory genes, including Tnfa and Socs3. Further, HFD increased the expression of Itgam, Ikbkb, and Apoe in cortical microglia of both sexes, while adrenergic receptor expression (Adrb1 and Adra2a) was changed in response to stressor exposure with no effect of diet. These data identify classes of genes that are uniquely affected by adolescent exposure to HFD and different stressor modalities in males and females.
Collapse
Affiliation(s)
- Alyshia B Davis
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Kelsey R Lloyd
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Justin L Bollinger
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Eric S Wohleb
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Teresa M Reyes
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
11
|
Wooden JI, Peacoe LE, Anasooya Shaji C, Melbourne JK, Chandler CM, Bardo MT, Nixon K. Adolescent Intermittent Ethanol Drives Modest Neuroinflammation but Does Not Escalate Drinking in Male Rats. Cells 2023; 12:2572. [PMID: 37947650 PMCID: PMC10649200 DOI: 10.3390/cells12212572] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
During adolescence, the brain is highly susceptible to alcohol-induced damage and subsequent neuroimmune responses, effects which may enhance development of an alcohol use disorder (AUD). Neuroimmune reactions are implicated in adolescent alcohol exposure escalating adulthood drinking. Therefore, we investigated whether intermittent alcohol exposure in male, adolescent rats (AIE) escalated adult drinking via two-bottle choice (2BC). We also examined the influence of housing environment across three groups: standard (group-housed with enrichment during 2BC), impoverished (group-housed without enrichment during 2BC), or isolation (single-housed without bedding or enrichment throughout). In the standard group immediately after AIE/saline and after 2BC, we also examined the expression of microglial marker, Iba1, reactive astrocyte marker, vimentin, and neuronal cell death dye, FluoroJade B (FJB). We did not observe an escalation of adulthood drinking following AIE, regardless of housing condition. Further, only a modest neuroimmune response occurred after AIE in the standard group: no significant microglial reactivity or neuronal cell death was apparent using this model, although some astrocyte reactivity was detected in adolescence following AIE that resolved by adulthood. These data suggest that the lack of neuroimmune response in adolescence in this model may underlie the lack of escalation of alcohol drinking, which could not be modified through isolation stress.
Collapse
Affiliation(s)
- Jessica I. Wooden
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Lauren E. Peacoe
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Chinchusha Anasooya Shaji
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jennifer K. Melbourne
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Cassie M. Chandler
- Department of Psychology, University of Kentucky, Lexington, KY 40506, USA (M.T.B.)
| | - Michael T. Bardo
- Department of Psychology, University of Kentucky, Lexington, KY 40506, USA (M.T.B.)
| | - Kimberly Nixon
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
12
|
Kessler RR, Schiml PA, McGraw SM, Tomlin EN, Hoeferlin MJ, Deak T, Hennessy MB. Examination of the role of adrenergic receptor stimulation in the sensitization of neuroinflammatory-based depressive-like behavior in isolated Guinea pig pups. Stress 2023; 26:2239366. [PMID: 37529896 PMCID: PMC10421631 DOI: 10.1080/10253890.2023.2239366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/17/2023] [Indexed: 08/03/2023] Open
Abstract
Early-life attachment disruption appears to sensitize neuroinflammatory signaling to increase later vulnerability for stress-related mental disorders, including depression. How stress initiates this process is unknown, but studies with adult rats and mice suggest sympathetic nervous system activation and/or cortisol elevations during the early stress are key. Guinea pig pups isolated from their mothers exhibit an initial active behavioral phase characterized by anxiety-like vocalizing. This is followed by inflammatory-dependent depressive-like behavior and fever that sensitize on repeated isolation. Using strategies that have been successful in adult studies, we assessed whether sympathetic nervous system activity and cortisol contributed to the sensitization process in guinea pig pups. In Experiment 1, the adrenergic agonist ephedrine (3 or 10 mg/kg), either alone or with cortisol (2.5 mg/kg), did not increase depressive-like behavior or fever during initial isolation the following day as might have been expected to if this stimulation was sufficient to account for the sensitization process. In Experiment 2, both depressive-like behavior and fever sensitized with repeated isolation, but beta-adrenergic receptor blockade with propranolol (10 or 20 mg/kg) did not affect either of these responses or their sensitization. The high dose of propranolol did, however, reduce vocalizing. These results suggest sympathetic nervous system activation is neither necessary nor sufficient to induce the presumptive neuroinflammatory signaling underlying sensitization of depressive-like behavioral or febrile responses in developing guinea pigs. Thus, processes mediating sensitization of neuroinflammatory-based depressive-like behavior following early-life attachment disruption in this model appear to differ from those previously found to underlie neuroinflammatory priming in adults.
Collapse
Affiliation(s)
- Rachel R. Kessler
- Department of Psychology, Wright State University, Dayton OH, 45435, United States
| | - Patricia A. Schiml
- Department of Psychology, Wright State University, Dayton OH, 45435, United States
| | - Sean M. McGraw
- Department of Psychology, Wright State University, Dayton OH, 45435, United States
| | - Erin N. Tomlin
- Department of Psychology, Wright State University, Dayton OH, 45435, United States
| | - Mikayla J. Hoeferlin
- Department of Psychology, Wright State University, Dayton OH, 45435, United States
| | - Terrence Deak
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902, United States
| | - Michael B. Hennessy
- Department of Psychology, Wright State University, Dayton OH, 45435, United States
| |
Collapse
|
13
|
Gruol DL, Calderon D, Huitron-Resendiz S, Cates-Gatto C, Roberts AJ. Impact of Elevated Brain IL-6 in Transgenic Mice on the Behavioral and Neurochemical Consequences of Chronic Alcohol Exposure. Cells 2023; 12:2306. [PMID: 37759527 PMCID: PMC10527024 DOI: 10.3390/cells12182306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Alcohol consumption activates the neuroimmune system of the brain, a system in which brain astrocytes and microglia play dominant roles. These glial cells normally produce low levels of neuroimmune factors, which are important signaling factors and regulators of brain function. Alcohol activation of the neuroimmune system is known to dysregulate the production of neuroimmune factors, such as the cytokine IL-6, thereby changing the neuroimmune status of the brain, which could impact the actions of alcohol. The consequences of neuroimmune-alcohol interactions are not fully known. In the current studies we investigated this issue in transgenic (TG) mice with altered neuroimmune status relative to IL-6. The TG mice express elevated levels of astrocyte-produced IL-6, a condition known to occur with alcohol exposure. Standard behavioral tests of alcohol drinking and negative affect/emotionality were carried out in homozygous and heterozygous TG mice and control mice to assess the impact of neuroimmune status on the actions of chronic intermittent alcohol (ethanol) (CIE) exposure on these behaviors. The expressions of signal transduction and synaptic proteins were also assessed by Western blot to identify the impact of alcohol-neuroimmune interactions on brain neurochemistry. The results from these studies show that neuroimmune status with respect to IL-6 significantly impacts the effects of alcohol on multiple levels.
Collapse
Affiliation(s)
- Donna L. Gruol
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Delilah Calderon
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Chelsea Cates-Gatto
- Animal Models Core Facility, The Scripps Research Institute, La Jolla, CA 92037, USA (A.J.R.)
| | - Amanda J. Roberts
- Animal Models Core Facility, The Scripps Research Institute, La Jolla, CA 92037, USA (A.J.R.)
| |
Collapse
|
14
|
Holloway KN, Douglas JC, Rafferty TM, Kane CJM, Drew PD. Ethanol Induces Neuroinflammation in a Chronic Plus Binge Mouse Model of Alcohol Use Disorder via TLR4 and MyD88-Dependent Signaling. Cells 2023; 12:2109. [PMID: 37626919 PMCID: PMC10453365 DOI: 10.3390/cells12162109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/14/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Ethanol induces neuroinflammation, which is believed to contribute to the pathogenesis of alcohol use disorder (AUD). Toll-like receptors (TLRs) are a group of pattern recognition receptors (PRRs) expressed on both immune cells, including microglia and astrocytes, and non-immune cells in the central nervous system (CNS). Studies have shown that alcohol activates TLR4 signaling, resulting in the induction of pro-inflammatory cytokines and chemokines in the CNS. However, the effect of alcohol on signaling pathways downstream of TLR4, such as MyD88 and TRIF (TICAM) signaling, has not been evaluated extensively. In the current study, we treated male wild-type, TLR4-, MyD88-, and TRIF-deficient mice using a chronic plus binge mouse model of AUD. Evaluation of mRNA expression by qRT-PCR revealed that ethanol increased IL-1β, TNF-α, CCL2, COX2, FosB, and JunB in the cerebellum in wild-type and TRIF-deficient mice, while ethanol generally did not increase the expression of these molecules in TLR4- and MyD88-deficient mice. Furthermore, IRF3, IRF7, and IFN-β1, which are associated with the TRIF-dependent signaling cascade, were largely unaffected by alcohol. Collectively, these results suggest that the TLR4 and downstream MyD88-dependent signaling pathways are essential in ethanol-induced neuroinflammation in this mouse model of AUD.
Collapse
Affiliation(s)
- Kalee N. Holloway
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - James C. Douglas
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Tonya M. Rafferty
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Cynthia J. M. Kane
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Paul D. Drew
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
15
|
Banerjee S, Park T, Kim YS, Kim HY. Exacerbating effects of single-dose acute ethanol exposure on neuroinflammation and amelioration by GPR110 (ADGRF1) activation. J Neuroinflammation 2023; 20:187. [PMID: 37580715 PMCID: PMC10426059 DOI: 10.1186/s12974-023-02868-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Neuroinflammation is a widely studied phenomenon underlying various neurodegenerative diseases. Earlier study demonstrated that pharmacological activation of GPR110 in both central and peripheral immune cells cooperatively ameliorates neuroinflammation caused by systemic lipopolysaccharide (LPS) administration. Ethanol consumption has been associated with exacerbation of neurodegenerative and systemic inflammatory conditions. The goal of this study is to determine the effects of single-dose acute ethanol exposure and GPR110 activation on the neuro-inflammation mechanisms. METHODS For in vivo studies, GPR110 wild type (WT) and knockout (KO) mice at 10-12 weeks of age were given an oral gavage of ethanol (3 g/kg) or maltose (5.4 g/kg) at 1-4 h prior to the injection of LPS (1 mg/kg, i.p.) followed by the GPR110 ligand, synaptamide (5 mg/kg). After 2-24 h, brains were collected for the analysis of gene expression by RT-PCR or protein expression by western blotting and enzyme-linked immunosorbent assay (ELISA). Microglial activation was assessed by western blotting and immunohistochemistry. For in vitro studies, microglia and peritoneal macrophages were isolated from adult WT mice and treated with 25 mM ethanol for 4 h and then with LPS (100 ng/ml) followed by 10 nM synaptamide for 2 h for gene expression and 12 h for protein analysis. RESULTS Single-dose exposure to ethanol by gavage before LPS injection upregulated pro-inflammatory cytokine expression in the brain and plasma. The LPS-induced Iba-1 expression in the brain was significantly higher after ethanol pretreatment in both WT and GPR110KO mice. GPR110 ligand decreased the mRNA and/or protein expression of these cytokines and Iba-1 in the WT but not in GPR110KO mice. In the isolated microglia and peritoneal macrophages, ethanol also exacerbated the LPS-induced expression of pro-inflammatory cytokines which was mitigated at least partially by synaptamide. The expression of an inflammasome marker NLRP3 upregulated by LPS was further elevated with prior exposure to ethanol, especially in the brains of GPR110KO mice. Both ethanol and LPS reduced adenylate cyclase 8 mRNA expression which was reversed by the activation of GPR110. PDE4B expression at both mRNA and protein level in the brain increased after ethanol and LPS treatment while synaptamide suppressed its expression in a GPR110-dependent manner. CONCLUSION Single-dose ethanol exposure exacerbated LPS-induced inflammatory responses. The GPR110 ligand synaptamide ameliorated this effect of ethanol by counteracting on the cAMP system, the common target for synaptamide and ethanol, and by regulating NLRP3 inflammasome.
