1
|
Khan MN, Islam S, Siddiqui MH. Regulation of anaplerotic enzymes by melatonin enhances resilience to cadmium toxicity in Vigna radiata (L.) R. Wilczek. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109522. [PMID: 39854787 DOI: 10.1016/j.plaphy.2025.109522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/30/2024] [Accepted: 01/15/2025] [Indexed: 01/26/2025]
Abstract
Melatonin (Mel) is a tryptophan-derived (N-acetyl-5-methoxytryptamine) molecule. In the present study, role of Mel in the regulation of various anaplerotic enzymes is discussed in relation to N metabolism and H+-ATPase activity in mung bean under Cd stress. The application of Mel to the Cd-stressed mung bean seedlings was remarkable in improving the activity of hexokinase (35.7%), pyruvate kinase (79.2%), phosphoenolpyruvate carboxylase (38.9%) pyruvate dehydrogenase (41.5%), malate dehydrogenase (49.2%), citrate synthase (37.7%), isocitrate dehydrogenase (33.1%), ATP synthase (63.6%), and ATPase (38.6%). Incubation of Cd-stressed seedlings with Mel also improved the activity of nitrate reductase by 89.4%, nitrite reductase by 78.2%, and glutamine synthetase by 35.3% that resulted in higher level of ammonium and their subsequent assimilation to amino acids and proteins. Activation of these enzymes was strongly associated with Mel-induced regulation of H+-ATPase activity that improved K+ retention and N assimilation capacity of the Cd-stressed seedlings of mung bean. The coordinated mechanism of action of tricarboxylic acid (TCA) cycle, N metabolism, and higher K+ levels were helpful in providing protection against detrimental effects of Cd toxicity through improving the defense system and energy level of the plants. However, inclusion of sodium orthovanadate (PM H+-ATPase inhibitor) to the incubation medium reversed the positive effect of Mel and suppressed the performance of plants under Cd-stress. The findings of the study indicate that under Cd stress, the regulatory mechanisms of anaplerotic enzymes and antioxidant defense are mediated by Mel, and this process is facilitated by the retention of K+ induced by H+-ATPase.
Collapse
Affiliation(s)
- M Nasir Khan
- Renewable Energy and Environmental Technology Center, University of Tabuk, Tabuk, 71491, Saudi Arabia; Department of Science and Basic Studies, Applied College, University of Tabuk, Tabuk, 71491, Saudi Arabia.
| | - Shaistul Islam
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
2
|
Perea-Brenes A, Ruiz-Pino N, Yubero F, Garcia JL, Gonzalez-Elipe AR, Gomez-Ramirez A, Prados A, Lopez-Santos C. Ion Mobility and Segregation in Seed Surfaces Subjected to Cold Plasma Treatments. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 39989318 DOI: 10.1021/acs.jafc.4c09650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Plasma treatment of seeds is an efficient procedure to accelerate germination, to improve initial stages of plant growth, and for protection against pathogen infection. Most studies relate these beneficial effects with biochemical modifications affecting the metabolism and genetic growth factors of seeds and young plants. Using barley seeds, in this work, we investigate the redistribution of ions in the seed surface upon their treatment with cold air plasmas. In addition, we investigate the effect of plasma in the lixiviation of ions through the seeds' hull when they are immersed in water. Ion redistribution in the outer layers of air plasma-treated seeds has been experimentally determined through X-ray photoelectron spectroscopy analysis in combination with in-depth chemical profiling with gas cluster ion beams. The results show that in the shallowest layers of the seed hull (at least up to a depth of ∼100 nm) there is an enrichment of K+ and Ca2+ ions, in addition to changes in the O/C and N/C atomic ratios. These data have been confirmed by the electron microscopy/fluorescence analysis of seed cuts. Observations have been accounted for by a Monte Carlo model, simulating the electrostatic interactions that develop between the negative charge accumulated at the seed surface due to the interaction with the plasma sheath and the positive ions existing in the interior. Furthermore, it is shown that upon water immersion of plasma-treated seeds mobilized ions tend to lixiviate more efficiently than in pristine seeds. The detection of a significant concentration of NO3- anions in the water has been attributed to a secondary reaction of nitrogen species incorporated into the seeds during plasma exposure with reactive oxygen species formed on their surface during this treatment. The implications of these findings for the improvement of the germination capacity of seeds are discussed.
Collapse
Affiliation(s)
- Alvaro Perea-Brenes
- Nanotechnology on Surfaces and Plasma Laboratory, Institute of Materials Science of Seville, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville 41092, Spain
| | - Natalia Ruiz-Pino
- Física Teórica, Departamento de Física Atómica, Molecular y Nuclear, Universidad de Sevilla, Apartado de Correos 1065, Seville 41080, Spain
| | - Francisco Yubero
- Nanotechnology on Surfaces and Plasma Laboratory, Institute of Materials Science of Seville, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville 41092, Spain
| | - Jose Luis Garcia
- Department of Plant Biotechnology, Institute of Natural Resources and Agrobiology of Seville, Consejo Superior de Investigaciones Científicas, Seville 41012, Spain
| | - Agustín R Gonzalez-Elipe
- Nanotechnology on Surfaces and Plasma Laboratory, Institute of Materials Science of Seville, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville 41092, Spain
| | - Ana Gomez-Ramirez
- Nanotechnology on Surfaces and Plasma Laboratory, Institute of Materials Science of Seville, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville 41092, Spain
- Física Teórica, Departamento de Física Atómica, Molecular y Nuclear, Universidad de Sevilla, Apartado de Correos 1065, Seville 41080, Spain
| | - Antonio Prados
- Física Teórica, Departamento de Física Atómica, Molecular y Nuclear, Universidad de Sevilla, Apartado de Correos 1065, Seville 41080, Spain
| | - Carmen Lopez-Santos
- Nanotechnology on Surfaces and Plasma Laboratory, Institute of Materials Science of Seville, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville 41092, Spain
- Departamento de Física Aplicada I, Escuela Politécnica Superior, Universidad de Sevilla, Seville 41011, Spain
| |
Collapse
|
3
|
Tang Y, Rong H, Jia X, Chen Y, Wang Z, Wei J, Yang C, Liu J, Wang M, Yu H, Wang Q. Unveiling the molecular symphony: MicroRNA160a-Auxin Response Factor 18 module orchestrates low potassium tolerance in banana (Musa acuminata L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112288. [PMID: 39396617 DOI: 10.1016/j.plantsci.2024.112288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/16/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Potassium (K) is an essential nutrient for the growth and development of most plants. In banana (Musa acuminata L.), microRNA160a (miR160a) is suggested to potentially contribute to the response to low K+ stress by modulating the auxin signaling pathway. However, further investigation is required to elucidate its specific regulatory mechanism. This study presents evidence highlighting the critical role of the miR160a-Auxin Response Factor 18 (ARF18) module in conferring low K+ tolerance in banana. Both miR160a and its predicted target gene ARF18 displayed elevated expression levels in banana roots, with their expression profiles significantly altered under low K+ stress. The inhibitory effect of mac-miR160a on the expression of MaARF18-like-2 was confirmed through tobacco transient transformation and dual-Luciferase reporter assay. Surprisingly, Arabidopsis lines overexpressing mac-miR160a (mac-miR160a OE) exhibited enhanced tolerance to low K+ stress. Conversely, Arabidopsis lines overexpressing MaARF18-like-2 (MaARF18-like-2 OE) displayed increased sensitivity to K+ deficiency. Additionally, RNA sequencing (RNA-seq) analysis revealed that MaARF18-like-2 mediates the response of Arabidopsis to low K+ stress by influencing the expression of genes associated with Ca2+, ion transport, and reactive oxygen species (ROS) signaling. In conclusion, our study provides novel insights into the molecular mechanism of the miR160a-ARF18-like-2 module in the plant response to low K+ stress.
