1
|
Turquetti-Moraes DK, Cardoso-Silva CB, Almeida-Silva F, Venancio TM. Multiomic analysis of genes related to oil traits in legumes provide insights into lipid metabolism and oil richness in soybean. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 218:109180. [PMID: 39571454 DOI: 10.1016/j.plaphy.2024.109180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 12/12/2024]
Abstract
Soybean (Glycine max) and common bean (Phaseolus vulgaris) diverged approximately 19 million years ago. While these species share a whole-genome duplication (WGD), the Glycine lineage experienced a second, independent WGD. Despite the significance of these WGDs, their impact on gene families related to oil-traits remains poorly understood. Here, we report an in-depth investigation of oil-related gene families in soybean, common bean, and twenty-eight other legume species. We adopted a systematic approach that included 605 RNAseq samples for transcriptome and co-expression analyses, identification of orthologous groups, gene duplication modes and evolutionary rates, and family expansions and contractions. We curated a list of oil candidate genes and found that 91.5% of the families containing these genes expanded in soybean in comparison to common bean. Notably, we observed an expansion of triacylglycerol (TAG) biosynthesis (∼3:1) and an erosion of TAG degradation (∼1.4:1) families in soybean in comparison to common bean. In addition, TAG degradation genes were two-fold more expressed in common bean than in soybean, suggesting that oil degradation is also important for the sharply contrasting seed oil contents in these species. We found 17 transcription factor hub genes that are likely regulators of lipid metabolism. Finally, we inferred expanded and contracted families and correlated these patterns with oil content found in different legume species. In summary, our results do not only shed light on the evolution of oil metabolism genes in soybean, but also present multifactorial evidence supporting the prioritization of promising candidate genes that, if experimentally validated, could accelerate the development of high-oil soybean varieties.
Collapse
Affiliation(s)
- Dayana K Turquetti-Moraes
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Cláudio Benício Cardoso-Silva
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil; Laboratório Nacional de Ciência e Tecnologia do Bioetanol, Centro Nacional de Pesquisa em Energia e Materiais, Universidade de Campinas, São Paulo, SP, Brazil
| | - Fabricio Almeida-Silva
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium; VIB Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Thiago M Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil.
| |
Collapse
|
2
|
Wang H, Yu J, Zhang X, Zeng Q, Zeng T, Gu L, Zhu B, Yu F, Du X. Genome-Wide Identification and Analysis of Phospholipase C Gene Family Reveals Orthologs, Co-Expression Networks, and Expression Profiling Under Abiotic Stress in Sorghum bicolor. PLANTS (BASEL, SWITZERLAND) 2024; 13:2976. [PMID: 39519895 PMCID: PMC11547881 DOI: 10.3390/plants13212976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/12/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Phospholipase C (PLC) is an essential enzyme involved in lipid signaling pathways crucial for regulating plant growth and responding to environmental stress. In sorghum, 11 PLC genes have been identified, comprising 6 PI-PLCs and 5 NPCs. Through phylogenetic and interspecies collinearity analyses, structural similarities between SbPLCs and ZmPLCs proteins have been observed, with a particularly strong collinearity between SbPLCs and OsPLCs. Promoter function analysis has shown that SbPLCs are significantly enriched under abiotic stress and hormonal stimuli, like ABA, jasmonic acid, drought, high temperature, and salt. Gene co-expression networks, constructed using a weighted gene co-expression network analysis (WGCNA), highlight distinct expression patterns of SbPLC1, SbPLC3a, and SbPLC4 in response to abiotic stress, providing further insights into the expression patterns and interactions of SbPLCs under various environmental stimuli. qRT-PCR results reveal variations in expression levels among most SbPLCs members under different stress conditions (drought, NaCl, NaHCO3), hormone treatments (ABA), and developmental stages, indicating both specific and overlapping expression patterns. This comprehensive analysis offers valuable insights into the roles of SbPLCs in sorghum, shedding light on their specific expression patterns, regulatory elements, and protein interactions across different environmental stimuli and developmental stages.
Collapse
Affiliation(s)
- Hongcheng Wang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (H.W.); (Q.Z.); (T.Z.); (L.G.); (B.Z.)
| | - Junxing Yu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (H.W.); (Q.Z.); (T.Z.); (L.G.); (B.Z.)
| | - Xingyu Zhang
- School of Energy and Environment, City University of Hong Kong, Hong Kong 999077, China;
| | - Qian Zeng
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (H.W.); (Q.Z.); (T.Z.); (L.G.); (B.Z.)
| | - Tuo Zeng
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (H.W.); (Q.Z.); (T.Z.); (L.G.); (B.Z.)
| | - Lei Gu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (H.W.); (Q.Z.); (T.Z.); (L.G.); (B.Z.)
| | - Bin Zhu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (H.W.); (Q.Z.); (T.Z.); (L.G.); (B.Z.)
| | - Feng Yu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (H.W.); (Q.Z.); (T.Z.); (L.G.); (B.Z.)
| | - Xuye Du
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (H.W.); (Q.Z.); (T.Z.); (L.G.); (B.Z.)
| |
Collapse
|
3
|
Wang W, Wang Y, Luo L, Kou J, Zhang L, Yang C, Yang N. Development and drought escape response in Arabidopsis thaliana are regulated by AtPLC1 in response to abscisic acid. PLANTA 2024; 260:121. [PMID: 39436424 DOI: 10.1007/s00425-024-04554-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 10/13/2024] [Indexed: 10/23/2024]
Abstract
MAIN CONCLUSION AtPLC1 plays a critical role in plant growth, development, and response to drought stress. Phosphoinositide-specific phospholipase C (PI-PLC) hydrolyzes substrates to generate secondary messengers crucial for plant growth, development, and stress responses. Drought escape (DE) response is an adaptive strategy that plants employ under drought conditions. The expression levels of the flower meristem-specific gene APETALA 1 and flowering regulatory genes FLOWERING LOCUS T and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 were downregulated in plc1, and FLOWERING LOCUS C was upregulated. The flowering time of the plc1flc double mutant was earlier than that of the wild type. Transcriptome analysis revealed that the Gene Ontology of differentially expressed genes (DEGs) was enriched in abscisic acid (ABA) response signaling, and Kyoto Encyclopedia of Genes and Genomes analysis revealed differential gene expression annotated to plant hormone signaling pathways. Our experiments show that AtPLC1 is upregulated by ABA in Arabidopsis. Under ABA induction and water stress, wild-type plants exhibit a DE response, and the DE response in plc1 disappears. Expression levels of ABA signaling pathway transcription factors ABA-responsive element-binding factors 3 (ABF3) and ABF4 were downregulated in plc1. In conclusion, our study suggests that AtPLC1 participates in regulating plant growth and development and participates in the DE response through the regulation of ABA signaling pathway transcription factors ABF3/ABF4. The study enhances our comprehension of the role of AtPLC1 in plant development and drought stress, providing a theoretical foundation for further investigation into DE responses.
Collapse
Affiliation(s)
- Wei Wang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Yue Wang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Liping Luo
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Jiaying Kou
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Lulu Zhang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Chen Yang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Ning Yang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China.
| |
Collapse
|
4
|
van Hooren M, van Wijk R, Vaseva II, Van Der Straeten D, Haring M, Munnik T. Ectopic Expression of Distinct PLC Genes Identifies 'Compactness' as a Possible Architectural Shoot Strategy to Cope with Drought Stress. PLANT & CELL PHYSIOLOGY 2024; 65:885-903. [PMID: 37846160 PMCID: PMC11209554 DOI: 10.1093/pcp/pcad123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/13/2023] [Accepted: 11/13/2023] [Indexed: 10/18/2023]
Abstract
Phospholipase C (PLC) has been implicated in several stress responses, including drought. Overexpression (OE) of PLC has been shown to improve drought tolerance in various plant species. Arabidopsis contains nine PLC genes, which are subdivided into four clades. Earlier, OE of PLC3, PLC5 or PLC7 was found to increase Arabidopsis' drought tolerance. Here, we confirm this for three other PLCs: PLC2, the only constitutively expressed AtPLC; PLC4, reported to have reduced salt tolerance and PLC9, of which the encoded enzyme was presumed to be catalytically inactive. To compare each PLC and to discover any other potential phenotype, two independent OE lines of six AtPLC genes, representing all four clades, were simultaneously monitored with the GROWSCREEN-FLUORO phenotyping platform, under both control- and mild-drought conditions. To investigate which tissues were most relevant to achieving drought survival, we additionally expressed AtPLC5 using 13 different cell- or tissue-specific promoters. While no significant differences in plant size, biomass or photosynthesis were found between PLC lines and wild-type (WT) plants, all PLC-OE lines, as well as those tissue-specific lines that promoted drought survival, exhibited a stronger decrease in 'convex hull perimeter' (= increase in 'compactness') under water deprivation compared to WT. Increased compactness has not been associated with drought or decreased water loss before although a hyponastic decrease in compactness in response to increased temperatures has been associated with water loss. We propose that the increased compactness could lead to decreased water loss and potentially provide a new breeding trait to select for drought tolerance.
Collapse
Affiliation(s)
- Max van Hooren
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, PO Box 1210, Amsterdam 1000BE, The Netherlands
| | - Ringo van Wijk
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, PO Box 1210, Amsterdam 1000BE, The Netherlands
| | - Irina I Vaseva
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, Ghent B-9000, Belgium
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, Ghent B-9000, Belgium
| | - Michel Haring
- Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, PO Box 1210, Amsterdam 1000BE, The Netherlands
| | - Teun Munnik
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, PO Box 1210, Amsterdam 1000BE, The Netherlands
| |
Collapse
|
5
|
Zhang J, Ru X, You W, Xu F, Wu Z, Jin P, Zheng Y, Cao S. Phosphatidylinositol-specific phospholipase C-associated phospholipid metabolism mediates DcGLRs channel to promote calcium influx under CaCl 2 treatment in shredded carrots during storage. Int J Biol Macromol 2024; 270:132517. [PMID: 38777008 DOI: 10.1016/j.ijbiomac.2024.132517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
The rapid activation of phosphatidylinositol-specific phospholipase C (PI-PLC) occurs early after the stimulation of biotic and abiotic stress in plants, which directly associated with the calcium channel-induced calcium ion (Ca2+) influx. Exogenous calcium chloride (CaCl2) mediates the calcium signaling transduction to promote the γ-aminobutyric acid accumulation and nutritional quality in shredded carrots whereas the generation mechanism remains uncertain. Therefore, the involvement of PI-PLC-associated phospholipid metabolism was investigated in present study. Our result revealed that CaCl2 treatment promoted the expression and activity of PI-PLC and increased the inositol 1,4,5-trisphosphate and hexakisphosphate content in shredded carrots. The transcripts of multi-glutamate receptor-like channels (DcGLRs), the glutamate and γ-aminobutyric acid (GABA) content, and Ca2+ influx were induced by CaCl2 treatment in shredded carrots during storage. However, PI-PLC inhibitor (U73122) treatment inhibited the activation of PI-PLC, the increase of many DcGLRs family genes expression levels, and Ca2+ influx. Moreover, the identification of DcPI-PLC4/6 and DcGLRs proteins, along with the analysis of characteristic domains such as PLCXc, PLCYc, C2 domain, transmembranous regions, and ligand binding domain, suggests their involvement in phospholipid catalysis and calcium transport in carrots. Furthermore, DcPI-PLC4/6 overexpression in tobacco leaves induced the Ca2+ influx by activating the expressions of NtGLRs and the accumulation of glutamate and GABA. These findings collectively indicate that CaCl2 treatment-induced PI-PLC activation influences DcGLRs expression levels to mediate cytosolic Ca2+ influx, thus, highlighting the "PI-PLC-GLRs-Ca2+" pathway in calcium signaling generation and GABA biosynthesis in shredded carrots.
Collapse
Affiliation(s)
- Jinglin Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Xueyin Ru
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Wanli You
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Feng Xu
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Zhengguo Wu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Peng Jin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Yonghua Zheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China.
| | - Shifeng Cao
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, PR China.
| |
Collapse
|
6
|
Fougère L, Mongrand S, Boutté Y. The function of sphingolipids in membrane trafficking and cell signaling in plants, in comparison with yeast and animal cells. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159463. [PMID: 38281556 DOI: 10.1016/j.bbalip.2024.159463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/04/2023] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
Sphingolipids are essential membrane components involved in a wide range of cellular, developmental and signaling processes. Sphingolipids are so essential that knock-out mutation often leads to lethality. In recent years, conditional or weak allele mutants as well as the broadening of the pharmacological catalog allowed to decipher sphingolipid function more precisely in a less invasive way. This review intends to provide a discussion and point of view on the function of sphingolipids with a main focus on endomembrane trafficking, Golgi-mediated protein sorting, cell polarity, cell-to-cell communication and cell signaling at the plasma membrane. While our main angle is the plant field research, we will constantly refer to and compare with the advances made in the yeast and animal field. In this review, we will emphasize the role of sphingolipids not only as a membrane component, but also as a key player at a center of homeostatic regulatory networks involving direct or indirect interaction with other lipids, proteins and ion fluxes.