Collapse
Affiliation(s)
- Sharmistha Banerjee
- Laboratory of Molecular Signaling, National Institute on Alcohol Abuse and Alcoholism, 5625 Fishers Lane, Rockville, MD, 20852, USA
| | - Taeyeop Park
- Laboratory of Molecular Signaling, National Institute on Alcohol Abuse and Alcoholism, 5625 Fishers Lane, Rockville, MD, 20852, USA
| | - Yoo Sun Kim
- Laboratory of Molecular Signaling, National Institute on Alcohol Abuse and Alcoholism, 5625 Fishers Lane, Rockville, MD, 20852, USA
| | - Hee-Yong Kim
- Laboratory of Molecular Signaling, National Institute on Alcohol Abuse and Alcoholism, 5625 Fishers Lane, Rockville, MD, 20852, USA.
- National Institutes of Health, 5625 Fishers Lane, Rm. 3N-07, Bethesda, MD, 20892-9410, USA.
| |
Collapse
|
16
|
Marsland P, Trapp S, Vore A, Lutzke A, Varlinskaya EI, Deak T. Intermittent Exposure to a Single Bottle of Ethanol Modulates Stress Sensitivity: Impact of Age at Exposure Initiation. Cells 2023; 12:1991. [PMID: 37566070 PMCID: PMC10417636 DOI: 10.3390/cells12151991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Alcohol use during adolescence is a serious public health problem, with binge drinking and high-intensity drinking being particularly harmful to the developing adolescent brain. To investigate the adverse consequences of binge drinking and high-intensity adolescent drinking, adolescent rodents were intermittently exposed to ethanol through intragastric gavage, intraperitoneal injection, or vapor inhalation. These models revealed the long-lasting behavioral and neural consequences of adolescent intermittent ethanol (AIE) exposure. The present study was designed to characterize a different AIE model, namely, intermittent exposure to a single bottle of 10% ethanol as the only source of fluids on a 2 days on/2 days off (water days) schedule, and to determine whether this AIE exposure model would produce changes in hormonal and neuroimmune responsiveness to challenges of differing modalities. Assessments of ethanol intake as well as blood and brain ethanol concentrations (BECs and BrECs, respectively) in adult male and female rats (Experiment 1) revealed that BECs and BrECs peaked following access to ethanol for a 2 h period when assessed 1 h into the dark cycle. Experiment 2 revealed age differences in ethanol intake, BECs, and BrECs following a 2 h access to ethanol (1 h into the dark cycle), with adolescents ingesting more ethanol and reaching higher BECs as well as BrECs than adults. In Experiment 3, intermittent exposure to a single bottle of 10% ethanol for 10 cycles of 2 days on/2 days off was initiated either in early or late adolescence, followed by an acute systemic immune challenge with lipopolysaccharide (LPS) in adulthood. LPS increased corticosterone and progesterone levels regardless of sex and prior ethanol history, whereas an LPS-induced increase in cytokine gene expression in the hippocampus was evident only in ethanol-exposed males and females, with females who underwent early exposure to ethanol being more affected than their later-exposed counterparts. In Experiment 4, intermittent ethanol exposure in females was initiated either in adolescence or adulthood and lasted for 12 ethanol exposure cycles. Then, behavioral (freezing behavior), hormonal (corticosterone and progesterone levels), and neuroimmune (cytokine gene expression in the PVN, amygdala, and hippocampus) responses to novel environments (mild stressors) and shock (intense stressors) were assessed. More pronounced behavioral and hormonal changes, as well as changes in cytokine gene expression, were evident in the shock condition than following placement in the novel environment, with prior history of ethanol exposure not playing a substantial role. Interleukin (IL)-1β gene expression was enhanced by shock in the PVN, whereas shock-induced increases in IL-6 gene expression were evident in the hippocampus. Together, these findings demonstrate that our intermittent adolescent exposure model enhances responsiveness to immune but not stress challenges, with females being more vulnerable to this AIE effect than males.
Collapse
Affiliation(s)
| | | | | | | | | | - Terrence Deak
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, USA
| |
Collapse
|
17
|
Blaine SK, Ridner CM, Campbell BR, Crone L, Claus ED, Wilson JR, West SN, McClanahan AJ, Siddiq AS, Layman IM, Macatee R, Ansell EB, Robinson JL, Beck DT. IL-6, but not TNF-α, response to alcohol cues and acute consumption associated with neural cue reactivity, craving, and future drinking in binge drinkers. Brain Behav Immun Health 2023; 31:100645. [PMID: 37484196 PMCID: PMC10362517 DOI: 10.1016/j.bbih.2023.100645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 05/26/2023] [Accepted: 06/03/2023] [Indexed: 07/25/2023] Open
Abstract
Objective and design Preclinical studies suggest learned immune system responses to alcohol cues and consumption may contribute to alcohol's pharmacodynamic properties and/or Alcohol Use Disorder (AUD) pathogenesis. Mechanistically, these immune alterations may be associated with increased craving and alcohol consumption, both acutely and over time. We sought to characterize this relationship in a randomized, counter-balanced, crossover neuroimaging experiment which took place between June 2020-November 2021. Methods Thirty-three binge drinkers (BD) and 31 non-binge, social drinkers (SD), matched for demographic and psychological variables, were exposed to alcohol cues and water cues in two separate 7 T functional magnetic resonance imaging (fMRI) scans. Each scan was followed by the Alcohol Taste Test (ATT) of implicit motivation for acute alcohol. Craving measures and blood cytokine levels were collected repeatedly during and after scanning to examine the effects of alcohol cues and alcohol consumption on craving levels, Tumor necrosis factor alpha (TNF-α), and Interleukin 6 (IL-6) levels. A post-experiment one-month prospective measurement of participants' "real world" drinking behavior was performed to approximate chronic effects. Results BD demonstrated significantly higher peak craving and IL-6 levels than SD in response to alcohol cues and relative to water cues. Ventromedial Prefrontal Cortex (VmPFC) signal change in the alcohol-water contrast positively related to alcohol cue condition craving and IL-6 levels, relative to water cue condition craving and IL-6 levels, in BD only. Additionally, peak craving and IL-6 levels were each independently related to ATT alcohol consumption and the number of drinks consumed in the next month for BD, again after controlling for craving and IL-6 repones to water cues. However, TNF-α release in the alcohol cue condition was not related to craving, neural activation, IL-6 levels, immediate and future alcohol consumption in either group after controlling for water cue condition responses. Conclusions In sum, BD show greater craving and IL-6 release in the alcohol cue condition than SD, both of which were associated with prefrontal cue reactivity, immediate alcohol consumption, and future alcohol consumption over the subsequent 30 days. Alcohol associated immune changes and craving effects on drinking behavior may be independent of one another or may be indicative of a common pathway by which immune changes in BD could influence motivation to consume alcohol. Trial registration Clinical Trials NCT04412824.
Collapse
Affiliation(s)
- Sara K. Blaine
- Department of Psychological Sciences, Auburn University, Auburn, AL, USA
| | - Clayton M. Ridner
- Department of Psychological Sciences, Auburn University, Auburn, AL, USA
| | | | - Lily Crone
- College of Sciences and Mathematics, Auburn University, Auburn, AL, USA
| | - Eric D. Claus
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, USA
| | - Juliet R. Wilson
- Edward Via College of Osteopathic Medicine, Auburn University, Auburn, AL, USA
| | - Summer N. West
- Edward Via College of Osteopathic Medicine, Auburn University, Auburn, AL, USA
| | | | - Anna S. Siddiq
- Edward Via College of Osteopathic Medicine, Auburn University, Auburn, AL, USA
| | - Isaak M.P. Layman
- Edward Via College of Osteopathic Medicine, Auburn University, Auburn, AL, USA
| | - Richard Macatee
- Department of Psychological Sciences, Auburn University, Auburn, AL, USA
| | - Emily B. Ansell
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, USA
| | | | - Darren T. Beck
- Edward Via College of Osteopathic Medicine, Auburn University, Auburn, AL, USA
| |
Collapse
|
18
|
Niedzwiedz-Massey VM, Douglas JC, Rafferty T, Johnson JW, Holloway KN, Berquist MD, Kane CJ, Drew PD. Effects of chronic and binge ethanol administration on mouse cerebellar and hippocampal neuroinflammation. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2023; 49:345-358. [PMID: 36345683 PMCID: PMC10615135 DOI: 10.1080/00952990.2022.2128361] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 11/10/2022]
Abstract
Background: Hippocampal and cerebellar neuropathology occurs in individuals with alcohol use disorders (AUD), resulting in impaired cognitive and motor function.Objectives: Evaluate the effects of ethanol on the expression of pro- and anti-inflammatory molecules, as well as the effects of the anti-inflammatory PPAR-γ agonist pioglitazone in suppressing ethanol-induced neuroinflammation.Methods: Adult male and female mice were treated chronically with ethanol for just under a month followed by a single acute binge dose of ethanol. Animals were provided liquid diet in the absence of ethanol (Control; n = 18, 9 M/9F), liquid diet containing ethanol (ethanol; n = 22, 11 M/11F), or liquid diet containing ethanol plus gavage administration of 30.0 mg/kg pioglitazone (ethanol + pioglitazone; n = 20, 10 M/10F). The hippocampus and cerebellum were isolated 24 h following the binge dose of ethanol, mRNA was isolated, and pro- and anti-inflammatory molecules were quantified by qRT-PCR.Results: Ethanol significantly (p < .05) increased the expression of pro-inflammatory molecules IL-1β, TNF-α, CCL2, and COX2; increased the expression of inflammasome-related molecules NLRP3 and Casp1 but decreased IL-18; and altered the expression of anti-inflammatory molecules including TGFβR1 in the hippocampus and cerebellum, though some differences were observed between males and females and the two brain regions. The anti-inflammatory pioglitazone inhibited ethanol-induced alterations in the expression of most, but not all, inflammation-related molecules.Conclusion: Chronic plus binge administration of ethanol induced the expression of inflammatory molecules in adult mice and pioglitazone suppressed ethanol-induced neuroinflammation.
Collapse
Affiliation(s)
- Victoria M. Niedzwiedz-Massey
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - James C. Douglas
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Tonya Rafferty
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jennifer W. Johnson
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Kalee N. Holloway
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Michael D. Berquist
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Cynthia J.M. Kane
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Paul D. Drew
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
19
|
Gano A, Deak T, Pautassi RM. A review on the reciprocal interactions between neuroinflammatory processes and substance use and misuse, with a focus on alcohol misuse. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2023; 49:269-282. [PMID: 37148274 PMCID: PMC10524510 DOI: 10.1080/00952990.2023.2201944] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 05/08/2023]
Abstract
Background: The last decade has witnessed a surge of findings implicating neuroinflammatory processes as pivotal players in substance use disorders. The directionality of effects began with the expectation that the neuroinflammation associated with prolonged substance misuse contributes to long-term neuropathological consequences. As the literature grew, however, it became evident that the interactions between neuroinflammatory processes and alcohol and drug intake were reciprocal and part of a pernicious cycle in which disease-relevant signaling pathways contributed to an escalation of drug intake, provoking further inflammation-signaling and thereby exacerbating the neuropathological effects of drug misuse.Objectives: The goal of this review and its associated special issue is to provide an overview of the emergent findings relevant to understanding these reciprocal interactions. The review highlights the importance of preclinical and clinical studies in testing and validation of immunotherapeutics as viable targets for curtailing substance use and misuse, with a focus on alcohol misuse.Methods: A narrative review of the literature on drug and neuroinflammation was conducted, as well as articles published in this Special Issue on Alcohol- and Drug-induced Neuroinflammation: Insights from Pre-clinical Models and Clinical Research.Results: We argue that (a) demographic variables and genetic background contribute unique sensitivity to drug-related neuroinflammation; (b) co-morbidities between substance use disorders and affect dysfunction may share common inflammation-related signatures that predict the efficacy of immunotherapeutic drugs; and (c) examination of polydrug interactions with neuroinflammation is a critical area where greater research emphasis is needed.Conclusions: This review provides an accessible and example-driven review of the relationship between drug misuse, neuroinflammatory processes, and their resultant neuropathological outcomes.
