1
|
Pang F, Solanki MK, Xing YX, Dong DF, Wang Z. Streptomyces improves sugarcane drought tolerance by enhancing phenylalanine biosynthesis and optimizing the rhizosphere environment. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109236. [PMID: 39481196 DOI: 10.1016/j.plaphy.2024.109236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/29/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024]
Abstract
Drought stress is a common hazard faced by sugarcane growth, and utilizing microorganisms to enhance plant tolerance to abiotic stress has become an important method for sustainable agricultural development. Several studies have demonstrated that Streptomyces chartreuses WZS021 improves sugarcane tolerance to drought stress. However, the molecular mechanisms underlying tolerance at the transcriptional and metabolomic levels remain unclear. We comprehensively evaluated the physiological and molecular mechanisms by which WZS021 enhances drought tolerance in sugarcane, by performing transcriptome sequencing and non-targeted metabolomics; and examining rhizosphere soil properties and plant tissue antioxidant capacity. WZS021 inoculation improved the rhizosphere nutritional environment (AP, ammonia, OM) of sugarcane and enhanced the antioxidant capacity of plant roots, stems, and leaves (POD, SOD, CAT). Comprehensive analyses of the transcriptome and metabolome revealed that WZS021 mainly affects plant drought tolerance through phenylalanine metabolism, plant hormone signal transduction, and flavonoid biosynthesis pathways. The drought tolerance signaling molecules mediated by WZS021 include petunidin, salicylic acid, α-Linoleic acid, auxin, geranylgeraniol and phenylalanine, as well as key genes related to plant hormone signaling transduction (YUCCA, amiE, AUX, CYPs, PAL, etc.). Interestingly, inoculation with WZS021 during regular watering induces a transcriptome-level response to biological stress in sugarcane plants. This study further elucidates a WZS021-dependent rhizosphere-mediated regulatory mechanism for improving sugarcane drought tolerance, providing a theoretical basis for increasing sugarcane production capacity.
Collapse
Affiliation(s)
- Fei Pang
- College of Agriculture, Guangxi University, Nanning, China
| | - Manoj Kumar Solanki
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Agricultural College, Yulin Normal University, Yulin, 537000, China; Department of Life Sciences and Biological Sciences, IES University, Bhopal, Madhya Pradesh, India
| | - Yong-Xiu Xing
- College of Agriculture, Guangxi University, Nanning, China
| | - Deng-Feng Dong
- College of Agriculture, Guangxi University, Nanning, China.
| | - Zhen Wang
- College of Agriculture, Guangxi University, Nanning, China; Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Agricultural College, Yulin Normal University, Yulin, 537000, China.
| |
Collapse
|
2
|
He K, Xu Y, Ding H, Guo Q, Ci D, Zhang J, Qin F, Xu M, Zhang G. The Impact of Short-Term Drought on the Photosynthetic Characteristics and Yield of Peanuts Grown in Saline Alkali Soil. PLANTS (BASEL, SWITZERLAND) 2024; 13:2920. [PMID: 39458867 PMCID: PMC11511333 DOI: 10.3390/plants13202920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Peanuts grown in saline alkali soil are also subjected to drought stress caused by water scarcity. Therefore, we used HY25 (peanut variety) as an experimental material to investigate the effects of drought on the height of peanut main stems, length of the first lateral branch, leaf area per plant, SPAD value, net photosynthetic rate, and accumulation and distribution of photosynthetic products in saline alkali soil. The results showed that the combined stress of short-term drought and salt significantly reduced the main stem height, first lateral branch length, single plant leaf area, SPAD value, net photosynthetic rate (Pn), intercellular carbon dioxide concentration (Ci), and dry matter accumulation of peanuts, including a decrease in single plant pod yield, 100-pod weight, 100-kernel weight, and peanut yield. And the impact of drought stress on peanut yield varies at different growth stages. For example, under drought stress alone, the sensitive period is the 40th day after planting (40D) > 60th day after planting (60D) > 30th day after planting (30D). Short-term drought has the greatest impact on peanut yield at 40D, while in contrast, resuming watering after drought at 30D results in a slight but not significant increase in peanut yield in comparison with the control. Under the combined stress of drought and salt, the sensitive period of peanuts was 40D > 30D > 60D, and the single pod weight of peanuts was significantly reduced by 15.26% to 57.60% from the flowering stage to the pod stage under drought treatment compared to salt treatment, indicating a significant interaction between drought and salt stress, reducing the single leaf area and net photosynthetic rate of peanut leaves, ultimately leading to a decrease in peanut yield. Therefore, when planting peanuts in saline alkali soil, drought should be avoided, especially early drought, in order to prevent the combined effects of drought and salt stress from harming peanut yield.
Collapse
Affiliation(s)
- Kang He
- Shandong Peanut Research Institute, Qingdao 266100, China; (K.H.); (Y.X.); (H.D.); (Q.G.); (D.C.); (F.Q.); (M.X.)
| | - Yang Xu
- Shandong Peanut Research Institute, Qingdao 266100, China; (K.H.); (Y.X.); (H.D.); (Q.G.); (D.C.); (F.Q.); (M.X.)
| | - Hong Ding
- Shandong Peanut Research Institute, Qingdao 266100, China; (K.H.); (Y.X.); (H.D.); (Q.G.); (D.C.); (F.Q.); (M.X.)
| | - Qing Guo
- Shandong Peanut Research Institute, Qingdao 266100, China; (K.H.); (Y.X.); (H.D.); (Q.G.); (D.C.); (F.Q.); (M.X.)
| | - Dunwei Ci
- Shandong Peanut Research Institute, Qingdao 266100, China; (K.H.); (Y.X.); (H.D.); (Q.G.); (D.C.); (F.Q.); (M.X.)
| | - Jialei Zhang
- Shandong Academy of Agricultural Sciences, Jinan 250100, China;
| | - Feifei Qin
- Shandong Peanut Research Institute, Qingdao 266100, China; (K.H.); (Y.X.); (H.D.); (Q.G.); (D.C.); (F.Q.); (M.X.)
| | - Manlin Xu
- Shandong Peanut Research Institute, Qingdao 266100, China; (K.H.); (Y.X.); (H.D.); (Q.G.); (D.C.); (F.Q.); (M.X.)
| | - Guanchu Zhang
- Shandong Peanut Research Institute, Qingdao 266100, China; (K.H.); (Y.X.); (H.D.); (Q.G.); (D.C.); (F.Q.); (M.X.)
| |
Collapse
|
3
|
Zhang J, Wang X, Hou J, Li X, Li M, Zhao W, He N. High-resolution community-level sodium variation on the Tibetan Plateau: Content, density, and storage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173766. [PMID: 38844211 DOI: 10.1016/j.scitotenv.2024.173766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/02/2024] [Accepted: 06/02/2024] [Indexed: 06/18/2024]
Abstract
Sodium (Na), a beneficial mineral element, stimulates plant growth through osmotic adjustment. Previous studies focused on Na content at the individual or species level, however, it is hard to link to ecosystem functions without exploring the characteristics (content, density, and storage) of Na at the community level. We conducted grid-plot sampling of different plant organs in 2040 natural plant communities on the Tibetan Plateau (TP) to comprehensively characterize community-level Na on a regional scale. The Na content was 0.57, 0.09, 0.07, and 0.71 mg g-1 in leaves, branches, trunks, and roots, respectively. Across biomes Na content was higher in deserts under drought stress. Oxygen partial pressure, radiation, precipitation, soil Na supply, and temperature significantly affected the spatial variation in Na content. Furthermore, we accurately simulated the spatial variation in Na density and produced a highly precise 1 km × 1 km spatial map of plant Na density on the TP using random forest algorithm, which demonstrated higher Na density in the southeast of TP. The total plant Na storage on the TP was estimated as 111.80 × 104 t. These findings provide great insights and references for understanding the plant community-level adaptation strategies and evaluating the mineral element status on a large scale, and provide valuable data for ecological model optimization in the future.