Collapse
Affiliation(s)
- Yi Tang
- Institute of Horticulture Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Hang Rong
- Institute of Horticulture Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Xingchen Jia
- Institute of Horticulture Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Yinglong Chen
- The UWA Institute of Agriculture, and School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
| | - Zishu Wang
- Institute of Horticulture Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Jinyi Wei
- Institute of Horticulture Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Chenyi Yang
- Institute of Horticulture Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Jianfu Liu
- Institute of Horticulture Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Mingyuan Wang
- Institute of Horticulture Science and Engineering, Huaqiao University, Xiamen 361021, China.
| | - Hailing Yu
- Institute of Horticulture Science and Engineering, Huaqiao University, Xiamen 361021, China.
| | - Qizhi Wang
- Institute of Horticulture Science and Engineering, Huaqiao University, Xiamen 361021, China.
| |
Collapse
|
4
|
Hmidi D, Muraya F, Fizames C, Véry A, Roelfsema MRG. Potassium extrusion by plant cells: evolution from an emergency valve to a driver of long-distance transport. THE NEW PHYTOLOGIST 2025; 245:69-87. [PMID: 39462778 PMCID: PMC11617655 DOI: 10.1111/nph.20207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/15/2024] [Indexed: 10/29/2024]
Abstract
The ability to accumulate nutrients is a hallmark for living creatures and plants evolved highly effective nutrient transport systems, especially for the uptake of potassium (K+). However, plants also developed mechanisms that enable the rapid extrusion of K+ in combination with anions. The combined release of K+ and anions is probably an ancient extrusion system, as it is found in the Characeae that are closely related to land plants. We postulate that the ion extrusion mechanisms have developed as an emergency valve, which enabled plant cells to rapidly reduce their turgor, and prevent them from bursting. Later in evolution, seed plants adapted this system for various responses, such as the closure of stomata, long-distance stress waves, dropping of leaves by pulvini, and loading of xylem vessels. We discuss the molecular nature of the transport proteins that are involved in ion extrusion-based functions of plants and describe the functions that they obtained during evolution.
Collapse
Affiliation(s)
- Dorsaf Hmidi
- Institut des Sciences des Plantes de Montpellier, Univ Montpellier, CNRS, INRAE, Institut Agro, Campus SupAgro‐INRAE34060Montpellier Cedex 2France
| | - Florence Muraya
- Molecular Plant Physiology and Biophysics, Julius‐von‐Sachs Institute for Biosciences, BiocenterWürzburg UniversityJulius‐von‐Sachs‐Platz 2D‐97082WürzburgGermany
| | - Cécile Fizames
- Institut des Sciences des Plantes de Montpellier, Univ Montpellier, CNRS, INRAE, Institut Agro, Campus SupAgro‐INRAE34060Montpellier Cedex 2France
| | - Anne‐Aliénor Véry
- Institut des Sciences des Plantes de Montpellier, Univ Montpellier, CNRS, INRAE, Institut Agro, Campus SupAgro‐INRAE34060Montpellier Cedex 2France
| | - M. Rob G. Roelfsema
- Molecular Plant Physiology and Biophysics, Julius‐von‐Sachs Institute for Biosciences, BiocenterWürzburg UniversityJulius‐von‐Sachs‐Platz 2D‐97082WürzburgGermany
| |
Collapse
|
5
|
Mateus NS, Florentino AL, Moreira GLLS, Nogueira ML, Ferreira MEP, Rossi ML, Linhares FS, Lavres J. Disguised Blessings: A Mechanistic Understanding of the Beneficial Outcomes Triggered by Partial K Replacement With Na in Two Eucalyptus Species Under Drought Stress. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39660820 DOI: 10.1111/pce.15316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/25/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024]
Abstract
While not essential for most plants, sodium (Na+) can partially substitute for potassium (K+) in some metabolic functions. Thus, understanding the mechanisms underlying K+ and Na+ uptake, transport, utilization, and ion replacement is crucial to sustain forest production. A pot experiment was designed with 6 K/Na ratios (100/0, 85/15, 70/30, 55/45, 40/60, and 0/0%) and two water conditions (well-watered, W+; and water-stressed, W-) on two Eucalyptus species with contrasting drought tolerance. In a multi-level analysis, we measured morphological, nutritional, physiological, biochemical, molecular, and anatomical traits. Low to moderate K replacement with Na (85/15%-55/45%) provided partial and faster stomatal closure (lower δ13C), thereby enhancing plants' water status (WUE, RLWC, ΨPD, ΨMD), photosynthetic capacity (gs, E, A, Ci/Ca), photoprotection (NPQ, qP, ETR, Fv/FM, ΦPSII), and growth (height, collar diameter, LA, TDM) relative to exclusive K supply. The 70/30% K/Na replacement was defined as the ideal ratio, upregulating K+ and water uptake (overexpression of AKT1, PIP2;5, PIP2;7 and TIP1;3), maximizing enzymatic antioxidant performance and biomass production, and reducing oxidative stress. High K replacement with Na (40/60%) and K deficiency (0/0%) led to incomplete stomatal closure reduced water status, photosynthetic capacity, photoprotection, and growth, especially in the species with low drought tolerance.
Collapse
Affiliation(s)
- Nikolas Souza Mateus
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
| | | | | | - Marina Lima Nogueira
- Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | | | - Monica Lanzoni Rossi
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
| | | | - Jose Lavres
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
| |
Collapse
|
6
|
Ployet R, Feng K, Zhang J, Baxter I, Glasgow DC, Andrews HB, Rodriguez M, Chen JG, Tuskan GA, Tschaplinski TJ, Weston DJ, Martin MZ, Muchero W. Elemental profiling and genome-wide association studies reveal genomic variants modulating ionomic composition in Populus trichocarpa leaves. FRONTIERS IN PLANT SCIENCE 2024; 15:1450646. [PMID: 39670268 PMCID: PMC11634625 DOI: 10.3389/fpls.2024.1450646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/04/2024] [Indexed: 12/14/2024]
Abstract
The ionome represents elemental composition in plant tissues and can be an indicator of nutrient status as well as overall plant performance. Thus, identifying genetic determinants governing elemental uptake and storage is an important goal for breeding and engineering biomass feedstocks with improved performance. In this study, we coupled high-throughput ionome characterization of leaf tissues with high-resolution genome-wide association studies (GWAS) to uncover genetic loci that modulate ionomic composition in leaves of poplar (Populus trichocarpa). Significant agreement was observed across the three ionomic profiling platforms tested: inductively coupled plasma-mass spectrometry (ICP-MS), neutron activation analysis (NAA) and laser-induced breakdown spectroscopy (LIBS). Relative quantification of 20 elements using ICP-MS across a population of 584 genotypes, revealed larger variation in micro-nutrients and trace elements content than for macro-nutrients across genotypes. The GWAS performed using a set of high-density (>8.2 million) single nucleotide polymorphisms, identified over 600 loci significantly associated with variations in these mineral elements, pointing to numerous uncharacterized candidate genes. A significant enrichment for genes related to ion homeostasis and transport was observed, including several members of the cation-proton antiporters (CPA) family and MATE efflux transporters, previously reported to be critical for plant growth and fitness in other species. Our results also included a polymorphic copy of the high-affinity molybdenum transporter MOT1 found directly associated to molybdenum content. For the first time in a perennial plant, our results provide evidence of genetic control of mineral content in a model tree species.