Collapse
Affiliation(s)
- Louise Fougère
- Laboratoire de Biogenèse Membranaire, Univ. Bordeaux, UMR 5200 CNRS, Villenave d'Ornon, France
| | - Sebastien Mongrand
- Laboratoire de Biogenèse Membranaire, Univ. Bordeaux, UMR 5200 CNRS, Villenave d'Ornon, France
| | - Yohann Boutté
- Laboratoire de Biogenèse Membranaire, Univ. Bordeaux, UMR 5200 CNRS, Villenave d'Ornon, France.
| |
Collapse
|
7
|
Montazerinezhad S, Solouki M, Emamjomeh A, Kavousi K, Taheri A, Shiri Y. Transcriptomic analysis of alternative splicing events for different stages of growth and development in Sistan Yaghooti grape clusters. Gene 2024; 896:148030. [PMID: 38008270 DOI: 10.1016/j.gene.2023.148030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/31/2023] [Accepted: 11/22/2023] [Indexed: 11/28/2023]
Abstract
Sistan Yaghooti grape variety, despite characteristics such as early ripening, is vulnerable to cluster rot due to small berries and dense clusters. In this regard, AS may serve as a regulatory mechanism during developmental processes and in response to environmental signals. RNA-Seq analysis was performed to measure gene expression and the extent of AS events in the cluster growth and development stages of Sistan Yaghooti grape. The number of AS events increased during stages, suggesting that it contributes to the grapevine's adaptability to various stresses. In addition, DEG and DAS genes showed little overlap in cluster growth stages. Functional analysis of 19,194 DAS -gene sets showed that VIT_06s0004g06670 gene is involved in the activation of calcium channels (Ca2+) through the activation of 5 PLC biosynthetic pathways. Among the 27,229 DEG -sets, VIT_07s0005g05320 gene showed higher expression. Interestingly, this gene is involved in the synthesis of an EF -hand domain-containing protein capable of binding to Ca2+ by activating 4 biochemical pathways. These genes increase cytosolic Ca2+ concentration, enhancing plant stress tolerance and resistance to cracking. These results show that AS can respond independently to different types of stress. Among the other DAS genes, the GA2ox gene (VvGA2ox) showed an increase in AS events during cluster development. This gene is critical for initiating the degradation process of GA and plays a crucial role in different stages of seed development. Therefore, it is very likely that this gene is one of the main factors responsible for the density and seedlessness of Sistan Yaghooti grape.
Collapse
Affiliation(s)
- Somayeh Montazerinezhad
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Mahmood Solouki
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Abbasali Emamjomeh
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran; Laboratory of Computational Biotechnology and Bioinformatics (CBB), Department of Bioinformatics, Faculty of Basic Sciences, University of Zabol, Zabol, Iran.
| | - Kaveh Kavousi
- Institute of Biochemistry and Biophysics (IBB), Department of Bioinformatics, Laboratory of Complex Biological Systems and Bioinformatics (CBB), University of Tehran, Tehran, Iran
| | - Ali Taheri
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, Tenn, United States
| | - Yasoub Shiri
- Agronomy and Plant Breeding Department, Agriculture Research Center, Zabol Research Institute, Zabol, Iran; Department of Horticulture, Faculty of Agriculture and Natural Resources, Mohaghegh Ardabili University, Ardabil, Iran
| |
Collapse
|
8
|
van Hooren M, Darwish E, Munnik T. Stress- and phospholipid signalling responses in Arabidopsis PLC4-KO and -overexpression lines under salt- and osmotic stress. PHYTOCHEMISTRY 2023; 216:113862. [PMID: 37734512 DOI: 10.1016/j.phytochem.2023.113862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/12/2023] [Accepted: 09/16/2023] [Indexed: 09/23/2023]
Abstract
Several drought and salt tolerant phenotypes have been reported when overexpressing (OE) phospholipase C (PLC) genes across plant species. In contrast, a negative role for Arabidopsis PLC4 in salinity stress was recently proposed, showing that roots of PLC4-OE seedlings were more sensitive to NaCl while plc4 knock-out (KO) mutants were more tolerant. To investigate this apparent contradiction, and to analyse the phospholipid signalling responses associated with salinity stress, we performed root growth- and phospholipid analyses on plc4-KO and PLC4-OE seedlings subjected to salinity (NaCl) or osmotic (sorbitol) stress and compared these with wild type (WT). Only very minor differences between PLC4 mutants and WT were observed, which even disappeared after normalization of the data, while in soil, PLC4-OE plants were clearly more drought tolerant than WT plants, as was found earlier when overexpressing Arabidopsis PLC2, -3, -5, -7 or -9. We conclude that PLC4 plays no opposite role in salt-or osmotic stress and rather behaves like the other Arabidopsis PLCs.
Collapse
Affiliation(s)
- Max van Hooren
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, PO Box 1210, 1000, BE, Amsterdam, the Netherlands
| | - Essam Darwish
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, PO Box 1210, 1000, BE, Amsterdam, the Netherlands
| | - Teun Munnik
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, PO Box 1210, 1000, BE, Amsterdam, the Netherlands.
| |
Collapse
|
9
|
Takasato S, Bando T, Ohnishi K, Tsuzuki M, Hikichi Y, Kiba A. Phosphatidylinositol-phospholipase C3 negatively regulates the hypersensitive response via complex signaling with MAP kinase, phytohormones, and reactive oxygen species in Nicotiana benthamiana. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4721-4735. [PMID: 37191942 PMCID: PMC10433933 DOI: 10.1093/jxb/erad184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 05/15/2023] [Indexed: 05/17/2023]
Abstract
Phospholipid signaling plays important roles in plant immune responses. Here, we focused on two phospholipase C3 (PLC3) orthologs in the Nicotiana benthamiana genome, NbPLC3-1 and NbPLC3-2. We generated NbPLC3-1 and NbPLC3-2-double-silenced plants (NbPLC3s-silenced plants). In NbPLC3s-silenced plants challenged with Ralstonia solanacearum 8107, induction of hypersensitive response (HR)-related cell death and bacterial population reduction was accelerated, and the expression level of Nbhin1, a HR marker gene, was enhanced. Furthermore, the expression levels of genes involved in salicylic acid and jasmonic acid signaling drastically increased, reactive oxygen species production was accelerated, and NbMEK2-induced HR-related cell death was also enhanced. Accelerated HR-related cell death was also observed by bacterial pathogens Pseudomonas cichorii, P. syringae, bacterial AvrA, oomycete INF1, and TMGMV-CP with L1 in NbPLC3s-silenced plants. Although HR-related cell death was accelerated, the bacterial population was not reduced in double NbPLC3s and NbCoi1-suppressed plants nor in NbPLC3s-silenced NahG plants. HR-related cell death acceleration and bacterial population reduction resulting from NbPLC3s-silencing were compromised by the concomitant suppression of either NbPLC3s and NbrbohB (respiratory oxidase homolog B) or NbPLC3s and NbMEK2 (mitogen activated protein kinase kinase 2). Thus, NbPLC3s may negatively regulate both HR-related cell death and disease resistance through MAP kinase- and reactive oxygen species-dependent signaling. Disease resistance was also regulated by NbPLC3s through jasmonic acid- and salicylic acid-dependent pathways.
Collapse
Affiliation(s)
- Shiori Takasato
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture and Marine Science Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Takuya Bando
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture and Marine Science Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Kouhei Ohnishi
- Laboratory of Defense in Plant–Pathogen Interactions, Research Institute of Molecular Genetics, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Masayuki Tsuzuki
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture and Marine Science Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Yasufumi Hikichi
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture and Marine Science Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Akinori Kiba
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture and Marine Science Kochi University, Nankoku, Kochi 783-8502, Japan
| |
Collapse
|
10
|
Luo D, Raza A, Cheng Y, Zou X, Lv Y. Cloning and Functional Characterization of Cold-Inducible MYB-like 17 Transcription Factor in Rapeseed ( Brassica napus L.). Int J Mol Sci 2023; 24:ijms24119514. [PMID: 37298461 DOI: 10.3390/ijms24119514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Rapeseed (Brassica napus L.) is an important crop for edible oil, vegetables, and biofuel. Rapeseed growth and development require a minimum temperature of ~1-3 °C. Notably, frost damage occurs during overwintering, posing a serious threat to the productivity and yield of rapeseed. MYB proteins are important transcription factors (TFs) in plants, and have been proven to be involved in the regulation of stress responses. However, the roles of the MYB TFs in rapeseed under cold stress conditions are yet to be fully elucidated. To better understand the molecular mechanisms of one MYB-like 17 gene, BnaMYBL17, in response to low temperature, the present study found that the transcript level of BnaMYBL17 is induced by cold stress. To characterize the gene's function, the 591 bp coding sequence (CDS) from rapeseed was isolated and stably transformed into rapeseed. The further functional analysis revealed significant sensitivity in BnaMYBL17 overexpression lines (BnaMYBL17-OE) after freezing stress, suggesting its involvement in freezing response. A total of 14,298 differentially expressed genes relative to freezing response were found based on transcriptomic analysis of BnaMYBL17-OE. Overall, 1321 candidate target genes were identified based on differential expression, including Phospholipases C1 (PLC1), FCS-like zinc finger 8 (FLZ8), and Kinase on the inside (KOIN). The qPCR results confirmed that the expression levels of certain genes showed fold changes ranging from two to six when compared between BnaMYBL17-OE and WT lines after exposure to freezing stress. Furthermore, verification indicated that BnaMYBL17 affects the promoter of BnaPLC1, BnaFLZ8, and BnaKOIN genes. In summary, the results suggest that BnaMYBL17 acts as a transcriptional repressor in regulating certain genes related to growth and development during freezing stress. These findings provide valuable genetic and theoretical targets for molecular breeding to enhance freezing tolerance in rapeseed.
Collapse
Affiliation(s)
- Dan Luo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Ministry of Agriculture, Wuhan 430062, China
| | - Ali Raza
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Ministry of Agriculture, Wuhan 430062, China
| | - Yong Cheng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Ministry of Agriculture, Wuhan 430062, China
| | - Xiling Zou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Ministry of Agriculture, Wuhan 430062, China
| | - Yan Lv
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Ministry of Agriculture, Wuhan 430062, China
| |
Collapse
|
11
|
Laureano G, Santos C, Gouveia C, Matos AR, Figueiredo A. Grapevine-Associated Lipid Signalling Is Specifically Activated in an Rpv3 Background in Response to an Aggressive P. viticola Pathovar. Cells 2023; 12:394. [PMID: 36766736 PMCID: PMC9913531 DOI: 10.3390/cells12030394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/04/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Vitis vinifera L. is highly susceptible to the biotrophic pathogen Plasmopara viticola. To control the downy mildew disease, several phytochemicals are applied every season. Recent European Union requirements to reduce the use of chemicals in viticulture have made it crucial to use alternative and more sustainable approaches to control this disease. Our previous studies pinpoint the role of fatty acids and lipid signalling in the establishment of an incompatible interaction between grapevine and P. viticola. To further understand the mechanisms behind lipid involvement in an effective defence response we have analysed the expression of several genes related to lipid metabolism in three grapevine genotypes: Chardonnay (susceptible); Regent (tolerant), harbouring an Rpv3-1 resistance loci; and Sauvignac (resistant) that harbours a pyramid of Rpv12 and Rpv3-1 resistance loci. A highly aggressive P. viticola isolate was used (NW-10/16). Moreover, we have characterised the grapevine phospholipases C and D gene families and monitored fatty acid modulation during infection. Our results indicate that both susceptible and resistant grapevine hosts did not present wide fatty acid or gene expression modulation. The modulation of genes associated with lipid signalling and fatty acids seems to be specific to Regent, which raises the hypothesis of being specifically linked to the Rpv3 loci. In Sauvignac, the Rpv12 may be dominant concerning the defence response, and, thus, this genotype may present the activation of other pathways rather than lipid signalling.
Collapse
|
12
|
Wang Y, Zhao S, Gou B, Duan P, Wei M, Yang N, Zhang G, Wei B. Identification and expression analysis of phospholipase C family genes between different male fertility accessions in pepper. PROTOPLASMA 2022; 259:1541-1552. [PMID: 35296925 DOI: 10.1007/s00709-022-01751-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Phospholipase C (PLC) is one of the major lipid-hydrolyzing enzymes, involved in lipid-mediating signal pathway. PLCs have been found to play a significant role in the growth and development of plants. In this study, the genome-wide identification and characteristic analysis of CaPLC family genes in pepper were conducted and the expression of two CaPLC genes were investigated. The results showed that a total of 11 CaPLC family genes were systematically identified, which were distributed on five chromosomes and divided into two groups based on their evolutionary relevance. Some cis-elements responding to different hormones and stresses were screened in the promoters of CaPLC genes. Quantitative real-time PCR indicated that the expression of CaPIPLC1 and CaPIPLC5 in flowers were dozens of times higher than in other tissues. In addition, with the development of flower buds, the relative expressions of CaPIPLC1 and CaPIPLC5 gradually increased in fertile materials R1 and F1. However, no expression of CaPIPLC1 and CaPIPLC5 were detected at all developmental stages of cytoplasmic male sterile lines (CMS) compared with fertile accessions. The study revealed the number and characteristics of the CaPLC family genes, which supplied a basic and systematic understanding of CaPLC family. In addition, these findings provided new insights into the role of CaPLC genes in pollen development and fertility restoration in pepper.
