1
|
Wang L, He P, Hui M, Li H, Sun A, Yin H, Gao X. Metabolomics combined with transcriptomics and physiology reveals the regulatory responses of soybean plants to drought stress. Front Genet 2024; 15:1458656. [PMID: 39512800 PMCID: PMC11541050 DOI: 10.3389/fgene.2024.1458656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/16/2024] [Indexed: 11/15/2024] Open
Abstract
Drought, a prevalent environmental stressor, has had significant consequences on soybean (Glycine max L.), notably impeding its growth and production. Therefore, it is crucial to gain insight into the regulatory responses of soybean plants exposed to drought stress during soybean flowering in the field. In this study, the cultivar 'Liaodou 15' was performed light drought (LD, 24.3% soil moisture content), moderate drought (MD, 20.6% soil moisture content) and severe drought (SD, 16.9% soil moisture content) treatments at flowering stages of soybean and then rehydrated (30% soil moisture content) until harvest. The yield-related indicators were measured and revealed that MD and SD treatments significantly reduced 6.3% and 10.8% of the 100-grain weight. Soybean plants subjected to three drought stresses showed that net photosynthetic rates were 20.8%, 51.5% and 71.8% lower in LD, MD and SD than that of CK. The WUE increased by 31.8%, 31.5% and 18.8% under three drought stress treatments compared to CK. In addition, proline content was 25.94%, 41.01% and 65.43% greater than that of CK under three drought stress treatments. The trend of the MDA content was consistent with that of the proline content. SOD activity was significantly increasing by 10.86%, 46.73% and 14.54% under three drought stress treatments. The activity of CAT in the SD treatment increased by 49.28%. All the indices recovered after rehydration. Furthermore, 54,78 and 51 different expressed metabolomics (DEMs) were identified in the LDCK/LD, MDCK/MD and SDCK/SD groups, respectively. There were 1,211, 1,265 and 1,288 different expressed genes (DEGs) were upregulated and 1,003, 1,819 and 1,747 DEGs were downregulated. Finally, combined transcriptomic and metabolomic analysis suggested that 437 DEGs and 24 DEMs of LDCK/LD group, 741 DEGs and 35 DEMs of MDCK/MD group, 633 DEGs and 23 DEMs of SDCK/SD group, were highly positively correlated in soybean plants under drought stress. Drought stress induced the expression of the PAO1, PAO4, PAO5 and P5CS genes to promote the accumulation of spermidine and proline. Our study elucidates the responses of drought-stressed soybean plants in the field and provides a genetic basis for the breeding of drought-tolerant soybean plants.
Collapse
Affiliation(s)
- Liwei Wang
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
- Liaoning Key Laboratory of Agrometeorological Disasters, Shenyang, China
| | - Peijin He
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Mengmeng Hui
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Hainan Li
- Liaoyang Meteorological Bureau, Liaoyang, Liaoning, China
| | - Anni Sun
- Anshan Meteorological Bureau, Anshan, Liaoning, China
| | - Hong Yin
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
- Liaoning Key Laboratory of Agrometeorological Disasters, Shenyang, China
| | - Xining Gao
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
- Liaoning Key Laboratory of Agrometeorological Disasters, Shenyang, China
| |
Collapse
|
2
|
Yang P, Liu J, Shi X, Long H, Li L. Effects of water and exogenous glucose on apple seedling growth and soil enzyme activity in semiarid area. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7826-7833. [PMID: 38794780 DOI: 10.1002/jsfa.13611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Soil water and organic carbon (C) are key factors affecting the growth and development of apple seedlings. The objective of the study was to investigate the effects of different soil moisture and glucose supplies on apple seedling growth and soil enzyme activities. We hypothesized that the growth of apple seedlings was affected by soil water and C content through their effects on root structure, plant physiological properties and soil enzymatic activities. A pot experiment consisting of nine treatments was set up, including three water treatments with soil moisture contents at 75-85% (normal irrigation, CK), 65-75% (light water stress, LS), and 55-65% (mild water stress, MS) of the soil field capacity, in combination with three glucose treatments with carbon/nitrogen (C/N) ratio of 7.5 (C1, no adding glucose), 10 (C2) and 15 (C3), respectively. RESULTS Results showed that the LSC2 treatment significantly increased plant height by 7%, stem diameter by 5% and leaf area by 17%, as compared with LSC1. Also, LSC2 significantly increased root dry weight, root vitality and soil enzyme activities. Moreover, results of leaf photosynthetic, malondialdehyde (MDA), peroxidase (POD), superoxide dismutase (SOD) and proline contents also proved that adding glucose improved the drought resistance of plants. CONCLUSION LSC2 treatment is more conducive to the growth of apple seedlings, and application of carbon has a good alleviation effect on plant water stress. The study demonstrated that addition of exogenous glucose alleviated light water deficiency, significantly affected root vitality, and promoted apple seedling growth. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Pingguo Yang
- College of Life Science, Shanxi Normal University, Taiyuan, China
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jian Liu
- The Norwegian Institute of Bioeconomy Research (NIBIO), As, Norway
| | - Xiaorong Shi
- College of Life Science, Shanxi Normal University, Taiyuan, China
| | - Huaiyu Long
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Li
- College of Horticulture, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
3
|
Jiao Y, Lv W, Teng W, Li L, Lan H, Bai L, Li Z, Lian Y, Wang Z, Xin Z, Ren Y, Lin T. Peroxidase gene TaPrx109-B1 enhances wheat tolerance to water deficit via modulating stomatal density. PLANT, CELL & ENVIRONMENT 2024; 47:2954-2970. [PMID: 38629794 DOI: 10.1111/pce.14918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/23/2024] [Accepted: 04/07/2024] [Indexed: 07/12/2024]
Abstract
Increasing the tolerance of crops to water deficit is crucial for the improvement of crop production in water-restricted regions. Here, a wheat peroxidase gene (TaPrx109-B1) belonging to the class III peroxidase gene family was identified and its function in water deficit tolerance was revealed. We demonstrated that overexpression of TaPrx109-B1 reduced leaf H2O2 level and stomatal density, increased leaf relative water content, water use efficiency, and tolerance to water deficit. The expression of TaEPF1 and TaEPF2, two key negative regulators of stomatal development, were significantly upregulated in TaPrx109-B1 overexpression lines. Furthermore, exogenous H2O2 downregulated the expression of TaEPF1 and TaEPF2 and increased stomatal density, while exogenous application of diphenyleneiodonium chloride, a potent NADPH oxidase inhibitor that repressed the synthesis of H2O2, upregulated the expression of TaEPF1 and TaEPF2, decreased stomatal density, and enhanced wheat tolerance to water deficit. These findings suggest that TaPrx109-B1 influences leaf stomatal density by modulation of H2O2 level and the expression of TaEPF1 and TaEPF2. The results of the field trial showed that overexpressing TaPrx109-B1 increased grain number per spike, which reduced the yield loss caused by water deficiency. Therefore, TaPrx109-B1 has great potential in breeding wheat varieties with improved water deficit tolerance.
Collapse
Affiliation(s)
- Yanqing Jiao
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Weizeng Lv
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
- Department of Modern Agriculture, Lankao Vocational College of San Nong, Kaifeng, China
| | - Wan Teng
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Le Li
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Haibin Lan
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Lu Bai
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Zongzhen Li
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Yanhao Lian
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Zhiqiang Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Zeyu Xin
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Yongzhe Ren
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Tongbao Lin
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
4
|
Yu R, Hou Q, Deng H, Xiao L, Cai X, Shang C, Qiao G. Overexpression of PavHIPP16 from Prunus avium enhances cold stress tolerance in transgenic tobacco. BMC PLANT BIOLOGY 2024; 24:536. [PMID: 38862890 PMCID: PMC11167810 DOI: 10.1186/s12870-024-05267-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND The heavy metal-associated isoprenylated plant protein (HIPP) is an important regulatory element in response to abiotic stresses, especially playing a key role in low-temperature response. RESULTS This study investigated the potential function of PavHIPP16 up-regulated in sweet cherry under cold stress by heterologous overexpression in tobacco. The results showed that the overexpression (OE) lines' growth state was better than wild type (WT), and the germination rate, root length, and fresh weight of OE lines were significantly higher than those of WT. In addition, the relative conductivity and malondialdehyde (MDA) content of the OE of tobacco under low-temperature treatment were substantially lower than those of WT. In contrast, peroxidase (POD), superoxide dismutase (SOD), catalase (CAT) activities, hydrogen peroxide (H2O2), proline, soluble protein, and soluble sugar contents were significantly higher than those of WT. Yeast two-hybrid assay (Y2H) and luciferase complementation assay verified the interactions between PavbHLH106 and PavHIPP16, suggesting that these two proteins co-regulated the cold tolerance mechanism in plants. The research results indicated that the transgenic lines could perform better under low-temperature stress by increasing the antioxidant enzyme activity and osmoregulatory substance content of the transgenic plants. CONCLUSIONS This study provides genetic resources for analyzing the biological functions of PavHIPPs, which is important for elucidating the mechanisms of cold resistance in sweet cherry.
Collapse
Affiliation(s)
- Runrun Yu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Qiandong Hou
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Hong Deng
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Ling Xiao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Xiaowei Cai
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Chunqiong Shang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Guang Qiao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| |
Collapse
|
5
|
Mian NH, Azeem M, Ali Q, Mahmood S, Akram MS. Alpha lipoic acid mitigates adverse impacts of drought stress on growth and yield of mungbean: photosynthetic pigments, and antioxidative defense mechanism. PeerJ 2024; 12:e17191. [PMID: 38699184 PMCID: PMC11064871 DOI: 10.7717/peerj.17191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/13/2024] [Indexed: 05/05/2024] Open
Abstract
Context Exogenous use of potential organic compounds through different modes is a promising strategy for the induction of water stress tolerance in crop plants for better yield. Aims The present study aimed to explore the potential role of alpha-lipoic acid (ALA) in inducing water stress tolerance in mungbean lines when applied exogenously through various modes. Methods The experiment was conducted in a field with a split-plot arrangement, having three replicates for each treatment. Two irrigation regimes, including normal and reduced irrigation, were applied. The plants allocated to reduced irrigation were watered only at the reproductive stage. Three levels of ALA (0, 0.1, 0.15 mM) were applied through different modes (seed priming, foliar or priming+foliar). Key results ALA treatment through different modes manifested higher growth under reduced irrigation (water stress) and normal irrigation. Compared to the other two modes, the application of ALA as seed priming was found more effective in ameliorating the adverse impacts of water stress on growth and yield associated with their better content of leaf photosynthetic pigments, maintenance of plant water relations, levels of non-enzymatic antioxidants, improved activities of enzymatic antioxidants, and decreased lipid peroxidation and H2O2 levels. The maximum increase in shoot fresh weight (29% and 28%), shoot dry weight (27% and 24%), 100-grain weight (24% and 23%) and total grain yield (20% and 21%) in water-stressed mungbean plants of line 16003 and 16004, respectively, was recorded due to ALA seed priming than other modes of applications. Conclusions Conclusively, 0.1 and 0.15 mM levels of ALA as seed priming were found to reduce the adverse impact of water stress on mungbean yield that was associated with improved physio-biochemical mechanisms. Implications The findings of the study will be helpful for the agriculturalists working in arid and semi-arid regions to obtain a better yield of mungbean that will be helpful to fulfill the food demand in those areas to some extent.
Collapse
Affiliation(s)
| | - Muhammad Azeem
- Government College University, Faisalabad, Faisalabad, Pakistan
| | - Qasim Ali
- Government College University, Faisalabad, Faisalabad, Pakistan
| | - Saqib Mahmood
- Government College University, Faisalabad, Faisalabad, Pakistan
| | | |
Collapse
|
6
|
Shen Y, Li L, Du P, Xing X, Gu Z, Yu Z, Tao Y, Jiang H. Appropriate Drought Training Induces Optimal Drought Tolerance by Inducing Stepwise H 2O 2 Homeostasis in Soybean. PLANTS (BASEL, SWITZERLAND) 2024; 13:1202. [PMID: 38732418 PMCID: PMC11085929 DOI: 10.3390/plants13091202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/13/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024]
Abstract
Soybean is considered one of the most drought-sensitive crops, and ROS homeostasis can regulate drought tolerance in these plants. Understanding the mechanism of H2O2 homeostasis and its regulatory effect on drought stress is important for improving drought tolerance in soybean. We used different concentrations of polyethylene glycol (PEG) solutions to simulate the progression from weak drought stress (0.2%, 0.5%, and 1% PEG) to strong drought stress (5% PEG). We investigated the responses of the soybean plant phenotype, ROS level, injury severity, antioxidant system, etc., to different weak drought stresses and subsequent strong drought stresses. The results show that drought-treated plants accumulated H2O2 for signaling and exhibited drought tolerance under the following stronger drought stress, among which the 0.5% PEG treatment had the greatest effect. Under the optimal treatment, there was qualitatively describable H2O2 homeostasis, characterized by a consistent increasing amplitude in H2O2 content compared with CK. The H2O2 signal formed under the optimum treatment induced the capacity of the antioxidant system to remove excess H2O2 to form a primary H2O2 homeostasis. The primary H2O2 homeostasis further induced senior H2O2 homeostasis under the following strong drought and maximized the improvement of drought tolerance. These findings might suggest that gradual drought training could result in stepwise H2O2 homeostasis to continuously improve drought tolerance.