Collapse
Affiliation(s)
- Raphael Ployet
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Kai Feng
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Jin Zhang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Ivan Baxter
- Donald Danforth Plant Science Center, St. Louis, MO, United States
| | - David C. Glasgow
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Hunter B. Andrews
- Radioisotopes Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Miguel Rodriguez
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Timothy J. Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - David J. Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Madhavi Z. Martin
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| |
Collapse
|
7
|
Liu Y, Liu D, Han X, Chen Z, Li M, Jiang L, Zeng J. Magnesium-Doped Carbon Quantum Dot Nanomaterials Alleviate Salt Stress in Rice by Scavenging Reactive Oxygen Species to Increase Photosynthesis. ACS NANO 2024; 18:31188-31203. [PMID: 39484841 DOI: 10.1021/acsnano.4c09001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Salt stress has strongly impacted the long-term growth of eco-friendly farming worldwide. By targeting the oxidative stress induced by salt, the utilization of biomass-derived carbon dots (CDs) that possess high-efficiency antioxidant properties, are nontoxic, and have excellent biocompatibility represents a viable and effective approach for enhancing the salt tolerance of plants. In this study, we blended magnesium oxide nanoparticles with carbon sources derived from durian shells to construct Mg-doped carbon dots (Mg-CDs) through a hydrothermal reaction. We demonstrated that the foliar application of 150 μg/mL Mg-CDs to rice plants after treatment with 100 mM salt effectively increased the plant height (9.52%), fresh weight (22.41%), dry weight (33.33%), K+ content (21.46%), chlorophyll content (36.21%), and carotenoid content (16.21%); decreased the malondialdehyde (MDA) (9.43%), Na+ (25.75%), H2O2 (17.50%), and O2•- contents (37.99%); and promoted the photosynthetic system and antioxidant activity. Transcriptome analysis revealed that Mg-CD pretreatment triggered transcriptional reprogramming in rice seedlings. The enrichment analysis of the Kyoto Encyclopedia of Genes and Genomes pathways based on trend groups of gene expression patterns of Profile 8 and Profile 15 indicated that priming with Mg-CDs activated stress signaling- and defense-related pathways, such as metabolic pathways, biosynthesis of secondary metabolites, and photosynthesis pathways. These activations subsequently prompted the expression of genes related to the mitogen-activated protein kinase signaling pathway, hormone signal transduction, the oxidative stress response, and the photosynthetic system. This study demonstrated that the use of Mg-CDs represents a potential strategy to increase plant salt tolerance, creating the possibility for the regulation of crop salinity stress and offering valuable advancements in sustainable agriculture.
Collapse
Affiliation(s)
- Yingzhu Liu
- College of Forestry and Landscape Architecture, Anhui Agricultural University, Changjiang West Road 130, Shushan District, Hefei 230036, China
| | - Dan Liu
- College of Forestry and Landscape Architecture, Anhui Agricultural University, Changjiang West Road 130, Shushan District, Hefei 230036, China
| | - Xiao Han
- College of Forestry and Landscape Architecture, Anhui Agricultural University, Changjiang West Road 130, Shushan District, Hefei 230036, China
| | - Zongpan Chen
- College of Forestry and Landscape Architecture, Anhui Agricultural University, Changjiang West Road 130, Shushan District, Hefei 230036, China
| | - Mei Li
- College of Forestry and Landscape Architecture, Anhui Agricultural University, Changjiang West Road 130, Shushan District, Hefei 230036, China
| | - Longwei Jiang
- College of Food and Nutrition, Anhui Agricultural University, Changjiang West Road 130, Shushan District, Hefei 230036, China
| | - Jianguo Zeng
- College of Veterinary Medicine, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha 410128, China
| |
Collapse
|
8
|
Jin Q, Yang K, Zhang Y, Zhang S, Liu Z, Guan Y, Zhang L, Zhang Y, Wang Q. Physiological and molecular mechanisms of silicon and potassium on mitigating iron-toxicity stress in Panax ginseng. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108975. [PMID: 39084170 DOI: 10.1016/j.plaphy.2024.108975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/01/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Iron plays a crucial role in plant chlorophyll synthesis, respiration, and plant growth. However, excessive iron content can contribute to ginseng poisoning. We previously discovered that the application of silicon (Si) and potassium (K) can mitigate the iron toxicity on ginseng. To elucidate the molecular mechanism of how Si and K alleviate iron toxicity stress in ginseng. We investigated the physiological and transcriptional effects of exogenous Si and K on Panax ginseng. The results suggested that the leaves of ginseng with Si and K addition under iron stress increased antioxidant enzyme activity or secondary metabolite content, such as phenylalanine amino-lyase, polyphenol oxidase, ascorbate peroxidase, total phenols and lignin, by 6.21%-25.94%, 30.12%-309.19%, 32.26%-38.82%, 7.81%-23.66%, and 4.68%-48.42%, respectively. Moreover, Si and K increased the expression of differentially expressed genes (DEGs) associated with resistance to both biotic and abiotic stress, including WRKY (WRKY1, WRKY5, and WRKY65), bHLH (bHLH35, bHLH66, bHLH128, and bHLH149), EREBP, ERF10 and ZIP. Additionally, the amount of DEGs of ginseng by Si and K addition was enriched in metabolic processes, single-organism process pathways, signal transduction, metabolism, synthesis and disease resistance. In conclusion, the utilization of Si and K can potentially reduce the accumulation of iron in ginseng, regulate the expression of iron tolerance genes, and enhance the antioxidant enzyme activity and secondary metabolite production in both leaves and roots, thus alleviating the iron toxicity stress in ginseng.
Collapse
Affiliation(s)
- Qiao Jin
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China
| | - Kexin Yang
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China
| | - Yayu Zhang
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China; College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Shuna Zhang
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China
| | - Zhengbo Liu
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China
| | - Yiming Guan
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China
| | - Linlin Zhang
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China
| | - Yue Zhang
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China
| | - Qiuxia Wang
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China.
| |
Collapse
|
9
|
Ahmed EZ, Sattar AMAE. Improvement of Vicia faba plant tolerance under salinity stress by the application of thiamine and pyridoxine vitamins. Sci Rep 2024; 14:22367. [PMID: 39333671 PMCID: PMC11436915 DOI: 10.1038/s41598-024-72511-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/09/2024] [Indexed: 09/29/2024] Open
Abstract
Enhancement of plant growth at early growth stages is usually associated with the stimulation of various metabolic activities, which is reflected on morphological features and yield quantity and quality. Vitamins is considered as anatural plant metabolites which makes it a safe and ecofriendly treatment when used in appropriate doses, for that this research aimed to study the effect of two different vitamin B forms (thiamine and pyridoxine) on Vicia faba plants as agrowth stimutator in addition to study it's effect on plant as astrong antioxidant under salinity stress.Our findings demonstrated that both vitamin forms significantly increased seedling growth at germination and early growth stages, especially at 50 ppm for pyridoxine and 100 ppm for thiamine. Pyridoxine at 50 ppm increased seedling length by approximately 35% compared to control, while thiamine at 100 ppm significantly promoted seedling fresh and dry wt by 4.36 and 1.36 g, respectively, compared to control seedling fresh wt 2.17 g and dry weight 1.07 g. Irrigation with 100 mM NaCl had a negative impact on plant growth and processes as well as the uptake of several critical ions, such as K+ and Mg+2, increasing Na uptake in comparison to that in control plants. Compared to control plants irrigated with NaCl solution, the photosynthetic pigments, soluble sugars, soluble proteins, and total antioxidant capacity increased in the presence of pyridoxine and thiamine, both at 50 and 100 ppm salinity. The proline content increased in both treated and untreated plants subjected to salt stress compared to that in control plants. Thiamine, especially at 50 ppm, was more effective than pyridoxine at improving plant health under saline conditions. An increase in Vicia faba plant tolerance to salinity was established by enhancing antioxidant capacity via foliar application of vitamin B through direct and indirect scavenging methods, which protect cell macromolecules from damage by oxidative stress, the highest antioxidant capacity value 28.14% was recorded at 50 ppm thiamine under salinity stress.The provided results is aguide for more researches in plant physiology and molecular biology to explain plant response to vitamins application and the suggest the sequence by which vitamins work inside plant cell.
