1
|
Lu WL, Xie XG, Ai HW, Wu HF, Dai YY, Wang LN, Rahman K, Su J, Sun K, Han T. Crosstalk between H 2O 2 and Ca 2+ signaling is involved in root endophyte-enhanced tanshinone biosynthesis of Salvia miltiorrhiza. Microbiol Res 2024; 285:127740. [PMID: 38795408 DOI: 10.1016/j.micres.2024.127740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/19/2024] [Accepted: 04/28/2024] [Indexed: 05/28/2024]
Abstract
Tanshinones are bioactive ingredients derived from the herbal plant Salvia miltiorrhiza and are used for treating diseases of the heart and brain, thus ensuring quality of S. miltiorrhiza is paramount. Applying the endophytic fungus Trichoderma atroviride D16 can significantly increase the content of tanshinones in S. miltiorrhiza, but the potential mechanism remains unknown. In the present study, the colonization of D16 effectively enhanced the levels of Ca2+ and H2O2 in the roots of S. miltiorrhiza, which is positively correlated with increased tanshinones accumulation. Further experiments found that the treatment of plantlets with Ca2+ channel blocker (LaCl3) or H2O2 scavenger (DMTU) blocked D16-promoted tanshinones production. LaCl3 suppressed not only the D16-induced tanshinones accumulation but also the induced Ca2+ and H2O2 generation; nevertheless, DMTU did not significantly inhibit the induced Ca2+ biosynthesis, implying that Ca2+ acted upstream in H2O2 production. These results were confirmed by observations that S. miltiorrhiza treated with D16, CaCl2, and D16+LaCl3 exhibit H2O2 accumulation and influx in the roots. Moreover, H2O2 as a downstream signal of Ca2+ is involved in D16 enhanced tanshinones synthesis by inducing the expression of genes related to the biosynthesis of tanshinones, such as DXR, HMGR, GGPPS, CPS, KSL and CYP76AH1 genes. Transcriptomic analysis further supported that D16 activated the transcriptional responses related to Ca2+ and H2O2 production and tanshinones synthesis in S. miltiorrhiza seedlings. This is the first report that Ca2+ and H2O2 play important roles in regulating fungal-plant interactions thus improving the quality in the D16-S. miltiorrhiza system.
Collapse
Affiliation(s)
- Wei-Lan Lu
- School of Pharmacy, Naval Medical University, Shanghai 200433, People's Republic of China
| | - Xing-Guang Xie
- School of Pharmacy, Naval Medical University, Shanghai 200433, People's Republic of China
| | - Hong-Wei Ai
- The 967th hospital of PLA, Dalian 116000, People's Republic of China
| | - Hui-Fen Wu
- School of Pharmacy, Naval Medical University, Shanghai 200433, People's Republic of China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, People's Republic of China
| | - Yuan-Yuan Dai
- School of Pharmacy, Naval Medical University, Shanghai 200433, People's Republic of China; School of Pharmacy, Zhejiang University of Traditional Chinese Medicine, Hangzhou 310053, People's Republic of China
| | - Lu-Nuan Wang
- School of Pharmacy, Naval Medical University, Shanghai 200433, People's Republic of China
| | - Khalid Rahman
- Faculty of Science, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Juan Su
- School of Pharmacy, Naval Medical University, Shanghai 200433, People's Republic of China.
| | - Kai Sun
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing 210023, People's Republic of China.
| | - Ting Han
- School of Pharmacy, Naval Medical University, Shanghai 200433, People's Republic of China.
| |
Collapse
|
2
|
Sun K, Pan YT, Jiang HJ, Xu JY, Ma CY, Zhou J, Liu Y, Shabala S, Zhang W, Dai CC. Root endophyte-mediated alteration in plant H2O2 homeostasis regulates symbiosis outcome and reshapes the rhizosphere microbiota. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3153-3170. [PMID: 38394357 DOI: 10.1093/jxb/erae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/22/2024] [Indexed: 02/25/2024]
Abstract
Endophytic symbioses between plants and fungi are a dominant feature of many terrestrial ecosystems, yet little is known about the signaling that defines these symbiotic associations. Hydrogen peroxide (H2O2) is recognized as a key signal mediating the plant adaptive response to both biotic and abiotic stresses. However, the role of H2O2 in plant-fungal symbiosis remains elusive. Using a combination of physiological analysis, plant and fungal deletion mutants, and comparative transcriptomics, we reported that various environmental conditions differentially affect the interaction between Arabidopsis and the root endophyte Phomopsis liquidambaris, and link this process to alterations in H2O2 levels and H2O2 fluxes across root tips. We found that enhanced H2O2 efflux leading to a moderate increase in H2O2 levels at the plant-fungal interface is required for maintaining plant-fungal symbiosis. Disturbance of plant H2O2 homeostasis compromises the symbiotic ability of plant roots. Moreover, the fungus-regulated H2O2 dynamics modulate the rhizosphere microbiome by selectively enriching for the phylum Cyanobacteria, with strong antioxidant defenses. Our results demonstrated that the regulation of H2O2 dynamics at the plant-fungal interface affects the symbiotic outcome in response to external conditions and highlight the importance of the root endophyte in reshaping the rhizosphere microbiota.
Collapse
Affiliation(s)
- Kai Sun
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Yi-Tong Pan
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Hui-Jun Jiang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Jia-Yan Xu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Chen-Yu Ma
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Jiayu Zhou
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu, China
| | - Yunqi Liu
- Zhongguancun Xuyue Non-invasive Micro-test Technology Industrial Alliance, Beijing 10080, China
| | - Sergey Shabala
- School of Biological Science, University of Western Australia, Crawley, WA 60909, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China
| | - Wei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| |
Collapse
|
3
|
Etesami H, Glick BR. Bacterial indole-3-acetic acid: A key regulator for plant growth, plant-microbe interactions, and agricultural adaptive resilience. Microbiol Res 2024; 281:127602. [PMID: 38228017 DOI: 10.1016/j.micres.2024.127602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/18/2024]
Abstract
Indole-3-acetic acid (IAA), a fundamental phytohormone categorized under auxins, not only influences plant growth and development but also plays a critical role in plant-microbe interactions. This study reviews the role of IAA in bacteria-plant communication, with a focus on its biosynthesis, regulation, and the subsequent effects on host plants. Bacteria synthesize IAA through multiple pathways, which include the indole-3-acetamide (IAM), indole-3-pyruvic acid (IPyA), and several other routes, whose full mechanisms remain to be fully elucidated. The production of bacterial IAA affects root architecture, nutrient uptake, and resistance to various abiotic stresses such as drought, salinity, and heavy metal toxicity, enhancing plant resilience and thus offering promising routes to sustainable agriculture. Bacterial IAA synthesis is regulated through complex gene networks responsive to environmental cues, impacting plant hormonal balances and symbiotic relationships. Pathogenic bacteria have adapted mechanisms to manipulate the host's IAA dynamics, influencing disease outcomes. On the other hand, beneficial bacteria utilize IAA to promote plant growth and mitigate abiotic stresses, thereby enhancing nutrient use efficiency and reducing dependency on chemical fertilizers. Advancements in analytical methods, such as liquid chromatography-tandem mass spectrometry, have improved the quantification of bacterial IAA, enabling accurate measurement and analysis. Future research focusing on molecular interactions between IAA-producing bacteria and host plants could facilitate the development of biotechnological applications that integrate beneficial bacteria to improve crop performance, which is essential for addressing the challenges posed by climate change and ensuring global food security. This integration of bacterial IAA producers into agricultural practice promises to revolutionize crop management strategies by enhancing growth, fostering resilience, and reducing environmental impact.
Collapse
Affiliation(s)
- Hassan Etesami
- Soil Science Department, University of Tehran, Tehran, Iran.