Collapse
Affiliation(s)
- Yongfu Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Shufang Zhao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Bingdiao Gou
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Panpan Duan
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Min Wei
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Nan Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Gaoyuan Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Bingqiang Wei
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China.
| |
Collapse
|
13
|
Advances in Plant Lipid Metabolism Responses to Phosphate Scarcity. PLANTS 2022; 11:plants11172238. [PMID: 36079619 PMCID: PMC9460063 DOI: 10.3390/plants11172238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022]
Abstract
Low phosphate (Pi) availability in soils severely limits crop growth and production. Plants have evolved to have numerous physiological and molecular adaptive mechanisms to cope with Pi starvation. The release of Pi from membrane phospholipids is considered to improve plant phosphorus (P) utilization efficiency in response to Pi starvation and accompanies membrane lipid remodeling. In this review, we summarize recent discoveries related to this topic and the molecular basis of membrane phospholipid alteration and triacylglycerol metabolism in response to Pi depletion in plants at different subcellular levels. These findings will help to further elucidate the molecular mechanisms underlying plant adaptation to Pi starvation and thus help to develop crop cultivars with high P utilization efficiency.
Collapse
|
14
|
Li Z, Luo D, Tang M, Cao S, Pan J, Zhang W, Hu Y, Yue J, Huang Z, Li R, Chen P. Integrated Methylome and Transcriptome Analysis Provides Insights into the DNA Methylation Underlying the Mechanism of Cytoplasmic Male Sterility in Kenaf ( Hibiscus cannabinus L.). Int J Mol Sci 2022; 23:ijms23126864. [PMID: 35743303 PMCID: PMC9224340 DOI: 10.3390/ijms23126864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/14/2022] [Accepted: 06/18/2022] [Indexed: 11/16/2022] Open
Abstract
Cytoplasmic male sterility (CMS) is widely exploited in hybrid seed production. Kenaf is an important fiber crop with high heterosis. The molecular mechanism of kenaf CMS remains unclear, particularly in terms of DNA methylation. Here, using the anthers of a kenaf CMS line (P3A) and its maintainer line (P3B), comparative physiological, DNA methylation, and transcriptome analyses were performed. The results showed that P3A had considerably lower levels of IAA, ABA, photosynthetic products and ATP contents than P3B. DNA methylome analysis revealed 650 differentially methylated genes (DMGs) with 313 up- and 337 down methylated, and transcriptome analysis revealed 1788 differentially expressed genes (DEGs) with 558 up- and 1230 downregulated genes in P3A compared with P3B. Moreover, 45 genes were characterized as both DEGs and DMGs, including AUX,CYP, BGL3B, SUS6, AGL30 and MYB21. Many DEGs may be regulated by related DMGs based on methylome and transcriptome studies. These DEGs were involved in carbon metabolism, plant hormone signal transduction, the TCA cycle and the MAPK signaling pathway and were shown to be important for CMS in kenaf. These results provide new insights into the epigenetic mechanism of CMS in kenaf and other crops.
Collapse
Affiliation(s)
- Zengqiang Li
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China; (Z.L.); (D.L.); (M.T.); (S.C.); (J.P.); (W.Z.); (Y.H.); (J.Y.); (Z.H.)
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Dengjie Luo
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China; (Z.L.); (D.L.); (M.T.); (S.C.); (J.P.); (W.Z.); (Y.H.); (J.Y.); (Z.H.)
| | - Meiqiong Tang
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China; (Z.L.); (D.L.); (M.T.); (S.C.); (J.P.); (W.Z.); (Y.H.); (J.Y.); (Z.H.)
| | - Shan Cao
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China; (Z.L.); (D.L.); (M.T.); (S.C.); (J.P.); (W.Z.); (Y.H.); (J.Y.); (Z.H.)
| | - Jiao Pan
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China; (Z.L.); (D.L.); (M.T.); (S.C.); (J.P.); (W.Z.); (Y.H.); (J.Y.); (Z.H.)
| | - Wenxian Zhang
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China; (Z.L.); (D.L.); (M.T.); (S.C.); (J.P.); (W.Z.); (Y.H.); (J.Y.); (Z.H.)
| | - Yali Hu
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China; (Z.L.); (D.L.); (M.T.); (S.C.); (J.P.); (W.Z.); (Y.H.); (J.Y.); (Z.H.)
| | - Jiao Yue
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China; (Z.L.); (D.L.); (M.T.); (S.C.); (J.P.); (W.Z.); (Y.H.); (J.Y.); (Z.H.)
| | - Zhen Huang
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China; (Z.L.); (D.L.); (M.T.); (S.C.); (J.P.); (W.Z.); (Y.H.); (J.Y.); (Z.H.)
| | - Ru Li
- College of Life Science & Technology, Guangxi University, Nanning 530004, China;
| | - Peng Chen
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China; (Z.L.); (D.L.); (M.T.); (S.C.); (J.P.); (W.Z.); (Y.H.); (J.Y.); (Z.H.)
- Correspondence: ; Tel.: +86-155-7894-7886
| |
Collapse
|
15
|
Wei Y, Liu X, Ge S, Zhang H, Che X, Liu S, Liu D, Li H, Gu X, He L, Li Z, Xu J. Involvement of Phospholipase C in Photosynthesis and Growth of Maize Seedlings. Genes (Basel) 2022; 13:genes13061011. [PMID: 35741773 PMCID: PMC9222606 DOI: 10.3390/genes13061011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 01/27/2023] Open
Abstract
Phospholipase C is an enzyme that catalyzes the hydrolysis of glycerophospholipids and can be classified as phosphoinositide-specific PLC (PI-PLC) and non-specific PLC (NPC), depending on its hydrolytic substrate. In maize, the function of phospholipase C has not been well characterized. In this study, the phospholipase C inhibitor neomycin sulfate (NS, 100 mM) was applied to maize seedlings to investigate the function of maize PLC. Under the treatment of neomycin sulfate, the growth and development of maize seedlings were impaired, and the leaves were gradually etiolated and wilted. The analysis of physiological and biochemical parameters revealed that inhibition of phospholipase C affected photosynthesis, photosynthetic pigment accumulation, carbon metabolism and the stability of the cell membrane. High-throughput RNA-seq was conducted, and differentially expressed genes (DEGS) were found significantly enriched in photosynthesis and carbon metabolism pathways. When phospholipase C activity was inhibited, the expression of genes related to photosynthetic pigment accumulation was decreased, which led to lowered chlorophyll. Most of the genes related to PSI, PSII and TCA cycles were down-regulated and the net photosynthesis was decreased. Meanwhile, genes related to starch and sucrose metabolism, the pentose phosphate pathway and the glycolysis/gluconeogenesis pathway were up-regulated, which explained the reduction of starch and total soluble sugar content in the leaves of maize seedlings. These findings suggest that phospholipase C plays a key role in photosynthesis and the growth and development of maize seedlings.
Collapse
Affiliation(s)
- Yulei Wei
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; (Y.W.); (X.L.); (S.G.); (H.Z.); (X.C.); (S.L.); (D.L.); (H.L.); (X.G.); (L.H.)
| | - Xinyu Liu
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; (Y.W.); (X.L.); (S.G.); (H.Z.); (X.C.); (S.L.); (D.L.); (H.L.); (X.G.); (L.H.)
| | - Shengnan Ge
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; (Y.W.); (X.L.); (S.G.); (H.Z.); (X.C.); (S.L.); (D.L.); (H.L.); (X.G.); (L.H.)
| | - Haiyang Zhang
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; (Y.W.); (X.L.); (S.G.); (H.Z.); (X.C.); (S.L.); (D.L.); (H.L.); (X.G.); (L.H.)
| | - Xinyang Che
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; (Y.W.); (X.L.); (S.G.); (H.Z.); (X.C.); (S.L.); (D.L.); (H.L.); (X.G.); (L.H.)
| | - Shiyuan Liu
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; (Y.W.); (X.L.); (S.G.); (H.Z.); (X.C.); (S.L.); (D.L.); (H.L.); (X.G.); (L.H.)
| | - Debin Liu
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; (Y.W.); (X.L.); (S.G.); (H.Z.); (X.C.); (S.L.); (D.L.); (H.L.); (X.G.); (L.H.)
| | - Huixin Li
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; (Y.W.); (X.L.); (S.G.); (H.Z.); (X.C.); (S.L.); (D.L.); (H.L.); (X.G.); (L.H.)
| | - Xinru Gu
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; (Y.W.); (X.L.); (S.G.); (H.Z.); (X.C.); (S.L.); (D.L.); (H.L.); (X.G.); (L.H.)
| | - Lin He
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; (Y.W.); (X.L.); (S.G.); (H.Z.); (X.C.); (S.L.); (D.L.); (H.L.); (X.G.); (L.H.)
| | - Zuotong Li
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; (Y.W.); (X.L.); (S.G.); (H.Z.); (X.C.); (S.L.); (D.L.); (H.L.); (X.G.); (L.H.)
- Correspondence: (Z.L.); (J.X.)
| | - Jingyu Xu
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; (Y.W.); (X.L.); (S.G.); (H.Z.); (X.C.); (S.L.); (D.L.); (H.L.); (X.G.); (L.H.)
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China
- Correspondence: (Z.L.); (J.X.)
| |
Collapse
|
16
|
Ali U, Lu S, Fadlalla T, Iqbal S, Yue H, Yang B, Hong Y, Wang X, Guo L. The functions of phospholipases and their hydrolysis products in plant growth, development and stress responses. Prog Lipid Res 2022; 86:101158. [PMID: 35134459 DOI: 10.1016/j.plipres.2022.101158] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 12/15/2022]
Abstract
Cell membranes are the initial site of stimulus perception from environment and phospholipids are the basic and important components of cell membranes. Phospholipases hydrolyze membrane lipids to generate various cellular mediators. These phospholipase-derived products, such as diacylglycerol, phosphatidic acid, inositol phosphates, lysophopsholipids, and free fatty acids, act as second messengers, playing vital roles in signal transduction during plant growth, development, and stress responses. This review focuses on the structure, substrate specificities, reaction requirements, and acting mechanism of several phospholipase families. It will discuss their functional significance in plant growth, development, and stress responses. In addition, it will highlight some critical knowledge gaps in the action mechanism, metabolic and signaling roles of these phospholipases and their products in the context of plant growth, development and stress responses.
Collapse
Affiliation(s)
- Usman Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Tarig Fadlalla
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Sidra Iqbal
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Hong Yue
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Bao Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yueyun Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xuemin Wang
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
17
|
Sagar S, Singh A. Emerging role of phospholipase C mediated lipid signaling in abiotic stress tolerance and development in plants. PLANT CELL REPORTS 2021; 40:2123-2133. [PMID: 34003316 DOI: 10.1007/s00299-021-02713-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
Environmental stimuli are primarily perceived at the plasma membrane. Stimuli perception leads to membrane disintegration and generation of molecules which trigger lipid signaling. In plants, lipid signaling regulates important biological functions however, the molecular mechanism involved is unclear. Phospholipases C (PLCs) are important lipid-modifying enzymes in eukaryotes. In animals, PLCs by hydrolyzing phospholipids, such as phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] generate diacylglycerol (DAG) and inositol- 1,4,5-trisphosphate (IP3). However, in plants their phosphorylated variants i.e., phosphatidic acid (PA) and inositol hexakisphosphate (IP6) are proposed to mediate lipid signaling. Specific substrate preferences divide PLCs into phosphatidylinositol-PLC (PI-PLC) and non-specific PLCs (NPC). PLC activity is regulated by various cellular factors including, calcium (Ca2+) concentration, phospholipid substrate, and post-translational modifications. Both PI-PLCs and NPCs are implicated in plants' response to stresses and development. Emerging evidences show that PLCs regulate structural and developmental features, like stomata movement, microtubule organization, membrane remodelling and root development under abiotic stresses. Thus, crucial insights are provided into PLC mediated regulatory mechanism of abiotic stress responses in plants. In this review, we describe the structure and regulation of plant PLCs. In addition, cellular and physiological roles of PLCs in abiotic stresses, phosphorus deficiency, aluminium toxicity, pollen tube growth, and root development are discussed.
