1
|
Thépaut E, Tebby C, Bisson M, Brochot C, Ratier A, Zaros C, Personne S, Chardon K, Zeman F. Prenatal exposure to chlorpyrifos of French children from the Elfe cohort. Int J Hyg Environ Health 2024; 263:114480. [PMID: 39423757 DOI: 10.1016/j.ijheh.2024.114480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/19/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND The organophosphate pesticide chlorpyrifos was widely used in the European Union before its ban in 2020 and was associated with neurodevelopmental disorders. However, within the concept of Developmental Origins of Health and Disease, in utero exposure to chlorpyrifos can lead to neurodevelopmental effects in developing children. OBJECTIVE The aim of this study was to estimate fetal exposure to chlorpyrifos using biomonitoring data measured in Elfe pregnant women and a physiologically based pharmacokinetic (PBPK) approach and compare exposure to toxicological reference values. METHODS A pregnancy-PBPK model was developed based on an existing adult chlorpyrifos model and a new toxicological reference value was proposed for neurodevelopmental effects. The pregnant women exposure was estimated based on dialkylphosphate (DAP) levels in urine assuming constant exposure to chlorpyrifos and compared to both the existing toxicological reference value and the new proposed draft toxicological reference value. Fetal internal concentrations in target tissues were then predicted using the developed pregnancy-PBPK model. Urinary concentrations of the chlorpyrifos-specific metabolite (TCPy) were also predicted for comparison with other biomonitoring data. RESULTS The median daily exposure to chlorpyrifos for the French pregnant women from the Elfe cohort was estimated at 6.3x10-4 μg/kg body weight/day. The predicted urinary excretion of TCPy, the chlorpyrifos-specific metabolite, is in the same range as observed in other European cohorts (mean: 2.13 μg/L). Predicted brain chlorpyrifos levels were similar in pregnant women and their fetus and were 10-fold higher than the predicted blood chlorpyrifos levels. It was estimated that 6% and 20% of the pregnant women population had been exposed to levels exceeding the general population and draft toxicological reference values, respectively. CONCLUSIONS Prenatal exposure to chlorpyrifos was estimated for the French population based on data from the Elfe cohort. Internal chlorpyrifos concentrations in target tissues (brain and blood) were predicted for fetuses at the end of the pregnancy. Under a conservative assumption, a small percentage of the population was identified as being exposed to levels exceeding the toxicological reference values.
Collapse
Affiliation(s)
- Elisa Thépaut
- Unité Toxicologie ExpérimentAle et Modélisation, INERIS, Institut National de l'Environnement Industriel et des Risques, 60550 Verneuil-en-Halatte, France; Péritox (UMR_I 01), UPJV, Université de Picardie Jules Verne, 80025, Amiens, France
| | - Cleo Tebby
- Unité Toxicologie ExpérimentAle et Modélisation, INERIS, Institut National de l'Environnement Industriel et des Risques, 60550 Verneuil-en-Halatte, France
| | - Michèle Bisson
- Unité expertise en toxicologie / écotoxicologie des substances chimiques, INERIS, Institut National de l'Environnement Industriel et des Risques, 60550 Verneuil-en-Halatte, France
| | - Céline Brochot
- Unité Toxicologie ExpérimentAle et Modélisation, INERIS, Institut National de l'Environnement Industriel et des Risques, 60550 Verneuil-en-Halatte, France; Certara UK Ltd, Simcyp Division, Sheffield, UK
| | - Aude Ratier
- Unité Toxicologie ExpérimentAle et Modélisation, INERIS, Institut National de l'Environnement Industriel et des Risques, 60550 Verneuil-en-Halatte, France; Péritox (UMR_I 01), UPJV, Université de Picardie Jules Verne, 80025, Amiens, France
| | - Cécile Zaros
- INED French Institute for Demographic Studies, ELFE Joint Unit Campus Condorcet 9, 93322 Aubervilliers CEDEX, France
| | - Stéphane Personne
- Péritox (UMR_I 01), UPJV, Université de Picardie Jules Verne, 80025, Amiens, France
| | - Karen Chardon
- Péritox (UMR_I 01), UPJV, Université de Picardie Jules Verne, 80025, Amiens, France
| | - Florence Zeman
- Unité Toxicologie ExpérimentAle et Modélisation, INERIS, Institut National de l'Environnement Industriel et des Risques, 60550 Verneuil-en-Halatte, France; Péritox (UMR_I 01), UPJV, Université de Picardie Jules Verne, 80025, Amiens, France.
| |
Collapse
|
2
|
Wager JL, Thompson JA. Development and child health in a world of synthetic chemicals. Pediatr Res 2024:10.1038/s41390-024-03547-z. [PMID: 39277650 DOI: 10.1038/s41390-024-03547-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/13/2024] [Indexed: 09/17/2024]
Abstract
Chemical pollution is one of today's most significant threats to the developmental potential of children worldwide. Maternal exposure to toxicants can perturb sensitive windows of fetal development, indirectly through promoting antenatal disorders, abnormal placental adaptation, or directly through maternal-fetal transport. Current evidence clearly shows that persistent organic chemicals promote hypertensive disorders of pregnancy, placental abnormalities, and fetal growth restriction, whereas findings are less consistent for phthalates and bisphenols. Prospective birth cohorts strongly support a link between adverse neurodevelopmental outcomes and prenatal exposure to flame retardants and organophosphate pesticides. Emerging evidence reveals a potential association between in utero exposure to bisphenols and childhood behavioral disorders, while childhood metabolic health is more consistently associated with postnatal exposure to phthalates and bisphenols. IMPACT: Synthesizes emerging evidence linking modern forms of chemical pollution to antenatal disorders, fetal growth restriction and childhood disorders. Highlights potential developmental impacts of emerging pollutants of concern now ubiquitous in our environment but without regulatory restrictions.
Collapse
Affiliation(s)
- Jessica L Wager
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Jennifer A Thompson
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Libin Cardiovascular Institute, Calgary, Alberta, Canada.
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.
| |
Collapse
|
3
|
Arshavsky YI. Autoimmune hypothesis of Alzheimer's disease: unanswered question. J Neurophysiol 2024; 132:929-942. [PMID: 39163023 DOI: 10.1152/jn.00259.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
Alzheimer's disease (AD) was described more than a century ago. However, there are still no effective approaches to its treatment, which may suggest that the search for the cure is not being conducted in the most productive direction. AD begins as selective impairments of declarative memory with no deficits in other cognitive functions. Therefore, understanding of the AD pathogenesis has to include the understanding of this selectivity. Currently, the main efforts aimed at prevention and treatment of AD are based on the dominating hypothesis for the AD pathogenesis: the amyloid hypothesis. But this hypothesis does not explain selective memory impairments since β-amyloid accumulates extracellularly and should be toxic to all types of cerebral neurons, not only to "memory engram neurons." To explain selective memory impairment, I propose the autoimmune hypothesis of AD, based on the analysis of risk factors for AD and molecular mechanisms of memory formation. Memory formation is associated with epigenetic modifications of chromatin in memory engram neurons and, therefore, might be accompanied by the expression of memory-specific proteins recognized by the adaptive immune system as "non-self" antigens. Normally, the brain is protected by the blood-brain barrier (BBB). All risk factors for AD provoke BBB disruptions, possibly leading to an autoimmune reaction against memory engram neurons. This reaction would make them selectively sensitive to tauopathy. If this hypothesis is confirmed, the strategies for AD prevention and treatment would be radically changed.
Collapse
Affiliation(s)
- Yuri I Arshavsky
- BioCircuits Institute, University of California, San Diego, La Jolla, California, United States
| |
Collapse
|
4
|
Bonada M, Pittarello M, De Fazio E, Gans A, Alimonti P, Slika H, Legnani F, Di Meco F, Tyler B. Pediatric Hemispheric High-Grade Gliomas and H3.3-G34 Mutation: A Review of the Literature on Biological Features and New Therapeutic Strategies. Genes (Basel) 2024; 15:1038. [PMID: 39202398 PMCID: PMC11353413 DOI: 10.3390/genes15081038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
Pediatric high-grade glioma (pHGG) encompasses a wide range of gliomas with different genomic, epigenomic, and transcriptomic features. Almost 50% of pHGGs present a mutation in genes coding for histone 3, including the subtype harboring the H3.3-G34 mutation. In this context, histone mutations are frequently associated with mutations in TP53 and ATRX, along with PDGFRA and NOTCH2NL amplifications. Moreover, the H3.3-G34 histone mutation induces epigenetic changes in immune-related genes and exerts modulatory functions on the microenvironment. Also, the functionality of the blood-brain barrier (BBB) has an impact on treatment response. The prognosis remains poor with conventional treatments, thus eliciting the investigation of additional and alternative therapies. Promising molecular targets include PDGFRA amplification, BRAF mutation, EGFR amplification, NF1 loss, and IDH mutation. Considering that pHGGs harboring the H3.3-G34R mutation appear to be more susceptible to immunotherapies (ITs), different options have been recently explored, including immune checkpoint inhibitors, antibody mediated IT, and Car-T cells. This review aims to summarize the knowledge concerning cancer biology and cancer-immune cell interaction in this set of pediatric gliomas, with a focus on possible therapeutic options.
Collapse
Affiliation(s)
- Marta Bonada
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (M.B.); (F.L.); (F.D.M.)
- Department of Oncology and Hemato-Oncology, University of Milan School of Medicine, Via Rudini 8, 20122 Milan, Italy;
| | - Matilde Pittarello
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy;
| | - Emerson De Fazio
- Department of Medicine, Vita-Salute San Raffaele University School of Medicine, 20132 Milan, Italy;
| | - Alessandro Gans
- Department of Oncology and Hemato-Oncology, University of Milan School of Medicine, Via Rudini 8, 20122 Milan, Italy;
- ASST Ovest Milanese, Neurology and Stroke Unit, Neuroscience Department, 20025 Legnano, Italy
| | - Paolo Alimonti
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02120, USA;
| | - Hasan Slika
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;
| | - Federico Legnani
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (M.B.); (F.L.); (F.D.M.)
- Department of Oncology and Hemato-Oncology, University of Milan School of Medicine, Via Rudini 8, 20122 Milan, Italy;
| | - Francesco Di Meco
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (M.B.); (F.L.); (F.D.M.)
- Department of Oncology and Hemato-Oncology, University of Milan School of Medicine, Via Rudini 8, 20122 Milan, Italy;
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;
| | - Betty Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;
| |
Collapse
|
5
|
Basak S, Mallick R, Navya Sree B, Duttaroy AK. Placental Epigenome Impacts Fetal Development: Effects of Maternal Nutrients and Gut Microbiota. Nutrients 2024; 16:1860. [PMID: 38931215 PMCID: PMC11206482 DOI: 10.3390/nu16121860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Evidence is emerging on the role of maternal diet, gut microbiota, and other lifestyle factors in establishing lifelong health and disease, which are determined by transgenerationally inherited epigenetic modifications. Understanding epigenetic mechanisms may help identify novel biomarkers for gestation-related exposure, burden, or disease risk. Such biomarkers are essential for developing tools for the early detection of risk factors and exposure levels. It is necessary to establish an exposure threshold due to nutrient deficiencies or other environmental factors that can result in clinically relevant epigenetic alterations that modulate disease risks in the fetus. This narrative review summarizes the latest updates on the roles of maternal nutrients (n-3 fatty acids, polyphenols, vitamins) and gut microbiota on the placental epigenome and its impacts on fetal brain development. This review unravels the potential roles of the functional epigenome for targeted intervention to ensure optimal fetal brain development and its performance in later life.
Collapse
Affiliation(s)
- Sanjay Basak
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500007, India; (S.B.); (B.N.S.)
| | - Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland;
| | - Boga Navya Sree
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500007, India; (S.B.); (B.N.S.)
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| |
Collapse
|
6
|
Qian L, Beers JL, Jackson KD, Zhou Z. CBD and THC in Special Populations: Pharmacokinetics and Drug-Drug Interactions. Pharmaceutics 2024; 16:484. [PMID: 38675145 PMCID: PMC11054161 DOI: 10.3390/pharmaceutics16040484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Cannabinoid use has surged in the past decade, with a growing interest in expanding cannabidiol (CBD) and delta-9-tetrahydrocannabinol (THC) applications into special populations. Consequently, the increased use of CBD and THC raises the risk of drug-drug interactions (DDIs). Nevertheless, DDIs for cannabinoids, especially in special populations, remain inadequately investigated. While some clinical trials have explored DDIs between therapeutic drugs like antiepileptic drugs and CBD/THC, more potential interactions remain to be examined. This review summarizes the published studies on CBD and THC-drug interactions, outlines the mechanisms involved, discusses the physiological considerations in pharmacokinetics (PK) and DDI studies in special populations (including pregnant and lactating women, pediatrics, older adults, patients with hepatic or renal impairments, and others), and presents modeling approaches that can describe the DDIs associated with CBD and THC in special populations. The PK of CBD and THC in special populations remain poorly characterized, with limited studies investigating DDIs involving CBD/THC in these populations. Therefore, it is critical to evaluate potential DDIs between CBD/THC and medications that are commonly used in special populations. Modeling approaches can aid in understanding these interactions.
