1
|
Wang X, Wu L, Zhang W, Qiu S, Xu Z, Wan H, He J, Wang W, Wang M, Yin Q, Shi Y, Gao R, Xiang L, Yang W. Multi-omics analysis reveals promiscuous O-glycosyltransferases involved in the diversity of flavonoid glycosides in Periploca forrestii (Apocynaceae). Comput Struct Biotechnol J 2024; 23:1106-1116. [PMID: 38495554 PMCID: PMC10940802 DOI: 10.1016/j.csbj.2024.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024] Open
Abstract
Flavonoid glycosides are widespread in plants, and are of great interest owing to their diverse biological activities and effectiveness in preventing chronic diseases. Periploca forrestii, a renowned medicinal plant of the Apocynaceae family, contains diverse flavonoid glycosides and is clinically used to treat rheumatoid arthritis and traumatic injuries. However, the mechanisms underlying the biosynthesis of these flavonoid glycosides have not yet been elucidated. In this study, we used widely targeted metabolomics and full-length transcriptome sequencing to identify flavonoid diversity and biosynthetic genes in P. forrestii. A total of 120 flavonoid glycosides, including 21 C-, 96 O-, and 3 C/O-glycosides, were identified and annotated. Based on 24,123 full-length coding sequences, 99 uridine diphosphate sugar-utilizing glycosyltransferases (UGTs) were identified and classified into 14 groups. Biochemical assays revealed that four UGTs exhibited O-glycosyltransferase activity toward apigenin and luteolin. Among them, PfUGT74B4 and PfUGT92A8 were highly promiscuous and exhibited multisite O-glycosylation or consecutive glycosylation activities toward various flavonoid aglycones. These four glycosyltransferases may significantly contribute to the diversity of flavonoid glycosides in P. forrestii. Our findings provide a valuable genetic resource for further studies on P. forrestii and insights into the metabolic engineering of bioactive flavonoid glycosides.
Collapse
Affiliation(s)
- Xiaotong Wang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Harbin 150006, China
| | - Lan Wu
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wanran Zhang
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Harbin 150006, China
| | - Shi Qiu
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhichao Xu
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Harbin 150006, China
| | - Huihua Wan
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jiang He
- Xinjiang Institute of Materia Medica/Key Laboratory of Xinjiang Uygur Medicine, Urumqi 830004, China
| | - Wenting Wang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Mengyue Wang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qinggang Yin
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuhua Shi
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ranran Gao
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Li Xiang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Xinjiang Institute of Materia Medica/Key Laboratory of Xinjiang Uygur Medicine, Urumqi 830004, China
- Prescription Laboratory of Xinjiang Traditional Uyghur Medicine, Xinjiang Institute of Traditional Uyghur Medicine, Urmuqi 830000, China
| | - Weijun Yang
- Xinjiang Institute of Materia Medica/Key Laboratory of Xinjiang Uygur Medicine, Urumqi 830004, China
| |
Collapse
|
2
|
Fernie AR, de Vries S, de Vries J. Evolution of plant metabolism: the state-of-the-art. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230347. [PMID: 39343029 PMCID: PMC11449224 DOI: 10.1098/rstb.2023.0347] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 10/01/2024] Open
Abstract
Immense chemical diversity is one of the hallmark features of plants. This chemo-diversity is mainly underpinned by a highly complex and biodiverse biochemical machinery. Plant metabolic enzymes originated and were inherited from their eukaryotic and prokaryotic ancestors and further diversified by the unprecedentedly high rates of gene duplication and functionalization experienced in land plants. Unlike prokaryotic microbes, which display frequent horizontal gene transfer events and multiple inputs of energy and organic carbon, land plants predominantly rely on organic carbon generated from CO2 and have experienced relatively few gene transfers during their recent evolutionary history. As such, plant metabolic networks have evolved in a stepwise manner using existing networks as a starting point and under various evolutionary constraints. That said, until recently, the evolution of only a handful of metabolic traits had been extensively investigated and as such, the evolution of metabolism has received a fraction of the attention of, the evolution of development, for example. Advances in metabolomics and next-generation sequencing have, however, recently led to a deeper understanding of how a wide range of plant primary and specialized (secondary) metabolic pathways have evolved both as a consequence of natural selection and of domestication and crop improvement processes. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Alisdair R. Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm14476, Germany
| | - Sophie de Vries
- Department of Applied Bioinformatics, University of Goettingen, Institute of Microbiology and Genetics, Goldschmidtstr. 1, Goettingen37077, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, University of Goettingen, Institute of Microbiology and Genetics, Goldschmidtstr. 1, Goettingen37077, Germany
- University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, Goettingen37077, Germany
- Department of Applied Bioinformatics, University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Goldschmidtstr. 1, Goettingen37077, Germany
| |
Collapse
|
3
|
Güngör E, Bartels B, Bolchi G, Heeren RMA, Ellis SR, Schluepmann H. Biosynthesis and differential spatial distribution of the 3-deoxyanthocyanidins apigenidin and luteolinidin at the interface of a plant-cyanobacteria symbiosis exposed to cold. PLANT, CELL & ENVIRONMENT 2024; 47:4151-4170. [PMID: 38932650 DOI: 10.1111/pce.15010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Aquatic ferns of the genus Azolla (Azolla) form highly productive symbioses with filamentous cyanobacteria fixing N2 in their leaf cavities, Nostoc azollae. Stressed symbioses characteristically turn red due to 3-deoxyanthocyanidin (DA) accumulation, rare in angiosperms and of unknown function. To understand DA accumulation upon cold acclimation and recovery, we integrated laser-desorption-ionization mass-spectrometry-imaging (LDI-MSI), a new Azolla filiculoides genome-assembly and annotation, and dual RNA-sequencing into phenotypic analyses of the symbioses. Azolla sp. Anzali recovered even when cold-induced DA-accumulation was inhibited by abscisic acid. Cyanobacterial filaments generally disappeared upon cold acclimation and Nostoc azollae transcript profiles were unlike those of resting stages formed in cold-resistant sporocarps, yet filaments re-appeared in leaf cavities of newly formed green fronds upon cold-recovery. The high transcript accumulation upon cold acclimation of AfDFR1 encoding a flavanone 4-reductase active in vitro suggested that the enzyme of the first step in the DA-pathway may regulate accumulation of DAs in different tissues. However, LDI-MSI highlighted the necessity to describe metabolite accumulation beyond class assignments as individual DA and caffeoylquinic acid metabolites accumulated differentially. For example, luteolinidin accumulated in epithelial cells, including those lining the leaf cavity, supporting a role for the former in the symbiotic interaction during cold acclimation.
Collapse
Affiliation(s)
- Erbil Güngör
- Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Benjamin Bartels
- Division of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging Institute (M4I), Maastricht University, Maastricht, The Netherlands
| | - Giorgio Bolchi
- Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Ron M A Heeren
- Division of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging Institute (M4I), Maastricht University, Maastricht, The Netherlands
| | - Shane R Ellis
- Division of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging Institute (M4I), Maastricht University, Maastricht, The Netherlands
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | | |
Collapse
|
4
|
Lu Y, Yu X, Wang Z, Kong L, Jiang Z, Shang R, Zhong X, Lv S, Zhang G, Gao H, Yang N. Microbiota-gut-brain axis: Natural antidepressants molecular mechanism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:156012. [PMID: 39260135 DOI: 10.1016/j.phymed.2024.156012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Major depressive disorder (MDD) is a severe mental health condition characterized by persistent depression, impaired cognition, and reduced activity. Increasing evidence suggests that gut microbiota (GM) imbalance is closely linked to the emergence and advancement of MDD, highlighting the potential significance of regulating the "Microbiota-Gut-Brain" (MGB) axis to impact the development of MDD. Natural products (NPs), characterized by broad biological activities, low toxicity, and multi-target characteristics, offer unique advantages in antidepressant treatment by regulating MGB axis. PURPOSE This review was aimed to explore the intricate relationship between the GM and the brain, as well as host responses, and investigated the mechanisms underlying the MGB axis in MDD development. It also explored the pharmacological mechanisms by which NPs modulate MGB axis to exert antidepressant effects and addressed current research limitations. Additionally, it proposed new strategies for future preclinical and clinical applications in the MDD domain. METHODS To study the effects and mechanism by which NPs exert antidepressant effects through mediating the MGB axis, data were collected from Web of Science, PubMed, ScienceDirect from initial establishment to March 2024. NPs were classified and summarized by their mechanisms of action. RESULTS NPs, such as flavonoids,alkaloids,polysaccharides,saponins, terpenoids, can treat MDD by regulating the MGB axis. Its mechanism includes balancing GM, regulating metabolites and neurotransmitters such as SCAFs, 5-HT, BDNF, inhibiting neuroinflammation, improving neural plasticity, and increasing neurogenesis. CONCLUSIONS NPs display good antidepressant effects, and have potential value for clinical application in the prevention and treatment of MDD by regulating the MGB axis. However, in-depth study of the mechanisms by which antidepressant medications affect MGB axis will also require considerable effort in clinical and preclinical research, which is essential for the development of effective antidepressant treatments.
Collapse
Affiliation(s)
- Yitong Lu
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Xiaowen Yu
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Department of Neurology, Affiliated Hospital of shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Zhongling Wang
- Department of Neurology, Affiliated Hospital of shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Linghui Kong
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Zhenyuan Jiang
- Department of Neurology, Affiliated Hospital of shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Ruirui Shang
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xia Zhong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
| | - Shimeng Lv
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Guangheng Zhang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Haonan Gao
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Ni Yang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| |
Collapse
|
5
|
Wang Y, Wang C, Shi J, Zhang Y. Effects of derivatization and probiotic transformation on the antioxidative activity of fruit polyphenols. Food Chem X 2024; 23:101776. [PMID: 39280222 PMCID: PMC11402117 DOI: 10.1016/j.fochx.2024.101776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/15/2024] [Accepted: 08/24/2024] [Indexed: 09/18/2024] Open
Abstract
Fruits contain numerous polyphenols in the form of conjugates, which exhibit low antioxidant activity. Probiotic fermentation is a strategy to improve the antioxidant activity of these conjugated polyphenols by modifying their structure. However, the mechanisms underlying the effects of functional groups and derivatizations on the antioxidative activities of polyphenols and the antioxidation enhancement by probiotic biotransformation haven't been comprehensively explored. This review aimed to explore the structure-antioxidant activity relationships of four functional groups and three derivatizations in flavonoids and phenolic acids. Further, the review elucidated the antioxidant mechanisms underlying the biotransformation of flavonoids and phenolic acids as glycoside, methylated, and ester conjugates by probiotic biotransformation. Deglycosylation, demethylation, and hydrolysis catalyzed by enzymes produced by Bifidobacterium and Lactobacillus facilitated the conversion of conjugated polyphenols into flavonoids and phenolic acids with hydrolyzed forms and highly active functional groups, thereby increasing hydrogen supply and electron transfer capacity to enhance the antioxidant activity.
Collapse
Affiliation(s)
- Yixuan Wang
- School of food science and technology, Shihezi University, Road Beisi, Shihezi, Xinjiang Province 832003, China
| | - Chenxi Wang
- School of food science and technology, Shihezi University, Road Beisi, Shihezi, Xinjiang Province 832003, China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Shaanxi, Xi'an Province 710072, People's Republic of China
| | - Yan Zhang
- School of food science and technology, Shihezi University, Road Beisi, Shihezi, Xinjiang Province 832003, China
| |
Collapse
|
6
|
Agati G, Brunetti C, Dos Santos Nascimento LB, Gori A, Lo Piccolo E, Tattini M. Antioxidants by nature: an ancient feature at the heart of flavonoids' multifunctionality. THE NEW PHYTOLOGIST 2024. [PMID: 39434218 DOI: 10.1111/nph.20195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024]
Affiliation(s)
- Giovanni Agati
- Institute of Applied Physics 'Carrara' (IFAC), National Research Council of Italy, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Florence, Italy
| | - Cecilia Brunetti
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Florence, Italy
| | | | - Antonella Gori
- Department of Agri-Food Production and Environmental Sciences (DAGRI), University of Florence, Viale delle Idee 30, I-50019, Sesto Fiorentino, Florence, Italy
| | - Ermes Lo Piccolo
- Department of Agri-Food Production and Environmental Sciences (DAGRI), University of Florence, Viale delle Idee 30, I-50019, Sesto Fiorentino, Florence, Italy
| | - Massimiliano Tattini
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
7
|
Postiglione AE, Delange AM, Ali MF, Wang EY, Houben M, Hahn SL, Khoury MG, Roark CM, Davis M, Reid RW, Pease JB, Loraine AE, Muday GK. Flavonols improve tomato pollen thermotolerance during germination and tube elongation by maintaining reactive oxygen species homeostasis. THE PLANT CELL 2024; 36:4511-4534. [PMID: 39102899 PMCID: PMC11449072 DOI: 10.1093/plcell/koae222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/20/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024]
Abstract
Elevated temperatures impair pollen performance and reproductive success, resulting in lower crop yields. The tomato (Solanum lycopersicum) anthocyanin reduced (are) mutant harbors a mutation in FLAVANONE 3-HYDROXYLASE (F3H), resulting in impaired flavonol antioxidant biosynthesis. The are mutant has reduced pollen performance and seed set relative to the VF36 parental line, phenotypes that are accentuated at elevated temperatures. Transformation of are with the wild-type F3H gene, or chemical complementation with flavonols, prevented temperature-dependent reactive oxygen species (ROS) accumulation in pollen and restored the reduced viability, germination, and tube elongation of are to VF36 levels. Overexpression of F3H in VF36 prevented temperature-driven ROS increases and impaired pollen performance, revealing that flavonol biosynthesis promotes thermotolerance. Although stigmas of are had reduced flavonol and elevated ROS levels, the growth of are pollen tubes was similarly impaired in both are and VF36 pistils. RNA-seq was performed at optimal and stress temperatures in are, VF36, and the F3H overexpression line at multiple timepoints across pollen tube elongation. The number of differentially expressed genes increased over time under elevated temperatures in all genotypes, with the greatest number in are. These findings suggest potential agricultural interventions to combat the negative effects of heat-induced ROS in pollen that lead to reproductive failure.