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
4
|
Elsharif NA, El awamie MW, Matuoog N. Will the endophytic fungus Phomopsis liquidambari increase N-mineralization in maize soil? PLoS One 2023; 18:e0293281. [PMID: 37956133 PMCID: PMC10642820 DOI: 10.1371/journal.pone.0293281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 10/10/2023] [Indexed: 11/15/2023] Open
Abstract
Endophytes can be developed into biocontrol agents and can be fungi, bacteria, or archaea that live inside plant tissues without causing symptoms of disease. Phomopsis liquidambari is an endophytic fungus that plays an important ecosystem role as a biofertilizer by helping its host obtain soil nitrogen. How this fungus impacts N mineralization and microbial communities is little known. Our understanding of soil nutrient transformations and soil-plant-microbe interactions in Phomopsis liquidambari-crop versus conventional crop systems is incomplete. This study provided a better understanding of the effect of Phomopsis liquidambari on nitrogen mineralization and investigated the interaction between P. liquidambari and nitrogen, which in turn will be helpful to the farmer in reducing the required amount of soil N fertilizer. This change in N availability in maize soil will have significant implications for soil productivity and plant N utilization, especially in N-limited soils, and significantly reduce the required amount of soil N fertilizer. The effect of P. liquidambari on N mineralization in maize soil was investigated by treating it with four levels of N (urea) at rates of 0, 1.25, 2.5, and 3.75 g of nitrogen. N-mineralization was determined by the anaerobic incubation method. Were stored for 7 days in an incubator at a constant 37 C. A colorimetric microplate procedure was used for NH4+-N analysis. A significant increase in the available NH4+-N contents was reported in soil maize (Zea mays L.) inoculated with P. liquidambari, which increased by 80%. A significant increase in N-mineralization was observed under all N conditions. This work highlighted the importance of the fungal endophyte for soil N-mineralization with lower N input. Using this fungal agent will almost certainly help reduce fertilizer input.
Collapse
Affiliation(s)
- Nariman A. Elsharif
- Faculty of Arts and Sciences, Department of Botany, University of Benghazi, Ghemins, Libya
| | - Madiha W. El awamie
- Faculty of Sciences, Department of Microbiology, University of Benghazi, Benghazi, Libya
| | - Naeema Matuoog
- Faculty of Arts and Sciences, Department of Botany, University of Benghazi, Ghemins, Libya
| |
Collapse
|
5
|
Wang H, Zhong L, Fu X, Huang S, Zhao D, He H, Chen X. Physiological analysis reveals the mechanism of accelerated growth recovery for rice seedlings by nitrogen application after low temperature stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1133592. [PMID: 36875613 PMCID: PMC9978396 DOI: 10.3389/fpls.2023.1133592] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Low temperature and overcast rain are harmful to directly seeding early rice, it can hinder rice growth and lower rice biomass during the seedling stage, which in turn lowers rice yield. Farmers usually use N to help rice recuperate after stress and minimize losses. However, the effect of N application on the growth recovery for rice seedlings after such low temperature stress and its associated physiological changes remain unclearly. Two temperature settings and four post-stress N application levels were used in a bucket experiment to compare B116 (strong growth recovery after stress) with B144 (weak growth recovery). The results showed that the stress (average daily temperature at 12°C for 4 days) inhibited the growth of rice seedlings. Compared to the zero N group, the N application group's seedling height, fresh weight and dry weight significantly increased after 12 days. In particular, the increases in all three growth indicators were relatively higher than that of N application at normal temperature, indicating the importance of N application to rice seedlings after low temperature stress. The antioxidant enzyme activity of rice seedlings increased significantly after N application, which reduced the damaging effect of ROS (reactive oxygen species) to rice seedlings. At the same time, the soluble protein content of seedlings showed a slow decrease, while the H2O2 and MDA (malondialdehyde) content decreased significantly. Nitrogen could also promote nitrogen uptake and utilization by increasing the expression of genes related to NH 4 + and NO 3 - uptake and transport, as well as improving the activity of NR (nitrate reductase) and GS (glutamine synthetase) in rice. N could affect GA3 (gibberellin A3) and ABA (abscisic acid) levels by regulating the anabolism of GA3 and ABA. The N application group maintained high ABA levels as well as low GA3 levels from day 0 to day 6, and high GA3 levels as well as low ABA levels from day 6 to day 12. The two rice varieties showed obvious characteristics of accelerated growth recovery and positive physiological changes by nitrogen application after stress, while B116 generally showed more obvious growth recovery and stronger growth-related physiological reaction than that of B144. The N application of 40 kg hm-2 was more conducive to the rapid recovery of rice growth after stress. The above results indicated that appropriate N application promoted rice seedling growth recovery after low temperature stress mainly by increasing the activities of antioxidant enzymes and nitrogen metabolizing enzymes as well as regulating the levels of GA3 and ABA. The results of this study will provide a reference for the regulation of N on the recovery of rice seedling growth after low temperature and weak light stress.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Super Rice Engineering Technology Center, Jiangxi Agricultural University, Nanchang, China
| | - Lei Zhong
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Super Rice Engineering Technology Center, Jiangxi Agricultural University, Nanchang, China
| | - Xiaoquan Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Super Rice Engineering Technology Center, Jiangxi Agricultural University, Nanchang, China
| | - Shiying Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Super Rice Engineering Technology Center, Jiangxi Agricultural University, Nanchang, China
| | - Desheng Zhao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Super Rice Engineering Technology Center, Jiangxi Agricultural University, Nanchang, China
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Super Rice Engineering Technology Center, Jiangxi Agricultural University, Nanchang, China
| | - Xiaorong Chen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Super Rice Engineering Technology Center, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
6
|
Pereira EC, Zabalgogeazcoa I, Arellano JB, Ugalde U, Vázquez de Aldana BR. Diaporthe atlantica enhances tomato drought tolerance by improving photosynthesis, nutrient uptake and enzymatic antioxidant response. FRONTIERS IN PLANT SCIENCE 2023; 14:1118698. [PMID: 36818856 PMCID: PMC9929572 DOI: 10.3389/fpls.2023.1118698] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/20/2023] [Indexed: 05/31/2023]
Abstract
Functional symbiosis with fungal endophytes can help plants adapt to environmental stress. Diaporthe atlantica is one of the most abundant fungal taxa associated with roots of Festuca rubra subsp. pruinosa, a grass growing in sea cliffs. This study aimed to investigate the ability of a strain of this fungus to ameliorate the impact of drought stress on tomato plants. In a greenhouse experiment, tomato plants were inoculated with Diaporthe atlantica strain EB4 and exposed to two alternative water regimes: well-watered and drought stress. Several physiological and biochemical plant parameters were evaluated. Inoculation with Diaporthe promoted plant growth in both water treatments. A significant interactive effect of Diaporthe-inoculation and water-regime showed that symbiotic plants had higher photosynthetic capacity, water-use efficiency, nutrient uptake (N, P, K, Fe and Zn), and proline content under drought stress, but not under well-watered conditions. In addition, Diaporthe improved the enzymatic antioxidant response of plants under drought, through an induced mechanism, in which catalase activity was modulated and conferred protection against reactive oxygen species generation during stress. The results support that Diaporthe atlantica plays a positive role in the modulation of tomato plant responses to drought stress by combining various processes such as improving photosynthetic capacity, nutrient uptake, enzymatic antioxidant response and osmo-protectant accumulation. Thus, drought stress in tomato can be enhanced with symbiotic fungi.