Collapse
Affiliation(s)
- Yuqian Shen
- Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agriculture University, Nanjing 210095, China; (Y.S.); (L.L.); (P.D.); (Z.G.); (Z.Y.); (Y.T.)
| | - Lei Li
- Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agriculture University, Nanjing 210095, China; (Y.S.); (L.L.); (P.D.); (Z.G.); (Z.Y.); (Y.T.)
| | - Peng Du
- Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agriculture University, Nanjing 210095, China; (Y.S.); (L.L.); (P.D.); (Z.G.); (Z.Y.); (Y.T.)
| | - Xinghua Xing
- Xuzhou Institute of Agricultural Sciences of Xu-Huai Region of Jiangsu, Xuzhou 221131, China
| | - Zhiwei Gu
- Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agriculture University, Nanjing 210095, China; (Y.S.); (L.L.); (P.D.); (Z.G.); (Z.Y.); (Y.T.)
| | - Zhiming Yu
- Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agriculture University, Nanjing 210095, China; (Y.S.); (L.L.); (P.D.); (Z.G.); (Z.Y.); (Y.T.)
| | - Yujia Tao
- Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agriculture University, Nanjing 210095, China; (Y.S.); (L.L.); (P.D.); (Z.G.); (Z.Y.); (Y.T.)
| | - Haidong Jiang
- Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agriculture University, Nanjing 210095, China; (Y.S.); (L.L.); (P.D.); (Z.G.); (Z.Y.); (Y.T.)
| |
Collapse
|
7
|
Shen J, Xiao X, Zhong D, Lian H. Potassium humate supplementation improves photosynthesis and agronomic and yield traits of foxtail millet. Sci Rep 2024; 14:9508. [PMID: 38664476 PMCID: PMC11045805 DOI: 10.1038/s41598-024-57354-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024] Open
Abstract
Foxtail millet is a highly nutritious crop, which is widely cultivated in arid and semi-arid areas worldwide. Humic acid (HA), as a common plant growth regulator, is used as an organic fertilizer and feed additive in agricultural production. However, the impact of potassium humate KH on the photosynthetic rate and yield of foxtail millet has not yet been studied. We explored the effects of KH application on the morphology, photosynthetic ability, carbon and nitrogen metabolism, and yield of foxtail millet. A field experiment was performed using six concentrations of KH (0, 20, 40, 80, 160, and 320 kg ha-1) supplied foliarly at the booting stage in Zhangza 10 cultivar (a widely grown high-yield variety). The results showed that KH treatment increased growth, chlorophyll content (SPAD), photosynthetic rate (Pn), transpiration rate (Tr), and stomatal conductance (Gs). In addition, soluble protein content, sugar content, and nitrate reductase activity increased in KH-treated plants. With increased KH concentration, the effects became more evident and the peak values of each factor were achieved at 80 kg ha-1. Photosynthetic rate showed significant correlation with SPAD, Tr, Gs, and soluble protein content, but was negatively correlated with intercellular CO2 concentration. Compared to that of the control, the yield of foxtail millet under the T2, T3, T4, and T5 (40, 80, 160, and 320 kg ha-1 of KH) treatments significantly increased by 6.0%, 12.7%, 10.5%, and 8.6%, respectively. Yield exhibited a significant positive correlation with Tr, Pn, and Gs. Overall, KH enhances photosynthetic rate and yield of foxtail millet, therefore it may be conducive to stable millet production. These findings may provide a theoretical basis for the green and efficient production of millet fields.
Collapse
Affiliation(s)
- Jie Shen
- Department of Life Sciences, Changzhi University, Changzhi, 046011, China
| | - Xiaolu Xiao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Dandan Zhong
- College of Agronomy, Shanxi Agricultural University, Taigu, 030801, China
| | - Huida Lian
- Department of Life Sciences, Changzhi University, Changzhi, 046011, China.
| |
Collapse
|
8
|
Sharma V, Mohammed SA, Devi N, Vats G, Tuli HS, Saini AK, Dhir YW, Dhir S, Singh B. Unveiling the dynamic relationship of viruses and/or symbiotic bacteria with plant resilience in abiotic stress. STRESS BIOLOGY 2024; 4:10. [PMID: 38311681 PMCID: PMC10838894 DOI: 10.1007/s44154-023-00126-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/22/2023] [Indexed: 02/06/2024]
Abstract
In the ecosphere, plants interact with environmental biotic and abiotic partners, where unbalanced interactions can induce unfavourable stress conditions. Abiotic factors (temperature, water, and salt) are primarily required for plants healthy survival, and any change in their availability is reflected as a stress signal. In certain cases, the presence of infectious pathogens such as viruses, bacteria, fungi, protozoa, nematodes, and insects can also create stress conditions in plants, leading to the emergence of disease or deficiency symptoms. While these symptoms are often typical of abiotic or biotic stress, however, there are instances where they can intensify under specific conditions. Here, we primarily summarize the viral interactions with plants during abiotic stress to understand how these associations are linked together during viral pathogenesis. Secondly, focus is given to the beneficial effects of root-associated symbiotic bacteria in fulfilling the basic needs of plants during normal as well as abiotic stress conditions. The modulations of plant functional proteins, and their occurrence/cross-talk, with pathogen (virus) and symbiont (bacteria) molecules are also discussed. Furthermore, we have highlighted the biochemical and systematic adaptations that develop in plants due to bacterial symbiosis to encounter stress hallmarks. Lastly, directions are provided towards exploring potential rhizospheric bacteria to maintain plant-microbes ecosystem and manage abiotic stress in plants to achieve better trait health in the horticulture crops.
Collapse
Affiliation(s)
- Vasudha Sharma
- Department of Biosciences & Technology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Shakeel A Mohammed
- Department of Biosciences & Technology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Nisha Devi
- Department of Biosciences & Technology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Gourav Vats
- Department of Biosciences & Technology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Hardeep S Tuli
- Department of Biosciences & Technology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Adesh K Saini
- Department of Biosciences & Technology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Yashika W Dhir
- Department of Biosciences & Technology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India.
| | - Sunny Dhir
- Department of Biosciences & Technology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India.
| | - Bharat Singh
- Department of Biosciences & Technology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India.
| |
Collapse
|
9
|
Li W, Deng M, Wang S, Wang C, Guo M, Song Y, Guo J, Yan J, Ma F, Guan Q, Xu J. HISTONE DEACETYLASE 6 interaction with ABSCISIC ACID-INSENSITIVE 5 decreases apple drought tolerance. PLANT PHYSIOLOGY 2023; 193:2711-2733. [PMID: 37607253 PMCID: PMC10663142 DOI: 10.1093/plphys/kiad468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/24/2023]
Abstract
Understanding the molecular regulation of plant response to drought is the basis of drought-resistance improvement through molecular strategies. Here, we characterized apple (Malus × domestica) histone deacetylase 6 (MdHDA6), which negatively regulates apple drought tolerance by catalyzing deacetylation on histones associated with drought-responsive genes. Transgenic apple plants over-expressing MdHDA6 were less drought-tolerant, while those with down-regulated MdHDA6 expression were more drought-resistant than nontransgenic apple plants. Transcriptomic and histone 3 acetylation (H3ac) Chromatin immunoprecipitation-seq analyses indicated that MdHDA6 could facilitate histone deacetylation on the drought-responsive genes, repressing gene expression. Moreover, MdHDA6 interacted with the abscisic acid (ABA) signaling transcriptional factor, ABSCISIC ACID-INSENSITIVE 5 (MdABI5), forming the MdHDA6-MdABI5 complex. Interestingly, MdHDA6 facilitated histone deacetylation on the drought-responsive genes regulated by MdABI5, resulting in gene repression. Furthermore, a dual-Luc experiment showed that MdHDA6 could repress the regulation of a drought-responsive gene, RESPONSIVE TO DESICCATION 29A (MdRD29A) activated by MdABI5. On the one hand, MdHDA6 can facilitate histone deacetylation and gene repression on the positive drought-responsive genes to negatively regulate drought tolerance in apple. On the other hand, MdHDA6 directly interacts with MdABI5 and represses the expression of genes downstream of MdABI5 via histone deacetylation around these genes to reduce drought tolerance. Our study uncovers a different drought response regulatory mechanism in apple based on the MdHDA6-MdABI5 complex function and provides the molecular basis for drought-resistance improvement in apple.
Collapse
Affiliation(s)
- Wenjie Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengting Deng
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shicong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Caixia Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Meimiao Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yi Song
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Junxing Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jinjiao Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jidi Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
10
|
Wang M, Wang L, Yu X, Zhao J, Tian Z, Liu X, Wang G, Zhang L, Guo X. Enhancing cold and drought tolerance in cotton: a protective role of SikCOR413PM1. BMC PLANT BIOLOGY 2023; 23:577. [PMID: 37978345 PMCID: PMC10656917 DOI: 10.1186/s12870-023-04572-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
The present study explored the potential role of cold-regulated plasma membrane protein COR413PM1 isolated from Saussurea involucrata (Matsum. & Koidz)(SikCOR413PM1), in enhancing cotton (Gossypium hirsutum) tolerance to cold and drought stresses through transgenic methods. Under cold and drought stresses, the survival rate and the fresh and dry weights of the SikCOR413PM1-overexpressing lines were higher than those of the wild-type plants, and the degree of leaf withering was much lower. Besides, overexpressing SikCOR413PM1 overexpression increased the relative water content, reduced malondialdehyde content and relative conductivity, and elevated proline and soluble sugar levels in cotton seedlings. These findings suggest that SikCOR413PM1 minimizes cell membrane damage and boosts plant stability under challenging conditions. Additionally, overexpression of this gene upregulated antioxidant enzyme-related genes in cotton seedlings, resulting in enhanced antioxidant enzyme activity, lowered peroxide content, and reduced oxidative stress. SikCOR413PM1 overexpression also modulated the expression of stress-related genes (GhDREB1A, GhDREB1B, GhDREB1C, GhERF2, GhNAC3, and GhRD22). In field trials, the transgenic cotton plants overexpressing SikCOR413PM1 displayed high yields and increased environmental tolerance. Our study thus demonstrates the role of SikCOR413PM1 in regulating stress-related genes, osmotic adjustment factors, and peroxide content while preserving cell membrane stability and improving cold and drought tolerance in cotton.
Collapse
Affiliation(s)
- Mei Wang
- College of Life Science, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China
| | - Lepeng Wang
- College of Life Science, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China
| | - Xiangxue Yu
- College of Life Science, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China
| | - Jingyi Zhao
- College of Life Science, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China
| | - Zhijia Tian
- College of Life Science, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China
| | - Xiaohong Liu
- Xinjiang Agricultural Development Group Crop Hospital Co. LTD, Tumushuke, Xinjiang, 844000, People's Republic of China
| | - Guoping Wang
- Agricultural Science Institute of the seventh division of Xinjiang Corps, Kuitun, Xinjiang, 833200, People's Republic of China
| | - Li Zhang
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China
| | - Xinyong Guo
- College of Life Science, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China.
| |
Collapse
|
11
|
Shen J, Wang X, Song H, Wang M, Niu T, Lei H, Qin C, Liu A. Physiology and transcriptomics highlight the underlying mechanism of sunflower responses to drought stress and rehydration. iScience 2023; 26:108112. [PMID: 37860690 PMCID: PMC10583116 DOI: 10.1016/j.isci.2023.108112] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/15/2023] [Accepted: 09/28/2023] [Indexed: 10/21/2023] Open
Abstract
Drought can adversely influence the crop growth and production. Accordingly, sunflowers have strong adaptability to drought; hence, we conducted analyses for sunflower seedlings with drought stress and rehydration drought acclimation through physiological measurements and transcriptomics. It showed that drought can cause the accumulation of ROS and enhance the activity of antioxidant enzymes and the content of osmolytes. After rehydration, the contents of ROS and MDA were significantly reduced concomitant with increased antioxidant activity and osmotic adjustment. Totally, 2,589 DEGs were identified among treatments. Functional enrichment analysis showed that DEGs were mainly involved in plant hormone signal transduction, MAPK signaling, and biosynthesis of secondary metabolites. Comparison between differentially spliced genes and DEGs indicated that bHLH025, NAC53, and SINAT3 may be pivotal genes involved in sunflower drought resistance. Our results not only highlight the underlying mechanism of drought stress and rehydration in sunflower but also provide a theoretical basis for crop genetic breeding.
Collapse
Affiliation(s)
- Jie Shen
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Xi Wang
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Huifang Song
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Mingyang Wang
- School of Life Science, Shanxi Normal University, Taiyuan 030031, China
| | - Tianzeng Niu
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Haiying Lei
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Cheng Qin
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Ake Liu
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| |
Collapse
|
12
|
Guo M, Wang S, Liu H, Yao S, Yan J, Wang C, Miao B, Guo J, Ma F, Guan Q, Xu J. Histone deacetylase MdHDA6 is an antagonist in regulation of transcription factor MdTCP15 to promote cold tolerance in apple. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2254-2272. [PMID: 37475182 PMCID: PMC10579720 DOI: 10.1111/pbi.14128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/20/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023]
Abstract
Understanding the molecular regulation of plant cold response is the basis for cold resistance germplasm improvement. Here, we revealed that the apple histone deacetylase MdHDA6 can perform histone deacetylation on cold-negative regulator genes and repress their expression, leading to the positive regulation of cold tolerance in apples. Moreover, MdHDA6 directly interacts with the transcription factor MdTCP15. Phenotypic analysis of MdTCP15 transgenic apple lines and wild types reveals that MdTCP15 negatively regulates cold tolerance in apples. Furthermore, we found that MdHDA6 can facilitate histone deacetylation of MdTCP15 and repress the expression of MdTCP15, which positively contributes to cold tolerance in apples. Additionally, the transcription factor MdTCP15 can directly bind to the promoter of the cold-negative regulator gene MdABI1 and activate its expression, and it can also directly bind to the promoter of the cold-positive regulator gene MdCOR47 and repress its expression. However, the co-expression of MdHDA6 and MdTCP15 can inhibit MdTCP15-induced activation of MdABI1 and repression of MdCOR47, suggesting that MdHDA6 suppresses the transcriptional regulation of MdTCP15 on its downstream genes. Our results demonstrate that histone deacetylase MdHDA6 plays an antagonistic role in the regulation of MdTCP15-induced transcriptional activation or repression to positively regulate cold tolerance in apples, revealing a new regulatory mechanism of plant cold response.