Collapse
Affiliation(s)
- Anthony E Postiglione
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Allison M Delange
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Mohammad Foteh Ali
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Eric Y Wang
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Maarten Houben
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Stacy L Hahn
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Maleana G Khoury
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Colleen M Roark
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Molly Davis
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte, NC 28223, USA
| | - Robert W Reid
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte, NC 28223, USA
| | - James B Pease
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Ann E Loraine
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte, NC 28223, USA
| | - Gloria K Muday
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA
| |
Collapse
|
8
|
Cui D, Xiong G, Ye L, Gornall R, Wang Z, Heslop-Harrison P, Liu Q. Genome-wide analysis of flavonoid biosynthetic genes in Musaceae ( Ensete, Musella, and Musa species) reveals amplification of flavonoid 3',5'-hydroxylase. AOB PLANTS 2024; 16:plae049. [PMID: 39450414 PMCID: PMC11500454 DOI: 10.1093/aobpla/plae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 09/09/2024] [Indexed: 10/26/2024]
Abstract
Flavonoids in Musaceae are involved in pigmentation and stress responses, including cold resistance, and are a component of the healthy human diet. Identification and analysis of the sequence and copy number of flavonoid biosynthetic genes are valuable for understanding the nature and diversity of flavonoid evolution in Musaceae species. In this study, we identified 71-80 flavonoid biosynthetic genes in chromosome-scale genome sequence assemblies of Musaceae, including those of Ensete glaucum, Musella lasiocarpa, Musa beccarii, M. acuminata, M. balbisiana and M. schizocarpa, checking annotations with BLAST and determining the presence of conserved domains. The number of genes increased through segmental duplication and tandem duplication. Orthologues of both structural and regulatory genes in the flavonoid biosynthetic pathway are highly conserved across Musaceae. The flavonoid 3',5'-hydroxylase gene F3'5'H was amplified in Musaceae and ginger compared with grasses (rice, Brachypodium, Avena longiglumis, and sorghum). One group of genes from this gene family amplified near the centromere of chromosome 2 in the x = 11 Musaceae species. Flavonoid biosynthetic genes displayed few consistent responses in the yellow and red bracts of Musella lasiocarpa when subjected to low temperatures. The expression levels of MlDFR2/3 (dihydroflavonol reductase) increased while MlLAR (leucoanthocyanidin reductase) was reduced by half. Overall, the results establish the range of diversity in both sequence and copy number of flavonoid biosynthetic genes during evolution of Musaceae. The combination of allelic variants of genes, changes in their copy numbers, and variation in transcription factors with the modulation of expression under cold treatments and between genotypes with contrasting bract-colours suggests the variation may be exploited in plant breeding programmes, particularly for improvement of stress-resistance in the banana crop.
Collapse
Affiliation(s)
- Dongli Cui
- Key Laboratory of National Forestry and Grassland Administration Plant Conservation and Utilization in Southern China/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Yuquan Road 19, Shijingshan District, Beijing 100049, China
| | - Gui Xiong
- Key Laboratory of National Forestry and Grassland Administration Plant Conservation and Utilization in Southern China/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Yuquan Road 19, Shijingshan District, Beijing 100049, China
| | - Lyuhan Ye
- Key Laboratory of National Forestry and Grassland Administration Plant Conservation and Utilization in Southern China/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Yuquan Road 19, Shijingshan District, Beijing 100049, China
| | - Richard Gornall
- University of Leicester, Department of Genetics and Genome Biology, Institute for Environmental Futures, University Road, Leicester LE1 7RH, UK
| | - Ziwei Wang
- Henry Fok School of Biology and Agriculture, Shaoguan University, University Road 288, Zhenjiang District, Shaoguan 512005, China
| | - Pat Heslop-Harrison
- Key Laboratory of National Forestry and Grassland Administration Plant Conservation and Utilization in Southern China/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- University of Leicester, Department of Genetics and Genome Biology, Institute for Environmental Futures, University Road, Leicester LE1 7RH, UK
| | - Qing Liu
- Key Laboratory of National Forestry and Grassland Administration Plant Conservation and Utilization in Southern China/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
| |
Collapse
|
9
|
Chu Z, Xiong R, Peng X, Cui G, Dong L, Li W. Delineating Molecular Regulatory of Flavonoids Indicated by Transcriptomic and Metabolomics Analysis during Flower Development in Chrysanthemum morifolium 'Boju'. Int J Mol Sci 2024; 25:10261. [PMID: 39408589 PMCID: PMC11476272 DOI: 10.3390/ijms251910261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024] Open
Abstract
Flavonoids are pharmacologically active compounds in flowers of Chrysanthemum morifolium 'Boju' (C. morifolium); however, the molecular regulatory network governing flower development remains largely elusive. Flower samples were collected at four stages, namely budding (BD), bud breaking (BB), early blooming (EB), and full blooming (FB), for omics analysis. We revealed distinct transcriptional regulation patterns at these four stages of the flower from the perspective of differentially expressed unigenes (DEGs). There are 152 DEGs shared among the three comparative groups (BD vs. BB, BB vs EB, EB vs FB), wherein the expression of 44 DEGs (including AtADT6, MDL3, and ROMT) continues to be upregulated, and 85 DEGs (including CYP81E, TPS-Cin-1, and TPS-Cin-2) showed persistent downregulation with flower development. Flavonoid-targeted metabolomics identified 118 differentially abundant metabolites (DAMs) in the FB group compared to the BD stage; the top three upregulated and downregulated metabolites are Cyanidin-3-O-(6″-O-malonyl)glucoside-5-O-glucoside, Luteolin-7-O-(6″-caffeoyl)rhamnoside, Kaempferol-3-O-(6″-p-coumaroyl)glucoside and Chrysoeriol-6,8-di-C-glucoside-7-O-glucoside, Kaempferol, Kaempferol-3,7-O-dirhamnoside, respectively. These DAMs were predominantly enriched in "flavonoid biosynthesis", "isoflavonoid biosynthesis", and "flavone and flavonol biosynthesis" pathways. AtADT6, MDL3, ROMT, CYP81E, TPS-Cin-1, and TPS-Cin-2 were correlated with kaempferol. Our findings provide a new idea for interfering with flavonoid production, especially kaempferol, in flowers.
Collapse
Affiliation(s)
| | | | | | | | | | - Weiwen Li
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230001, China; (Z.C.); (R.X.); (X.P.); (G.C.); (L.D.)
| |
Collapse
|
10
|
von Steimker J, Tripodi P, Wendenburg R, Tringovska I, Nankar AN, Stoeva V, Pasev G, Klemmer A, Todorova V, Bulut M, Tikunov Y, Bovy A, Gechev T, Kostova D, Fernie AR, Alseekh S. The genetic architecture of the pepper metabolome and the biosynthesis of its signature capsianoside metabolites. Curr Biol 2024; 34:4209-4223.e3. [PMID: 39197460 DOI: 10.1016/j.cub.2024.07.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/17/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024]
Abstract
Capsicum (pepper) is among the most economically important species worldwide, and its fruits accumulate specialized metabolites with essential roles in plant environmental interaction and human health benefits as well as in conferring their unique taste. However, the genetics underlying differences in metabolite presence/absence and/or accumulation remain largely unknown. In this study, we carried out a genome-wide association study as well as generating and characterizing a novel backcross inbred line mapping population to determine the genetic architecture of the pepper metabolome. This genetic analysis provided over 1,000 metabolic quantitative trait loci (mQTL) for over 250 annotated metabolites. We identified 92 candidate genes involved in various mQTLs. Among the identified loci, we described and validated a gene cluster of eleven UDP-glycosyltransferases (UGTs) involved in monomeric capsianoside biosynthesis. We additionally constructed the gene-by-gene-based biosynthetic pathway of pepper capsianoside biosynthesis, including both core and decorative reactions. Given that one of these decorative pathways, namely the glycosylation of acyclic diterpenoid glycosides, contributes to plant resistance, these data provide new insights and breeding resources for pepper. They additionally provide a blueprint for the better understanding of the biosynthesis of species-specific natural compounds in general.
Collapse
Affiliation(s)
- Julia von Steimker
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Pasquale Tripodi
- Research Centre for Vegetable and Ornamental Crops, Council for Agricultural Research and Economics (CREA), 84098 Pontecagnano Faiano, Italy
| | - Regina Wendenburg
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Ivanka Tringovska
- Maritsa Vegetable Crops Research Institute, Agricultural Academy, 32 Brezovsko shosse str., Plovdiv 4000, Bulgaria
| | - Amol N Nankar
- Center of Plant Systems Biology and Biotechnology, 14 Knyaz Boris I Pokrastitel, Plovdiv 4023, Bulgaria; Department of Horticulture, University of Georgia, 2360 Rainwater Road, Tifton, GA 31793-5766, USA
| | - Veneta Stoeva
- Maritsa Vegetable Crops Research Institute, Agricultural Academy, 32 Brezovsko shosse str., Plovdiv 4000, Bulgaria
| | - Gancho Pasev
- Maritsa Vegetable Crops Research Institute, Agricultural Academy, 32 Brezovsko shosse str., Plovdiv 4000, Bulgaria
| | - Annabella Klemmer
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Velichka Todorova
- Maritsa Vegetable Crops Research Institute, Agricultural Academy, 32 Brezovsko shosse str., Plovdiv 4000, Bulgaria
| | - Mustafa Bulut
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Yury Tikunov
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, the Netherlands
| | - Arnaud Bovy
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, the Netherlands
| | - Tsanko Gechev
- Center of Plant Systems Biology and Biotechnology, 14 Knyaz Boris I Pokrastitel, Plovdiv 4023, Bulgaria; Department of Plant Physiology and Molecular Biology, Plovdiv University, 24 Tsar Assen str., Plovdiv 4000, Bulgaria
| | - Dimitrina Kostova
- Maritsa Vegetable Crops Research Institute, Agricultural Academy, 32 Brezovsko shosse str., Plovdiv 4000, Bulgaria; Center of Plant Systems Biology and Biotechnology, 14 Knyaz Boris I Pokrastitel, Plovdiv 4023, Bulgaria
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany; Center of Plant Systems Biology and Biotechnology, 14 Knyaz Boris I Pokrastitel, Plovdiv 4023, Bulgaria.
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany; Center of Plant Systems Biology and Biotechnology, 14 Knyaz Boris I Pokrastitel, Plovdiv 4023, Bulgaria.
| |
Collapse
|
11
|
Vidaković V, Vujić B, Jadranin M, Novaković I, Trifunović S, Tešević V, Mandić B. Qualitative Profiling, Antioxidant and Antimicrobial Activities of Polar and Nonpolar Basil Extracts. Foods 2024; 13:2993. [PMID: 39335921 PMCID: PMC11431458 DOI: 10.3390/foods13182993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Basil (Ocimum basilicum L.) is a widely used culinary herb. In this study, ethanol, dichloromethane, and sunflower oil were used separately as solvents with distinct polarities for the extraction of basil aerial parts to simulate the different polarity conditions in domestic food processing. The oil extract (OE) was re-extracted with acetonitrile, and the chemical composition, antioxidant potential, and antimicrobial activities of the ethanol (EE), dichloromethane (DCME), and acetonitrile (ACNE) extracts were determined. A total of 109 compounds were tentatively identified in EE, DCME, and ACNE by HPLC-DAD/ESI-ToF-MS. Fatty acids were present in all extracts. Phenolic acids and flavonoids dominated in EE. DCME was characterised by triterpenoid acids, while diterpenoids were mainly found in ACNE. The extracts were analysed for their antioxidant capacity using the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) assay. EE and DCME showed significant radical scavenging potential. Antimicrobial activity was explored in eight bacterial, two yeast, and one fungal species. All extracts exhibited high antifungal activity, comparable to or better than that of the commercial drug nistatin. Antibacterial activities were notable for EE and ACNE, while DCME showed no activity against bacteria in the applied concentration ranges. The different polarities of the solvents led to distinctive phytochemical compositions and bioactivities in the extracts.
Collapse
Affiliation(s)
- Vera Vidaković
- Department of Ecology, University of Belgrade—Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, Bulevar despota Stefana 142, 11108 Belgrade, Serbia;
| | - Bojan Vujić
- University of Belgrade—Faculty of Chemistry, Studentski trg 12–16, 11000 Belgrade, Serbia; (B.V.); (S.T.); (V.T.)
| | - Milka Jadranin
- University of Belgrade—Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade, Serbia; (M.J.); (I.N.)
| | - Irena Novaković
- University of Belgrade—Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade, Serbia; (M.J.); (I.N.)
| | - Snežana Trifunović
- University of Belgrade—Faculty of Chemistry, Studentski trg 12–16, 11000 Belgrade, Serbia; (B.V.); (S.T.); (V.T.)
| | - Vele Tešević
- University of Belgrade—Faculty of Chemistry, Studentski trg 12–16, 11000 Belgrade, Serbia; (B.V.); (S.T.); (V.T.)
| | - Boris Mandić
- University of Belgrade—Faculty of Chemistry, Studentski trg 12–16, 11000 Belgrade, Serbia; (B.V.); (S.T.); (V.T.)
| |
Collapse
|
12
|
Zhao A, He Y, Sun R, Xie D, Bai H, Han F, Huang X, Wu H, Liu C. Transcriptome and Metabolomic Analyses Reveal Tissue-Specific Glycosylation of Phenylpropanoids and Flavonoids in Toxicodendron vernicifluum. PHYSIOLOGIA PLANTARUM 2024; 176:e14545. [PMID: 39344354 DOI: 10.1111/ppl.14545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/09/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024]
Abstract
Toxicodendron vernicifluum (Stokes) F. A. Barkley is a tree species used primarily for lacquer production. Our study utilized transcriptome and metabolomic analysis to investigate the biosynthesis of phenylpropanoids and flavonoids, specifically the glycosylated forms, in T. vernicifluum roots, stems, and leaves. HPLC-QTOF-MS/MS identified 186 compounds, with tissue-specific distributions revealed by PCA. Flavonoids and phenylpropanoids glycosides were significantly more abundant in leaves compared with roots and stems. Full-length sequencing uncovered 17,266 transcripts in T. vernicifluum. Gene expression analysis showed higher activity of phenylpropanoid and flavonoid biosynthesis pathways in leaves. Certain genes, such as CYP73A, 4CL, CRR, CYP84A/F5H, and CYP93C, displayed associations with compound content distributions. Root tissue exhibited a higher concentration of isoflavones. Notably, glycosyltransferase expression demonstrated significant correlations with glycosylated compounds' content. Biochemical validation confirmed the involvement of TvPB_c0_g2904, encoding a UDP-glucosyltransferase, in genistin biosynthesis in T. vernicifluum.