Collapse
Affiliation(s)
- Eric C. Pereira
- Plant-Microorganism Interactions Research Group, Institute of Natural Resources and Agrobiology of Salamanca, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), Salamanca, Spain
| | - Iñigo Zabalgogeazcoa
- Plant-Microorganism Interactions Research Group, Institute of Natural Resources and Agrobiology of Salamanca, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), Salamanca, Spain
| | - Juan B. Arellano
- Plant-Microorganism Interactions Research Group, Institute of Natural Resources and Agrobiology of Salamanca, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), Salamanca, Spain
| | - Unai Ugalde
- Biofungitek Limited Society (S.L.) Parque Científico y Tecnológico de Bizkaia, Derio, Spain
| | - Beatriz R. Vázquez de Aldana
- Plant-Microorganism Interactions Research Group, Institute of Natural Resources and Agrobiology of Salamanca, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), Salamanca, Spain
| |
Collapse
|
7
|
Response of root endosphere bacterial communities of typical rice cultivars to nitrogen fertilizer reduction at the jointing stage. Arch Microbiol 2022; 204:722. [DOI: 10.1007/s00203-022-03334-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 10/16/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022]
|
8
|
Wang H, Zhong L, Fu X, Huang S, Fu H, Shi X, Hu L, Cai Y, He H, Chen X. Physiological and Transcriptomic Analyses Reveal the Mechanisms of Compensatory Growth Ability for Early Rice after Low Temperature and Weak Light Stress. PLANTS 2022; 11:plants11192523. [PMID: 36235390 PMCID: PMC9570567 DOI: 10.3390/plants11192523] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022]
Abstract
“Late spring coldness” (T) is a frequent meteorological disaster in the spring in southern China, often causing severe yield losses of direct-seeded early rice. In this study, we investigated the mechanisms underlying the differences in the compensatory growth ability of different rice genotypes by focusing on agronomic traits, physiological indicators, and transcriptome. The results showed that there were significant differences in the compensatory growth recovery ability of different genotypes after a combination of four days of low temperature and weak light stress. Only the strong compensatory growth genotype B116 was able to grow rapidly and reduce soluble protein and H2O2 concentrations rapidly after stress. By analyzing enzyme activity as well as endogenous hormone concentration, we found that the high superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities and high levels of abscisic acid (ABA) could reduce the damage of B116 during stress. Meanwhile, higher glutamine synthetase (GS) and nitrate reductase (NR) activity and higher levels of gibberellin A3(GA3), indoleacetic acid (IAA), and zeatin nucleoside (ZR) could enable B116 to grow rapidly after stress. The identified differentially expressed genes (DEGs) indicated that there were large differences in POD-related genes and gibberellin metabolism between B116 and B144 after stress; RT-PCR quantification also showed a trend consistent with RNA-seq, which may be an important reason for the differences in compensatory growth ability.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Super Rice Engineering Technology Center, Jiangxi Agricultural University, Nanchang 330045, China
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lei Zhong
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Super Rice Engineering Technology Center, Jiangxi Agricultural University, Nanchang 330045, China
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaoquan Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Super Rice Engineering Technology Center, Jiangxi Agricultural University, Nanchang 330045, China
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shiying Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Super Rice Engineering Technology Center, Jiangxi Agricultural University, Nanchang 330045, China
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
| | - Haihui Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Super Rice Engineering Technology Center, Jiangxi Agricultural University, Nanchang 330045, China
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiang Shi
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Super Rice Engineering Technology Center, Jiangxi Agricultural University, Nanchang 330045, China
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lifang Hu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Super Rice Engineering Technology Center, Jiangxi Agricultural University, Nanchang 330045, China
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yicong Cai
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Super Rice Engineering Technology Center, Jiangxi Agricultural University, Nanchang 330045, China
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Super Rice Engineering Technology Center, Jiangxi Agricultural University, Nanchang 330045, China
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaorong Chen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Super Rice Engineering Technology Center, Jiangxi Agricultural University, Nanchang 330045, China
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
- Correspondence:
| |
Collapse
|
9
|
Byregowda R, Prasad SR, Oelmüller R, Nataraja KN, Prasanna Kumar MK. Is Endophytic Colonization of Host Plants a Method of Alleviating Drought Stress? Conceptualizing the Hidden World of Endophytes. Int J Mol Sci 2022; 23:ijms23169194. [PMID: 36012460 PMCID: PMC9408852 DOI: 10.3390/ijms23169194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
In the wake of changing climatic conditions, plants are frequently exposed to a wide range of biotic and abiotic stresses at various stages of their development, all of which negatively affect their growth, development, and productivity. Drought is one of the most devastating abiotic stresses for most cultivated crops, particularly in arid and semiarid environments. Conventional breeding and biotechnological approaches are used to generate drought-tolerant crop plants. However, these techniques are costly and time-consuming. Plant-colonizing microbes, notably, endophytic fungi, have received increasing attention in recent years since they can boost plant growth and yield and can strengthen plant responses to abiotic stress. In this review, we describe these microorganisms and their relationship with host plants, summarize the current knowledge on how they “reprogram” the plants to promote their growth, productivity, and drought tolerance, and explain why they are promising agents in modern agriculture.
Collapse
Affiliation(s)
- Roopashree Byregowda
- Department of Seed Science and Technology, University of Agricultural Sciences, Bangalore 560065, India
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University, 07743 Jena, Germany
| | | | - Ralf Oelmüller
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University, 07743 Jena, Germany
- Correspondence:
| | - Karaba N. Nataraja
- Department of Crop Physiology, University of Agricultural Sciences, Bangalore 560065, India
| | - M. K. Prasanna Kumar
- Department of Plant Pathology, University of Agricultural Sciences, Bangalore 560065, India
| |
Collapse
|
10
|
Zhou J, Huang PW, Li X, Vaistij FE, Dai CC. Generalist endophyte Phomopsis liquidambaris colonization of Oryza sativa L. promotes plant growth under nitrogen starvation. PLANT MOLECULAR BIOLOGY 2022; 109:703-715. [PMID: 35522401 DOI: 10.1007/s11103-022-01268-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Fungal endophytes establish symbiotic relationships with host plants, which results in a mutual growth benefit. However, little is known about the plant genetic response underpinning endophyte colonization. Phomopsis liquidambaris usually lives as an endophyte in a wide range of asymptomatic hosts and promotes biotic and abiotic stress resistance. In this study, we show that under low nitrogen conditions P. liquidambaris promotes rice growth in a hydroponic system, which is free of other microorganisms. In order to gain insights into the mechanisms of plant colonization by P. liquidambaris under low nitrogen conditions, we compared root and shoot transcriptome profiles of root-inoculated rice at different colonization stages. We determined that genes related to plant growth promotion, such as gibberellin and auxin related genes, were up-regulated at all developmental stages both locally and systemically. The largest group of up-regulated genes (in both roots and shoots) were related to flavonoid biosynthesis, which is involved in plant growth as well as antimicrobial compounds. Furthermore, genes encoding plant defense-related endopeptidase inhibitors were strongly up-regulated at the early stage of colonization. Together, these results provide new insights into the molecular mechanisms of plant-microbe mutualism and the promotion of plant growth by a fungal endophyte under nitrogen-deficient conditions.
Collapse
Affiliation(s)
- Jun Zhou
- Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, China
- Centre for Novel Agricultural Products, Department of Biology, University of York, YO10 5DD, York, United Kingdom
| | - Peng-Wei Huang
- Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, China
| | - Xin Li
- Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, China
| | - Fabián E Vaistij
- Centre for Novel Agricultural Products, Department of Biology, University of York, YO10 5DD, York, United Kingdom
| | - Chuan-Chao Dai
- Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, China.
| |
Collapse
|
11
|
Toghueo RMK, Zabalgogeazcoa I, Pereira EC, Vazquez de Aldana BR. A Diaporthe Fungal Endophyte From a Wild Grass Improves Growth and Salinity Tolerance of Tritordeum and Perennial Ryegrass. FRONTIERS IN PLANT SCIENCE 2022; 13:896755. [PMID: 35720593 PMCID: PMC9198640 DOI: 10.3389/fpls.2022.896755] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/06/2022] [Indexed: 06/02/2023]
Abstract
Some microbiome components can provide functions that extend the capabilities of plants, increasing the environmental adaptability and performance of holobionts. Festuca rubra subsp. pruinosa is a perennial grass adapted to rocky sea cliffs, where soil and nutrients are very limited, and exposure to salinity is continuous. This study aimed to investigate if a Diaporthe fungal endophyte belonging to the core microbiome of Festuca rubra roots could improve the performance of two agricultural grasses. In a greenhouse experiment, plants of tritordeum (Triticum durum x Hordeum chilense) and perennial ryegrass (Lolium perenne) were inoculated with Diaporthe strain EB4 and subjected to two salinity conditions (0 and 200 mM NaCl). Biomass production, mineral elements, proline, hormone profiles, antioxidant capacity, and total phenolic compounds were examined in plants, and fungal functions potentially related to the promotion of plant growth were determined. The inoculation with Diaporthe promoted plant growth of both grasses, increasing leaf biomass (84% in tritordeum and 29% in perennial ryegrass), root biomass, nutrient content (N, Ca, Mg, and Fe), and the production of indole 3-acetic acid, regardless of the salinity treatment. Improved growth and nutrient uptake might occur because Diaporthe produces several extracellular enzymes capable of recycling organic nutrient pools. In addition, the fungus produced indole 3-acetic acid in vitro and modulated the production of this phytohormone in the plant. Under salinity, the activity of Diaporthe ameliorated the stress, increasing proline, nutrient uptake in roots, gibberellins, and indole 3-acetic acid, which in turn results into improved growth. Thus, this fungus can transfer to alternative hosts some advantages useful at its original habitat.