Collapse
Affiliation(s)
- Eman Zakaria Ahmed
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo, Egypt.
| | | |
Collapse
|
10
|
Li C, Zeng Q, Han Y, Zhou X, Xu H. Effects of Bacillus subtilis on Cucumber Seedling Growth and Photosynthetic System under Different Potassium Ion Levels. BIOLOGY 2024; 13:348. [PMID: 38785830 PMCID: PMC11117608 DOI: 10.3390/biology13050348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Potassium deficiency is one of the important factors restricting cucumber growth and development. This experiment mainly explored the effect of Bacillus subtilis (B. subtilis) on cucumber seedling growth and the photosynthetic system under different potassium levels, and the rhizosphere bacteria (PGPR) that promote plant growth were used to solubilize potassium in soil, providing theoretical support for a further investigation of the effect of biological bacteria fertilizer on cucumber growth and potassium absorption. "Xinjin No. 4" was used as the test material for the pot experiment, and a two-factor experiment was designed. The first factor was potassium application treatment, and the second factor was bacterial application treatment. The effects of different treatments on cucumber seedling growth, photosynthetic characteristics, root morphology, and chlorophyll fluorescence parameters were studied. The results showed that potassium and B. subtilis had obvious promotion effects on the cucumber seedling growth and the photosynthesis of leaves. Compared with the blank control, the B. subtilis treatment had obvious effects on the cucumber seedling height, stem diameter, leaf area, total root length, total root surface area, total root volume, branch number, crossing number, gs, WUE, Ci, and A; the dry weight of the shoot and root increased significantly (p ≤ 0.05). Potassium application could significantly promote cucumber growth, and the effect of B. subtilis and potassium application was greater than that of potassium application alone, and the best effect was when 0.2 g/pot and B. subtilis were applied. In conclusion, potassium combined with B. subtilis could enhance the photosynthesis of cucumber leaves and promote the growth of cucumber.
Collapse
Affiliation(s)
- Chun Li
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China; (C.L.); (Q.Z.)
| | - Qingpan Zeng
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China; (C.L.); (Q.Z.)
| | - Yuzhu Han
- School of Environment and Resources, Biotechnology, Dalian Minzu University, Dalian 116620, China;
| | - Xiaofu Zhou
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China; (C.L.); (Q.Z.)
| | - Hongwei Xu
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China; (C.L.); (Q.Z.)
| |
Collapse
|
11
|
Jensen GC, Janis MK, Nguyen HN, David OW, Zastrow ML. Fluorescent Protein-Based Sensors for Detecting Essential Metal Ions across the Tree of Life. ACS Sens 2024; 9:1622-1643. [PMID: 38587931 PMCID: PMC11073808 DOI: 10.1021/acssensors.3c02695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Genetically encoded fluorescent metal ion sensors are powerful tools for elucidating metal dynamics in living systems. Over the last 25 years since the first examples of genetically encoded fluorescent protein-based calcium indicators, this toolbox of probes has expanded to include other essential and non-essential metal ions. Collectively, these tools have illuminated fundamental aspects of metal homeostasis and trafficking that are crucial to fields ranging from neurobiology to human nutrition. Despite these advances, much of the application of metal ion sensors remains limited to mammalian cells and tissues and a limited number of essential metals. Applications beyond mammalian systems and in vivo applications in living organisms have primarily used genetically encoded calcium ion sensors. The aim of this Perspective is to provide, with the support of historical and recent literature, an updated and critical view of the design and use of fluorescent protein-based sensors for detecting essential metal ions in various organisms. We highlight the historical progress and achievements with calcium sensors and discuss more recent advances and opportunities for the detection of other essential metal ions. We also discuss outstanding challenges in the field and directions for future studies, including detecting a wider variety of metal ions, developing and implementing a broader spectral range of sensors for multiplexing experiments, and applying sensors to a wider range of single- and multi-species biological systems.
Collapse
Affiliation(s)
- Gary C Jensen
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Makena K Janis
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Hazel N Nguyen
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Ogonna W David
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Melissa L Zastrow
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
12
|
Fang S, Wan Z, Shen T, Liang G. Potassium attenuates drought damage by regulating sucrose metabolism and gene expression in sesame leaf. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 209:108547. [PMID: 38522132 DOI: 10.1016/j.plaphy.2024.108547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/22/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
Drought has been considered the most restrictive environmental constraint on agricultural production worldwide. Photosynthetic carbohydrate metabolism is a critical biochemical process connected with crop production and quality traits. A pot experiment was carried out under four potassium (K) rates (0, 0.75, 1.5 and 2.25 g pot-1 of K, respectively) and two water regimes to investigate the role of K in activating defense mechanisms on sucrose metabolism against drought damage in sesame. The soil moisture contents are 75 ± 5% (well-watered, WW) and 45 ± 5% (drought stress, DS) of field capacity respectively. The results showed that DS plants without K application have lower activities of ribulose-1,5-bisphosphate carboxylase (Rubisco), sucrose phosphate synthase (SPS), soluble acid invertase (SAI), and chlorophyll content and higher activity of sucrose synthase (SuSy), which resulted in declined synthesis and distribution of photosynthetic products to reproductive organs. Under drought, there was a significant positive correlation between leaf sucrose metabolizing enzymes and sucrose content. Plants subjected to drought stress increased the concentrations of soluble sugar and sucrose to produce osmo-protectants and energy sources for plants acclimating to stress but decreased starch content. Conversely, K application enhanced the carbohydrate metabolism, biomass accumulation and partitioning, thereby contributing to higher seed oil and protein yield (28.8%-43.4% and 27.5%-40.7%) as compared to K-deficiency plants. The positive impacts of K application enhanced as increasing K rates, and it was more pronounced in drought conditions. Furthermore, K application upregulated the gene expression of SiMYB57, SiMYB155, SiMYB176 and SiMYB192 while downregulated SiMYB108 and SiMYB171 in drought conditions, which may help to alleviate drought susceptibility. Conclusively, our study illustrated that the enhanced photo-assimilation and translocation process caused by the changes in sucrose metabolism activities under K application as well as regulation of MYB gene expression contributes towards drought resistance of sesame.