Collapse
Affiliation(s)
- Anny Gano
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton, NY 13902-6000, United States of America
| | - Terrence Deak
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton, NY 13902-6000, United States of America
| | - Ricardo Marcos Pautassi
- Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Investigación Médica M. y M. Ferreyra (INIMEC – CONICET-Universidad Nacional de Córdoba), Córdoba, 5000, Argentina
| |
Collapse
|
20
|
Mondello JE, Gano A, Vore AS, Deak T. Cues associated with repeated ethanol exposure facilitate the corticosterone response to ethanol and immunological challenges in adult male Sprague Dawley rats: implications for neuroimmune regulation. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2023; 49:359-369. [PMID: 36862971 PMCID: PMC10474242 DOI: 10.1080/00952990.2023.2169831] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 01/06/2023] [Accepted: 01/14/2023] [Indexed: 03/04/2023]
Abstract
Background: We previously found a conditioned increase in central neuroinflammatory markers (Interleukin 6; IL-6) following exposure to alcohol-associated cues. Recent studies suggest (unconditioned) induction of IL-6 is entirely dependent on ethanol-induced corticosterone.Objectives: The goals of these present studies were to test whether alcohol-paired cues facilitated the hypothalamic-pituitary-adrenal (HPA) axis response to either a subthreshold priming alcohol dose or an immune or psychological stress challengeMethods: In Experiment 1 (N = 64), adult male Sprague Dawley rats were trained (paired or unpaired, four pairings total) with either vehicle or 2 g/kg alcohol [intragastric (i.g.) or intraperitoneal (i.p.)] injections. In Experiments 2 (N = 28) and 3 (N = 30), male rats were similarly trained but with 4 g/kg alcohol i.g. intubations. On test day, all rats were either administered a 0.5 g/kg alcohol dose (i.p. or i.g. Experiment 1), a 100 µg/kg i.p. lipopolysaccharide (LPS) challenge (Experiment 2), or a restraint challenge (Experiment 3), and exposed to alcohol-associated cues. Blood plasma was collected for analysis.Results: Alcohol-associated cues facilitated the plasma corticosterone response to a subthreshold dose of alcohol (F1,28 = 4.85, p < .05) and an immune challenge (F8,80 = 6.23, p < .001), but not a restraint challenge (F2,27 = 0.18, p > .05).Conclusion: These findings reveal that the impact of the cues associated with alcohol intoxication on the HPA axis may be context-specific. This work illustrates how HPA axis learning processes form in the early stages of alcohol use and has important implications for how the HPA and neuroimmune conditioning may develop in alcohol use disorder in humans and facilitate the response to a later immune challenge.
Collapse
Affiliation(s)
- Jamie E. Mondello
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton NY 13902-6000, USA
| | - Anny Gano
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton NY 13902-6000, USA
| | - Andrew S. Vore
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton NY 13902-6000, USA
| | - Terrence Deak
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton NY 13902-6000, USA
| |
Collapse
|
21
|
Carlson ER, Guerin SP, Nixon K, Fonken LK. The neuroimmune system - Where aging and excess alcohol intersect. Alcohol 2023; 107:153-167. [PMID: 36150610 PMCID: PMC10023388 DOI: 10.1016/j.alcohol.2022.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/21/2022] [Accepted: 08/31/2022] [Indexed: 01/05/2023]
Abstract
As the percentage of the global population over age 65 grows, and with it a subpopulation of individuals with alcohol use disorder (AUD), understanding the effect of alcohol on the aged brain is of utmost importance. Neuroinflammation is implicated in both natural aging as well as alcohol use, and its role in alterations to brain morphology and function may be exacerbated in aging individuals who drink alcohol to excess. The neuroimmune response to alcohol in aging is complex. The few studies investigating this issue have reported heightened basal activity and either hypo- or hyper-reactivity to an alcohol challenge. This review of preclinical research will first introduce key players of the immune system, then explore changes in neuroimmune function with aging or alcohol alone, with discussion of vulnerable brain regions, changes in cytokines, and varied reactions of microglia and astrocytes. We will then consider different levels of alcohol exposure, relevant animal models of AUD, and neuroimmune activation by alcohol across the lifespan. By identifying key findings, challenges, and targets for future research, we hope to bring more attention and resources to this underexplored area of inquiry.
Collapse
Affiliation(s)
- Erika R Carlson
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States
| | - Steven P Guerin
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States
| | - Kimberly Nixon
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States
| | - Laura K Fonken
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|
22
|
Randall CA, Sun D, Randall PA. Differential Effects of Nicotine, Alcohol, and Coexposure on Neuroimmune-Related Protein and Gene Expression in Corticolimbic Brain Regions of Rats. ACS Chem Neurosci 2023; 14:628-644. [PMID: 36705334 DOI: 10.1021/acschemneuro.2c00413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Nicotine and alcohol co-use is extremely common and their use constitutes two of the most common causes of preventable death, yet the underlying biological mechanisms are largely understudied. Activation of neuroimmune toll-like receptors (TLRs) promotes the induction of proinflammatory cascades and increases alcohol intake in rodents, which further promotes TLRs in the brain; nicotine may decrease central proinflammatory signaling. The current studies sought to determine the effects of nicotine ± alcohol (alone or in combination) on circulating blood plasma and TLR protein/gene expression in addiction-associated corticolimbic brain regions, including the prefrontal cortex-prelimbic (mPFC-PL) and nucleus accumbens core (AcbC). Adult rats were treated with alcohol (0 or 2 g/kg, IG) and exposed to nicotine vapor (0 or 30 mg/mL solution) daily for 2, 14, or 28 days. Plasma studies indicated no effects of independent exposure or coexposure in males. Coexposure decreased plasma nicotine levels versus nicotine-only treated females, yet alcohol and cotinine concentrations were unchanged. By 28 days, the anti-inflammatory cytokine IL-13 was decreased in alcohol-only females. Divergent changes in TLR3 (but not TLR4) protein occurred for independent-drug exposed males (but not coexposure), with reductions in the mPFC-PL after 14 days and increases in the AcbC by 28 days. Gene expression following chronic coexposure suggests nicotine may regionally counteract alcohol-induced inflammation, including increased AcbC-TLR3/4/7 and several downstream markers in females and increased mPFC-PL-TLR3 and -STAT3 (but not IRF3) evident in males with exposure to either drug alone. These findings give further insight into the role of sex and the neuroimmune system in independent exposure and coexposure to nicotine ± alcohol.
Collapse
Affiliation(s)
- Christie A Randall
- Department of Anesthesiology and Perioperative Medicine, College of Medicine, Pennsylvania State University, 500 University Drive, Hershey, Pennsylvania 17033, United States
| | - Dongxiao Sun
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania 17033 United States
| | - Patrick A Randall
- Department of Anesthesiology and Perioperative Medicine, College of Medicine, Pennsylvania State University, 500 University Drive, Hershey, Pennsylvania 17033, United States.,Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania 17033 United States
| |
Collapse
|
23
|
Granata L, Gildawie KR, Ismail N, Brenhouse HC, Kopec AM. Immune signaling as a node of interaction between systems that sex-specifically develop during puberty and adolescence. Dev Cogn Neurosci 2022; 57:101143. [PMID: 35933922 PMCID: PMC9357835 DOI: 10.1016/j.dcn.2022.101143] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/08/2022] [Accepted: 08/01/2022] [Indexed: 01/18/2023] Open
Abstract
Adolescence is pivotal for neural and behavioral development across species. During this period, maturation occurs in several biological systems, the most well-recognized being activation of the hypothalamic-pituitary-gonadal axis marking pubertal onset. Increasing comparative studies of sex differences have enriched our understanding of systems integration during neurodevelopment. In recent years, immune signaling has emerged as a key node of interaction between a variety of biological signaling processes. Herein, we review the age- and sex-specific changes that occur in neural, hypothalamic-pituitary, and microbiome systems during adolescence. We then describe how immune signaling interacts with these systems, and review recent preclinical evidence indicating that immune signaling may play a central role in integrating changes in their typical and atypical development during adolescence. Finally, we discuss the translational relevance of these preclinical studies to human health and wellness.
Collapse
Affiliation(s)
- Lauren Granata
- Northeastern University, 125 Nightingale Hall, Boston, MA 02115, USA.
| | - Kelsea R Gildawie
- Tufts University Cummings School of Veterinary Medicine, 200 Westboro Rd. North Grafton, MA 01536, USA.
| | - Nafissa Ismail
- University of Ottawa, 136 Jean-Jacques Lussier, Vanier Hall 2076A, Ottawa, ON K1N 6N5 Canada.
| | | | - Ashley M Kopec
- Albany Medical College, 43 New Scotland Ave., Albany, NY 12208, USA.
| |
Collapse
|
24
|
Moya M, Escudero B, Gómez-Blázquez E, Rebolledo-Poves AB, López-Gallardo M, Guerrero C, Marco EM, Orio L. Upregulation of TLR4/MyD88 pathway in alcohol-induced Wernicke’s encephalopathy: Findings in preclinical models and in a postmortem human case. Front Pharmacol 2022; 13:866574. [PMID: 36225571 PMCID: PMC9549119 DOI: 10.3389/fphar.2022.866574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Wernicke’s encephalopathy (WE) is a neurologic disease caused by vitamin B1 or thiamine deficiency (TD), being the alcohol use disorder its main risk factor. WE patients present limiting motor, cognitive, and emotional alterations related to a selective cerebral vulnerability. Neuroinflammation has been proposed to be one of the phenomena that contribute to brain damage. Our previous studies provide evidence for the involvement of the innate immune receptor Toll-like (TLR)4 in the inflammatory response induced in the frontal cortex and cerebellum in TD animal models (animals fed with TD diet [TDD] and receiving pyrithiamine). Nevertheless, the effects of the combination of chronic alcohol consumption and TD on TLR4 and their specific contribution to the pathogenesis of WE are currently unknown. In addition, no studies on TLR4 have been conducted on WE patients since brains from these patients are difficult to achieve. Here, we used rat models of chronic alcohol (CA; 9 months of forced consumption of 20% (w/v) alcohol), TD hit (TDD + daily 0.25 mg/kg i.p. pyrithiamine during 12 days), or combined treatment (CA + TDD) to check the activation of the proinflammatory TLR4/MyD88 pathway and related markers in the frontal cortex and the cerebellum. In addition, we characterized for the first time the TLR4 and its coreceptor MyD88 signature, along with other markers of this proinflammatory signaling such as phospo-NFκB p65 and IκBα, in the postmortem human frontal cortex and cerebellum (gray and white matter) of an alcohol-induced WE patient, comparing it with negative (no disease) and positive (aged brain with Alzheimer’s disease) control subjects for neuroinflammation. We found an increase in the cortical TLR4 and its adaptor molecule MyD88, together with an upregulation of the proinflammatory signaling molecules p-NF-ĸB and IĸBα in the CA + TDD animal model. In the patient diagnosed with alcohol-induced WE, we observed cortical and cerebellar upregulation of the TLR4/MyD88 pathway. Hence, our findings provide evidence, both in the animal model and the human postmortem brain, of the upregulation of the TLR4/MyD88 proinflammatory pathway in alcohol consumption–related WE.