Collapse
Affiliation(s)
| | | | | | - Beatriz R. Vazquez de Aldana
- Plant-Microorganism Interaction Research Group, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| |
Collapse
|
12
|
Overexpression of chitinase in the endophyte Phomopsis liquidambaris enhances wheat resistance to Fusarium graminearum. Fungal Genet Biol 2021; 158:103650. [PMID: 34923123 DOI: 10.1016/j.fgb.2021.103650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/26/2021] [Accepted: 12/04/2021] [Indexed: 11/22/2022]
Abstract
Fusarium head blight (FHB) is a disease that affects wheat crops worldwide and is caused by Fusarium graminearum. Effective and safe strategies for the prevention and treatment of the disease are very limited. Phomopsis liquidambaris, a universal endophyte, can colonize wheat. Two engineered strains, Phomopsis liquidambaris OE-Chi and IN-Chi, were constructed by transformation with a plasmid and integration of a chitinase into the genome, respectively. The OE-Chi and IN-Chi strains could inhibit the expansion of Fusarium sp. in plate confrontation assays in vitro. Colonization of the OE-Chi strain in wheat showed better effects than colonization of the IN-Chi strain and alleviated the inhibition of wheat growth caused by F. graminearum. The shoot length, root length and fresh weight of infected wheat increased by 164.9%, 115.4%, and 190.7%, respectively, when the plants were inoculated with the OE-Chi strain. The peroxidase (POD) activity in the wheat root increased by 38.0%, and it was maintained at a high level in the shoot, which suggested that the OE-Chi strain could enhance the resistance of wheat to F. graminearum. The root and shoot superoxide dismutase (SOD) activities were decreased by 11.8% and 19.0%, respectively, which may be helpful for colonization by the OE-Chi strain. These results suggested that the Phomopsis liquidambaris OE-Chi strain may be a potential endophyte in the biocontrol of FHB.
Collapse
|
13
|
Sarkar S, Dey A, Kumar V, Batiha GES, El-Esawi MA, Tomczyk M, Ray P. Fungal Endophyte: An Interactive Endosymbiont With the Capability of Modulating Host Physiology in Myriad Ways. FRONTIERS IN PLANT SCIENCE 2021; 12:701800. [PMID: 34659281 PMCID: PMC8514756 DOI: 10.3389/fpls.2021.701800] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/28/2021] [Indexed: 05/23/2023]
Abstract
Endophytic fungi ubiquitously dwell inside the tissue-spaces of plants, mostly asymptomatically. They grow either intercellularly or intracellularly in a particular host plant to complete the whole or part of their life cycle. They have been found to be associated with almost all the plants occurring in a natural ecosystem. Due to their important role in the survival of plants (modulate photosynthesis, increase nutrient uptake, alleviate the effect of various stresses) they have been selected to co-evolve with their hosts through the course of evolution. Many years of intense research have discovered their tremendous roles in increasing the fitness of the plants in both normal and stressed conditions. There are numerous literature regarding the involvement of various endophytic fungi in enhancing plant growth, nutrient uptake, stress tolerance, etc. But, there are scant reports documenting the specific mechanisms employed by fungal endophytes to manipulate plant physiology and exert their effects. In this review, we aim to document the probable ways undertaken by endophytic fungi to alter different physiological parameters of their host plants. Our objective is to present an in-depth elucidation about the impact of fungal endophytes on plant physiology to make this evolutionarily conserved symbiotic interaction understandable from a broader perspective.
Collapse
Affiliation(s)
- Sohini Sarkar
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, India
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, Egypt
| | | | - Michał Tomczyk
- Departament of Pharmacognosy, Medical University of Białystok, Białystok, Poland
| | - Puja Ray
- Department of Life Sciences, Presidency University, Kolkata, India
| |
Collapse
|
14
|
Zhu Q, Tang MJ, Yang Y, Sun K, Tian LS, Lu F, Hao AY, Dai CC. Endophytic fungus Phomopsis liquidambaris B3 induces rice resistance to RSRD caused by Fusarium proliferatum and promotes plant growth. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4059-4075. [PMID: 33349945 DOI: 10.1002/jsfa.11042] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/20/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Rice spikelet rot disease (RSRD) is an emerging disease that significantly reduces rice yield and quality. In this study, we evaluated the potential use of the broad-spectrum endophytic fungus Phomopsis liquidambaris B3 as a biocontrol agent against RSRD. We also compared the control effects of different treatments, including chemical fungicides and treatment with multiple strains and single strains in combination or individually, against RSRD. The objective of this study was to find an effective and environmentally friendly control strategy to reduce the occurrence of RSRD and improve the rice yield. RESULTS In pot experiments, the effect of B3 alone was better than that of fungicide or combined measures. The results showed that root colonization by B3 significantly reduced the incidence and disease index of RSRD by 41.0% and 53.8%, respectively. This was related to enhanced superoxide dismutase (SOD), peroxidase (POD), and polyphenol oxidase (PPO) activity, and to significantly upregulated expression levels of OsAOX, OsLOX, OsPAL, and OsPR10 in rice. Moreover, B3 improved the diversity of the bacterial community rather than the fungal community in the rice rhizosphere. It also led to a decrease in Fusarium proliferatum colonization and fumonisin content in the grain. Finally, root development was markedly promoted after B3 inoculation, and the yield improved by 48.60%. The result of field experiments showed that the incidence of RSRD and the fumonisin content were observably reduced in rice receiving B3, by 24.41% and 37.87%, respectively. CONCLUSION The endophytic fungus Phomopsis liquidambaris B3 may become an effective tool to relieve rice spikelet rot disease. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qiang Zhu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Meng-Jun Tang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yang Yang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Kai Sun
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Lin-Shuang Tian
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Fan Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ai-Yue Hao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
15
|
|
16
|
Peng L, Shan X, Yang Y, Wang Y, Druzhinina IS, Pan X, Jin W, He X, Wang X, Zhang X, Martin FM, Yuan Z. Facultative symbiosis with a saprotrophic soil fungus promotes potassium uptake in American sweetgum trees. PLANT, CELL & ENVIRONMENT 2021; 44:2793-2809. [PMID: 33764571 DOI: 10.1111/pce.14053] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Several species of soil free-living saprotrophs can sometimes establish biotrophic symbiosis with plants, but the basic biology of this association remains largely unknown. Here, we investigate the symbiotic interaction between a common soil saprotroph, Clitopilus hobsonii (Agaricomycetes), and the American sweetgum (Liquidambar styraciflua). The colonized root cortical cells were found to contain numerous microsclerotia-like structures. Fungal colonization led to increased plant growth and facilitated potassium uptake, particularly under potassium limitation (0.05 mM K+ ). The expression of plant genes related to potassium uptake was not altered by the symbiosis, but colonized roots contained the transcripts of three fungal genes with homology to K+ transporters (ACU and HAK) and channel (SKC). Heterologously expressed ChACU and ChSKC restored the growth of a yeast K+ -uptake-defective mutant. Upregulation of ChACU transcript under low K+ conditions (0 and 0.05 mM K+ ) compared to control (5 mM K+ ) was demonstrated in planta and in vitro. Colonized plants displayed a larger accumulation of soluble sugars under 0.05 mM K+ than non-colonized plants. The present study suggests reciprocal benefits of this novel tree-fungus symbiosis under potassium limitation mainly through an exchange of additional carbon and potassium between both partners.
Collapse
Affiliation(s)
- Long Peng
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Xiaoliang Shan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Yuzhan Yang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Yuchen Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Irina S Druzhinina
- Fungal Genomics Group, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xueyu Pan
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Wei Jin
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Xinghua He
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Xinyu Wang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Xiaoguo Zhang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Francis M Martin
- INRA, UMR 1136 INRA-University of Lorraine, Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRA-Nancy, Champenoux, France
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design, Institute of Microbiology, Beijing Forestry University, Beijing, China
| | - Zhilin Yuan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| |
Collapse
|
17
|
Sun X, Song B, Xu R, Zhang M, Gao P, Lin H, Sun W. Root-associated (rhizosphere and endosphere) microbiomes of the Miscanthus sinensis and their response to the heavy metal contamination. J Environ Sci (China) 2021; 104:387-398. [PMID: 33985741 DOI: 10.1016/j.jes.2020.12.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
The plant root-associated microbiomes, including both the rhizosphere and the root endosphere microbial community, are considered as a critical extension of the plant genome. Comparing to the well-studied rhizosphere microbiome, the understanding of the root endophytic microbiome is still in its infancy. Miscanthus sinensis is a pioneering plant that could thrive on metal contaminated lands and holds the potential for phytoremediation applications. Characterizing its root-associated microbiome, especially the root endophytic microbiome, could provide pivotal knowledge for phytoremediation of mine tailings. In the current study, M. sinensis residing in two Pb/Zn tailings and one uncontaminated site were collected. The results demonstrated that the metal contaminant fractions exposed strong impacts on the microbial community structures. Their influences on the microbial community, however, gradually decreases from the bulk soil through the rhizosphere soil and finally to the endosphere, which resulting in distinct root endophytic microbial community structures compared to both the bulk and rhizosphere soil. Diverse members affiliated with the order Rhizobiales was identified as the core microbiome residing in the root of M. sinensis. In addition, enrichment of plant-growth promoting functions within the root endosphere were predicted, suggesting the root endophytes may provide critical services to the host plant. The current study provides new insights into taxonomy and potential functions of the root-associated microbiomes of the pioneer plant, M. sinensis, which may facilitate future phytoremediation practices.