Collapse
Affiliation(s)
- Jiahui Zhang
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China; Earth Critical Zone and Flux Research Station of Xing'an Mountains, Chinese Academy of Sciences, Daxing'anling 165200, China
| | - Xiaomeng Wang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Jihua Hou
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Forest Resources and Ecosystem Process, Beijing Forestry University, Beijing 100083, China.
| | - Xin Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Mingxu Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenzong Zhao
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Nianpeng He
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China; Earth Critical Zone and Flux Research Station of Xing'an Mountains, Chinese Academy of Sciences, Daxing'anling 165200, China.
| |
Collapse
|
4
|
Rizk MS, Assaha DVM, Mekawy AMM, Shalaby NE, Ramadan EA, El-Tahan AM, Ibrahim OM, Metwelly HIF, Okla MK, Maridueña-Zavala MG, AbdElgawad H, Ueda A. Comparative analysis of salinity tolerance mechanisms in two maize genotypes: growth performance, ion regulation, and antioxidant responses. BMC PLANT BIOLOGY 2024; 24:818. [PMID: 39215238 PMCID: PMC11363523 DOI: 10.1186/s12870-024-05533-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
This study investigates the differential responses of two maize genotypes, SC180 and SC168, to salt stress, aiming to elucidate the mechanisms underlying salinity tolerance and identify traits associated with improved stress resilience. Salinity stress, imposed by 150 mM NaCl, adversely affected various growth parameters in both genotypes. SC180 exhibited a more pronounced reduction in shoot length (13.6%) and root length (13.6%) compared to SC168, which showed minimal reductions (3.0% and 2.3%, respectively). Additionally, dry weight losses in SC180's leaves, stems, and roots were significantly greater than those in SC168. Under salinity stress, both genotypes accumulated Na+ in all organs, with SC168 showing higher Na + concentrations. However, K+ levels decreased more significantly in SC180's leaves than in SC168's. The study also assessed physiological responses, noting that SC180 experienced a substantial reduction in relative water content (RWC) in leaves (22.7%), while SC168's RWC remained relatively stable (5.15%). Proline accumulation, a marker for osmotic adjustment, increased 2.3-fold in SC168 compared onefold in SC180. Oxidative stress indicators, such as electrolyte leakage and hydrogen peroxide levels, were elevated in both genotypes under salt stress, with SC180 showing higher increases (48.5% and 48.7%, respectively) than SC168 (35.25% and 22.0%). Moreover, antioxidant enzymes (APX, CAT, POD, SOD, GR) activities were significantly enhanced in SC168 under salinity stress, whereas SC180 showed no significant changes in these activities. Stress indices, used to quantify and compare salinity tolerance, consistently ranked SC168 as more tolerant (average rank = 1.08) compared to SC180 (average rank = 1.92). Correlation analyses further confirmed that SC168's superior tolerance was associated with better Na + regulation, maintenance of K+ levels, and a robust antioxidant defense system. In conclusion, SC168 demonstrated greater resilience to salinity stress, attributed to its efficient ion regulation, stable water status, enhanced osmotic adjustment, and strong antioxidant response. These findings provide valuable insights for breeding and developing salinity-tolerant maize varieties.
Collapse
Affiliation(s)
- Mosa S Rizk
- Field Crops Research Institute, Agricultural Research Center, Kafrelsheikh, 33717, Egypt
| | - Dekoum V M Assaha
- Department of Agriculture, Higher Technical Teachers' Training College, University of Buea, PO Box 249, Kumba, SWR, Cameroon
| | - Ahmad Mohammad M Mekawy
- Department of Botany and Microbiology, Faculty of Science, Minia University, El-Minia, 61519, Egypt
| | - Nagwa E Shalaby
- Field Crops Research Institute, Agricultural Research Center, Kafrelsheikh, 33717, Egypt
| | - Ebrahim A Ramadan
- Field Crops Research Institute, Agricultural Research Center, Kafrelsheikh, 33717, Egypt
| | - Amira M El-Tahan
- Plant Production Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, SRTA City, Borg El Arab, Alexandria, Egypt
| | - Omar M Ibrahim
- Plant Production Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, SRTA City, Borg El Arab, Alexandria, Egypt
| | - Hassan I F Metwelly
- Agronomy Department, Faculty of Agriculture, Kafrelsheikh University, Karelshiekh, Egypt
| | - Mohammad K Okla
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Maria Gabriela Maridueña-Zavala
- Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo, Km. 30.5 Vía Perimetral, Guayaquil, 090902, Ecuador.
| | - Hamada AbdElgawad
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Akihiro Ueda
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8528, Japan
| |
Collapse
|
5
|
Ma P, Guo G, Xu X, Luo T, Sun Y, Tang X, Heng W, Jia B, Liu L. Transcriptome Analysis Reveals Key Genes Involved in the Response of Pyrus betuleafolia to Drought and High-Temperature Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:309. [PMID: 38276764 PMCID: PMC10819556 DOI: 10.3390/plants13020309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/30/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
Drought and high-temperature stress are the main abiotic stresses that alone or simultaneously affect the yield and quality of pears worldwide. However, studies on the mechanisms of drought or high-temperature resistance in pears remain elusive. Therefore, the molecular responses of Pyrus betuleafolia, the widely used rootstock in pear production, to drought and high temperatures require further study. Here, drought- or high-temperature-resistant seedlings were selected from many Pyrus betuleafolia seedlings. The leaf samples collected before and after drought or high-temperature treatment were used to perform RNA sequencing analysis. For drought treatment, a total of 11,731 differentially expressed genes (DEGs) were identified, including 4444 drought-induced genes and 7287 drought-inhibited genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that these DEGs were more significantly enriched in plant hormone signal transduction, flavonoid biosynthesis, and glutathione metabolism. For high-temperature treatment, 9639 DEGs were identified, including 5493 significantly upregulated genes and 4146 significantly downregulated genes due to high-temperature stress. KEGG analysis showed that brassinosteroid biosynthesis, arginine metabolism, and proline metabolism were the most enriched pathways for high-temperature response. Meanwhile, the common genes that respond to both drought and high-temperature stress were subsequently identified, with a focus on responsive transcription factors, such as MYB, HSF, bZIP, and WRKY. These results reveal potential genes that function in drought or high-temperature resistance. This study provides a theoretical basis and gene resources for the genetic improvement and molecular breeding of pears.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bing Jia
- College of Horticulture, Anhui Agricultural University, Hefei 230036, China; (P.M.); (G.G.); (X.X.); (T.L.); (Y.S.); (X.T.); (W.H.)
| | - Lun Liu
- College of Horticulture, Anhui Agricultural University, Hefei 230036, China; (P.M.); (G.G.); (X.X.); (T.L.); (Y.S.); (X.T.); (W.H.)
| |
Collapse
|
6
|
Xu X, Guo L, Wang S, Wang X, Ren M, Zhao P, Huang Z, Jia H, Wang J, Lin A. Effective strategies for reclamation of saline-alkali soil and response mechanisms of the soil-plant system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167179. [PMID: 37730027 DOI: 10.1016/j.scitotenv.2023.167179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/16/2023] [Accepted: 09/16/2023] [Indexed: 09/22/2023]
Abstract
The combination of amendments has emerged as a potential strategy to efficiently alleviate salt stress in saline-alkali soil. However, knowledge regarding how to optimize the proportion of different amendment materials, comprehensively assess the contribution of each component, and clarify the response mechanisms of the amendment-saline-alkali soil-plant system is incomplete. Based on this, we conducted a pot experiment to evaluate the improvement effect of the combined application of different amendment materials at varying levels and the contribution of the amendment components to alleviating salt stress. Overall, T6 exhibited the most significant improvement effect on the physicochemical and biological properties of the saline-alkali soil and promoted the growth of oilseed rape, with the levels of 2.0 % phosphogypsum, 2.0 % humic acid, 0.25 % bentonite, and 0.03 % sodium carboxymethyl cellulose. Compared with the control group, the EC decreased by 1.51 % to 33.49 %, the soil salt content dropped by 11.40 % to 35.46 %, and the soil soluble Na + concentration significantly declined by 39.47 % to 63.20 %. Additionally, the soil nutrient content and soil microbial community structure were enhanced in treatment groups. Meanwhile, amendments alleviated salt stress in the oilseed rape plant by activating anti-oxidative enzymes and osmoregulatory substances such as soluble sugar and proline, thus improving their ability to remove reactive oxygen species (ROS). The anti-oxidative enzymes such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were significantly increased, with an increase of 10.68 % (SOD, T2) ∼207.31 % (CAT, T6) compared to the control group. The structural equation modeling (SEM) analysis and simulation experiments indicated that the amendment components synergically promoted the amelioration effect on salt stress, and effectively improved soil properties, which affected the response of oilseed rape to soil environment. This research paper provides the relevant reference for the combined application of different amendment materials for soil reclamation.