Collapse
Affiliation(s)
- Marta Moya
- Department of Psychobiology and Methods in Behavioral Science, Faculty of Psychology, Complutense University of Madrid, Madrid, Spain
| | - Berta Escudero
- Department of Psychobiology and Methods in Behavioral Science, Faculty of Psychology, Complutense University of Madrid, Madrid, Spain
| | | | | | | | - Carmen Guerrero
- Biobanco of Hospital Universitario Fundación Alcorcón, Alcorcón, Spain
| | - Eva M. Marco
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Laura Orio
- Department of Psychobiology and Methods in Behavioral Science, Faculty of Psychology, Complutense University of Madrid, Madrid, Spain
- Research Network in Primary Care in Addictions (Red de Investigación en Atención Primaria en Adicciones), Riapad, Spain
- *Correspondence: Laura Orio,
| |
Collapse
|
25
|
Barney TM, Vore AS, Deak T. Acute Ethanol Challenge Differentially Regulates Expression of Growth Factors and miRNA Expression Profile of Whole Tissue of the Dorsal Hippocampus. Front Neurosci 2022; 16:884197. [PMID: 35706690 PMCID: PMC9189295 DOI: 10.3389/fnins.2022.884197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/31/2022] [Indexed: 02/02/2023] Open
Abstract
Acute ethanol exposure produces rapid alterations in neuroimmune gene expression that are both time- and cytokine-dependent. Interestingly, adolescent rats, who often consume binge-like quantities of alcohol, displayed reduced neuroimmune responses to acute ethanol challenge. However, it is not known whether growth factors, a related group of signaling factors, respond to ethanol similarly in adults and adolescents. Therefore, Experiment 1 aimed to assess the growth factor response to ethanol in both adolescents and adults. To test this, adolescent (P29-P34) and adult (P70-P80) Sprague Dawley rats of both sexes were injected with either ethanol (3.5 g/kg) or saline, and brains were harvested 3 h post-injection for assessment of growth factor, cytokine, or miRNA expression. As expected, acute ethanol challenge significantly increased IL-6 and IκBα expression in the hippocampus and amygdala, replicating our prior findings. Acute ethanol significantly decreased BDNF and increased FGF2 regardless of age condition. PDGF was unresponsive to ethanol, but showed heightened expression among adolescent males. Because recent work has focused on the PDE4 inhibitor ibudilast for treatment in alcohol use disorder, Experiment 2 tested whether ibudilast would alter ethanol-evoked gene expression changes in cytokines and growth factors in the CNS. Ibudilast (9.0 mg/kg s.c.) administration 1 h prior to ethanol had no effect on ethanol-induced changes in cytokine or growth factor changes in the hippocampus or amygdala. To further explore molecular alterations evoked by acute ethanol challenge in the adult rat hippocampus, Experiment 3 tested whether acute ethanol would change the miRNA expression profile of the dorsal hippocampus using RNASeq, which revealed a rapid suppression of 12 miRNA species 3 h after acute ethanol challenge. Of the miRNA affected by ethanol, the majority were related to inflammation or cell survival and proliferation factors, including FGF2, MAPK, NFκB, and VEGF. Overall, these findings suggest that ethanol-induced, rapid alterations in neuroimmune gene expression were (i) muted among adolescents; (ii) independent of PDE4 signaling; and (iii) accompanied by changes in several growth factors (increased FGF2, decreased BDNF). In addition, ethanol decreased expression of multiple miRNA species, suggesting a dynamic molecular profile of changes in the hippocampus within a few short hours after acute ethanol challenge. Together, these findings may provide important insight into the molecular consequences of heavy drinking in humans.
Collapse
|
26
|
Vore AS, Barney TM, Deak MM, Varlinskaya EI, Deak T. Adolescent intermittent ethanol exposure produces Sex-Specific changes in BBB Permeability: A potential role for VEGFA. Brain Behav Immun 2022; 102:209-223. [PMID: 35245677 PMCID: PMC9277567 DOI: 10.1016/j.bbi.2022.02.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/31/2022] [Accepted: 02/27/2022] [Indexed: 12/20/2022] Open
Abstract
Binge drinking that typically begins during adolescence can have long-lasting neurobehavioral consequences, including alterations in the central and peripheral immune systems. Central and peripheral inflammation disrupts blood-brain barrier (BBB) integrity and exacerbates pathology in diseases commonly associated with disturbed BBB function. Thus, the goal of the present studies was to determine long-lasting effects of adolescent intermittent ethanol (AIE) on BBB integrity. For AIE, male and female Sprague Dawley rats were repeatedly exposed to ethanol (4 g/kg, intragastrically) or water during adolescence between postnatal day (P) 30 and P50. In adulthood (∼P75), rats were challenged with fluorescein isothiocyanate (FITC)-tagged Dextran of varying molecular weights (4, 20, & 70 kDa) for assessment of BBB permeability using gross tissue fluorometry (Experiment 1). Experiment 2 extended these effects using immunofluorescence, adding an adult ethanol-exposed group to test for a specific developmental vulnerability. Finally, as a first test of hypothesized mechanism, Experiment 3 examined the effect of AIE on Vascular Endothelial Growth Factor A (VEGFA) and its co-localization with pericytes (identified through expression of platelet derived growth factor receptor beta (PDGFRβ), a key regulatory cell embedded within the BBB. Male, but not female, rats with a history of AIE showed significantly increased dextran permeability in the nucleus accumbens (NAc), cingulate prefrontal cortex (cPFC), and amygdala (AMG). Similar increases in dextran were observed in the hippocampus (HPC) and ventral tegmental area (VTA) of male rats with a history of AIE or equivalent ethanol exposure during adulthood. No changes in BBB permeability were evident in females. When VEGFa expression was examined, male rats exposed to AIE were challenged with 3.5 g/kg ethanol (i.p.) or vehicle acutely in adulthood to assess long-lasting versus acute actions of ethanol. Adult rats with a history of AIE showed significantly fewer total cells expressing VEGFa in the AMG and dHPC following the acute ethanol challenge in adulthood. They also showed a significant reduction in the number of PDGFRβ positive cells that also expressed VEGFa signal. The anatomical distribution of these effects corresponded with increased BBB permeability after AIE (i.e., differential effects in the PVN, AMG, and dHPC). These studies demonstrated sex-specific effects of AIE, with males, but not females, demonstrating long-term increases in BBB permeability that correlated with changes in VEGFa and PDGFRβ protein, two factors known to influence BBB permeability.
Collapse
Affiliation(s)
| | | | | | | | - Terrence Deak
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton, NY 13902-6000.
| |
Collapse
|
27
|
Prenatal and adolescent alcohol exposure programs immunity across the lifespan: CNS-mediated regulation. Pharmacol Biochem Behav 2022; 216:173390. [PMID: 35447157 DOI: 10.1016/j.pbb.2022.173390] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/28/2022] [Accepted: 04/11/2022] [Indexed: 12/31/2022]
Abstract
For many individuals, first exposure to alcohol occurs either prenatally due to maternal drinking, or during adolescence, when alcohol consumption is most likely to be initiated. Prenatal Alcohol Exposure (PAE) and its associated Fetal Alcohol Spectrum Disorders (FASD) in humans is associated with earlier initiation of alcohol use and increased rates of Alcohol Use Disorders (AUD). Initiation of alcohol use and misuse in early adolescence correlates highly with later AUD diagnosis as well. Thus, PAE and adolescent binge drinking set the stage for long-term health consequences due to adverse effects of alcohol on subsequent immune function, effects that may persist across the lifespan. The overarching goal of this review, therefore, is to determine the extent to which early developmental exposure to alcohol produces long-lasting, and potentially life-long, changes in immunological function. Alcohol affects the whole body, yet most studies are narrowly focused on individual features of immune function, largely ignoring the systems-level interactions required for effective host defense. We therefore emphasize the crucial role of the Central Nervous System (CNS) in orchestrating host defense processes. We argue that alcohol-mediated disruption of host immunity can occur through both (a) direct action of ethanol on neuroimmune processes, that subsequently disrupt peripheral immune function (top down); and (b) indirect action of ethanol on peripheral immune organs/cells, which in turn elicit consequent changes in CNS neuroimmune function (bottom up). Recognizing that alcohol consumption across the entire body, we argue in favor of integrative, whole-organism approaches toward understanding alcohol effects on immune function, and highlight the need for more work specifically examining long-lasting effects of early developmental exposure to alcohol (prenatal and adolescent periods) on host immunity.
Collapse
|
28
|
Barney TM, Vore AS, Trapp SL, Finkenberg CL, Pugliesi DR, Schmalzle MM, Evans SH, Varlinskaya EI, Deak T. Circulating corticosterone levels mediate the relationship between acute ethanol intoxication and markers of NF-κB activation in male rats. Neuropharmacology 2022; 210:109044. [PMID: 35341791 DOI: 10.1016/j.neuropharm.2022.109044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/18/2022] [Accepted: 03/20/2022] [Indexed: 11/27/2022]
Abstract
Binge drinking is a harmful pattern of alcohol use that is associated with a number of serious health problems. Of particular interest are the rapid alterations in neuroimmune gene expression and the concurrent activation of the hypothalamic-pituitary-adrenal (HPA) axis activation associated with high intensity drinking. Using a rat model of acute binge-like ethanol exposure, the present studies were designed to assess the role of corticosterone (CORT) in ethanol-induced neuroimmune gene expression changes, particularly those associated with the NFκB signaling pathway, including rapid induction of IL-6 and IκBα, and suppression of IL-1β and TNFα gene expression evident after administration of moderate to high doses of ethanol (1.5-3.5 g/kg ip) during intoxication (3 h post-injection). Experiment 1 tested whether inhibition of CORT synthesis with metyrapone and aminoglutethimide (100 mg/kg each, sc) would block ethanol-induced changes in neuroimmune gene expression. Results indicated that rapid alterations in IκBα, IL-1β, and TNFα expression were completely blocked by pretreatment with the glucocorticoid synthesis inhibitors, an effect that was reinstated by co-administration of exogenous CORT (3.75 mg/kg) in Experiment 2. Experiment 3 assessed whether these rapid alterations in neuroimmune gene expression would be evident when rats were challenged with a subthreshold dose of ethanol (1.5 g/kg) in combination with 2.5 mg/kg CORT, which showed limited evidence for additive effects of low-dose CORT combined with a moderate dose of ethanol. Acute inhibition of mineralocorticoid (spironolactone) or glucocorticoid (mifepristone) receptors, alone (Experiment 4) or combined (Experiment 5) had no effect on ethanol-induced changes in neuroimmune gene expression, presumably due to poor CNS penetrance of these drugs. Finally, Experiments 6 and 7 showed that dexamethasone (subcutaneous; a GR agonist) recapitulated effects of ethanol. Overall, we conclude that ethanol-induced CORT synthesis and release is responsible for suppression of IL-1β, TNFα, and induction of IκBα in the hippocampus through GR signaling. Interventions designed to curb these changes may reduce drinking, and subdue detrimental neuroimmune activation induced by ethanol.
Collapse
Affiliation(s)
- Thaddeus M Barney
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton, NY, 13902-6000, USA
| | - Andrew S Vore
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton, NY, 13902-6000, USA
| | - Sarah L Trapp
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton, NY, 13902-6000, USA
| | - Cristal L Finkenberg
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton, NY, 13902-6000, USA
| | - Dominique R Pugliesi
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton, NY, 13902-6000, USA
| | - Megha M Schmalzle
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton, NY, 13902-6000, USA
| | - Shani H Evans
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton, NY, 13902-6000, USA
| | - Elena I Varlinskaya
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton, NY, 13902-6000, USA
| | - Terrence Deak
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton, NY, 13902-6000, USA.
| |
Collapse
|
29
|
Rieger NS, Worley NB, Ng AJ, Christianson JP. Insular cortex modulates social avoidance of sick rats. Behav Brain Res 2022; 416:113541. [PMID: 34425184 PMCID: PMC8492531 DOI: 10.1016/j.bbr.2021.113541] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/29/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023]
Abstract
Avoidance of sick individuals is vital to the preservation of one's health and preventing transmission of communicable diseases. To do this successfully, one must identify social cues for sickness, which include sickness behaviors and chemosignals, and use this information to orchestrate social interactions. While many social species are highly capable with this process, the neural mechanisms that provide for social responses to sick individuals are only partially understood. To this end, we used a task in which experimental rats were allowed to investigate two conspecifics, one healthy and one sick. To imitate sickness, one conspecific received the viral mimic Polyinosinic:polycytidylic acid (Poly I:C) and the other saline. In a 5-minute social preference test, experimental male and female adult rats avoided Poly I:C treated adult conspecifics but did not adjust social interaction in response to Poly I:C treated juvenile conspecifics. Seeking a neural locus of this behavior, we inhibited the insular cortex, a region necessary for social behaviors directed toward conspecifics in distress. Insular cortex inactivation via administration of the GABAA agonist muscimol to experimental rats prior to social preference tests eliminated the preference to avoid sick adult conspecifics. These results suggest that some aspect of conspecific illness may be encoded in the insular cortex which is anatomically positioned to coordinate a situationally appropriate social response.
Collapse
Affiliation(s)
- Nathaniel S Rieger
- Department of Psychology and Neuroscience, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA, 02467 USA
| | - Nicholas B Worley
- Department of Psychology and Neuroscience, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA, 02467 USA
| | - Alexandra J Ng
- Department of Psychology and Neuroscience, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA, 02467 USA
| | - John P Christianson
- Department of Psychology and Neuroscience, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA, 02467 USA.
| |
Collapse
|
30
|
Doremus-Fitzwater TL, Deak T. Adolescent neuroimmune function and its interaction with alcohol. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 161:167-208. [PMID: 34801169 DOI: 10.1016/bs.irn.2021.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Adolescence is an evolutionarily conserved developmental period associated with behavioral change, including increased risk-taking and alcohol use. Experimentation with alcohol typically begins in adolescence and transitions to binge-like patterns of consumption. Alcohol exposure during adolescence can alter normative changes in brain structure and function. Understanding mechanisms by which ethanol impacts neurodevelopmental processes is important for preventing and ameliorating the deleterious consequences of adolescent alcohol abuse. This review focuses on the neuroimmune system as a key contributor to ethanol-induced changes in adolescent brain and behavior. After brief review of neuroimmune system development, acute and chronic effects of ethanol on adolescent neuroimmune functioning are addressed. Comparisons between stress/immunological challenges and ethanol on adolescent neuroimmunity are reviewed, as cross-sensitization is relevant during adolescence. The mechanisms by which ethanol alters neuroimmune functioning are then discussed, as they may portend development of neuropathological consequences and thus increase vulnerability to subsequent challenges and potentiate addictive behaviors.