Collapse
Affiliation(s)
- Lixuan Qian
- Department of Chemistry, York College, City University of New York, Jamaica, NY 11451, USA;
| | - Jessica L. Beers
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA (K.D.J.)
| | - Klarissa D. Jackson
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA (K.D.J.)
| | - Zhu Zhou
- Department of Chemistry, York College, City University of New York, Jamaica, NY 11451, USA;
| |
Collapse
|
7
|
Li X, Kong L, Pan J, Liu H, Wang C, Xu S, Liu W, Sun J. N-acetylcysteine protects against neurodevelopmental injuries induced by methylmercury exposure during pregnancy and lactation. Brain Res 2024; 1827:148761. [PMID: 38211826 DOI: 10.1016/j.brainres.2024.148761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
As an extremely dangerous environmental contaminant, methylmercury (MeHg) results in detrimental health effects in human brain nervous system, one of its main targets. However, as a developmental toxicant, the brain of offspring is vulnerable to MeHg during pregnancy and lactation exposure. Unfortunately, mechanisms of neurodevelopmental injuries induced by MeHg have not been fully elucidated. N-acetylcysteine (NAC) has been used for several decades as an antioxidant to antagonize oxidative stress. However, the molecular mechanisms of NAC alleviating MeHg-induced neurodevelopmental toxicity are not clear. Here, for evaluation of the dose-dependent effects of MeHg exposure on neurodevelopmental injuries of offspring, and the possible protective effects of NAC, the pregnant female mice were exposed to MeHg (4, 8, 12 mg/L, respectively) and NAC (50, 100, 150 mg/kg, respectively) from gestational day 1 (GD1) to postnatal day 21 (PND21). Our results indicated that administering MeHg caused behavioral impairment and neuronal injuries in the cerebral cortex of newborn mice. MeHg dose-dependently caused reactive oxygen species (ROS) overproduction and oxidative stress aggravation, together with expression of Nrf2, HO-1, Notch1, and p21 up-regulation, and CDK2 inhibition. NAC treatment dose-dependently antagonized MeHg-induced oxidative stress that may contribute to alleviating neurobehavioral and neurodevelopmental impairments. These results give insight into that NAC can protect against MeHg-induced neurodevelopmental toxicity by its antioxidation capacity.
Collapse
Affiliation(s)
- Xiaoyang Li
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, PR China
| | - Lingxu Kong
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, PR China
| | - Jingjing Pan
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, PR China
| | - Haihui Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, PR China
| | - Chen Wang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, PR China
| | - Si Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, PR China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, PR China
| | - Jingyi Sun
- Department of Cardiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, PR China.
| |
Collapse
|
8
|
Kinkade JA, Seetharam AS, Sachdev S, Bivens NJ, Phinney BS, Grigorean G, Roberts RM, Tuteja G, Rosenfeld CS. Extracellular vesicles from mouse trophoblast cells: Effects on neural progenitor cells and potential participants in the placenta-brain axis†. Biol Reprod 2024; 110:310-328. [PMID: 37883444 PMCID: PMC10873279 DOI: 10.1093/biolre/ioad146] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 10/12/2023] [Accepted: 10/21/2023] [Indexed: 10/28/2023] Open
Abstract
The fetal brain of the mouse is thought to be dependent upon the placenta as a source of serotonin (5-hydroxytryptamine; 5-HT) and other factors. How factors reach the developing brain remains uncertain but are postulated here to be part of the cargo carried by placental extracellular vesicles (EV). We have analyzed the protein, catecholamine, and small RNA content of EV from mouse trophoblast stem cells (TSC) and TSC differentiated into parietal trophoblast giant cells (pTGC), potential primary purveyors of 5-HT. Current studies examined how exposure of mouse neural progenitor cells (NPC) to EV from either TSC or pTGC affect their transcriptome profiles. The EV from trophoblast cells contained relatively high amounts of 5-HT, as well as dopamine and norepinephrine, but there were no significant differences between EV derived from pTGC and from TSC. Content of miRNA and small nucleolar (sno)RNA, however, did differ according to EV source, and snoRNA were upregulated in EV from pTGC. The primary inferred targets of the microRNA (miRNA) from both pTGC and TSC were mRNA enriched in the fetal brain. NPC readily internalized EV, leading to changes in their transcriptome profiles. Transcripts regulated were mainly ones enriched in neural tissues. The transcripts in EV-treated NPC that demonstrated a likely complementarity with miRNA in EV were mainly up- rather than downregulated, with functions linked to neuronal processes. Our results are consistent with placenta-derived EV providing direct support for fetal brain development and being an integral part of the placenta-brain axis.
Collapse
Affiliation(s)
- Jessica A Kinkade
- Biomedical Sciences, University of Missouri, Columbia, MO, USA
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Arun S Seetharam
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Shrikesh Sachdev
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Nathan J Bivens
- Genomics Technology Core Facility, University of Missouri, Columbia, MO, USA
| | - Brett S Phinney
- Proteomics Core UC Davis Genome Center, University of California, Davis, CA, USA
| | - Gabriela Grigorean
- Proteomics Core UC Davis Genome Center, University of California, Davis, CA, USA
| | - R Michael Roberts
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Geetu Tuteja
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Cheryl S Rosenfeld
- Biomedical Sciences, University of Missouri, Columbia, MO, USA
- MU Institute of Data Science and Informatics, University of Missouri, Columbia, MO, USA
- Genetics Area Program, University of Missouri, Columbia, MO, USA
- Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO, USA
| |
Collapse
|
9
|
Zierfuss B, Larochelle C, Prat A. Blood-brain barrier dysfunction in multiple sclerosis: causes, consequences, and potential effects of therapies. Lancet Neurol 2024; 23:95-109. [PMID: 38101906 DOI: 10.1016/s1474-4422(23)00377-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/14/2023] [Accepted: 09/28/2023] [Indexed: 12/17/2023]
Abstract
Established by brain endothelial cells, the blood-brain barrier (BBB) regulates the trafficking of molecules, restricts immune cell entry into the CNS, and has an active role in neurovascular coupling (the regulation of cerebral blood flow to support neuronal activity). In the early stages of multiple sclerosis, around the time of symptom onset, inflammatory BBB damage is accompanied by pathogenic immune cell infiltration into the CNS. In the later stages of multiple sclerosis, dysregulation of neurovascular coupling is associated with grey matter atrophy. Genetic and environmental factors associated with multiple sclerosis, including dietary habits, the gut microbiome, and vitamin D concentrations, might contribute directly and indirectly to brain endothelial cell dysfunction. Damage to brain endothelial cells leads to an influx of deleterious molecules into the CNS, accelerating leakage across the BBB. Potential future therapeutic approaches might help to prevent BBB damage (eg, monoclonal antibodies targeting cell adhesion molecules and fibrinogen) and help to repair BBB dysfunction (eg, mesenchymal stromal cells) in people with multiple sclerosis.
Collapse
Affiliation(s)
- Bettina Zierfuss
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Catherine Larochelle
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada; Multiple Sclerosis Clinic, Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Alexandre Prat
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada; Multiple Sclerosis Clinic, Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada.
| |
Collapse
|
10
|
Strawn M, Safranski TJ, Behura SK. Does DNA methylation in the fetal brain leave an epigenetic memory in the blood? Gene 2023; 887:147788. [PMID: 37696423 DOI: 10.1016/j.gene.2023.147788] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/23/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023]
Abstract
Epigenetic memory is an emerging concept that refers to the process in which epigenetic changes occurring early-in life can lead to long-term programs of gene regulation in time and space. By leveraging neural network regression modeling of DNA methylation data in pigs, we show that specific methylations in the adult blood can reliably predict methylation changes that occurred in the fetal brain. Genes associated with these methylations represented known markers of specific cell types of blood including bone marrow hematopoietic progenitor cells, and ependymal and oligodendrocyte cells of brain. This suggested that methylation changes that occurred in the developing brain were maintained as an epigenetic memory in the blood through the adult life.
Collapse
Affiliation(s)
- Monica Strawn
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Timothy J Safranski
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Susanta K Behura
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, United States; MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, United States; Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO 65211, United States.
| |
Collapse
|
11
|
Herzeg A, Borges B, Lianoglou BR, Gonzalez-Velez J, Canepa E, Munar D, Young SP, Bali D, Gelb MH, Chakraborty P, Kishnani PS, Harmatz P, Cohen JL, MacKenzie TC. Intrauterine enzyme replacement therapies for lysosomal storage disorders: Current developments and promising future prospects. Prenat Diagn 2023; 43:1638-1649. [PMID: 37955580 DOI: 10.1002/pd.6460] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/14/2023]
Abstract
Lysosomal storage disorders (LSDs) are a group of monogenic condition, with many characterized by an enzyme deficiency leading to the accumulation of an undegraded substrate within the lysosomes. For those LSDs, postnatal enzyme replacement therapy (ERT) represents the standard of care, but this treatment has limitations when administered only postnatally because, at that point, prenatal disease sequelae may be irreversible. Furthermore, most forms of ERT, specifically those administered systemically, are currently unable to access certain tissues, such as the central nervous system (CNS), and furthermore, may initiate an immune response. In utero enzyme replacement therapy (IUERT) is a novel approach to address these challenges evaluated in a first-in-human clinical trial for IUERT in LSDs (NCT04532047). IUERT has numerous advantages: in-utero intervention may prevent early pathology; the CNS can be accessed before the blood-brain barrier forms; and the unique fetal immune system enables exposure to new proteins with the potential to prevent an immune response and may induce sustained tolerance. However, there are challenges and limitations for any fetal procedure that involves two patients. This article reviews the current state of IUERT for LSDs, including its advantages, limitations, and potential future directions for definitive therapies.
Collapse
Affiliation(s)
- Akos Herzeg
- Center for Maternal-Fetal Precision Medicine, University of California, San Francisco, California, USA
- Department of Surgery, University of California, San Francisco, California, USA
| | - Beltran Borges
- Center for Maternal-Fetal Precision Medicine, University of California, San Francisco, California, USA
- Department of Surgery, University of California, San Francisco, California, USA
| | - Billie R Lianoglou
- Center for Maternal-Fetal Precision Medicine, University of California, San Francisco, California, USA
- Department of Surgery, University of California, San Francisco, California, USA
| | - Juan Gonzalez-Velez
- Center for Maternal-Fetal Precision Medicine, University of California, San Francisco, California, USA
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, California, USA
| | - Emma Canepa
- Center for Maternal-Fetal Precision Medicine, University of California, San Francisco, California, USA
- Department of Surgery, University of California, San Francisco, California, USA
| | - Dane Munar
- Center for Maternal-Fetal Precision Medicine, University of California, San Francisco, California, USA
| | - Sarah P Young
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, North Carolina, USA
| | - Deeksha Bali
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, North Carolina, USA
| | - Michel H Gelb
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Pranesh Chakraborty
- Department of Pediatrics, Children's Hospital of Eastern Ontario and University of Ottawa, Ottawa, Ontario, Canada
| | - Priya S Kishnani
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, North Carolina, USA
| | - Paul Harmatz
- Benioff Children's Hospital, University of California, San Francisco, California, USA
| | - Jennifer L Cohen
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, North Carolina, USA
| | - Tippi C MacKenzie
- Center for Maternal-Fetal Precision Medicine, University of California, San Francisco, California, USA
- Department of Surgery, University of California, San Francisco, California, USA
- Benioff Children's Hospital, University of California, San Francisco, California, USA
| |
Collapse
|
12
|
Schutt WR, Conde JN, Mladinich MC, Himmler GE, Mackow ER. ZIKV induction of tristetraprolin in endothelial and Sertoli cells post-transcriptionally inhibits IFNβ/λ expression and promotes ZIKV persistence. mBio 2023; 14:e0174223. [PMID: 37707056 PMCID: PMC10653947 DOI: 10.1128/mbio.01742-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 09/15/2023] Open
Abstract
IMPORTANCE Our findings define a novel role for ZIKV-induced TTP expression in regulating IFNβ/IFNλ production in primary hBMECs and Sertoli cells. These cells comprise key physiological barriers subverted by ZIKV to access brain and testicular compartments and serve as reservoirs for persistent replication and dissemination. We demonstrate for the first time that the ARE-binding protein TTP is virally induced and post-transcriptionally regulates IFNβ/IFNλ secretion. In ZIKV-infected hBMEC and Sertoli cells, TTP knockout increased IFNβ/IFNλ secretion, while TTP expression blocked IFNβ/IFNλ secretion. The TTP-directed blockade of IFN secretion permits ZIKV spread and persistence in hBMECs and Sertoli cells and may similarly augment ZIKV spread across IFNλ-protected placental barriers. Our work highlights the importance of post-transcriptional ZIKV regulation of IFN expression and secretion in cells that regulate viral access to protected compartments and defines a novel mechanism of ZIKV-regulated IFN responses which may facilitate neurovirulence and sexual transmission.
Collapse
Affiliation(s)
- William R. Schutt
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
| | - Jonas N. Conde
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
- Molecular and Cell Biology Program, Stony Brook University, Stony Brook, New York, USA
| | - Megan C. Mladinich
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
- Molecular and Cell Biology Program, Stony Brook University, Stony Brook, New York, USA
| | - Grace E. Himmler
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
- Molecular and Cell Biology Program, Stony Brook University, Stony Brook, New York, USA
| | - Erich R. Mackow
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
13
|
Spildrejorde M, Samara A, Sharma A, Leithaug M, Falck M, Modafferi S, Sundaram AY, Acharya G, Nordeng H, Eskeland R, Gervin K, Lyle R. Multi-omics approach reveals dysregulated genes during hESCs neuronal differentiation exposure to paracetamol. iScience 2023; 26:107755. [PMID: 37731623 PMCID: PMC10507163 DOI: 10.1016/j.isci.2023.107755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/30/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023] Open
Abstract
Prenatal paracetamol exposure has been associated with neurodevelopmental outcomes in childhood. Pharmacoepigenetic studies show differences in cord blood DNA methylation between unexposed and paracetamol-exposed neonates, however, causality and impact of long-term prenatal paracetamol exposure on brain development remain unclear. Using a multi-omics approach, we investigated the effects of paracetamol on an in vitro model of early human neurodevelopment. We exposed human embryonic stem cells undergoing neuronal differentiation with paracetamol concentrations corresponding to maternal therapeutic doses. Single-cell RNA-seq and ATAC-seq integration identified paracetamol-induced chromatin opening changes linked to gene expression. Differentially methylated and/or expressed genes were involved in neurotransmission and cell fate determination trajectories. Some genes involved in neuronal injury and development-specific pathways, such as KCNE3, overlapped with differentially methylated genes previously identified in cord blood associated with prenatal paracetamol exposure. Our data suggest that paracetamol may play a causal role in impaired neurodevelopment.