Collapse
Affiliation(s)
- Xiaoxu Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Benru Song
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Rui Xu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Miaomiao Zhang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Pin Gao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Hanzhi Lin
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
18
|
Root endophyte-enhanced peanut-rhizobia interaction is associated with regulation of root exudates. Microbiol Res 2021; 250:126765. [PMID: 34049186 DOI: 10.1016/j.micres.2021.126765] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 11/07/2020] [Accepted: 04/03/2021] [Indexed: 12/21/2022]
Abstract
Root exudates play a crucial role in the symbiosis between leguminous plants and rhizobia. Our previous studies have shown that a fungal endophyte Phomopsis liquidambaris promotes peanut-rhizobia nodulation and nitrogen fixation, but the underlying mechanism are largely unknown. Here, we explore the role of peanut root exudates in Ph. liquidambaris-mediated nodulation enhancement. We first collected root exudates from Ph. liquidambaris-inoculated and un-inoculated peanuts and determined their effects on rhizobial growth, biofilm formation, chemotaxis, nodC gene expression, and peanut nodulation. Our results found a positive effect of Ph. liquidambaris-inoculated root exudates on these characteristics of rhizobia. Next, we compared the root exudates profile of Ph. liquidambaris-inoculated and un-inoculated plants and found that Ph. liquidambaris altered the concentrations of phenolic acids, flavonoids, organic acids and amino acids in root exudates. Furthermore, the rhizobial chemotaxis, growth and biofilm formation in response to the changed compounds at different concentrations showed that all of the test compounds induced rhizobial chemotactic behavior, and organic acids (citric acid and oxalic acid) and amino acid (glutamate, glycine and glutamine) at higher concentrations increased rhizobial growth and biofilm formation. Collectively, our results suggest that root exudates alterations contribute to Ph. liquidambaris-mediated peanut-rhizobia nodulation enhancement.
Collapse
|
19
|
Sun K, Zhang W, Yuan J, Song SL, Wu H, Tang MJ, Xu FJ, Xie XG, Dai CC. Nitrogen fertilizer-regulated plant-fungi interaction is related to root invertase-induced hexose generation. FEMS Microbiol Ecol 2020; 96:5869223. [PMID: 32643762 DOI: 10.1093/femsec/fiaa139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/08/2020] [Indexed: 11/13/2022] Open
Abstract
The mechanisms underlying nitrogen (N)-regulated plant-fungi interactions are not well understood. N application modulates plant carbohydrate (C) sinks and is involved in the overall plant-fungal association. We hypothesized that N regulates plant-fungi interactions by influencing the carbohydrate metabolism. The mutualistic fungus Phomopsis liquidambaris was found to prioritize host hexose resources through in vitro culture assays and in planta inoculation. Rice-Ph. liquidambaris systems were exposed to N gradients ranging from N-deficient to N-abundant conditions to study whether and how the sugar composition was involved in the dynamics of N-mediated fungal colonization. We found that root soluble acid invertases were activated, resulting in increased hexose fluxes in inoculated roots. These fluxes positively influenced fungal colonization, especially under N-deficient conditions. Further experiments manipulating the carbohydrate composition and root invertase activity through sugar feeding, chemical treatments and the use of different soil types revealed that the external disturbance of root invertase could reduce endophytic colonization and eliminate endophyte-induced host benefits under N-deficient conditions. Collectively, these results suggest that the activation of root invertase is related to N deficiency-enhanced endophytic colonization via increased hexose generation. Certain combinations of farmland ecosystems with suitable N inputs could be implemented to maximize the benefits of plant-fungi associations.
Collapse
Affiliation(s)
- Kai Sun
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Wei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Jie Yuan
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Shi-Li Song
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Hao Wu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Meng-Jun Tang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Fang-Ji Xu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Xing-Guang Xie
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| |
Collapse
|
20
|
Huang PW, Yang Q, Zhu YL, Zhou J, Sun K, Mei YZ, Dai CC. The construction of CRISPR-Cas9 system for endophytic Phomopsis liquidambaris and its PmkkA-deficient mutant revealing the effect on rice. Fungal Genet Biol 2020; 136:103301. [DOI: 10.1016/j.fgb.2019.103301] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/31/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023]
|
21
|
Li Y, Jeyaraj A, Yu H, Wang Y, Ma Q, Chen X, Sun H, Zhang H, Ding Z, Li X. Metabolic Regulation Profiling of Carbon and Nitrogen in Tea Plants [ Camellia sinensis (L.) O. Kuntze] in Response to Shading. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:961-974. [PMID: 31910000 DOI: 10.1021/acs.jafc.9b05858] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Manipulating light transmission by shading is the most effective method of improving the nutritional value and sensory qualities of tea. In this study, the metabolic profiling of two tea cultivars ("Yulv" and "Maotouzhong") in response to different shading periods during the summer season was performed using ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS) and gas chromatography-mass spectrometry (GC-MS). The metabolic pathway analyses showed that the glycolytic pathway and the tricarboxylic acid cycle (TCA cycle) in the leaves and shoots of "Maotouzhong" were significantly inhibited by long-term shading. The nitrogen metabolism in the leaves of the two cultivars was promoted by short-term shading, while it was inhibited by long-term shading. However, the nitrogen metabolism in the shoots of the two cultivars was always inhibited by shading, whether for short or long-term periods. In addition, the intensity of the flavonoid metabolism in both tea cultivars could be reduced by shading. These results revealed that shading could regulate the carbon and nitrogen metabolism and short-term shading could improve the tea quality to some extent.
Collapse
Affiliation(s)
- Yuchen Li
- Tea Research Institute , Qingdao Agricultural University , Qingdao , Shandong 266109 , China
- Tea Research Institute , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , China
| | - Anburaj Jeyaraj
- Tea Research Institute , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , China
| | - Hanpu Yu
- Tea Research Institute , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , China
| | - Yu Wang
- Tea Research Institute , Qingdao Agricultural University , Qingdao , Shandong 266109 , China
| | - Qingping Ma
- Tea Research Institute , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , China
| | - Xuan Chen
- Tea Research Institute , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , China
| | - Haiwei Sun
- Tai'an Academy of Agricultural Sciences , Tai'an , Shandong 271000 , China
| | - Hong Zhang
- Tai'an Academy of Agricultural Sciences , Tai'an , Shandong 271000 , China
| | - Zhaotang Ding
- Tea Research Institute , Qingdao Agricultural University , Qingdao , Shandong 266109 , China
| | - Xinghui Li
- Tea Research Institute , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , China
| |
Collapse
|
22
|
Zhang W, Yuan J, Cheng T, Tang MJ, Sun K, Song SL, Xu FJ, Dai CC. Flowering-mediated root-fungus symbiosis loss is related to jasmonate-dependent root soluble sugar deprivation. PLANT, CELL & ENVIRONMENT 2019; 42:3208-3226. [PMID: 31373013 DOI: 10.1111/pce.13636] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/27/2019] [Accepted: 07/30/2019] [Indexed: 05/22/2023]
Abstract
The role of flowering in root-fungal symbiosis is not well understood. Because flowering and fungal symbionts are supported by carbohydrates, we hypothesized that flowering modulates root-beneficial fungal associations through alterations in carbohydrate metabolism and transport. We monitored fungal colonization and soluble sugars in the roots of Arabidopsis thaliana following inoculation with a mutualistic fungus Phomopsis liquidambari across different plant developmental stages. Jasmonate signalling of wild-type plants, sugar transport, and root invertase of wild-type and jasmonate-insensitive plants were exploited to assess whether and how jasmonate-dependent sugar dynamics are involved in flowering-mediated fungal colonization alterations. We found that flowering restricts root-fungal colonization and activates root jasmonate signalling upon fungal inoculation. Jasmonates reduce the constitutive and fungus-induced accumulation of root glucose and fructose at the flowering stage. Further experiments with sugar transport and metabolism mutant lines revealed that root glucose and fructose positively influence fungal colonization. Diurnal, jasmonate-dependent inhibitions of sugar transport and soluble invertase activity were identified as likely mechanisms for flowering-mediated root sugar depletion upon fungal inoculation. Collectively, our results reveal that flowering drives root-fungus cooperation loss, which is related to jasmonate-dependent root soluble sugar depletion. Limiting the spread of root-fungal colonization may direct more resources to flower development.