Collapse
Affiliation(s)
- Sheng Fang
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Zehua Wan
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Tinghai Shen
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Guoqing Liang
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
13
|
Li J, Han T, Liu K, Shen Z, Daba NA, Tadesse KA, Khan MN, Shah A, Wang Z, Zhang H. Optimizing potassium and nitrogen fertilizer strategies to mitigate greenhouse gas emissions in global agroecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170270. [PMID: 38278248 DOI: 10.1016/j.scitotenv.2024.170270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/31/2023] [Accepted: 01/16/2024] [Indexed: 01/28/2024]
Abstract
The efficient management of fertilizer application in agriculture is vital for both food security and mitigating greenhouse gas (GHG) emissions. However, as potassium fertilizer (KF) is an essential soil nutrient, its impact on soil GHG emissions has received little attention. To address this knowledge gap and identify key determinants of GHG emissions, we conducted a comprehensive meta-analysis of 205 independent experiments conducted worldwide. Our results revealed that, in comparison to sole nitrogen fertilizer (NF) application, the concurrent use of KF elevated nitrous oxide (N2O) and methane (CH4) emissions by 39.5 % and 21.1 %, respectively, while concurrently reducing carbon dioxide (CO2) emissions by 8.1 %. The ratio of nitrogen and potassium fertilizer input (NF/KF) is identified as the primary factor explaining the variation in N2O emissions, whereas the type of KF plays a crucial role in determining CH4 and CO2 emissions. We observed a significant negative correlation between the NF/KF ratio and response ratios of N2O and CH4 emissions and a positive correlation with CO2 emissions response ratios. Furthermore, our findings indicate that when the NF/KF ratio surpasses 1.97, 4.61, and 3.78, respectively, the impact of KF on reducing N2O, CH4, and CO2 emissions stabilizes. Overall, our results underscore that the global integration of KF into agricultural practices significantly influences N2O and CH4 emissions, while simultaneously reducing CO2 emissions at a large scale. These findings provide a foundational framework and practical guidance for optimizing fertilizer application in the development of GHG emission reduction models.
Collapse
Affiliation(s)
- Jiwen Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tianfu Han
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Kailou Liu
- Jiangxi Institute of Red Soil and Germplasm Resources, Key Laboratory of Acidified Soil Amelioration and Utilization, Ministry of Agriculture and Rural Affairs, P. R. Jinxian, Jiangxi 331717, China
| | - Zhe Shen
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Nano Alemu Daba
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; School of Plant Sciences, Haramaya University, P.O. Box 138, Dire Dawa, Ethiopia
| | - Kiya Adare Tadesse
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; School of Plant Sciences, Haramaya University, P.O. Box 138, Dire Dawa, Ethiopia
| | - Muhammad Numan Khan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Asad Shah
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhufeng Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huimin Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Qiyang Farmland Ecosystem National Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Qiyang, Hunan 426182, China.
| |
Collapse
|
14
|
Song Y, Liu Y, Li H, Fang Y, Lu D, Yang Z. The crucial elements for lettuce (Lactuca sativa L.) growth under DMA stress and the linkage with DMA behavior: A new application of ionome. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119124. [PMID: 37776798 DOI: 10.1016/j.jenvman.2023.119124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/12/2023] [Accepted: 09/17/2023] [Indexed: 10/02/2023]
Abstract
Dimethylarsinic acid (DMA) is one of the common arsenic (As) species present in soil and is more toxic to plants than others. Identifying the crucial elements for plant growth under DMA stress is essential to enhance plant tolerance to DMA. Herein, we provided for the first time an ionome-based approach to address this issue. The phenotype, As species and concentrations of 11 essential elements in lettuce tissues were monitored under exposures of 0.1, 0.5, 1, 2, 5 mg L-1 DMA in hydroponic culture for 32 days. Lettuces remained normal (no significant difference in phenotype from the control) under 0.1-2 mg L-1 DMA stress, and were inhibited with fresh weights of leaf and root under 5 mg L-1 DMA stress. Integrating the difference in ionome profiles between the two growth states (normal and inhibited) and the responses of the individual element, Mg and S were clarified as the most possible candidates for the crucial elements for lettuce growth under DMA stress. Under 5 mg L-1 DMA stress, the accumulation of Mg and S declined, yet their BCF values were significantly increased, which was consistent with the change in BCF of DMA. Based on the physiological functions of Mg and S and the toxicity of DMA, it could be inferred that the enhanced transfer of Mg and S to leaves should be induced by the potential damage caused by the increased DMA accumulation in leaves, and would result in a shortage of both elements in roots as well as the growth inhibition.
Collapse
Affiliation(s)
- Yang Song
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, China.
| | - Yang Liu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, China
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, China.
| | - Ying Fang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, China
| | - Denglong Lu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, China
| | - Zhaoguang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, China.
| |
Collapse
|
15
|
Yousef AF, Ali AM, Azab MA, Lamlom SF, Al-Sayed HM. Improved plant yield of potato through exogenously applied potassium fertilizer sources and biofertilizer. AMB Express 2023; 13:124. [PMID: 37938361 PMCID: PMC10632356 DOI: 10.1186/s13568-023-01627-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/06/2023] [Indexed: 11/09/2023] Open
Abstract
Excessive usage of chemical fertilizers has detrimental effects on the environment and the safety of food. Conversely, utilizing organic fertilizers such as sage offers several advantages, including cost-effectiveness, soil enhancement, and promotion of root development. A two-year field experiment was conducted to investigate the impact of different potassium fertilizer sources and biofertilizers (specifically Bacillus cereus (MBc)) on potato plants. The experiment employed a split-plot design with three replicates, where the main plot factor was MBc (with and without), and the subplot factor was the sources of potassium fertilizer (control without K fertilizer, 100% Feldspar (FD), 100% Filter cake (FC), 75% FD + 25% FC, 25% FD + 75% FC, and 50% FD + 50% FC). The purpose was to examine the growth response of potato plants to these treatments. The results indicated that all treatments increased plant height, stem count, and tuber dry matter compared to the control. Furthermore, all treatments exhibited a higher uptake of macronutrients (N, P, and K) compared to the control. Notably, the plants treated with 100FC combined with MBc showed a significant 104.74% increase in total tuber weight compared to the control treatment. Additionally, the addition of 100FC with MBc significantly enhanced the availability of N, P, and K by 73.13%, 110.33%, and 51.88% respectively, compared to the control treatment. Apart from the biofertilizers, the individual application of FC and its combination with FD also demonstrated positive effects on soil fertility, potato growth, and yield.
Collapse
Affiliation(s)
- Ahmed Fathy Yousef
- Department of Horticulture, College of Agriculture, University of Al-Azhar (branch Assiut), Assiut, 71524, Egypt.