Collapse
Affiliation(s)
- Mari Spildrejorde
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Athina Samara
- Division of Clinical Paediatrics, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Astrid Lindgren Children′s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Ankush Sharma
- Department of Informatics, University of Oslo, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Magnus Leithaug
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Martin Falck
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Stefania Modafferi
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Arvind Y.M. Sundaram
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Ganesh Acharya
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Alfred Nobels Allé 8, SE-14152 Stockholm, Sweden
- Center for Fetal Medicine, Karolinska University Hospital, SE-14186 Stockholm, Sweden
| | - Hedvig Nordeng
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Pharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Ragnhild Eskeland
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kristina Gervin
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Pharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, University of Oslo, Oslo, Norway
- Division of Clinical Neuroscience, Department of Research and Innovation, Oslo University Hospital, Oslo, Norway
| | - Robert Lyle
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
14
|
Okeke ES, Nweze EJ, Anaduaka EG, Okoye CO, Anosike CA, Joshua PE, Ezeorba TPC. Plant-derived nanomaterials (PDNM): a review on pharmacological potentials against pathogenic microbes, antimicrobial resistance (AMR) and some metabolic diseases. 3 Biotech 2023; 13:291. [PMID: 37547919 PMCID: PMC10403488 DOI: 10.1007/s13205-023-03713-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/22/2023] [Indexed: 08/08/2023] Open
Abstract
Plant-derived nanomaterials (PDNM) have gained significant attention recently due to their potential pharmacological applications against pathogenic microbes, antimicrobial resistance (AMR), and certain metabolic diseases. This review introduces the concept of PDNMs and their unique properties, including their small size, high surface area, and ability to penetrate biological barriers. Besides various methods for synthesizing PDNMs, such as green synthesis techniques that utilize plant extracts and natural compounds, the advantages of using plant-derived materials, such as their biocompatibility, biodegradability, and low toxicity, were elucidated. In addition, it examines the recent and emerging trends in nanomaterials derived from plant approaches to combat antimicrobial resistance and metabolic diseases. The sizes of nanomaterials and their surface areas are vital as they play essential roles in the interactions and relationships between these materials and the biological components or organization. We critically analyze the biomedical applications of nanoparticles which include antibacterial composites for implantable devices and nanosystems to combat antimicrobial resistance, enhance antibiotic delivery, and improve microbial diagnostic/detection systemsIn addition, plant extracts can potentially interfere with metabolic syndrome pathways; hence most nano-formulations can reduce chronic inflammation, insulin resistance, oxidative stress, lipid profile, and antimicrobial resistance. As a result, these innovative plant-based nanosystems may be a promising contender for various pharmacological applications.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001 Enugu Nigeria
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, 410001 Enugu Nigeria
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Ekene John Nweze
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001 Enugu Nigeria
| | - Emeka Godwin Anaduaka
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001 Enugu Nigeria
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001 Enugu Nigeria
| | - Charles Obinwanne Okoye
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013 People’s Republic of China
- Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, 410001 Enugu Nigeria
- Biofuels Institute, Jiangsu University, Zhenjiang, 212013 People’s Republic of China
| | - Chioma Assumpta Anosike
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001 Enugu Nigeria
| | - Parker Elijah Joshua
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001 Enugu Nigeria
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001 Enugu Nigeria
| | - Timothy Prince Chidike Ezeorba
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001 Enugu Nigeria
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001 Enugu Nigeria
- Department of Environmental Health and Risk Management, College of Life and Environmental Sciences, University of Birmingham Edgbaston, Birmingham, B15 2TT UK
| |
Collapse
|
15
|
Sajdel-Sulkowska EM. The Impact of Maternal Gut Microbiota during Pregnancy on Fetal Gut-Brain Axis Development and Life-Long Health Outcomes. Microorganisms 2023; 11:2199. [PMID: 37764043 PMCID: PMC10538154 DOI: 10.3390/microorganisms11092199] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Gut microbiota plays a critical role in physiological regulation throughout life and is specifically modified to meet the demands of individual life stages and during pregnancy. Maternal gut microbiota is uniquely adapted to the pregnancy demands of the mother and the developing fetus. Both animal studies in pregnant germ-free rodents and human studies have supported a critical association between the composition of maternal microbiota during pregnancy and fetal development. Gut microbiota may also contribute to the development of the fetal gut-brain axis (GBA), which is increasingly recognized for its critical role in health and disease. Most studies consider birth as the time of GBA activation and focus on postnatal GBA development. This review focuses on GBA development during the prenatal period and the impact of maternal gut microbiota on fetal GBA development. It is hypothesized that adaptation of maternal gut microbiota to pregnancy is critical for the GBA prenatal development and maturation of GBA postnatally. Consequently, factors affecting maternal gut microbiota during pregnancy, such as maternal obesity, diet, stress and depression, infection, and medication, also affect fetal GBA development and are critical for GBA activity postnatally. Altered maternal gut microbiota during gestation has been shown to have long-term impact postnatally and multigenerational effects. Thus, understanding the impact of maternal gut microbiota during pregnancy on fetal GBA development is crucial for managing fetal, neonatal, and adult health, and should be included among public health priorities.
Collapse
|
16
|
Recaioglu H, Kolk SM. Developing brain under renewed attack: viral infection during pregnancy. Front Neurosci 2023; 17:1119943. [PMID: 37700750 PMCID: PMC10493316 DOI: 10.3389/fnins.2023.1119943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/26/2023] [Indexed: 09/14/2023] Open
Abstract
Living in a globalized world, viral infections such as CHIKV, SARS-COV-2, and ZIKV have become inevitable to also infect the most vulnerable groups in our society. That poses a danger to these populations including pregnant women since the developing brain is sensitive to maternal stressors including viral infections. Upon maternal infection, the viruses can gain access to the fetus via the maternofetal barrier and even to the fetal brain during which factors such as viral receptor expression, time of infection, and the balance between antiviral immune responses and pro-viral mechanisms contribute to mother-to-fetus transmission and fetal infection. Both the direct pro-viral mechanisms and the resulting dysregulated immune response can cause multi-level impairment in the maternofetal and brain barriers and the developing brain itself leading to dysfunction or even loss of several cell populations. Thus, maternal viral infections can disturb brain development and even predispose to neurodevelopmental disorders. In this review, we discuss the potential contribution of maternal viral infections of three relevant relative recent players in the field: Zika, Chikungunya, and Severe Acute Respiratory Syndrome Coronavirus-2, to the impairment of brain development throughout the entire route.
Collapse
Affiliation(s)
| | - Sharon M. Kolk
- Faculty of Science, Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
17
|
Epifanova E, Nguyen L. The dangers of rubella virus. eLife 2023; 12:e89265. [PMID: 37327049 PMCID: PMC10275635 DOI: 10.7554/elife.89265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
The rubella virus can interfere with fetal brain development by infecting immune cells called microglia during pregnancy.
Collapse
Affiliation(s)
- Ekaterina Epifanova
- Laboratory of Molecular Regulation of Neurogenesis, GIGA‐Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA‐R), University of LiègeLiègeBelgium
| | - Laurent Nguyen
- Laboratory of Molecular Regulation of Neurogenesis, GIGA‐Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA‐R), University of LiègeLiègeBelgium
- WELBIO department, WEL Research InstituteWavresBelgium
| |
Collapse
|
18
|
Meyyazhagan A, Kuchi Bhotla H, Tsibizova V, Pappuswamy M, Chaudhary A, Arumugam VA, Al Qasem M, Di Renzo GC. Nutrition paves the way to environmental toxicants and influences fetal development during pregnancy. Best Pract Res Clin Obstet Gynaecol 2023; 89:102351. [PMID: 37295316 DOI: 10.1016/j.bpobgyn.2023.102351] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/02/2023] [Accepted: 05/07/2023] [Indexed: 06/12/2023]
Abstract
Nutrition plays a major role in the healthy pregnancy and development of the fetus. In addition, nutrition can expose humans to a wide range of potentially hazardous environmental constituents, such as organic pollutants and heavy metals from marine or agricultural food products while processing, producing, and packaging. Humans constantly face these constituents through air, water, soil, food, and domestic products. During pregnancy, the rate of cellular division and differentiation is higher; exposure to any of these environmental toxicants can lead to developmental defects as they cross the placental barrier and, in some cases, can harm the successive generation too, as some contaminants can act on the reproductive cells of the fetus (Diethylstilbestrol). Pregnant women are considered a vulnerable population to food contaminant exposure and require a proper dietary chart and conscious food choices. Food is a source of both essential nutrients and environmental toxicants. Here, we have researched the possible toxicants of the food industry and their influence on the fetus's in-utero development, along with the importance of dietary interventions and the need to balance a healthy diet to overcome the harms. The cumulative exposure to environmental toxicants can influence the mother's prenatal environment and affect the fetus's development.
Collapse
Affiliation(s)
- Arun Meyyazhagan
- Perinatology Research Branch, Wayne State University, Detroit, USA; Centre of Perinatal and Reproductive Medicine, University of Perugia, Perugia, Italy; Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru, 560029, Karnataka, India
| | - Haripriya Kuchi Bhotla
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru, 560029, Karnataka, India
| | - Valentina Tsibizova
- Department of Obstetrics and Gynecology, IM Sechenov First State University, Moscow, Russia; Almazov National Medical Research Centre, St Petersburg, Russia; PREIS International School, Firenze, Italy
| | - Manikantan Pappuswamy
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru, 560029, Karnataka, India
| | - Aditi Chaudhary
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru, 560029, Karnataka, India
| | - Vijaya Anand Arumugam
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Malek Al Qasem
- Department of Obstetrics and Gynecology, Faculty of Medicine, Mutah University, Al-Karak, Jordan
| | - Gian Carlo Di Renzo
- Perinatology Research Branch, Wayne State University, Detroit, USA; Centre of Perinatal and Reproductive Medicine, University of Perugia, Perugia, Italy; Department of Obstetrics and Gynecology, IM Sechenov First State University, Moscow, Russia; Almazov National Medical Research Centre, St Petersburg, Russia; PREIS International School, Firenze, Italy.
| |
Collapse
|
19
|
Sujan AC, Alexeeff SE, Slama N, Avalos LA, Adams SR, Conway A, Ansley D, Young-Wolff KC. Patterns of Substance Use During Early Pregnancy and Associations With Behavioral Health Characteristics. J Addict Med 2023; 17:e141-e147. [PMID: 37267164 PMCID: PMC10110768 DOI: 10.1097/adm.0000000000001090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES The aims of the study are to identify patterns of early pregnancy substance use and to examine how these patterns relate to behavioral health conditions measured in early pregnancy. METHODS We conducted a retrospective observational study (N= 265,274 pregnancies) screened for alcohol, cannabis, nicotine, pharmaceutical opioids, and stimulants during the first trimester via self-report and urine toxicology tests in Kaiser Permanente Northern California from January 1, 2012, to December 31, 2019. To identify patterns of prenatal substance use, we conducted latent class analysis. We then calculated the prevalence of depression, anxiety, intimate partner violence, and family drug use history for each prenatal substance use group and compared the prevalences by estimating prevalence ratios using modified Poisson regression, adjusting for sociodemographic characteristics. RESULTS We identified the following 4 latent groups with different patterns of substance use: ( a ) predominantly alcohol and no other substances (9.30%), ( b ) predominantly cannabis and no other substances (4.88%), ( c ) predominantly nicotine and some pharmaceutical opioids (1.09%), and ( d ) high-polysubstance (alcohol, cannabis, nicotine, and stimulants; 0.36%); these pregnancies were compared with ( e ) no prenatal substance use (84.37%). The prevalence of all behavioral health conditions was elevated in all prenatal substance use groups compared with the no substance use group. Furthermore, the prevalence of depressive and anxiety disorders, intimate partner violence and family drug use history were greater in the high-polysubstance cluster than the alcohol and cannabis clusters. CONCLUSIONS Results highlight the importance of screening and interventions for all types of substance use during early pregnancy and suggest a particularly high need to prioritize targeting early interventions to pregnant and reproductive age individuals with polysubstance use.