Collapse
Affiliation(s)
- Wei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jie Yuan
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ting Cheng
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Meng-Jun Tang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Kai Sun
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shi-Li Song
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Fang-Ji Xu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
23
|
Strategies for gene disruption and expression in filamentous fungi. Appl Microbiol Biotechnol 2019; 103:6041-6059. [DOI: 10.1007/s00253-019-09953-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 02/02/2023]
|
24
|
Rice carbohydrate dynamics regulate endophytic colonization of Diaporthe liquidambaris in response to external nitrogen. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2019.02.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
25
|
Tang MJ, Zhu Q, Zhang FM, Zhang W, Yuan J, Sun K, Xu FJ, Dai CC. Enhanced nitrogen and phosphorus activation with an optimized bacterial community by endophytic fungus Phomopsis liquidambari in paddy soil. Microbiol Res 2019; 221:50-59. [DOI: 10.1016/j.micres.2019.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/07/2019] [Accepted: 02/08/2019] [Indexed: 12/01/2022]
|
26
|
Sun K, Cao W, Hu L, Fu W, Gong J, Kang N, Dai C. Symbiotic fungal endophytePhomopsis liquidambari-rice system promotes nitrogen transformation by influencing below-ground straw decomposition in paddy soil. J Appl Microbiol 2018; 126:191-203. [DOI: 10.1111/jam.14111] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 08/28/2018] [Accepted: 09/18/2018] [Indexed: 01/08/2023]
Affiliation(s)
- K. Sun
- Jiangsu Key Laboratory for Microbes and Functional Genomics; Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources; College of Life Sciences; Nanjing Normal University; Nanjing China
| | - W. Cao
- Jiangsu Key Laboratory for Microbes and Functional Genomics; Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources; College of Life Sciences; Nanjing Normal University; Nanjing China
| | - L.Y. Hu
- Jiangsu Key Laboratory for Microbes and Functional Genomics; Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources; College of Life Sciences; Nanjing Normal University; Nanjing China
| | - W.Q. Fu
- Jiangsu Key Laboratory for Microbes and Functional Genomics; Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources; College of Life Sciences; Nanjing Normal University; Nanjing China
| | - J.H. Gong
- Jiangsu Key Laboratory for Microbes and Functional Genomics; Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources; College of Life Sciences; Nanjing Normal University; Nanjing China
| | - N. Kang
- Jiangsu Key Laboratory for Microbes and Functional Genomics; Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources; College of Life Sciences; Nanjing Normal University; Nanjing China
| | - C.C. Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics; Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources; College of Life Sciences; Nanjing Normal University; Nanjing China
| |
Collapse
|
27
|
Hu LY, Li D, Sun K, Cao W, Fu WQ, Zhang W, Dai CC. Mutualistic fungus Phomopsis liquidambari increases root aerenchyma formation through auxin-mediated ethylene accumulation in rice (Oryza sativa L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:367-376. [PMID: 30055345 DOI: 10.1016/j.plaphy.2018.07.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/17/2018] [Indexed: 06/08/2023]
Abstract
The fungal endophyte Phomopsis liquidambari can improve nitrification rates and alter the abundance and composition of ammonia-oxidizers in the soil rhizosphere of rice. Aerenchyma is related to oxygen transport efficiency and contributes to the enhanced rhizospheric nitrification under flooding conditions. However, whether and how P. liquidambari affects aerenchyma formation is largely unknown. We therefore conducted pot and hydroponic experiments to investigate the changes of aerenchyma area, ethylene and indole-3-acetic acid (IAA) levels in rice with or without P. liquidambari infection. Our results showed that the larger aerenchyma area in rice roots with P. liquidambari inoculation was associated with markedly up-regulated expression of genes related to aerenchyma formation. Meanwhile, P. liquidambari inoculation substantially elevated root porosity (POR) and radial oxygen loss (ROL), leading to the enhancement of oxidation-reduction potential (ORP) under pot condition. Besides, P. liquidambari significantly increased IAA and ethylene levels in rice by stimulating the expression of genes involved in auxin and ethylene biosyntheses. Furthermore, auxin that partly acting upstream of ethylene signalling played an essential role in P. liquidambari-promoted aerenchyma formation. These results verified the direct contribution of P. liquidambari in promoting aerenchyma formation via the accumulation of IAA and ethylene in rice roots, which provides a constructive suggestion for improving hypoxia tolerance through plant-endophyte interactions.
Collapse
Affiliation(s)
- Li-Yan Hu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Dan Li
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Kai Sun
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Wei Cao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Wan-Qiu Fu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Wei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China.
| |
Collapse
|
28
|
Zhang W, Sun K, Shi RH, Yuan J, Wang XJ, Dai CC. Auxin signalling of Arachis hypogaea activated by colonization of mutualistic fungus Phomopsis liquidambari enhances nodulation and N 2 -fixation. PLANT, CELL & ENVIRONMENT 2018; 41:2093-2108. [PMID: 29469227 DOI: 10.1111/pce.13170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/02/2018] [Accepted: 02/14/2018] [Indexed: 06/08/2023]
Abstract
Beneficial fungal and rhizobial symbioses share commonalities in phytohormones responses, especially in auxin signalling. Mutualistic fungus Phomopsis liquidambari effectively increases symbiotic efficiency of legume peanut (Arachis hypogaea L.) with another microsymbiont, bradyrhizobium, but the underlying mechanisms are not well understood. We quantified and manipulated the IAA accumulation in ternary P. liquidambari-peanut-bradyrhizobial interactions to uncover its role between distinct symbioses. We found that auxin signalling is both locally and systemically induced by the colonization of P. liquidambari with peanut and further confirmed by Arabidopsis harbouring auxin-responsive reporter, DR5:GUS, and that auxin action, including auxin transport, is required to maintain fungal symbiotic behaviours and beneficial traits of plant during the symbiosis. Complementation and action inhibition experiments reveal that auxin signalling is involved in P. liquidambari-mediated nodule development and N2 -fixation enhancement and symbiotic gene activation. Further analyses showed that blocking of auxin action compromised the P. liquidambari-induced nodule phenotype and physiology changes, including vascular bundle development, symbiosome and bacteroids density, and malate concentrations, while induced the accumulation of starch granules in P. liquidambari-inoculated nodules. Collectively, our study demonstrated that auxin signalling activated by P. liquidambari symbiosis is recruited by peanut for bradyrhizobial symbiosis via symbiotic signalling pathway activation and nodule carbon metabolism enhancement.
Collapse
Affiliation(s)
- Wei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Kai Sun
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Run-Han Shi
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Jie Yuan
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Xiao-Jun Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| |
Collapse
|
29
|
Nelson JM, Hauser DA, Hinson R, Shaw AJ. A novel experimental system using the liverwort Marchantia polymorpha and its fungal endophytes reveals diverse and context-dependent effects. THE NEW PHYTOLOGIST 2018; 218:1217-1232. [PMID: 29411387 DOI: 10.1111/nph.15012] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/21/2017] [Indexed: 06/08/2023]
Abstract
Fungal symbioses are ubiquitous in plants, but their effects have mostly been studied in seed plants. This study aimed to assess the diversity of fungal endophyte effects in a bryophyte and identify factors contributing to the variability of outcomes in these interactions. Fungal endophyte cultures and axenic liverwort clones were isolated from wild populations of the liverwort, Marchantia polymorpha. These collections were combined in a gnotobiotic system to test the effects of fungal isolates on the growth rates of hosts under laboratory conditions. Under the experimental conditions, fungi isolated from M. polymorpha ranged from aggressively pathogenic to strongly growth-promoting, but the majority of isolates caused no detectable change in host growth. Growth promotion by selected fungi depended on nutrient concentrations and was inhibited by coinoculation with multiple fungi. The M. polymorpha endophyte system expands the resources for this model liverwort. The experiments presented here demonstrate a wealth of diversity in fungal interactions even in a host reported to lack standard mycorrhizal symbiosis. In addition, they show that some known pathogens of vascular plants live in M. polymorpha and can confer benefits to this nonvascular host. This highlights the importance of studying endophyte effects across the plant tree of life.