Collapse
Affiliation(s)
- Sushma Sagar
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Amarjeet Singh
- National Institute of Plant Genome Research, New Delhi, 110067, India.
| |
Collapse
|
18
|
Kanchan M, Ramkumar TR, Himani, Sembi JK. Genome-wide characterization and expression profiling of the Phospholipase C (PLC) gene family in three orchids of economic importance. J Genet Eng Biotechnol 2021; 19:124. [PMID: 34420115 PMCID: PMC8380223 DOI: 10.1186/s43141-021-00217-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/26/2021] [Indexed: 01/02/2023]
Abstract
Background Phospholipases hydrolyze glycerophospholipids and generate diverse lipid-derived molecules with secondary messenger activity. Out of these, phospholipase C (PLC) specifically cleaves the phospholipids at ester linkages and yields diacylglycerol (DAG) and phosphorylated head groups. PLCs are classified further as phosphatidylinositol-specific PLCs (PI-PLCs) and non-specific PLCs with biased specificity for phosphatidylcholine (NPC/PC-PLC). Results In the present report, we identified and characterized PLC genes in the genomes of three orchids, Phalaenopsis equestris (seven PePLCs), Dendrobium catenatum (eight DcPLCs), and Apostasia shenzhenica (seven AsPLCs). Multiple sequence alignment analysis confirmed the presence of conserved X and Y catalytic domains, calcium/lipid-binding domain (C2 domain) at the C terminal region, and EF-hand at the N-terminal region in PI-PLC proteins and esterase domain in PC-PLC. Systematic phylogenetic analysis established the relationship of the PLC protein sequences and clustered them into two groups (PI-PLC and PC-PLC) along with those of Arabidopsis thaliana and Oryza sativa. Gene architecture studies showed the presence of nine exons in all PI-PLC genes while the number varied from one to five in PC-PLCs. RNA-seq-based spatio-temporal expression profile for PLC genes was generated, which showed that PePC-PLC1, PePC-PLC2A, DcPC-PLC1A, DcPC-PLC1B, DcPC-PLC2, DcPC-PLC1B, and AsPC-PLC1 had significant expression in all reproductive and vegetative tissues. The expression profile is matched to their upstream cis-regulatory promoter elements, which indicates that PLC genes have a role in various growth and development processes and during stress responses. Conclusions The present study unwrapped the opportunity for functional characterization of selected PLC genes in planta for plant improvement. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-021-00217-z.
Collapse
Affiliation(s)
- Madhvi Kanchan
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Thakku R Ramkumar
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Himani
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Jaspreet K Sembi
- Department of Botany, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
19
|
Phospholipases C and D and Their Role in Biotic and Abiotic Stresses. PLANTS 2021; 10:plants10050921. [PMID: 34064485 PMCID: PMC8148002 DOI: 10.3390/plants10050921] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 02/03/2023]
Abstract
Plants, as sessile organisms, have adapted a fine sensing system to monitor environmental changes, therefore allowing the regulation of their responses. As the interaction between plants and environmental changes begins at the surface, these changes are detected by components in the plasma membrane, where a molecule receptor generates a lipid signaling cascade via enzymes, such as phospholipases (PLs). Phospholipids are the key structural components of plasma membranes and signaling cascades. They exist in a wide range of species and in different proportions, with conversion processes that involve hydrophilic enzymes, such as phospholipase-C (PLC), phospholipase-D (PLD), and phospholipase-A (PLA). Hence, it is suggested that PLC and PLD are highly conserved, compared to their homologous genes, and have formed clusters during their adaptive history. Additionally, they generate responses to different functions in accordance with their protein structure, which should be reflected in specific signal transduction responses to environmental stress conditions, including innate immune responses. This review summarizes the phospholipid systems associated with signaling pathways and the innate immune response.
Collapse
|
20
|
Barajas-Lopez JDD, Tiwari A, Zarza X, Shaw MW, Pascual JS, Punkkinen M, Bakowska JC, Munnik T, Fujii H. EARLY RESPONSE TO DEHYDRATION 7 Remodels Cell Membrane Lipid Composition during Cold Stress in Arabidopsis. PLANT & CELL PHYSIOLOGY 2021; 62:80-91. [PMID: 33165601 DOI: 10.1093/pcp/pcaa139] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 10/24/2020] [Indexed: 05/12/2023]
Abstract
Plants adjust to unfavorable conditions by altering physiological activities, such as gene expression. Although previous studies have identified multiple stress-induced genes, the function of many genes during the stress responses remains unclear. Expression of ERD7 (EARLY RESPONSE TO DEHYDRATION 7) is induced in response to dehydration. Here, we show that ERD7 plays essential roles in both plant stress responses and development. In Arabidopsis, ERD7 protein accumulated under various stress conditions, including exposure to low temperature. A triple mutant of Arabidopsis lacking ERD7 and two closely related homologs had an embryonic lethal phenotype, whereas a mutant lacking the two homologs and one ERD7 allele had relatively round leaves, indicating that the ERD7 gene family has essential roles in development. Moreover, the importance of the ERD7 family in stress responses was evidenced by the susceptibility of the mutant lines to cold stress. ERD7 protein was found to bind to several, but not all, negatively charged phospholipids and was associated with membranes. Lipid components and cold-induced reduction in PIP2 in the mutant line were altered relative to wild type. Furthermore, membranes from the mutant line had reduced fluidity. Taken together, ERD7 and its homologs are important for plant stress responses and development and associated with the modification in membrane lipid composition.
Collapse
Affiliation(s)
| | - Arjun Tiwari
- Molecular Plant Biology Unit, Department of Biochemistry, University of Turku, Turku 20014, Finland
| | - Xavier Zarza
- Section Plant Cell Biology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, Amsterdam, XH 1098, Netherlands
| | - Molly W Shaw
- Department of Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jes S Pascual
- Molecular Plant Biology Unit, Department of Biochemistry, University of Turku, Turku 20014, Finland
| | - Matleena Punkkinen
- Molecular Plant Biology Unit, Department of Biochemistry, University of Turku, Turku 20014, Finland
| | - Joanna C Bakowska
- Department of Molecular Pharmacology and Therapeutics, Stritch School of Medicine, Loyola University Chicago, Maywod, IL 60153, USA
| | - Teun Munnik
- Section Plant Cell Biology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, Amsterdam, XH 1098, Netherlands
| | - Hiroaki Fujii
- Molecular Plant Biology Unit, Department of Biochemistry, University of Turku, Turku 20014, Finland
| |
Collapse
|
21
|
Zhu L, Dou L, Shang H, Li H, Yu J, Xiao G. GhPIPLC2D promotes cotton fiber elongation by enhancing ethylene biosynthesis. iScience 2021; 24:102199. [PMID: 33718844 PMCID: PMC7921840 DOI: 10.1016/j.isci.2021.102199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/13/2021] [Accepted: 02/12/2021] [Indexed: 11/29/2022] Open
Abstract
Inositol-1,4,5-trisphosphate (IP3) is an important second messenger and one of the products of phosphoinositide-specific phospholipase C (PIPLC)-mediated phosphatidylinositol (4,5) bisphosphate (PIP2) hydrolysis. However, the function of IP3 in cotton is unknown. Here, we characterized the function of GhPIPLC2D in cotton fiber elongation. GhPIPLC2D was preferentially expressed in elongating fibers. Suppression of GhPIPLC2D transcripts resulted in shorter fibers and decreased IP3 accumulation and ethylene biosynthesis. Exogenous application of linolenic acid (C18:3) and phosphatidylinositol (PI), the precursor of IP3, improved IP3 and myo-inositol-1,2,3,4,5,6-hexakisphosphate (IP6) accumulation, as well as ethylene biosynthesis. Moreover, fiber length in GhPIPLC2D-silenced plant was reduced after exogenous application of IP6 and ethylene. These results indicate that GhPIPLC2D positively regulates fiber elongation and IP3 promotes fiber elongation by enhancing ethylene biosynthesis. Our study broadens our understanding of the function of IP3 in cotton fiber elongation and highlights the possibility of cultivating better cotton varieties by manipulating GhPIPLC2D in the future. GhPIPLC2D positively regulates cotton fiber elongation GhPIPLC2D cleaves PIP2 into IP3, which could be phosphorylated to IP6 IP6 enhances fiber elongation via improving ethylene biosynthesis
Collapse
Affiliation(s)
- Liping Zhu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Lingling Dou
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang 712000, China
| | - Haihong Shang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China
| | - Hongbin Li
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China
| | - Jianing Yu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Guanghui Xiao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
22
|
Chen ZF, Ru JN, Sun GZ, Du Y, Chen J, Zhou YB, Chen M, Ma YZ, Xu ZS, Zhang XH. Genomic-Wide Analysis of the PLC Family and Detection of GmPI-PLC7 Responses to Drought and Salt Stresses in Soybean. FRONTIERS IN PLANT SCIENCE 2021; 12:631470. [PMID: 33763092 PMCID: PMC7982816 DOI: 10.3389/fpls.2021.631470] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/10/2021] [Indexed: 05/12/2023]
Abstract
Phospholipase C (PLC) performs significant functions in a variety of biological processes, including plant growth and development. The PLC family of enzymes principally catalyze the hydrolysis of phospholipids in organisms. This exhaustive exploration of soybean GmPLC members using genome databases resulted in the identification of 15 phosphatidylinositol-specific PLC (GmPI-PLC) and 9 phosphatidylcholine-hydrolyzing PLC (GmNPC) genes. Chromosomal location analysis indicated that GmPLC genes mapped to 10 of the 20 soybean chromosomes. Phylogenetic relationship analysis revealed that GmPLC genes distributed into two groups in soybean, the PI-PLC and NPC groups. The expression patterns and tissue expression analysis showed that GmPLCs were differentially expressed in response to abiotic stresses. GmPI-PLC7 was selected to further explore the role of PLC in soybean response to drought and salt stresses by a series of experiments. Compared with the transgenic empty vector (EV) control lines, over-expression of GmPI-PLC7 (OE) conferred higher drought and salt tolerance in soybean, while the GmPI-PLC7-RNAi (RNAi) lines exhibited the opposite phenotypes. Plant tissue staining and physiological parameters observed from drought- and salt-stressed plants showed that stress increased the contents of chlorophyll, oxygen free radical (O2 -), hydrogen peroxide (H2O2) and NADH oxidase (NOX) to amounts higher than those observed in non-stressed plants. This study provides new insights in the functional analysis of GmPLC genes in response to abiotic stresses.
Collapse
Affiliation(s)
- Zhi-Feng Chen
- College of Life Sciences, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Jing-Na Ru
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Guo-Zhong Sun
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Yan Du
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Jun Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Yong-Bin Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Xiao-Hong Zhang
- College of Life Sciences, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
| |
Collapse
|
23
|
Zhu J, Zhou Y, Li J, Li H. Genome-Wide Investigation of the Phospholipase C Gene Family in Zea mays. Front Genet 2021; 11:611414. [PMID: 33510773 PMCID: PMC7835795 DOI: 10.3389/fgene.2020.611414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/26/2020] [Indexed: 11/13/2022] Open
Abstract
Phospholipase C (PLC) is one of the main hydrolytic enzymes in the metabolism of phosphoinositide and plays an important role in a variety of signal transduction processes responding to plant growth, development, and stress. Although the characteristics of many plant PLCs have been studied, PLC genes of maize have not been comprehensively identified. According to the study, five phosphatidylinositol-specific PLC (PI-PLC) and six non-specific PLC (NPC) genes were identified in maize. The PI-PLC and NPC genes of maize are conserved compared with homologous genes in other plants, especially in evolutionary relationship, protein sequences, conserved motifs, and gene structures. Transient expression of ZmPLC-GFP fusion protein in Arabidopsis protoplast cells showed that ZmPLCs are multi-localization. Analyses of transcription levels showed that ZmPLCs were significantly different under various different tissues and abiotic stresses. Association analysis shown that some ZmPLCs significantly associated with agronomic traits in 508 maize inbred lines. These results contribute to study the function of ZmPLCs and to provide good candidate targets for the yield and quality of superior maize cultivars.
Collapse
Affiliation(s)
- Jiantang Zhu
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Yuanyuan Zhou
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Jiale Li
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Hui Li
- School of Biological Science and Technology, University of Jinan, Jinan, China
| |
Collapse
|
24
|
Liu Y, Liu X, Wang X, Gao K, Qi W, Ren H, Hu H, Sun D, Bai J, Zheng S. Heterologous expression of heat stress-responsive AtPLC9 confers heat tolerance in transgenic rice. BMC PLANT BIOLOGY 2020; 20:514. [PMID: 33176681 PMCID: PMC7656764 DOI: 10.1186/s12870-020-02709-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND As global warming becomes increasingly severe, it is urgent that we enhance the heat tolerance of crops. We previously reported that Arabidopsis thaliana PHOSPHOINOSITIDE-SPECIFIC PHOSPHOLIPASE C9 (AtPLC9) promotes heat tolerance. RESULTS In this study, we ectopically expressed AtPLC9 in rice to examine its potential to improve heat tolerance in this important crop. Whereas AtPLC9 did not improve rice tolerance to salt, drought or cold, transgenic rice did exhibit greater heat tolerance than the wild type. High-throughput RNA-seq revealed extensive and dynamic transcriptome reprofiling in transgenic plants after heat stress. Moreover, the expression of some transcription factors and calcium ion-related genes showed specific upregulation in transgenic rice after heat stress, which might contribute to the enhanced heat tolerance. CONCLUSIONS This study provides preliminary guidance for using AtPLC9 to improve heat tolerance in cereal crops and, more broadly, highlights that heterologous transformation can assist with molecular breeding.