Collapse
Affiliation(s)
- Aiguo Zhao
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuxi He
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Ruixiang Sun
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - DongDong Xie
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Hangyu Bai
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Feng Han
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaohua Huang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Haitang Wu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Chaobin Liu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
13
|
Wang J, Liao N, Liu G, Li Y, Xu F, Shi J. Diversity and regioselectivity of O-methyltransferases catalyzing the formation of O-methylated flavonoids. Crit Rev Biotechnol 2024; 44:1203-1225. [PMID: 38035668 DOI: 10.1080/07388551.2023.2280755] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 08/26/2023] [Accepted: 10/17/2023] [Indexed: 12/02/2023]
Abstract
Flavonoids and their methylated derivatives have immense market potential in the food and biomedical industries due to their multiple beneficial effects, such as antimicrobial, anti-inflammatory, and anticancer activities. The biological synthesis of flavonoids and their derivatives is often accomplished via the use of genetically modified microorganisms to ensure large-scale production. Therefore, it is pivotal to understand the properties of O-methyltransferases (OMTs) that mediate the methylation of flavonoids. However, the properties of these OMTs are governed by their: sources, substrate specificity, amino acid residues in the active sites, and the intricate mechanism. In order to obtain a clue for the selection of suitable OMTs for the biosynthesis of a target methylated flavonoid, we made a comprehensive review of the currently reported results, with a particular focus on their comparative regioselectivity for different flavonoid substrates. Additionally, the possible mechanisms for the diversity of this class of enzymes were explored using molecular simulation technology. Finally, major gaps in our understanding and areas for future studies were discussed. The findings of this study may be useful in selecting genes that encode OMTs and designing enzyme-based processes for synthesizing O-methylated flavonoids.
Collapse
Affiliation(s)
- Juan Wang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, People's Republic of China
| | - Ning Liao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, People's Republic of China
| | - Guanwen Liu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, People's Republic of China
| | - Yinghui Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, People's Republic of China
| | - Fengqin Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, People's Republic of China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, People's Republic of China
| |
Collapse
|
14
|
Lu L, Luan Y, Wang H, Gao Y, Wu S, Zhao X. Flavonoid as a Potent Antioxidant: Quantitative Structure-Activity Relationship Analysis, Mechanism Study, and Molecular Design by Synergizing Molecular Simulation and Machine Learning. J Phys Chem A 2024; 128:6216-6228. [PMID: 39023240 DOI: 10.1021/acs.jpca.4c03241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
In this work, a quantitative structure-antioxidant activity relationship of flavonoids was performed using a machine learning (ML) method. To achieve lipid-soluble, highly antioxidant flavonoids, 398 molecular structures with various substitute groups were designed based on the flavonoid skeleton. The hydrogen dissociation energies (ΔG1, ΔG2, and ΔG3) related to multiple hydrogen atom transfer processes and the solubility parameter (δ) of flavonoids were calculated using molecular simulation. The group decomposition results and the calculated antioxidant parameters constituted the ML data set. The artificial neural network and random forest models were constructed to predict and analyze the contribution of the substitute groups and positions to the antioxidant activity. The results showed the hydroxyl group at positions B4', B5', and B6' and the branched alkyl group at position C3 in the flavonoid skeleton were the optimal choice for improving antioxidant activity and compatibility with apolar organic materials. Compared to the pyrogallol group-grafted flavonoid, the designed potent flavonoid decreased ΔG1 and δ by 2.2 and 15.1%, respectively, while ΔG2 and ΔG3 kept the favorable lower values. These findings suggest that an efficient flavonoid prefers multiple ortho-phenolic hydroxyl groups and suitable sites with hydrophobic groups. The combination of molecular simulation and the ML method may offer a new research approach for the molecular design of novel antioxidants.
Collapse
Affiliation(s)
- Ling Lu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, P. R. China
| | - Yajie Luan
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Huaqi Wang
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yangyang Gao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Sizhu Wu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xiuying Zhao
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
15
|
Du W, Yang J, Li Q, Jiang W, Pang Y. Medicago truncatula β-glucosidase 17 contributes to drought and salt tolerance through antioxidant flavonoid accumulation. PLANT, CELL & ENVIRONMENT 2024; 47:3076-3089. [PMID: 38679945 DOI: 10.1111/pce.14928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/08/2024] [Accepted: 03/21/2024] [Indexed: 05/01/2024]
Abstract
Flavonoids are usually present in forms of glucosides in plants, which could be catabolized by β-glucosidase (BGLU) to form their corresponding flavonoid aglycones. In this study, we isolated three abiotic-responsive BGLU genes (MtBGLU17, MtBGLU21 and MtBGLU22) from Medicago truncatula, and found only the recombinant MtBGLU17 protein could catalyse the hydrolysis of flavonoid glycosides. The recombinant MtBGLU17 protein is active towards a variety of flavonoid glucosides, including glucosides of flavones (apigenin and luteolin), flavonols (kaempferol and quercetin), isoflavones (genistein and daidzein) and flavanone (naringenin). In particular, the recombinant MtBGLU17 protein preferentially hydrolyses flavonoid-7-O-glucosides over their corresponding 3-O-glucosides. The content of luteoin-7-O-glucoside was reduced in the MtBGLU17 overexpression plants but increased in the Tnt-1 insertional mutant lines, whereas luteoin content was increased in the MtBGLU17 overexpression plants but reduced in the Tnt-1 insertional mutant lines. Under drought and salt (NaCl) treatment, the MtBGLU17 overexpression lines showed relatively higher DPPH content, and higher CAT and SOD activity than the wild type control. These results indicated that overexpression lines of MtBGLU17 possess higher antioxidant activity and thus confer drought and salt tolerance, implying MtBGLU17 could be potentially used as a candidate gene to improve plant abiotic stress tolerance.
Collapse
Affiliation(s)
- Wenxuan Du
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junfeng Yang
- Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Qian Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenbo Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongzhen Pang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
16
|
Clayton-Cuch D, Yu L, McDougal D, Burbidge CA, Bruning JB, Bradley D, Böttcher C, Bulone V. Biochemical and in silico characterization of glycosyltransferases from red sweet cherry ( Prunus avium L.) reveals their broad specificity toward phenolic substrates. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 8:100193. [PMID: 38292011 PMCID: PMC10825616 DOI: 10.1016/j.fochms.2023.100193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/20/2023] [Accepted: 12/30/2023] [Indexed: 02/01/2024]
Abstract
Polyphenolic compounds are a class of phytonutrients that play important roles in plants and contribute to human health when incorporated into our diet through fruit consumption. A large proportion occur as glycoconjugates but the enzymes responsible for their glycosylation are poorly characterized. Here, we report the biochemical and structural characterization of two glycosyltransferases from sweet cherry named PaUGT1 and PaUGT2. Both are promiscuous glucosyltransferases active on diverse anthocyanidins and flavonols, as well as phenolic acids in the case of PaUGT1. They also exhibit weaker galactosyltransferase activity. The expression of the gene encoding PaUGT1, the most active of the two proteins, follows anthocyanin accumulation during fruit ripening, suggesting that this enzyme is the primary glycosyltransferase involved in flavonoid glycosylation in sweet cherry. It can potentially be used to synthesize diverse glycoconjugates of flavonoids for integration into bioactive formulations, and for generating new fruit cultivars with enhanced health-promoting properties using breeding methods.
Collapse
Affiliation(s)
- Daniel Clayton-Cuch
- Adelaide Glycomics, University of Adelaide, School of Agriculture, Food and Wine, Waite Campus, Adelaide, South Australia 5064, Australia
- CSIRO, Waite Campus, Glen Osmond, South Australia 5064, Australia
| | - Long Yu
- Adelaide Glycomics, University of Adelaide, School of Agriculture, Food and Wine, Waite Campus, Adelaide, South Australia 5064, Australia
| | - Daniel McDougal
- Institute for Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | | | - John B. Bruning
- Institute for Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - David Bradley
- Agilent Technologies Australia Pty Ltd, Mulgrave, Melbourne, Victoria 3171, Australia
| | | | - Vincent Bulone
- Adelaide Glycomics, University of Adelaide, School of Agriculture, Food and Wine, Waite Campus, Adelaide, South Australia 5064, Australia
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm 10691, Sweden
| |
Collapse
|
17
|
Urakawa D, Shioiridani Y, Igata S, Hou DX, Sakao K. Comparative Analysis of Acetylated Flavonoids' Chemopreventive Effects in Different Cancer Cell Lines. Int J Mol Sci 2024; 25:7689. [PMID: 39062932 PMCID: PMC11276853 DOI: 10.3390/ijms25147689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Flavonoids, a class of natural compounds with anticancer activity, exhibit varying biological activities and potencies based on their structural differences. Acylation, including acetylation of flavonoids, generally increases their structural diversity, which is closely related to the diversity of bioactivity within this group of compounds. However, it remains largely unknown how acetylation affects the bioactivity of many flavonoids. Based on our previous findings that O-acetylation enhances quercetin's bioactivity against various cancer cells, we synthesized 12 acetylated flavonoids, including seven novel compounds, to investigate their anticancer activities in the MDA-MB-231, HCT-116, and HepG2 cell lines. Our results showed that acetylation notably enhanced the cell proliferation inhibitory effect of quercetin and kaempferol across all cancer cell lines tested. Interestingly, while the 5,7,4'-O-triacetate apigenin (3Ac-A) did not show an enhanced the effect of inhibition of cell proliferation through acetylation, it exhibited significantly strong anti-migration activity in MDA-MB-231 cells. In contrast, the 7,4'-O-diacetate apigenin (2Ac-Q), which lacks acetylation at the 5-position hydroxy group, showed enhanced cell proliferation inhibitory effect but had weaker anti-migration effects compared to 3Ac-A. These results indicated that acetylated flavonoids, especially quercetin, kaempferol, and apigenin derivatives, are promising for anticancer applications, with 3Ac-A potentially having unique anti-migration pathways independent of apoptosis induction. This study highlights the potential application of flavonoids in novel chemopreventive strategies for their anti-cancer activity.
Collapse
Affiliation(s)
- Daigo Urakawa
- The United Graduate School of Agriculture Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (D.U.); (D.-X.H.)
| | - Yuki Shioiridani
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan
| | - Shinya Igata
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan
| | - De-Xing Hou
- The United Graduate School of Agriculture Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (D.U.); (D.-X.H.)
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan
| | - Kozue Sakao
- The United Graduate School of Agriculture Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (D.U.); (D.-X.H.)
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan
| |
Collapse
|
18
|
Chavda VP, Chaudhari AZ, Balar PC, Gholap A, Vora LK. Phytoestrogens: Chemistry, potential health benefits, and their medicinal importance. Phytother Res 2024; 38:3060-3079. [PMID: 38602108 DOI: 10.1002/ptr.8196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/27/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
Phytoestrogens, also known as xenoestrogens, are secondary metabolites derived from plants that have similar structures and biological effects as human estrogens. These compounds do not directly affect biological functions but can act as agonists or antagonists depending on the level of endogenous estrogen in the body. Phytoestrogens may have an epigenetic mechanism of action independent of estrogen receptors. These compounds are found in more than 300 plant species and are synthesized through the phenylpropanoid pathway, with specific enzymes leading to various chemical structures. Phytoestrogens, primarily phenolic compounds, include isoflavonoids, flavonoids, stilbenes, and lignans. Extensive research in animals and humans has demonstrated the protective effects of phytoestrogens on estrogen-dependent diseases. Clinical trials have also shown their potential benefits in conditions such as osteoporosis, Parkinson's disease, and certain types of cancer. This review provides a concise overview of phytoestrogen classification, chemical diversity, and biosynthesis and discusses the potential therapeutic effects of phytoestrogens, as well as their preclinical and clinical development.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, India
| | - Amit Z Chaudhari
- Department of Pharmaceutical Chemistry, L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| | - Pankti C Balar
- Pharmacy section, L.M. College of Pharmacy, Ahmedabad, India
| | - Amol Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
| | | |
Collapse
|
19
|
Yuan Z, Li G, Zhang H, Peng Z, Ding W, Wen H, Zhou H, Zeng J, Chen J, Xu J. Four novel Cit7GlcTs functional in flavonoid 7- O-glucoside biosynthesis are vital to flavonoid biosynthesis shunting in citrus. HORTICULTURE RESEARCH 2024; 11:uhae098. [PMID: 38863995 PMCID: PMC11165160 DOI: 10.1093/hr/uhae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/25/2024] [Indexed: 06/13/2024]
Abstract
Citrus fruits have abundant flavonoid glycosides (FGs), an important class of natural functional and flavor components. However, there have been few reports about the modification of UDP-glycosyltransferases (UGTs) on flavonoids in citrus. Notably, in flavonoid biosynthesis, 7-O-glucosylation is the initial and essential step of glycosylation prior to the synthesis of flavanone disaccharides, the most abundant and iconic FGs in citrus fruits. Here, based on the accumulation of FGs observed at the very early fruit development stage of two pummelo varieties, we screened six novel flavonoid 7-O-glucosyltransferase genes (7GlcTs) via transcriptomic analysis and then characterized them in vitro. The results revealed that four Cg7GlcTs possess wide catalytic activities towards various flavonoid substrates, with CgUGT89AK1 exhibiting the highest catalytic efficiency. Transient overexpression of CgUGT90A31 and CgUGT89AK1 led to increases in FG synthesis in pummelo leaves. Interestingly, these two genes had conserved sequences and consistent functions across different germplasms. Moreover, CitUGT89AK1 was found to play a role in the response of citrus to Huanglongbing infection by promoting FG production. The findings improve our understanding of flavonoid 7-O-glucosylation by identifying the key genes, and may help improve the benefits of flavonoid biosynthesis for plants and humans in the future.