Collapse
Affiliation(s)
- Meimiao Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Shicong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Han Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Senyang Yao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Jinjiao Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
- College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Caixia Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Bingjie Miao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Junxing Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Jidi Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| |
Collapse
|
13
|
Jiang L, Lv J, Li K, Zhai L, Wu Y, Wu T, Zhang X, Han Z, Wang Y. MdGRF11-MdARF19-2 module acts as a positive regulator of drought resistance in apple rootstock. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111782. [PMID: 37406680 DOI: 10.1016/j.plantsci.2023.111782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/18/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
14-3-3 proteins play an important role in the response of plants to drought resistance. In this study, 14-3-3 protein MdGRF11 was cloned from Malus xiaojinensis, and its positive regulation of drought resistance was verified using Orin calli and M. xiaojinensis plants. The transcription factor MdARF19-2 was further screened for interaction with this protein in vitro and in vivo. We also conducted experiments using Orin calli and found that the overexpression of MdARF19-2 decreased the level of reactive oxygen species (ROS) and increased the activity of enzymes that scavenge ROS in plant materials. This indicates that MdARF19-2 is a positive regulator in the drought resistance of plants. The drought tolerance was further improved by the overexpression of both MdGRF11 and MdARF19-2 in the calli. In addition, we examined several genes related to ROS scavenging with auxin response factor binding elements in their promoters and found that their level of expression was regulated by the MdGRF11-MdARF19-2 module. In conclusion, the enhancement of plant drought resistance by MdGRF11 could be owing to its accumulation at the protein level in response to drought, which then combined with MdARF19-2, affecting the expression of MdARF19-2 downstream genes. Thus, it scavenges ROS, which ultimately improves the resistance of plant to drought stress.
Collapse
Affiliation(s)
- Lizhong Jiang
- College of Horticulture, China Agricultural University, Beijing 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Jiahong Lv
- College of Horticulture, China Agricultural University, Beijing 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Keting Li
- College of Horticulture, China Agricultural University, Beijing 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Longmei Zhai
- College of Horticulture, China Agricultural University, Beijing 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Yue Wu
- College of Horticulture, China Agricultural University, Beijing 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| |
Collapse
|
14
|
Zhang T, Zhang P, Pang W, Zhang Y, Alwathnani HA, Rensing C, Yang W. Increased Tolerance of Massion's pine to Multiple-Toxic-Metal Stress Mediated by Ectomycorrhizal Fungi. PLANTS (BASEL, SWITZERLAND) 2023; 12:3179. [PMID: 37765343 PMCID: PMC10535352 DOI: 10.3390/plants12183179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/26/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023]
Abstract
Pinus massoniana (Massion's pine), a pioneer tree species, exhibits restoration potential in polluted mining areas. However, the physiological and molecular mechanisms of ectomycorrhizal (ECM) fungi in Massion's pine adaptability to multiple-toxic-metal stress are still unclear. Hence, Massion's pine seedlings inoculated with two strains of C. geophilum, which were screened and isolated from a polluted mine area, were cultivated in mine soil for 90 days to investigate the roles of EMF in mediating toxic metal tolerance in host plants. The results showed that compared with the non-inoculation control, C. geophilum (CG1 and CG2) significantly promoted the biomass, root morphology, element absorption, photosynthetic characteristics, antioxidant enzyme activities (CAT, POD, and SOD), and proline content of Massion's pine seedlings in mine soil. C. geophilum increased the concentrations of Cr, Cd, Pb, and Mn in the roots of Massion's pine seedlings, with CG1 significantly increasing the concentrations of Pb and Mn by 246% and 162% and CG2 significantly increasing the concentrations of Cr and Pb by 102% and 78%. In contrast, C. geophilum reduced the concentrations of Cr, Cd, Pb, and Mn in the shoots by 14%, 33%, 27%, and 14% on average, respectively. In addition, C. geophilum significantly reduced the transfer factor (TF) of Cr, Cd, Pb, and Mn by 32-58%, 17-26%, 68-75%, and 18-64%, respectively, and the bio-concentration factor (BF) of Cd by 39-71%. Comparative transcriptomic analysis demonstrated that the differently expressed genes (DEGs) were mainly encoding functions involved in "transmembrane transport", "ion transport", "oxidation reduction process", "oxidative phosphorylation", "carbon metabolism", "glycolysis/gluconeogenesis", "photosynthesis", and "biosynthesis of amino acids." These results indicate that C. geophilum is able to mitigate toxic metals stress by promoting nutrient uptake, photosynthesis, and plant growth, thereby modulating the antioxidant system to reduce oxidative stress and reducing the transport and enrichment of toxic metals from the root to the shoot of Massion's pine seedlings.
Collapse
Affiliation(s)
- Taoxiang Zhang
- International Joint Laboratory of Forest Symbiology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (T.Z.); (P.Z.); (W.P.); (Y.Z.)
| | - Panpan Zhang
- International Joint Laboratory of Forest Symbiology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (T.Z.); (P.Z.); (W.P.); (Y.Z.)
| | - Wenbo Pang
- International Joint Laboratory of Forest Symbiology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (T.Z.); (P.Z.); (W.P.); (Y.Z.)
| | - Yuhu Zhang
- International Joint Laboratory of Forest Symbiology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (T.Z.); (P.Z.); (W.P.); (Y.Z.)
| | - Hend. A. Alwathnani
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.A.A.); (C.R.)
| | - Christopher Rensing
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.A.A.); (C.R.)
| | - Wenhao Yang
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.A.A.); (C.R.)
| |
Collapse
|
15
|
Liu X, Gao T, Liu C, Mao K, Gong X, Li C, Ma F. Fruit crops combating drought: Physiological responses and regulatory pathways. PLANT PHYSIOLOGY 2023; 192:1768-1784. [PMID: 37002821 PMCID: PMC10315311 DOI: 10.1093/plphys/kiad202] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Drought is a common stress in agricultural production. Thus, it is imperative to understand how fruit crops respond to drought and to develop drought-tolerant varieties. This paper provides an overview of the effects of drought on the vegetative and reproductive growth of fruits. We summarize the empirical studies that have assessed the physiological and molecular mechanisms of the drought response in fruit crops. This review focuses on the roles of calcium (Ca2+) signaling, abscisic acid (ABA), reactive oxygen species signaling, and protein phosphorylation underlying the early drought response in plants. We review the resulting downstream ABA-dependent and ABA-independent transcriptional regulation in fruit crops under drought stress. Moreover, we highlight the positive and negative regulatory mechanisms of microRNAs in the drought response of fruit crops. Lastly, strategies (including breeding and agricultural practices) to improve the drought resistance of fruit crops are outlined.
Collapse
Affiliation(s)
- Xiaomin Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tengteng Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Changhai Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ke Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoqing Gong
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
16
|
Wang H, Li N, Li H, Zhang S, Zhang X, Yan X, Wang Z, Yang Y, Zhang S. Overexpression of NtGCN2 improves drought tolerance in tobacco by regulating proline accumulation, ROS scavenging ability, and stomatal closure. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107665. [PMID: 37018865 DOI: 10.1016/j.plaphy.2023.107665] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 05/07/2023]
Abstract
Drought stress is a severe threat to plants. Genes that respond to drought stress are essential for plant growth and development. General control nonderepressible 2 (GCN2) encodes a protein kinase that responds to various biotic and abiotic stresses. However, the mechanism of GCN2 in plant drought tolerance remains unclear. In the present study, the promoters of NtGCN2 from Nicotiana tabacum K326, which contained a drought-responsive Cis-acting element MYB that can be activated by drought stress, were cloned. Furthermore, the drought tolerance function of NtGCN2 was investigated using NtGCN2-overexpressed transgenic tobacco plants. NtGCN2-overexpressed transgenic plants were more tolerant to drought stress than wild-type (WT) plants. The transgenic tobacco plants exhibited higher proline and abscisic acid (ABA) contents, antioxidant enzyme activities, leaf relative water content, and expression levels of genes encoding key antioxidant enzymes and proline synthase, but lower levels of malondialdehyde and reactive oxygen species, and reduced stomatal apertures, stomatal densities, and stomatal opening rates compared to WT plants under drought stress. These results indicated that overexpression of NtGCN2 conferred drought tolerance in transgenic tobacco plants. RNA-seq analysis showed that overexpression of NtGCN2 responded to drought stress by regulating the expression of genes related to proline synthesis and catabolism, abscisic acid synthesis and catabolism, antioxidant enzymes, and ion channels in guard cells. These results showed that NtGCN2 might regulate drought tolerance by regulating proline accumulation, reactive oxygen species (ROS) scavenging, and stomatal closure in tobacco and may have the potential for application in the genetic modification of crop drought tolerance.
Collapse
Affiliation(s)
- Hao Wang
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Ning Li
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Hang Li
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Songjie Zhang
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Xiaoquan Zhang
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Xiaoxiao Yan
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Zhaojun Wang
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Yongxia Yang
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Songtao Zhang
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
17
|
Shen X, Ping Y, Bao C, Liu C, Tahir MM, Li X, Song Y, Xu W, Ma F, Guan Q. Mdm-miR160-MdARF17-MdWRKY33 module mediates freezing tolerance in apple. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:262-278. [PMID: 36738108 DOI: 10.1111/tpj.16132] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 05/10/2023]
Abstract
Apple (Malus domestica) trees are vulnerable to freezing temperatures. Cold resistance in woody perennial plants can be improved through biotechnological approaches. However, genetic engineering requires a thorough understanding of the molecular mechanisms of the tree's response to cold. In this study, we demonstrated that the Mdm-miR160-MdARF17-MdWRKY33 module is crucial for apple freezing tolerance. Mdm-miR160 plays a negative role in apple freezing tolerance, whereas MdARF17, one of the targets of Mdm-miR160, is a positive regulator of apple freezing tolerance. RNA sequencing analysis revealed that in apple, MdARF17 mediates the cold response by influencing the expression of cold-responsive genes. EMSA and ChIP-qPCR assays demonstrated that MdARF17 can bind to the promoter of MdWRKY33 and promotes its expression. Overexpression of MdWRKY33 enhanced the cold tolerance of the apple calli. In addition, we found that the Mdm-miR160-MdARF17-MdWRKY33 module regulates cold tolerance in apple by regulating reactive oxygen species (ROS) scavenging, as revealed by (i) increased H2 O2 levels and decreased peroxidase (POD) and catalase (CAT) activities in Mdm-miR160e OE plants and MdARF17 RNAi plants and (ii) decreased H2 O2 levels and increased POD and CAT activities in MdmARF17 OE plants and MdWRKY33 OE calli. Taken together, our study uncovered the molecular roles of the Mdm-miR160-MdARF17-MdWRKY33 module in freezing tolerance in apple, thus providing support for breeding of cold-tolerant apple cultivars.
Collapse
Affiliation(s)
- Xiaoxia Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yikun Ping
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chana Bao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chen Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Muhammad Mobeen Tahir
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xuewei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yi Song
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Weirong Xu
- Ningxia Engineering and Technology Research Center of Grape and Wine, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
18
|
Feng C, Zhang X, Du B, Xiao Y, Wang Y, Sun Y, Zhou X, Wang C, Liu Y, Li TH. MicroRNA156ab regulates apple plant growth and drought tolerance by targeting transcription factor MsSPL13. PLANT PHYSIOLOGY 2023:kiad099. [PMID: 36805285 DOI: 10.1093/plphys/kiad099] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/08/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Drought stress substantially reduces the productivity of apple plants and severely restricts the development of the apple industry. Malus sieversii, a wild apple with excellent drought resistance, is a valuable wild resource for rootstock improvement of cultivated apple (Malus domestica). miRNAs and their targets play essential roles in plant growth and stress responses, but their roles in drought stress responses in apple are unknown. Here, we demonstrate that microRNA156ab is upregulated in M. sieversii in response to drought stress. Overexpressing msi-miR156ab promoted auxin accumulation, maintained the growth of apple plants, and increased plant resistance to osmotic stress. Antioxidant enzyme activities and proline contents were also increased in miR156ab-OE transgenic apple lines, which improved drought resistance. The SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factor MsSPL13 is the target of msi-miR156ab, as demonstrated by 5-RACE and dual luciferase assays. Heterologous expression of MsSPL13 decreased auxin contents and inhibited growth in Arabidopsis (Arabidopsis thaliana) under normal and stress conditions. The activities of antioxidant enzymes were also suppressed in MsSPL13-OE transgenic Arabidopsis, reducing drought resistance. We showed that MsSPL13 regulates the expression of the auxin-related genes MsYUCCA5, PIN-FORMED7 (MsPIN7), and Gretchen Hagen3-5 (MsGH3-5) by binding to the GTAC cis-elements in their promoters, thereby regulating auxin metabolism. Finally, we demonstrated that the miR156ab-SPL13 module is involved in mediating the difference in auxin metabolism and stress responses between the M. sieversii and M26 (M. domestica) rootstocks. Overall, these findings reveal that the miR156ab-SPL13 module enhances drought stress tolerance in apples by regulating auxin metabolism and antioxidant enzyme activities.