Collapse
Affiliation(s)
- Xin Xu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Lin Guo
- Shanxi Construction Engineering Group Co., Ltd., Taiyuan 030000, PR China
| | - Shaobo Wang
- Shanxi Construction Engineering Group Co., Ltd., Taiyuan 030000, PR China
| | - Xuanyi Wang
- Engineering of Fluid Mechanics, Coastal and Built Environments, Imperial College London, London SW7 2AZ, UK
| | - Meng Ren
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Pengjie Zhao
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Ziyi Huang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Hongjun Jia
- Shanxi Construction Engineering Group Co., Ltd., Taiyuan 030000, PR China
| | - Jinhang Wang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
7
|
Liu S, Xu G, Chen T, Wu X, Li Y. Quantifying the effects of precipitation exclusion and groundwater drawdown on functional traits of Haloxylon ammodendron - How does this xeric shrub survive the drought? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166945. [PMID: 37699482 DOI: 10.1016/j.scitotenv.2023.166945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/14/2023]
Abstract
The increasing frequency of drought and decline in groundwater levels are causing ecophysiological changes in woody plants, particularly in desert ecosystems in arid regions. However, the combined effects of meteorological and hydrological droughts on perennial desert plants, especially phreatophytes, remain poorly understood. To address this knowledge gap, we conducted a 5-year precipitation exclusion experiment at two sites with contrasting groundwater depths in the Gurbantunggut Desert located in northwest China. Our study aimed to investigate the impacts of precipitation exclusion and groundwater depth decline on multiple traits of H. ammodendron. We found that long-term precipitation exclusion enhanced midday leaf water potential, stomatal conductance, chlorophyll content, root nonstructural carbohydrates concentration, leaf starch concentration, but decreased water use efficiency. Groundwater drawdown decreased predawn and midday leaf water potentials, maximum net photosynthetic rate, stomatal conductance, Huber value, stem water δ18O, but enhanced water use efficiency and branch nonstructural carbohydrates concentration. A combination of precipitation exclusion and groundwater depth decline reduced Huber value, but did not show exacerbated effects. The findings demonstrate that hydrological drought induced by groundwater depth decline poses a greater threat to the survival of H. ammodendron than future changes in precipitation.
Collapse
Affiliation(s)
- Shensi Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Fukang Station of Desert Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Fukang 831500, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guiqing Xu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Fukang Station of Desert Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Fukang 831500, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Tuqiang Chen
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Fukang Station of Desert Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Fukang 831500, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue Wu
- College of Ecology and Environment, Xinjiang University, Urumqi 830046, China
| | - Yan Li
- Fukang Station of Desert Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Fukang 831500, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Han J, Liu Y, Shen Y, Li W. A Surprising Diversity of Xyloglucan Endotransglucosylase/Hydrolase in Wheat: New in Sight to the Roles in Drought Tolerance. Int J Mol Sci 2023; 24:9886. [PMID: 37373033 DOI: 10.3390/ijms24129886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Drought has become a major limiting factor for wheat productivity, and its negative impact on crop growth is anticipated to increase with climate deterioration in arid areas. Xyloglucan endoglycosylases/hydrolases (XTHs) are involved in constructing and remodeling cell wall structures and play an essential role in regulating cell wall extensibility and stress responses. However, there are no systematic studies on the wheat XTH gene family. In this study, 71 wheat XTH genes (TaXTHs) were characterized and classified into three subgroups through phylogenetic analysis. Genomic replication promoted the expansion of TaXTHs. We found a catalytically active motif and a potential N-linked glycosylation domain in all TaXTHs. Further expression analysis revealed that many TaXTHs in the roots and shoots were significantly associated with drought stress. The wheat TaXTH12.5a gene was transferred into Arabidopsis to verify a possible role of TaXTHs in stress response. The transgenic plants possessed higher seed germination rates and longer roots and exhibited improved tolerance to drought. In conclusion, bioinformatics and gene expression pattern analysis indicated that the TaXTH genes played a role in regulating drought response in wheat. The expression of TaXTH12.5a enhanced drought tolerance in Arabidopsis and supported the XTH genes' role in regulating drought stress response in plants.
Collapse
Affiliation(s)
- Junjie Han
- College of Agriculture, The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi 832003, China
| | - Yichen Liu
- College of Agriculture, The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi 832003, China
| | - Yiting Shen
- College of Agriculture, The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi 832003, China
| | - Weihua Li
- College of Agriculture, The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi 832003, China
| |
Collapse
|
9
|
Wang X, Zhou X, Qu Z, Yan C, Ma C, Liu J, Dong S. Regulation of soybean drought response by mepiquat chloride pretreatment. FRONTIERS IN PLANT SCIENCE 2023; 14:1149114. [PMID: 37235038 PMCID: PMC10207941 DOI: 10.3389/fpls.2023.1149114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023]
Abstract
Introduction Soybean is the world's most important cultivated crop, and drought can affect their growth and, eventually, yields. Foliar application of mepiquat chloride (MC) can potentially alleviate the damage caused by drought stress in plants; however, the mechanism of MC regulation of soybean drought response has not been studied. Methods This study investigated the mechanism of soybean drought response regulation by mepiquat chloride in two varieties of soybean, sensitive Heinong 65 (HN65) and drought-tolerant Heinong44 (HN44), under three treatment scenarios, normal, drought stress, and drought stress + MC conditions. Results and discussion MC promoted dry matter accumulation under drought stress, reduced plant height, decreased antioxidant enzyme activity, and significantly decreased malondialdehyde content. The light capture processes, photosystems I and II, were inhibited; however, accumulation and upregulation of several amino acids and flavonoids by MC was observed. Multi-omics joint analysis indicated 2-oxocarboxylic acid metabolism and isoflavone biosynthetic pathways to be the core pathways by which MC regulated soybean drought response. Candidate genes such as LOC100816177, SOMT-2, LOC100784120, LOC100797504, LOC100794610, and LOC100819853 were identified to be crucial for the drought resistance of soybeans. Finally, a model was constructed to systematically describe the regulatory mechanism of MC application in soybean under drought stress. This study fills the research gap of MC in the field of soybean resistance.
Collapse
Affiliation(s)
- Xiyue Wang
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Xinyu Zhou
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Zhipeng Qu
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Chao Yan
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Chunmei Ma
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Jun Liu
- Lab of Functional Genomics and Bioinformatics, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shoukun Dong
- College of Agriculture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
10
|
Zhang S, He C, Wei L, Jian S, Liu N. Transcriptome and metabolome analysis reveals key genes and secondary metabolites of Casuarina equisetifolia ssp. incana in response to drought stress. BMC PLANT BIOLOGY 2023; 23:200. [PMID: 37069496 PMCID: PMC10111710 DOI: 10.1186/s12870-023-04206-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Casuarina equisetifolia is drought tolerant, salt tolerant, and able to grow in barren environments. It is often used to reduce wind damage, to prevent sand erosion, and to help establish plant communities in tropical and subtropical coastal zones. To determine the basis for its drought tolerance, we conducted transcriptomic and metabolic analyses of young branchlets under a non-drought treatment (D_0h) and 2-, 12-, and 24-h-long drought treatments (D_2h, D_12h, and D_24h). A total of 5033 and 8159 differentially expressed genes (DEGs) were identified in D_2h/D_0h and D_24h/D_0h. These DEGs were involved in plant hormone signal transduction, jasmonic acid (JA) biosynthesis, flavonoid biosynthesis, and phenylpropanoid biosynthesis. A total of 148 and 168 differentially accumulated metabolites (DAMs) were identified in D_12h/D_0h and D_24h/D_0h, which were mainly amino acids, phenolic acids, and flavonoids. In conclusion, C. equisetifolia responds to drought by regulating plant hormone signal transduction and the biosynthesis of JA, flavonoid, and phenylpropanoid. These results increase the understanding of drought tolerance in C. equisetifolia at both transcriptional and metabolic levels and provide new insights into coastal vegetation reconstruction and management.