Collapse
Affiliation(s)
- Ziyu Yuan
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Gu Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Huixian Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Zhaoxin Peng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenyu Ding
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China
| | - Huan Wen
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China
| | - Hanxin Zhou
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiwu Zeng
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jiajing Chen
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Juan Xu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
20
|
Zhao J, Xu Y, Li H, An W, Yin Y, Wang B, Wang L, Wang B, Duan L, Ren X, Liang X, Wang Y, Wan R, Huang T, Zhang B, Li Y, Luo J, Cao Y. Metabolite-based genome-wide association studies enable the dissection of the genetic bases of flavonoids, betaine and spermidine in wolfberry (Lycium). PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1435-1452. [PMID: 38194521 PMCID: PMC11123438 DOI: 10.1111/pbi.14278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 10/28/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024]
Abstract
Wolfberry is a plant with medicinal and food values. However, its bioactive ingredients and the corresponding genetic bases have not been determined. Here, we de novo generated a chromosome-level genome assembly for wolfberry, yielding a genome sequence of ~1.77 Gb with contig N50 of 50.55 Mb and 39 224 predicted gene models. A variation map, using 307 re-sequenced accessions, was called based on this genome assembly. Furthermore, the fruit metabolome of these accessions was profiled using 563 annotated metabolites, which separated Lycium barbarum L. and non-L. barbarum L. The flavonoids, coumarins, alkaloids and nicotinic acid contents were higher in the former than in the latter. A metabolite-based genome-wide association study mapped 156 164 significant single nucleotide polymorphisms corresponding to 340 metabolites. This included 19 219 unique lead single nucleotide polymorphisms in 1517 significant association loci, of which three metabolites, flavonoids, betaine and spermidine, were highlighted. Two candidate genes, LbUGT (evm.TU.chr07.2692) and LbCHS (evm.TU.chr07.2738), with non-synonymous mutations, were associated with the flavonoids content. LbCHS is a structural gene that interacts with a nearby MYB transcription factor (evm.TU.chr07.2726) both in L. barbarum and L. ruthenicum. Thus, these three genes might be involved in the biosynthesis/metabolism of flavonoids. LbSSADH (evm.TU.chr09.627) was identified as possibly participating in betaine biosynthesis/metabolism. Four lycibarbarspermidines (E-G and O) were identified, and only the lycibarbarspermidines O content was higher in L. barbarum varieties than in non-L. barbarum varieties. The evm.TU.chr07.2680 gene associated with lycibarbarspermidines O was annotated as an acetyl-CoA-benzylalcohol acetyltransferase, suggesting that it is a candidate gene for spermidine biosynthesis. These results provide novel insights into the specific metabolite profile of non-L. barbarum L. and the genetic bases of flavonoids, betaine and spermidine biosynthesis/metabolism.
Collapse
Affiliation(s)
- Jianhua Zhao
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Yuhui Xu
- Adsen Biotechnology Co., Ltd.UrumchiChina
| | - Haoxia Li
- Desertification Control Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Wei An
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Yue Yin
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Bin Wang
- Wuhan Matware Biotechnology Co., Ltd.WuhanChina
| | - Liping Wang
- School of breeding and multiplcation (Sanya Institute of Breeding and Multiplication)Hainan, UniversitySanyaChina
| | - Bi Wang
- School of breeding and multiplcation (Sanya Institute of Breeding and Multiplication)Hainan, UniversitySanyaChina
| | - Linyuan Duan
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Xiaoyue Ren
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Xiaojie Liang
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Yajun Wang
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Ru Wan
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Ting Huang
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Bo Zhang
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Yanlong Li
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Jie Luo
- School of breeding and multiplcation (Sanya Institute of Breeding and Multiplication)Hainan, UniversitySanyaChina
| | - Youlong Cao
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| |
Collapse
|
21
|
Walencik PK, Choińska R, Gołębiewska E, Kalinowska M. Metal-Flavonoid Interactions-From Simple Complexes to Advanced Systems. Molecules 2024; 29:2573. [PMID: 38893449 PMCID: PMC11173564 DOI: 10.3390/molecules29112573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
For many years, metal-flavonoid complexes have been widely studied as a part of drug discovery programs, but in the last decade their importance in materials science has increased significantly. A deeper understanding of the role of metal ions and flavonoids in constructing simple complexes and more advanced hybrid networks will facilitate the assembly of materials with tailored architecture and functionality. In this Review, we highlight the most essential data on metal-flavonoid systems, presenting a promising alternative in the design of hybrid inorganic-organic materials. We focus mainly on systems containing CuII/I and FeIII/II ions, which are necessary in natural and industrial catalysis. We discuss two kinds of interactions that typically ensure the formation of metal-flavonoid systems, namely coordination and redox reactions. Our intention is to cover the fundamentals of metal-flavonoid systems to show how this knowledge has been already transferred from small molecules to complex materials.
Collapse
Affiliation(s)
- Paulina Katarzyna Walencik
- Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland;
| | - Renata Choińska
- Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland;
| | - Ewelina Gołębiewska
- Department of Chemistry, Biology and Biotechnology, Faculty of Civil and Environmental Sciences, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland;
| | - Monika Kalinowska
- Department of Chemistry, Biology and Biotechnology, Faculty of Civil and Environmental Sciences, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland;
| |
Collapse
|
22
|
Barreda L, Brosse C, Boutet S, Perreau F, Rajjou L, Lepiniec L, Corso M. Specialized metabolite modifications in Brassicaceae seeds and plants: diversity, functions and related enzymes. Nat Prod Rep 2024; 41:834-859. [PMID: 38323463 DOI: 10.1039/d3np00043e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Covering: up to 2023Specialized metabolite (SM) modifications and/or decorations, corresponding to the addition or removal of functional groups (e.g. hydroxyl, methyl, glycosyl or acyl group) to SM structures, contribute to the huge diversity of structures, activities and functions of seed and plant SMs. This review summarizes available knowledge (up to 2023) on SM modifications in Brassicaceae and their contribution to SM plasticity. We give a comprehensive overview on enzymes involved in the addition or removal of these functional groups. Brassicaceae, including model (Arabidopsis thaliana) and crop (Brassica napus, Camelina sativa) plant species, present a large diversity of plant and seed SMs, which makes them valuable models to study SM modifications. In this review, particular attention is given to the environmental plasticity of SM and relative modification and/or decoration enzymes. Furthermore, a spotlight is given to SMs and related modification enzymes in seeds of Brassicaceae species. Seeds constitute a large reservoir of beneficial SMs and are one of the most important dietary sources, providing more than half of the world's intake of dietary proteins, oil and starch. The seed tissue- and stage-specific expressions of A. thaliana genes involved in SM modification are presented and discussed in the context of available literature. Given the major role in plant phytochemistry, biology and ecology, SM modifications constitute a subject of study contributing to the research and development in agroecology, pharmaceutical, cosmetics and food industrial sectors.
Collapse
Affiliation(s)
- Léa Barreda
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France.
| | - Céline Brosse
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France.
| | - Stéphanie Boutet
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France.
| | - François Perreau
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France.
| | - Loïc Rajjou
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France.
| | - Loïc Lepiniec
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France.
| | - Massimiliano Corso
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France.
| |
Collapse
|
23
|
Postiglione AE, Delange AM, Ali MF, Wang EY, Houben M, Hahn SL, Khoury MG, Roark CM, Davis M, Reid RW, Pease JB, Loraine AE, Muday GK. Flavonols improve thermotolerance in tomato pollen during germination and tube elongation by maintaining ROS homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.23.573189. [PMID: 38187649 PMCID: PMC10769439 DOI: 10.1101/2023.12.23.573189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Elevated temperatures impair pollen performance and reproductive success, resulting in lower crop yields. The Solanum lycopersicum anthocyanin reduced ( are ) mutant has a FLAVANONE 3 HYDROXYLASE ( F3H ) gene mutation resulting in impaired synthesis of flavonol antioxidants. The are mutant has reduced pollen performance and seed set relative to the VF36 parental line, which is accentuated at elevated temperatures. Transformation of are with the wild-type F3H gene, or chemical complementation with flavonols, prevented temperature-dependent ROS accumulation in pollen and reversed are's reduced viability, germination, and tube elongation to VF36 levels. VF36 transformed with an F3H overexpression construct prevented temperature driven ROS increases and impaired pollen performance, revealing thermotolerance results from elevated flavonol synthesis. Although stigmas of are had reduced flavonols and elevated ROS, the growth of are pollen tubes were similarly impaired in both are and VF36 pistils. RNA-Seq was performed at optimal and stress temperatures in are , VF36, and the VF36 F3H overexpression line at multiple timepoints across pollen tube elongation. Differentially expressed gene numbers increased with duration of elevated temperature in all genotypes, with the largest number in are . These findings suggest potential agricultural interventions to combat the negative effects of heat-induced ROS in pollen that leads to reproductive failure. One sentence summary Flavonol antioxidants reduce the negative impacts of elevated temperatures on pollen performance by reducing levels of heat induced reactive oxygen species and modulation of heat-induced changes in the pollen transcriptome.
Collapse
|
24
|
Li Z, Geng G, Xie H, Zhou L, Wang L, Qiao F. Metabolomic and transcriptomic reveal flavonoid biosynthesis and regulation mechanism in Phlomoides rotata from different habitats. Genomics 2024; 116:110850. [PMID: 38685286 DOI: 10.1016/j.ygeno.2024.110850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
Phlomoides rotata is a traditional medical plant at 3100-5200 m altitude in the Tibet Plateau. In this study, flavonoid metabolites were investigated in P. rotata from Henan County (HN), Guoluo County (GL), Yushu County (YS), and Chengduo County (CD) habitats in Qinghai. The level of kaempferol 3-neohesperidoside, sakuranetin, and biochanin A was high in HN. The content of limocitrin and isoquercetin was high in YS. The levels of ikarisoside A and chrysosplenol D in GL were high. Schaftoside, miquelianin, malvidin chloride, and glabrene in CD exhibited high levels. The results showed a significant correlation between 59 flavonoids and 29 DEGs. Eleven flavonoids increased with altitude. PAL2, UFGT6, COMT1, HCT2, 4CL4, and HCT3 genes were crucial in regulating flavonoid biosynthesis. Three enzymes CHS, 4CL, and UFGT, were crucial in regulating flavonoid biosynthesis. This study provided biological and chemical evidence for the different uses of various regional plants of P. rotata.
Collapse
Affiliation(s)
- Zuxia Li
- Key Laboratory of Tibetan Plateau Medicinal Plant and Animal Resources, School of Life Sciences, Qinghai Normal University, Xining 810008, China
| | - Guigong Geng
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining 810016, China
| | - Huichun Xie
- Key Laboratory of Tibetan Plateau Medicinal Plant and Animal Resources, School of Life Sciences, Qinghai Normal University, Xining 810008, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810008, China
| | - Lianyu Zhou
- Key Laboratory of Tibetan Plateau Medicinal Plant and Animal Resources, School of Life Sciences, Qinghai Normal University, Xining 810008, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810008, China
| | - Luhao Wang
- Key Laboratory of Tibetan Plateau Medicinal Plant and Animal Resources, School of Life Sciences, Qinghai Normal University, Xining 810008, China
| | - Feng Qiao
- Key Laboratory of Tibetan Plateau Medicinal Plant and Animal Resources, School of Life Sciences, Qinghai Normal University, Xining 810008, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810008, China.
| |
Collapse
|
25
|
Peng Z, Song L, Chen M, Liu Z, Yuan Z, Wen H, Zhang H, Huang Y, Peng Z, Yang H, Li G, Zhang H, Hu Z, Li W, Wang X, Larkin RM, Deng X, Xu Q, Chen J, Xu J. Neofunctionalization of an OMT cluster dominates polymethoxyflavone biosynthesis associated with the domestication of citrus. Proc Natl Acad Sci U S A 2024; 121:e2321615121. [PMID: 38530892 PMCID: PMC10998556 DOI: 10.1073/pnas.2321615121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/22/2024] [Indexed: 03/28/2024] Open
Abstract
Polymethoxyflavones (PMFs) are a class of abundant specialized metabolites with remarkable anticancer properties in citrus. Multiple methoxy groups in PMFs are derived from methylation modification catalyzed by a series of hydroxylases and O-methyltransferases (OMTs). However, the specific OMTs that catalyze the systematic O-methylation of hydroxyflavones remain largely unknown. Here, we report that PMFs are highly accumulated in wild mandarins and mandarin-derived accessions, while undetectable in early-diverging citrus species and related species. Our results demonstrated that three homologous genes, CreOMT3, CreOMT4, and CreOMT5, are crucial for PMF biosynthesis in citrus, and their encoded methyltransferases exhibit multisite O-methylation activities for hydroxyflavones, producing seven PMFs in vitro and in vivo. Comparative genomic and syntenic analyses indicated that the tandem CreOMT3, CreOMT4, and CreOMT5 may be duplicated from CreOMT6 and contributes to the genetic basis of PMF biosynthesis in the mandarin group through neofunctionalization. We also demonstrated that N17 in CreOMT4 is an essential amino acid residue for C3-, C5-, C6-, and C3'-O-methylation activity and provided a rationale for the functional deficiency of OMT6 to produce PMFs in early-diverging citrus and some domesticated citrus species. A 1,041-bp deletion in the CreOMT4 promoter, which is found in most modern cultivated mandarins, has reduced the PMF content relative to that in wild and early-admixture mandarins. This study provides a framework for reconstructing PMF biosynthetic pathways, which may facilitate the breeding of citrus fruits with enhanced health benefits.
Collapse
Affiliation(s)
- Zhaoxin Peng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan430070, People’s Republic of China
| | - Lizhi Song
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
| | - Minghua Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
| | - Zeyang Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
| | - Ziyu Yuan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
| | - Huan Wen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
| | - Haipeng Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
- College of Horticulture, Henan Agricultural University, Zhengzhou450046, People’s Republic of China
| | - Yue Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
| | - Zhaowen Peng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
| | - Hongbin Yang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
| | - Gu Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
| | - Huixian Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
| | - Zhehui Hu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
| | - Wenyun Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
- Guizhou Fruit Institute, Guizhou Academy of Agricultural Sciences, Guiyang550006, People’s Republic of China
| | - Xia Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan430070, People’s Republic of China
| | - Robert M. Larkin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
| | - Xiuxin Deng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan430070, People’s Republic of China
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan430070, People’s Republic of China
| | - Jiajing Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan430070, People’s Republic of China
| | - Juan Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan430070, People’s Republic of China
| |
Collapse
|
26
|
Çiçek SS, Mangoni A, Hanschen FS, Agerbirk N, Zidorn C. Essentials in the acquisition, interpretation, and reporting of plant metabolite profiles. PHYTOCHEMISTRY 2024; 220:114004. [PMID: 38331135 DOI: 10.1016/j.phytochem.2024.114004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
Plant metabolite profiling reveals the diversity of secondary or specialized metabolites in the plant kingdom with its hundreds of thousands of species. Specialized plant metabolites constitute a vast class of chemicals posing significant challenges in analytical chemistry. In order to be of maximum scientific relevance, reports dealing with these compounds and their source species must be transparent, make use of standards and reference materials, and be based on correctly and traceably identified plant material. Essential aspects in qualitative plant metabolite profiling include: (i) critical review of previous literature and a reasoned sampling strategy; (ii) transparent plant sampling with wild material documented by vouchers in public herbaria and, optimally, seed banks; (iii) if possible, inclusion of generally available reference plant material; (iv) transparent, documented state-of-the art chemical analysis, ideally including chemical reference standards; (v) testing for artefacts during preparative extraction and isolation, using gentle analytical methods; (vi) careful chemical data interpretation, avoiding over- and misinterpretation and taking into account phytochemical complexity when assigning identification confidence levels, and (vii) taking all previous scientific knowledge into account in reporting the scientific data. From the current stage of the phytochemical literature, selected comments and suggestions are given. In the past, proposed revisions of botanical taxonomy were sometimes based on metabolite profiles, but this approach ("chemosystematics" or "chemotaxonomy") is outdated due to the advent of DNA sequence-based phylogenies. In contrast, systematic comparisons of plant metabolite profiles in a known phylogenetic framework remain relevant. This approach, known as chemophenetics, allows characterizing species and clades based on their array of specialized metabolites, aids in deducing the evolution of biosynthetic pathways and coevolution, and can serve in identifying new sources of rare and economically interesting natural products.