Collapse
Affiliation(s)
- Chen Feng
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xiang Zhang
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Bingyang Du
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yuqin Xiao
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yanyan Wang
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yueting Sun
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xin Zhou
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Chao Wang
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yang Liu
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Tian-Hong Li
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
19
|
Liang B, Wei Z, Ma C, Yin B, Li C, Ma F. Ectopic expression of HIOMT improves tolerance and nitrogen utilization efficiency in transgenic apple under drought stress. TREE PHYSIOLOGY 2023; 43:335-350. [PMID: 36124720 DOI: 10.1093/treephys/tpac112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Melatonin enhances plant tolerance to various environmental stressors. Although exogenous application of melatonin has been investigated, the role of endogenous melatonin metabolism in the response of apples to drought stress and nutrient utilization remains unclear. Here, we investigated the effects of ectopically expressing the human melatonin synthase gene HIOMT on transgenic apple plants under drought stress conditions. The tolerance of transgenic apple lines that ectopically expressed HIOMT improved significantly under drought conditions. After 10 days of natural drought stress treatment, the transgenic apple plants showed higher relative water content, chlorophyll levels and Fv/Fm, and lower relative electrolyte leakage and hydrogen peroxide accumulation, than wild-type plants. The activities of peroxidase, superoxide dismutase and catalase, as well as genes in the ascorbate-glutathione cycle, increased more in transgenic apple plants than in the wild-type. The ectopic expression of HIOMT also markedly alleviated the inhibitory effects of long-term drought stress on plant growth, photosynthetic rate and chlorophyll concentrations in apple plants. The uptake and utilization of 15N increased markedly in the transgenic lines under long-term moderate drought stress. Drought stress sharply reduced the activity of enzymes involved in nitrogen metabolism, but ectopic expression of HIOMT largely reversed that response. The expression levels of genes of nitrogen metabolism and uptake were more upregulated in transgenic apple plants than the wild-type. Overall, our study demonstrates that ectopic expression of HIOMT enhanced the tolerance of apple plants to drought stress, and transgenic apple plants showed improved growth due to higher nutrient utilization efficiency under drought conditions.
Collapse
Affiliation(s)
- Bowen Liang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- College of Horticulture, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Zhiwei Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- College of Food Sciences and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, Shandong, China
| | - Changqing Ma
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Baoying Yin
- College of Horticulture, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Chao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
20
|
Geng L, Ren J, Ji X, Yan S, Song XS. Over-expression of DREB46 enhances drought tolerance in Populus trichocarpa. JOURNAL OF PLANT PHYSIOLOGY 2023; 281:153923. [PMID: 36657232 DOI: 10.1016/j.jplph.2023.153923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/20/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
The drought responsive element binding (DREB) gene family has a significant role in plant abiotic stress responses. Here, we cloned a drought-inducible DREB gene, DREB46 (Potri.019G075500), and investigated its function in drought tolerance in Populus trichocarpa. Under treatment with exogenous abscisic acid and 6% PEG6000, DREB46 was rapidly and abundantly expressed. We successfully inserted P. trichocarpa DREB46 constructs into P. trichocarpa. After 11 d of drought stress and 3 d of rehydration treatment, the DREB46 over-expression (OE) lines exhibited significantly increased survival rates relative to the wild type (WT). Histochemical staining showed that the accumulation of reactive oxygen species (ROS) in transgenic plants under drought stress was lower than that in WT plants. Furthermore, OE plants displayed higher superoxide dismutase, peroxidase, and catalase activities and proline content, but lower malondialdehyde content than the WT plants under drought stress. In contrast, DREB46-RNA interference (RNAi) lines exhibited the opposite phenotype. Under PEG-6000 stress, OE plants produced significantly more adventitious roots (ARs) than WT plants. In contrast, RNAi-mediated DREB46-inhibited poplar exhibited fewer ARs. Quantitative real-time PCR indicated that WOX11/12a (Potri.013G066900), a gene related to root growth and development regulation, was significantly increased in OE plants. Additionally, yeast two-hybrid (Y2H) assays showed that DREB46 could interact with protein kinase MPK1 (Potri.002G032100) and protein phosphatase PP2C47 (Potri.007G058700), respectively, and this result was also verified by luciferase complementation assay. Transient co-expression results of leaves showed that PP2C47 and DREB46 Agrobacterium-transformed leaves had strong drought tolerance. These results show that DREB46 plays a key role in drought tolerance by inducing the ROS scavenging system and increasing the number of ARs.
Collapse
Affiliation(s)
- Liangzhuang Geng
- Department of Genetics, College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Jing Ren
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaolong Ji
- Department of Genetics, College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Shaopeng Yan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China; Department of Genetics, College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Xing Shun Song
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China; Department of Genetics, College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
21
|
Niu C, Jiang L, Cao F, Liu C, Guo J, Zhang Z, Yue Q, Hou N, Liu Z, Li X, Tahir MM, He J, Li Z, Li C, Ma F, Guan Q. Methylation of a MITE insertion in the MdRFNR1-1 promoter is positively associated with its allelic expression in apple in response to drought stress. THE PLANT CELL 2022; 34:3983-4006. [PMID: 35897144 PMCID: PMC9520589 DOI: 10.1093/plcell/koac220] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Miniature inverted-repeat transposable elements (MITEs) are widely distributed in the plant genome and can be methylated. However, whether DNA methylation of MITEs is associated with induced allelic expression and drought tolerance is unclear. Here, we identified the drought-inducible MdRFNR1 (root-type ferredoxin-NADP+ oxidoreductase) gene in apple (Malus domestica). MdRFNR1 plays a positive role in drought tolerance by regulating the redox system, including increasing NADP+ accumulation and catalase and peroxidase activities and decreasing NADPH levels. Sequence analysis identified a MITE insertion (MITE-MdRF1) in the promoter of MdRFNR1-1 but not the MdRFNR1-2 allele. MdRFNR1-1 but not MdRFNR1-2 expression was significantly induced by drought stress, which was positively associated with the MITE-MdRF1 insertion and its DNA methylation. The methylated MITE-MdRF1 is recognized by the transcriptional anti-silencing factors MdSUVH1 and MdSUVH3, which recruit the DNAJ domain-containing proteins MdDNAJ1, MdDNAJ2, and MdDNAJ5, thereby activating MdRFNR1-1 expression under drought stress. Finally, we showed that MdSUVH1 and MdDNAJ1 are positive regulators of drought tolerance. These findings illustrate the molecular roles of methylated MITE-MdRF1 (which is recognized by the MdSUVH-MdDNAJ complex) in induced MdRFNR1-1 expression as well as the drought response of apple and shed light on the molecular mechanisms of natural variation in perennial trees.
Collapse
Affiliation(s)
| | | | | | - Chen Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Junxing Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Zitong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Qianyu Yue
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Nan Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Zeyuan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Xuewei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
- College of Life Science, Northwest A&F University, Yangling 712100, China
| | - Muhammad Mobeen Tahir
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Jieqiang He
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Zhongxing Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Chao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | | |
Collapse
|
22
|
Peng X, Feng C, Wang YT, Zhang X, Wang YY, Sun YT, Xiao YQ, Zhai ZF, Zhou X, Du BY, Wang C, Liu Y, Li TH. miR164g- MsNAC022 acts as a novel module mediating drought response by transcriptional regulation of reactive oxygen species scavenging systems in apple. HORTICULTURE RESEARCH 2022; 9:uhac192. [PMID: 36338839 PMCID: PMC9630969 DOI: 10.1093/hr/uhac192] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 08/22/2022] [Indexed: 05/27/2023]
Abstract
Under drought stress, reactive oxygen species (ROS) overaccumulate as a secondary stress that impairs plant performance and thus severely reduces crop yields. The mitigation of ROS levels under drought stress is therefore crucial for drought tolerance. MicroRNAs (miRNAs) are critical regulators of plant development and stress responses. However, the complex molecular regulatory mechanism by which they function during drought stress, especially in drought-triggered ROS scavenging, is not fully understood. Here, we report a newly identified drought-responsive miRNA, miR164g, in the wild apple species Malus sieversii and elucidate its role in apple drought tolerance. Our results showed that expression of miR164g is significantly inhibited under drought stress and it can specifically cleave transcripts of the transcription factor MsNAC022 in M. sieversii. The heterologous accumulation of miR164g in Arabidopsis thaliana results in enhanced sensitivity to drought stress, while overexpression of MsNAC022 in Arabidopsis and the cultivated apple line 'GL-3' (Malus domestica Borkh.) lead to enhanced tolerance to drought stress by raising the ROS scavenging enzymes activity and related genes expression levels, particularly PEROXIDASE (MsPOD). Furthermore, we showed that expression of MsPOD is activated by MsNAC022 in transient assays. Interestingly, Part1 (P1) region is the key region for the positive regulation of MsPOD promoter by MsNAC022, and the different POD expression patterns in M. sieversii and M. domestica is attributed to the specific fragments inserted in P1 region of M. sieversii. Our findings reveal the function of the miR164g-MsNAC022 module in mediating the drought response of M. sieversii and lay a foundation for breeding drought-tolerant apple cultivars.
Collapse
Affiliation(s)
- Xiang Peng
- State Key Laboratories of Agrobiotechnology, Department of Pomology, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Chen Feng
- State Key Laboratories of Agrobiotechnology, Department of Pomology, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yan-Tao Wang
- Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xiang Zhang
- State Key Laboratories of Agrobiotechnology, Department of Pomology, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yan-Yan Wang
- State Key Laboratories of Agrobiotechnology, Department of Pomology, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yue-Ting Sun
- State Key Laboratories of Agrobiotechnology, Department of Pomology, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yu-Qin Xiao
- State Key Laboratories of Agrobiotechnology, Department of Pomology, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Ze-Feng Zhai
- State Key Laboratories of Agrobiotechnology, Department of Pomology, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xin Zhou
- State Key Laboratories of Agrobiotechnology, Department of Pomology, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Bing-Yang Du
- State Key Laboratories of Agrobiotechnology, Department of Pomology, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Chao Wang
- State Key Laboratories of Agrobiotechnology, Department of Pomology, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yang Liu
- Corresponding authors. E-mails: ,
| | | |
Collapse
|
23
|
Hou N, Li C, He J, Liu Y, Yu S, Malnoy M, Mobeen Tahir M, Xu L, Ma F, Guan Q. MdMTA-mediated m 6 A modification enhances drought tolerance by promoting mRNA stability and translation efficiency of genes involved in lignin deposition and oxidative stress. THE NEW PHYTOLOGIST 2022; 234:1294-1314. [PMID: 35246985 DOI: 10.1111/nph.18069] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Although the N6 -methyladenosine (m6 A) modification is the most prevalent RNA modification in eukaryotes, the global m6 A modification landscape and its molecular regulatory mechanism in response to drought stress remain unclear. Transcriptome-wide m6 A methylome profiling revealed that m6 A is mainly enriched in the coding sequence and 3' untranslated region in response to drought stress in apple, by recognizing the plant-specific sequence motif UGUAH (H=A, U or C). We identified a catalytically active component of the m6 A methyltransferase complex, MdMTA. An in vitro methyl transfer assay, dot blot, LC-MS/MS and m6 A-sequencing (m6 A-seq) suggested that MdMTA is an m6 A writer and essential for m6 A mRNA modification. Further studies revealed that MdMTA is required for apple drought tolerance. m6 A-seq and RNA-seq analyses under drought conditions showed that MdMTA mediates m6 A modification and transcripts of mRNAs involved in oxidative stress and lignin deposition. Moreover, m6 A modification promotes mRNA stability and the translation efficiency of these genes in response to drought stress. Consistently, MdMTA enhances lignin deposition and scavenging of reactive oxygen species under drought conditions. Our results reveal the global involvement of m6 A modification in the drought response of perennial apple trees and illustrate its molecular mechanisms, thereby providing candidate genes for the breeding of stress-tolerant apple cultivars.
Collapse
Affiliation(s)
- Nan Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Chaoshuo Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Jieqiang He
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Yu Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Sisi Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Mickael Malnoy
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach, San Michele all'Adige, 38010, Italy
| | - Muhammad Mobeen Tahir
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Lingfei Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, China
| |
Collapse
|
24
|
Jiang L, Zhang D, Liu C, Shen W, He J, Yue Q, Niu C, Yang F, Li X, Shen X, Hou N, Chen P, Ma F, Guan Q. MdGH3.6 is targeted by MdMYB94 and plays a negative role in apple water-deficit stress tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1271-1289. [PMID: 34918398 DOI: 10.1111/tpj.15631] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 12/02/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Drought significantly limits apple fruit production and quality. Decoding the key genes involved in drought stress tolerance is important for breeding varieties with improved drought resistance. Here, we identified GRETCHEN HAGEN3.6 (GH3.6), an indole-3-acetic acid (IAA) conjugating enzyme, to be a negative regulator of water-deficit stress tolerance in apple. Overexpressing MdGH3.6 reduced IAA content, adventitious root number, root length and water-deficit stress tolerance, whereas knocking down MdGH3.6 and its close paralogs increased IAA content, adventitious root number, root length and water-deficit stress tolerance. Moreover, MdGH3.6 negatively regulated the expression of wax biosynthetic genes under water-deficit stress and thus negatively regulated cuticular wax content. Additionally, MdGH3.6 negatively regulated reactive oxygen species scavengers, including antioxidant enzymes and metabolites involved in the phenylpropanoid and flavonoid pathway in response to water-deficit stress. Further study revealed that the homolog of transcription factor AtMYB94, rather than AtMYB96, could bind to the MdGH3.6 promoter and negatively regulated its expression under water-deficit stress conditions in apple. Overall, our results identify a candidate gene for the improvement of drought resistance in fruit trees.