Collapse
Affiliation(s)
- Ayesha C. Sujan
- Division of Research, Kaiser Permanente Northern California, Oakland, CA
| | - Stacey E. Alexeeff
- Division of Research, Kaiser Permanente Northern California, Oakland, CA
| | - Natalie Slama
- Division of Research, Kaiser Permanente Northern California, Oakland, CA
| | - Lyndsay A. Avalos
- Division of Research, Kaiser Permanente Northern California, Oakland, CA
| | - Sara R. Adams
- Division of Research, Kaiser Permanente Northern California, Oakland, CA
| | - Amy Conway
- Regional Offices, Kaiser Permanente Northern California, Oakland, CA
| | - Deborah Ansley
- Regional Offices, Kaiser Permanente Northern California, Oakland, CA
| | - Kelly C. Young-Wolff
- Division of Research, Kaiser Permanente Northern California, Oakland, CA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
20
|
Gkini V, Namba T. Glutaminolysis and the Control of Neural Progenitors in Neocortical Development and Evolution. Neuroscientist 2023; 29:177-189. [PMID: 35057642 PMCID: PMC10018057 DOI: 10.1177/10738584211069060] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Multiple types of neural progenitor cells (NPCs) contribute to the development of the neocortex, a brain region responsible for our higher cognitive abilities. Proliferative capacity of NPCs varies among NPC types, developmental stages, and species. The higher proliferative capacity of NPCs in the developing human neocortex is thought to be a major contributing factor why humans have the most expanded neocortex within primates. Recent studies have shed light on the importance of cell metabolism in the neocortical NPC proliferative capacity. Specifically, glutaminolysis, a metabolic pathway that converts glutamine to glutamate and then to α-ketoglutarate, has been shown to play a critical role in human NPCs, both in apical and basal progenitors. In this review, we summarize our current knowledge of NPC metabolism, focusing especially on glutaminolysis, and discuss the role of NPC metabolism in neocortical development, evolution, and neurodevelopmental disorders, providing a broader perspective on a newly emerging research field.
Collapse
Affiliation(s)
- Vasiliki Gkini
- Neuroscience Center, HiLIFE—Helsinki
Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Takashi Namba
- Neuroscience Center, HiLIFE—Helsinki
Institute of Life Science, University of Helsinki, Helsinki, Finland
- Takashi Namba, Neuroscience Center, HiLIFE
— Helsinki Institute of Life Science, University of Helsinki, PO 63,
Haartmaninkatu 8, Helsinki 00014, Finland.
| |
Collapse
|
21
|
Sha L, Yong X, Shao Z, Duan Y, Hong Q, Zhang J, Zhang Y, Chen L. Targeting adverse effects of antiseizure medication on offspring: current evidence and new strategies for safety. Expert Rev Neurother 2023; 23:141-156. [PMID: 36731825 DOI: 10.1080/14737175.2023.2176751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION For women with epilepsy of reproductive age, antiseizure medications (ASMs) are associated with an increased risk of offspring malformations. There are safety concerns for most anti-seizure medications in the perinatal period, and there is a clear need to identify safe medications. ASMs must transport through biological barriers to exert toxic effects on the fetus, and transporters play essential roles in trans-barrier drug transport. Therefore, it is vital to understand the distribution and properties of ASM-related transporters in biological barriers. AREAS COVERED This study reviews the structure, transporter distribution, and properties of the blood-brain, placental, and blood-milk barrier, and summarizes the existing evidence for the trans-barrier transport mechanism of ASMs and standard experimental models of biological barriers. EXPERT OPINION Ideal ASMs in the perinatal period should have the following characteristics: 1) Increased transport through the blood-brain barrier, and 2) Reduced transport of the placental and blood-milk barriers. Thus, only low-dose or almost no antiseizure medication could enter the fetus's body, which could decrease medication-induced fetal abnormalities. Based on the stimulated structure and molecular docking, we propose a development strategy for new ASMs targeting transporters of biological barriers to improve the perinatal treatment of female patients with epilepsy.
Collapse
Affiliation(s)
- Leihao Sha
- Department of Neurology, Joint Research Institution of Altitude Health, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan
| | - Xihao Yong
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhenhua Shao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yifei Duan
- Department of Neurology, Joint Research Institution of Altitude Health, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan
| | - Qiulei Hong
- Department of Neurology, Joint Research Institution of Altitude Health, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan
| | - Yunwu Zhang
- The current form, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Lei Chen
- Department of Neurology, Joint Research Institution of Altitude Health, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan
| |
Collapse
|
22
|
Rosenhouse-Dantsker A, Gazgalis D, Logothetis DE. PI(4,5)P 2 and Cholesterol: Synthesis, Regulation, and Functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:3-59. [PMID: 36988876 DOI: 10.1007/978-3-031-21547-6_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is the most abundant membrane phosphoinositide and cholesterol is an essential component of the plasma membrane (PM). Both lipids play key roles in a variety of cellular functions including as signaling molecules and major regulators of protein function. This chapter provides an overview of these two important lipids. Starting from a brief description of their structure, synthesis, and regulation, the chapter continues to describe the primary functions and signaling processes in which PI(4,5)P2 and cholesterol are involved. While PI(4,5)P2 and cholesterol can act independently, they often act in concert or affect each other's impact. The chapters in this volume on "Cholesterol and PI(4,5)P2 in Vital Biological Functions: From Coexistence to Crosstalk" focus on the emerging relationship between cholesterol and PI(4,5)P2 in a variety of biological systems and processes. In this chapter, the next section provides examples from the ion channel field demonstrating that PI(4,5)P2 and cholesterol can act via common mechanisms. The chapter ends with a discussion of future directions.
Collapse
Affiliation(s)
| | - Dimitris Gazgalis
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Diomedes E Logothetis
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| |
Collapse
|
23
|
Chang YC, Chen WT, Su SH, Jung CR, Hwang BF. PM 2.5 exposure and incident attention-deficit/hyperactivity disorder during the prenatal and postnatal periods: A birth cohort study. ENVIRONMENTAL RESEARCH 2022; 214:113769. [PMID: 35777438 DOI: 10.1016/j.envres.2022.113769] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 05/14/2023]
Abstract
Only a few studies have assessed the effects of fine particulate matter (PM2.5) exposure during the prenatal and postnatal periods on the development of attention-deficit/hyperactivity disorder (ADHD). We investigated the association of exposure to PM2.5 during pregnancy and early life with ADHD. This birth cohort consisted of 425,736 singleton live-term births between 2004 and 2015 in Taiwan. Daily PM2.5 concentrations were derived from a 1-km satellite-based estimation model. A time-dependent Cox model was used to assess the effects of PM2.5 on ADHD during the first, second, and third trimesters and from age 1-5 years after birth. The distributed lag nonlinear model was utilized to explore the dose-response relationship. Total 9,294 children were diagnosed with ADHD during the study period. The hazard ratio (HR) of ADHD was significantly associated with a 10 μg/m3 increase in PM2.5 during the first trimester (HR = 1.26; 95% confidence interval [CI]: 1.13-1.40) and increased at PM2.5 over 16 μg/m3. For postnatal periods, the HR of ADHD was significantly associated with increased PM2.5 at the first to third year of life (HR ranged between 1.40 and 1.87). According to the dose-response relationship of exposure to PM2.5 at the third year of life, the HR of ADHD was significantly associated with PM2.5 above 16 μg/m3 and sharply increased as PM2.5 >50 μg/m3. We did not observe a significant modification of sex on the relation between PM2.5 and ADHD. Exposure of pregnant women to PM2.5 above 16 μg/m3 from conception to the early life of their children may increase the risk of ADHD. The government should improve the criteria for air quality control and meet the WHO air quality guidelines to protect pregnant women and children from developing ADHD in the future.
Collapse
Affiliation(s)
- Ya-Chu Chang
- Department of Occupational Safety and Health, College of Public Health, China Medical University, Taichung, Taiwan
| | - Wei-Ting Chen
- Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan
| | - Shih-Hao Su
- Department of Atmospheric Sciences, Chinese Culture University, Taipei, Taiwan
| | - Chau-Ren Jung
- Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan; Japan Environment and Children's Study Programme Office, Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Japan.
| | - Bing-Fang Hwang
- Department of Occupational Safety and Health, College of Public Health, China Medical University, Taichung, Taiwan; Department of Occupational Therapy, College of Medical and Health Science, Asia University, Taichung, Taiwan.
| |
Collapse
|
24
|
Rasile M, Lauranzano E, Faggiani E, Ravanelli MM, Colombo FS, Mirabella F, Corradini I, Malosio ML, Borreca A, Focchi E, Pozzi D, Giorgino T, Barajon I, Matteoli M. Maternal immune activation leads to defective brain-blood vessels and intracerebral hemorrhages in male offspring. EMBO J 2022; 41:e111192. [PMID: 36314682 PMCID: PMC9713716 DOI: 10.15252/embj.2022111192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 12/04/2022] Open
Abstract
Intracerebral hemorrhages are recognized risk factors for neurodevelopmental disorders and represent early biomarkers for cognitive dysfunction and mental disability, but the pathways leading to their occurrence are not well defined. We report that a single intrauterine exposure of the immunostimulant Poly I:C to pregnant mice at gestational day 9, which models a prenatal viral infection and the consequent maternal immune activation, induces the defective formation of brain vessels and causes intracerebral hemorrhagic events, specifically in male offspring. We demonstrate that maternal immune activation promotes the production of the TGF-β1 active form and the consequent enhancement of pSMAD1-5 in males' brain endothelial cells. TGF-β1, in combination with IL-1β, reduces the endothelial expression of CD146 and claudin-5, alters the endothelium-pericyte interplay resulting in low pericyte coverage, and increases hemorrhagic events in the adult offspring. By showing that exposure to Poly I:C at the beginning of fetal cerebral angiogenesis results in sex-specific alterations of brain vessels, we provide a mechanistic framework for the association between intragravidic infections and anomalies of the neural vasculature, which may contribute to neuropsychiatric disorders.
Collapse
Affiliation(s)
- Marco Rasile
- Department of Biomedical SciencesHumanitas UniversityPieve EmanueleItaly,IRCCS Humanitas Clinical and Research CenterRozzanoItaly
| | | | - Elisa Faggiani
- IRCCS Humanitas Clinical and Research CenterRozzanoItaly
| | - Margherita M Ravanelli
- Department of Biomedical SciencesHumanitas UniversityPieve EmanueleItaly,IRCCS Humanitas Clinical and Research CenterRozzanoItaly
| | | | - Filippo Mirabella
- Department of Biomedical SciencesHumanitas UniversityPieve EmanueleItaly,IRCCS Humanitas Clinical and Research CenterRozzanoItaly
| | - Irene Corradini
- IRCCS Humanitas Clinical and Research CenterRozzanoItaly,Institute of Neuroscience (IN‐CNR)National Research Council of ItalyMilanItaly
| | - Maria L Malosio
- IRCCS Humanitas Clinical and Research CenterRozzanoItaly,Institute of Neuroscience (IN‐CNR)National Research Council of ItalyMilanItaly
| | - Antonella Borreca
- IRCCS Humanitas Clinical and Research CenterRozzanoItaly,Institute of Neuroscience (IN‐CNR)National Research Council of ItalyMilanItaly
| | - Elisa Focchi
- Institute of Neuroscience (IN‐CNR)National Research Council of ItalyMilanItaly
| | - Davide Pozzi
- Department of Biomedical SciencesHumanitas UniversityPieve EmanueleItaly,IRCCS Humanitas Clinical and Research CenterRozzanoItaly
| | - Toni Giorgino
- Institute of Biophysics (IBF‐CNR)National Research Council of ItalyMilanItaly
| | - Isabella Barajon
- Department of Biomedical SciencesHumanitas UniversityPieve EmanueleItaly,IRCCS Humanitas Clinical and Research CenterRozzanoItaly
| | - Michela Matteoli
- Department of Biomedical SciencesHumanitas UniversityPieve EmanueleItaly,Institute of Neuroscience (IN‐CNR)National Research Council of ItalyMilanItaly
| |
Collapse
|
25
|
Amyloid β, Lipid Metabolism, Basal Cholinergic System, and Therapeutics in Alzheimer’s Disease. Int J Mol Sci 2022; 23:ijms232012092. [PMID: 36292947 PMCID: PMC9603563 DOI: 10.3390/ijms232012092] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 12/05/2022] Open
Abstract
The presence of insoluble aggregates of amyloid β (Aβ) in the form of neuritic plaques (NPs) is one of the main features that define Alzheimer’s disease. Studies have suggested that the accumulation of these peptides in the brain significantly contributes to extensive neuronal loss. Furthermore, the content and distribution of cholesterol in the membrane have been shown to have an important effect on the production and subsequent accumulation of Aβ peptides in the plasma membrane, contributing to dysfunction and neuronal death. The monomeric forms of these membrane-bound peptides undergo several conformational changes, ranging from oligomeric forms to beta-sheet structures, each presenting different levels of toxicity. Aβ peptides can be internalized by particular receptors and trigger changes from Tau phosphorylation to alterations in cognitive function, through dysfunction of the cholinergic system. The goal of this review is to summarize the current knowledge on the role of lipids in Alzheimer’s disease and their relationship with the basal cholinergic system, as well as potential disease-modifying therapies.
Collapse
|
26
|
Archuleta C, Wade C, Micetic B, Tian A, Mody K. Maternal COVID-19 Infection and Possible Associated Adverse Neurological Fetal Outcomes, Two Case Reports. Am J Perinatol 2022; 39:1292-1298. [PMID: 34814196 DOI: 10.1055/a-1704-1929] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION The long-term effects of prenatal coronavirus disease 2019 (COVID-19) infection on the fetal brain are mostly unknown at this time; however, there is increasing evidence being published. CASE REPORT Two cases of severe ventriculomegaly, neurological dysfunction, and seizures were found in neonates with prenatal exposure to COVID-19 infection during the first and third trimesters of pregnancy. CONCLUSION Inflammation during the prenatal and neonatal periods may be associated with neurological disorders or injury. Despite the presumed lack of vertical transmission, post-COVID-19 syndrome and its associated inflammation may have an impact on the unborn fetus. Hyper-vigilance and dissemination of adverse findings are of significant importance as we navigate through this evolving pandemic and its effects. KEY POINTS · Prenatal exposure to COVID-19 may affect the fetal brain.. · There is a possibility of neonatal neurological sequelae from maternal COVID-19.. · Does maternal COVID-19 infection cause infantile seizures?.