Collapse
Affiliation(s)
| | - Duncan A Hauser
- Duke University Department of Biology, Durham, NC, 27708, USA
| | - Rosemary Hinson
- Duke University Department of Biology, Durham, NC, 27708, USA
| | - A Jonathan Shaw
- Duke University Department of Biology, Durham, NC, 27708, USA
| |
Collapse
|
30
|
Ceapă CD, Vázquez-Hernández M, Rodríguez-Luna SD, Cruz Vázquez AP, Jiménez Suárez V, Rodríguez-Sanoja R, Alvarez-Buylla ER, Sánchez S. Genome mining of Streptomyces scabrisporus NF3 reveals symbiotic features including genes related to plant interactions. PLoS One 2018; 13:e0192618. [PMID: 29447216 PMCID: PMC5813959 DOI: 10.1371/journal.pone.0192618] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/27/2018] [Indexed: 12/17/2022] Open
Abstract
Endophytic bacteria are wide-spread and associated with plant physiological benefits, yet their genomes and secondary metabolites remain largely unidentified. In this study, we explored the genome of the endophyte Streptomyces scabrisporus NF3 for discovery of potential novel molecules as well as genes and metabolites involved in host interactions. The complete genomes of seven Streptomyces and three other more distantly related bacteria were used to define the functional landscape of this unique microbe. The S. scabrisporus NF3 genome is larger than the average Streptomyces genome and not structured for an obligate endosymbiotic lifestyle; this and the fact that can grow in R2YE media implies that it could include a soil-living stage. The genome displays an enrichment of genes associated with amino acid production, protein secretion, secondary metabolite and antioxidants production and xenobiotic degradation, indicating that S. scabrisporus NF3 could contribute to the metabolic enrichment of soil microbial communities and of its hosts. Importantly, besides its metabolic advantages, the genome showed evidence for differential functional specificity and diversification of plant interaction molecules, including genes for the production of plant hormones, stress resistance molecules, chitinases, antibiotics and siderophores. Given the diversity of S. scabrisporus mechanisms for host upkeep, we propose that these strategies were necessary for its adaptation to plant hosts and to face changes in environmental conditions.
Collapse
Affiliation(s)
- Corina Diana Ceapă
- Departmento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Melissa Vázquez-Hernández
- Departmento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Stefany Daniela Rodríguez-Luna
- Departmento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Angélica Patricia Cruz Vázquez
- Departmento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
- Instituto Tecnológico de Tuxtla Gutiérrez,Tuxtla, Gutiérrez, Chiapas, México
| | - Verónica Jiménez Suárez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Romina Rodríguez-Sanoja
- Departmento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Elena R. Alvarez-Buylla
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Sergio Sánchez
- Departmento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| |
Collapse
|
31
|
Zhou J, Li X, Huang PW, Dai CC. Endophytism or saprophytism: Decoding the lifestyle transition of the generalist fungus Phomopsis liquidambari. Microbiol Res 2018; 206:99-112. [DOI: 10.1016/j.micres.2017.10.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/28/2017] [Accepted: 10/10/2017] [Indexed: 01/09/2023]
|
32
|
Feng F, Ge J, Li Y, He S, Zhong J, Liu X, Yu X. Enhanced degradation of chlorpyrifos in rice (Oryza sativa L.) by five strains of endophytic bacteria and their plant growth promotional ability. CHEMOSPHERE 2017. [PMID: 28622646 DOI: 10.1016/j.chemosphere.2017.05.178] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Endophytic bacteria reside in plant tissues, such as roots, stems, leaves and seeds. Most of them can stimulate plant growth or alleviate phytotoxicity of pollutants. There are handful species with dual functions stimulating plant growth and degrading pollutants have been reported. Five endophytic bacteria were isolated from chlorpyrifos (CP) treated rice plants and identified as Pseudomonas aeruginosa strain RRA, Bacillus megaterium strain RRB, Sphingobacterium siyangensis strain RSA, Stenotrophomonas pavanii strain RSB and Curtobacterium plantarum strain RSC according to morphological characteristics, physiological and biochemical tests, and 16S rDNA phylogeny. All of them possessed some plant growth promotional traits, including indole acetic acid and siderophore production, secretion of phosphate solubilization and 1-aminocyclopropane-1-carboxylate deaminase. The bacteria were marked with the green fluorescent protein (gfp) gene and successfully colonized into rice plants. All isolates were able to degrade CP in vitro and in vivo. The five isolates degraded more than 90% of CP in 24 h when the initial concentration was lower than 5 mg/L. CP degradation was significantly enhanced in the infested rice plants and rice grains. The final CP residual was reduced up to 80% in the infested rice grains compared to the controls. The results indicate that these isolates are promising bio-inoculants for the removal or detoxification of CP residues in rice plants and grains.
Collapse
Affiliation(s)
- Fayun Feng
- Key Laboratory of Food Quality and Safety of Jiangsu Province - State Key Laboratory Breeding Base/Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Nanjing 210014, China
| | - Jing Ge
- Key Laboratory of Food Quality and Safety of Jiangsu Province - State Key Laboratory Breeding Base/Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Nanjing 210014, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Yisong Li
- Department of Plant Protection, Agricultural College, Shihezi University, Xinjiang, 832000, China
| | - Shuang He
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China; Department of Plant Protection, Agricultural College, Shihezi University, Xinjiang, 832000, China
| | - Jianfeng Zhong
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Xianjing Liu
- Key Laboratory of Food Quality and Safety of Jiangsu Province - State Key Laboratory Breeding Base/Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Nanjing 210014, China
| | - Xiangyang Yu
- Key Laboratory of Food Quality and Safety of Jiangsu Province - State Key Laboratory Breeding Base/Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Nanjing 210014, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China.
| |
Collapse
|
33
|
Xie XG, Fu WQ, Zhang FM, Shi XM, Zeng YT, Li H, Zhang W, Dai CC. The Endophytic Fungus Phomopsis liquidambari Increases Nodulation and N 2 Fixation in Arachis hypogaea by Enhancing Hydrogen Peroxide and Nitric Oxide Signalling. MICROBIAL ECOLOGY 2017; 74:427-440. [PMID: 28168354 DOI: 10.1007/s00248-017-0944-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/22/2017] [Indexed: 05/16/2023]
Abstract
The continuous cropping obstacles in monoculture fields are a major production constraint for peanuts. Application of the endophytic fungus Phomopsis liquidambari has increased peanut yields, and nodulation and N2 fixation increases have been considered as important factors for P. liquidambari infection-improved peanut yield. However, the mechanisms involved in this process remain unknown. This work showed that compared with only Bradyrhizobium inoculation, co-inoculation with P. liquidambari significantly elevated endogenous H2O2 and NO levels in peanut roots. Pre-treatment of seedlings with specific scavengers of H2O2 (CAT) and NO (cPTIO) blocked P. liquidambari-induced nodulation and N2 fixation. CAT not only suppressed the P. liquidambari-induced nodulation and N2 fixation, but also suppressed the enhanced H2O2 and NO generation. Nevertheless, the cPTIO did not significantly inhibit the induced H2O2 biosynthesis, implying that H2O2 acted upstream of NO production. These results were confirmed by observations that exogenous H2O2 and sodium nitroprusside (SNP) reversed the inhibition of P. liquidambari-increased nodulation and N2 fixation by the specific scavengers. The transcriptional activities of the symbiosis-related genes SymRK and CCaMK of peanut-Bradyrhizobium interactions also increased significantly in response to P. liquidambari, H2O2 and SNP treatments. The pot experiment further confirmed that the P. liquidambari infection-enhanced H2O2 and NO signalling pathways were significantly related to the increase in peanut nodulation and N2 fixation. This is the first report that endophytic fungus P. liquidambari can increase peanut-Bradyrhizobium interactions via enhanced H2O2/NO-dependent signalling crosstalk, which is conducive to the alleviation of continuous cropping obstacles via an increase in nodulation and N2 fixation.
Collapse
Affiliation(s)
- Xing-Guang Xie
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, No. 1 Wenyuan Road, Qixia District, Nanjing, Jiangsu Province, 210023, China
| | - Wan-Qiu Fu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, No. 1 Wenyuan Road, Qixia District, Nanjing, Jiangsu Province, 210023, China
| | - Feng-Min Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, No. 1 Wenyuan Road, Qixia District, Nanjing, Jiangsu Province, 210023, China
| | - Xiao-Min Shi
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, No. 1 Wenyuan Road, Qixia District, Nanjing, Jiangsu Province, 210023, China
| | - Ying-Ting Zeng
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, No. 1 Wenyuan Road, Qixia District, Nanjing, Jiangsu Province, 210023, China
| | - Hui Li
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, No. 1 Wenyuan Road, Qixia District, Nanjing, Jiangsu Province, 210023, China
| | - Wei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, No. 1 Wenyuan Road, Qixia District, Nanjing, Jiangsu Province, 210023, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, No. 1 Wenyuan Road, Qixia District, Nanjing, Jiangsu Province, 210023, China.