Collapse
Affiliation(s)
- Lijuan Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dehui Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chen Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wenyun Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jieqiang He
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qianyu Yue
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chundong Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Feng Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xuewei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoxia Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Nan Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Pengxiang Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
25
|
Physiological and Qualitative Response of Cucurbita pepo L. to Salicylic Acid under Controlled Water Stress Conditions. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8010079] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Limited water stress is one of the most important environmental stresses that affect the growth, quantity and quality of agronomic crops. This study was undertaken to investigate the effect of foliar applied salicylic acid (SA) on physiological responses, antioxidant enzymes and qualitative traits of Cucurbita pepo L. Plants exposed to water-stressed conditions in two years of field studies. Irrigation regimes at three soil matric potential levels (−0.3, −1.2 and −1.8 MPa) and SA at four levels (0.0, 0.5, 1.0 and 1.5 mg/L) were considered as main plot and sub-plots, respectively. The soil matric potential values (MPa) was measured just before irrigation. Results showed that under water stressed conditions alone, the amounts of malondialdehyde (MDA), hydrogen peroxide (H2O2) and ion leakage were higher compared with control treatment. However, spraying of SA under both water stress and non-stress conditions reduced the values of the above parameters. Water stress increased CAT, APX and GR enzymes activity. However foliar application of SA led to the decrease of CAT, APX and GR under all soil matric potential levels. The amount of carbohydrates and fatty acids increased with the intensity of water stress and SA modulated this response. By increasing SA concentration both in optimum and stress conditions, saturated fatty acids content decreased. According to our data, the SA application is an effective approach to improve pumpkin growth under water stress conditions.
Collapse
|
26
|
Qiu L, Gao W, Wang Z, Li B, Sun W, Gao P, Sun X, Song B, Zhang Y, Kong T, Lin H. Citric acid and AMF inoculation combination-assisted phytoextraction of vanadium (V) by Medicago sativa in V mining contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:67472-67486. [PMID: 34254246 DOI: 10.1007/s11356-021-15326-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
The use of citric acid (CA) chelator to facilitate metal bioavailability is a promising approach for the phytoextraction of heavy metal contaminants. However, the role of the CA chelator associated with arbuscular mycorrhizal fungi (AMF) inoculation on phytoextraction of vanadium (V) has not been studied. Therefore, in this study, a greenhouse pot experiment was conducted to evaluate the combined effect of CA chelator and AMF inoculation on growth performance and V phytoextraction of plants in V-contaminated soil. The experiment was performed via CA (at 0, 5, and 10 mM kg-1 soil levels) application alone or in combination with AMF inoculation by Medicago sativa Linn. (M. sativa). Plant biomass, root mycorrhizal colonization, P and V accumulation, antioxidant enzyme activity in plants, and soil chemical speciation of V were evaluated. Results depicted (1) a marked decline in plant biomass and root mycorrhizal colonization in 5- and 10-mM CA treatments which were accompanied by a significant increased V accumulation in plant tissues. The effects could be attributed to the enhanced acid-soluble V fraction transferring from the reducible fraction. (2) The presence of CA significantly enhanced P acquisition while the P/V concentration ratio in plant shoots and roots decreased, owing to the increased V translocation from soil to plant. (3) In both CA-treated soil, AMF-plant symbiosis significantly improved dry weight (31.4-73.3%) and P content (37.3-122.5%) in shoots and roots of M. sativa. The combined treatments also showed markedly contribution in reduction of malondialdehyde (MDA) content (12.8-16.2%) and higher antioxidants (SOD, POD, and CAT) activities in the leaves. This suggests their combination could promote growth performance and stimulate antioxidant response to alleviate V stress induced by CA chelator. (4) Taken together, 10 mM kg-1 CA application and AMF inoculation combination exhibited a higher amount of extracted V both in plant shoots and roots. Thus, citric acid-AMF-plant symbiosis provides a novel remediation strategy for in situ V phytoextraction by M. sativa in V-contaminated soil.
Collapse
Affiliation(s)
- Lang Qiu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, 808 Tianyuan Road, Tianhe District, Guangzhou, 510650, Guangdong Province, China
| | - Wenlong Gao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, 808 Tianyuan Road, Tianhe District, Guangzhou, 510650, Guangdong Province, China
| | - Zhigang Wang
- Key Laboratory of Plant and Soil Interactions, Ministry of Education, Center for Resources, Environment and Food Security, China Agricultural University, Beijing, 100193, China
| | - Baoqin Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, 808 Tianyuan Road, Tianhe District, Guangzhou, 510650, Guangdong Province, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, 808 Tianyuan Road, Tianhe District, Guangzhou, 510650, Guangdong Province, China
- School of Environment, Henan Normal University, Xinxiang, Henan, China
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, China
| | - Pin Gao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, 808 Tianyuan Road, Tianhe District, Guangzhou, 510650, Guangdong Province, China
| | - Xiaoxu Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, 808 Tianyuan Road, Tianhe District, Guangzhou, 510650, Guangdong Province, China
| | - Benru Song
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, 808 Tianyuan Road, Tianhe District, Guangzhou, 510650, Guangdong Province, China
| | - Yanxu Zhang
- College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Tianle Kong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, 808 Tianyuan Road, Tianhe District, Guangzhou, 510650, Guangdong Province, China
| | - Hanzhi Lin
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, 808 Tianyuan Road, Tianhe District, Guangzhou, 510650, Guangdong Province, China.
| |
Collapse
|
27
|
Proz MDLÁ, da Silva MAS, Rodrigues E, Bender RJ, Rios ADO. Effects of indoor, greenhouse, and field cultivation on bioactive compounds from parsley and basil. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:6320-6330. [PMID: 33966275 DOI: 10.1002/jsfa.11301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/16/2021] [Accepted: 05/09/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Aromatic herbs are an important source of bioactive compounds. Different cultivation systems should give each plant a specific amount of those compounds, which should be of a particular quality. In this study, the effects of three cultivation systems (indoor, greenhouse, and organic field) on the composition of bioactive compounds in parsley (Petroselinum crispum cv. 'Flat Leaf'), green basil (Ocimum basilicum var. minimum cv. 'Greek'), and purple basil (Ocimum basilicum cv. 'Red Rubin') were evaluated. RESULTS β-Carotene and lutein were the carotenoids with the highest concentration in the three plants in all the cultivation systems. Overall, parsley proved to be a source of flavonoids. The major phenolic compound found in basil plants was rosmarinic acid, whereas most anthocyanins were derived from cyanidin aglycone. Among the three plants studied, the highest vitamin C content was found in parsley from the field. This was 2.6 and 5.4 times higher than the indoor and greenhouse cultivation, respectively. CONCLUSION The results suggest that different cultivation systems influence and modulate the concentration of bioactive compounds in plants differently, varying according to their class, and that, above all, an indoor system is an effective cultivation system for the production of bioactive compounds. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mariel de Los Ángeles Proz
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Magnólia Aparecida Silva da Silva
- Department of Horticulture and Forestry, Agronomy University of the Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Eliseu Rodrigues
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Renar João Bender
- Department of Horticulture and Forestry, Agronomy University of the Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Alessandro de Oliveira Rios
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
28
|
Feng C, He C, Wang Y, Xu H, Xu K, Zhao Y, Yao B, Zhang Y, Zhao Y, Idrice Carther KF, Luo J, Sun D, Gao H, Wang F, Li X, Liu W, Dong Y, Wang N, Zhou Y, Li H. Genome-wide identification of soybean Shaker K + channel gene family and functional characterization of GmAKT1 in transgenic Arabidopsis thaliana under salt and drought stress. JOURNAL OF PLANT PHYSIOLOGY 2021; 266:153529. [PMID: 34583134 DOI: 10.1016/j.jplph.2021.153529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 05/27/2023]
Abstract
Potassium is a major cationic nutrient involved in numerous physiological processes in plants. The uptake of K+ is mediated by K+ channels and transporters, and the Shaker K+ channel gene family plays an essential role in K+ uptake and stress resistance in plants. However, little is known regarding this family in soybean. In this study, 14 members of the Shaker K+ channel gene family were identified in soybean and were classified into five groups. Protein domain analysis revealed that Shaker K+ channel gene members have an ion transport domain (ion trans), a cyclic nucleotide-binding domain, ankyrin repeat domains, and a dimerization domain in the potassium ion channel. Quantitative real-time polymerase chain reaction analysis indicated that the expression of eight genes (notably GmAKT1) in soybean leaves and roots was significantly increased in response to salt and drought stress. Furthermore, the overexpression of GmAKT1 in Arabidopsis enhanced root length, K+ concentration, and fresh/dry weight ratio compared with wild-type plants subjected to salt and drought stress; this suggests that GmAKT1 improves the tolerance of soybean to abiotic stress. Our results provide important insight into the characterization of Shaker K+ channel gene family members in soybean and highlight the function of GmAKT1 in soybean plants under salt and drought stress.
Collapse
Affiliation(s)
- Chen Feng
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Chengming He
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Yifan Wang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Hehan Xu
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Keheng Xu
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Yu Zhao
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Bowen Yao
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Yinhe Zhang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Yan Zhao
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Kue Foka Idrice Carther
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Jun Luo
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - DaQian Sun
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Hongtao Gao
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Fawei Wang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Xiaowei Li
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Weican Liu
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Yuanyuan Dong
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Nan Wang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Yonggang Zhou
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, 130118, China; College of Tropical Crops, Hainan University, Haikou, 570228, China.
| | - Haiyan Li
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, 130118, China; College of Tropical Crops, Hainan University, Haikou, 570228, China.
| |
Collapse
|
29
|
Li C, Hou N, Fang N, He J, Ma Z, Ma F, Guan Q, Li X. Cold shock protein 3 plays a negative role in apple drought tolerance by regulating oxidative stress response. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:83-92. [PMID: 34627025 DOI: 10.1016/j.plaphy.2021.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/12/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
As RNA chaperones, cold shock proteins (CSPs) are essential for cold adaptation. Although the functions of CSPs in cold response have been demonstrated in several species, the roles of CSPs in response to drought are largely unknown. Here, we demonstrated that MdCSP3, a downstream target gene of MdMYB88 and MdMYB124, contributes to drought tolerance in apple (Malus × domestica). MdCSP3 responds to various abiotic stresses, including drought, cold, heat, and salt stress. Compared with non-transgenic apple GL-3, the MdCSP3 overexpressing plants exhibit significantly lower drought resistance and a reduced capacity for ROS scavenging by the regulation of antioxidant enzymes SOD, CAT, and POD. Additionally, RNA-seq data shows that MdCSP3 regulates expression of genes involved in oxidative stress response. Taken together, our results demonstrate the functions of MdCSP3 in apple drought tolerance, and this finding provides a new direction for breeding of drought resistant apple.
Collapse
Affiliation(s)
- Chaoshuo Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Nan Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Nan Fang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Jieqiang He
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Ziqing Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| | - Xuewei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
30
|
Laskoś K, Czyczyło‐Mysza IM, Dziurka M, Noga A, Góralska M, Bartyzel J, Myśków B. Correlation between leaf epicuticular wax composition and structure, physio-biochemical traits and drought resistance in glaucous and non-glaucous near-isogenic lines of rye. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:93-119. [PMID: 34288188 PMCID: PMC9291005 DOI: 10.1111/tpj.15428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 07/10/2021] [Accepted: 07/14/2021] [Indexed: 05/06/2023]
Abstract
The objective of this research was to investigate the differences between glaucous and non-glaucous near-isogenic lines (NILs) of winter rye (Secale cereale L.) in terms of epicuticular wax layer properties (weight, composition, and crystal morphology), selected physiological and biochemical responses, yield components, above-ground biomass, and plant height under soil drought stress. An important aspect of this analysis was to examine the correlation between the above characteristics. Two different NIL pairs were tested, each consisting of a typical glaucous line and a non-glaucous line with a recessive mutation. The drought experiment was conducted twice (2015-2016). Our study showed that wax accumulation during drought was not correlated with higher leaf hydration and glaucousness. Environmental factors had a large impact on the response of the lines to drought in individual years, both in terms of physiological and biochemical reactions, and the composition of epicuticular leaf wax. The analysed pairs displayed significantly different responses to drought. Demonstration of the correlation between the components of rye leaf wax and the physiological and biochemical parameters of rye NILs is a significant achievement of this work. Interestingly, the study showed a correlation between the wax components and the content of photosynthetic pigments and tocopherols, whose biosynthesis, similarly to the biosynthesis of wax precursors, is mainly located in chloroplasts. This suggests a relationship between wax biosynthesis and plant response to various environmental conditions and drought stress.