Collapse
Affiliation(s)
- Shike Zhang
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunmei He
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Long Wei
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Shuguang Jian
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| | - Nan Liu
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China.
| |
Collapse
|
11
|
Cao YH, Ren W, Gao HJ, Lü XP, Zhao Q, Zhang H, Rensing C, Zhang JL. HaASR2 from Haloxylon ammodendron confers drought and salt tolerance in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 328:111572. [PMID: 36563942 DOI: 10.1016/j.plantsci.2022.111572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Abscisic acid (ABA), stress, and ripening-induced proteins (ASR), which belong to the ABA/WDS domain superfamily, are involved in the plant response to abiotic stresses. Haloxylon ammodendron is a succulent xerohalophyte species that exhibits strong resistance to abiotic stress. In this study, we isolated HaASR2 from H. ammodendron and demonstrated its detailed molecular function for drought and salt stress tolerance. HaASR2 interacted with the HaNHX1 protein, and its expression was significantly up-regulated under osmotic stress. Overexpression of HaASR2 improved drought and salt tolerance by enhancing water use efficiency and photosynthetic capacity in Arabidopsis thaliana. Overexpression of HaASR2 maintained the homeostasis of reactive oxygen species (ROS) and decreased sensitivity to exogenous ABA and endogenous ABA levels by down-regulating ABA biosynthesis genes under drought stress. Furthermore, a transcriptomic comparison between wild-type and HaASR2 transgenic Arabidopsis plants indicated that HaASR2 significantly induced the expression of 896 genes in roots and 406 genes in shoots under osmotic stress. Gene ontology (GO) enrichment analysis showed that those DEGs were mainly involved in ROS scavenging, metal ion homeostasis, response to hormone stimulus, etc. The results demonstrated that HaASR2 from the desert shrub, H. ammodendron, plays a critical role in plant adaptation to drought and salt stress and could be a promising gene for the genetic improvement of crop abiotic stress tolerance.
Collapse
Affiliation(s)
- Yan-Hua Cao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou 730000, People's Republic of China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, People's Republic of China; Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou 730000, People's Republic of China; College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Wei Ren
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou 730000, People's Republic of China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, People's Republic of China; Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou 730000, People's Republic of China; College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Hui-Juan Gao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou 730000, People's Republic of China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, People's Republic of China; Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou 730000, People's Republic of China; College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xin-Pei Lü
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou 730000, People's Republic of China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, People's Republic of China; Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou 730000, People's Republic of China; College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Qi Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou 730000, People's Republic of China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, People's Republic of China; Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou 730000, People's Republic of China; College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Hong Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Christopher Rensing
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou 730000, People's Republic of China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, People's Republic of China; Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou 730000, People's Republic of China; College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China; Institute of Environmental Microbiology, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China.
| | - Jin-Lin Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou 730000, People's Republic of China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, People's Republic of China; Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou 730000, People's Republic of China; College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China.
| |
Collapse
|
12
|
Wang Q, Guo C, Yang S, Zhong Q, Tian J. Screening and Verification of Reference Genes for Analysis of Gene Expression in Garlic ( Allium sativum L.) under Cold and Drought Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:763. [PMID: 36840111 PMCID: PMC9963267 DOI: 10.3390/plants12040763] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
The principal objective of this study was to screen and verify reference genes appropriate for gene expression evaluation during plant growth and development under distinct growth conditions. Nine candidate reference genes were screened based on garlic transcriptome sequence data. RT-qPCR was used to detect the expression levels of the aforementioned reference genes in specific tissues under drought and cold stress. Then, geNorm, NormFinder, BestKeeper, and ReFinder were used to consider the consistency of the expression levels of candidate reference genes. Finally, the stress-responsive gene expression of ascorbate peroxidase (APX) was quantitatively evaluated to confirm the chosen reference genes. Our results indicated that there were variations in the abundance and stability of nine reference gene transcripts underneath cold and drought stress, among which ACT and UBC-E2 had the highest transcript abundance, and 18S rRNA and HIS3 had the lowest transcript abundance. UBC and UBC-E2 were the most stably expressed genes throughout all samples; UBC and UBC-E2 were the most stably expressed genes during cold stress, and ACT and UBC were the most stably expressed genes under drought stress. The most stably expressed genes in roots, pseudostems, leaves, and cloves were EF1, ACT, HIS3, UBC, and UBC-E2, respectively, while GAPDH was the most unstable gene during drought and cold stress conditions and in exclusive tissues. Taking the steady reference genes UBC-E2, UBC, and ACT as references during drought and cold stress, the reliability of the expression levels was further demonstrated by detecting the expression of AsAPX. Our work thereby offers a theoretical reference for the evaluation of gene expression in garlic in various tissues and under stress conditions.
Collapse
Affiliation(s)
- Qizhang Wang
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Academy of Agriculture and Forestry Sciences of Qinghai University, Xining 810016, China
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chunqian Guo
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Academy of Agriculture and Forestry Sciences of Qinghai University, Xining 810016, China
| | - Shipeng Yang
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Academy of Agriculture and Forestry Sciences of Qinghai University, Xining 810016, China
| | - Qiwen Zhong
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Academy of Agriculture and Forestry Sciences of Qinghai University, Xining 810016, China
| | - Jie Tian
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Academy of Agriculture and Forestry Sciences of Qinghai University, Xining 810016, China
| |
Collapse
|
13
|
Zhang J, Cheng K, Ma B, Zhang W, Zheng L, Wang Y. CaCl 2 promotes the cross adaptation of Reaumuria trigyna to salt and drought by regulating Na +, ROS accumulation and programmed cell death. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:214-227. [PMID: 36641945 DOI: 10.1016/j.plaphy.2023.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/18/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Reaumuria trigyna, a salt-secreting xerophytic shrub endemic to arid desert regions of northwest China, is extremely adaptable to salt and aridity. In this study, we used PEG to simulates drought stress and investigated the effect of NaCl and CaCl2 on R. trigyna seedlings exposed to drought stress. Exogenous application moderate NaCl and CaCl2 were found to stimulate the growth and alleviate drought stress in R. trigyna seedlings. Moderate NaCl and CaCl2 combined treatment increased fresh weight and decreased electrolyte leakage, and malondialdehyde (MDA) content in R. trigyna seedlings under drought stress. Simultaneously, leaf senescence and root damage induced by drought stress were alleviated, with programmed cell death (PCD) related genes expression down-regulated. Among them, the application of CaCl2 under drought and salt treatment is the most effective way to increase osmotic regulators content, antioxidant enzymes activities, and related genes expressions of plants under drought stress, which scavenged excess reactive oxygen species (ROS) and alleviated oxidative damage caused by drought stress. Meanwhile, CaCl2 can reduce the content of Na+and the ratio of Na+/K+ by promoting the outflow of Na+ and inflow of Ca2+, as well as the expression of ion transporter gene, and reduce the ionic toxicity caused by drought and salt cross adaptation. The principal component analysis (PCA) showed that the relevant beneficial indicators were positively correlated with the combined treatment. These results indicated that moderate NaCl can positively regulates defense response to drought stress in R. trigyna, while CaCl2 can significantly promote this process.
Collapse
Affiliation(s)
- Jie Zhang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Kai Cheng
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Bingjie Ma
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Wenxiu Zhang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Lingling Zheng
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yingchun Wang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China.
| |
Collapse
|
14
|
Wang L, Jian Z, Wang P, Zhao L, Chen K. Combined physiological responses and differential expression of drought-responsive genes preliminarily explain the drought resistance mechanism of Lotus corniculatus. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:46-57. [PMID: 36031596 DOI: 10.1071/fp22051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Lotus corniculatus L. is a perennial high-quality legume forage species but is vulnerable to drought, and water deficit reduces productivity. To understand the drought response mechanism of L. corniculatus , we investigated physiological responses under drought stress and constructed suppression subtractive hybridisation (SSH) cDNA libraries to isolate drought-inducible genes and quantitatively study the expression levels of candidate drought- responsive genes. Genes encoding calmodulin-like protein, mitogen-activated protein kinase, indole-3-acetic acid-induced protein, ser/thr-protein phosphatase homolog-related proteins, and β -galactosidase-related protein with hydrolysis activity were isolated and considered the main factors that explained the resistance of L. corniculatus to drought. Approximately 632 expressed sequence tags (ESTs) were identified and confirmed in the constructed SSH library. The Gene Ontology (GO) analysis revealed that these genes were involved mainly in transcription processes, protein synthesis, material metabolism, catalytic reactions, sugar metabolism, and photosynthesis. The interaction between the functions of these drought-related genes and the physiological responses preliminarily explains the drought resistance mechanisms of L. corniculatus .