Collapse
Affiliation(s)
- T L Doremus-Fitzwater
- Department of Psychology, Ithaca College, Ithaca, NY, United States; Developmental Exposure Alcohol Research Center (DEARC), Binghamton, NY, United States.
| | - T Deak
- Developmental Exposure Alcohol Research Center (DEARC), Binghamton, NY, United States; Binghamton University-SUNY, Binghamton, NY, United States
| |
Collapse
|
31
|
Vore AS, Deak T. Alcohol, inflammation, and blood-brain barrier function in health and disease across development. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 161:209-249. [PMID: 34801170 DOI: 10.1016/bs.irn.2021.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Alcohol is the most commonly used drug of abuse in the world and binge drinking is especially harmful to the brain, though the mechanisms by which alcohol compromises overall brain health remain somewhat elusive. A number of brain diseases and pathological states are accompanied by perturbations in Blood-Brain Barrier (BBB) function, ultimately exacerbating disease progression. The BBB is critical for coordinating activity between the peripheral immune system and the brain. Importantly, BBB integrity is responsive to circulating cytokines and other immune-related signaling molecules, which are powerfully modulated by alcohol exposure. This review will highlight key cellular components of the BBB; discuss mechanisms by which permeability is achieved; offer insight into methodological approaches for assessing BBB integrity; and forecast how alcohol-induced changes in the peripheral and central immune systems might influence BBB function in individuals with a history of binge drinking and ultimately Alcohol Use Disorders (AUD).
Collapse
Affiliation(s)
- A S Vore
- Behavioral Neuroscience Program, Department of Psychology, Developmental Exposure Alcohol Research Center, Binghamton, NY, United States
| | - T Deak
- Behavioral Neuroscience Program, Department of Psychology, Developmental Exposure Alcohol Research Center, Binghamton, NY, United States.
| |
Collapse
|
32
|
Melbourne JK, Chandler CM, Van Doorn CE, Bardo MT, Pauly JR, Peng H, Nixon K. Primed for addiction: A critical review of the role of microglia in the neurodevelopmental consequences of adolescent alcohol drinking. Alcohol Clin Exp Res 2021; 45:1908-1926. [PMID: 34486128 PMCID: PMC8793635 DOI: 10.1111/acer.14694] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/22/2021] [Accepted: 08/03/2021] [Indexed: 12/15/2022]
Abstract
Alcohol is one of the most widely used recreational substances worldwide, with drinking frequently initiated during adolescence. The developmental state of the adolescent brain makes it vulnerable to initiating alcohol use, often in high doses, and particularly susceptible to alcohol-induced brain changes. Microglia, the brain parenchymal macrophages, have been implicated in mediating some of these effects, though the role that these cells play in the progression from alcohol drinking to dependence remains unclear. Microglia are uniquely positioned to sense and respond to central nervous system insult, and are now understood to exhibit innate immune memory, or "priming," altering their future functional responses based on prior exposures. In alcohol use disorders (AUDs), the role of microglia is debated. Whereas microglial activation can be pathogenic, contributing to neuroinflammation, tissue damage, and behavioral changes, or protective, it can also engage protective functions, providing support and mediating the resolution of damage. Understanding the role of microglia in adolescent AUDs is complicated by the fact that microglia are thought to be involved in developmental processes such as synaptic refinement and myelination, which underlie the functional maturation of multiple brain systems in adolescence. Thus, the role microglia play in the impact of alcohol use in adolescence is likely multifaceted. Long-term sequelae may be due to a failure to recover from EtOH-induced tissue damage, altered neurodevelopmental trajectories, and/or persistent changes to microglial responsivity and function. Here, we review critically the literature surrounding the effects of alcohol on microglia in models of adolescent alcohol misuse. We attempt to disentangle what is known about microglia from other neuroimmune effectors, to which we apply recent discoveries on the role of microglia in development and plasticity. Considered altogether, these studies challenge assumptions that proinflammatory microglia drive addiction. Alcohol priming microglia and thereby perturbing their homeostatic roles in neurodevelopment, especially during critical periods of plasticity such as adolescence, may have more serious implications for the neuropathogenesis of AUDs in adolescents.
Collapse
Affiliation(s)
- Jennifer K. Melbourne
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Cassie M. Chandler
- Department of Psychology, University of Kentucky, Lexington, Kentucky, USA
| | | | - Michael T. Bardo
- Department of Psychology, University of Kentucky, Lexington, Kentucky, USA
| | - James R. Pauly
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Hui Peng
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Kimberly Nixon
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
33
|
Abstract
ABSTRACT Burn injuries are a common form of traumatic injury that leads to significant morbidity and mortality worldwide. Burn injuries are characterized by inflammatory processes and alterations in numerous organ systems and functions. Recently, it has become apparent that the gastrointestinal bacterial microbiome is a key component of regulating the immune response and recovery from burn and can also contribute to significant detrimental sequelae after injury, such as sepsis and multiple organ failure. Microbial dysbiosis has been linked to multiple disease states; however, its role in exacerbating acute traumatic injuries, such as burn, is poorly understood. In this article, we review studies that document changes in the intestinal microbiome after burn injury, assess the implications in post-burn pathogenesis, and the potential for further discovery and research.
Collapse
Affiliation(s)
- Marisa E. Luck
- Burn & Shock Trauma Research Institute, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
- Alcohol Research Program, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
- Integrative Cell Biology Program, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
| | - Caroline J. Herrnreiter
- Burn & Shock Trauma Research Institute, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
- Alcohol Research Program, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
- Biochemistry and Molecular Biology Program, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
| | - Mashkoor A. Choudhry
- Burn & Shock Trauma Research Institute, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
- Alcohol Research Program, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
- Department of Surgery, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
- Integrative Cell Biology Program, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
- Biochemistry and Molecular Biology Program, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
| |
Collapse
|
34
|
Vore AS, Barney TM, Gano A, Varlinskaya EI, Deak T. Adolescent intermittent ethanol (AIE) produces sex specific alterations in adult neuroimmune gene expression and ethanol sensitivity that are independent of ethanol metabolism. Neuropharmacology 2021; 195:108635. [PMID: 34097948 DOI: 10.1016/j.neuropharm.2021.108635] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/30/2021] [Accepted: 05/27/2021] [Indexed: 01/21/2023]
Abstract
The goal of the present studies was to determine long-lasting effects of adolescent intermittent ethanol (AIE), a rodent model of binge patterns of ethanol consumption, on (i) behavioral sensitivity to ethanol challenge in adulthood using the Loss of Righting Reflex (LORR) test; (ii) ethanol pharmacokinetics and ethanol-metabolizing enzyme expression when re-challenged with ethanol as adults; and (iii) induction of neuroimmune gene expression during an adult binge-like ethanol challenge. To evaluate the impact of AIE on ethanol sensitivity in adulthood, adult rats received a sedative ethanol dose of 3.5 g/kg and were tested for the LORR. Sexually dimorphic effects were observed, with AIE males showing more rapid recovery than vehicle exposed controls, an effect that was completely absent in females. Rats exposed to the same AIE procedure were challenged with 0.75, 1.5, or 3.0 g/kg i.p. ethanol in adulthood. Female rats with a history of AIE displayed a small increase in ethanol clearance rate when challenged with 0.75 g/kg, however no other significant differences in ethanol pharmacokinetics were noted. To assess persistent AIE-associated changes in neuroimmune gene expression, rats were challenged with 0 or 2.5 g/kg ethanol. Both male and female adult rats with a history of AIE displayed sensitized hippocampal IL-6 and IκBα gene expression in response to ethanol challenge. Changes in cytokine gene expression as well as ethanol sensitivity assessed by LORR were not shown to be the result of changes in ethanol pharmacokinetics and point to AIE altering other mechanisms capable of significantly altering the neuroimmune and behavioral response to ethanol.
Collapse
Affiliation(s)
- Andrew S Vore
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton, NY 13902-6000, USA.
| | - Thaddeus M Barney
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton, NY 13902-6000, USA
| | - Anny Gano
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton, NY 13902-6000, USA
| | - Elena I Varlinskaya
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton, NY 13902-6000, USA
| | - Terrence Deak
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton, NY 13902-6000, USA.
| |
Collapse
|
35
|
Miller BJ, Herzig KH, Jokelainen J, Karhu T, Keinänen-Kiukaanniemi S, Järvelin MR, Veijola J, Viinamäki H, Päivikki Tanskanen, Jääskeläinen E, Isohanni M, Timonen M. Inflammation, hippocampal volume, and cognition in schizophrenia: results from the Northern Finland Birth Cohort 1966. Eur Arch Psychiatry Clin Neurosci 2021; 271:609-622. [PMID: 32382794 DOI: 10.1007/s00406-020-01134-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/27/2020] [Indexed: 02/08/2023]
Abstract
Increased blood interleukin-6 (IL-6) levels are a replicated abnormality in schizophrenia, and may be associated with smaller hippocampal volumes and greater cognitive impairment. These findings have not been investigated in a population-based birth cohort. The general population Northern Finland Birth Cohort 1966 was followed until age 43. Subjects with schizophrenia were identified through the national Finnish Care Register. Blood IL-6 levels were measured in n = 82 subjects with schizophrenia and n = 5373 controls at age 31. Additionally, 31 patients with schizophrenia and 63 healthy controls underwent brain structural MRI at age 34, and cognitive testing at ages 34 and 43. Patients with schizophrenia had significantly higher median (interquartile range) blood IL-6 levels than controls (5.31, 0.85-17.20, versus 2.42, 0.54-9.36, p = 0.02) after controlling for potential confounding factors. In both schizophrenia and controls, higher blood IL-6 levels were predictors of smaller hippocampal volumes, but not cognitive performance at age 34. We found evidence for increased IL-6 levels in patients with midlife schizophrenia from a population-based birth cohort, and replicated associations between IL-6 levels and hippocampal volumes. Our results complement and extend the previous findings, providing additional evidence that IL-6 may play a role in the pathophysiology of schizophrenia and associated brain alterations.