Collapse
Affiliation(s)
- Kamila Laskoś
- The Franciszek Górski Institute of Plant Physiology Polish Academy of SciencesNiezapominajek 2130‐239Kraków
Poland
| | - Ilona M. Czyczyło‐Mysza
- The Franciszek Górski Institute of Plant Physiology Polish Academy of SciencesNiezapominajek 2130‐239Kraków
Poland
| | - Michał Dziurka
- The Franciszek Górski Institute of Plant Physiology Polish Academy of SciencesNiezapominajek 2130‐239Kraków
Poland
| | - Angelika Noga
- The Franciszek Górski Institute of Plant Physiology Polish Academy of SciencesNiezapominajek 2130‐239Kraków
Poland
| | - Magdalena Góralska
- Department of Plant Genetics, Breeding and BiotechnologyWest‐Pomeranian University of TechnologySłowackiego 1771‐434SzczecinPoland
| | - Jakub Bartyzel
- Department of Applied Nuclear PhysicsFaculty of Physics and Applied Computer ScienceAGH University of Science and TechnologyMickiewicza 330‐059KrakówPoland
| | - Beata Myśków
- Department of Plant Genetics, Breeding and BiotechnologyWest‐Pomeranian University of TechnologySłowackiego 1771‐434SzczecinPoland
| |
Collapse
|
31
|
Zhou P, Li X, Liu X, Wen X, Zhang Y, Zhang D. Transcriptome profiling of Malus sieversii under freezing stress after being cold-acclimated. BMC Genomics 2021; 22:681. [PMID: 34548013 PMCID: PMC8456659 DOI: 10.1186/s12864-021-07998-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 09/07/2021] [Indexed: 01/03/2023] Open
Abstract
Background Freezing temperatures are an abiotic stress that has a serious impact on plant growth and development in temperate regions and even threatens plant survival. The wild apple tree (Malus sieversii) needs to undergo a cold acclimation process to enhance its freezing tolerance in winter. Changes that occur at the molecular level in response to low temperatures are poorly understood in wild apple trees. Results Phytohormone and physiology profiles and transcriptome analysis were used to elaborate on the dynamic response mechanism. We determined that JA, IAA, and ABA accumulated in the cold acclimation stage and decreased during freezing stress in response to freezing stress. To elucidate the molecular mechanisms of freezing stress after cold acclimation, we employed single molecular real-time (SMRT) and RNA-seq technologies to study genome-wide expression profiles in wild apple. Using the PacBio and Illumina platform, we obtained 20.79G subreads. These reads were assembled into 61,908 transcripts, and 24,716 differentially expressed transcripts were obtained. Among them, 4410 transcripts were differentially expressed during the whole process of freezing stress, and these were examined for enrichment via GO and KEGG analyses. Pathway analysis indicated that “plant hormone signal transduction”, “starch and sucrose metabolism”, “peroxisome” and “photosynthesis” might play a vital role in wild apple responses to freezing stress. Furthermore, the transcription factors DREB1/CBF, MYC2, WRKY70, WRKY71, MYB4 and MYB88 were strongly induced during the whole stress period. Conclusions Our study presents a global survey of the transcriptome profiles of wild apple trees in dynamic response to freezing stress after two days cold acclimation and provides insights into the molecular mechanisms of freezing adaptation of wild apple plants for the first time. The study also provides valuable information for further research on the antifreezing reaction mechanism and genetic improvement of M. sieversii after cold acclimation. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07998-0.
Collapse
Affiliation(s)
- Ping Zhou
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoshuang Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.,Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
| | - Xiaojie Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuejing Wen
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.,Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
| | - Yan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Daoyuan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China. .,Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China.
| |
Collapse
|
32
|
Expression of the Malus sieversii NF-YB21 Encoded Gene Confers Tolerance to Osmotic Stresses in Arabidopsis thaliana. Int J Mol Sci 2021; 22:ijms22189777. [PMID: 34575941 PMCID: PMC8467963 DOI: 10.3390/ijms22189777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 11/23/2022] Open
Abstract
Drought is the main environmental factor that limits the yield and quality of apples (Malus × domestica) grown in arid and semi-arid regions. Nuclear factor Ys (NF-Ys) are important transcription factors involved in the regulation of plant growth, development, and various stress responses. However, the function of NF-Y genes is poorly understood in apples. Here, we identified 43 NF-Y genes in the genome of apples and conducted an initial functional characterization of the apple NF-Y. Expression analysis of NF-Y members in M. sieversii revealed that a large number of NF-Ys were highly expressed in the roots compared with the leaves, and a large proportion of NF-Y genes responded to drought treatment. Furthermore, heterologous expression of MsNF-YB21, which was significantly upregulated by drought, led to a longer root length and, thus, conferred improved osmotic and salt tolerance in Arabidopsis. Moreover, the physiological analysis of MsNF-YB21 overexpression revealed enhanced antioxidant systems, including antioxidant enzymes and compatible solutes. In addition, genes encoding catalase (AtCAT2, AtCAT3), superoxide dismutase (AtFSD1, AtFSD3, AtCSD1), and peroxidase (AtPER12, AtPER42, AtPER47, AtPER51) showed upregulated expression in the MsNF-YB21 overexpression lines. These results for the MsNF-Y gene family provide useful information for future studies on NF-Ys in apples, and the functional analysis of MsNF-YB21 supports it as a potential target in the improvement of apple drought tolerance via biotechnological strategies.
Collapse
|
33
|
Hu B, Mithöfer A, Reichelt M, Eggert K, Peters FS, Ma M, Schumacher J, Kreuzwieser J, von Wirén N, Rennenberg H. Systemic reprogramming of phytohormone profiles and metabolic traits by virulent Diplodia infection in its pine (Pinus sylvestris L.) host. PLANT, CELL & ENVIRONMENT 2021; 44:2744-2764. [PMID: 33822379 DOI: 10.1111/pce.14061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
The widespread ascomycetous fungus Diplodia pinea is a latent, necrotrophic pathogen in Pinus species causing severe damages and world-wide economic losses. However, the interactions between pine hosts and virulent D. pinea are largely not understood. In the present study, systemic defence responses were investigated in non-inoculated, asymptomatic needles and roots of D. pinea infected saplings of two P. sylvestris provenances under controlled greenhouse conditions. Here, we show that D. pinea infection induced a multitude of systemic responses of the phytohormone profiles and metabolic traits. Shared systemic responses of both pine provenances in needles and roots included increased abscisic acid and jasmonic acid levels. Exclusively in the roots of both provenances, enhanced salicylic acid and reduced indole-3-acetic acid levels, structural biomass, and elevated activities of anti-oxidative enzymes were observed. Despite these similarities, the two pine provenances investigated different significantly in the systemic responses of both, phytohormone profiles and metabolic traits in needles and roots. However, the different systemic responses did not prevent subsequent destruction of non-inoculated needles, but rather prevented damage to the roots. Our results provide a detailed view on systemic defence mechanisms of pine hosts that are of particular significance for the selection of provenances with improved defence capacity.
Collapse
Affiliation(s)
- Bin Hu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University No. 2, Chongqing, China
- Institute of Forest Sciences, Chair of Tree Physiology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Axel Mithöfer
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Kai Eggert
- Molecular Plant Nutrition, Leibniz-Institute for Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Franziska S Peters
- Institute of Forest Sciences, Chair of Tree Physiology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Department of Forest Protection, FVA Forest Research Institute of Baden-Württemberg (FVA-BW), Freiburg, Germany
| | - Ming Ma
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University No. 2, Chongqing, China
| | - Jörg Schumacher
- Department of Forest Protection, FVA Forest Research Institute of Baden-Württemberg (FVA-BW), Freiburg, Germany
- Department of Forest Health and Risk Management, University for Sustainable Development (HNE Eberswalde), Eberswalde, Germany
| | - Jürgen Kreuzwieser
- Institute of Forest Sciences, Chair of Tree Physiology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Nicolaus von Wirén
- Molecular Plant Nutrition, Leibniz-Institute for Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University No. 2, Chongqing, China
- Institute of Forest Sciences, Chair of Tree Physiology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|
34
|
Complex Analysis of Antioxidant Activity, Abscisic Acid Level, and Accumulation of Osmotica in Apple and Cherry In Vitro Cultures under Osmotic Stress. Int J Mol Sci 2021; 22:ijms22157922. [PMID: 34360688 PMCID: PMC8347229 DOI: 10.3390/ijms22157922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 01/26/2023] Open
Abstract
Plant response to osmotic stress is a complex issue and includes a wide range of physiological and biochemical processes. Extensive studies of known cultivars and their reaction to drought or salinity stress are very important for future breeding of new and tolerant cultivars. Our study focused on the antioxidant activity, accumulations of osmotica, and the content of abscisic acid in apple (cv. “Malinové holovouské”, “Fragrance”, “Rubinstep”, “Idared”, “Car Alexander”) and cherry (cv. “Regina”, “Napoleonova”, “Kaštánka”, “Sunburst”, “P-HL-C”) cultivated in vitro on media containing different levels of polyethylene glycol PEG-6000. Our results indicated that the studied genotypes responded differently to osmotic stress manifested as reduction in the leaf relative water content (RWC) and increment in the activities of antioxidant enzymes, proline, sugars, and abscisic acid content. Overall, cherry cultivars showed a smaller decrease in percentage RWC and enzymatic activities, but enhanced proline content compared to the apple plants cultivars. Cultivars “Rubinstep”, “Napoleonova”, and “Kaštánka” exhibited higher antioxidant capacity and accumulation of osmoprotectants like proline and sorbitol that can be associated with the drought-tolerance system.
Collapse
|
35
|
Zhang X, Xin L, Wang C, Sun S, Lyu Y. Short‐term hypobaric treatment enhances chilling tolerance in peaches. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Xuedan Zhang
- Shandong Institute of Pomology Tai'an P.R. China
| | - Li Xin
- Shandong Institute of Pomology Tai'an P.R. China
| | - Chao Wang
- College of Horticulture Science and Engineering Shandong Agricultural University Tai'an P.R. China
| | - Shan Sun
- Shandong Institute of Pomology Tai'an P.R. China
| | - Yanhui Lyu
- College of Horticulture Science and Engineering Shandong Agricultural University Tai'an P.R. China
| |
Collapse
|
36
|
Lourkisti R, Oustric J, Quilichini Y, Froelicher Y, Herbette S, Morillon R, Berti L, Santini J. Improved response of triploid citrus varieties to water deficit is related to anatomical and cytological properties. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:762-775. [PMID: 33812345 DOI: 10.1016/j.plaphy.2021.03.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Polyploidy plays a major role in citrus plant breeding to improve the adaptation of polyploid rootstocks as well as scions to adverse conditions and to enhance agronomic characteristics. In Citrus breeding programs, triploidy could be a useful tool to react to environmental issues and consumer demands because the produced fruits are seedless. In this study, we compared the physiological, biochemical, morphological, and ultrastructural responses to water deficit of triploid and diploid citrus varieties obtained from 'Fortune' mandarin and 'Ellendale' tangor hybridization. One diploid clementine tree was included and used as a reference. All studied scions were grafted on C-35 citrange rootstock. Triploidy decreased stomatal density and increased stomata size. The number of chloroplasts increased in 3x varieties. These cytological properties may explain the greater photosynthetic capacity (Pnet, gs, Fv/Fm) and enhanced water-holding capacity (RWC, proline). In addition, reduced degradation of ultrastructural organelles (chloroplasts and mitochondria) and thylakoids accompanied by less photosynthetic activity and low oxidative damages were found in 3x varieties. Triploid varieties, especially T40-3x, had a better ability to limit water loss and dissipate excess energy (NPQ) to protect photosystems. Higher starch reserves in 3x varieties suggest a better carbon and energy supply and increases in plastoglobuli size suggest less oxidative damage (H2O2, MDA), especially in T40-3x, and preservation of photosynthetic apparatus. Taken together, our results suggest that desirable cytological and ultrastructural traits induced by triploidy improve water stress response and could be a useful stress marker during environmental constraints.
Collapse
Affiliation(s)
- Radia Lourkisti
- CNRS, Equipe « Biochimie et Biologie moléculaire du végétal », UMR 6134 SPE, Université de Corse, Corsica, France
| | - Julie Oustric
- CNRS, Equipe « Biochimie et Biologie moléculaire du végétal », UMR 6134 SPE, Université de Corse, Corsica, France
| | - Yann Quilichini
- CNRS, Equipe « Parasites et Ecosystèmes méditerranéens, UMR 6134 SPE, Université de Corse, Corsica, France
| | | | | | - Raphael Morillon
- Equipe « Amélioration des Plantes à Multiplication Végétative », UMR AGAP, Département BIOS, CIRAD, Petit-Bourg, Guadeloupe
| | - Liliane Berti
- CNRS, Equipe « Biochimie et Biologie moléculaire du végétal », UMR 6134 SPE, Université de Corse, Corsica, France
| | - Jérémie Santini
- CNRS, Equipe « Biochimie et Biologie moléculaire du végétal », UMR 6134 SPE, Université de Corse, Corsica, France.
| |
Collapse
|
37
|
Huang D, Wang Q, Zhang Z, Jing G, Ma M, Ma F, Li C. Silencing MdGH3-2/12 in apple reduces drought resistance by regulating AM colonization. HORTICULTURE RESEARCH 2021; 8:84. [PMID: 33790267 PMCID: PMC8012562 DOI: 10.1038/s41438-021-00524-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/24/2020] [Accepted: 02/06/2021] [Indexed: 05/08/2023]
Abstract
Drought leads to reductions in plant growth and crop yields. Arbuscular mycorrhizal fungi (AMF), which form symbioses with the roots of the most important crop species, alleviate drought stress in plants. In the present work, we identified 14 GH3 genes in apple (Malus domestica) and provided evidence that MdGH3-2 and MdGH3-12 play important roles during AM symbiosis. The expression of both MdGH3-2 and MdGH3-12 was upregulated during mycorrhization, and the silencing of MdGH3-2/12 had a negative impact on AM colonization. MdGH3-2/12 silencing resulted in the downregulation of five genes involved in strigolactone synthesis, and there was a corresponding change in root strigolactone content. Furthermore, we observed lower root dry weights in RNAi lines under AM inoculation conditions. Mycorrhizal transgenic plants showed greater sensitivity to drought stress than WT, as indicated by their higher relative electrolytic leakage and lower relative water contents, osmotic adjustment ability, ROS scavenging ability, photosynthetic capacity, chlorophyll fluorescence values, and abscisic acid contents. Taken together, these data demonstrate that MdGH3-2/12 plays an important role in AM symbiosis and drought stress tolerance in apple.