| | - Ahmed Mahmoud Ali
- Department of Soils and Water Sciences, Faculty of Agriculture, Al-Azhar University (Assiut Branch), Assiut, 71524, Egypt
| | - Mohamed AbdAllah Azab
- Horticulture Department, Faculty of Agriculture (Assiut branch), Vegetable Sciences, Al-Azhar University, Assiut, 71524, Egypt
| | - Sobhi F Lamlom
- Plant Production Department, Faculty of Agriculture Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| | - Hassan Mohamed Al-Sayed
- Department of Soils and Water Sciences, Faculty of Agriculture, Al-Azhar University (Assiut Branch), Assiut, 71524, Egypt
| |
Collapse
|
16
|
Van Laere J, Merckx R, Hood-Nowotny R, Dercon G. Water deficit and potassium affect carbon isotope composition in cassava bulk leaf material and extracted carbohydrates. FRONTIERS IN PLANT SCIENCE 2023; 14:1222558. [PMID: 37900736 PMCID: PMC10611503 DOI: 10.3389/fpls.2023.1222558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 09/04/2023] [Indexed: 10/31/2023]
Abstract
Cassava (Manihot esculenta Crantz) is an important root crop, which despite its drought tolerance suffers considerable yield losses under water deficit. One strategy to increase crop yields under water deficit is improving the crop's transpiration efficiency, which could be achieved by variety selection and potassium application. We assessed carbon isotope composition in bulk leaf material and extracted carbohydrates (soluble sugar, starch, and cellulose) of selected leaves one month after inducing water deficit to estimate transpiration efficiency and storage root biomass under varying conditions in a greenhouse experiment. A local and improved variety were grown in sand, supplied with nutrient solution with two potassium levels (1.44 vs. 0.04 mM K+) and were subjected to water deficit five months after planting. Potassium application and selection of the improved variety both increased transpiration efficiency of the roots with 58% and 85% respectively. Only in the improved variety were 13C ratios affected by potassium application (up to - 1.8‰ in δ13C of soluble sugar) and water deficit (up to + 0.6‰ in δ13C of starch and soluble sugar). These data revealed a shift in substrate away from transitory starch for cellulose synthesis in young leaves of the improved variety under potassium deficit. Bulk δ13C of leaves that had fully developed prior to water deficit were the best proxies for storage root biomass (r = - 0.62, r = - 0.70) and transpiration efficiency (r = - 0.68, r = - 0.58) for the local and improved variety respectively, making laborious extractions redundant. Results obtained from the youngest fully developed leaf, commonly used as a diagnostic leaf, were complicated by remobilized assimilates in the improved variety, making them less suitable for carbon isotope analysis. This study highlights the potential of carbon isotope composition to assess transpiration efficiency and yield, depending on the chosen sampling strategy as well as to unravel carbon allocation processes.
Collapse
Affiliation(s)
- Jonas Van Laere
- Soil and Water Management & Crop Nutrition Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
- Division of Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, Heverlee, Belgium
- Institute of Soil Research, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Roel Merckx
- Division of Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, Heverlee, Belgium
| | - Rebecca Hood-Nowotny
- Institute of Soil Research, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Gerd Dercon
- Soil and Water Management & Crop Nutrition Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| |
Collapse
|
17
|
Wu X, Zhao Z, Zhao Z, Zhang Y, Li M, Yu Q. Analysis of the Potassium-Solubilizing Priestia megaterium Strain NK851 and Its Potassium Feldspar-Binding Proteins. Int J Mol Sci 2023; 24:14226. [PMID: 37762528 PMCID: PMC10531590 DOI: 10.3390/ijms241814226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Potassium-solubilizing bacteria are an important microbial group that play a critical role in releasing mineral potassium from potassium-containing minerals, e.g., potassium feldspar. Their application may reduce eutrophication caused by overused potassium fertilizers and facilitate plants to utilize environmental potassium. In this study, a high-efficiency potassium-solubilizing bacterium, named NK851, was isolated from the Astragalus sinicus rhizosphere soil. This bacterium can grow in the medium with potassium feldspar as the sole potassium source, releasing 157 mg/L and 222 mg/L potassium after 3 days and 5 days of incubation, respectively. 16S rDNA sequencing and cluster analysis showed that this strain belongs to Priestia megaterium. Genome sequencing further revealed that this strain has a genome length of 5,305,142 bp, encoding 5473 genes. Among them, abundant genes are related to potassium decomposition and utilization, e.g., the genes involved in adherence to mineral potassium, potassium release, and intracellular trafficking. Moreover, the strong potassium-releasing capacity of NK851 is not attributed to the acidic pH but is attributed to the extracellular potassium feldspar-binding proteins, such as the elongation factor TU and the enolase that contains potassium feldspar-binding cavities. This study provides new information for exploration of the bacterium-mediated potassium solubilization mechanisms.
Collapse
Affiliation(s)
- Xinyue Wu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (X.W.); (Z.Z.); (Z.Z.); (M.L.)
| | - Zijian Zhao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (X.W.); (Z.Z.); (Z.Z.); (M.L.)
| | - Zirun Zhao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (X.W.); (Z.Z.); (Z.Z.); (M.L.)
| | - Youjun Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China;
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (X.W.); (Z.Z.); (Z.Z.); (M.L.)
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (X.W.); (Z.Z.); (Z.Z.); (M.L.)
| |
Collapse
|
18
|
Hu W, Gu H, Wang K, Lu Z, Li X, Cong R, Ren T, Lu J. Potassium deficiency stress reduces Rubisco activity in Brassica napus leaves by subcellular acidification decreasing photosynthetic rate. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107912. [PMID: 37523826 DOI: 10.1016/j.plaphy.2023.107912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
Under potassium (K) deficiency photosynthetic carboxylation capacities are limited, affecting the photosynthetic rate of plants. However, it is not clear how ionic K within plants regulates carboxylation capacities. Therefore, the photosynthetic rate (A), ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39) characteristics, and cytoplasmic pH of Brassica napus leaves with different K levels were measured to evaluate the effects of K on the carboxylation capacity by regulating subcellular pH. The results showed that biochemical limitation dominates the decrease of A. There was a close positive correlation between A and the Rubisco maximum carboxylation rate (Vcmax), which was closer than that between A and the maximum electron transport rate. The thresholds of leaf K concentrations causing decreased A, Vcmax, and Rubisco initial activity were consistent and close to 1.0% in the hydroponic experiments and 1.2% in the field experiments. K deficiency resulted in decreased Rubisco activity, which reduced carboxylation capacity. Moreover, the Rubisco initial activities in vitro with sufficient K supply or under K deficiency all were significantly reduced when the pH was decreased. The cytoplasmic pH was kept neutral at 7.5 under sufficient K supply, and decreased as the leaf K concentration declined below the threshold. Acidified cytoplasmic environment caused by K deficiency could not maintain the pH balance of the chloroplasts, leading to decreased Rubisco initial activity and photosynthetic capacity.
Collapse
Affiliation(s)
- Wenshi Hu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Hehe Gu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kunjiao Wang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhifeng Lu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaokun Li
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Rihuan Cong
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tao Ren
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jianwei Lu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
19
|
Hu LL, Zheng LW, Zhu XL, Ma SJ, Zhang KY, Hua YP, Huang JY. Genome-wide identification of Brassicaceae histone modification genes and their responses to abiotic stresses in allotetraploid rapeseed. BMC PLANT BIOLOGY 2023; 23:248. [PMID: 37170202 PMCID: PMC10173674 DOI: 10.1186/s12870-023-04256-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 04/27/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Histone modification is an important epigenetic regulatory mechanism and essential for stress adaptation in plants. However, systematic analysis of histone modification genes (HMs) in Brassicaceae species is lacking, and their roles in response to abiotic stress have not yet been identified. RESULTS In this study, we identified 102 AtHMs, 280 BnaHMs, 251 BcHMs, 251 BjHMs, 144 BnHMs, 155 BoHMs, 137 BrHMs, 122 CrHMs, and 356 CsHMs in nine Brassicaceae species, respectively. Their chromosomal locations, protein/gene structures, phylogenetic trees, and syntenies were determined. Specific domains were identified in several Brassicaceae HMs, indicating an association with diverse functions. Syntenic analysis showed that the expansion of Brassicaceae HMs may be due to segmental and whole-genome duplications. Nine key BnaHMs in allotetraploid rapeseed may be responsible for ammonium, salt, boron, cadmium, nitrate, and potassium stress based on co-expression network analysis. According to weighted gene co-expression network analysis (WGCNA), 12 BnaHMs were associated with stress adaptation. Among the above genes, BnaPRMT11 simultaneously responded to four different stresses based on differential expression analysis, while BnaSDG46, BnaHDT10, and BnaHDA1 participated in five stresses. BnaSDG46 was also involved in four different stresses based on WGCNA, while BnaSDG10 and BnaJMJ58 were differentially expressed in response to six different stresses. In summary, six candidate genes for stress resistance (BnaPRMT11, BnaSDG46, BnaSDG10, BnaJMJ58, BnaHDT10, and BnaHDA1) were identified. CONCLUSIONS Taken together, these findings help clarify the biological roles of Brassicaceae HMs. The identified candidate genes provide an important reference for the potential development of stress-tolerant oilseed plants.