Collapse
Affiliation(s)
- Brian J Miller
- Department of Psychiatry and Health Behavior, Augusta University, 997 Saint Sebastian Way, Augusta, GA, 30912, USA.
| | - Karl-Heinz Herzig
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland.,Medical Research Center (MRC) and Oulu University Hospital, Oulu, Finland.,Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, Poznan, Poland
| | - Jari Jokelainen
- Medical Research Center (MRC) and Oulu University Hospital, Oulu, Finland.,Center for Life Course Health Research, University of Oulu, Oulu, Finland
| | - Toni Karhu
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | - Sirkka Keinänen-Kiukaanniemi
- Medical Research Center (MRC) and Oulu University Hospital, Oulu, Finland.,Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, Poznan, Poland.,Center for Life Course Health Research, University of Oulu, Oulu, Finland
| | - Marjo-Riitta Järvelin
- Medical Research Center (MRC) and Oulu University Hospital, Oulu, Finland.,Center for Life Course Health Research, University of Oulu, Oulu, Finland.,Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK.,MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Juha Veijola
- Medical Research Center (MRC) and Oulu University Hospital, Oulu, Finland.,Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, Oulu, Finland
| | - Heimo Viinamäki
- MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK.,Psychiatry, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | | | - Erika Jääskeläinen
- Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, Oulu, Finland
| | - Matti Isohanni
- Center for Life Course Health Research, University of Oulu, Oulu, Finland
| | - Markku Timonen
- Center for Life Course Health Research, University of Oulu, Oulu, Finland
| |
Collapse
|
36
|
Gruol DL, Melkonian C, Huitron-Resendiz S, Roberts AJ. Alcohol alters IL-6 Signal Transduction in the CNS of Transgenic Mice with Increased Astrocyte Expression of IL-6. Cell Mol Neurobiol 2021; 41:733-750. [PMID: 32447612 PMCID: PMC7680720 DOI: 10.1007/s10571-020-00879-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/15/2020] [Indexed: 12/30/2022]
Abstract
Neuroimmune factors, including the cytokine interleukin-6 (IL-6), are important chemical regulators of central nervous system (CNS) function under both physiological and pathological conditions. Elevated expression of IL-6 occurs in the CNS in a variety of disorders associated with altered CNS function, including excessive alcohol use. Alcohol-induced production of IL-6 has been reported for several CNS regions including the cerebellum. Cerebellar actions of alcohol occur through a variety of mechanisms, but alcohol-induced changes in signal transduction, transcription, and translation are known to play important roles. IL-6 is an activator of signal transduction that regulates gene expression. Thus, alcohol-induced IL-6 production could contribute to cerebellar effects of alcohol by altering gene expression, especially under conditions of chronic alcohol abuse, where IL-6 levels could be habitually elevated. To gain an understanding of the effects of alcohol on IL-6 signal transduction, we studied activation/expression of IL-6 signal transduction partners STAT3 (Signal Transducer and Activator of Transcription), CCAAT-enhancer binding protein (C/EBP) beta, and p42/p44 mitogen-activated protein kinase (MAPK) at the protein level. Cerebella of transgenic mice that express elevated levels of astrocyte produced IL-6 in the CNS were studied. Results show that the both IL-6 and chronic intermittent alcohol exposure/withdrawal affect IL-6 signal transduction partners and that the actions of IL-6 and alcohol interact to alter activation/expression of IL-6 signal transduction partners. The alcohol/IL-6 interactions may contribute to cerebellar actions of alcohol, whereas the effects of IL-6 alone may have relevance to cerebellar changes occurring in CNS disorders associated with elevated levels of IL-6.
Collapse
Affiliation(s)
- Donna L Gruol
- Neuroscience Department, SR301, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| | - Claudia Melkonian
- Neuroscience Department, SR301, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | | | - Amanda J Roberts
- Animal Models Core Facility, The Scripps Research Institute, La Jolla, CA, 92037, USA
| |
Collapse
|
37
|
Marsland P, Parrella A, Orlofsky M, Lovelock DF, Vore AS, Varlinskaya EI, Deak T. Neuroendocrine and neuroimmune responses in male and female rats: evidence for functional immaturity of the neuroimmune system during early adolescence. Eur J Neurosci 2021; 55:2311-2325. [PMID: 33458889 PMCID: PMC8287786 DOI: 10.1111/ejn.15118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/30/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023]
Abstract
Adolescence is a developmental period characterized by rapid behavioral and physiological changes, including enhanced vulnerability to stress. Recent studies using rodent models of adolescence have demonstrated age differences in neuroendocrine responses and blunted neuroimmune responding to pharmacological challenges. The present study was designed to test whether this neuroimmune insensitivity would generalize to a non-pharmacological stress challenge. Male and female adolescent (P29-33) and adult (P70-80) Sprague Dawley rats were exposed to intermittent footshock for one-, two-, or two-hours + recovery. Plasma corticosterone and progesterone levels as well as gene expression of several cytokines and c-Fos gene expression in the paraventricular nucleus of the hypothalamus (PVN), the medial amygdala (MeA), and the ventral hippocampus (vHPC) were analyzed. The results of the present study demonstrated differences in response to footshock, with these differences dependent on age, sex, and brain region of interest. Adult males and females demonstrated time-dependent increases in IL-1β and IL-1R2 in the PVN, with these changes not evident in adolescent males and substantially blunted in adolescent females. TNFα expression was decreased in all regions of interest, with adults demonstrating more suppression relative to adolescents and age differences more apparent in males than in females. IL-6 expression was affected by footshock predominantly in the vHPC of adolescent and adult males and females, with females demonstrating prolonged elevation of IL-6 gene expression. In summary, central cytokine responses to acute stressor exposure are blunted in adolescent rats, with the most pronounced immaturity evident for the brain IL-1 signaling system.
Collapse
Affiliation(s)
- Paige Marsland
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, USA
| | - Allissa Parrella
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, USA
| | - Maya Orlofsky
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, USA
| | - Dennis F Lovelock
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, USA
| | - Andrew S Vore
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, USA
| | - Elena I Varlinskaya
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, USA
| | - Terrence Deak
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, USA
| |
Collapse
|
38
|
Peng H, Nixon K. Microglia Phenotypes Following the Induction of Alcohol Dependence in Adolescent Rats. Alcohol Clin Exp Res 2021; 45:105-116. [PMID: 33164228 PMCID: PMC8296648 DOI: 10.1111/acer.14504] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Activation of the innate immune system may play a role in the development of alcohol use disorders (AUDs), which often originate with adolescent alcohol abuse. A key player in the innate immune system is microglia, the activation of which occurs along a spectrum from proinflammatory, or M1-like, to anti-inflammatory, or M2-like, phenotypes. METHODS Adolescent, male rats were gavaged with ethanol (EtOH) or isocaloric control diet every 8 hours for 4 days and then sacrificed at 0, 2, 7, and 14 days later. Microglia were isolated from the entorhinal cortex and hippocampus by Percoll gradient centrifugation, labeled with surface antigens for activation, and analyzed by flow cytometry. Polarization states of microglia, defined as CD11b+ CD45low cells, were determined by the expression of M1 surface markers, major histocompatibility complex (MHC) II, CD32, and CD86, and M2 surface marker, CD206 (mannose receptor). Cytokine gene expression was measured by reverse transcriptase polymerase chain reaction. RESULTS Isolated cells were a highly enriched population (>95% pure) of microglia/macrophages according to CD11b immunoreactivity. EtOH rats showed the most dramatic increases in microglia activation markers CD11b and CD45, and M1 (MHC-II) and M2 (CD206) markers at T2, when additional M1 markers CD86 and CD32 were also increased. Surprisingly, proinflammatory gene expression of CCL2, IL-1β, IL-6, and TNF-α generally was decreased at all time points in EtOH rats except for IL-6 which was increased at T0 and TNF-α which was not changed at T0 in either region. Simultaneously, BDNF expression was increased at T2 and T7, while IGF1 and TGF-β gene expression was decreased. Arginase was also increased at T0 in hippocampus, but not changed by alcohol otherwise. CONCLUSIONS These data show that microglia phenotype after alcohol dependence is not a simple M1 or M2 classification, though more indicators of an anti-inflammatory phenotype were observed. Determining microglia phenotype is critical for understanding their role in the development of AUDs.
Collapse
Affiliation(s)
- Hui Peng
- University of Kentucky, College of Pharmacy, Department of Pharmaceutical Sciences Lexington, KY 40536, USA
| | - Kimberly Nixon
- The University of Texas at Austin, College of Pharmacy, Division of Pharmacology & Toxicology, Austin, TX USA
| |
Collapse
|
39
|
Chatterton BJ, Nunes PT, Savage LM. The Effect of Chronic Ethanol Exposure and Thiamine Deficiency on Myelin-related Genes in the Cortex and the Cerebellum. Alcohol Clin Exp Res 2020; 44:2481-2493. [PMID: 33067870 DOI: 10.1111/acer.14484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/11/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Long-term alcohol consumption has been linked to structural and functional brain abnormalities. Furthermore, with persistent exposure to ethanol (EtOH), nutrient deficiencies often develop. Thiamine deficiency is a key contributor to alcohol-related brain damage and is suspected to contribute to white matter pathology. The expression of genes encoding myelin proteins in several cortical brain regions is altered with EtOH exposure. However, there is limited research regarding the impact of thiamine deficiency on myelin dysfunction. METHODS A rat model was used to assess the impact of moderate chronic EtOH exposure (CET; 20% EtOH in drinking water for 1 or 6 months), pyrithiamine-induced thiamine deficiency treatment (PTD), both conditions combined (CET-PTD), or CET with thiamine injections (CET + T) on myelin-related gene expression (Olig1, Olig2, MBP, MAG, and MOG) in the frontal and parietal cortices and the cerebellum. RESULTS The CET-PTD treatments caused the greatest suppression in myelin-related genes in the cortex. Specifically, the parietal cortex was the region that was most susceptible to PTD-CET-induced alterations in myelin-related genes. In addition, PTD treatment, with and without CET, caused minor fluctuations in the expression of several myelin-related genes in the frontal cortex. In contrast, CET alone and PTD alone suppressed several myelin-related genes in the cerebellum. Regardless of the region, there was significant recovery of myelin-related genes with extended abstinence and/or thiamine restoration. CONCLUSION Moderate chronic EtOH alone had a minor effect on the suppression of myelin-related genes in the cortex; however, when combined with thiamine deficiency, the reduction was amplified. There was a suppression of myelin-related genes following long-term EtOH and thiamine deficiency in the cerebellum. However, the suppression in the myelin-related genes mostly occurred 24 h after EtOH removal or following thiamine restoration; within 3 weeks of abstinence or thiamine recovery, gene expression rebounded.
Collapse
Affiliation(s)
- Bradley J Chatterton
- From the, Department of Psychology, Behavioral Neuroscience Program, Binghamton University, State University of New York, Binghamton, New York, USA
| | - Polliana T Nunes
- From the, Department of Psychology, Behavioral Neuroscience Program, Binghamton University, State University of New York, Binghamton, New York, USA
| | - Lisa M Savage
- From the, Department of Psychology, Behavioral Neuroscience Program, Binghamton University, State University of New York, Binghamton, New York, USA
| |
Collapse
|
40
|
Kamal H, Tan GC, Ibrahim SF, Shaikh MF, Mohamed IN, Mohamed RMP, Hamid AA, Ugusman A, Kumar J. Alcohol Use Disorder, Neurodegeneration, Alzheimer's and Parkinson's Disease: Interplay Between Oxidative Stress, Neuroimmune Response and Excitotoxicity. Front Cell Neurosci 2020; 14:282. [PMID: 33061892 PMCID: PMC7488355 DOI: 10.3389/fncel.2020.00282] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022] Open
Abstract
Alcohol use disorder (AUD) has been associated with neurodegenerative diseases such as Alzheimer's and Parkinson's disease. Prolonged excessive alcohol intake contributes to increased production of reactive oxygen species that triggers neuroimmune response and cellular apoptosis and necrosis via lipid peroxidation, mitochondrial, protein or DNA damage. Long term binge alcohol consumption also upregulates glutamate receptors, glucocorticoids and reduces reuptake of glutamate in the central nervous system, resulting in glutamate excitotoxicity, and eventually mitochondrial injury and cell death. In this review, we delineate the following principles in alcohol-induced neurodegeneration: (1) alcohol-induced oxidative stress, (2) neuroimmune response toward increased oxidants and lipopolysaccharide, (3) glutamate excitotoxicity and cell injury, and (4) interplay between oxidative stress, neuroimmune response and excitotoxicity leading to neurodegeneration and (5) potential chronic alcohol intake-induced development of neurodegenerative diseases, including Alzheimer's and Parkinson's disease.
Collapse
Affiliation(s)
- Haziq Kamal
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Geok Chin Tan
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Siti Fatimah Ibrahim
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mohd. Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Isa Naina Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Rashidi M. Pakri Mohamed
- Department of Family Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Adila A. Hamid
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
41
|
Vena AA, Zandy SL, Cofresí RU, Gonzales RA. Behavioral, neurobiological, and neurochemical mechanisms of ethanol self-administration: A translational review. Pharmacol Ther 2020; 212:107573. [PMID: 32437827 PMCID: PMC7580704 DOI: 10.1016/j.pharmthera.2020.107573] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2020] [Indexed: 12/16/2022]
Abstract
Alcohol use disorder has multiple characteristics including excessive ethanol consumption, impaired control over drinking behaviors, craving and withdrawal symptoms, compulsive seeking behaviors, and is considered a chronic condition. Relapse is common. Determining the neurobiological targets of ethanol and the adaptations induced by chronic ethanol exposure is critical to understanding the clinical manifestation of alcohol use disorders, the mechanisms underlying the various features of the disorder, and for informing medication development. In the present review, we discuss ethanol's interactions with a variety of neurotransmitter systems, summarizing findings from preclinical and translational studies to highlight recent progress in the field. We then describe animal models of ethanol self-administration, emphasizing the value, limitations, and validity of commonly used models. Lastly, we summarize the behavioral changes induced by chronic ethanol self-administration, with an emphasis on cue-elicited behavior, the role of ethanol-related memories, and the emergence of habitual ethanol seeking behavior.