Collapse
Affiliation(s)
- Dong Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Qian Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Zhijun Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Guangquan Jing
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Mengnan Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China.
| | - Chao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
38
|
Huang D, Wang Q, Jing G, Ma M, Li C, Ma F. Overexpression of MdIAA24 improves apple drought resistance by positively regulating strigolactone biosynthesis and mycorrhization. TREE PHYSIOLOGY 2021; 41:134-146. [PMID: 32856070 DOI: 10.1093/treephys/tpaa109] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/10/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
Most land plant species have the ability to establish a symbiosis with arbuscular mycorrhizal (AM) fungi. These fungi penetrate into root cortical cells and form branched structures (known as arbuscules) for nutrient exchange. We cloned the MdIAA24 from apple (Malus domestica) following its up-regulation during AM symbiosis. Results demonstrate the positive impact of the overexpression (OE) of MdIAA24 in apple on AM colonization. We observed the strigolactone (SL) synthesis genes, including MdD27, MdCCD7, MdCCD8a, MdCCD8b and MdMAXa, to be up-regulated in the OE lines. Thus, the OE lines exhibited both a higher SL content and colonization rate. Furthermore, we observed that the OE lines were able to maintain better growth parameters under AM inoculation conditions. Under drought stress with the AM inoculation, the OE lines were less damaged, which was demonstrated by a higher relative water content, a lower relative electrolytic leakage, a greater osmotic adjustment, a higher reactive oxygen species scavenging ability, an improved gas exchange capacity and an increased chlorophyll fluorescence performance. Our findings demonstrate that the OE of MdIAA24 in apple positively regulates the synthesis of SL and the formation of arbuscules as a drought stress coping mechanism.
Collapse
Affiliation(s)
- Dong Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, No.3 Taicheng Road, Yangling 712100 Shaanxi, China
| | - Qian Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, No.3 Taicheng Road, Yangling 712100 Shaanxi, China
| | - Guangquan Jing
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, No.3 Taicheng Road, Yangling 712100 Shaanxi, China
| | - Mengnan Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, No.3 Taicheng Road, Yangling 712100 Shaanxi, China
| | - Chao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, No.3 Taicheng Road, Yangling 712100 Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, No.3 Taicheng Road, Yangling 712100 Shaanxi, China
| |
Collapse
|
39
|
Faghih S, Zamani Z, Fatahi R, Omidi M. Influence of kaolin application on most important fruit and leaf characteristics of two apple cultivars under sustained deficit irrigation. Biol Res 2021; 54:1. [PMID: 33407933 PMCID: PMC7789529 DOI: 10.1186/s40659-020-00325-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 12/03/2020] [Indexed: 11/10/2022] Open
Abstract
Background Apple is one of the oldest and most valuable fruits. Water restriction is one of the major problems in the production of this fruit in some planting areas. Methods Effects of kaolin spray treatments were studied on two early apple cultivars of Golab and Shafi-Abadi under sustained deficit irrigation (SDI) in Alborz province, Iran during 2017 and 2018. Irrigation treatments were 100%, 85%, and 70% ETc and kaolin application were concentrations of 0, 3 and 6% in 2017 and 0, 1.5 and 3% in 2018. Results Results showed that 85% ETc treatment compared to other irrigation treatments improved apple tree crown volume in 2017. Deficit irrigation treatments significantly reduced fruit weight in both years. Application with 6% kaolin resulted in 33.3% increase in apple fruit weight compared to non-kaolin treatment at 100% ETc irrigation in the first year. Severe deficit irrigation (70% ETc) significantly reduced apple fruit length in both years, but 6% kaolin increased fruit length in both apple cultivars in 2017. Severe deficit irrigation treatment increased the firmness of apple fruit compared to control and mild deficit irrigation (85% ETc) in the first year of experiment. There was no significant difference between irrigation treatments for apple fruit firmness in the second year of experiment. Kaolin treatments of 1.5% and 3% at full irrigation increased the soluble solids content of apple fruit by 36.6% and 44.1% in 2018, respectively. Deficit irrigation treatments significantly increased leaf proline content compared to control in both years. In the first year, kaolin treatments increased leaf proline but in the second year, leaf proline was not significant. Deficit irrigation treatment of 70% ETc and 6% kaolin had the highest amount of glycine betaine content, malondialdehyde and hydrogen peroxide in apple leaf in the first year of experiment. Conclusions Severe deficit irrigation stress (70% ETc) increased the activity of nonenzymatic defense systems of apple trees. Kaolin as a drought stress reducing agent can be recommended in apple orchards of Golab and Shafi-Abadi cultivars as an effective and inexpensive method to improve tolerance to drought stress conditions.
Collapse
Affiliation(s)
- Somayeh Faghih
- Department of Horticulture Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587, Iran.
| | - Zabihollah Zamani
- Department of Horticulture Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587, Iran
| | - Reza Fatahi
- Department of Horticulture Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587, Iran
| | - Mohammad Omidi
- Department of Horticulture Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587, Iran
| |
Collapse
|
40
|
Zhao C, Liu X, He J, Xie Y, Xu Y, Ma F, Guan Q. Apple TIME FOR COFFEE contributes to freezing tolerance by promoting unsaturation of fatty acids. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110695. [PMID: 33288008 DOI: 10.1016/j.plantsci.2020.110695] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/31/2020] [Accepted: 09/26/2020] [Indexed: 05/23/2023]
Abstract
Freezing stress is a major environmental factor that threatens the growth and development of fruit trees. MdMYB88 and its paralogue MdMYB124 have been identified as pivotal regulators in apple (Malus × domestica) freezing stress tolerance. Here, we demonstrated that a target of MdMYB88 and MdMYB124, TIME FOR COFFEE (TIC), contributes to freezing tolerance in apple. MdMYB88 and MdMYB124 directly bound the MdTIC promoter and positively regulated its expression under cold conditions. MdTIC RNAi plants displayed reduced freezing tolerance when MdTIC expression was repressed. Moreover, MdTIC RNAi plants lowered antioxidant enzyme activity. Transcriptome profiling revealed altered expression of cold-responsive genes in MdTIC RNAi plants under cold conditions, including MdPLC2, MdMKK2, and MdICE1. We also discovered that disordered MdTIC expression changed the saturation of fatty acids. Taken together, our data suggest that MdTIC is required for apple to tolerate freezing by mediating the expression of cold-responsive genes and fatty acid composition.
Collapse
Affiliation(s)
- Caide Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xiaofang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jieqiang He
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yinpeng Xie
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yao Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
41
|
Mishko A, Sundyreva M, Zaremuk R, Mozhar N, Lutskiy E. Effects of drought on the physiological parameters of fruit crops leaves. BIO WEB OF CONFERENCES 2021. [DOI: 10.1051/bioconf/20213401009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Development of the modern horticulture is impossible without studying the adaptive capabilities of crops cultivars and hybrids. Drought is one of the major factors, which negatively influence on plants growth and development in summer period. This stress factor results in disruption of the photosynthetic apparatus, changing the electron flux, which facilitates the accumulation of free radicals. Activation of plant defense systems can suppress the development of oxidative stress. In this research, the physiological and biochemical characteristics of leaves under drought stress of different cultivars of pear, plum and cherry growing in the Krasnodar region during summer period were studied. It was found that in the driest month — august, the majority of cultivars were in the oxidative stress state, which resulted in an increase of the malondialdehyde content. The greatest adaptive potential to drought was noted in the pear cultivars Williams and Flamenco, as well as among the cherry cultivars there were Volshebnitsa and Sashenka. The better drought resistance characteristics among plum cultivars were detected in the control cultivar Stenley According to the obtained data, it was found that the decrease of chlorophylls content in leaves correlated with the increase of the carotenoid and malondialdehyde contents.
Collapse
|
42
|
Zhang L, Guo X, Qin Y, Feng B, Wu Y, He Y, Wang A, Zhu J. The chilling tolerance divergence 1 protein confers cold stress tolerance in processing tomato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:34-46. [PMID: 32193092 DOI: 10.1016/j.plaphy.2020.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 06/10/2023]
Abstract
Tomato (Lycopersicon esculentum Mill [Solanum lycopersicum L.].) is an important food material and cash crop, as well as a model plant for genetic evolution and molecular biology research. However, as a cold-sensitive crop originating from the tropics, the growth and development of tomato is often affected by low temperature stress. Therefore, how processing tomatoes resist this type of stress has important theoretical and practical significance. In this study, the LeCOLD1 gene was cloned from processing tomato. Subcellular localization analysis showed that LeCOLD1 was located in the plasma membrane. Real-time quantitative PCR analysis showed that LeCOLD1 was highly expressed in roots. Drought, salt and low temperatures induced the expression of COLD1. Overexpression and RNA interference vectors of LeCOLD1 were constructed and were transformed into tomato by the Agrobacterium-mediated method, and then obtaining transgenic tomato plants. It was found that LeCOLD1 increased the height of processing tomato plants and increased the length of their roots. In addition, overexpression of LeCOLD1 significantly improved the cold resistance of the plants. Overexpressing LeCOLD1 in tomato plants reduced the damage to the cell membrane, accumulation of ROS and photoinhibition of PSII, and maintained the high activity of antioxidant enzymes and the content of osmotic regulators. Further analysis revealed that during low temperature stress, the cells maintained high levels of antioxidant enzyme activity by regulating the transcription of the genes encoding these enzymes. The results show that overexpressing LeCOLD1 in tomato increases the plants' resistance to low temperatures, and that reducing LeCOLD1 expression makes the plants more sensitive to low temperatures.
Collapse
Affiliation(s)
- Li Zhang
- Key Laboratory of Agricultural Biotechnology, College of Life Science, Shihezi University, Shihezi, 832000, China
| | - Xinyong Guo
- Key Laboratory of Agricultural Biotechnology, College of Life Science, Shihezi University, Shihezi, 832000, China
| | - Yujie Qin
- Key Laboratory of Agricultural Biotechnology, College of Life Science, Shihezi University, Shihezi, 832000, China
| | - Bin Feng
- Key Laboratory of Agricultural Biotechnology, College of Life Science, Shihezi University, Shihezi, 832000, China
| | - Yating Wu
- Key Laboratory of Agricultural Biotechnology, College of Life Science, Shihezi University, Shihezi, 832000, China
| | - Yaling He
- Key Laboratory of Agricultural Biotechnology, College of Life Science, Shihezi University, Shihezi, 832000, China
| | - Aiying Wang
- Key Laboratory of Agricultural Biotechnology, College of Life Science, Shihezi University, Shihezi, 832000, China
| | - Jianbo Zhu
- Key Laboratory of Agricultural Biotechnology, College of Life Science, Shihezi University, Shihezi, 832000, China.
| |
Collapse
|
43
|
Zhu Y, Luo X, Nawaz G, Yin J, Yang J. Physiological and Biochemical Responses of four cassava cultivars to drought stress. Sci Rep 2020; 10:6968. [PMID: 32332812 PMCID: PMC7181862 DOI: 10.1038/s41598-020-63809-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 03/30/2020] [Indexed: 11/09/2022] Open
Abstract
The antioxidant mechanism is crucial for resisting oxidative damage induced by drought stress in plants. Different antioxidant mechanisms may contribute to the tolerance of cassava to drought stress, but for a specific genotype, the response is still unknown. The objective of this study was to investigate antioxidant response and physiological changes of four cassava genotypes under water stress conditions, by keeping the soil moisture content as 80% (control), 50% (medium), 20% (severe) of field capacity for a week. Genotypes RS01 and SC124 were keeping higher relative water content (RWC) and relative chlorophyll content (SPAD value) and less affected by oxidative stress than SC205 and GR4 under drought stress. RS01 just showed slight membrane damage and oxidative stress even under severe drought conditions. A principal component analysis showed that cassava plant water status was closely related to the antioxidant mechanism. Antioxidant response in genotypes RS01 and SC124 under drought stress might attribute to the increased accumulation of ascorbate (AsA) and glutathione (GSH) content and higher superoxide dismutase (SOD) and catalase (CAT) activities, which explained by the up-regulation of Mn-SOD and CAT genes. However, Genotypes SC205 and GR4 mainly depended on the accumulation of total phenolics (TP) and increased glutathione reductase (GR) activity, which attribute to the up-regulation of the GR gene. Our findings could provide vital knowledge for refining the tactics of cultivation and molecular breeding with drought avoidance in cassava.