Collapse
Affiliation(s)
- Lin-Lin Hu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Zhengzhou Key Laboratory of Quality Improvement and Efficient Nutrient Use for Main Economic Crops, Henan, China
| | - Li-Wei Zheng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Zhengzhou Key Laboratory of Quality Improvement and Efficient Nutrient Use for Main Economic Crops, Henan, China
| | - Xin-Lei Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Sheng-Jie Ma
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Zhengzhou Key Laboratory of Quality Improvement and Efficient Nutrient Use for Main Economic Crops, Henan, China
| | - Kai-Yan Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Zhengzhou Key Laboratory of Quality Improvement and Efficient Nutrient Use for Main Economic Crops, Henan, China
| | - Ying-Peng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Zhengzhou Key Laboratory of Quality Improvement and Efficient Nutrient Use for Main Economic Crops, Henan, China
| | - Jin-Yong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Zhengzhou Key Laboratory of Quality Improvement and Efficient Nutrient Use for Main Economic Crops, Henan, China.
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
20
|
Yang H, Lu L, Chen Y, Ye J. Transcriptomic Analysis Reveals the Response of the Bacterium Priestia Aryabhattai SK1-7 to Interactions and Dissolution with Potassium Feldspar. Appl Environ Microbiol 2023; 89:e0203422. [PMID: 37154709 DOI: 10.1128/aem.02034-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Potassium feldspar (K2O·Al2O3·6SiO2) is considered to be the most important source of potash fertilizer. The use of microorganisms to dissolve potassium feldspar is a low-cost and environmentally friendly method. Priestia aryabhattai SK1-7 is a strain with a strong ability to dissolve potassium feldspar; it showed a faster pH drop and produced more acid in the medium with potassium feldspar as the insoluble potassium source than in the medium with K2HPO4 as the soluble potassium source. We speculated whether the cause of acid production was related to one or more stresses, such as mineral-induced generation of reactive oxygen species (ROS), the presence of aluminum in potassium feldspar, and cell membrane damage due to friction between SK1-7 and potassium feldspar, and analyzed it by transcriptome. The results revealed that the expression of the genes related to pyruvate metabolism, the two-component system, DNA repair, and oxidative stress pathways in strain SK1-7 was significantly upregulated in potassium feldspar medium. The subsequent validation experiments revealed that ROS were the stress faced by strain SK1-7 when interacting with potassium feldspar and led to a decrease in the total fatty acid content of SK1-7. In the face of ROS stress, strain SK1-7 upregulated the expression of the maeA-1 gene, allowing malic enzyme (ME2) to produce more pyruvate to be secreted outside the cell using malate as a substrate. Pyruvate is both a scavenger of external ROS and a gas pedal of dissolved potassium feldspar. IMPORTANCE Mineral-microbe interactions play important roles in the biogeochemical cycling of elements. Manipulating mineral-microbe interactions and optimizing the consequences of such interactions can be used to benefit society. It is necessary to explore the black hole of the mechanism of interaction between the two. In this study, it is revealed that P. aryabhattai SK1-7 faces mineral-induced ROS stress by upregulating a series of antioxidant genes as a passive defense, while overexpression of malic enzyme (ME2) secretes pyruvate to scavenge ROS as well as to increase feldspar dissolution, releasing K, Al, and Si into the medium. Our research provides a theoretical basis for improving the ability of microorganisms to weather minerals through genetic manipulation in the future.
Collapse
Affiliation(s)
- Hui Yang
- College of Forestry and Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Lanxiang Lu
- College of Forestry and Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Yifan Chen
- College of Forestry and Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Jianren Ye
- College of Forestry and Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu, China
| |
Collapse
|
21
|
Schmollinger S, Chen S, Merchant SS. Quantitative elemental imaging in eukaryotic algae. Metallomics 2023; 15:mfad025. [PMID: 37186252 PMCID: PMC10209819 DOI: 10.1093/mtomcs/mfad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 03/03/2023] [Indexed: 05/17/2023]
Abstract
All organisms, fundamentally, are made from the same raw material, namely the elements of the periodic table. Biochemical diversity is achieved by how these elements are utilized, for what purpose, and in which physical location. Determining elemental distributions, especially those of trace elements that facilitate metabolism as cofactors in the active centers of essential enzymes, can determine the state of metabolism, the nutritional status, or the developmental stage of an organism. Photosynthetic eukaryotes, especially algae, are excellent subjects for quantitative analysis of elemental distribution. These microbes utilize unique metabolic pathways that require various trace nutrients at their core to enable their operation. Photosynthetic microbes also have important environmental roles as primary producers in habitats with limited nutrient supplies or toxin contaminations. Accordingly, photosynthetic eukaryotes are of great interest for biotechnological exploitation, carbon sequestration, and bioremediation, with many of the applications involving various trace elements and consequently affecting their quota and intracellular distribution. A number of diverse applications were developed for elemental imaging, allowing subcellular resolution, with X-ray fluorescence microscopy (XFM, XRF) being at the forefront, enabling quantitative descriptions of intact cells in a non-destructive method. This Tutorial Review summarizes the workflow of a quantitative, single-cell elemental distribution analysis of a eukaryotic alga using XFM.
Collapse
Affiliation(s)
- Stefan Schmollinger
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Departments of Molecular and Cell Biology and Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Si Chen
- X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Sabeeha S Merchant
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Departments of Molecular and Cell Biology and Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
22
|
Vivodová Z, Hačkuličová D, Bačovčinová M, Šípošová K, Labancová E, Kollárová K. Galactoglucomannan oligosaccharides alleviate cadmium toxicity by improving physiological processes in maize. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114777. [PMID: 36931090 DOI: 10.1016/j.ecoenv.2023.114777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
Phosphate fertilisers and past mining activity are significant source of cadmium (Cd) pollution; thus, the concentration of Cd in agricultural soils has been substantially rising. Various substances have been tested for their potential to alleviate the toxicity of Cd and stimulate the accumulation of Cd in plant organs. This study brought new insight of the impact of galactoglucomannan oligosaccharides (GGMOs) on the maize plants grown under/in Cd stress. The application of GGMOs reduced concentration of Cd in the maize leaves and thus GGMOs increased their growth (by 24%), concentration of photosynthetic pigments (up to 39.4%), effective quantum yield of photosystem II (up to 29.6%), and net photosynthetic rate (up to 19.6%). The concentrations of stress markers increased in the Cd and Cd + GGMOs treatment; however, significantly lower concentration was detected in the Cd + GGMOs treatment (malondialdehyde by 21.7%, hydrogen peroxide by 13%). The concentration of auxin increased almost by two-fold in the Cd + GGMOs treatment compared to the Cd treatment. The recovered auxin level and enhanced nutrient uptake are proposed mechanisms of GGMOs' action during stress. GGMOs are molecules with biostimulant potential that could support vitality of maize plants in Cd stress.