Collapse
Affiliation(s)
- Charlotte Archuleta
- College of Medicine, University of Arizona College of Medicine, Phoenix, Arizona.,Neonatal Intensive Care Unit, Banner - University Medical Center Phoenix, Phoenix, Arizona
| | - Christine Wade
- Neonatal Intensive Care Unit, Banner - University Medical Center Phoenix, Phoenix, Arizona.,Mednax/Arizona Neonatology, Phoenix, Arizona
| | - Becky Micetic
- Neonatal Intensive Care Unit, Banner - University Medical Center Phoenix, Phoenix, Arizona.,Mednax/Arizona Neonatology, Phoenix, Arizona
| | - Ashley Tian
- Neonatal Intensive Care Unit, Banner - University Medical Center Phoenix, Phoenix, Arizona.,Department of Neurology and Neurosurgery, Banner Children's Specialists Neurology and Neurosurgery Clinic, Mesa, Arizona
| | - Kartik Mody
- College of Medicine, University of Arizona College of Medicine, Phoenix, Arizona.,Neonatal Intensive Care Unit, Banner - University Medical Center Phoenix, Phoenix, Arizona.,Mednax/Arizona Neonatology, Phoenix, Arizona.,Department of Pediatrics, Creighton University School of Medicine, Phoenix Regional Campus, Phoenix, Arizona
| |
Collapse
|
27
|
Gene Dysregulation in the Adult Rat Paraventricular Nucleus and Amygdala by Prenatal Exposure to Dexamethasone. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071077. [PMID: 35888164 PMCID: PMC9316520 DOI: 10.3390/life12071077] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/24/2022] [Accepted: 07/15/2022] [Indexed: 12/02/2022]
Abstract
Fetal programming is the concept that maternal stressors during critical periods of fetal development can alter offspring phenotypes postnatally. Excess glucocorticoids can interact with the fetus to effect genetic and epigenetic changes implicated in adverse developmental outcomes. The present study investigates how chronic exposure to the synthetic glucocorticoid dexamethasone during late gestation alters the expression of genes related to behavior in brain areas relevant to the regulation and function of the hypothalamic–pituitary–adrenal axis. Pregnant Wistar Kyoto rats received subcutaneous injections of dexamethasone (100 μg/kg) daily from gestational day 15–21 or vehicle only as sham controls. The amygdala and paraventricular nucleus (PVN) were micro-punched to extract mRNA for reverse transcription and quantitative polymerase chain reaction for the analysis of the expression of specific genes. In the PVN, the expression of the glucocorticoid receptor NR3C1 was downregulated in female rats in response to programming. The expression of CACNA1C encoding the Cav1.2 pore subunit of L-type voltage-gated calcium channels was downregulated in male and female rats prenatally exposed to dexamethasone. Collectively, the results suggest that prenatal exposure to elevated levels of glucocorticoids plays a role in the dysregulation of the hypothalamic–pituitary–adrenal axis and potentially learning and memory by altering the expression of specific genes within the amygdala and PVN.
Collapse
|
28
|
Stafstrom CE. Neurological effects of COVID-19 in infants and children. Dev Med Child Neurol 2022; 64:818-829. [PMID: 35243616 PMCID: PMC9111795 DOI: 10.1111/dmcn.15185] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/13/2022]
Abstract
Neurological manifestations of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in children are becoming increasingly apparent as the coronavirus disease (COVID-19) pandemic continues. While children manifest relatively milder features of the disease, accumulating evidence warrants concern that COVID-19 exacts both acute- and long-term effects on the developing central and peripheral nervous systems. This review focuses on the relatively underinvestigated topic of the effects of SARS-CoV-2 on the brain in infancy and childhood, concluding that clinicians should be attentive to both the acute effects and long-term consequences of COVID-19 from a neurological perspective.
Collapse
Affiliation(s)
- Carl E. Stafstrom
- Division of Pediatric NeurologyDepartments of Neurology and PediatricsThe Johns Hopkins University School of MedicineBaltimoreMDUSA
| |
Collapse
|
29
|
Kirschen GW, Panda S, Burd I. Congenital Infection Influence on Early Brain Development Through the Gut-Brain Axis. Front Neurosci 2022; 16:894955. [PMID: 35844234 PMCID: PMC9280077 DOI: 10.3389/fnins.2022.894955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/23/2022] [Indexed: 11/21/2022] Open
Abstract
The mechanisms by which various pathogens cause congenital infections have been studied extensively, aiding in the understanding of the detrimental effects these infections can have on fetal/neonatal neurological development. Recent studies have focused on the gut-brain axis as pivotal in neurodevelopment, with congenital infections causing substantial disruptions. There remains controversy surrounding the purported sterility of the placenta as well as concerns regarding the effects of exposure to antibiotics used during pregnancy on neonatal microbiome development and how early exposure to microbes or antibiotics can shape the gut-brain axis. Long-term neurodevelopmental consequences, such as autism spectrum disorder, attention deficit hyperactivity disorder, and cerebral palsy, may be attributable, in part, to early life infection and changes in the immature gut microbiome. The goal of this review is thus to critically evaluate the current evidence related to early life infection affecting neurodevelopment through the gut-brain axis.
Collapse
Affiliation(s)
- Gregory W. Kirschen
- Department of Gynecology and Obstetrics, The Johns Hopkins Hospital, Baltimore, MD, United States
- Integrated Center for Fetal Medicine, The Johns Hopkins Hospital, Baltimore, MD, United States
| | - Snigdha Panda
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Irina Burd
- Department of Gynecology and Obstetrics, The Johns Hopkins Hospital, Baltimore, MD, United States
- Integrated Center for Fetal Medicine, The Johns Hopkins Hospital, Baltimore, MD, United States
| |
Collapse
|
30
|
Sujan AC, Young-Wolff KC, Avalos LA. In-utero cannabis exposure and long-term psychiatric and neurodevelopmental outcomes: The limitations of existing literature and recommendations for future research. Birth Defects Res 2022; 114:689-713. [PMID: 35708102 PMCID: PMC9357094 DOI: 10.1002/bdr2.2060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/25/2022] [Accepted: 05/28/2022] [Indexed: 11/10/2022]
Abstract
Given increases in cannabis use in pregnancy and animal model research showing effects of in-utero cannabis exposure, high-quality information on long-term consequences of in-utero cannabis exposure in humans is needed. While reviews have summarized findings from observational studies with humans, reviews have not focused on limitations of these studies and recommendations for future research. Therefore, we critically reviewed observational research on in-utero cannabis exposure and psychiatric and neurodevelopmental outcomes measured at or after age 3 and provided recommendations for future research. We used Web of Science, Google Scholar, and work cited from relevant identified publications to identify 46 papers to include in our review. Our review includes two main sections. The first section highlights the extensive limitations of the existing research, which include small and nongeneralizable samples, reliance on self-reported data, lack of detail on timing and amount of exposure, inclusion of older exposure data only, not accounting for important confounders, inclusion of potential mediators as covariates, not including outcome severity measures, and not assessing for offspring sex differences. The second section provides recommendations for future research regarding exposure and outcome measures, sample selection, confounder adjustment, and other methodological considerations. For example, with regard to exposure definition, we recommend that studies quantify the amount of cannabis exposure, evaluate the influence of timing of exposure, and incorporate biological measures (e.g., urine toxicology measures). Given that high-quality information on long-term consequences of in-utero cannabis exposure in humans does not yet exit, it is crucial for future research to address the limitations we have identified.
Collapse
Affiliation(s)
- Ayesha C Sujan
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
| | - Kelly C Young-Wolff
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA.,Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Lyndsay A Avalos
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
| |
Collapse
|
31
|
Koishikawa M, Furugen A, Ohyama N, Narumi K, Ishikawa S, Kobayashi M. Uptake of antiepileptic drugs in forskolin-induced differentiated BeWo cells: Alteration of gabapentin transport. Xenobiotica 2022; 52:405-412. [PMID: 35642749 DOI: 10.1080/00498254.2022.2085635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Previous studies have indicated that the expression levels of several transporters are altered during placental trophoblast differentiation. However, changes in the transport activities of therapeutic agents during differentiation must be comprehensively characterised. Antiepileptic drugs, including gabapentin (GBP), lamotrigine (LTG), topiramate, and levetiracetam, are increasingly prescribed during pregnancy. The objective of this study was to elucidate differences in the uptake of antiepileptic drugs during the differentiation process.Human placental choriocarcinoma BeWo cells were used as trophoblast models. For differentiation into syncytiotrophoblast-like cells, cells were treated with forskolin.The uptake of GBP and LTG was lower in differentiated BeWo cells than in undifferentiated cells. In particular, the maximum uptake rate of GBP transport was decreased in differentiated BeWo cells. Furthermore, GBP transport was trans-stimulated by the amino acids His and Met. We investigated the profiles of amino acids in undifferentiated and differentiated BeWo cells. Supplementation with His and Met, which demonstrated trans-stimulatory effects on GBP uptake, restored GBP uptake in differentiated cells. The findings of this study suggest that drug transport in BeWo cells can be altered before and after differentiation, and that the altered GBP uptake could be mediated by the intracellular amino acid status.
Collapse
Affiliation(s)
- Mai Koishikawa
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University
| | - Ayako Furugen
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University
| | - Nanami Ohyama
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University
| | - Katsuya Narumi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University
| | | | - Masaki Kobayashi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University
| |
Collapse
|
32
|
Santos JX, Rasga C, Marques AR, Martiniano H, Asif M, Vilela J, Oliveira G, Sousa L, Nunes A, Vicente AM. A Role for Gene-Environment Interactions in Autism Spectrum Disorder Is Supported by Variants in Genes Regulating the Effects of Exposure to Xenobiotics. Front Neurosci 2022; 16:862315. [PMID: 35663546 PMCID: PMC9161282 DOI: 10.3389/fnins.2022.862315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/19/2022] [Indexed: 11/25/2022] Open
Abstract
Heritability estimates support the contribution of genetics and the environment to the etiology of Autism Spectrum Disorder (ASD), but a role for gene-environment interactions is insufficiently explored. Genes involved in detoxification pathways and physiological permeability barriers (e.g., blood-brain barrier, placenta and respiratory airways), which regulate the effects of exposure to xenobiotics during early stages of neurodevelopment when the immature brain is extremely vulnerable, may be particularly relevant in this context. Our objective was to identify genes involved in the regulation of xenobiotic detoxification or the function of physiological barriers (the XenoReg genes) presenting predicted damaging variants in subjects with ASD, and to understand their interaction patterns with ubiquitous xenobiotics previously implicated in this disorder. We defined a panel of 519 XenoReg genes through literature review and database queries. Large ASD datasets were inspected for in silico predicted damaging Single Nucleotide Variants (SNVs) (N = 2,674 subjects) or Copy Number Variants (CNVs) (N = 3,570 subjects) in XenoReg genes. We queried the Comparative Toxicogenomics Database (CTD) to identify interaction pairs between XenoReg genes and xenobiotics. The interrogation of ASD datasets for variants in the XenoReg gene panel identified 77 genes with high evidence for a role in ASD, according to pre-specified prioritization criteria. These include 47 genes encoding detoxification enzymes and 30 genes encoding proteins involved in physiological barrier function, among which 15 are previous reported candidates for ASD. The CTD query revealed 397 gene-environment interaction pairs between these XenoReg genes and 80% (48/60) of the analyzed xenobiotics. The top interacting genes and xenobiotics were, respectively, CYP1A2, ABCB1, ABCG2, GSTM1, and CYP2D6 and benzo-(a)-pyrene, valproic acid, bisphenol A, particulate matter, methylmercury, and perfluorinated compounds. Individuals carrying predicted damaging variants in high evidence XenoReg genes are likely to have less efficient detoxification systems or impaired physiological barriers. They can therefore be particularly susceptible to early life exposure to ubiquitous xenobiotics, which elicit neuropathological mechanisms in the immature brain, such as epigenetic changes, oxidative stress, neuroinflammation, hypoxic damage, and endocrine disruption. As exposure to environmental factors may be mitigated for individuals with risk variants, this work provides new perspectives to personalized prevention and health management policies for ASD.