Collapse
Affiliation(s)
- Yuliang Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xinye Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xue Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Kang Gao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Weiwei Qi
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Huimin Ren
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Haorui Hu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- Shijiazhuang No.1 High School, Pingan North Street, Shijiazhuang, 050010, China
| | - Daye Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jiaoteng Bai
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
- South 2nd ring east road 20, Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, 050016, China.
| | - Shuzhi Zheng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
- South 2nd ring east road 20, Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, 050016, China.
| |
Collapse
|
25
|
Kiba A, Nakano M, Hosokawa M, Galis I, Nakatani H, Shinya T, Ohnishi K, Hikichi Y. Phosphatidylinositol-phospholipase C2 regulates pattern-triggered immunity in Nicotiana benthamiana. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5027-5038. [PMID: 32412590 PMCID: PMC7410187 DOI: 10.1093/jxb/eraa233] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/11/2020] [Indexed: 05/27/2023]
Abstract
Phospholipid signaling plays an important role in plant immune responses against phytopathogenic bacteria in Nicotiana benthamiana. Here, we isolated two phospholipase C2 (PLC2) orthologs in the N. benthamiana genome, designated as PLC2-1 and 2-2. Both NbPLC2-1 and NbPLC2-2 were expressed in most tissues and were induced by infiltration with bacteria and flg22. NbPLC2-1 and NbPLC2-2 (NbPLC2s) double-silenced plants showed a moderately reduced growth phenotype. The induction of the hypersensitive response was not affected, but bacterial growth and the appearance of bacterial wilt were accelerated in NbPLC2s-silenced plants when they were challenged with a virulent strain of Ralstonia solanacearum that was compatible with N. benthamiana. NbPLC2s-silenced plants showed reduced expression levels of NbPR-4, a marker gene for jasmonic acid signaling, and decreased jasmonic acid and jasmonoyl-L-isoleucine contents after inoculation with R. solanacearum. The induction of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) marker genes was reduced in NbPLC2s-silenced plants after infiltration with R. solanacearum or Pseudomonas fluorescens. Accordingly, the resistance induced by flg22 was compromised in NbPLC2s-silenced plants. In addition, the expression of flg22-induced PTI marker genes, the oxidative burst, stomatal closure, and callose deposition were all reduced in the silenced plants. Thus, NbPLC2s might have important roles in pre- and post-invasive defenses, namely in the induction of PTI.
Collapse
Affiliation(s)
- Akinori Kiba
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi, Japan
| | - Masahito Nakano
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi, Japan
- Okayama Prefectural Technology Center for Agriculture, Forestry, and Fisheries, 7549–1 Kibichuo-cho, Kaga-gun, Okayama, Japan
| | - Miki Hosokawa
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi, Japan
| | - Ivan Galis
- Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| | - Hiroko Nakatani
- Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| | - Tomonori Shinya
- Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| | - Kouhei Ohnishi
- Laboratory of Defense in Plant–Pathogen Interactions, Research Institute of Molecular Genetics, Kochi University, Nankoku, Kochi, Japan
| | - Yasufumi Hikichi
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi, Japan
| |
Collapse
|
26
|
Sagar S, Biswas DK, Singh A. Genomic and expression analysis indicate the involvement of phospholipase C family in abiotic stress signaling in chickpea (Cicer arietinum). Gene 2020; 753:144797. [DOI: 10.1016/j.gene.2020.144797] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/07/2020] [Accepted: 05/19/2020] [Indexed: 12/01/2022]
|
27
|
Wang X, Liu Y, Li Z, Gao X, Dong J, Yang M. Expression and evolution of the phospholipase C gene family in Brachypodium distachyon. Genes Genomics 2020; 42:1041-1053. [PMID: 32712839 DOI: 10.1007/s13258-020-00973-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Phospholipase C (PLC) is an enzyme that hydrolyzes phospholipids and plays an important role in plant growth and development. The Brachypodium distachyon is a model plant of Gramineae, but the research on PLC gene family of Brachypodium has not been reported. OBJECTIVE This study was performed to identify the PLC family gene in Brachypodium and to determine the expression profiles of PLCs under the abiotic stress. METHODS Complete genome sequences and transcriptomes of Brachypodium were downloaded from the PLAZA. The hidden Markov model-based profile of the conserved PLC domain was submitted as a query to identify all potential PLC domain sequences with HMMER software. Expression profiles of BdPLCs were obtained based on the qRT-PCR analysis. RESULTS There were 8 PLC genes in Brachypodium (BdPI-PLCs 1-4 and BdNPCs 1-4). All members of BdPI-PLC had three conserved domains of X, Y, and C2, and no EF-hand was found. All BdNPCs contained a phosphatase domain. BdPI-PLC genes were distributed on Chr1, Chr2 and Chr4, with different types and numbers of cis-regulatory elements in their respective gene promoters. Phylogenetic analysis showed that the genetic relationship between Brachypodium and rice was closer than Arabidopsis. The expression patterns of BdPI-PLC gene under abiotic stresses (drought, low temperature, high temperature and salt stress) were up-regulated, indicated their important roles in response to low temperature, high temperature, drought and salt stresses. CONCLUSIONS This study provides comprehensive information for the study of Brachypodium PLC gene family and lays a foundation for further research on the molecular mechanism of Brachypodium stress adaptation.
Collapse
Affiliation(s)
- Xianguo Wang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yang Liu
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zheng Li
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiang Gao
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Jian Dong
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mingming Yang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
28
|
Genome-Wide Identification and Expression Profile Analysis of the Phospholipase C Gene Family in Wheat ( Triticum aestivum L.). PLANTS 2020; 9:plants9070885. [PMID: 32668812 PMCID: PMC7412115 DOI: 10.3390/plants9070885] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/20/2022]
Abstract
Phospholipid-hydrolyzing enzymes include members of the phospholipase C (PLC) family that play important roles in regulating plant growth and responding to stress. In the present study, a systematic in silico analysis of the wheat PLC gene family revealed a total of 26 wheat PLC genes (TaPLCs). Phylogenetic and sequence alignment analyses divided the wheat PLC genes into 2 subfamilies, TaPI-PLC (containing the typical X, Y, and C2 domains) and TaNPC (containing a phosphatase domain). TaPLC expression patterns differed among tissues, organs, and under abiotic stress conditions. The transcript levels of 8 TaPLC genes were validated through qPCR analyses. Most of the TaPLC genes were sensitive to salt stress and were up-regulated rapidly, and some were sensitive to low temperatures and drought. Overexpression of TaPI-PLC1-2B significantly improved resistance to salt and drought stress in Arabidopsis, and the primary root of P1-OE was significantly longer than that of the wild type under stress conditions. Our results not only provide comprehensive information for understanding the PLC gene family in wheat, but can also provide a solid foundation for functional characterization of the wheat PLC gene family.
Collapse
|
29
|
Asim M, Ullah Z, Xu F, An L, Aluko OO, Wang Q, Liu H. Nitrate Signaling, Functions, and Regulation of Root System Architecture: Insights from Arabidopsis thaliana. Genes (Basel) 2020; 11:E633. [PMID: 32526869 PMCID: PMC7348705 DOI: 10.3390/genes11060633] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/22/2020] [Accepted: 05/28/2020] [Indexed: 01/07/2023] Open
Abstract
Root system architecture (RSA) is required for the acquisition of water and mineral nutrients from the soil. One of the essential nutrients, nitrate (NO3-), is sensed and transported by nitrate transporters NRT1.1 and NRT2.1 in the plants. Nitrate transporter 1.1 (NRT1.1) is a dual-affinity nitrate transporter phosphorylated at the T101 residue by calcineurin B-like interacting protein kinase (CIPKs); it also regulates the expression of other key nitrate assimilatory genes. The differential phosphorylation (phosphorylation and dephosphorylation) strategies and underlying Ca2+ signaling mechanism of NRT1.1 stimulate lateral root growth by activating the auxin transport activity and Ca2+-ANR1 signaling at the plasma membrane and the endosomes, respectively. NO3- additionally functions as a signal molecule that forms a signaling system, which consists of a vast array of transcription factors that control root system architecture that either stimulate or inhibit lateral and primary root development in response to localized and high nitrate (NO3-), respectively. This review elucidates the so-far identified nitrate transporters, nitrate sensing, signal transduction, and the key roles of nitrate transporters and its downstream transcriptional regulatory network in the primary and lateral root development in Arabidopsis thaliana under stress conditions.
Collapse
Affiliation(s)
- Muhammad Asim
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (M.A.); (Z.U.); (L.A.); (O.O.A.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Zia Ullah
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (M.A.); (Z.U.); (L.A.); (O.O.A.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Fangzheng Xu
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China;
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Lulu An
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (M.A.); (Z.U.); (L.A.); (O.O.A.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Oluwaseun Olayemi Aluko
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (M.A.); (Z.U.); (L.A.); (O.O.A.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Qian Wang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Haobao Liu
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (M.A.); (Z.U.); (L.A.); (O.O.A.)
| |
Collapse
|
30
|
Guo T, Wang S, Li Y, Yuan J, Xu L, Zhang T, Chao Y, Han L. Expression of a NGATHA1 Gene from Medicago truncatula Delays Flowering Time and Enhances Stress Tolerance. Int J Mol Sci 2020; 21:ijms21072384. [PMID: 32235619 PMCID: PMC7177866 DOI: 10.3390/ijms21072384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 12/02/2022] Open
Abstract
Shoot branching is one of the most variable determinants of crop yield, and the signaling pathways of plant branches have become a hot research topic. As an important transcription factor in the B3 family, NGATHA1 (NGA1), plays an important role in regulating plant lateral organ development and hormone synthesis and transport, but few studies of the role of this gene in the regulation of plant growth and stress tolerance have been reported. In this study, the NGA1 gene was isolated from Medicago truncatula (Mt) and its function was characterized. The cis-acting elements upstream of the 5′ end of MtNGA1 and the expression pattern of MtNGA1 were analyzed, and the results indicated that the gene may act as a regulator of stress resistance. A plant expression vector was constructed and transgenic Arabidopsis plants were obtained. Transgenic Arabidopsis showed delayed flowering time and reduced branching phenotypes. Genes involved in the regulation of branching and flowering were differentially expressed in transgenic plants compared with wild-type plants. Furthermore, transgenic plants demonstrated strong tolerances to salt- and mannitol-induced stresses, which may be due to the upregulated expression of NCED3 (NINE-CIS-EPOXYCAROTENOID DIOXYGENASE 3) by the MtNGA1 gene. These results provide useful information for the exploration and genetic modification use of MtNGA1 in the future.
Collapse
Affiliation(s)
- Tao Guo
- College of Grassland Science, Beijing Forestry University, Beijing 100083, China; (T.G.); (Y.L.); (J.Y.); (L.X.); (T.Z.)
| | - Shumin Wang
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China;
| | - Yinruizhi Li
- College of Grassland Science, Beijing Forestry University, Beijing 100083, China; (T.G.); (Y.L.); (J.Y.); (L.X.); (T.Z.)
| | - Jianbo Yuan
- College of Grassland Science, Beijing Forestry University, Beijing 100083, China; (T.G.); (Y.L.); (J.Y.); (L.X.); (T.Z.)
| | - Lixin Xu
- College of Grassland Science, Beijing Forestry University, Beijing 100083, China; (T.G.); (Y.L.); (J.Y.); (L.X.); (T.Z.)
| | - Tiejun Zhang
- College of Grassland Science, Beijing Forestry University, Beijing 100083, China; (T.G.); (Y.L.); (J.Y.); (L.X.); (T.Z.)
| | - Yuehui Chao
- College of Grassland Science, Beijing Forestry University, Beijing 100083, China; (T.G.); (Y.L.); (J.Y.); (L.X.); (T.Z.)
- Correspondence: (Y.C.); (L.H.); Tel.: +86-10-6233-6399 (Y.C.); +86-10-6233-6399 (L.H.)
| | - Liebao Han
- College of Grassland Science, Beijing Forestry University, Beijing 100083, China; (T.G.); (Y.L.); (J.Y.); (L.X.); (T.Z.)
- Correspondence: (Y.C.); (L.H.); Tel.: +86-10-6233-6399 (Y.C.); +86-10-6233-6399 (L.H.)
| |
Collapse
|
31
|
Iqbal S, Ali U, Fadlalla T, Li Q, Liu H, Lu S, Guo L. Genome wide characterization of phospholipase A & C families and pattern of lysolipids and diacylglycerol changes under abiotic stresses in Brassica napus L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 147:101-112. [PMID: 31855816 DOI: 10.1016/j.plaphy.2019.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
Plant phospholipase A (PLA) and C (PLC) families are least explored in terms of structure, diversity and their roles in membrane lipid remodeling under stress conditions. In this study, we performed gene family analysis, determined gene expression in different tissues and monitored transcriptional regulation of patatin-related PLA family and PLC family in oil crop Brassica napus under dehydration, salt, abscisic acid and cold stress. The identified 29 BnapPLA genes and 40 BnaPLC genes shared high similarities with Arabidopsis pPLAs and PLCs, respectively. This study highlighted the expression pattern of BnapPLAs and BnaPLCs in different tissues and their expression in response to abiotic stresses in Brassica napus. The results revealed that several members of BnapPLA3, PI-PLC1/2 and NPC1 were actively regulated by abiotic stresses. Lipid changes at different time points under stress conditions were also measured. Lipid profiling revealed that the level of lysophospholipids and diacylglycerol (DAG) showed a varied pattern of changes under different abiotic stress treatments. The change of lipids correlated with the transcriptional regulation of a few specific members of pPLA and PLC families. Our study suggested that A and C-type phospholipases in Brassica napus may have diverse physiological and regulatory roles in abiotic stress response and tolerance.