Collapse
Affiliation(s)
- Leiting Wang
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Zhongling Jian
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Puchang Wang
- Guizhou Institute of Prataculture, Guiyang 550006, China
| | - Lili Zhao
- College of Animal Science, Guizhou University, Guiyang 550025, China; and State Engineering Technology Institute for Karst Rocky Desertification Control, Guiyang 550025, China
| | - Keke Chen
- College of Animal Science, Guizhou University, Guiyang 550025, China
| |
Collapse
|
15
|
Xu GQ, Chen TQ, Liu SS, Ma J, Li Y. Within-crown plasticity of hydraulic properties influence branch dieback patterns of two woody plants under experimental drought conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158802. [PMID: 36115397 DOI: 10.1016/j.scitotenv.2022.158802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
In recent year, widespread declines of Populus bolleana Lauche trees (P. bolleana, which dieback from the top down) and Haloxylon ammodendron shrubs (H. ammodendron, which dieback starting from their outer canopy) have occurred. To investigate how both intra-canopy hydraulic changes and plasticity in hydraulic properties create differences in vulnerability between these two species, we conducted a drought simulation field experiment. We analyzed branch hydraulic vulnerability, leaf water potential (Ψ), photosynthesis (A), stomatal conductance (gs), non-structural carbohydrate (NSCs) contents and morphological traits of the plants as the plants underwent a partial canopy dieback. Our results showed that: (1) the hydraulic architecture was very different between the two life forms; (2) H. ammodendron exhibited a drought tolerance response with weak stomatal control, and thus a sharp decline in Ψ while P. bolleana showed a drought avoidance response with tighter stomatal control that maintained a relatively stable Ψ; (3) the Ψ of H. ammodendron showed relative consistent symptoms of drought stress with increasing plant stature, but the Ψ of P. bolleana showed greater drought stress in higher portions of the crown; (4) prolonged drought caused P. bolleana to consume and H. ammodendron to accumulate NSCs in the branches of their upper canopy. Thus, the prolonged drought caused the shoots of the upper canopy of P. bolleana to experience greater vulnerability leading to dieback of the upper branches first, while all the twigs of the outer canopy of H. ammodendron experienced nearly identical degrees of vulnerability, and thus dieback occurred uniformly. Our results indicate that intra-canopy hydraulic change and their plasticity under drought was the main cause of the observed canopy dieback patterns in both species. However, more work is needed to further establish that hydraulic limitation as a function of plant stature was the sole mechanism for causing the divergent canopy dieback patterns.
Collapse
Affiliation(s)
- Gui-Qing Xu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang 831505, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Tu-Qiang Chen
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang 831505, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shen-Si Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang 831505, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Ma
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang 831505, China
| | - Yan Li
- State Key Lab of Subtropical Siviculture, Zhejiang A&F University, 666Wusu Street, Lin-An, Hangzhou 311300, China
| |
Collapse
|
16
|
Liu X, Zong X, Wu X, Liu H, Han J, Yao Z, Ren Y, Ma L, Wang B, Zhang H. Ectopic expression of NAC transcription factor HaNAC3 from Haloxylon ammodendron increased abiotic stress resistance in tobacco. PLANTA 2022; 256:105. [PMID: 36315282 DOI: 10.1007/s00425-022-04021-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
HaNAC3 is a transcriptional activator located in the nucleus that may be involved in the response to high temperature, high salt and drought stresses as well as phytohormone IAA and ABA treatments. Our study demonstrated that HaNAC3 increased the tolerance of transgenic tobacco to abiotic stress and was involved in the regulation of a range of downstream genes and metabolic pathways. This also indicates the potential application of HaNAC3 as a plant tolerance gene. NAC transcription factors play a key role in plant growth and development and plant responses to biotic and abiotic stresses. However, the biological functions of NAC transcription factors in the desert plant Haloxylon ammodendron are still poorly understood. In this study, the NAC transcription factor HaNAC3 was isolated and cloned from a typical desert plant H. ammodendron, and its possible biological functions were investigated. Bioinformatics analysis showed that HaNAC3 has the unique N-terminal NAC structural domain of NAC transcription factor. Quantitative real-time fluorescence analysis showed that HaNAC3 was able to participate in the response to simulated drought, high temperature, high salt, and phytohormone IAA and ABA treatments, and was very sensitive to simulated high temperature and phytohormone ABA treatments. Subcellular localization analysis showed that the GFP-HaNAC3 fusion protein was localized in the nucleus of tobacco epidermal cells. The transcriptional self-activation assay showed that HaNAC3 had transcriptional self-activation activity, and the truncation assay confirmed that the transcriptional activation activity was located at the C-terminus. HaNAC3 gene was expressed exogenously in wild-type Nicotiana benthamiana, and the physiological function of HaNAC3 was verified by simulating drought and other abiotic stresses. The results indicated that transgenic tobacco had better resistance to abiotic stresses than wild-type B. fuminata. Further transcriptome analysis showed that HaNAC3 was involved in the regulation of a range of downstream resistance genes, wax biosynthesis and other metabolic pathways. These results suggest that HaNAC3 may have a stress resistance role in H. ammodendron and has potential applications in plant molecular breeding.
Collapse
Affiliation(s)
- Xiashun Liu
- College of Life Science, Xinjiang Agricultural University, Ürümqi, China
| | - Xingfeng Zong
- College of Life Science, Xinjiang Agricultural University, Ürümqi, China
| | - Xia Wu
- College of Life Science, Xinjiang Agricultural University, Ürümqi, China
| | - Hao Liu
- College of Life Science, Xinjiang Agricultural University, Ürümqi, China
| | - Jvdong Han
- College of Life Science, Xinjiang Agricultural University, Ürümqi, China
| | - Zhengpei Yao
- College of Life Science, Xinjiang Agricultural University, Ürümqi, China
| | - Yanping Ren
- College of Life Science, Xinjiang Agricultural University, Ürümqi, China
| | - Li Ma
- College of Life Science, Xinjiang Agricultural University, Ürümqi, China
| | - Bo Wang
- College of Life Science, Xinjiang Agricultural University, Ürümqi, China
| | - Hua Zhang
- College of Life Science, Xinjiang Agricultural University, Ürümqi, China.
- Arid Desert Research Institute, Ürümqi, China.
| |
Collapse
|
17
|
Song S, Qu Z, Zhou X, Wang X, Dong S. Effects of Weak and Strong Drought Conditions on Physiological Stability of Flowering Soybean. PLANTS (BASEL, SWITZERLAND) 2022; 11:2708. [PMID: 36297732 PMCID: PMC9607976 DOI: 10.3390/plants11202708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Soybean is an important food crop in the world. Drought can seriously affect the yield and quality of soybean; however, studies on extreme drought-weak and strong-are absent. In this study, drought-tolerant soybean Heinong 44 (HN44) and sensitive soybean Heinong 65 (HN65) were used as the test varieties, and the effects of strong and weak droughts on the physiological stability of soybean were explored through the drought treatment of soybean at the early flowering stage. The results showed that the contents of malondialdehyde (MDA), hydrogen peroxide (H2O2), and superoxide anions (O2·-) increased with the increase in the degree of drought. The plant height and relative water content decreased, and photosynthesis was inhibited. The activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), and the total antioxidant capacity (T-AOC) showed a trend of first increasing and then decreasing. Through contribution analysis, CAT changed the most, and the role of SOD gradually increased with the aggravation of drought. With the aggravation of drought, the contents of soluble sugar (SSC) and proline (Pro) increased gradually, and the content of soluble protein (SP) increased initially and then decreased. According to contribution analysis, SSC had the highest contribution to osmotic adjustment. SSC and Pro showed an upward trend with the aggravation of drought, indicating that their role in drought was gradually enhanced.