Collapse
Affiliation(s)
- Ashley A Vena
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, United States of America
| | | | - Roberto U Cofresí
- Psychological Sciences, University of Missouri, United States of America
| | - Rueben A Gonzales
- Division of Pharmacology and Toxicology, College of Pharmacy and Institute for Neuroscience, The University of Texas at Austin, United States of America.
| |
Collapse
|
42
|
Doremus-Fitzwater TL, Youngentob SL, Youngentob L, Gano A, Vore AS, Deak T. Lingering Effects of Prenatal Alcohol Exposure on Basal and Ethanol-Evoked Expression of Inflammatory-Related Genes in the CNS of Adolescent and Adult Rats. Front Behav Neurosci 2020; 14:82. [PMID: 32714160 PMCID: PMC7344178 DOI: 10.3389/fnbeh.2020.00082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/30/2020] [Indexed: 12/16/2022] Open
Abstract
Emerging data suggest that alcohol's effects on central inflammatory factors are not uniform across the lifespan. In particular, prenatal alcohol exposure (PAE) significantly alters steady-state levels of neuroimmune factors, as well as subsequent reactivity to later immune challenge. Thus, the current experiment investigated developmental sensitivities to, and long-lasting consequences of, PAE on ethanol-evoked cytokine expression in male and female adolescent and adult rats. Pregnant dams received either an ad libitum ethanol liquid diet (2.2% GD 6-8; 4.5% GD 9-10; 6.7% GD11-20; 35% daily calories from ethanol) or free-choice access to a control liquid diet and water. At birth, offspring were fostered to dams given free-choice access to the control liquid diet. Pups then matured until mid-adolescence [postnatal day (PD) 35] or adulthood (PD90), at which time they were challenged with either a binge-like dose of ethanol (4 g/kg; intragastrically) or tap water. During intoxication (3 h post-ethanol challenge), brains and blood were collected for assessment of neuroimmune gene expression (reverse transcription-polymerase chain reaction; RT-PCR) in the hippocampus, amygdala, and PVN, as well as for blood ethanol concentrations (BEC) and plasma corticosterone levels. Results revealed that rats challenged with ethanol at either PD35 or PD90 generally exhibited a characteristic cytokine signature of acute intoxication that we have previously reported: increased Il-6 and IkBα expression, with decreased Il-1β and Tnfα gene expression. With a few exceptions, this pattern of gene changes was observed in all three structures examined, at both ages of postnatal ethanol challenge, and in both sexes. While few significant effects of PAE were observed for ethanol-induced alterations in cytokine expression, there was a consistent (but nonsignificant) trend for PAE to potentiate the expression of Il-6 and IkBα in all groups except adult females. Although these data suggest that later-life ethanol challenge was a far greater driver of inflammatory signaling than PAE, the current results demonstrate PAE resulted in subtle long-term alterations in the expression of many key neuroinflammatory factors associated with NF-κB signaling. Such long-lasting impacts of PAE that may engender vulnerability to later environmental events triggering neuroinflammatory processes, such as chronic ethanol exposure or stress, could contribute to heightened vulnerability for PAE-related alterations and deficits.
Collapse
Affiliation(s)
- Tamara L. Doremus-Fitzwater
- Department of Psychology, Ithaca College, Ithaca, NY, United States
- Developmental Exposure Alcohol Research Center (DEARC), Binghamton, NY, United States
| | - Steven L. Youngentob
- Developmental Exposure Alcohol Research Center (DEARC), Binghamton, NY, United States
- University of Tennessee Health Science Center (UTHSC), Memphis, TN, United States
| | - Lisa Youngentob
- University of Tennessee Health Science Center (UTHSC), Memphis, TN, United States
| | - Anny Gano
- Developmental Exposure Alcohol Research Center (DEARC), Binghamton, NY, United States
- Department of Psychology, Binghamton University-SUNY, Binghamton, NY, United States
| | - Andrew S. Vore
- Developmental Exposure Alcohol Research Center (DEARC), Binghamton, NY, United States
- Department of Psychology, Binghamton University-SUNY, Binghamton, NY, United States
| | - Terrence Deak
- Developmental Exposure Alcohol Research Center (DEARC), Binghamton, NY, United States
- Department of Psychology, Binghamton University-SUNY, Binghamton, NY, United States
| |
Collapse
|
43
|
Gano A, Prestia L, Middleton FA, Youngentob SL, Ignacio C, Deak T. Gene expression profiling reveals a lingering effect of prenatal alcohol exposure on inflammatory-related genes during adolescence and adulthood. Cytokine 2020; 133:155126. [PMID: 32505093 DOI: 10.1016/j.cyto.2020.155126] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/30/2020] [Accepted: 05/12/2020] [Indexed: 01/10/2023]
Abstract
Prenatal Alcohol Exposure (PAE) exerts devastating effects on the Central Nervous System (CNS), which vary as a function of both ethanol load and gestational age of exposure. A growing body of evidence suggests that alcohol exposure profoundly impacts a wide range of cytokines and other inflammation-related genes in the CNS. The olfactory system serves as a critical interface between infectious/inflammatory signals and other aspects of CNS function, and demonstrates long-lasting plasticity in response to alcohol exposure. We therefore utilized transcriptome profiling to identify gene expression patterns for immune-related gene families in the olfactory bulb of Long Evans rats. Pregnant dams received either an ad libitum liquid diet containing 35% daily calories from ethanol (ET), a pair-fed diet (PF) matched for caloric content, or free choice (FCL) access to the liquid diet and water from Gestational Day (GD) 11-20. Offspring were fostered to dams fed the FCL diet, weaned on P21, and then housed with same-sex littermates until mid-adolescence (P40) or young adulthood (P90). At the target ages of P40 or P90, offspring were euthanized via brief CO2 exposure and brains/blood were collected. Gene expression analysis was performed using a Rat Gene 1.0 ST Array (Affymetrix), and preliminary analyses focused on two moderately overlapping gene clusters, including all immune-related genes and those related to neuroinflammation. A total of 146 genes were significantly affected by prenatal Diet condition, whereas the factor of Age (P40 vs P90) revealed 998 genes significantly changed, and the interaction between Diet and Age yielded 162 significant genes. From this dataset, we applied a threshold of 1.3-fold change (30% increase or decrease in expression) for inclusion in later analyses. Findings indicated that in adolescents, few genes were altered by PAE, whereas adults displayed an increase of a wide range of gene upregulation as a result of PAE. Pathway analysis predicted an increase in Nf-κB activation in adolescence and a decrease in adulthood due to prenatal ethanol exposure, indicating age-specific and long-lasting alterations to immune signaling. These data may provide important insight into the relationship between immune-related signaling cascades and long-term changes in olfactory bulb function after PAE.
Collapse
Affiliation(s)
- Anny Gano
- Developmental Exposure Alcohol Research Center (DEARC), USA; Binghamton University-SUNY, Binghamton, NY 13902-6000, USA
| | - Laura Prestia
- Developmental Exposure Alcohol Research Center (DEARC), USA; SUNY-Upstate Medical University, Syracuse, NY 13210, USA
| | - Frank A Middleton
- Developmental Exposure Alcohol Research Center (DEARC), USA; SUNY-Upstate Medical University, Syracuse, NY 13210, USA
| | - Steven L Youngentob
- Developmental Exposure Alcohol Research Center (DEARC), USA; University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Cherry Ignacio
- Developmental Exposure Alcohol Research Center (DEARC), USA; Binghamton University-SUNY, Binghamton, NY 13902-6000, USA; SUNY-Upstate Medical University, Syracuse, NY 13210, USA
| | - Terrence Deak
- Developmental Exposure Alcohol Research Center (DEARC), USA; Binghamton University-SUNY, Binghamton, NY 13902-6000, USA.
| |
Collapse
|
44
|
Lanza K, Chemakin K, Lefkowitz S, Saito C, Chambers N, Bishop C. Reciprocal cross-sensitization of D1 and D3 receptors following pharmacological stimulation in the hemiparkinsonian rat. Psychopharmacology (Berl) 2020; 237:155-165. [PMID: 31435690 DOI: 10.1007/s00213-019-05353-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 08/15/2019] [Indexed: 12/20/2022]
Abstract
In the majority of Parkinson's disease (PD) patients, long-term dopamine (DA) replacement therapy leads to dyskinesia characterized by abnormal involuntary movements (AIMs). There are various mechanisms of dyskinesia, such as the sensitization of striatal DA D1 receptors (D1R) and upregulation of DA D3 receptors (D3R). These receptors interact physically and functionally in D1R-bearing medium spiny neurons to synergistically drive dyskinesia. However, the cross-receptor-mediated effects due to D1R-D3R cooperativity are still poorly understood. In pursuit of this, we examined whether or not pharmacological D1R or D3R stimulation sensitizes the dyskinetic response to the appositional agonist, a process known as cross-sensitization. First, we established D1R-D3R behavioral synergy in a cohort of 6-OHDA-lesioned female adult Sprague-Dawley rats. Then, in a new cohort, we tested for cross-sensitization in a between-subject design. Five groups received a sub-chronic regimen of either saline, the D1R agonist SKF38393 (1.0 mg/kg), or the D3R agonist PD128907 (0.3 mg/kg). For the final injection, each group received an acute injection of the other agonist. AIMs were monitored following each injection. Sub-chronic administration of both SKF38393 and PD128907 induced the development of dyskinesia. More importantly, cross-agonism tests revealed reciprocal cross-sensitization; chronic treatment with either SKF38393 or PD128907 induced sensitization to a single administration of the other agonist. This reciprocity was not marked by changes to either D1R or D3R striatal mRNA expression. The current study provides key behavioral data demonstrating the role of D3R in dyskinesia and provides behavioral evidence of D1R and D3R functional interactions.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Animals
- Benzopyrans/pharmacology
- Corpus Striatum/drug effects
- Corpus Striatum/metabolism
- Dopamine/metabolism
- Dopamine Agonists/pharmacology
- Dyskinesia, Drug-Induced/metabolism
- Female
- Oxazines/pharmacology
- Oxidopamine
- Parkinson Disease, Secondary/chemically induced
- Parkinson Disease, Secondary/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D3/metabolism
Collapse
Affiliation(s)
- Kathryn Lanza
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA
| | - Katherine Chemakin
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA
| | - Sarah Lefkowitz
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA
| | - Carolyn Saito
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA
| | - Nicole Chambers
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA
| | - Christopher Bishop
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA.
| |
Collapse
|
45
|
Sanchez-Alavez M, Nguyen W, Mori S, Wills DN, Otero D, Aguirre CA, Singh M, Ehlers CL, Conti B. Time Course of Blood and Brain Cytokine/Chemokine Levels Following Adolescent Alcohol Exposure and Withdrawal in Rats. Alcohol Clin Exp Res 2019; 43:2547-2558. [PMID: 31589333 PMCID: PMC6904424 DOI: 10.1111/acer.14209] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 10/01/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Adolescence is a critical period for neural development, and alcohol exposure during adolescence can lead to an elevated risk for health consequences as well as alcohol use disorders. Clinical and experimental data suggest that chronic alcohol exposure may produce immunomodulatory effects that can lead to the activation of pro-inflammatory cytokine pathways as well as microglial markers. The present study evaluated, in brain and blood, the effects of adolescent alcohol exposure and withdrawal on microglia and on the most representative pro- and anti-inflammatory cytokines and major chemokines that can contribute to the establishing of a neuroinflammatory environment. METHODS Wistar rats (males, n = 96) were exposed to ethanol (EtOH) vapors, or air control, for 5 weeks over adolescence (PD22-PD58). Brains and blood samples were collected at 3 time points: (i) after 35 days of vapor/air exposure (PD58); (ii) after 1 day of withdrawal (PD59), and (iii) 28 days after withdrawal (PD86). The ionized calcium-binding adapter molecule 1 (Iba-1) was used to index microglial activation, and cytokine/chemokine responses were analyzed using magnetic bead panels. RESULTS After 35 days of adolescent vapor exposure, a significant increase in Iba-1 immunoreactivity was seen in amygdala, frontal cortex, hippocampus, and substantia nigra. However, Iba-1 density returned to control levels at both 1 day and 28 days of withdrawal except in the hippocampus where Iba-1 density was significantly lower than controls. In serum, adolescent EtOH exposure induced a reduction in IL-13 and an increase in fractalkine at day 35. After 1 day of withdrawal, IL-18 was reduced, and IP-10 was elevated, whereas both IP-10 and IL-10 were elevated at 28 days following withdrawal. In the frontal cortex, adolescent EtOH exposure induced an increase in IL-1β at day 35, and 28 days of withdrawal, and IL-10 was increased after 28 days of withdrawal. CONCLUSION These data demonstrate that EtOH exposure during adolescence produces significant microglial activation; however, inflammatory markers seen in the blood appear to differ from those observed in the brain.