Collapse
Affiliation(s)
- Sidra Iqbal
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China; Department of Agriculture, University of Swabi, Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Usman Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tarig Fadlalla
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hongbo Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
32
|
Wang S, Guo T, Wang Z, Kang J, Yang Q, Shen Y, Long R. Expression of Three Related to ABI3/VP1 Genes in Medicago truncatula Caused Increased Stress Resistance and Branch Increase in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:611. [PMID: 32523590 PMCID: PMC7261895 DOI: 10.3389/fpls.2020.00611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/21/2020] [Indexed: 05/18/2023]
Abstract
Related to ABSCISIC ACID INSENSITIVE3 (ABI3)/VIVIPAROUS1(VP1)(RAV) transcription factors, which encode a B3 domain and an APETALA2(AP2) domain, belong to the APETALA2/ethylene-responsive element binding factor(AP2/ERF) or B3 superfamily and play an important role in regulating plant growth and development and responding to abiotic stress. Although there have been many functional studies on RAV, the functional differences between RAVs are not clear. Therefore, in this study, the functional differences of RAVs of Medicago truncatula were analyzed. Based on sequence data from the plant transcription factor database and the M. truncatula genome database, we cloned three RAV genes from M. truncatula, named MtRAV1, MtRAV2, and MtRAV3. The cis-acting elements of these genes promoters were predicted, and the expression patterns of MtRAVs under exogenous conditions (4°C, NaCl, Polyethylene Glycol, Abscisic acid) were analyzed. MtRAVs transgenic Arabidopsis thaliana were obtained and subjected to adversity treatment. Subcellular localization results indicated that MtRAVs were located in the nucleus. A much lower expression level was observed for MtRAV3 than the levels of MtRAV1 and MtRAV2 in M. truncatula for growth in normal conditions, but under 4°C or PEG and NaCl treatment, the expression level of MtRAV3 was significantly increased. Only the MtRAV3 overexpression transgenic plants showed strong cold resistance, but the overexpressed MtRAV1 and MtRAV2 transgenic plants showed no difference from wild type plants. MtRAV transgenic plants exhibited similar response to exogenous mannitol, NaCl, and ABA, and the expression of some adverse-related marker genes were up-regulated, such as COLD REGULATED 414 THYLAKOID MEMBRANE 1 (COR414-TM1), Arabidopsis thaliana drought-induced 21 (AtDI21), and Arabidopsis thaliana phosphatidylinositol-specific phospholipase C (ATPLC). MtRAVs transgenic Arabidopsis thaliana exhibited increasing of branch number. These results indicated that there was some function redundancy during MtRAVs proteins of M. truncatula, and MtRAV3 has increased function compared to the other two genes. The results of this study should provide the foundation for future application of MtRAVs in legumes.
Collapse
Affiliation(s)
- Shumin Wang
- College of Agro-Grassland Sciences, Nanjing Agricultural University, Nanjing, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tao Guo
- College of Grassland Science, Beijing Forestry University, Beijing, China
| | - Zhen Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junmei Kang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingchuan Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yixin Shen
- College of Agro-Grassland Sciences, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Yixin Shen,
| | - Ruicai Long
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Ruicai Long,
| |
Collapse
|
33
|
Kong XM, Zhou Q, Luo F, Wei BD, Wang YJ, Sun HJ, Zhao YB, Ji SJ. Transcriptome analysis of harvested bell peppers (Capsicum annuum L.) in response to cold stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:314-324. [PMID: 30927694 DOI: 10.1016/j.plaphy.2019.03.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/27/2019] [Accepted: 03/23/2019] [Indexed: 05/22/2023]
Abstract
Bell peppers are valued for their plentiful vitamin C and nutritional content. Pepper fruits are susceptible to cold storage, which leads to chilling injury (CI); however, the crucial metabolic product and molecular basis response to cold stress have not been elucidated definitely yet. To comprehensively understand the gene regulation network and CI mechanisms in response to cold stress on a molecular level, we performed high-throughput RNA-Seq analysis to investigate genome-wide expression profiles in bell peppers at different storage temperatures (4 °C and 10 °C). A total of 61.55 Gb of clean data were produced; 3863 differentially expressed genes (DEGs) including 1669 up-regulated and 2194 down-regulated were annotated and classified between the CI group and control. Together, a total of 41 cold-induced transcription factor families comprising 250 transcription factors (TFs) were identified. Notably, numerous DEGs involved in biomembrane stability, dehydration and osmoregulation, and plant hormone signal transduction processes were discovered. The transcriptional level of 20 DEGs was verified by reverse transcription quantitative polymerase chain reaction (RT-qPCR). Our results present transcriptome profiles of bell peppers in response to cold stress; the data obtained may be useful for the identification of key candidate genes and elucidation of the mechanisms underlying membrane damage during chilling injury.
Collapse
Affiliation(s)
- Xi-Man Kong
- Department of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China.
| | - Qian Zhou
- Department of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China.
| | - Feng Luo
- Department of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China.
| | - Bao-Dong Wei
- Department of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China.
| | - Ya-Juan Wang
- Department of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China.
| | - Hua-Jun Sun
- Department of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China.
| | - Ying-Bo Zhao
- Department of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China.
| | - Shu-Juan Ji
- Department of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China.
| |
Collapse
|
34
|
Chen X, Li L, Xu B, Zhao S, Lu P, He Y, Ye T, Feng YQ, Wu Y. Phosphatidylinositol-specific phospholipase C2 functions in auxin-modulated root development. PLANT, CELL & ENVIRONMENT 2019; 42:1441-1457. [PMID: 30496625 DOI: 10.1111/pce.13492] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 11/08/2018] [Accepted: 11/24/2018] [Indexed: 05/11/2023]
Abstract
Nine phosphatidylinositol-specific phospholipases C (PLCs) have been identified in the Arabidopsis genome; among the importance of PLC2 in reproductive development is significant. However, the role of PLC2 in vegetative development such as in root growth is elusive. Here, we report that plc2 mutants displayed multiple auxin-defective phenotypes in root development, including short primary root, impaired root gravitropism, and inhibited root hair growth. The DR5:GUS expression and the endogenous indole-3-acetic acid (IAA) content, as well as the responses of a set of auxin-related genes to exogenous IAA treatment, were all decreased in plc2 seedlings, suggesting the influence of PLC2 on auxin accumulation and signalling. The root elongation of plc2 mutants was less sensitive to the high concentration of exogenous auxins, and the application of 1-naphthaleneacetic acid or the auxin transport inhibitor N-1-naphthylphthalamic acid could rescue the root hair growth of plc2 mutants. In addition, the PIN2 polarity and cycling in plc2 root epidermis cells were altered. These results demonstrate a critical role of PLC2 in auxin-mediated root development in Arabidopsis, in which PLC2 influences the polar distribution of PIN2.
Collapse
Affiliation(s)
- Xi Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lin Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Buxian Xu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Shujuan Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Piaoying Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yuqing He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Tiantian Ye
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, China
| | - Yan Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
35
|
Takáč T, Novák D, Šamaj J. Recent Advances in the Cellular and Developmental Biology of Phospholipases in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:362. [PMID: 31024579 PMCID: PMC6459882 DOI: 10.3389/fpls.2019.00362] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/08/2019] [Indexed: 05/05/2023]
Abstract
Phospholipases (PLs) are lipid-hydrolyzing enzymes known to have diverse signaling roles during plant abiotic and biotic stress responses. They catalyze lipid remodeling, which is required to generate rapid responses of plants to environmental cues. Moreover, they produce second messenger molecules, such as phosphatidic acid (PA) and thus trigger or modulate signaling cascades that lead to changes in gene expression. The roles of phospholipases in plant abiotic and biotic stress responses have been intensively studied. Nevertheless, emerging evidence suggests that they also make significant contributions to plants' cellular and developmental processes. In this mini review, we summarized recent advances in the study of the cellular and developmental roles of phospholipases in plants.
Collapse
Affiliation(s)
| | | | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| |
Collapse
|
36
|
Egan AN, Moore S, Stellari GM, Kang BC, Jahn MM. Tandem gene duplication and recombination at the AT3 locus in the Solanaceae, a gene essential for capsaicinoid biosynthesis in Capsicum. PLoS One 2019; 14:e0210510. [PMID: 30673734 PMCID: PMC6343889 DOI: 10.1371/journal.pone.0210510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/23/2018] [Indexed: 01/18/2023] Open
Abstract
Capsaicinoids are compounds synthesized exclusively in the genus Capsicum and are responsible for the burning sensation experienced when consuming hot pepper fruits. To date, only one gene, AT3, a member of the BAHD family of acyltransferases, is currently known to have a measurable quantitative effect on capsaicinoid biosynthesis. Multiple AT3 paralogs exist in the Capsicum genome, but their evolutionary relationships have not been characterized well. Recessive alleles at this locus result in absence of capsaicinoids in pepper fruit. To explore the evolution of AT3 in Capsicum and the Solanaceae, we sequenced this gene from diverse Capsicum genotypes and species, along with a number of representative solanaceous taxa. Our results revealed that the coding region of AT3 is highly conserved throughout the family. Further, we uncovered a tandem duplication that predates the diversification of the Solanaceae taxa sampled in this study. This pair of tandem duplications were designated AT3-1 and AT3-2. Sequence alignments showed that the AT3-2 locus, a pseudogene, retains regions of amino acid conservation relative to AT3-1. Gene tree estimation demonstrated that AT3-1 and AT3-2 form well supported, distinct clades. In C. rhomboideum, a non-pungent basal Capsicum species, we describe a recombination event between AT3-1 and AT3-2 that modified the putative active site of AT3-1, also resulting in a frame-shift mutation in the second exon. Our data suggest that duplication of the original AT3 representative, in combination with divergence and pseudogene degeneration, may account for the patterns of sequence divergence and punctuated amino acid conservation observed in this study. Further, an early rearrangement in C. rhomboidium could account for the absence of pungency in this Capsicum species.
Collapse
Affiliation(s)
- Ashley N. Egan
- Computational Biology Institute, George Washington University, Ashburn, Virginia, United States of America
| | - Shanna Moore
- Department of Physics, Howard Hughes Medical Institute, Cornell University, Ithaca, New York, United States of America
| | - Giulia Marina Stellari
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
| | - Byoung-Cheorl Kang
- Department of Horticulture, Seoul National University, Seoul, Republic of Korea
| | - Molly M. Jahn
- Department of Agronomy, University of Wisconsin-Madison, USDA FPL, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
37
|
Physiological Functions of Phosphoinositide-Modifying Enzymes and Their Interacting Proteins in Arabidopsis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [PMID: 30499079 DOI: 10.1007/5584_2018_295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
The integrity of cellular membranes is maintained not only by structural phospholipids such as phosphatidylcholine and phosphatidylethanolamine, but also by regulatory phospholipids, phosphatidylinositol phosphates (phosphoinositides). Although phosphoinositides constitute minor membrane phospholipids, they exert a wide variety of regulatory functions in all eukaryotic cells. They act as key markers of membrane surfaces that determine the biological integrity of cellular compartments to recruit various phosphoinositide-binding proteins. This review focuses on recent progress on the significance of phosphoinositides, their modifying enzymes, and phosphoinositide-binding proteins in Arabidopsis.
Collapse
|
38
|
van Wijk R, Zhang Q, Zarza X, Lamers M, Marquez FR, Guardia A, Scuffi D, García-Mata C, Ligterink W, Haring MA, Laxalt AM, Munnik T. Role for Arabidopsis PLC7 in Stomatal Movement, Seed Mucilage Attachment, and Leaf Serration. FRONTIERS IN PLANT SCIENCE 2018; 9:1721. [PMID: 30542361 PMCID: PMC6278229 DOI: 10.3389/fpls.2018.01721] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/05/2018] [Indexed: 05/24/2023]
Abstract
Phospholipase C (PLC) has been suggested to play important roles in plant stress and development. To increase our understanding of PLC signaling in plants, we have started to analyze knock-out (KO), knock-down (KD) and overexpression mutants of Arabidopsis thaliana, which contains nine PLCs. Earlier, we characterized PLC2, PLC3 and PLC5. Here, the role of PLC7 is functionally addressed. Promoter-GUS analyses revealed that PLC7 is specifically expressed in the phloem of roots, leaves and flowers, and is also present in trichomes and hydathodes. Two T-DNA insertion mutants were obtained, i.e., plc7-3 being a KO- and plc7-4 a KD line. In contrast to earlier characterized phloem-expressed PLC mutants, i.e., plc3 and plc5, no defects in primary- or lateral root development were found for plc7 mutants. Like plc3 mutants, they were less sensitive to ABA during stomatal closure. Double-knockout plc3 plc7 lines were lethal, but plc5 plc7 (plc5/7) double mutants were viable, and revealed several new phenotypes, not observed earlier in the single mutants. These include a defect in seed mucilage, enhanced leaf serration, and an increased tolerance to drought. Overexpression of PLC7 enhanced drought tolerance too, similar to what was earlier found for PLC3-and PLC5 overexpression. In vivo 32Pi-labeling of seedlings and treatment with sorbitol to mimic drought stress, revealed stronger PIP2 responses in both drought-tolerant plc5/7 and PLC7-OE mutants. Together, these results show novel functions for PLC in plant stress and development. Potential molecular mechanisms are discussed.