Collapse
|
18
|
Huang X, Jiao Y, Guo J, Wang Y, Chu G, Wang M. Analysis of codon usage patterns in Haloxylon ammodendron based on genomic and transcriptomic data. Gene X 2022; 845:146842. [PMID: 36038027 DOI: 10.1016/j.gene.2022.146842] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/17/2022] [Accepted: 08/23/2022] [Indexed: 11/28/2022] Open
Abstract
Haloxylon ammodendron, a xero-halophytic shrub of Chenopodiaceae, is a dominant species in deserts, which has a strong drought and salt tolerance and plays an important role in sand fixation. However, the codon usage bias (CUB) in H. ammodendron is still unclear at present. In this study, the codon usage patterns of 38,657 coding sequences (CDSs) in the newly released whole-genome sequence data of H. ammodendron and 3,948 CDSs in the previously obtained transcriptome sequencing data were compared and analyzed. The results showed that the CDSs with the total guanineandcytosine(GC)content in the range of 40% ∼ 45% was the most in the genome and transcriptome. Among which, the GC1, GC2, and GC3 contents of genomic CDSs were 50.83%, 40.56%, and 40.23%, respectively, and those of CDSs in the transcriptome were 47.16%, 39.02%, and 39.59%, respectively. Therefore, the bases in H. ammodendron were rich in adenine and thymine, and the overallcodonusage was biasedtoward A- and U-ending codons. The analysis of neutrality plot, effective number of codon (ENC) plot, and parity rule 2 (PR2) bias plot showed that both natural selection and mutation pressure had great influences on the CUB of H. ammodendron, but natural selection was the most important determinant. Besides, gene expression level and the function and protein length of some specific genes also had influences on the codon usage pattern. Finally, a total of 25 common optimal codons were found in the genomic and transcriptomic data, and AU/GC-ending codons ratio was 24:1. It should be noted that the salt-tolerant unigenes had similar codon usage, and the highly expressed genes had higher usage frequency of optimal codons and lower GC content than the lowly expressed genes. In addition, there was no difference in the ENC values of salt-tolerant unigenes in H. ammodendron, and the expression level of the genes had no correlation with CAI. This study will help to elucidate the formation mechanism of H. ammodendron codon usage bias, and make contributions to the identification of new genes and the genetic engineering study on H. ammodendron.
Collapse
Affiliation(s)
- Xiang Huang
- College of Agriculture, Shihezi University, Shihezi Xinjiang 832003, P.R. China
| | - Yalin Jiao
- College of Agriculture, Shihezi University, Shihezi Xinjiang 832003, P.R. China
| | - Jiaxing Guo
- College of Agriculture, Shihezi University, Shihezi Xinjiang 832003, P.R. China
| | - Ying Wang
- College of Agriculture, Shihezi University, Shihezi Xinjiang 832003, P.R. China
| | - Guangming Chu
- College of Agriculture, Shihezi University, Shihezi Xinjiang 832003, P.R. China
| | - Mei Wang
- College of Agriculture, Shihezi University, Shihezi Xinjiang 832003, P.R. China.
| |
Collapse
|
19
|
Guo Y, Wang Q, Zhao X, Li Z, Li M, Zhang J, Wei K. Field irrigation using magnetized brackish water affects the growth and water consumption of Haloxylon ammodendron seedlings in an arid area. FRONTIERS IN PLANT SCIENCE 2022; 13:929021. [PMID: 36092431 PMCID: PMC9453590 DOI: 10.3389/fpls.2022.929021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Freshwater resources in arid areas are scarce, while there are abundant brackish water reserves that have great application potential for the irrigation of desert plants. However, brackish water irrigation will lead to soil salinization, which will inhibit plant growth. Magnetized water is a new technology that makes the use of brackish water feasible. The present study assessed the effects of irrigation using three water types (fresh, brackish, and magnetized brackish water) and five irrigation amounts (W1, 81 mm; W2, 108 mm; W3, 135 mm; W4, 162mm; and W5, 189 mm) on soil salinity and Haloxylon ammodendron seedling growth. Compared with fresh water, brackish water irrigation inhibited the growth of H. ammodendron and reduced water consumption. Irrigation with magnetized brackish water effectively improved the effect of soil salt leaching, promoted the growth and water absorption of H. ammodendron roots, and stimulated the growth of plant height, basal diameter, shoot length, and crown width. Based on the principal component analysis, the first three treatments of H. ammodendron comprehensive growth state were FW4, FW3, and MBW4, respectively. This showed that magnetized brackish water combined with an appropriate irrigation amount was helpful to optimize the growth of H. ammodendron seedlings on the basis of fresh water saving. Therefore, magnetized brackish water irrigation is an effective strategy for ensuring the establishment and growth of H. ammodendron seedlings in arid and water-deficient areas.
Collapse
Affiliation(s)
- Yi Guo
- State Key Laboratory of Eco-Hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China
- School of Water Resource and Hydropower, Xi'an University of Technology, Xi'an, China
| | - Quanjiu Wang
- State Key Laboratory of Eco-Hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China
- School of Water Resource and Hydropower, Xi'an University of Technology, Xi'an, China
| | - Xue Zhao
- State Key Laboratory of Eco-Hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China
- School of Water Resource and Hydropower, Xi'an University of Technology, Xi'an, China
| | - Zongyu Li
- State Key Laboratory of Eco-Hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China
- School of Water Resource and Hydropower, Xi'an University of Technology, Xi'an, China
| | - Mingjiang Li
- State Key Laboratory of Eco-Hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China
- School of Water Resource and Hydropower, Xi'an University of Technology, Xi'an, China
| | - Jihong Zhang
- State Key Laboratory of Eco-Hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China
- School of Water Resource and Hydropower, Xi'an University of Technology, Xi'an, China
| | - Kai Wei
- State Key Laboratory of Eco-Hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China
- School of Water Resource and Hydropower, Xi'an University of Technology, Xi'an, China
| |
Collapse
|
20
|
Wang X, Li X, Dong S. Screening and identification of drought tolerance of spring soybean at seedling stage under climate change. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.988319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Drought is one of the major abiotic stress factors limiting soybean growth and yield, and it frequently occur globally. Therefore, exploring resistant varieties from soybean germplasm is important under climate change. To screen drought resistant spring soybean varieties at seedling stage, pot experiment was used to detect the Survival percentage after drought stress of 60 soybean varieties at seedling stage, twice drought rehydration treatments on seedlings, to evaluate the drought tolerance of spring soybean. The results showed that at the seedling stage, seven varieties were considered drought tolerant, 17 varieties were considered drought sensitive, and 36 varieties were considered to be moderately drought tolerant. Based on this experiment, number 44 (heinong37), 48 (heinong44), 49 (heinong45), 52 (heinong48) is considered the best drought resistant, and number 3 (dongnong48), 4 (dongnong52), 27 (suinong25), 60 (heinong65) is the most sensitive. These varieties provide a reference for further study on drought tolerance and stress resistance gene screening of soybean at the molecular level. The selected soybean varieties can be planted in areas with suitable climates and frequent drought to meet the local soybean demand. In other regions, although cannot be directly grown, they can still be used as parents of selected varieties or as materials for gene screening and extraction, to assist crop breeding at the molecular level in response to increasingly severe drought stress problems under the current climate trends.
Collapse
|
21
|
He P, Li Y, Xu N, Peng C, Meng F. Predicting the suitable habitats of parasitic desert species based on a niche model with Haloxylon ammodendron and Cistanche deserticola as examples. Ecol Evol 2021; 11:17817-17834. [PMID: 35003642 PMCID: PMC8717296 DOI: 10.1002/ece3.8340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 10/03/2021] [Accepted: 10/25/2021] [Indexed: 01/28/2023] Open
Abstract
Haloxylon ammodendron, an excellent tree species for sand fixation and afforestation in the desert areas of western China, is threatened by climate change and anthropogenic activities. The suitable habitat of this species is shrinking at a remarkable rate, although conservation measures have been implemented. Cistanche deserticola is an entirely parasitic herb that occurs in deserts, is a source of "desert ginseng" worldwide, and has extremely high medicinal value. Little is known about using niche models to simulate habitat suitability and evaluate important environmental variables related to parasitic species. In this study, we modeled the current suitable habitat of H. ammodendron and C. deserticola by MaxEnt based on occurrence record data of the distributions of these two species in China. We grouped H. ammodendron and C. deserticola into three groups according to the characteristics of parasitic species and modeled them with environmental factors. The results showed that bioclimate was the most important environmental parameter affecting the H. ammodendron and C. deserticola distribution. Precipitations, such as annual precipitation, precipitation seasonality, and precipitation in the driest quarter, were identified as the most critical parameters. The slope, diurnal temperature range, water vapor pressure, ground-frost frequency, and solar radiation also substantially contributed to the distribution of the two species. The proportions of the most suitable areas for Groups 1, 2, and 3 were 1.2%, 1.3%, and 1.7%, respectively, in China. When combined with cultural geography, five hot spot conservation areas were determined within the distribution of H. ammodendron and C. deserticola. The comprehensive analysis indicated that by using MaxEnt to model the suitable habitat of parasitic species, we further improved the accuracy of the prediction and coupled the error of the distribution of a single species. This study provides a useful reference for the protection of H. ammodendron forests and the management of C. deserticola plantations.