Collapse
Affiliation(s)
- Yanmei Zhu
- Agricultural College of Guangxi University, Nanning, 530005, China
| | - Xinglu Luo
- Agricultural College of Guangxi University, Nanning, 530005, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning, 530005, China.
| | - Gul Nawaz
- Agricultural College of Guangxi University, Nanning, 530005, China
| | - Jingjing Yin
- Agricultural College of Guangxi University, Nanning, 530005, China
| | - Jingni Yang
- Agricultural College of Guangxi University, Nanning, 530005, China
| |
Collapse
|
44
|
Huang D, Ma M, Wang Q, Zhang M, Jing G, Li C, Ma F. Arbuscular mycorrhizal fungi enhanced drought resistance in apple by regulating genes in the MAPK pathway. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 149:245-255. [PMID: 32087536 DOI: 10.1016/j.plaphy.2020.02.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 05/19/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) can form a symbiotic relationships with most terrestrial plants and play an important role in plant growth and adaptation to various stresses. To study the role of AMF in regulating drought resistance in apple, the effects of drought stress on Malus hupehensis inoculated with AMF were investigated. Inoculation of AMF enhanced apple plants growth. Mycorrhizal plants had higher total chlorophyll concentrations but lower relative electrolyte leakage under drought stress. Mycorrhizal plants increased net photosynthetic rate, stomatal conductance, and transpiration rate under drought stress, however, they showed lower inhibition in the quantum yield of PSII photochemistry. Mycorrhizal plants also had higher superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) enzyme activities under drought conditions. Thus, mycorrhizal plants had lower accumulated MDA, H2O2, and O2- than non-mycorrhizal seedlings. Total sugar and proline concentrations also significantly increased, helping maintain the osmotic balance. Furthermore, mitogen-activated protein kinase (MAPK) cascades, which participate in the regulation of responses of plants and microorganisms to biotic and abiotic stress, were up-regulated in apple plants and AMF during drought. We saw that there were at least two motifs that were identical in MAPK proteins and many elements that responded to hormones and stress from these MAPK genes. In summary, our results showed that mycorrhizal colonization enhanced apple drought tolerance by improving gas exchange capacity, increasing chlorophyll fluorescence parameters, creating a greater osmotic adjustment capacity, increasing scavenging of reactive oxygen species (ROS), and using MAPK signals for interactions between AMF and their apple plant hosts.
Collapse
Affiliation(s)
- Dong Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mengnan Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qian Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Maoxue Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Guangquan Jing
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
45
|
Kiseleva G, Nenko N, Karavaeva A, Shalyakho T. Use of physiological and biochemical indicators to identify apple varieties resistant to drought. BIO WEB OF CONFERENCES 2020. [DOI: 10.1051/bioconf/20202502017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
As a result of global climate change in the arid regions of the world, a decrease in the adaptability of fruit crops to drought has been noted. This explains the interest of researchers in the issues of increasing the drought resistance of fruit crops in various ways, one of which is the creation of resistant varieties as a result of selection. The use of physiological and biochemical parameters in the breeding process as diagnostic criteria for drought resistance and the identification of highly adaptive varieties of fruit crops is relevant all over the world. The objects of study are apple varieties of various ecological and geographical origins: Idared, Erli Mac, Dayton (USA), Prikubanskoe, Rassvet, Fortuna (Russia). Physiological parameters: the relative water content, the total content of chlorophylls (a + b), carotenoids, ascorbic acid in the leaves of the studied apple varieties were determined during periods before drought and during drought. Differences in the response of varieties to the impact of drought were revealed. It was found that apple varieties of local selection Prikubanskoye, Fortuna and American variety Idared have a greater ability to adapt to changing environmental conditions in comparison with other studied varieties. The revealed adaptive features during drought (retention of a high relative water content, stability of the pigment system, a low ratio of the total chlorophyll to carotenoids, an increased content of ascorbic acid) make it possible to use them in breeding as donors of drought resistance traits. The data of physiological and biochemical studies, obtained in the unique natural and climatic conditions of the North Caucasus region of Russia, complement fundamental research on the physiological foundations of apple tree adaptation to drought.
Collapse
|
46
|
Wang Q, Liu C, Huang D, Dong Q, Li P, Ma F. High-efficient utilization and uptake of N contribute to higher NUE of 'Qinguan' apple under drought and N-deficient conditions compared with 'Honeycrisp'. TREE PHYSIOLOGY 2019; 39:1880-1895. [PMID: 31711215 DOI: 10.1093/treephys/tpz093] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/19/2019] [Indexed: 05/19/2023]
Abstract
Drought and nitrogen (N) deficiency are common factors that limit apple production in the Loess Plateau region of China. Different apple cultivars respond to drought and low N differently; however, the mechanism that underlies the difference in nitrogen-use efficiency (NUE) under drought conditions is not well understood. In this study, by comparing the physiological responses of two apple (Malus domestica Borkh.) cultivars with contrasting NUE, 'Qinguan' (higher NUE) and 'Honeycrisp' (lower NUE), under low N and drought conditions, we discovered that, 'Qinguan' had larger stomatal apertures, higher chlorophyll fluorescence levels, more active N metabolism and antioxidant enzymes, higher abscisic acid and auxin concentrations, larger root size and more efficient N uptake mediated by higher expression of MdNRT2.4 in rootstock than that of 'Honeycrisp'. Additionally, we experimentally confirmed that MdNRT2.4 enhanced low N and osmotic stress tolerance in Arabidopsis when being overexpressed. Taken together, our findings shed light on the mechanism that underlies the difference in NUE of apple under drought and N-deficient conditionss and provide MdNRT2.4 as a candidate gene for future genetic engineering.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, China
| | - Changhai Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, China
| | - Dong Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, China
| | - Qinglong Dong
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, China
| | - Pengmin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, China
| |
Collapse
|
47
|
Asefpour Vakilian K. Gold nanoparticles-based biosensor can detect drought stress in tomato by ultrasensitive and specific determination of miRNAs. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 145:195-204. [PMID: 31706222 DOI: 10.1016/j.plaphy.2019.10.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 05/16/2023]
Abstract
Drought stress can significantly affect the yield and quality of tomato production. However, the development of a sensitive and specific method for the determination of drought stress is somehow challenging since plant common morpho-physiological and biochemical characteristic are not generally specific to biotic and abiotic stresses. As a solution, the concentration of miRNAs in plant tissues can be a selective and specific indicator of plant stress. In this study, an optical biosensor based on gold nanoparticles is introduced to determine miRNA-1886 in tomato plant roots. Results showed that irrigation levels from 100% to 60% of field capacity increased the concentration of miRNA-1886 in a range from ca. 100 to 6800 fM (fM) causing a linear change in the biosensor response (R2 = 0.97). Results also revealed that in contrast with plant conventional morpho-physiological and biochemical characteristic, miRNA-1886 concentration was not significantly affected (P < 0.01) by other stresses, i.e., salinity and temperature during the growth period. The biosensor introduced in this study is a reliable method to study stress-related functions of miRNAs in plants and their application in specific plant stress determination.
Collapse
Affiliation(s)
- Keyvan Asefpour Vakilian
- Department of Agrotechnology, College of Abouraihan, University of Tehran, Tehran, Iran; Private Laboratory of Biosensor Applications, Hamadan, Iran.
| |
Collapse
|
48
|
Liu H, Yang L, Xin M, Ma F, Liu J. Gene-Wide Analysis of Aquaporin Gene Family in Malus domestica and Heterologous Expression of the Gene MpPIP2;1 Confers Drought and Salinity Tolerance in Arabidposis thaliana. Int J Mol Sci 2019; 20:ijms20153710. [PMID: 31362376 PMCID: PMC6696234 DOI: 10.3390/ijms20153710] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 01/05/2023] Open
Abstract
The aquaporins (AQPs) are a family of integral membrane proteins involved in the transcellular membrane transport of water and other small molecules. A scan of the apple (Malus domestica) genome revealed the presence of 42 genes encoding putative AQPs. Based on a phylogenetic analysis of the deduced peptide sequences of the AQPs generated by Arabidopsis thaliana, poplar (Populus trichocarpa), and rubber (Hevea brasiliensis), the apple AQPs were each assigned membership of the five established AQP subfamilies, namely the PIPs (eleven members), the TIPs (thirteen members), the NIPs (eleven members), the SIPs (five members), and the XIPs (two members). The apple AQPs included asparagine-proline-alanine (NPA) motifs, an aromatic/arginine (ar/R) selectivity filter, and the Froger’s positions. The heterologous expression of MpPIP2;1 in A. thaliana was shown to enhance the level of tolerance exhibited against both drought and salinity.
Collapse
Affiliation(s)
- Haili Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Leilei Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Miaomiao Xin
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Jingying Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
49
|
Ye L, Zhao X, Bao E, Cao K, Zou Z. Effects of Arbuscular Mycorrhizal Fungi on Watermelon Growth, Elemental Uptake, Antioxidant, and Photosystem II Activities and Stress-Response Gene Expressions Under Salinity-Alkalinity Stresses. FRONTIERS IN PLANT SCIENCE 2019; 10:863. [PMID: 31333702 PMCID: PMC6616249 DOI: 10.3389/fpls.2019.00863] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/14/2019] [Indexed: 05/03/2023]
Abstract
Salinity-alkalinity stress has caused severe environment problems that negatively impact the growth and development of watermelon (Citrullus lanatus L.). In this study, watermelon seedlings were inoculated with the arbuscular mycorrhizal fungi (AMF) Funneliformis mosseae to investigate its effect on watermelon growth and development. The main measurements included morphological traits, elemental and water uptake, the level of reactive oxygen species, antioxidant enzyme and photosynthesis activities, and relative expression levels of stress response genes. Under salinity-alkalinity stresses, watermelon morphological traits, elemental and water uptake were all significantly alleviated after incubation with AMF. Antioxidant abilities of watermelon were significantly improved after incubation with AMF in salinity-alkalinity stresses. Under normal conditions, all photosynthesis related parameters were significantly increased after incubation of AMF. In contrast, they were all significantly reduced under salinity-alkalinity stresses and were all significantly alleviated after incubation of AMF. Salinity-alkalinity stresses impacted the chloroplast structure and AMF significantly alleviated these damages. Under salinity-alkalinity stresses, the relative expression level of RBCL was significantly reduced and was significantly alleviated after AMF treatment. The relative expression level of PPH was significantly increased and was further significantly reduced after AMF treatment. For the relative expression levels of antioxidant response related genes Cu-Zn SOD, CAT, APX, GR, their relative expression levels were significantly increased and were further significantly increased after AMF treatment. Our study demonstrated the beneficial effects of AMF under salinity-alkalinity stresses, which could be implicated in the management of watermelon cultivation under salinity-alkalinity regions.
Collapse
Affiliation(s)
- Lin Ye
- College of Horticulture, Northwest A&F University, Xianyang, China
- College of Agriculture, Ningxia University, Yinchuan, China
| | - Xia Zhao
- College of Horticulture, Northwest A&F University, Xianyang, China
- College of Agriculture, Ningxia University, Yinchuan, China
| | - Encai Bao
- Key Laboratory of Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture, Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Kai Cao
- Key Laboratory of Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture, Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhirong Zou
- College of Horticulture, Northwest A&F University, Xianyang, China
| |
Collapse
|
50
|
Zhang Z, Cao B, Gao S, Xu K. Grafting improves tomato drought tolerance through enhancing photosynthetic capacity and reducing ROS accumulation. PROTOPLASMA 2019; 256:1013-1024. [PMID: 30805718 DOI: 10.1007/s00709-019-01357-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/12/2019] [Indexed: 05/19/2023]
Abstract
Drought is the main meteorological threat to plants and limits plant growth, development, and adaptation to environmental changes. However, root-shoot communication plays a vital role in improving tomato plant drought tolerance, especially when cultivars are grafted onto drought-tolerant rootstock. In this study, the relationship between photosynthetic capacity and reactive oxygen species (ROS) in response to drought stress was studied in tomato grafted with different drought-resistant tomato seedlings. To determine the drought-relieving effect of drought-tolerant rootstocks, we measured the effects of grafting on plant growth, net photosynthetic rate (Pn), ROS accumulation, and antioxidant enzyme activities in tomato leaves and roots under drought stress. Plant growth and Pn were significantly inhibited by drought, but ROS accumulation and antioxidant enzyme activities were significantly increased. Treatment with drought-tolerant tomato seedlings significantly increased plant growth and increased Pn under water-deficit conditions compared with those grafted with drought-susceptible rootstock. In addition, the plants grafted with drought-tolerant seedlings had increased activities of partial antioxidant enzymes, leading to decreased ROS production. Our results indicate that tomato grafted with drought-tolerant seedlings alleviated the phytotoxicity and oxidative damage caused by drought by regulating antioxidant enzymes under drought stress.
Collapse
Affiliation(s)
- Zhihuan Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
- State Key Laboratory of Crop Biology, Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huanghuaihai Region, Ministry of Agriculture, Tai'an, People's Republic of China
| | - Bili Cao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
- State Key Laboratory of Crop Biology, Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huanghuaihai Region, Ministry of Agriculture, Tai'an, People's Republic of China
| | - Song Gao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
- State Key Laboratory of Crop Biology, Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huanghuaihai Region, Ministry of Agriculture, Tai'an, People's Republic of China
| | - Kun Xu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
- State Key Laboratory of Crop Biology, Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huanghuaihai Region, Ministry of Agriculture, Tai'an, People's Republic of China.
| |
Collapse
|