Collapse
Affiliation(s)
| | - William Nguyen
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Simone Mori
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Derek N Wills
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Dennis Otero
- Infectious and Inflammatory Disease Center and National Cancer Institute (NCI)-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Research Institute, La Jolla, California
| | - Carlos A Aguirre
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California
| | - Mona Singh
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California
| | - Cindy L Ehlers
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Bruno Conti
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
46
|
Palmer E, Tyacke R, Sastre M, Lingford-Hughes A, Nutt D, Ward RJ. Alcohol Hangover: Underlying Biochemical, Inflammatory and Neurochemical Mechanisms. Alcohol Alcohol 2019; 54:196-203. [PMID: 30916313 DOI: 10.1093/alcalc/agz016] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 01/31/2019] [Accepted: 02/06/2019] [Indexed: 02/06/2023] Open
Abstract
AIM To review current alcohol hangover research in animals and humans and evaluate key evidence for contributing biological factors. METHOD Narrative review with alcohol hangover defined as the state the day after a single episode of heavy drinking, when the alcohol concentration in the blood approaches zero. RESULTS Many of the human studies of hangover are not well controlled, with subjects consuming different concentrations of alcohol over variable time periods and evaluation not blinded. Also, studies have measured different symptoms and use varying methods of measurement. Animal studies show variations with respect to the route of administration (intragastric or intraperitoneal), the behavioural tests utilised and discrepancy in the timepoint used for hangover onset. Human studies have the advantage over animal models of being able to assess subjective hangover severity and its correlation with specific behaviours and/or biochemical markers. However, animal models provide valuable insight into the neural mechanisms of hangover. Despite such limitations, several hangover models have identified pathological changes which correlate with the hangover state. We review studies examining the contribution of alcohol's metabolites, neurotransmitter changes with particular reference to glutamate, neuroinflammation and ingested congeners to hangover severity. CONCLUSION Alcohol metabolites, neurotransmitter alterations, inflammatory factors and mitochondrial dysfunction are the most likely factors in hangover pathology. Future research should aim to investigate the relationship between these factors and their causal role.
Collapse
Affiliation(s)
- Emily Palmer
- Department of Medicine, Imperial College London, London, UK
| | - Robin Tyacke
- Department of Medicine, Imperial College London, London, UK
| | | | | | - David Nutt
- Department of Medicine, Imperial College London, London, UK
| | - Roberta J Ward
- Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
47
|
Barney TM, Vore AS, Gano A, Mondello JE, Deak T. The influence of central interleukin-6 on behavioral changes associated with acute alcohol intoxication in adult male rats. Alcohol 2019; 79:37-45. [PMID: 30472309 DOI: 10.1016/j.alcohol.2018.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/12/2018] [Accepted: 11/16/2018] [Indexed: 12/15/2022]
Abstract
Recent studies have demonstrated brain cytokine fluctuations associated with acute ethanol intoxication (increased IL-6) and withdrawal (increased IL-1β and TNFα). The purpose of the present studies was to examine the potential functional role of increased central interleukin-6 (IL-6). We utilized two tests of ethanol sensitivity to establish a potential role for IL-6 after high (3.5-4.0 g/kg, intraperitoneally [i.p.]) or moderate (2.0 g/kg, i.p.) doses of ethanol: loss of righting reflex (LORR) and conditioned taste aversion (CTA), respectively. Briefly, guide cannulae were implanted into the third ventricle of adult male Sprague-Dawley rats. In the first experiments, rats were infused with 25, 50, 100, or 200 ng of IL-6; or 0.3, 3.0, or 9.0 μg of the JAK/STAT inhibitor AG490 30 min prior to a high-dose ethanol challenge. Although sleep time was not affected by exogenous IL-6, infusion of AG490 increased latency to lose the righting reflex relative to vehicle-infused rats. Next, we assessed whether IL-6 was sufficient to produce a CTA. Moderately water-deprived rats received intracerebroventricular (i.c.v.) infusions of 25, 50, or 100 ng IL-6 immediately after 60-min access to 5% sucrose solution. Forty-eight hours later, rats were returned to the context and given 60-min access to sucrose solution. IL-6 infusion had no significant effect on sucrose intake when all rats were considered together. However, a median split revealed that low sucrose-consuming rats significantly increased their drinking on test day, an effect that was not seen in rats that received 50 or 100 ng of IL-6. In the last study, AG490 had no effect on ethanol-induced CTA (2 g/kg). Overall, these studies suggest that IL-6 had only a minor influence on ethanol-induced behavioral changes, yet phenotypic differences in sensitivity to IL-6 were apparent. These studies are among the first to examine a potential functional role for IL-6 in ethanol-related behaviors, and may have important implications for understanding the relationship between acute ethanol intoxication and its associated behavioral alterations.
Collapse
|
48
|
Perkins AE, Varlinskaya EI, Deak T. From adolescence to late aging: A comprehensive review of social behavior, alcohol, and neuroinflammation across the lifespan. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 148:231-303. [PMID: 31733665 DOI: 10.1016/bs.irn.2019.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The passage of time dictates the pace at which humans and other organisms age but falls short of providing a complete portrait of how environmental, lifestyle and underlying biological processes contribute to senescence. Two fundamental features of the human experience that change dramatically across the lifespan include social interactions and, for many, patterns of alcohol consumption. Rodent models show great utility for understanding complex interactions among aging, social behavior and alcohol use and abuse, yet little is known about the neural changes in late aging that contribute to the natural decline in social behavior. Here, we posit that aging-related neuroinflammation contributes to the insipid loss of social motivation across the lifespan, an effect that is exacerbated by patterns of repeated alcohol consumption observed in many individuals. We provide a comprehensive review of (i) neural substrates crucial for the expression of social behavior under non-pathological conditions; (ii) unique developmental/lifespan vulnerabilities that may contribute to the divergent effects of low-and high-dose alcohol exposure; and (iii) aging-associated changes in neuroinflammation that may sit at the intersection between social processes and alcohol exposure. In doing so, we provide an overview of correspondence between lifespan/developmental periods between common rodent models and humans, give careful consideration to model systems used to aptly probe social behavior, identify points of coherence between human and animal models, and point toward a multitude of unresolved issues that should be addressed in future studies. Together, the combination of low-dose and high-dose alcohol effects serve to disrupt the normal development and maintenance of social relationships, which are critical for both healthy aging and quality of life across the lifespan. Thus, a more complete understanding of neural systems-including neuroinflammatory processes-which contribute to alcohol-induced changes in social behavior will provide novel opportunities and targets for promoting healthy aging.
Collapse
Affiliation(s)
- Amy E Perkins
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, United States
| | - Elena I Varlinskaya
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, United States
| | - Terrence Deak
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, United States.
| |
Collapse
|
49
|
Crews FT, Robinson DL, Chandler LJ, Ehlers CL, Mulholland PJ, Pandey SC, Rodd ZA, Spear LP, Swartzwelder HS, Vetreno RP. Mechanisms of Persistent Neurobiological Changes Following Adolescent Alcohol Exposure: NADIA Consortium Findings. Alcohol Clin Exp Res 2019; 43:1806-1822. [PMID: 31335972 PMCID: PMC6758927 DOI: 10.1111/acer.14154] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022]
Abstract
The Neurobiology of Adolescent Drinking in Adulthood (NADIA) Consortium has focused on the impact of adolescent binge drinking on brain development, particularly on effects that persist into adulthood. Adolescent binge drinking is common, and while many factors contribute to human brain development and alcohol use during adolescence, animal models are critical for understanding the specific consequences of alcohol exposure during this developmental period and the underlying mechanisms. Using adolescent intermittent ethanol (AIE) exposure models, NADIA investigators identified long-lasting AIE-induced changes in adult behavior that are consistent with observations in humans, such as increased alcohol drinking, increased anxiety (particularly social anxiety), increased impulsivity, reduced behavioral flexibility, impaired memory, disrupted sleep, and altered responses to alcohol. These behavioral changes are associated with multiple molecular, cellular, and physiological alterations in the brain that persist long after AIE exposure. At the molecular level, AIE results in long-lasting changes in neuroimmune/trophic factor balance and epigenetic-microRNA (miRNA) signaling across glia and neurons. At the cellular level, AIE history is associated in adulthood with reduced expression of cholinergic, serotonergic, and dopaminergic neuron markers, attenuated cortical thickness, decreased neurogenesis, and altered dendritic spine and glial morphology. This constellation of molecular and cellular adaptations to AIE likely contributes to observed alterations in neurophysiology, measured by synaptic physiology, EEG patterns, and functional connectivity. Many of these AIE-induced brain changes replicate findings seen in postmortem brains of humans with alcohol use disorder (AUD). NADIA researchers are now elucidating mechanisms of these adaptations. Emerging data demonstrate that exercise, antiinflammatory drugs, anticholinesterases, histone deacetylase inhibitors, and other pharmacological compounds are able to prevent (administered during AIE) and/or reverse (given after AIE) AIE-induced pathology in adulthood. These studies support hypotheses that adolescent binge drinking increases risk of adult hazardous drinking and influences brain development, and may provide insight into novel therapeutic targets for AIE-induced neuropathology and AUDs.
Collapse
Affiliation(s)
- Fulton T Crews
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Donita L Robinson
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - L Judson Chandler
- Department of Neuroscience, Charleston Alcohol Research Center, Charleston, South Carolina
| | - Cindy L Ehlers
- Department of Neurosciences, The Scripps Research Institute, La Jolla, California
| | - Patrick J Mulholland
- Department of Neuroscience, Charleston Alcohol Research Center, Charleston, South Carolina
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago and Jesse Brown VA Medical Center, Chicago, Illinois
| | - Zachary A Rodd
- Department of Psychiatry and Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Linda P Spear
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, New York
| | - H Scott Swartzwelder
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
| | - Ryan P Vetreno
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
50
|
Melbourne JK, Thompson KR, Peng H, Nixon K. Its complicated: The relationship between alcohol and microglia in the search for novel pharmacotherapeutic targets for alcohol use disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 167:179-221. [PMID: 31601404 DOI: 10.1016/bs.pmbts.2019.06.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alcohol use disorder (AUD) is a chronic relapsing disorder with wide-ranging health consequences. Alcohol targets the central nervous system producing neurodegeneration and subsequent cognitive and behavioral deficits, but the mechanisms behind these effects remain unclear. Recently, evidence has been mounting for the role of neuroimmune activation in the pathogenesis of AUDs, but our nascent state of knowledge about the interaction of alcohol with the neuroimmune system supports that the relationship is complicated. As the resident macrophage of the central nervous system, microglia are a central focus. Human and animal research on the interplay between microglia and alcohol in AUDs has proven to be complex, and though early research focused on a pro-inflammatory phenotype of microglia, the anti-inflammatory and homeostatic roles of microglia must be considered. How these new roles for microglia should be incorporated into our thinking about the neuroimmune system in AUDs is discussed in the context of developing novel pharmacotherapies for AUDs.
Collapse
Affiliation(s)
- Jennifer K Melbourne
- The University of Texas at Austin, College of Pharmacy, Division of Pharmacology & Toxicology, Austin, TX, United States
| | - K Ryan Thompson
- The University of Texas at Austin, College of Pharmacy, Division of Pharmacology & Toxicology, Austin, TX, United States
| | - Hui Peng
- University of Kentucky, College of Pharmacy, Department of Pharmaceutical Sciences, Lexington, KY, United States
| | - Kimberly Nixon
- The University of Texas at Austin, College of Pharmacy, Division of Pharmacology & Toxicology, Austin, TX, United States.
| |
Collapse
|