Collapse
Affiliation(s)
- Ping He
- Beijing Key lab of Traditional Chinese Medicine Protection and UtilizationFaculty of Geographical ScienceBeijing Normal UniversityBeijingChina
| | - Yunfeng Li
- Beijing Key lab of Traditional Chinese Medicine Protection and UtilizationFaculty of Geographical ScienceBeijing Normal UniversityBeijingChina
- Engineering Research Center of Natural MedicineMinistry of EducationFaculty of Geographical ScienceBeijing Normal UniversityBeijingChina
- Key Laboratory of research and development of traditional Chinese medicine in Hebei ProvinceDepartment of traditional Chinese MedicineChengde Medical CollegeChengdeChina
| | - Ning Xu
- Beijing Key lab of Traditional Chinese Medicine Protection and UtilizationFaculty of Geographical ScienceBeijing Normal UniversityBeijingChina
- Engineering Research Center of Natural MedicineMinistry of EducationFaculty of Geographical ScienceBeijing Normal UniversityBeijingChina
| | - Cheng Peng
- School of pharmacyChengdu University of TCMChengduChina
| | - Fanyun Meng
- Beijing Key lab of Traditional Chinese Medicine Protection and UtilizationFaculty of Geographical ScienceBeijing Normal UniversityBeijingChina
- Engineering Research Center of Natural MedicineMinistry of EducationFaculty of Geographical ScienceBeijing Normal UniversityBeijingChina
| |
Collapse
|
22
|
Lu Y, Zhang B, Li L, Zeng F, Li X. Negative effects of long-term exposure to salinity, drought, and combined stresses on halophyte Halogeton glomeratus. PHYSIOLOGIA PLANTARUM 2021; 173:2307-2322. [PMID: 34625966 DOI: 10.1111/ppl.13581] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Plants are subjected to salt and drought stresses concurrently but our knowledge about the effects of combined stress on plants is limited, especially on halophytes. We aim to study if some diverse drought and salt tolerance traits in halophyte may explain their tolerance to salinity and drought stresses, individual and in combination, and identify key traits that influence growth under such stress conditions. Here, the halophyte Halogeton glomeratus was grown under control, single or combinations of 60 days drought and salt treatments, and morphophysiological responses were tested. Our results showed that drought, salinity, and combination of these two stressors decreased plant growth (shoot height, root length, and biomass), leaf photosynthetic pigments content (chlorophyll a, b, a + b and carotenoids), gas exchange parameters (Net photosynthesis rate [PN ], transpiration rate [E], stomatal conductance [gs ]), and water potential (ψw ), and the decreases were more prominent under combined drought and salinity treatment compared with these two stressors individually performed. Similarly, combined drought and salinity treatment induced more severe oxidative stress as indicated by more hydrogen peroxide (H2 O2 ) and malondialdehyde (MDA) accumulated. Nevertheless, H. glomeratus is equipped with specific mechanisms to protect itself against drought and salt stresses, including upregulation of superoxide dismutases (SOD; EC 1.15.1.1) and catalase (CAT; EC 1.11.1.6) activities and accumulation of osmoprotectants (Na+ , Cl- , and soluble sugar). Our results indicated that photosynthetic pigments content, gas exchange parameters, water potential, APX activity, CAT activity, soluble sugar, H2 O2 , and MDA are valuable screening criteria for drought and salt, alone or combined, and provide the tolerant assessment of H. glomeratus.
Collapse
Affiliation(s)
- Yan Lu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, China
| | - Bo Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, China
| | - Lei Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, China
| | - Fanjiang Zeng
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, China
| | - Xiangyi Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, China
| |
Collapse
|
23
|
Tiika RJ, Wei J, Cui G, Ma Y, Yang H, Duan H. Transcriptome-wide characterization and functional analysis of Xyloglucan endo-transglycosylase/hydrolase (XTH) gene family of Salicornia europaea L. under salinity and drought stress. BMC PLANT BIOLOGY 2021; 21:491. [PMID: 34696719 PMCID: PMC8547092 DOI: 10.1186/s12870-021-03269-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 10/11/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND Salicornia europaea is a halophyte that has a very pronounced salt tolerance. As a cell wall manipulating enzyme, xyloglucan endotransglycosylase/hydrolase (XTH) plays an important role in plant resistance to abiotic stress. However, no systematic study of the XTH gene family in S. europaea is well known. PacBio Iso-Seq transcriptome sequence data were used for bioinformatics and gene expression analysis using real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS Transcriptome sequencing (PacBio Iso-Seq system) generated 16,465,671 sub-reads and after quality control of Iso-Seq, 29,520 isoforms were obtained with an average length of 2112 bp. A total of 24,869 unigenes, with 98% of which were obtained using coding sequences (CDSs), and 6398 possible transcription factors (TFs) were identified. Thirty-five (35) non-redundant potential SeXTH proteins were identified in S. europaea and categorized into group I/II and group III based on their genetic relatedness. Prediction of the conserved motif revealed that the DE(I/L/F/V)DF(I)EFLG domain was conserved in the S. europaea proteins and a potential N-linked glycosylation domain N(T)V(R/L/T/I)T(S/K/R/F/P)G was also located near the catalytic residues. All SeXTH genes exhibited discrete expression patterns in different tissues, at different times, and under different stresses. For example, 27 and 15 SeXTH genes were positively expressed under salt stress in shoots and roots at 200 mM NaCl in 24 h, and 34 SeXTH genes were also positively regulated under 48 h of drought stress in shoots and roots. This indicates their function in adaptation to salt and drought stress. CONCLUSION The present study discovered SeXTH gene family traits that are potential stress resistance regulators in S. europaea, and this provides a basis for future functional diversity research.
Collapse
Affiliation(s)
- Richard John Tiika
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Jia Wei
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Guangxin Cui
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yanjun Ma
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Hongshan Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| | - Huirong Duan
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| |
Collapse
|
24
|
Wang J, Shan Q, Ran Y, Sun D, Zhang H, Zhang J, Gong S, Zhou A, Qiao K. Molecular Characterization of a Tolerant Saline-Alkali Chlorella Phosphatidate Phosphatase That Confers NaCl and Sorbitol Tolerance. Front Microbiol 2021; 12:738282. [PMID: 34650539 PMCID: PMC8506161 DOI: 10.3389/fmicb.2021.738282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/27/2021] [Indexed: 11/13/2022] Open
Abstract
The gene encoding a putative phosphatidate phosphatase (PAP) from tolerant saline-alkali (TSA) Chlorella, ChPAP, was identified from a yeast cDNA library constructed from TSA Chlorella after a NaCl treatment. ChPAP expressed in yeast enhanced its tolerance to NaCl and sorbitol. The ChPAP protein from a GFP-tagged construct localized to the plasma membrane and the lumen of vacuoles. The relative transcript levels of ChPAP in Chlorella cells were strongly induced by NaCl and sorbitol as assessed by northern blot analyses. Thus, ChPAP may play important roles in promoting Na-ion movement into the cell and maintaining the cytoplasmic ion balance. In addition, ChPAP may catalyze diacylglycerol pyrophosphate to phosphatidate in vacuoles.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Aimin Zhou
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Kun Qiao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
25
|
He A, Niu S, Yang D, Ren W, Zhao L, Sun Y, Meng L, Zhao Q, Paré PW, Zhang J. Two PGPR strains from the rhizosphere of Haloxylon ammodendron promoted growth and enhanced drought tolerance of ryegrass. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 161:74-85. [PMID: 33578287 DOI: 10.1016/j.plaphy.2021.02.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Haloxylon ammodendron, a typical xerophyte, tolerates various abiotic stresses and is widely distributed in desert areas. Two PGPR strains, Bacillus sp. WM13-24 and Pseudomonas sp. M30-35, were previously isolated from the rhizosphere of H. ammodendron in Tengger Desert, Gansu province, northwest China. The aim of this study was to investigate the role of M30-35 and WM13-24 in drought stress alleviation of ryegrass (Lolium perenne L.). Under normal condition, both M30-35 and WM13-24 increased shoot fresh and dry weight, chlorophyll content, total nitrogen and phosphorus contents and altered phytohormone distribution compared to control. Moreover, after 7 days of drought stress, WM13-24 and M30-35 enhanced photosynthetic capacity, relative water content, the activities of catalase (CAT) and peroxidase (POD) and proline content, resulted in decreased malondialdehyde (MDA) content, relative membrane permeability (RMP) and H2O2 accumulation; interestingly, the two strains decreased ABA content in leaves. This study demonstrated that the two PGPR strains promoted ryegrass growth and root development via regulating plant hormone distribution and enhanced drought tolerance of ryegrass through improving the activities of antioxidant enzymes, regulating ABA signaling and maintaining plant growth. Our results indicated that PGPR strains from rhizosphere of the desert plant species could be considered as promising bioinoculants for grass plants.