Collapse
Affiliation(s)
- João Xavier Santos
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Célia Rasga
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Ana Rita Marques
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Hugo Martiniano
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Muhammad Asif
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Joana Vilela
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Guiomar Oliveira
- Unidade de Neurodesenvolvimento e Autismo, Serviço do Centro de Desenvolvimento da Criança, Centro de Investigação e Formação Clínica, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculty of Medicine, University Clinic of Pediatrics and Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Lisete Sousa
- Departamento de Estatística e Investigação Operacional e Centro de Estatística e Aplicações, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Nunes
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Astrid M. Vicente
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
- *Correspondence: Astrid M. Vicente,
| |
Collapse
|
33
|
Ibarluzea J, Gallastegi M, Santa-Marina L, Jiménez Zabala A, Arranz E, Molinuevo A, Lopez-Espinosa MJ, Ballester F, Villanueva CM, Riano I, Sunyer J, Tardon A, Lertxundi A. Prenatal exposure to fluoride and neuropsychological development in early childhood: 1-to 4 years old children. ENVIRONMENTAL RESEARCH 2022; 207:112181. [PMID: 34627799 DOI: 10.1016/j.envres.2021.112181] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 09/21/2021] [Accepted: 10/03/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND Cross-sectional and prospective studies have provided evidence of the neurotoxic effect of early exposure to fluoride (F) in pregnancy. It has been negatively associated with cognitive development during childhood, with most research conducted in areas with high F levels in community drinking water (CDW). METHOD Data from 316 to 248 mother-child pairs from the Infancia y Medio Ambiente (Childhood and Environment, INMA) birth cohort project with maternal urinary F level adjusted for creatinine (MUFcr) measurements in the first and third trimesters of pregnancy. Children's cognitive domains and intelligence indexes were evaluated using the Bayley Scales (age of 1) and the McCarthy Scales (age of 4). Multiple linear regression analyses were carried out adjusting for a wide range of covariates related to the child, mother, family context and other potential neurotoxicants. RESULTS No association was found between MUFcr levels and Bayley Mental Development Index score. Nevertheless, regarding the McCarthy scales, it was found that per unit (mg/g) of MUFcr across the whole pregnancy, scores in boys were greater for the verbal, performance, numeric and memory domains (β = 13.86, CI 95%: 3.91, 23.82), (β = 5.86, CI 95%: 0.32, 11.39), (β = 6.22, CI 95%: 0.65, 11.79) and (β = 11.63, CI 95%: 2.62, 20.63) respectively and for General Cognitive Index (β = 15.4, CI 95%: 6.32, 24.48). For girls there was not any cognitive score significantly associated with MUFcr, being the sex-F interactions significant (P interaction <0.05). Including other toxicants levels, quality of family context or deprivation index did not substantially change the results. CONCLUSIONS In boys, positive associations were observed between MUFcr and scores in cognitive domains at the age of 4. These findings are inconsistent with those from some previous studies and indicate the need for other population-based studies to confirm or overturn these results at low levels of F in CDW.
Collapse
Affiliation(s)
- Jesús Ibarluzea
- Ministry of Health of the Basque Government, Sub-Directorate for Public Health and Addictions of Gipuzkoa, 20013, San Sebastián, Spain; Faculty of Psychology of the University of the Basque Country, 20018, San Sebastian, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain; Biodonostia Health Research Institute, Environmental Epidemiology and Child Development Group, 20014, San Sebastian, Spain
| | - Mara Gallastegi
- Biodonostia Health Research Institute, Environmental Epidemiology and Child Development Group, 20014, San Sebastian, Spain.
| | - Loreto Santa-Marina
- Ministry of Health of the Basque Government, Sub-Directorate for Public Health and Addictions of Gipuzkoa, 20013, San Sebastián, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain; Biodonostia Health Research Institute, Environmental Epidemiology and Child Development Group, 20014, San Sebastian, Spain
| | - Ana Jiménez Zabala
- Ministry of Health of the Basque Government, Sub-Directorate for Public Health and Addictions of Gipuzkoa, 20013, San Sebastián, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain; Biodonostia Health Research Institute, Environmental Epidemiology and Child Development Group, 20014, San Sebastian, Spain
| | - Enrique Arranz
- Faculty of Psychology of the University of the Basque Country, 20018, San Sebastian, Spain; Biodonostia Health Research Institute, Environmental Epidemiology and Child Development Group, 20014, San Sebastian, Spain
| | - Amaia Molinuevo
- Biodonostia Health Research Institute, Environmental Epidemiology and Child Development Group, 20014, San Sebastian, Spain
| | - Maria-Jose Lopez-Espinosa
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain; Nursing School, Universitat de València, 46010, Valencia, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, 46020, Valencia, Spain
| | - Ferran Ballester
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain; Nursing School, Universitat de València, 46010, Valencia, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, 46020, Valencia, Spain
| | - Cristina M Villanueva
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain; Barcelona Institute for Global Health (ISGlobal), 08003, Barcelona, Spain; Municipal Institute of Medical Research, IMIM-Hospital del Mar, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08002, Barcelona, Spain
| | - Isolina Riano
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33001, Oviedo, Asturias, Spain; Servicio de Pediatría, Endocrinología, HUCA, Roma Avenue, 33001, Oviedo, Asturias, Spain
| | - Jordi Sunyer
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, 46020, Valencia, Spain; Barcelona Institute for Global Health (ISGlobal), 08003, Barcelona, Spain; Municipal Institute of Medical Research, IMIM-Hospital del Mar, 08003, Barcelona, Spain
| | - Adonina Tardon
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33001, Oviedo, Asturias, Spain; Unit of Molecular Cancer Epidemiology, University Institute of Oncology of the Principality of Asturias (IUOPA), Department of Medicine, University of Oviedo, Julian Clavería Street, 33006, Oviedo, Asturias, Spain
| | - Aitana Lertxundi
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain; Biodonostia Health Research Institute, Environmental Epidemiology and Child Development Group, 20014, San Sebastian, Spain; Department of Preventive Medicine and Public Health, Faculty of Medicine, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| |
Collapse
|
34
|
Environmental Nanoparticles Reach Human Fetal Brains. Biomedicines 2022; 10:biomedicines10020410. [PMID: 35203619 PMCID: PMC8962421 DOI: 10.3390/biomedicines10020410] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 12/10/2022] Open
Abstract
Anthropogenic ultrafine particulate matter (UFPM) and industrial and natural nanoparticles (NPs) are ubiquitous. Normal term, preeclamptic, and postconceptional weeks(PCW) 8–15 human placentas and brains from polluted Mexican cities were analyzed by TEM and energy-dispersive X-ray spectroscopy. We documented NPs in maternal erythrocytes, early syncytiotrophoblast, Hofbauer cells, and fetal endothelium (ECs). Fetal ECs exhibited caveolar NP activity and widespread erythroblast contact. Brain ECs displayed micropodial extensions reaching luminal NP-loaded erythroblasts. Neurons and primitive glia displayed nuclear, organelle, and cytoplasmic NPs in both singles and conglomerates. Nanoscale Fe, Ti, and Al alloys, Hg, Cu, Ca, Sn, and Si were detected in placentas and fetal brains. Preeclamptic fetal blood NP vesicles are prospective neonate UFPM exposure biomarkers. NPs are reaching brain tissues at the early developmental PCW 8–15 stage, and NPs in maternal and fetal placental tissue compartments strongly suggests the placental barrier is not limiting the access of environmental NPs. Erythroblasts are the main early NP carriers to fetal tissues. The passage of UFPM/NPs from mothers to fetuses is documented and fingerprinting placental single particle composition could be useful for postnatal risk assessments. Fetal brain combustion and industrial NPs raise medical concerns about prenatal and postnatal health, including neurological and neurodegenerative lifelong consequences.
Collapse
|
35
|
Attention deficit hyperactivity disorder among children related to maternal job stress during pregnancy in Taiwan: a prospective cohort study. Int Arch Occup Environ Health 2022; 95:1231-1241. [PMID: 34999998 DOI: 10.1007/s00420-021-01821-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/25/2021] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Attention deficit hyperactivity disorder (ADHD) is the most common neurobehavioral disorders. Although studies have suggested relationships between ADHD in children and maternal psychosocial stress during pregnancy, little is known about the effects of work-related mental stress. Considering the increasing number of pregnant women who continue to work during the gestation period, this study investigated whether work-related stress during pregnancy is related to offspring ADHD. METHODS The Taiwan Birth Cohort Study followed selected representative mother-infant pairs in a face-to-face interview since a child was 6 months old. A total of 10,556 working pregnant women who completed follow-up 8 years later were included. Whether the 8-year-old child had ever received a diagnosis of ADHD were inquired. Self-reported job stress during pregnant period was obtained 6 months after delivery. Factors including perinatal and socioeconomic factors as well as the mother's job conditions were further analyzed with logistic regression. RESULTS Among those who continued working during pregnancy, 3850 (36.5%) mothers reported having job stress during pregnancy, and 210 (2.0%) of the children were diagnosed as having ADHD before 8 years of age. Compared with mothers who reported no job stress, the adjusted odds ratio of child ADHD was 1.91 (95% CI 1.21-3.07) for mothers with "very stressful" jobs during pregnancy and 1.53 (95% CI 1.04-2.25) for mothers with "rather stressful" jobs. CONCLUSION Among pregnant female workers, higher levels of job stress were related to the higher occurrence of ADHD in their children.
Collapse
|
36
|
Samarghandian S, Ghasemi F, Aramjoo H, Samini F, Aschner M, Roshanravan B, Farkhondeh T. Effects of exposure in utero to buprenorphine on oxidative stress and apoptosis in the hippocampus of rat pups. Toxicol Rep 2022; 9:311-315. [PMID: 35284239 PMCID: PMC8908041 DOI: 10.1016/j.toxrep.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/26/2022] [Accepted: 03/01/2022] [Indexed: 11/23/2022] Open
Abstract
The study investigated the effect of buprenorphine (BUP) on oxidative indices and gene expression of apoptotic molecules in the hippocampus of neonates during the fetal stage. BUP (1 or 0.5 mg/kg) was subcutaneously administrated to pregnant rat dams. After parturition, the pups were maintained to the end of breastfeeding period, then hippocampi were assessed for oxidative stress indices [glutathione (GSH), thiobarbituric acid reactive substances (TBARS), superoxide dismutase (SOD), total antioxidant capacity (TAC)] and mRNA expression of apoptotic markers (Bax, Bcl2 and caspase 3). Our data indicated that BUP (0.5 mg/kg) administration during gestation significantly increased GSH and TAC concentrations in the hippocampus of pups versus control group (p < 0.05). BUP (0.5 and 1 mg/kg) administration significantly elevated the expression levels of Bcl2 in the hippocampus of neonates compared with controls. BUP injection (0.5 and 1 mg/kg) to pregnant rats markedly reduced the expression levels of caspase 3 in the hippocampus of neonates in BUP 0.5 group (p < 0.01) and BUP 1 group (p < 0.05) versus the controls. Our study indicated that BUP may potentiate antioxidant system and inhibit apoptosis and oxidative stress in the hippocampus of neonates received this drug during the fetal stage. BUP at low doses may potentiate antioxidant system. BUP at low dose may inhibit oxidative stress. BUP at low dose may act as an anti-apoptotic agent.
Collapse
Affiliation(s)
- Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Fahimeh Ghasemi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Department of Biotechnology, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Hamed Aramjoo
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | - Fariborz Samini
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neurosurgery, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Babak Roshanravan
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Tahereh Farkhondeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran
- Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
- Correspondence to: Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran. Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
37
|
Guo H, Yang Y, Qiao Y, He J, Yao W, Zheng W. Heat stress affects fetal brain and intestinal function associated with the alterations of placental barrier in late pregnant mouse. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112916. [PMID: 34695613 DOI: 10.1016/j.ecoenv.2021.112916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
High ambient temperature-induced heat stress (HS) during pregnancy may affect the placental function and fetal development. Late gestation is a critical period of the developing fetal brain and intestine. The study aimed to investigate the effects of HS during late pregnancy on the function of placenta, fetal brain and intestine in a mouse model. We found that the number of stillborn fetal mice were increased due to maternal HS. Transcriptome analysis revealed that the expression of genes enriched in nutrients transport and metabolism of HS group were up-regulated in the placenta, but down-regulated in the fetal duodenum and jejunum. Interestingly, the concentration of triglyceride (TG) in the HS group was raised in the placenta, but reduced both in the fetal duodenum and jejunum compared with the thermal-neutral (TN) group. Additionally, maternal HS also reduced total cholesterol (TC) contents in the fetal duodenum. The mRNA expression and protein levels of placental fatty acid binding protein 2 and 4 (fabp2 and fabp4) were not affected by maternal HS, but the mRNA expression and protein levels of cluster of differentiation 36 (CD36) and diacylglycerol acyltransferase-2 (Dgat2) were decreased in the fetal intestine. Furthermore, maternal HS reduced the mRNA expression and protein levels of the placental 11beta-hydroxysteroid dehydrogenase type 2 (Hsd11b2) and 5-hydroxytryptamine receptor 1D (Htr1d). The concentrations of corticosterone and the expression of heat shock protein 90 beta family member 1 (hsp90b1), hypoxia up-regulated 1 (hyou1) and corticotropin releasing hormone receptor 1 (crhr1) enriched in response to glucocorticoids in the fetal brain were increased by maternal HS. Taken together, our findings demonstrated that maternal HS disrupted the placental glucocorticoid barrier and serotonin system associated with the raised corticosterone levels in the fetal brain, which might contribute to the decreased capacity of nutrients transport and metabolism in the fetal intestine.
Collapse
Affiliation(s)
- Huiduo Guo
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China; College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Yunnan Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yu Qiao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jianwen He
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China; Clinical Research Center, Affiliated Hospital of Shaanxi University of Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang 712000, PR China
| | - Wen Yao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China; Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Weijiang Zheng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
38
|
Vore AS, Deak T. Alcohol, inflammation, and blood-brain barrier function in health and disease across development. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 161:209-249. [PMID: 34801170 DOI: 10.1016/bs.irn.2021.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Alcohol is the most commonly used drug of abuse in the world and binge drinking is especially harmful to the brain, though the mechanisms by which alcohol compromises overall brain health remain somewhat elusive. A number of brain diseases and pathological states are accompanied by perturbations in Blood-Brain Barrier (BBB) function, ultimately exacerbating disease progression. The BBB is critical for coordinating activity between the peripheral immune system and the brain. Importantly, BBB integrity is responsive to circulating cytokines and other immune-related signaling molecules, which are powerfully modulated by alcohol exposure. This review will highlight key cellular components of the BBB; discuss mechanisms by which permeability is achieved; offer insight into methodological approaches for assessing BBB integrity; and forecast how alcohol-induced changes in the peripheral and central immune systems might influence BBB function in individuals with a history of binge drinking and ultimately Alcohol Use Disorders (AUD).