Collapse
Affiliation(s)
- Ringo van Wijk
- Section Plant Physiology, University of Amsterdam, Amsterdam, Netherlands
- Section Plant Cell Biology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Qianqian Zhang
- Section Plant Physiology, University of Amsterdam, Amsterdam, Netherlands
- Section Plant Cell Biology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Xavier Zarza
- Section Plant Physiology, University of Amsterdam, Amsterdam, Netherlands
- Section Plant Cell Biology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Mart Lamers
- Section Plant Physiology, University of Amsterdam, Amsterdam, Netherlands
| | | | - Aisha Guardia
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Denise Scuffi
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Carlos García-Mata
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Wilco Ligterink
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, Netherlands
| | - Michel A. Haring
- Section Plant Physiology, University of Amsterdam, Amsterdam, Netherlands
| | - Ana M. Laxalt
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Teun Munnik
- Section Plant Physiology, University of Amsterdam, Amsterdam, Netherlands
- Section Plant Cell Biology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
39
|
Zhang Q, van Wijk R, Zarza X, Shahbaz M, van Hooren M, Guardia A, Scuffi D, García-Mata C, Van den Ende W, Hoffmann-Benning S, Haring MA, Laxalt AM, Munnik T. Knock-Down of Arabidopsis PLC5 Reduces Primary Root Growth and Secondary Root Formation While Overexpression Improves Drought Tolerance and Causes Stunted Root Hair Growth. PLANT & CELL PHYSIOLOGY 2018; 59:2004-2019. [PMID: 30107538 DOI: 10.1093/pcp/pcy120] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/14/2018] [Indexed: 05/12/2023]
Abstract
Phospholipase C (PLC) is a well-known signaling enzyme in metazoans that hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2) to produce inositol 1,4,5-trisphosphate and diacylglycerol as second messengers involved in mutiple processes. Plants contain PLC too, but relatively little is known about its function there. The model system Arabidopsis thaliana contains nine PLC genes. Reversed genetics have implicated several roles for PLCs in plant development and stress signaling. Here, PLC5 is functionally addressed. Promoter-β-glucuronidase (GUS) analyses revealed expression in roots, leaves and flowers, predominantly in vascular tissue, most probably phloem companion cells, but also in guard cells, trichomes and root apical meristem. Only one plc5-1 knock-down mutant was obtained, which developed normally but grew more slowly and exhibited reduced primary root growth and decreased lateral root numbers. These phenotypes could be complemented by expressing the wild-type gene behind its own promoter. Overexpression of PLC5 (PLC5-OE) using the UBQ10 promoter resulted in reduced primary and secondary root growth, stunted root hairs, decreased stomatal aperture and improved drought tolerance. PLC5-OE lines exhibited strongly reduced phosphatidylinositol 4-monophosphate (PIP) and PIP2 levels and increased amounts of phosphatidic acid, indicating enhanced PLC activity in vivo. Reduced PIP2 levels and stunted root hair growth of PLC5-OE seedlings could be recovered by inducible overexpression of a root hair-specific PIP 5-kinase, PIP5K3. Our results show that PLC5 is involved in primary and secondary root growth and that its overexpression improves drought tolerance. Independently, we provide new evidence that PIP2 is essential for the polar tip growth of root hairs.
Collapse
Affiliation(s)
- Qianqian Zhang
- Section Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
- Section Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
| | - Ringo van Wijk
- Section Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
- Section Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
| | - Xavier Zarza
- Section Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
- Section Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
| | - Muhammad Shahbaz
- Section Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
| | - Max van Hooren
- Section Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
| | - Aisha Guardia
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Denise Scuffi
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Carlos García-Mata
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, University of Leuven, Leuven, Belgium
| | - Susanne Hoffmann-Benning
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Michel A Haring
- Section Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
| | - Ana M Laxalt
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Teun Munnik
- Section Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
- Section Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
| |
Collapse
|
40
|
Li NN, Yue C, Cao HL, Qian WJ, Hao XY, Wang YC, Wang L, Ding CQ, Wang XC, Yang YJ. Transcriptome sequencing dissection of the mechanisms underlying differential cold sensitivity in young and mature leaves of the tea plant (Camellia sinensis). JOURNAL OF PLANT PHYSIOLOGY 2018; 224-225:144-155. [PMID: 29642051 DOI: 10.1016/j.jplph.2018.03.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 03/27/2018] [Accepted: 03/27/2018] [Indexed: 06/08/2023]
Abstract
The tea plant originated in tropical and subtropical regions and experiences considerable challenges during cold winters and late spring frosts. After short-term chilling stress, young leaves of tea plants exhibit browning, a significant increase in electrolyte leakage and a marked decrease in the maximal photochemical efficiency of photosystem II (Fv/Fm) compared with mature leaves. To identify the mechanisms underlying the different chilling tolerance between young and mature leaves of the tea plant, we used Illumina RNA-Seq technology to analyse the transcript expression profiles of young and mature leaves exposed to temperatures of 20 °C, 4 °C, and 0 °C for 4 h. A total of 45.70-72.93 million RNA-Seq raw reads were obtained and then de novo assembled into 228,864 unigenes with an average length of 601 bp and an N50 of 867 bp. In addition, the differentially expressed unigenes were identified via Venn diagram analyses for paired comparisons of young and mature leaves. Functional classifications based on Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that the up-regulated differentially expressed genes were predominantly related to the cellular component terms of chloroplasts and cell membranes, the biological process term of oxidation-reduction process as well as the pathway terms of glutathione metabolism and photosynthesis, suggesting that these components and pathways may contribute to the cold hardiness of mature leaves. Conversely, the inhibited expression of genes related to cell membranes, carotenoid metabolism, photosynthesis, and ROS detoxification in young leaves under cold conditions might lead to the disintegration of cell membranes and oxidative damage to the photosynthetic apparatus. Further quantitative real-time PCR testing validated the reliability of our RNA-Seq results. This work provides valuable information for understanding the mechanisms underlying the cold susceptibility of young tea plant leaves and for breeding tea cultivars with superior frost resistance via the genetic manipulation of antioxidant enzymes.
Collapse
Affiliation(s)
- Na-Na Li
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
| | - Chuan Yue
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Department of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hong-Li Cao
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Department of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wen-Jun Qian
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Xin-Yuan Hao
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
| | - Yu-Chun Wang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
| | - Lu Wang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
| | - Chang-Qing Ding
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
| | - Xin-Chao Wang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China.
| | - Ya-Jun Yang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China.
| |
Collapse
|
41
|
Zhang Q, van Wijk R, Shahbaz M, Roels W, Schooten BV, Vermeer JEM, Zarza X, Guardia A, Scuffi D, García-Mata C, Laha D, Williams P, Willems LAJ, Ligterink W, Hoffmann-Benning S, Gillaspy G, Schaaf G, Haring MA, Laxalt AM, Munnik T. Arabidopsis Phospholipase C3 is Involved in Lateral Root Initiation and ABA Responses in Seed Germination and Stomatal Closure. PLANT & CELL PHYSIOLOGY 2018; 59:469-486. [PMID: 29309666 DOI: 10.1093/pcp/pcx194] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/01/2017] [Indexed: 05/10/2023]
Abstract
Phospholipase C (PLC) is well known for its role in animal signaling, where it generates the second messengers, inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG), by hydrolyzing the minor phospholipid, phosphatidylinositol 4,5-bisphosphate (PIP2), upon receptor stimulation. In plants, PLC's role is still unclear, especially because the primary targets of both second messengers are lacking, i.e. the ligand-gated Ca2+ channel and protein kinase C, and because PIP2 levels are extremely low. Nonetheless, the Arabidopsis genome encodes nine PLCs. We used a reversed-genetic approach to explore PLC's function in Arabidopsis, and report here that PLC3 is required for proper root development, seed germination and stomatal opening. Two independent knock-down mutants, plc3-2 and plc3-3, were found to exhibit reduced lateral root densities by 10-20%. Mutant seeds germinated more slowly but were less sensitive to ABA to prevent germination. Guard cells of plc3 were also compromised in ABA-dependent stomatal closure. Promoter-β-glucuronidase (GUS) analyses confirmed PLC3 expression in guard cells and germinating seeds, and revealed that the majority is expressed in vascular tissue, most probably phloem companion cells, in roots, leaves and flowers. In vivo 32Pi labeling revealed that ABA stimulated the formation of PIP2 in germinating seeds and guard cell-enriched leaf peels, which was significantly reduced in plc3 mutants. Overexpression of PLC3 had no effect on root system architecture or seed germination, but increased the plant's tolerance to drought. Our results provide genetic evidence for PLC's involvement in plant development and ABA signaling, and confirm earlier observations that overexpression increases drought tolerance. Potential molecular mechanisms for the above observations are discussed.
Collapse
Affiliation(s)
- Qianqian Zhang
- Swammerdam Institute for Life Sciences, section Plant Physiology, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
- Swammerdam Institute for Life Sciences, section Plant Cell Biology, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Ringo van Wijk
- Swammerdam Institute for Life Sciences, section Plant Physiology, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
- Swammerdam Institute for Life Sciences, section Plant Cell Biology, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Muhammad Shahbaz
- Swammerdam Institute for Life Sciences, section Plant Physiology, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Wendy Roels
- Swammerdam Institute for Life Sciences, section Plant Physiology, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Bas van Schooten
- Swammerdam Institute for Life Sciences, section Plant Physiology, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Joop E M Vermeer
- Swammerdam Institute for Life Sciences, section Plant Physiology, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| | - Xavier Zarza
- Swammerdam Institute for Life Sciences, section Plant Physiology, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
- Swammerdam Institute for Life Sciences, section Plant Cell Biology, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Aisha Guardia
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Denise Scuffi
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Carlos García-Mata
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Debabrata Laha
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, University of Bonn, Bonn, Germany
| | - Phoebe Williams
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Leo A J Willems
- Laboratory of Plant Physiology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Wilco Ligterink
- Laboratory of Plant Physiology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Susanne Hoffmann-Benning
- Departement of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Glenda Gillaspy
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Gabriel Schaaf
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, University of Bonn, Bonn, Germany
| | - Michel A Haring
- Swammerdam Institute for Life Sciences, section Plant Physiology, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Ana M Laxalt
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Teun Munnik
- Swammerdam Institute for Life Sciences, section Plant Physiology, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
- Swammerdam Institute for Life Sciences, section Plant Cell Biology, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| |
Collapse
|
42
|
Xia K, Wang B, Zhang J, Li Y, Yang H, Ren D. Arabidopsis phosphoinositide-specific phospholipase C 4 negatively regulates seedling salt tolerance. PLANT, CELL & ENVIRONMENT 2017; 40:1317-1331. [PMID: 28102910 DOI: 10.1111/pce.12918] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 01/10/2017] [Accepted: 01/13/2017] [Indexed: 05/20/2023]
Abstract
Previous physiological and pharmacological studies have suggested that the activity of phosphoinositide-specific phospholipase C (PI-PLC) plays an important role in regulating plant salt stress responses by altering the intracellular Ca2+ concentration. However, the individual members of plant PLCs involved in this process need to be identified. Here, the function of AtPLC4 in the salt stress response of Arabidopsis seedlings was analysed. plc4 mutant seedlings showed hyposensitivity to salt stress compared with Col-0 wild-type seedlings, and the salt hyposensitive phenotype could be complemented by the expression of native promoter-controlled AtPLC4. Transgenic seedlings with AtPLC4 overexpression (AtPLC4 OE) exhibited a salt-hypersensitive phenotype, while transgenic seedlings with its inactive mutant expression (AtPLC4m OE) did not exhibit this phenotype. Using aequorin as a Ca2+ indicator in plc4 mutant and AtPLC4 OE seedlings, AtPLC4 was shown to positively regulate the salt-induced Ca2+ increase. The salt-hypersensitive phenotype of AtPLC4 OE seedlings was partially rescued by EGTA. An analysis of salt-responsive genes revealed that the transcription of RD29B, MYB15 and ZAT10 was inversely regulated in plc4 mutant and AtPLC4 OE seedlings. Our findings suggest that AtPLC4 negatively regulates the salt tolerance of Arabidopsis seedlings, and Ca2+ may be involved in regulating this process.
Collapse
Affiliation(s)
- Keke Xia
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Bo Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jiewei Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuan Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Hailian Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Dongtao Ren
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
43
|
Zhang B, Wang Y, Liu JY. Genome-wide identification and characterization of phospholipase C gene family in cotton (Gossypium spp.). SCIENCE CHINA-LIFE SCIENCES 2017; 61:88-99. [PMID: 28547583 DOI: 10.1007/s11427-017-9053-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/01/2017] [Indexed: 01/05/2023]
Abstract
Phospholipase C (PLC) are important regulatory enzymes involved in several lipid and Ca2+-dependent signaling pathways. Previous studies have elucidated the versatile roles of PLC genes in growth, development and stress responses of many plants, however, the systematic analyses of PLC genes in the important fiber-producing plant, cotton, are still deficient. In this study, through genome-wide survey, we identified twelve phosphatidylinositol-specific PLC (PI-PLC) and nine non-specific PLC (NPC) genes in the allotetraploid upland cotton Gossypium hirsutum and nine PI-PLC and six NPC genes in two diploid cotton G. arboretum and G.raimondii, respectively. The PI-PLC and NPC genes of G. hirsutum showed close phylogenetic relationship with their homologous genes in the diploid cottons and Arabidopsis. Segmental and tandem duplication contributed greatly to the formation of the gene family. Expression profiling indicated that few of the PLC genes are constitutely expressed, whereas most of the PLC genes are preferentially expressed in specific tissues and abiotic stress conditions. Promoter analyses further implied that the expression of these PLC genes might be regulated by MYB transcription factors and different phytohormones. These results not only suggest an important role of phospholipase C members in cotton plant development and abiotic stress response but also provide good candidate targets for future molecular breeding of superior cotton cultivars.