Collapse
Affiliation(s)
- Serhat S Çiçek
- Department of Biotechnology, Hamburg University of Applied Sciences, Ulmenliet 20, 21033, Hamburg, Germany
| | - Alfonso Mangoni
- Dipartimento di Farmacia, Università di Napoli Federico II, Via Domenico Montesano 49, 80131, Napoli, Italy
| | - Franziska S Hanschen
- Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops (IGZ) e. V., Theodor-Echtermeyer-Weg 1, 14979, Grossbeeren, Germany
| | - Niels Agerbirk
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Christian Zidorn
- Pharmazeutisches Institut, Abteilung Pharmazeutische Biologie, Christian-Albrechts- Universität zu Kiel, Gutenbergstraße 76, 24118, Kiel, Germany.
| |
Collapse
|
27
|
Su S, Wang L, Geng Y, Wang J. Flavonol profiles of mature leaves allow discriminating Toona sinensis Roem from different north-south geographical origins across China with varied antioxidant activities. Heliyon 2024; 10:e27040. [PMID: 38439854 PMCID: PMC10909761 DOI: 10.1016/j.heliyon.2024.e27040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/24/2023] [Accepted: 02/22/2024] [Indexed: 03/06/2024] Open
Abstract
Toona sinensis (A. Juss.) Roem, a multipurpose economic tree, is widely cultivated across Asia, but its high-yielding mature leaves are largely overlooked. This study systematically analysed the flavonols in the mature leaves of T. sinensis from 44 different geographic locations across China, using HPLC-DAD and HPLC-ESI-MS2 techniques. In total, 18 flavonols were detected, among which 6 (f1, f3, f7, f14, f15, and f17) were firstly identified in this plant. Significant variations in quality among different T. sinensis varieties were observed (p < 0.01). Through OPLS-DA analysis, all samples could be clearly categorised into two distinct geographical groups. The northern varieties (N1-N20) exhibited concise flavonol fingerprints with higher total flavonol content (TFC) (727.55 ± 22.79 mg/100 g fresh weight, FW), predominantly non-acylated flavonols (705.95 ± 21.65 mg/100 g FW), particularly quercetin glycosides (614.60 ± 22.76 mg/100 g FW). In contrast, the southern varieties (S1-S24) presented more intricate flavonol profiles with lower TFC (622.81 ± 21.82 mg/100 g FW) and balanced amounts of quercetin (344.75 ± 16.41 mg/100 g FW) and kaempferol glycosides (278.06 ± 12.29 mg/100 g FW). Notably, the southern samples possessed higher content of acylated flavonols (184.50 ± 12.87 mg/100 g FW), especially galloylated ones, which contributed to their heightened antioxidant activities. Quercetin 3-O-rhamnoside (f11') and kaempferol 3-O-galloyglucoside (f11) were determined to be the crucial biomarkers for quality discrimination. Considering quality control of mature T. sinensis leaves as potential resources for natural flavonol extraction, this study suggested that their northern/southern geographic origins should be distinguished first. Additionally, the flavonol profiles allow for discriminating the origin and assessing the quality of T. sinensis.
Collapse
Affiliation(s)
- Shang Su
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Lijin Wang
- Laboratory of Molecular Sensory Science, School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Yonghang Geng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| |
Collapse
|
28
|
Bermúdez-Bazán M, Estarrón-Espinosa M, Castillo-Herrera GA, Escobedo-Reyes A, Urias-Silvas JE, Lugo-Cervantes E, Gschaedler-Mathis A. Agave angustifolia Haw. Leaves as a Potential Source of Bioactive Compounds: Extraction Optimization and Extract Characterization. Molecules 2024; 29:1137. [PMID: 38474649 DOI: 10.3390/molecules29051137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The leaves of Agave angustifolia Haw. are the main agro-waste generated by the mezcal industry and are becoming an important source of bioactive compounds, such as phenolic compounds, that could be used in the food and pharmaceutical industries. Therefore, the extraction and identification of these phytochemicals would revalorize these leaf by-products. Herein, maceration and supercritical carbon dioxide (scCO2) extractions were optimized to maximize the phenolic and flavonoid contents and the antioxidant capacity of vegetal extracts of A. angustifolia Haw. In the maceration process, the optimal extraction condition was a water-ethanol mixture (63:37% v/v), which yielded a total phenolic and flavonoid content of 27.92 ± 0.90 mg EAG/g DL and 12.85 ± 0.53 µg QE/g DL, respectively, and an antioxidant capacity of 32.67 ± 0.91 (ABTS assay), 17.30 ± 0.36 (DPPH assay), and 13.92 ± 0.78 (FRAP assay) µM TE/g DL. Using supercritical extraction, the optimal conditions for polyphenol recovery were 60 °C, 320 bar, and 10% v/v. It was also observed that lower proportions of cosolvent decreased the polyphenol extraction more than pressure and temperature. In both optimized extracts, a total of 29 glycosylated flavonoid derivatives were identified using LC-ESI-QTof/MS. In addition, another eight novel compounds were identified in the supercritical extracts, showing the efficiency of the cosolvent for recovering new flavonoid derivatives.
Collapse
Affiliation(s)
- Misael Bermúdez-Bazán
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Unidad de Tecnología Alimentaria, Camino Arenero 1227, El Bajío, Zapopan 45019, Jalisco, Mexico
| | - Mirna Estarrón-Espinosa
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Unidad de Tecnología Alimentaria, Camino Arenero 1227, El Bajío, Zapopan 45019, Jalisco, Mexico
| | - Gustavo Adolfo Castillo-Herrera
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Unidad de Tecnología Alimentaria, Camino Arenero 1227, El Bajío, Zapopan 45019, Jalisco, Mexico
| | - Antonio Escobedo-Reyes
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Unidad de Servicios Analíticos y Metrológicos, Av. Normalistas No. 800, Guadalajara 44270, Jalisco, Mexico
| | - Judith Esmeralda Urias-Silvas
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Unidad de Tecnología Alimentaria, Camino Arenero 1227, El Bajío, Zapopan 45019, Jalisco, Mexico
| | - Eugenia Lugo-Cervantes
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Unidad de Tecnología Alimentaria, Camino Arenero 1227, El Bajío, Zapopan 45019, Jalisco, Mexico
| | - Anne Gschaedler-Mathis
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Unidad de Biotecnología Industrial, Camino Arenero 1227, El Bajío, Zapopan 45019, Jalisco, Mexico
| |
Collapse
|
29
|
Yang X, Zheng S, Wang X, Wang J, Ali Shah SB, Wang Y, Gao R, Xu Z. Advances in pharmacology, biosynthesis, and metabolic engineering of Scutellaria-specialized metabolites. Crit Rev Biotechnol 2024; 44:302-318. [PMID: 36581326 DOI: 10.1080/07388551.2022.2149386] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/11/2022] [Accepted: 11/02/2022] [Indexed: 12/31/2022]
Abstract
Scutellaria Linn., which belongs to the family Lamiaceae, is a commonly used medicinal plant for heat clearing and detoxification. In particular, the roots of S. baicalensis and the entire herb of S. barbata have been widely used in traditional medicine for thousands of years. The main active components of Scutellaria, including: baicalein, wogonin, norwogonin, scutellarein, and their glycosides have potential or existing drug usage. However, the wild resources of Scutellaria plants have been overexploited, and degenerated germplasm resources cannot fulfill the requirements of chemical extraction and clinical usage. Metabolic engineering and green production via microorganisms provide alternative strategies for greater efficiency in the production of natural products. Here, we review the progress of: pharmacological investigations, multi-omics, biosynthetic pathways, and metabolic engineering of various Scutellaria species and their active compounds. In addition, based on multi-omics data, we systematically analyze the phylogenetic relationships of Scutellaria and predict candidate transcription factors related to the regulation of active flavonoids. Finally, we propose the prospects of directed evolution of core enzymes and genome-assisted breeding to alleviate the shortage of plant resources of Scutellaria. This review provides important insights into the sustainable utilization and development of Scutellaria resources.
Collapse
Affiliation(s)
- Xinyi Yang
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Sihao Zheng
- China National Traditional Chinese Medicine Co., Ltd, Beijing, China
| | - Xiaotong Wang
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Jing Wang
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Syed Basit Ali Shah
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yu Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ranran Gao
- The Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhichao Xu
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
30
|
Ai Q, Han M, Liu C, Yang L. Transcriptome-Wide Identification and Expression Analysis of bHLH Family Genes in Iris domestica under Drought and Cu Stress. Int J Mol Sci 2024; 25:1773. [PMID: 38339051 PMCID: PMC10855607 DOI: 10.3390/ijms25031773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
The role of bHLH transcription factors in plant response to abiotic stress and regulation of flavonoid metabolism is well documented. However, to date, the bHLH transcription factor family in Iris domestica remains unreported, impeding further research on flavonoid metabolism in this plant. To address this knowledge gap, we employed bioinformatics to identify 39 IdbHLH genes and characterised their phylogenetic relationships and gene expression patterns under both drought and copper stress conditions. Our evolutionary tree analysis classified the 39 IdbHLHs into 17 subfamilies. Expression pattern analysis revealed that different IdbHLH transcription factors had distinct expression trends in various organs, suggesting that they might be involved in diverse biological processes. We found that IdbHLH36 was highly expressed in all organs (Transcripts Per Million (TPM) > 10), while only 12 IdbHLH genes in the rhizome and four in the root were significantly upregulated under drought stress. Of these, four genes (IdbHLH05, -37, -38, -39) were co-upregulated in both the rhizome and root, indicating their potential role in drought resistance. With regards to copper stress, we found that only 12 genes were upregulated. Further co-expression analysis revealed that most bHLH genes were significantly correlated with key enzyme genes involved in isoflavone biosynthesis. Thereinto, IdbHLH06 showed a significant positive correlation with IdC4H1 and Id4CL1 (p < 0.05). Furthermore, a transient expression assay confirmed that the IdbHLH06 protein was localised in the nucleus. Our findings provide new insights into the molecular basis and regulatory mechanisms of bHLH transcription factors in isoflavone biosynthesis in I. domestica.
Collapse
Affiliation(s)
| | - Mei Han
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Cuijing Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | | |
Collapse
|
31
|
Salami M, Heidari B, Batley J, Wang J, Tan XL, Richards C, Tan H. Integration of genome-wide association studies, metabolomics, and transcriptomics reveals phenolic acid- and flavonoid-associated genes and their regulatory elements under drought stress in rapeseed flowers. FRONTIERS IN PLANT SCIENCE 2024; 14:1249142. [PMID: 38273941 PMCID: PMC10808681 DOI: 10.3389/fpls.2023.1249142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/03/2023] [Indexed: 01/27/2024]
Abstract
Introduction Biochemical and metabolic processes help plants tolerate the adverse effects of drought. In plants accumulating bioactive compounds, understanding the genetic control of the biosynthesis of biochemical pathways helps the discovery of candidate gene (CG)-metabolite relationships. Methods The metabolic profile of flowers in 119 rapeseed (Brassica napus) accessions was assessed over two irrigation treatments, one a well-watered (WW) condition and the other a drought stress (DS) regime. We integrated information gained from 52,157 single-nucleotide polymorphism (SNP) markers, metabolites, and transcriptomes to identify linked SNPs and CGs responsible for the genetic control of flower phenolic compounds and regulatory elements. Results In a genome-wide association study (GWAS), of the SNPs tested, 29,310 SNPs were qualified to assess the population structure and linkage disequilibrium (LD), of which several SNPs for radical scavenging activity (RSA) and total flavanol content (TFLC) were common between the two irrigation conditions and pleiotropic SNPs were found for chlorogenic and coumaric acids content. The principal component analysis (PCA) and stepwise regression showed that chlorogenic acid and epicatechin in WW and myricetin in DS conditions were the most important components for RSA. The hierarchical cluster analysis (HCA) showed that vanillic acid, myricetin, gallic acid, and catechin were closely associated in both irrigation conditions. Analysis of GWAS showed that 60 CGs were identified, of which 18 were involved in stress-induced pathways, phenylpropanoid pathway, and flavonoid modifications. Of the CGs, PAL1, CHI, UGT89B1, FLS3, CCR1, and CYP75B137 contributed to flavonoid biosynthetic pathways. The results of RNA sequencing (RNA-seq) revealed that the transcript levels of PAL, CHI, and CYP75B137 known as early flavonoid biosynthesis-related genes and FLS3, CCR1, and UGT89B1 related to the later stages were increased during drought conditions. The transcription factors (TFs) NAC035 and ERF119 related to flavonoids and phenolic acids were upregulated under drought conditions. Discussion These findings expand our knowledge on the response mechanisms to DS, particularly regarding the regulation of key phenolic biosynthetic genes in rapeseed. Our data also provided specific linked SNPs for marker-assisted selection (MAS) programs and CGs as resources toward realizing metabolomics-associated breeding of rapeseed.