Collapse
Affiliation(s)
- Aolei He
- State Key Laboratory of Grassland Agro-ecosystems, Center of Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China
| | - Shuqi Niu
- State Key Laboratory of Grassland Agro-ecosystems, Center of Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China
| | - Di Yang
- State Key Laboratory of Grassland Agro-ecosystems, Center of Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China
| | - Wei Ren
- State Key Laboratory of Grassland Agro-ecosystems, Center of Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China
| | - Lingyu Zhao
- State Key Laboratory of Grassland Agro-ecosystems, Center of Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China
| | - Yunya Sun
- State Key Laboratory of Grassland Agro-ecosystems, Center of Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China
| | - Laisheng Meng
- Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, PR China
| | - Qi Zhao
- State Key Laboratory of Grassland Agro-ecosystems, Center of Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China
| | - Paul W Paré
- State Key Laboratory of Grassland Agro-ecosystems, Center of Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China; Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409-1061, USA
| | - Jinlin Zhang
- State Key Laboratory of Grassland Agro-ecosystems, Center of Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
26
|
Wang X, Xia JB, Cao XB. Physiological and ecological characteristics of Periploca sepium Bunge under drought stress on shell sand in the Yellow River Delta of China. Sci Rep 2020; 10:9567. [PMID: 32533025 PMCID: PMC7293250 DOI: 10.1038/s41598-020-66717-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/11/2020] [Indexed: 11/15/2022] Open
Abstract
This study investigated the physiological and ecological changes in P. sepium Bunge and elucidated the physiological regulatory mechanisms underlying the adaptation of P. sepium to drought stress in shell sand. Drought stress led to a significant decrease in the net photosynthesis rate (Pn) and respiration rate of leaves and a decrease in low-intensity light-use efficiency (LUE) and light ecological amplitude. An increase in drought stress led to a considerable decrease in the photosynthetic electron transport rate in the P. sepium leaves and a significant increase in the amount of light energy dissipated as heat. In addition, the photosynthesis process suffered from severe photoinhibition. P. sepium plants counteracted the effects of drought stress primarily by increasing their peroxidase (POD) activity and by regulating membrane lipid peroxidation by secreting greater numbers of osmotic adjustment substances (proline (Pro) and soluble sugars (Ss)) and malondialdehyde (MDA). As drought stress increased, both the stem sap flow rate and the cumulative sap flow of P. sepium decreased considerably. P. sepium Bunge adapts to drought stress through interregulatory activity between photosynthesis, water-related physiological activities, and physiological and biochemical processes, and this species exhibits relatively high adaptive plasticity to drought.
Collapse
Affiliation(s)
- Xiao Wang
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Binzhou University, Binzhou, 256603, China
| | - Jiang-Bao Xia
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Binzhou University, Binzhou, 256603, China.
| | - Xue-Bin Cao
- National Algae and Sea Cucumber Project Technology Research Center, Shandong Oriental Ocean Sci-Tech Company Limited, Yantai, 264003, China
| |
Collapse
|
27
|
Gou JY, Suo SZ, Shao KZ, Zhao Q, Yao D, Li HP, Zhang JL, Rensing C. Biofertilizers with beneficial rhizobacteria improved plant growth and yield in chili (Capsicum annuum L.). World J Microbiol Biotechnol 2020; 36:86. [PMID: 32488618 DOI: 10.1007/s11274-020-02863-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 05/26/2020] [Indexed: 11/30/2022]
Abstract
Chemical fertilizers can supply essential nutrients to crops increasing their yield, however, they can also cause serious environmental problems. Biofertilizer has received more and more attention because of its environmentally friendly and pollution-free characteristics. Haloxylon ammodendron, a desert succulent shrub, has become an important plant species for vegetation restoration in several deserts in China because of its strong drought tolerance. Its extensive root systems and unique rhizosphere bacterial community aid H. ammodendron adapt to this extreme environment. In this study, Bacillus sp. WM13-24 and Pseudomonas sp. M30-35 isolated from the rhizosphere of H. ammodendron in our previous study and Bacillus amyloliquefaciens GB03 and Sinorhizobium meliloti ACCC17578 as well-studied beneficial strains were used to prepare two types of biofertilizer, WM13-24 biofertilizer containing Bacillus sp. WM13-24 and integrated biofertilizer containing all the four strains. Results presented here showed that WM13-24 biofertilizer and the integrated biofertilizer improved chili plant growth, fruit yield and quality and the rhizosphere soil nitrogen content, enzyme activities, and the quantity and biodiversity of viable bacteria. Compared to the control, WM13-24 biofertilizer and a commercial biofertilizer, the integrated biofertilizer performed best in significantly increasing plant height, stem diameter, leaf length and width, chlorophyll content, fruit yield, soluble sugar content, ascorbic acid content, organic acid content, soil urease activity, catalase activity and the quantity and biodiversity of viable bacteria. This study provided a theoretical and practical basis for large scale development of integrated biofertilizers using beneficial rhizobacterial strains from the desert plant rhizosphere.
Collapse
Affiliation(s)
- Jing-Yi Gou
- State Key Laboratory of Grassland Agro-Ecosystems, Center of Grassland Microbiome, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Sheng-Zhou Suo
- State Key Laboratory of Grassland Agro-Ecosystems, Center of Grassland Microbiome, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Kun-Zhong Shao
- State Key Laboratory of Grassland Agro-Ecosystems, Center of Grassland Microbiome, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Qi Zhao
- State Key Laboratory of Grassland Agro-Ecosystems, Center of Grassland Microbiome, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Dan Yao
- State Key Laboratory of Grassland Agro-Ecosystems, Center of Grassland Microbiome, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Hui-Ping Li
- State Key Laboratory of Grassland Agro-Ecosystems, Center of Grassland Microbiome, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Jin-Lin Zhang
- State Key Laboratory of Grassland Agro-Ecosystems, Center of Grassland Microbiome, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China.
| | - Christopher Rensing
- State Key Laboratory of Grassland Agro-Ecosystems, Center of Grassland Microbiome, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China. .,Institute of Environmental Microbiology, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.
| |
Collapse
|
28
|
Environmental Control on Transpiration: A Case Study of a Desert Ecosystem in Northwest China. WATER 2020. [DOI: 10.3390/w12041211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Arid and semi-arid ecosystems represent a crucial but poorly understood component of the global water cycle. Taking a desert ecosystem as a case study, we measured sap flow in three dominant shrub species and concurrent environmental variables over two mean growing seasons. Commercially available gauges (Flow32 meters) based on the constant power stem heat balance (SHB) method were used. Stem-level sap flow rates were scaled up to stand level to estimate stand transpiration using the species-specific frequency distribution of stem diameter. We found that variations in stand transpiration were closely related to changes in solar radiation (Rs), air temperature (T), and vapor pressure deficit (VPD) at the hourly scale. Three factors together explained 84% and 77% variations in hourly stand transpiration in 2014 and 2015, respectively, with Rs being the primary driving force. We observed a threshold control of VPD (~2 kPa) on stand transpiration in two-year study periods, suggesting a strong stomatal regulation of transpiration under high evaporative demand conditions. Clockwise hysteresis loops between diurnal transpiration and T and VPD were observed and exhibited seasonal variations. Both the time lags and refill and release of stem water storage from nocturnal sap flow were possible causes for the hysteresis. These findings improve the understanding of environmental control on water flux of the arid and semi-arid ecosystems and have important implications for diurnal hydrology modelling.
Collapse
|