Collapse
Affiliation(s)
- Bing Zhang
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yanmei Wang
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jin-Yuan Liu
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
44
|
Undurraga SF, Ibarra-Henríquez C, Fredes I, Álvarez JM, Gutiérrez RA. Nitrate signaling and early responses in Arabidopsis roots. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2541-2551. [PMID: 28369507 PMCID: PMC5854014 DOI: 10.1093/jxb/erx041] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/25/2017] [Indexed: 05/18/2023]
Abstract
Nitrogen (N) is an essential macronutrient that impacts many aspects of plant physiology, growth, and development. Besides its nutritional role, N nutrient and metabolites act as signaling molecules that regulate the expression of a wide range of genes and biological processes. In this review, we describe recent advances in the understanding of components of the nitrate signaling pathway. Recent evidence posits that in one nitrate signaling pathway, nitrate sensed by NRT1.1 activates a phospholipase C activity that is necessary for increased cytosolic calcium levels. The nitrate-elicited calcium increase presumably activates calcium sensors, kinases, or phosphatases, resulting in changes in expression of primary nitrate response genes. Consistent with this model, nitrate treatments elicit proteome-wide changes in phosphorylation patterns in a wide range of proteins, including transporters, metabolic enzymes, kinases, phosphatases, and other regulatory proteins. Identifying and characterizing the function of the different players involved in this and other nitrate signaling pathways and their functional relationships is the next step to understand N responses in plants.
Collapse
Affiliation(s)
- Soledad F Undurraga
- FONDAP Center for Genome Regulation. Millennium Nucleus Center for Plant Systems and Synthetic Biology. Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O’Higgins, Santiago, Chile
| | - Catalina Ibarra-Henríquez
- FONDAP Center for Genome Regulation. Millennium Nucleus Center for Plant Systems and Synthetic Biology. Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O’Higgins, Santiago, Chile
| | - Isabel Fredes
- FONDAP Center for Genome Regulation. Millennium Nucleus Center for Plant Systems and Synthetic Biology. Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O’Higgins, Santiago, Chile
| | - José Miguel Álvarez
- FONDAP Center for Genome Regulation. Millennium Nucleus Center for Plant Systems and Synthetic Biology. Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O’Higgins, Santiago, Chile
| | - Rodrigo A Gutiérrez
- FONDAP Center for Genome Regulation. Millennium Nucleus Center for Plant Systems and Synthetic Biology. Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O’Higgins, Santiago, Chile
| |
Collapse
|
45
|
Di Fino LM, D'Ambrosio JM, Tejos R, van Wijk R, Lamattina L, Munnik T, Pagnussat GC, Laxalt AM. Arabidopsis phosphatidylinositol-phospholipase C2 (PLC2) is required for female gametogenesis and embryo development. PLANTA 2017; 245:717-728. [PMID: 27999988 DOI: 10.1007/s00425-016-2634-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/02/2016] [Indexed: 05/20/2023]
Abstract
AtPLC2 is an essential gene in Arabidopsis, since it is required for female gametogenesis and embryo development. AtPLC2 might play a role in cell division during embryo-sac development and early embryogenesis. Phosphoinositide-specific phospholipase C (PI-PLC) plays an important role in signal transduction during plant development and in the response to various biotic- and abiotic stresses. The Arabidopsis PI-PLC gene family is composed of nine members, named PLC1 to PLC9. Here, we report that PLC2 is involved in female gametophyte development and early embryogenesis. Using two Arabidopsis allelic T-DNA insertion lines with different phenotypic penetrations, we observed both female gametophytic defects and aberrant embryos. For the plc2-1 mutant (Ws background), no homozygous plants could be recovered in the offspring from self-pollinated plants. Nonetheless, plc2-1 hemizygous mutants are affected in female gametogenesis, showing embryo sacs arrested at early developmental stages. Allelic hemizygous plc2-2 mutant plants (Col-0 background) present reduced seed set and embryos arrested at the pre-globular stage with abnormal patterns of cell division. A low proportion (0.8%) of plc2-2 homozygous mutants was found to escape lethality and showed morphological defects and disrupted megagametogenesis. PLC2-promoter activity was observed during early megagametogenesis, and after fertilization in the embryo proper. Immunolocalization studies in early stage embryos revealed that PLC2 is restricted to the plasma membrane. Altogether, these results establish a role for PLC2 in both reproductive- and embryo development, presumably by controlling mitosis and/or the formation of cell-division planes.
Collapse
Affiliation(s)
- Luciano M Di Fino
- Instituto de Investigaciones Biológicas IIB-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata, 7600, Mar del Plata, Argentina
| | - Juan Martín D'Ambrosio
- Instituto de Investigaciones Biológicas IIB-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata, 7600, Mar del Plata, Argentina
| | - Ricardo Tejos
- Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, 111093, Iquique, Chile
- Centro de Biología Molecular Vegetal, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, 7800003, Santiago, Chile
| | - Ringo van Wijk
- Swammerdam Institute for Life Sciences, Section Plant Cell Biology, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - Lorenzo Lamattina
- Instituto de Investigaciones Biológicas IIB-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata, 7600, Mar del Plata, Argentina
| | - Teun Munnik
- Swammerdam Institute for Life Sciences, Section Plant Cell Biology, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - Gabriela C Pagnussat
- Instituto de Investigaciones Biológicas IIB-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata, 7600, Mar del Plata, Argentina.
| | - Ana M Laxalt
- Instituto de Investigaciones Biológicas IIB-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata, 7600, Mar del Plata, Argentina.
| |
Collapse
|
46
|
Abd-El-Haliem AM, Joosten MHAJ. Plant phosphatidylinositol-specific phospholipase C at the center of plant innate immunity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:164-179. [PMID: 28097830 DOI: 10.1111/jipb.12520] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/09/2017] [Indexed: 05/20/2023]
Abstract
Understanding plant resistance to pathogenic microbes requires detailed information on the molecular mechanisms controlling the execution of plant innate immune responses. A growing body of evidence places phosphoinositide-specific phospholipase C (PI-PLC) enzymes immediately downstream of activated immune receptors, well upstream of the initiation of early defense responses. An increase of the cytoplasmic levels of free Ca2+ , lowering of the intercellular pH and the oxidative burst are a few examples of such responses and these are regulated by PI-PLCs. Consequently, PI-PLC activation represents an early primary signaling switch between elicitation and response involving the controlled hydrolysis of essential signaling phospholipids, thereby simultaneously generating lipid and non-lipid second messenger molecules required for a swift cellular defense response. Here, we elaborate on the signals generated by PI-PLCs and their respective downstream effects, while providing an inventory of different types of evidence describing the involvement of PI-PLCs in various aspects of plant immunity. We project the discussed information into a model describing the cellular events occurring after the activation of plant immune receptors. With this review we aim to provide new insights supporting future research on plant PI-PLCs and the development of plants with improved resistance.
Collapse
Affiliation(s)
- Ahmed M Abd-El-Haliem
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Matthieu H A J Joosten
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
47
|
Meijer HJG, van Himbergen JAJ, Musgrave A, Munnik T. Acclimation to salt modifies the activation of several osmotic stress-activated lipid signalling pathways in Chlamydomonas. PHYTOCHEMISTRY 2017; 135:64-72. [PMID: 28017365 DOI: 10.1016/j.phytochem.2016.12.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 05/12/2023]
Abstract
Osmotic stress rapidly activates several phospholipid signalling pathways in the unicellular alga Chlamydomonas. In this report, we have studied the effects of salt-acclimation on growth and phospholipid signalling. Growing cells on media containing 100 mM NaCl increased their salt-tolerance but did not affect the overall phospholipid content, except that levels of phosphatidylinositol phosphate (PIP) and phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] were reduced by one-third. When these NaCl-acclimated cells were treated with increasing concentrations of salt, the same lipid signalling pathways as in non-acclimated cells were activated. This was witnessed as increases in phosphatidic acid (PA), lyso-phosphatidic acid (L-PA), diacylglycerol pyrophosphate (DGPP), PI(4,5)P2 and its isomer PI(3,5)P2. However, all dose-dependent responses were shifted to higher osmotic-stress levels, and the responses were lower than in non-acclimated cells. When NaCl-acclimated cells were treated with other osmotica, such as KCl and sucrose, the same effects were found, illustrating that they were due to hyperosmotic rather than hyperionic acclimation. The results indicate that acclimation to moderate salt stress modifies stress perception and the activation of several downstream pathways.
Collapse
Affiliation(s)
- Harold J G Meijer
- Section Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands
| | - John A J van Himbergen
- Section Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands
| | - Alan Musgrave
- Section Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands
| | - Teun Munnik
- Section Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands.
| |
Collapse
|
48
|
Wang X, Shan X, Xue C, Wu Y, Su S, Li S, Liu H, Jiang Y, Zhang Y, Yuan Y. Isolation and functional characterization of a cold responsive phosphatidylinositol transfer-associated protein, ZmSEC14p, from maize (Zea may L.). PLANT CELL REPORTS 2016; 35:1671-86. [PMID: 27061906 DOI: 10.1007/s00299-016-1980-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/31/2016] [Indexed: 05/10/2023]
Abstract
A Sec14-like protein, ZmSEC14p , from maize was structurally analyzed and functionally tested. Overexpression of ZmSEC14p in transgenic Arabidopsis conferred tolerance to cold stress. Sec14-like proteins are involved in essential biological processes, such as phospholipid metabolism, signal transduction, membrane trafficking, and stress response. Here, we reported a phosphatidylinositol transfer-associated protein, ZmSEC14p (accession no. KT932998), isolated from a cold-tolerant maize inbred line using the cDNA-AFLP approach and RACE-PCR method. Full-length cDNA that consisted of a single open reading frame (ORF) encoded a putative polypeptide of 295 amino acids. The ZmSEC14p protein was mainly localized in the nucleus, and its transcript was induced by cold, salt stresses, and abscisic acid (ABA) treatment in maize leaves and roots. Overexpression of ZmSEC14p in transgenic Arabidopsis conferred tolerance to cold stress. This tolerance was primarily displayed by the increased germination rate, root length, plant survival rate, accumulation of proline, activities of antioxidant enzymes, and the reduction of oxidative damage by reactive oxygen species (ROS). ZmSEC14p overexpression regulated the expression of phosphoinositide-specific phospholipase C, which cleaves phosphatidylinositol 4,5-bisphosphate (PIP2) and generates second messengers (inositol 1,4,5-trisphosphate and 1,2-diacylglycerol) in the phosphoinositide signal transduction pathways. Moreover, up-regulation of some stress-responsive genes such as CBF3, COR6.6, and RD29B in transgenic plants under cold stress could be a possible mechanism for enhancing cold tolerance. Taken together, this study strongly suggests that ZmSEC14p plays an important role in plant tolerance to cold stress.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Xiaohui Shan
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Chunmei Xue
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Ying Wu
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Shengzhong Su
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Shipeng Li
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Hongkui Liu
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Yuan Jiang
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Yanfei Zhang
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Yaping Yuan
- College of Plant Science, Jilin University, Changchun, 130062, China.
| |
Collapse
|
49
|
Hong Y, Zhao J, Guo L, Kim SC, Deng X, Wang G, Zhang G, Li M, Wang X. Plant phospholipases D and C and their diverse functions in stress responses. Prog Lipid Res 2016; 62:55-74. [DOI: 10.1016/j.plipres.2016.01.002] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 12/23/2015] [Accepted: 01/01/2016] [Indexed: 12/25/2022]
|
50
|
Heilmann I. Plant phosphoinositide signaling - dynamics on demand. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1345-1351. [PMID: 26924252 DOI: 10.1016/j.bbalip.2016.02.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 02/18/2016] [Accepted: 02/19/2016] [Indexed: 10/22/2022]
Abstract
Eukaryotic membranes contain small amounts of lipids with regulatory roles. An important class of such regulatory lipids are phosphoinositides (PIs). Within membranes, PIs serve as recruitment signals, as regulators of membrane protein function or as precursors for second messenger production, thereby influencing a multitude of cellular processes with key importance for plant function and development. Plant PIs occur locally and transiently within membrane microdomains, and their abundance is strictly controlled. To understand the functions of the plant PI-network it is important to understand not only downstream PI-effects, but also to identify and characterize factors contributing to dynamic PI formation. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.
Collapse
Affiliation(s)
- Ingo Heilmann
- Department of Cellular Biochemistry, Institute for Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany.
| |
Collapse
|