Collapse
Affiliation(s)
- Maryam Salami
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Bahram Heidari
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - Jin Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xiao-Li Tan
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Christopher Richards
- United States Department of Agriculture (USDA) Agricultural Research Service (ARS), National Laboratory for Genetic Resources Preservation, Fort Collins, CO, United States
| | - Helin Tan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
32
|
Wang S, Shen S, Wang C, Wang X, Yang C, Zhou S, Zhang R, Zhou Q, Yu H, Guo H, Zheng W, Liu X, Xu J, Deng X, Xu Q, Luo J. A metabolomics study in citrus provides insight into bioactive phenylpropanoid metabolism. HORTICULTURE RESEARCH 2024; 11:uhad267. [PMID: 38304332 PMCID: PMC10831325 DOI: 10.1093/hr/uhad267] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/01/2023] [Indexed: 02/03/2024]
Abstract
Abstract
Citrus fruits are widely consumed worldwide in juices or as fresh and provide a broad range of phytonutrients that are important for human health. Here, a citrus multi-omics resource is presented: comprehensive metabolic profiling of various citrus species was performed and metabolic profiles were compared among species, with a focus on the phenylpropanoid metabolic pathway. A metabolite-based genome-wide association analysis (mGWAS) of 154 pummelo accessions was performed using factored spectrally transformed linear mixed models (FaST-LMM) and efficient mixed-model association eXpedited (EMMAX), and the genetic and biochemical basis of metabolomic variation was comprehensively analysed. A metabolite-single nucleotide polymorphism-gene (metabolite-SNP-gene) interaction network was constructed for pummelo, and many candidate loci controlling the synthesis and regulation of bioactive compounds were identified; among these loci, three BAHD malonyltransferases were involved in the malonylation of flavonoid glycosides. Further investigation revealed that an R2R3-MYB transcription factor CgMYB1 positively controls the metabolism of phenylpropanoid molecules, particularly the flavonoid derivatives. This study provides valuable data resources on the metabolic regulatory networks of bioactive components in citrus, in addition to demonstrating an efficient method for metabolic pathway dissection and providing targets for future breeding work with the aim of improving nutritional value.
Collapse
Affiliation(s)
- Shouchuang Wang
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572025, China
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Shuangqian Shen
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572025, China
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Chao Wang
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572025, China
| | - Xia Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Chenkun Yang
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572025, China
| | - Shen Zhou
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572025, China
| | - Ran Zhang
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572025, China
| | - Qianqian Zhou
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Huiwen Yu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Guo
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572025, China
| | - Weikang Zheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Xianqing Liu
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572025, China
| | - Juan Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuxin Deng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Luo
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572025, China
- Yazhouwan National Laboratory, Sanya 572025, China
| |
Collapse
|
33
|
Chang TS, Ding HY, Wu JY, Wang ML, Ting HJ. Biotransformation-guided purification of a novel glycoside derived from the extracts of Chinese herb Baizhi. J Biosci Bioeng 2024; 137:47-53. [PMID: 38036317 DOI: 10.1016/j.jbiosc.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/12/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023]
Abstract
Our pursuit of new compounds with enhanced bioavailability and bioactivity prompted us to employ the biotransformation-guided purification (BGP) approach which leverages proficient in vitro biotransformation techniques. Angelica dahurica roots, also called Baizhi in Chinese traditional medicine, are famous for their anti-inflammatory and analgesic properties. Herein, we applied the BGP methodology to Baizhi extracts, employing Deinococcus geothermalis amylosucrase (DgAS), an enzyme demonstrating catalytic competence across diverse substrates, for biotransformation. Initiating with a 70 % methanol extraction, we obtained the crude extract of commercial Baizhi powder, followed by an additional extraction using ethyl acetate. Notably, reactions performed on this extract yielded limited quantities of novel compounds. Subsequently, the extract underwent partitioning into four fractions based on HPLC profiling, leading to the successful isolation of a compound with significant yield from fraction 2 mixtures upon reaction with DgAS. Structural elucidation confirmed the compound as byakangelicin-7″-O-α-glucopyranoside (BG-G), a new alpha glycoside derivative of byakangelicin. Furthermore, validation experiments verified the capacity of DgAS to glycosylate pure byakangelicin, yielding BG-G. Remarkably, the aqueous solubility of BG-G exceeded that of byakangelicin by over 29,000-fold. In conclusion, BGP emerges as a potent strategy combining traditional medicinal insights with robust enzymatic tools for generating new compounds.
Collapse
Affiliation(s)
- Te-Sheng Chang
- Department of Biological Sciences and Technology, National University of Tainan, Tainan 70005, Taiwan
| | - Hsiou-Yu Ding
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, No. 60 Erh-Jen Rd., Sec. 1, Jen-Te District, Tainan 71710, Taiwan
| | - Jiumn-Yih Wu
- Department of Food Science, National Quemoy University, Kinmen County 892, Taiwan
| | - Min-Lin Wang
- Department of Biological Sciences and Technology, National University of Tainan, Tainan 70005, Taiwan
| | - Huei-Ju Ting
- Department of Biological Sciences and Technology, National University of Tainan, Tainan 70005, Taiwan.
| |
Collapse
|
34
|
Rates ADB, Cesarino I. Pour some sugar on me: The diverse functions of phenylpropanoid glycosylation. JOURNAL OF PLANT PHYSIOLOGY 2023; 291:154138. [PMID: 38006622 DOI: 10.1016/j.jplph.2023.154138] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/06/2023] [Indexed: 11/27/2023]
Abstract
The phenylpropanoid metabolism is the source of a vast array of specialized metabolites that play diverse functions in plant growth and development and contribute to all aspects of plant interactions with their surrounding environment. These compounds protect plants from damaging ultraviolet radiation and reactive oxygen species, provide mechanical support for the plants to stand upright, and mediate plant-plant and plant-microorganism communications. The enormous metabolic diversity of phenylpropanoids is further expanded by chemical modifications known as "decorative reactions", including hydroxylation, methylation, glycosylation, and acylation. Among these modifications, glycosylation is the major driving force of phenylpropanoid structural diversification, also contributing to the expansion of their properties. Phenylpropanoid glycosylation is catalyzed by regioselective uridine diphosphate (UDP)-dependent glycosyltransferases (UGTs), whereas glycosyl hydrolases known as β-glucosidases are the major players in deglycosylation. In this article, we review how the glycosylation process affects key physicochemical properties of phenylpropanoids, such as molecular stability and solubility, as well as metabolite compartmentalization/storage and biological activity/toxicity. We also summarize the recent knowledge on the functional implications of glycosylation of different classes of phenylpropanoid compounds. A balance of glycosylation/deglycosylation might represent an essential molecular mechanism to regulate phenylpropanoid homeostasis, allowing plants to dynamically respond to diverse environmental signals.
Collapse
Affiliation(s)
- Arthur de Barros Rates
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brazil
| | - Igor Cesarino
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brazil; Synthetic and Systems Biology Center, InovaUSP, Avenida Professor Lucio Martins Rodrigues 370, 05508-020, São Paulo, Brazil.
| |
Collapse
|
35
|
Bitter J, Pfeiffer M, Borg AJE, Kuhlmann K, Pavkov-Keller T, Sánchez-Murcia PA, Nidetzky B. Enzymatic β-elimination in natural product O- and C-glycoside deglycosylation. Nat Commun 2023; 14:7123. [PMID: 37932298 PMCID: PMC10628242 DOI: 10.1038/s41467-023-42750-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023] Open
Abstract
Biological degradation of natural product glycosides involves, alongside hydrolysis, β-elimination for glycosidic bond cleavage. Here, we discover an O-glycoside β-eliminase (OGE) from Agrobacterium tumefaciens that converts the C3-oxidized O-β-D-glucoside of phloretin (a plant-derived flavonoid) into the aglycone and the 2-hydroxy-3-keto-glycal elimination product. While unrelated in sequence, OGE is structurally homologous to, and shows effectively the same Mn2+ active site as, the C-glycoside deglycosylating enzyme (CGE) from a human intestinal bacterium implicated in β-elimination of 3-keto C-β-D-glucosides. We show that CGE catalyzes β-elimination of 3-keto O- and C-β-D-glucosides while OGE is specific for the O-glycoside substrate. Substrate comparisons and mutagenesis for CGE uncover positioning of aglycone for protonic assistance by the enzyme as critically important for C-glycoside cleavage. Collectively, our study suggests convergent evolution of active site for β-elimination of 3-keto O-β-D-glucosides. C-Glycoside cleavage is a specialized feature of this active site which is elicited by substrate through finely tuned enzyme-aglycone interactions.
Collapse
Affiliation(s)
- Johannes Bitter
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010, Graz, Austria
| | - Martin Pfeiffer
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010, Graz, Austria
| | - Annika J E Borg
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010, Graz, Austria
- Austrian Centre of Industrial Biotechnology, Krenngasse 37, A-8010, Graz, Austria
| | - Kirill Kuhlmann
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Humboldtstraße 50/III, A-8010, Graz, Austria
| | - Tea Pavkov-Keller
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Humboldtstraße 50/III, A-8010, Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, A-8010, Graz, Austria
- BioHealth Field of Excellence, University of Graz, Humboldtstraße 50, A-8010, Graz, Austria
| | - Pedro A Sánchez-Murcia
- Laboratory of Computer-Aided Molecular Design, Division of Medicinal Chemistry, Otto-Loewi Research Center, Medical University of Graz, Neue Stiftingstalstraße 6/III, A-8010, Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010, Graz, Austria.
- Austrian Centre of Industrial Biotechnology, Krenngasse 37, A-8010, Graz, Austria.
| |
Collapse
|
36
|
Shen S, Wang S, Yang C, Wang C, Zhou Q, Zhou S, Zhang R, Li Y, Wang Z, Dai L, Peng W, Hao Y, Guo H, Cao G, Liu X, Yao F, Xu Q, Fernie AR, Luo J. Elucidation of the melitidin biosynthesis pathway in pummelo. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2505-2518. [PMID: 37675654 DOI: 10.1111/jipb.13564] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/06/2023] [Indexed: 09/08/2023]
Abstract
Specialized plant metabolism is a rich resource of compounds for drug discovery. The acylated flavonoid glycoside melitidin is being developed as an anti-cholesterol statin drug candidate, but its biosynthetic route in plants has not yet been fully characterized. Here, we describe the gene discovery and functional characterization of a new flavonoid gene cluster (UDP-glucuronosyltransferases (CgUGTs), 1,2 rhamnosyltransferase (Cg1,2RhaT), acyltransferases (CgATs)) that is responsible for melitidin biosynthesis in pummelo (Citrus grandis (L.) Osbeck). Population variation analysis indicated that the tailoring of acyltransferases, specific for bitter substrates, mainly determine the natural abundance of melitidin. Moreover, 3-hydroxy-3-methylglutaryl-CoA reductase enzyme inhibition assays showed that the product from this metabolic gene cluster, melitidin, may be an effective anti-cholesterol statin drug candidate. Co-expression of these clustered genes in Nicotiana benthamiana resulted in the formation of melitidin, demonstrating the potential for metabolic engineering of melitidin in a heterologous plant system. This study establishes a biosynthetic pathway for melitidin, which provides genetic resources for the breeding and genetic improvement of pummelo aimed at fortifying the content of biologically active metabolites.
Collapse
Affiliation(s)
- Shuangqian Shen
- Sanya Nanfan Research Institute of Hainan University, Hainan University, Sanya, 572025, China
| | - Shouchuang Wang
- Sanya Nanfan Research Institute of Hainan University, Hainan University, Sanya, 572025, China
| | - Chenkun Yang
- Sanya Nanfan Research Institute of Hainan University, Hainan University, Sanya, 572025, China
| | - Chao Wang
- Sanya Nanfan Research Institute of Hainan University, Hainan University, Sanya, 572025, China
| | - Qianqian Zhou
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Shen Zhou
- Sanya Nanfan Research Institute of Hainan University, Hainan University, Sanya, 572025, China
| | - Ran Zhang
- Sanya Nanfan Research Institute of Hainan University, Hainan University, Sanya, 572025, China
| | - Yufei Li
- Sanya Nanfan Research Institute of Hainan University, Hainan University, Sanya, 572025, China
| | - Zixuan Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Liupan Dai
- Hubei Hongshan Laboratory, College of Life Science and Technology, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenjv Peng
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yingchen Hao
- Sanya Nanfan Research Institute of Hainan University, Hainan University, Sanya, 572025, China
| | - Hao Guo
- Sanya Nanfan Research Institute of Hainan University, Hainan University, Sanya, 572025, China
| | - Guangping Cao
- Sanya Nanfan Research Institute of Hainan University, Hainan University, Sanya, 572025, China
| | - Xianqing Liu
- Sanya Nanfan Research Institute of Hainan University, Hainan University, Sanya, 572025, China
| | - Fan Yao
- Hubei Hongshan Laboratory, College of Life Science and Technology, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
- Centre of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Jie Luo
- Sanya Nanfan Research Institute of Hainan University, Hainan University, Sanya, 572025, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| |
Collapse
|
37
|
An T, Lin G, Liu Y, Qin L, Xu Y, Feng X, Li C. De novo biosynthesis of anticarcinogenic icariin in engineered yeast. Metab Eng 2023; 80:207-215. [PMID: 37852432 DOI: 10.1016/j.ymben.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
Icariin (ICA) has wide applications in nutraceuticals and medicine with strong anticancer activities. However, the structural complexity and low abundance in plants of ICA lead to the unsustainable and high-cost supply from chemical synthesis and plant extraction. Here, the whole biosynthesis pathway of ICA was elucidated, then was constructed in Saccharomyces cerevisiae, including a 13-step heterologous ICA pathway from eleven kinds of plants as well as deletions or overexpression of ten yeast endogenous genes. Spatial regulation of 8-C-prenyltransferase to mitochondria and three-stage sequential control of 4'-O-methyltransferase, 3-OH rhamnosyltransferase, and 7-OH glycosyltransferase expression successfully achieved the de novo synthesis of ICA with a titer of 130 μg/L under shake-flask culture. The ICA synthesis from glucose represents the longest reconstructed pathway of flavonoid in microbe so far. This study provides a potential choice for the sustainable microbial production of number of complex flavonoids.