| |
Collapse
|
34
|
Zhou J, Li X, Chen Y, Dai CC. De novo Transcriptome Assembly of Phomopsis liquidambari Provides Insights into Genes Associated with Different Lifestyles in Rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2017; 8:121. [PMID: 28220138 PMCID: PMC5292412 DOI: 10.3389/fpls.2017.00121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/20/2017] [Indexed: 05/25/2023]
Abstract
The mechanisms that trigger the switch from endophytic fungi to saprophytic fungi are largely unexplored. Broad host range Phomopsis liquidambari is established in endophytic and saprophytic systems with rice (Oryza sativa L.). Endophytic P. liquidambari promotes rice growth, increasing rice yield and improving the efficiency of nitrogen fertilizer. This species's saprophytic counterpart can decompose rice litterfall, promoting litter organic matter cycling and the release of nutrients and improving the soil microbial environment. Fluorescence microscopy, confocal laser scanning microscopy and quantitative PCR investigated the colonization dynamics and biomass of P. liquidambari in rice in vivo. P. liquidambari formed infection structures similar to phytopathogens with infected vascular tissues that systematically spread to acrial parts. However, different from pathogenic infection, P. liquidambari colonization exhibits space restriction and quantity restriction. Direct comparison of a fungal transcriptome under three different habitats provided a better understanding of lifestyle conversion during plant-fungi interactions. The isolated total RNA of Ck (pure culture), EP (endophytic culture) and FP (saprophytic culture) was subjected to Illumina transcriptome sequencing. To the best of our knowledge, this study is the first to investigate Phomopsis sp. using RNA-seq technology to obtain whole transcriptome information. A total of 27,401,258 raw reads were generated and 22,700 unigenes were annotated. Functional annotation indicated that carbohydrate metabolism and biosynthesis of secondary metabolites played important roles. There were 2522 differentially expressed genes (DEGs) between the saprophytic and endophytic lifestyles. Quantitative PCR analysis validated the DEGs of RNA-seq. Analysis of DEGs between saprophytic and endophytic lifestyles revealed that most genes from amino acids metabolism, carbohydrate metabolism, fatty acid biosynthesis, secondary metabolism and terpenoid and steroid biosynthesis were up-regulated in EP. Secondary metabolites of these pathways may affect fungal growth and development and contribute to signaling communication with the host. Most pathways of xenobiotic biodegradation and metabolism were upregulated in FP. Cytochrome P450s play diverse vital roles in endophytism and saprophytism, as their highly specialized functions are evolutionarily adapted to various ecological niches. These results help to characterize the relationship between fungi and plants, the diversity of fungi for ecological adaptations and the application prospects for fungi in sustainable agriculture.
Collapse
|
35
|
Endophytic fungus Phomopsis liquidambari and different doses of N-fertilizer alter microbial community structure and function in rhizosphere of rice. Sci Rep 2016; 6:32270. [PMID: 27596935 PMCID: PMC5011652 DOI: 10.1038/srep32270] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/04/2016] [Indexed: 01/02/2023] Open
Abstract
Microbial community structure and functions of rhizosphere soil of rice were investigated after applying low and high doses of nitrogenous fertilizer and Phomopsis liquidambari. Average well color development, substrate richness, catabolic diversity and soil enzymes activities varied after applying N-fertilizer and P. liquidambari and were greater in P. liquidambari treated soil than only N-fertilization. Multivariate analysis distinctly separated the catabolic and enzymes activity profile which statistically proved alteration of microbial functional diversity. Nitrogen fertilizer altered microbial community structure revealed by the increased content of total PLFAs, specific subgroup marker PLFAs except fungal PLFAs and by the decreased ratio of G(+)/G(-), sat/monunsat, iso/anteiso, F/B except trans/cis while P. liquidambari inoculation enhanced N-fertilization effect except increased fungal PLFA and decreased trans/cis. PCA using identified marker PLFAs revealed definite discrimination among the treatments which further statistically confirmed structural changed of microbial community. Nitrogenase activity representative of N-fixing community decreased in N-fertilizer treatment while P. liquidambari inoculation increased. In short, application of P. liquidambari with low doses of N-fertilizer improved rice growth and reduced N-fertilizer requirement by increasing enzymes activities involved in C, N and P cycling, structural and functional diversity of microbes, nitrogenase activity involved in N2 fixation and accumulation of total-N.
Collapse
|
36
|
Zhang W, Wang HW, Wang XX, Xie XG, Siddikee MA, Xu RS, Dai CC. Enhanced nodulation of peanut when co-inoculated with fungal endophyte Phomopsis liquidambari and bradyrhizobium. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 98:1-11. [PMID: 26584395 DOI: 10.1016/j.plaphy.2015.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/27/2015] [Accepted: 11/01/2015] [Indexed: 06/05/2023]
Abstract
In peanut continuous cropping soil, the application of fungal endophyte Phomopsis liquidambari B3 showed peanut pod yield promotion and root nodule number increase. P. liquidambari improved soil environment by degrading allelochemicals and thus promoted peanut pod yield. Furthermore, peanut yield promotion is in part due to the root nodule increase since nodular nitrogen fixation provides the largest source of nitrogen for peanut. However, it is unknown whether this nodule number increase is induced by fungal endophyte. We therefore conducted several pot experiments using vermiculite to investigate the effects of P. liquidambari on peanut-bradyrhizobium nodulation. Our results showed that P. liquidambari co-inoculated with bradyrhizobium increased root nodule number and shoot accumulated nitrogen by 28.25% and 29.71%, respectively. Nodulation dynamics analysis showed that P. liquidambari accelerated nodule initiation and subsequent nodule development. Meanwhile, P. liquidambari was able to colonize the peanut root as an endophyte. The dynamics of P. liquidambari and bradyrhizobial root colonization analysis showed that P. liquidambari inoculation significantly increased the rate of bradyrhizobial colonization. Furthermore, P. liquidambari inoculation significantly increased flavonoids synthesis-related enzymes activities, two common types of flavonoid (luteolin and quercetin-peanut rhizobial nod gene inducer) secretion and lateral root (peanut rhizobial infection site) formation, indicating that P. liquidambari altered the peanut nodulation-related physiological and metabolic activities. These obtained results confirmed the direct contribution of P. liquidambari in enhancing peanut-bradyrhizobium interaction, nodulation and yield.
Collapse
Affiliation(s)
- Wei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Hong-Wei Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Xing-Xiang Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Jiangsu Province, China; Jiangxi Key Laboratory of Ecological Research of Red Soil, Experimental Station of Red Soil, Chinese Academy of Sciences, Jiangxi Province, China
| | - Xing-Guang Xie
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Md Ashaduzzaman Siddikee
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Ri-Sheng Xu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China.
| |
Collapse
|
37
|
Yang B, Wang XM, Ma HY, Yang T, Jia Y, Zhou J, Dai CC. Fungal endophyte Phomopsis liquidambari affects nitrogen transformation processes and related microorganisms in the rice rhizosphere. Front Microbiol 2015; 6:982. [PMID: 26441912 PMCID: PMC4585018 DOI: 10.3389/fmicb.2015.00982] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 09/03/2015] [Indexed: 12/31/2022] Open
Abstract
The endophytic fungus Phomopsis liquidambari performs an important ecosystem service by assisting its host with acquiring soil nitrogen (N), but little is known regarding how this fungus influences soil N nutrient properties and microbial communities. In this study, we investigated the impact of P. liquidambari on N dynamics, the abundance and composition of N cycling genes in rhizosphere soil treated with three levels of N (urea). Ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB) and diazotrophs were assayed using quantitative real-time polymerase chain reaction and denaturing gradient gel electrophoresis at four rice growing stages (S0: before planting, S1: tillering stage, S2: grain filling stage, and S3: ripening stage). A significant increase in the available nitrate and ammonium contents was found in the rhizosphere soil of endophyte-infected rice under low N conditions. Moreover, P. liquidambari significantly increased the potential nitrification rates, affected the abundance and community structure of AOA, AOB, and diazotrophs under low N conditions in the S1 and S2 stages. The root exudates were determined due to their important role in rhizosphere interactions. P. liquidambari colonization altered the exudation of organic compounds by rice roots and P. liquidambari increased the concentration of soluble saccharides, total free amino acids and organic acids in root exudates. Plant-soil feedback mechanisms may be mediated by the rice-endophyte interaction, especially in nutrient-limited soil.
Collapse
Affiliation(s)
- Bo Yang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, NanjingChina
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, NanjingChina
| | - Xiao-Mi Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, NanjingChina
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, NanjingChina
| | - Hai-Yan Ma
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, NanjingChina
| | - Teng Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, NanjingChina
| | - Yong Jia
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, NanjingChina
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, NanjingChina
| | - Jun Zhou
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, NanjingChina
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, NanjingChina
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, NanjingChina
| |
Collapse
|