Collapse
Affiliation(s)
- A S Vore
- Behavioral Neuroscience Program, Department of Psychology, Developmental Exposure Alcohol Research Center, Binghamton, NY, United States
| | - T Deak
- Behavioral Neuroscience Program, Department of Psychology, Developmental Exposure Alcohol Research Center, Binghamton, NY, United States.
| |
Collapse
|
39
|
Dunton AD, Göpel T, Ho DH, Burggren W. Form and Function of the Vertebrate and Invertebrate Blood-Brain Barriers. Int J Mol Sci 2021; 22:ijms222212111. [PMID: 34829989 PMCID: PMC8618301 DOI: 10.3390/ijms222212111] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/23/2021] [Accepted: 10/28/2021] [Indexed: 12/25/2022] Open
Abstract
The need to protect neural tissue from toxins or other substances is as old as neural tissue itself. Early recognition of this need has led to more than a century of investigation of the blood-brain barrier (BBB). Many aspects of this important neuroprotective barrier have now been well established, including its cellular architecture and barrier and transport functions. Unsurprisingly, most research has had a human orientation, using mammalian and other animal models to develop translational research findings. However, cell layers forming a barrier between vascular spaces and neural tissues are found broadly throughout the invertebrates as well as in all vertebrates. Unfortunately, previous scenarios for the evolution of the BBB typically adopt a classic, now discredited 'scala naturae' approach, which inaccurately describes a putative evolutionary progression of the mammalian BBB from simple invertebrates to mammals. In fact, BBB-like structures have evolved independently numerous times, complicating simplistic views of the evolution of the BBB as a linear process. Here, we review BBBs in their various forms in both invertebrates and vertebrates, with an emphasis on the function, evolution, and conditional relevance of popular animal models such as the fruit fly and the zebrafish to mammalian BBB research.
Collapse
Affiliation(s)
- Alicia D. Dunton
- Developmental Integrative Biology Group, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA; (T.G.); (W.B.)
- Correspondence:
| | - Torben Göpel
- Developmental Integrative Biology Group, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA; (T.G.); (W.B.)
| | - Dao H. Ho
- Department of Clinical Investigation, Tripler Army Medical Center, Honolulu, HI 96859, USA;
| | - Warren Burggren
- Developmental Integrative Biology Group, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA; (T.G.); (W.B.)
| |
Collapse
|
40
|
Björvang RD, Vinnars MT, Papadogiannakis N, Gidlöf S, Mamsen LS, Mucs D, Kiviranta H, Rantakokko P, Ruokojärvi P, Lindh CH, Andersen CY, Damdimopoulou P. Mixtures of persistent organic pollutants are found in vital organs of late gestation human fetuses. CHEMOSPHERE 2021; 283:131125. [PMID: 34467953 DOI: 10.1016/j.chemosphere.2021.131125] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
Persistent organic pollutants (POPs) are industrial chemicals with long half-lives. Early life exposure to POPs has been associated with adverse effects. Fetal exposure is typically estimated based on concentrations in maternal serum or placenta and little is known on the actual fetal exposure. We measured the concentrations of nine organochlorine pesticides (OCPs), ten polychlorinated biphenyl (PCB) congeners, and polybrominated diphenyl ether (PBDE) congeners by gas chromatography - tandem mass spectrometry in maternal serum, placenta, and fetal tissues (adipose tissue, liver, heart, lung and brain) in 20 pregnancies that ended in stillbirth (gestational weeks 36-41). The data were combined with our earlier data on perfluoroalkyl substances (PFASs) in the same cohort (Mamsen et al. 2019). HCB, p,p'-DDE, PCB 138 and PCB 153 were quantified in all samples of maternal serum, placenta and fetal tissues. All 22 POPs were detected in all fetal adipose tissue samples, even in cases where they could not be detected in maternal serum or placenta. Tissue:serum ratios were significantly higher in later gestations, male fetuses, and pregnancies with normal placental function. OCPs showed the highest tissue:serum ratios and PFAS the lowest. The highest chemical burden was found in adipose tissue and lowest in the brain. Overall, all studied human fetuses were intrinsically exposed to mixtures of POPs. Tissue:serum ratios were significantly modified by gestational age, fetal sex and placental function. Importantly, more chemicals were detected in fetal tissues compared to maternal serum and placenta, implying that these proxy samples may provide a misleading picture of actual fetal exposures.
Collapse
Affiliation(s)
- Richelle D Björvang
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden; Swetox, Karolinska Institute, Unit of Toxicology Sciences, 151 36, Södertälje, Sweden.
| | - Marie-Therese Vinnars
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden; Division of Obstetrics and Gynecology Örnsköldsviks Hospital, Department of Clinical Sciences, Umeå University, Örnsköldsvik/Umeå, Sweden.
| | - Nikos Papadogiannakis
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet and Karolinska University Hospital Huddinge, 141 83, Stockholm, Sweden.
| | - Sebastian Gidlöf
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden; Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, 141 86, Stockholm, Sweden.
| | - Linn Salto Mamsen
- Laboratory of Reproductive Biology, Section 5712, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen and University of Copenhagen, Rigshospitalet, 2100, Copenhagen, Denmark.
| | - Daniel Mucs
- Swetox, Karolinska Institute, Unit of Toxicology Sciences, 151 36, Södertälje, Sweden.
| | - Hannu Kiviranta
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland.
| | - Panu Rantakokko
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland.
| | - Päivi Ruokojärvi
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland.
| | - Christian H Lindh
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, 223 61, Lund, Sweden.
| | - Claus Yding Andersen
- Laboratory of Reproductive Biology, Section 5712, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen and University of Copenhagen, Rigshospitalet, 2100, Copenhagen, Denmark.
| | - Pauliina Damdimopoulou
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden; Swetox, Karolinska Institute, Unit of Toxicology Sciences, 151 36, Södertälje, Sweden.
| |
Collapse
|
41
|
Bansal E, Hsu HH, de Water E, Martínez-Medina S, Schnaas L, Just AC, Horton M, Bellinger DC, Téllez-Rojo MM, Wright RO. Prenatal PM2.5 exposure in the second and third trimesters predicts neurocognitive performance at age 9-10 years: A cohort study of Mexico City children. ENVIRONMENTAL RESEARCH 2021; 202:111651. [PMID: 34246643 PMCID: PMC8578200 DOI: 10.1016/j.envres.2021.111651] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 05/05/2023]
Abstract
INTRODUCTION Prenatal exposure to fine particulate matter air pollution (PM2.5) is an important, under-studied risk factor for neurodevelopmental dysfunction. We describe the relationships between prenatal PM2.5 exposure and vigilance and inhibitory control, executive functions related to multiple health outcomes in Mexico City children. METHODS We studied 320 children enrolled in Programming Research in Obesity, GRowth, Environment and Social Stressors, a longitudinal birth cohort study in Mexico City. We used a spatio-temporal model to estimate daily prenatal PM2.5 exposure at each participant's residential address. At age 9-10 years, children performed three Go/No-Go tasks, which measure vigilance and inhibitory control ability. We used Latent class analysis (LCA) to classify performance into subgroups that reflected neurocognitive performance and applied multivariate regression and distributed lag regression modeling (DLM) to test overall and time-dependent associations between prenatal PM2.5 exposure and Go/No-Go performance. RESULTS LCA detected two Go/No-Go phenotypes: high performers (Class 1) and low performers (Class 2). Predicting odds of Class 1 vs Class 2 membership based on prenatal PM2.5 exposure timing, logistic regression modeling showed that average prenatal PM2.5 exposure in the second and third trimesters correlated with increased odds of membership in low-performance Class 2 (OR = 1.59 (1.16, 2.17), p = 0.004). Additionally, DLM analysis identified a critical window consisting of gestational days 103-268 (second and third trimesters) in which prenatal PM2.5 exposure predicted poorer Go/No-Go performance. DISCUSSION Increased prenatal PM2.5 exposure predicted decreased vigilance and inhibitory control at age 9-10 years. These findings highlight the second and third trimesters of gestation as critical windows of PM2.5 exposure for the development of vigilance and inhibitory control in preadolescent children. Because childhood development of vigilance and inhibitory control informs behavior, academic performance, and self-regulation into adulthood, these results may help to describe the relationship of prenatal PM2.5 exposure to long-term health and psychosocial outcomes. The integrative methodology of this study also contributes to a shift towards more holistic analysis.
Collapse
Affiliation(s)
- Esha Bansal
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 17 East 102nd Street, 3 West, New York, NY, United States.
| | - Hsiao-Hsien Hsu
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 17 East 102nd Street, 3 West, New York, NY, United States.
| | - Erik de Water
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Twin Cities, 2450 Riverside Avenue, Minneapolis, MN, United States.
| | - Sandra Martínez-Medina
- Division of Community Interventions Research, National Institute of Perinatology, Calle Montes Urales 800, Miguel Hidalgo, Lomas Virreyes, Mexico City, Mexico.
| | - Lourdes Schnaas
- Division of Community Interventions Research, National Institute of Perinatology, Calle Montes Urales 800, Miguel Hidalgo, Lomas Virreyes, Mexico City, Mexico.
| | - Allan C Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 17 East 102nd Street, 3 West, New York, NY, United States.
| | - Megan Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 17 East 102nd Street, 3 West, New York, NY, United States.
| | - David C Bellinger
- Department of Neurology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, United States.
| | - Martha M Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Ministry of Health, Av. Universidad 655, Col. Santa María Ahuacatitlán, Cuernavaca, Morelos, Mexico.
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 17 East 102nd Street, 3 West, New York, NY, United States; The Institute for Exposomics Research, Icahn School of Medicine at Mount Sinai, 17 East 102nd Street, 3 West, New York, NY, United States.
| |
Collapse
|
42
|
Peripherally administered persistent organic pollutants distribute to the brain of developing chicken embryo in concentrations relevant for human exposure. Neurotoxicology 2021; 88:79-87. [PMID: 34757084 DOI: 10.1016/j.neuro.2021.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 10/01/2021] [Accepted: 10/27/2021] [Indexed: 11/21/2022]
Abstract
Persistent organic pollutants (POPs) can reach the fetal brain and contribute to developmental neurotoxicity. To explore the distribution of POPs to the fetal brain, we exposed chicken embryos to a POP mixture, containing 29 different compounds with concentrations based on blood levels measured in the Scandinavian human population. The mixture was injected into the allantois at embryonic day 13 (E13), aiming at a theoretical concentration of 10 times human blood levels. POPs concentrations in the brain were measured at 0.5, 1, 2, 4, 6, 24, 48, and 72 h after administration. Twenty-seven of the individual compounds were detected during at least one of the time-points analyzed. Generally, the concentrations of most of the measured compounds were within the order of magnitude of those reported in human brain samples. Differences in the speed of distribution to the brain were observed between the per- and polyfluoroalkyl substances (PFASs), which have protein binding potential, and the lipophilic polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and brominated flame retardants (BFRs). Based on pharmacokinetic modeling, PFASs were best described by a one compartment model. PFASs displayed relatively slow elimination (Kel) and persisted at high levels in the brain. Lipophilic OCPs and PCBs could be fitted to a 2-compartment model. These showed high levels in the brain relative to the dose administrated as calculated by area under the curve (AUC)/Dose. Altogether, our study showed that chicken is a suitable model to explore the distribution of POPs into the developing brain at concentrations which are relevant for humans.
Collapse
|
43
|
The Blood-Brain Barrier: Much More Than a Selective Access to the Brain. Neurotox Res 2021; 39:2154-2174. [PMID: 34677787 DOI: 10.1007/s12640-021-00431-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/30/2021] [Accepted: 10/15/2021] [Indexed: 12/15/2022]
Abstract
The blood-brain barrier is a dynamic structure, collectively referred to as the neurovascular unit. It is responsible for the exchange of blood, oxygen, ions, and other molecules between the peripheral circulation and the brain compartment. It is the main entrance to the central nervous system and as such critical for the maintenance of its homeostasis. Dysfunction of the blood-brain barrier is a characteristic of several neurovascular pathologies. Moreover, physiological changes, environmental factors, nutritional habits, and psychological stress can modulate the tightness of the barrier. In this contribution, we summarize our current understanding of structure and function of this important component of the brain. We also describe the neurological deficits associated with its damage. A special emphasis is placed in the effect of the exposure to xenobiotics and pollutants in the permeability of the barrier. Finally, current protective strategies as well as the culture models to study this fascinating structure are discussed.
Collapse
|
44
|
Rayasam A, Fukuzaki Y, Vexler ZS. Microglia-leucocyte axis in cerebral ischaemia and inflammation in the developing brain. Acta Physiol (Oxf) 2021; 233:e13674. [PMID: 33991400 DOI: 10.1111/apha.13674] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/13/2022]
Abstract
Development of the Central Nervous System (CNS) is reliant on the proper function of numerous intricately orchestrated mechanisms that mature independently, including constant communication between the CNS and the peripheral immune system. This review summarizes experimental knowledge of how cerebral ischaemia in infants and children alters physiological communication between leucocytes, brain immune cells, microglia and the neurovascular unit (NVU)-the "microglia-leucocyte axis"-and contributes to acute and long-term brain injury. We outline physiological development of CNS barriers in relation to microglial and leucocyte maturation and the plethora of mechanisms by which microglia and peripheral leucocytes communicate during postnatal period, including receptor-mediated and intracellular inflammatory signalling, lipids, soluble factors and extracellular vesicles. We focus on the "microglia-leucocyte axis" in rodent models of most common ischaemic brain diseases in the at-term infants, hypoxic-ischaemic encephalopathy (HIE) and focal arterial stroke and discuss commonalities and distinctions of immune-neurovascular mechanisms in neonatal and childhood stroke compared to stroke in adults. Given that hypoxic and ischaemic brain damage involve Toll-like receptor (TLR) activation, we discuss the modulatory role of viral and bacterial TLR2/3/4-mediated infection in HIE, perinatal and childhood stroke. Furthermore, we provide perspective of the dynamics and contribution of the axis in cerebral ischaemia depending on the CNS maturational stage at the time of insult, and modulation independently and in consort by individual axis components and in a sex dependent ways. Improved understanding on how to modify crosstalk between microglia and leucocytes will aid in developing age-appropriate therapies for infants and children who suffered cerebral ischaemia.