Collapse
Affiliation(s)
- Ting An
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Guangyuan Lin
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yang Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lei Qin
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yuquan Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xudong Feng
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China; Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China; Center for Synthetic & Systems Biology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
38
|
Ai Y, Zheng QD, Wang MJ, Xiong LW, Li P, Guo LT, Wang MY, Peng DH, Lan SR, Liu ZJ. Molecular mechanism of different flower color formation of Cymbidium ensifolium. PLANT MOLECULAR BIOLOGY 2023; 113:193-204. [PMID: 37878187 DOI: 10.1007/s11103-023-01382-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/26/2023] [Indexed: 10/26/2023]
Abstract
Cymbidium ensifolium is one of the national orchids in China, which has high ornamental value with changeable flower colors. To understand the formation mechanism of different flower colors of C. ensifolium, this research conducted transcriptome and metabolome analyses on four different colored sepals of C. ensifolium. Metabolome analysis detected 204 flavonoid metabolites, including 17 polyphenols, 27 anthocyanins, 75 flavones, 34 flavonols, 25 flavonoids, 18 flavanones, and 8 isoflavones. Among them, purple-red and red sepals contain a lot of anthocyanins, including cyanidin, pelargonin, and paeoniflorin, while yellow-green and white sepals have less anthocyanins detected, and their metabolites are mainly flavonols, flavanones and flavonoids. Transcriptome sequencing analysis showed that the expression levels of the anthocyanin biosynthetic enzyme genes in red and purple-red sepals were significantly higher than those in white and yellow-green sepals of C. ensifolium. The experimental results showed that CeF3'H2, CeDFR, CeANS, CeF3H and CeUFGT1 may be the key genes involved in anthocyanin production in C. ensifolium sepals, and CeMYB104 has been proved to play an important role in the flower color formation of C. ensifolium. The results of transformation showed that the CeMYB104 is involved in the synthesis of anthocyanins and can form a purple-red color in the white perianth of Phalaenopsis. These findings provide a theoretical reference to understand the formation mechanism of flower color in C. ensifolium.
Collapse
Affiliation(s)
- Ye Ai
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qing-Dong Zheng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Meng-Jie Wang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Long-Wei Xiong
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Peng Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Li-Ting Guo
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Meng-Yao Wang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dong-Hui Peng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Si-Ren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
39
|
Bulut M, Wendenburg R, Bitocchi E, Bellucci E, Kroc M, Gioia T, Susek K, Papa R, Fernie AR, Alseekh S. A comprehensive metabolomics and lipidomics atlas for the legumes common bean, chickpea, lentil and lupin. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1152-1171. [PMID: 37285370 DOI: 10.1111/tpj.16329] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 06/09/2023]
Abstract
Legumes represent an important component of human and livestock diets; they are rich in macro- and micronutrients such as proteins, dietary fibers and polyunsaturated fatty acids. Whilst several health-promoting and anti-nutritional properties have been associated with grain content, in-depth metabolomics characterization of major legume species remains elusive. In this article, we used both gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) to assess the metabolic diversity in the five legume species commonly grown in Europe, including common bean (Phaseolus vulgaris), chickpea (Cicer arietinum), lentil (Lens culinaris), white lupin (Lupinus albus) and pearl lupin (Lupinus mutabilis), at the tissue level. We were able to detect and quantify over 3400 metabolites covering major nutritional and anti-nutritional compounds. Specifically, the metabolomics atlas includes 224 derivatized metabolites, 2283 specialized metabolites and 923 lipids. The data generated here will serve the community as a basis for future integration to metabolomics-assisted crop breeding and facilitate metabolite-based genome-wide association studies to dissect the genetic and biochemical bases of metabolism in legume species.
Collapse
Affiliation(s)
- Mustafa Bulut
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Regina Wendenburg
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Elena Bitocchi
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, Ancona, 60131, Italy
| | - Elisa Bellucci
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, Ancona, 60131, Italy
| | - Magdalena Kroc
- Legume Genomics Team, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska 34, Poznan, 60-479, Poland
| | - Tania Gioia
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, 85100, Italy
| | - Karolina Susek
- Legume Genomics Team, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska 34, Poznan, 60-479, Poland
| | - Roberto Papa
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, Ancona, 60131, Italy
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center for Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center for Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| |
Collapse
|
40
|
Jurčević Šangut I, Šarkanj B, Karalija E, Šamec D. A Comparative Analysis of Radical Scavenging, Antifungal and Enzyme Inhibition Activity of 3'-8″-Biflavones and Their Monomeric Subunits. Antioxidants (Basel) 2023; 12:1854. [PMID: 37891933 PMCID: PMC10604771 DOI: 10.3390/antiox12101854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Biflavonoids are dimeric forms of flavonoids that have recently gained importance as an effective new scaffold for drug discovery. In particular, 3'-8″-biflavones exhibit antiviral and antimicrobial activity and are promising molecules for the treatment of neurodegenerative and metabolic diseases as well as cancer therapies. In the present study, we directly compared 3'-8″-biflavones (amentoflavone, bilobetin, ginkgetin, isoginkgetin, and sciadopitysin) and their monomeric subunits (apigenin, genkwanin, and acacetin) and evaluated their radical scavenging activity (with DPPH), antifungal activity against mycotoxigenic fungi (Alternaria alternata, Aspergillus flavus, Aspergillus ochraceus, Fusarium graminearum, and Fusarium verticillioides), and inhibitory activity on enzymes (acetylcholinesterase, tyrosinase, α-amylase, and α-glucosidase). All the tested compounds showed weak radical scavenging activity, while antifungal activity strongly depended on the tested concentration and fungal species. Biflavonoids, especially ginkgetin and isoginkgetin, proved to be potent acetylcholinesterase inhibitors, whereas monomeric flavonoids showed higher tyrosinase inhibitory activity than the tested 3'-8″-biflavones. Amentoflavone proved to be a potent α-amylase and α-glucosidase inhibitor, and in general, 3'-8″-biflavones showed a stronger inhibitory potential on these enzymes than their monomeric subunits. Thus, we can conclude that 3'-8″-dimerization enhanced acetylcholinesterase, α-amylase, and α-glucosidase activities, but the activity also depends on the number of hydroxyl and methoxy groups in the structure of the compound.
Collapse
Affiliation(s)
- Iva Jurčević Šangut
- Department of Food Technology, University North, 48000 Koprivnica, Croatia; (I.J.Š.); (B.Š.)
| | - Bojan Šarkanj
- Department of Food Technology, University North, 48000 Koprivnica, Croatia; (I.J.Š.); (B.Š.)
| | - Erna Karalija
- Department for Biology, Faculty of Science, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Dunja Šamec
- Department of Food Technology, University North, 48000 Koprivnica, Croatia; (I.J.Š.); (B.Š.)
| |
Collapse
|
41
|
Revathi R, Akash R, Mahadevi R, Sengottuvelu S, Mohanraj P, Vijayakumar N, Krishnamoorthy R, Ahmed MZ, Kazmi S, Kavitha R. Phytochemical characterization, antioxidant and antibacterial activities of crude extracts of Anisomeles malabarica and Coldenia procumbens. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:614-631. [PMID: 37395392 DOI: 10.1080/15287394.2023.2231484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The aim of this study was to determine the phytochemical profile, antibacterial and antioxidant activities of crude aqueous leaf extracts of Anisomeles malabarica and Coldenia procumbens. The predominant components present in these crude extracts of test plants identified using gas chromatography-mass spectrometry (GC-MS) analysis in both plant extracts were phytochemicals including flavonoids, tannins, terpenoids, and phenols. The antibacterial activity of crude extracts of these plants against bacterial pathogens including Escherichia coli, Bacillus subtilis, Shigella sp., Salmonella paratyphi A and B, Proteus mirabilis, Proteus vulgaris, Pseudomonas sp. Klebsiella pneumoniae, and Staphylococcus aureus were examined. Data demonstrated that the extracts of A. malabarica and C. procumbens exhibited significant antibacterial activity against B.subtilis and P.vulgaris at the concentration of 50 mg/ml. A. malabarica aqueous extract displayed significant antioxidant activity on 2,2-diphenyl-1-picrylhydrazl (DPPH), fluorescence recovery after photobleaching (FRAP) and hydrogen peroxide (H2O2) free radicals at the concentration of 90 mg/ml. The antioxidant activity was significantly higher with A. malabarica than extract of C. procumbens. Evidence indicates that both plant extracts may possess significant pharmaceutical potential as antibacterial and antioxidant agents.
Collapse
Affiliation(s)
- Ramalingam Revathi
- Department of Biotechnology, Periyar University Centre for Post Graduate and Research Studies, Dharmapuri, Tamil Nadu, India
| | - R Akash
- Department of Biotechnology, Periyar University Centre for Post Graduate and Research Studies, Dharmapuri, Tamil Nadu, India
| | - Ramasamy Mahadevi
- Department of Biotechnology, Periyar University Centre for Post Graduate and Research Studies, Dharmapuri, Tamil Nadu, India
| | | | - Palanisamy Mohanraj
- Department of Pharmaceutics, Nandha College of Pharmacy, Erode, Tamil Nadu, India
| | - Natesan Vijayakumar
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - Rajapandiyan Krishnamoorthy
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mohammad Z Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shadab Kazmi
- Department of Child Health, School of Medicine, University of Missouri, Columbia, MO, USA
| | | |
Collapse
|
42
|
Saeid Nia M, Scholz L, Garibay-Hernández A, Mock HP, Repnik U, Selinski J, Krupinska K, Bilger W. How do barley plants with impaired photosynthetic light acclimation survive under high-light stress? PLANTA 2023; 258:71. [PMID: 37632541 PMCID: PMC10460368 DOI: 10.1007/s00425-023-04227-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/13/2023] [Indexed: 08/28/2023]
Abstract
MAIN CONCLUSION WHIRLY1 deficient barley plants surviving growth at high irradiance displayed increased non-radiative energy dissipation, enhanced contents of zeaxanthin and the flavonoid lutonarin, but no changes in α-tocopherol nor glutathione. Plants are able to acclimate to environmental conditions to optimize their functions. With the exception of obligate shade plants, they can adjust their photosynthetic apparatus and the morphology and anatomy of their leaves to irradiance. Barley (Hordeum vulgare L., cv. Golden Promise) plants with reduced abundance of the protein WHIRLY1 were recently shown to be unable to acclimatise important components of the photosynthetic apparatus to high light. Nevertheless, these plants did not show symptoms of photoinhibition. High-light (HL) grown WHIRLY1 knockdown plants showed clear signs of exposure to excessive irradiance such as a low epoxidation state of the violaxanthin cycle pigments and an early light saturation of electron transport. These responses were underlined by a very large xanthophyll cycle pool size and by an increased number of plastoglobules. Whereas zeaxanthin increased with HL stress, α-tocopherol, which is another lipophilic antioxidant, showed no response to excessive light. Also the content of the hydrophilic antioxidant glutathione showed no increase in W1 plants as compared to the wild type, whereas the flavone lutonarin was induced in W1 plants. HPLC analysis of removed epidermal tissue indicated that the largest part of lutonarin was presumably located in the mesophyll. Since lutonarin is a better antioxidant than saponarin, the major flavone present in barley leaves, it is concluded that lutonarin accumulated as a response to oxidative stress. It is also concluded that zeaxanthin and lutonarin may have served as antioxidants in the WHIRLY1 knockdown plants, contributing to their survival in HL despite their restricted HL acclimation.
Collapse
Affiliation(s)
| | - Louis Scholz
- Institute of Botany, Christian-Albrechts-University, Kiel, Germany
| | - Adriana Garibay-Hernández
- Leibniz Institute for Plant Genetics and Crop Plant Research, Gatersleben, Seeland, Germany
- Molecular Biotechnology and Systems Biology, TU Kaiserslautern, Paul-Ehrlich Straße 23, 67663, Kaiserslautern, Germany
| | - Hans-Peter Mock
- Leibniz Institute for Plant Genetics and Crop Plant Research, Gatersleben, Seeland, Germany
| | - Urska Repnik
- Central Microscopy, Department of Biology, Christian-Albrechts-University, Kiel, Germany
| | | | - Karin Krupinska
- Institute of Botany, Christian-Albrechts-University, Kiel, Germany
| | - Wolfgang Bilger
- Institute of Botany, Christian-Albrechts-University, Kiel, Germany.
| |
Collapse
|
43
|
Sun AZ, Chen JH, Jin XQ, Li H, Guo FQ. Supplementing the Nuclear-Encoded PSII Subunit D1 Induces Dramatic Metabolic Reprogramming in Flag Leaves during Grain Filling in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:3009. [PMID: 37631220 PMCID: PMC10458752 DOI: 10.3390/plants12163009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
Our previous study has demonstrated that the nuclear-origin supplementation of the PSII core subunit D1 protein stimulates growth and increases grain yields in transgenic rice plants by enhancing photosynthetic efficiency. In this study, the underlying mechanisms have been explored regarding how the enhanced photosynthetic capacity affects metabolic activities in the transgenic plants of rice harboring the integrated transgene RbcSPTP-OspsbA cDNA, cloned from rice, under control of the AtHsfA2 promoter and N-terminal fused with the plastid-transit peptide sequence (PTP) cloned from the AtRbcS. Here, a comparative metabolomic analysis was performed using LC-MS in flag leaves of the transgenic rice plants during the grain-filling stage. Critically, the dramatic reduction in the quantities of nucleotides and certain free amino acids was detected, suggesting that the increased photosynthetic assimilation and grain yield in the transgenic plants correlates with the reduced contents of free nucleotides and the amino acids such as glutamine and glutamic acid, which are cellular nitrogen sources. These results suggest that enhanced photosynthesis needs consuming more free nucleotides and nitrogen sources to support the increase in biomass and yields, as exhibited in transgenic rice plants. Unexpectedly, dramatic changes were measured in the contents of flavonoids in the flag leaves, suggesting that a tight and coordinated relationship exists between increasing photosynthetic assimilation and flavonoid biosynthesis. Consistent with the enhanced photosynthetic efficiency, the substantial increase was measured in the content of starch, which is the primary product of the Calvin-Benson cycle, in the transgenic rice plants under field growth conditions.
Collapse
Affiliation(s)
- Ai-Zhen Sun
- The National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China; (A.-Z.S.); (J.-H.C.); (X.-Q.J.); (H.L.)
| | - Juan-Hua Chen
- The National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China; (A.-Z.S.); (J.-H.C.); (X.-Q.J.); (H.L.)
| | - Xue-Qi Jin
- The National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China; (A.-Z.S.); (J.-H.C.); (X.-Q.J.); (H.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Han Li
- The National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China; (A.-Z.S.); (J.-H.C.); (X.-Q.J.); (H.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang-Qing Guo
- The National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China; (A.-Z.S.); (J.-H.C.); (X.-Q.J.); (H.L.)
| |
Collapse
|
44
|
Wang J, Li L, Wang Z, Feng A, Li H, Qaseem MF, Liu L, Deng X, Wu AM. Integrative analysis of the metabolome and transcriptome reveals the molecular regulatory mechanism of isoflavonoid biosynthesis in Ormosia henryi Prain. Int J Biol Macromol 2023; 246:125601. [PMID: 37392916 DOI: 10.1016/j.ijbiomac.2023.125601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Flavonoids are important components of many phytopharmaceuticals, however, most studies on flavonoids and isoflavonoids have been conducted on herbaceous plants of the family Leguminosae, such as soybean, and less attention has been paid to woody plants. To fill this gap, we characterized the metabolome and transcriptome of five plant organs of Ormosia henryi Prain (OHP), a woody Leguminosae plant with great pharmaceutical value. Our results indicate that OHP possesses a relatively high content of isoflavonoids as well as significant diversity, with greater diversity of isoflavonoids in the roots. Combined with transcriptome data, the pattern of isoflavonoid accumulation was found to be highly correlated with differential expression genes. Furthermore, the use of trait-WGCNA network analysis identified OhpCHSs as a probable hub enzyme that directs the downstream isoflavonoid synthesis pathway. Transcription factors, such as MYB26, MYB108, WRKY53, RAV1 and ZFP3, were found to be involved in the regulation of isoflavonoid biosynthesis in OHP. Our findings will be beneficial for the biosynthesis and utilization of woody isoflavonoids.
Collapse
Affiliation(s)
- Jiaqi Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Lu Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Zhihua Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Anran Feng
- Department of Plant Biology, Michigan State University, MI 48824, USA
| | - Huiling Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Mirza Faisal Qaseem
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Liting Liu
- Jiangxi Academy of Forestry Sciences, Nanchang 330032, China
| | - Xiaomei Deng
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Ai-Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
45
|
Perez de Souza L, Bitocchi E, Papa R, Tohge T, Fernie AR. Decreased metabolic diversity in common beans associated with domestication revealed by untargeted metabolomics, information theory, and molecular networking. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1021-1036. [PMID: 37272491 DOI: 10.1111/tpj.16277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 06/06/2023]
Abstract
The process of crop domestication leads to a dramatic reduction in the gene expression associated with metabolic diversity. Genes involved in specialized metabolism appear to be particularly affected. Although there is ample evidence of these effects at the genetic level, a reduction in diversity at the metabolite level has been taken for granted despite having never been adequately accessed and quantified. Here we leveraged the high coverage of ultra high performance liquid chromatography-high-resolution mass spectrometry based metabolomics to investigate the metabolic diversity in the common bean (Phaseolus vulgaris). Information theory highlights a shift towards lower metabolic diversity and specialization when comparing wild and domesticated bean accessions. Moreover, molecular networking approaches facilitated a broader metabolite annotation than achieved to date, and its integration with gene expression data uncovers a metabolic shift from specialized metabolism towards central metabolism upon domestication of this crop.
Collapse
Affiliation(s)
- Leonardo Perez de Souza
- Max-Planck-Institute of Molecular Plant Physiology, Am Müehlenberg 1, Potsdam-Golm, 14476, Germany
| | - Elena Bitocchi
- Department of Agricultural, Food, and Environmental Sciences, Università Politecnica delle Marche, 60131, Ancona, Italy
| | - Roberto Papa
- Department of Agricultural, Food, and Environmental Sciences, Università Politecnica delle Marche, 60131, Ancona, Italy
| | - Takayuki Tohge
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara, 630-0192, Japan
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Müehlenberg 1, Potsdam-Golm, 14476, Germany
| |
Collapse
|
46
|
Qiao F, Lu Y, Geng G, Zhou L, Chen Z, Wang L, Xie H, Qiu QS. Flavonoid synthesis in Lamiophlomis rotata from Qinghai-Tibet Plateau is influenced by soil properties, microbial community, and gene expression. JOURNAL OF PLANT PHYSIOLOGY 2023; 287:154043. [PMID: 37392527 DOI: 10.1016/j.jplph.2023.154043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 07/03/2023]
Abstract
Lamiophlomis rotata is a medicinal plant in Qinghai-Tibet Plateau, in which flavonoid compounds are the major medicinal components. However, it remains unclear how flavonoid metabolism of L. rotata is influenced by soil properties and microbial community. In this study, we collected L. rotata seedlings and rhizosphere soils from five habitats ranging from 3750 to 4270 m of altitude and analyzed the effects of habitat conditions on flavonoid metabolism. The activities of peroxidase, cellulase, and urease were increased with altitude, while those of alkaline phosphatase, alkaline protease, and sucrase were decreased with altitude. Analysis of OTUs showed that the total number of bacterial genera was higher than that of fungal genera. The highest number of fungal genera was 132, and that of bacterial genera was 33 in Batang (BT) town in Yushu County at an altitude of 3880 m, suggesting that the fungal communities may play a critical role in L. rotata rhizosphere soils. Flavonoids in leaves and roots of L. rotata shared a similar pattern, with a trend of increasing levels with altitude. The highest flavonoid content measured, 12.94 mg/g in leaves and 11.43 mg/g in roots, was from Zaduo (ZD) County at an altitude of 4208 m. Soil peroxidases affected quercetin content in leaves of L. rotata, while the fungus Sebacina affected flavonoid content in leaves and roots of L. rotata. The expression of PAL, F3'H, FLS, and FNS genes showed a declining trend in leaves with altitude, while F3H showed an increasing trend in both leaves and roots. Overall, soil physicochemical properties and microbial community affect flavonoid metabolism in L. rotata in Qinghai-Tibet Plateau. The variations in flavonoid content and gene expression as well as their associations with soil factors revealed the complexity of the growth conditions and genetic makeup in L. rotata habitats of Qinghai-Tibet Plateau.
Collapse
Affiliation(s)
- Feng Qiao
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810008, China; Key Laboratory of Tibetan Plateau Medicinal Plant and Animal Resources, Qinghai Normal University, Xining, 810008, China; Qinghai Ecosystem Observation and Research Station in the Southern Qilian Mountains, Haidong, 810500, China
| | - Yueheng Lu
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China
| | - Guigong Geng
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, China; Qinghai Ecosystem Observation and Research Station in the Southern Qilian Mountains, Haidong, 810500, China
| | - Lianyu Zhou
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810008, China; Key Laboratory of Tibetan Plateau Medicinal Plant and Animal Resources, Qinghai Normal University, Xining, 810008, China; Qinghai Ecosystem Observation and Research Station in the Southern Qilian Mountains, Haidong, 810500, China
| | - Zhenning Chen
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810008, China; Key Laboratory of Tibetan Plateau Medicinal Plant and Animal Resources, Qinghai Normal University, Xining, 810008, China
| | - Luhao Wang
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China
| | - Huichun Xie
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810008, China; Key Laboratory of Tibetan Plateau Medicinal Plant and Animal Resources, Qinghai Normal University, Xining, 810008, China; Qinghai Ecosystem Observation and Research Station in the Southern Qilian Mountains, Haidong, 810500, China.
| | - Quan-Sheng Qiu
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810008, China; MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China; College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
47
|
Zhou J, Zou K, Fu S, Duan Z, Zhang G, Wu X, Huang J, Li S, Liu X, Zhang S, Liang Y. Flavonoid Synthesis by Deinococcus sp. 43 Isolated from the Ginkgo Rhizosphere. Microorganisms 2023; 11:1848. [PMID: 37513020 PMCID: PMC10386165 DOI: 10.3390/microorganisms11071848] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/02/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Flavonoids are crucial in physiological and pharmaceutical processes, especially the treatment of cancer and the prevention of cardiovascular and cerebrovascular diseases. Flavonoid-producing plants and fungi have been extensively reported, but bacteria have been much less investigated as a source of flavonoid production. Deinococcus sp. 43, a spherical flavonoid-producing bacteria from the Ginkgo rhizosphere, was reported in this study. First, the whole genome of Deinococcus sp. 43 was sequenced and a series of flavonoid anabolic genes were annotated. Simultaneously, High Performance Liquid Chromatography (HPLC) results showed that Deinococcus sp. 43 was capable of producing flavonoids, with a maximum quercetin output of 2.9 mg/L. Moreover, the relative expression of key genes involved in flavonoid synthesis was determined to test the completeness of the flavonoid anabolic pathway. The results of LC-MS analysis demonstrated that the flavonoids produced by Deinococcus sp. 43 were significantly different between intracellular and extracellular environments. The concentration of multiple glycosylated flavonoids was substantially higher in extracellular than intracellular environments, while the majority of flavonoids obtained in intracellular environments were hydroxylated multiple times. Lastly, the flavonoid biosynthetic pathway of Deinococcus sp. 43 was constructed based on the genomic analysis and the detected flavonoids. In conclusion, this study represents the first comprehensive characterization of the flavonoid-producing pathway of Deinococcus. The findings demonstrate that the strain has excellent potential as a genetically engineered strain for the industrial production of flavonoids.
Collapse
Affiliation(s)
- Jin Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410017, China
| | - Kai Zou
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Shaodong Fu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410017, China
| | - Zhenchun Duan
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410017, China
| | - Guoqing Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410017, China
| | - Xinhong Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410017, China
| | - Jingwen Huang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410017, China
| | - Shihui Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410017, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410017, China
| | - Shuangfei Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410017, China
| | - Yili Liang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410017, China
| |
Collapse
|
48
|
Jiang H, Zhang M, Lin X, Zheng X, Qi H, Chen J, Zeng X, Bai W, Xiao G. Biological Activities and Solubilization Methodologies of Naringin. Foods 2023; 12:2327. [PMID: 37372538 DOI: 10.3390/foods12122327] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Naringin (NG), a natural flavanone glycoside, possesses a multitude of pharmacological properties, encompassing anti-inflammatory, sedative, antioxidant, anticancer, anti-osteoporosis, and lipid-lowering functions, and serves as a facilitator for the absorption of other drugs. Despite these powerful qualities, NG's limited solubility and bioavailability primarily undermine its therapeutic potential. Consequently, innovative solubilization methodologies have received considerable attention, propelling a surge of scholarly investigation in this arena. Among the most promising solutions is the enhancement of NG's solubility and physiological activity without compromising its inherent active structure, therefore enabling the formulation of non-toxic and benign human body preparations. This article delivers a comprehensive overview of NG and its physiological activities, particularly emphasizing the impacts of structural modification, solid dispersions (SDs), inclusion compound, polymeric micelle, liposomes, and nanoparticles on NG solubilization. By synthesizing current research, this research elucidates the bioavailability of NG, broadens its clinical applicability, and paves the way for further exploration and expansion of its application spectrum.
Collapse
Affiliation(s)
- Hao Jiang
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Mutang Zhang
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiaoling Lin
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiaoqing Zheng
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Heming Qi
- Science and Technology Research Center of China Customs, Beijing 100026, China
| | - Junping Chen
- Meizhou Feilong Fruit Co., Ltd., Meizhou 514600, China
| | - Xiaofang Zeng
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Weidong Bai
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Gengsheng Xiao
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| |
Collapse
|
49
|
Nabil-Adam A, E. Elnosary M, L. Ashour M, M. Abd El-Moneam N, A. Shreadah M. Flavonoids Biosynthesis in Plants as a Defense Mechanism: Role and Function Concerning Pharmacodynamics and Pharmacokinetic Properties. FLAVONOID METABOLISM - RECENT ADVANCES AND APPLICATIONS IN CROP BREEDING 2023. [DOI: 10.5772/intechopen.108637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Flavonoids are a major class of secondary metabolites that comprises more than 6000 compounds that have been identified. They are biosynthesized via the phenylpropanoid metabolic pathway that involves groups of enzymes such as isomerases, hydroxylases, and reductases that greatly affect the determination of the flavonoid skeleton. For example, transferase enzymes responsible for the modification of sugar result in changes in the physiological activity of the flavonoids and changes in their physical properties, such as solubility, reactivity, and interaction with cellular target molecules, which affect their pharmacodynamics and pharmacokinetic properties. In addition, flavonoids have diverse biological activities such as antioxidants, anticancer, and antiviral in managing Alzheimer’s disease. However, most marine flavonoids are still incompletely discovered because marine flavonoid biosynthesis is produced and possesses unique substitutions that are not commonly found in terrestrial bioactive compounds. The current chapter will illustrate the importance of flavonoids’ role in metabolism and the main difference between marine and terrestrial flavonoids.
Collapse
|
50
|
Wu J, Lv S, Zhao L, Gao T, Yu C, Hu J, Ma F. Advances in the study of the function and mechanism of the action of flavonoids in plants under environmental stresses. PLANTA 2023; 257:108. [PMID: 37133783 DOI: 10.1007/s00425-023-04136-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/11/2023] [Indexed: 05/04/2023]
Abstract
MAIN CONCLUSION This review summarizes the anti-stress effects of flavonoids in plants and highlights its role in the regulation of polar auxin transport and free radical scavenging mechanism. As secondary metabolites widely present in plants, flavonoids play a vital function in plant growth, but also in resistance to stresses. This review introduces the classification, structure and synthetic pathways of flavonoids. The effects of flavonoids in plant stress resistance were enumerated, and the mechanism of flavonoids in plant stress resistance was discussed in detail. It is clarified that plants under stress accumulate flavonoids by regulating the expression of flavonoid synthase genes. It was also determined that the synthesized flavonoids are transported in plants through three pathways: membrane transport proteins, vesicles, and bound to glutathione S-transferase (GST). At the same time, the paper explores that flavonoids regulate polar auxin transport (PAT) by acting on the auxin export carrier PIN-FORMED (PIN) in the form of ATP-binding cassette subfamily B/P-glycoprotein (ABCB/PGP) transporter, which can help plants to respond in a more dominant form to stress. We have demonstrated that the number and location of hydroxyl groups in the structure of flavonoids can determine their free radical scavenging ability and also elucidated the mechanism by which flavonoids exert free radical removal in cells. We also identified flavonoids as signaling molecules to promote rhizobial nodulation and colonization of arbuscular mycorrhizal fungi (AMF) to enhance plant-microbial symbiosis in defense to stresses. Given all this knowledge, we can foresee that the in-depth study of flavonoids will be an essential way to reveal plant tolerance and enhance plant stress resistance.
Collapse
Affiliation(s)
- Jieting Wu
- School of Environmental Science, Liaoning University, Shenyang, 110036, China.
| | - Sidi Lv
- School of Environmental Science, Liaoning University, Shenyang, 110036, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Tian Gao
- School of Environmental Science, Liaoning University, Shenyang, 110036, China
| | - Chang Yu
- Kerchin District Branch Office, Tongliao City Ecological Environment Bureau, Tongliao, 028006, China
| | - Jianing Hu
- Dalian Neusoft University of Information, Dalian, 116032, China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|