Collapse
Affiliation(s)
- Aditya Rayasam
- Department of Neurology University of California San Francisco San Francisco CA USA
| | - Yumi Fukuzaki
- Department of Neurology University of California San Francisco San Francisco CA USA
| | - Zinaida S. Vexler
- Department of Neurology University of California San Francisco San Francisco CA USA
| |
Collapse
|
45
|
Blockade of Autocrine CCL5 Responses Inhibits Zika Virus Persistence and Spread in Human Brain Microvascular Endothelial Cells. mBio 2021; 12:e0196221. [PMID: 34399621 PMCID: PMC8406327 DOI: 10.1128/mbio.01962-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Zika virus (ZIKV) is a neurovirulent flavivirus that uniquely causes fetal microcephaly, is sexually transmitted, and persists in patients for up to 6 months. ZIKV persistently infects human brain microvascular endothelial cells (hBMECs) that form the blood-brain barrier (BBB) and enables viral spread to neuronal compartments. We found that CCL5, a chemokine with prosurvival effects on immune cells, was highly secreted by ZIKV-infected hBMECs. Although roles for CCL5 in endothelial cell (EC) survival remain unknown, the presence of the CCL5 receptors CCR3 and CCR5 on ECs suggested that CCL5 could promote ZIKV persistence in hBMECs. We found that exogenous CCL5 induced extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation in hBMECs and that ERK1/2 cell survival signaling was similarly activated by ZIKV infection. Neutralizing antibodies to CCL5, CCR3, or CCR5 inhibited persistent ZIKV infection of hBMECs. While knockout (KO) of CCL5 failed to prevent ZIKV infection of hBMECs, at 3 days postinfection (dpi), we observed a >90% reduction in ZIKV-infected CCL5-KO hBMECs and a multilog reduction in ZIKV titers. In contrast, the addition of CCL5 to CCL5-KO hBMECs dose-dependently rescued ZIKV persistence in hBMECs. Inhibiting CCL5 responses using CCR3 (UCB35625) and CCR5 (maraviroc) receptor antagonists reduced the number of ZIKV-infected hBMECs and ZIKV titers (50% inhibitory concentrations [IC50s] of 2.5 to 12 μM), without cytotoxicity (50% cytotoxic concentration [CC50] of >80 μM). These findings demonstrate that ZIKV-induced CCL5 directs autocrine CCR3/CCR5 activation of ERK1/2 survival responses that are required for ZIKV to persistently infect hBMECs. Our results establish roles for CCL5 in ZIKV persistence and suggest the potential for CCL5 receptor antagonists to therapeutically inhibit ZIKV spread and neurovirulence.
Collapse
|
46
|
Myhre O, Zimmer KE, Hudecova AM, Hansen KEA, Khezri A, Berntsen HF, Berg V, Lyche JL, Mandal S, Duale N, Ropstad E. Maternal exposure to a human based mixture of persistent organic pollutants (POPs) affect gene expression related to brain function in mice offspring hippocampus. CHEMOSPHERE 2021; 276:130123. [PMID: 33714876 DOI: 10.1016/j.chemosphere.2021.130123] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/19/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Male and female mice pups were exposed to a low and high dose of a human relevant mixture of persistent organic pollutants (POPs) during pregnancy and lactation. Most compounds detected in the dams were found in offspring brains. The mice offspring exhibited changed expression of hippocampal genes involved in cognitive function (Adora2a, Auts2, Crlf1, Chrnb2, Gdnf, Gnal, Kcnh3), neuroinflammation (Cd47, Il1a), circadian rhythm (Per1, Clock), redox signalling (Hmox2) and aryl hydrocarbon receptor activation (Cyp1b1). A few genes were differentially expressed in males versus females. Mostly, similar patterns of gene expression changes were observed between the low and high dose groups. Effects on learning and memory function measured in the Barnes maze (not moving, escape latency) were found in the high dose group when combined with moderate stress exposure (air flow from a fan). Mediation analysis indicated adaptation to the effects of exposure since gene expression compensated for learning disabilities (escape latency, walking distance and time spent not moving in the maze). Additionally, random forest analysis indicated that Kcnh3, Gnal, and Crlf1 were the most important genes for escape latency, while Hip1, Gnal and the low exposure level were the most important explanatory factors for passive behaviour (not moving). Altogether, this study showed transfer of POPs to the offspring brains after maternal exposure, modulating the expression level of genes involved in brain function.
Collapse
Affiliation(s)
- Oddvar Myhre
- Section of Toxicology and Risk Assessment, Norwegian Institute of Public Health, P. O. Box 222 Skøyen, N-0213, Oslo, Norway.
| | - Karin E Zimmer
- Department of Preclinical Sciences and Pathology, Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003, 1433 Ås, Norway.
| | - Alexandra M Hudecova
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003, 1433 Ås, Norway.
| | - Kristine E A Hansen
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003, 1433 Ås, Norway.
| | - Abdolrahman Khezri
- Department of Preclinical Sciences and Pathology, Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003, 1433 Ås, Norway.
| | - Hanne F Berntsen
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003, 1433 Ås, Norway; National Institute of Occupational Health, P.O. Box 8149 Dep, N-0033, Oslo, Norway.
| | - Vidar Berg
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003, 1433 Ås, Norway.
| | - Jan L Lyche
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003, 1433 Ås, Norway.
| | | | - Nur Duale
- Section of Molecular Toxicology, Norwegian Institute of Public Health, P. O. Box 222 Skøyen, N-0213, Oslo, Norway.
| | - Erik Ropstad
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003, 1433 Ås, Norway.
| |
Collapse
|
47
|
Sam R, Ryan E, Daykin E, Sidransky E. Current and emerging pharmacotherapy for Gaucher disease in pediatric populations. Expert Opin Pharmacother 2021; 22:1489-1503. [PMID: 33711910 PMCID: PMC8373623 DOI: 10.1080/14656566.2021.1902989] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/10/2021] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The past decades have witnessed a remarkable improvement in the health of patients with Gaucher disease, the inherited deficiency of the lysosomal enzyme glucocerebrosidase, resulting from the availability of enzyme replacement and substrate reduction therapies. Especially in pediatric populations, early diagnosis and initiation of treatment is essential to achieving optimal outcomes. AREAS COVERED The authors review the literature pertaining to the effectiveness of currently available therapies and describe new pharmacotherapies under development, especially for young patients. EXPERT OPINION For pediatric patients with non-neuronopathic Gaucher disease, there may be new therapeutic options on the horizon in the form of gene therapy or small molecule glucocerebrosidase chaperones. These have the potential to result in a cure for systemic disease manifestations and/or to reduce the cost and convenience of treatment. For children with neuronopathic Gaucher disease, the challenge of targeting therapy to the central nervous system is being explored through new modalities including brain-targeted gene therapy, in-utero therapy, brain-penetrant small molecule chaperones, and other methods that convey enzyme across the blood-brain barrier. Indeed, these are exciting times for both pediatric patients with Gaucher disease and those with other lysosomal storage disorders.
Collapse
Affiliation(s)
- Richard Sam
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, USA
| | - Emory Ryan
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, USA
| | - Emily Daykin
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, USA
| | - Ellen Sidransky
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, USA
| |
Collapse
|
48
|
Sarieva K, Mayer S. The Effects of Environmental Adversities on Human Neocortical Neurogenesis Modeled in Brain Organoids. Front Mol Biosci 2021; 8:686410. [PMID: 34250020 PMCID: PMC8264783 DOI: 10.3389/fmolb.2021.686410] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
Over the past decades, a growing body of evidence has demonstrated the impact of prenatal environmental adversity on the development of the human embryonic and fetal brain. Prenatal environmental adversity includes infectious agents, medication, and substances of use as well as inherently maternal factors, such as diabetes and stress. These adversities may cause long-lasting effects if occurring in sensitive time windows and, therefore, have high clinical relevance. However, our knowledge of their influence on specific cellular and molecular processes of in utero brain development remains scarce. This gap of knowledge can be partially explained by the restricted experimental access to the human embryonic and fetal brain and limited recapitulation of human-specific neurodevelopmental events in model organisms. In the past years, novel 3D human stem cell-based in vitro modeling systems, so-called brain organoids, have proven their applicability for modeling early events of human brain development in health and disease. Since their emergence, brain organoids have been successfully employed to study molecular mechanisms of Zika and Herpes simplex virus-associated microcephaly, as well as more subtle events happening upon maternal alcohol and nicotine consumption. These studies converge on pathological mechanisms targeting neural stem cells. In this review, we discuss how brain organoids have recently revealed commonalities and differences in the effects of environmental adversities on human neurogenesis. We highlight both the breakthroughs in understanding the molecular consequences of environmental exposures achieved using organoids as well as the on-going challenges in the field related to variability in protocols and a lack of benchmarking, which make cross-study comparisons difficult.
Collapse
Affiliation(s)
- Kseniia Sarieva
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- International Max Planck Research School, Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Simone Mayer
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
49
|
Lu W, Shi L, Gao J, Zhu H, Hua Y, Cai J, Wu X, Wan C, Zhao W, Zhang B. Piperlongumine Inhibits Zika Virus Replication In vitro and Promotes Up-Regulation of HO-1 Expression, Suggesting An Implication of Oxidative Stress. Virol Sin 2021; 36:510-520. [PMID: 33185862 PMCID: PMC8257849 DOI: 10.1007/s12250-020-00310-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022] Open
Abstract
Owing to the widespread distribution of mosquitoes capable of transmitting Zika virus, lack of clinical vaccines and treatments, and poor immunity of populations to new infectious diseases, Zika virus has become a global public health concern. Recent studies have found that Zika virus can continuously infect human brain microvascular endothelial cells. These cells are the primary components of the blood-brain barrier of the cerebral cortex, and further infection of brain tissue may cause severe damage such as encephalitis and fetal pituitary disease. The present study found that a biologically active base, piperlongumine (PL), inhibited Zika virus replication in human brain microvascular endothelial cells, Vero cells, and human umbilical vein endothelial cells. PL also significantly increased heme oxygenase-1 (HO-1) gene expression, while silencing HO-1 expression and using the reactive oxygen species scavenger, N-acetylcysteine, attenuated the inhibitory effect of PL on Zika virus replication. These results suggest that PL induces oxidative stress in cells by increasing reactive oxygen species. This, in turn, induces an increase in HO-1 expression, thereby inhibiting Zika virus replication. These findings provide novel clues for drug research on the prevention and treatment of Zika virus.
Collapse
Affiliation(s)
- Weizhi Lu
- Biosafety Level-3 Lab, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Linjuan Shi
- Biosafety Level-3 Lab, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Jing Gao
- Biosafety Level-3 Lab, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Huimin Zhu
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Ying Hua
- Biosafety Level-3 Lab, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Jintai Cai
- Biosafety Level-3 Lab, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Xianbo Wu
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Chengsong Wan
- Biosafety Level-3 Lab, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Wei Zhao
- Biosafety Level-3 Lab, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| | - Bao Zhang
- Biosafety Level-3 Lab, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
50
|
Rasile M, Lauranzano E, Mirabella F, Matteoli M. Neurological consequences of neurovascular unit and brain vasculature damages: potential risks for pregnancy infections and COVID-19-babies. FEBS J 2021; 289:3374-3392. [PMID: 33998773 PMCID: PMC8237015 DOI: 10.1111/febs.16020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 01/08/2023]
Abstract
Intragravidic and perinatal infections, acting through either direct viral effect or immune-mediated responses, are recognized causes of liability for neurodevelopmental disorders in the progeny. The large amounts of epidemiological data and the wealth of information deriving from animal models of gestational infections have contributed to delineate, in the last years, possible underpinning mechanisms for this phenomenon, including defects in neuronal migration, impaired spine and synaptic development, and altered activation of microglia. Recently, dysfunctions of the neurovascular unit and anomalies of the brain vasculature have unexpectedly emerged as potential causes at the origin of behavioral abnormalities and psychiatric disorders consequent to prenatal and perinatal infections. This review aims to discuss the up-to-date literature evidence pointing to the neurovascular unit and brain vasculature damages as the etiological mechanisms in neurodevelopmental syndromes. We focus on the inflammatory events consequent to intragravidic viral infections as well as on the direct viral effects as the potential primary triggers. These authors hope that a timely review of the literature will help to envision promising research directions, also relevant for the present and future COVID-19 longitudinal studies.
Collapse
Affiliation(s)
- Marco Rasile
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy.,IRCCS Humanitas Clinical and Research Center, Rozzano, Italy
| | | | - Filippo Mirabella
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Michela Matteoli
- IRCCS Humanitas Clinical and Research Center, Rozzano, Italy.,CNR Institute of Neuroscience, Milano, Italy
| |
Collapse
|