Collapse
Affiliation(s)
- Zuzana Vivodová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Diana Hačkuličová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Michaela Bačovčinová
- Department of Botany, Institute of Biology and Ecology, Šafárik University, Mánesova 23, 040 01 Košice, Slovakia
| | - Kristína Šípošová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Eva Labancová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Karin Kollárová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia.
| |
Collapse
|
23
|
Abstract
Living systems are built from a small subset of the atomic elements, including the bulk macronutrients (C,H,N,O,P,S) and ions (Mg,K,Na,Ca) together with a small but variable set of trace elements (micronutrients). Here, we provide a global survey of how chemical elements contribute to life. We define five classes of elements: those that are (i) essential for all life, (ii) essential for many organisms in all three domains of life, (iii) essential or beneficial for many organisms in at least one domain, (iv) beneficial to at least some species, and (v) of no known beneficial use. The ability of cells to sustain life when individual elements are absent or limiting relies on complex physiological and evolutionary mechanisms (elemental economy). This survey of elemental use across the tree of life is encapsulated in a web-based, interactive periodic table that summarizes the roles chemical elements in biology and highlights corresponding mechanisms of elemental economy.
Collapse
Affiliation(s)
- Kaleigh A Remick
- Department of Microbiology, Cornell University, New York, NY, United States
| | - John D Helmann
- Department of Microbiology, Cornell University, New York, NY, United States.
| |
Collapse
|
24
|
Cotrim GDS, Silva DMD, Graça JPD, Oliveira Junior AD, Castro CD, Zocolo GJ, Lannes LS, Hoffmann-Campo CB. Glycine max (L.) Merr. (Soybean) metabolome responses to potassium availability. PHYTOCHEMISTRY 2023; 205:113472. [PMID: 36270412 DOI: 10.1016/j.phytochem.2022.113472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Potassium (K+) has vital physiological and metabolic functions in plants and its availability can impact tolerance to biotic and abiotic stress conditions. Limited studies have investigated the effect of K+ fertilization on soybean metabolism. Using integrated omics, ionomics and metabolomics, we investigated the field-grown Glycine max (soybean) response, after four K+ soil fertilization rates. Soybean leaf and pod tissue (valves and immature seeds) extracts were analysed by ultra-performance liquid chromatography coupled to high-resolution mass spectrometry (UPLC-HRMS) and inductively coupled plasma optical emission spectroscopy (ICP-OES). Multivariate analyses (PCA-X&Y e O2PLS-DA) showed that 51 compounds of 19 metabolic pathways were regulated in response to K+ availability. Under very low potassium availability, soybean plants accumulated of Ca2+, Mg2+, Fe2+, Cu2+, and B in young and old leaves. Potassium fertilization upregulated carbohydrate, galactolipid, and flavonol glycoside biosynthesis in leaves and pod valves, while K+ deficient pod tissues showed increasing amino acids, oligosaccharides, benzoic acid derivatives, and isoflavones contents. Severely K+ deficient soils elicited isoflavones, coumestans, pterocarpans, and soyasaponins in trifoliate leaves, likely associated to oxidative and photodynamic stress status. Additionally, results demonstrate that L-asparagine content is higher in potassium deficient tissues, suggesting this compound as a biomarker of K+ deficiency in soybean plants. These results demonstrate that potassium soil fertilization did not linearly contribute to changes in specialised constitutive metabolites of soybean. Altogether, this work provides a reference for improving the understanding of soybean metabolism as dependent on K+ availability.
Collapse
Affiliation(s)
- Gustavo Dos Santos Cotrim
- São Paulo State University - UNESP, 15385-000, Ilha Solteira, SP, Brazil; Brazilian Agricultural Research Corporation - Embrapa Soybean, 86001-970, Londrina, PR, Brazil.
| | - Deivid Metzker da Silva
- Santa Catarina Federal University - UFSC, 88040-900, Florianópolis, SC, Brazil; Brazilian Agricultural Research Corporation - Embrapa Soybean, 86001-970, Londrina, PR, Brazil
| | - José Perez da Graça
- Maringá State University - UEM, 87020-900, Maringá, PR, Brazil; Brazilian Agricultural Research Corporation - Embrapa Soybean, 86001-970, Londrina, PR, Brazil
| | | | - Cesar de Castro
- Brazilian Agricultural Research Corporation - Embrapa Soybean, 86001-970, Londrina, PR, Brazil
| | - Guilherme Julião Zocolo
- Brazilian Agricultural Research Corporation - Embrapa Agroindústria Tropical, 60511-110, Fortaleza, CE, Brazil
| | | | | |
Collapse
|
25
|
Yan J, Ye X, Song Y, Ren T, Wang C, Li X, Cong R, Lu Z, Lu J. Sufficient potassium improves inorganic phosphate-limited photosynthesis in Brassica napus by enhancing metabolic phosphorus fractions and Rubisco activity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:416-429. [PMID: 36479950 DOI: 10.1111/tpj.16057] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/22/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Crop photosynthesis (A) and productivity are often limited by a combination of nutrient stresses, such that changes in the availability of one nutrient may affect the availability of another nutrient, in turn influencing A. In this study, we examined the synergistic effects of phosphorus (P) and potassium (K) on leaf A in a nutrient amendment experiment, in which P and K were added individually or in combination to Brassica napus grown under P and K co-limitation. The data revealed that the addition of P gradually removed the dominant limiting factor (i.e. the limited availability of P) and improved leaf A. Strikingly, the addition of K synergistically improved the overall uptake of P, mainly by boosting plant growth, and compensated for the physiological demand for P by prioritizing investment in metabolic pools of P (P-containing metabolites and inorganic phosphate, Pi). The enlarged pool of metabolically active P was partially associated with the upregulation of Pi regeneration through release from triose phosphates rather than replacement of P-containing lipids. This process mitigated P restrictions on A by maintaining the ATP/NADPH and NADPH/NADP+ ratios and increasing the content and activity of Rubisco. Our findings demonstrate that sufficient K increased Pi-limited A by enhancing metabolic P fractions and Rubisco activity. Thus, ionic synergism may be exploited to mitigate nutrient-limiting factors to improve crop productivity.
Collapse
Affiliation(s)
- Jinyao Yan
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Xiaolei Ye
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Yi Song
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Tao Ren
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Chongming Wang
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Xiaokun Li
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Rihuan Cong
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Zhifeng Lu
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Jianwei Lu
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| |
Collapse
|
26
|
Khan MN, Singh VP, Corpas FJ, Rodríguez Rosales MP. Closing gaps and opening new avenues for potassium research in plant biology. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 192:141-142. [PMID: 36240600 DOI: 10.1016/j.plaphy.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Affiliation(s)
- M Nasir Khan
- Department of Biology, College of Haql, University of Tabuk, Tabuk, 71491, Saudi Arabia.
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
| | - Francisco J Corpas
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/Professor Albareda 1, E-18008, Granada, Spain
| | - María Pilar Rodríguez Rosales
- Departamento de Bioquímica, Biología Celulary Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Granada, Spain
| |
Collapse
|
27
|
Mostofa MG, Rahman MM, Ghosh TK, Kabir AH, Abdelrahman M, Rahman Khan MA, Mochida K, Tran LSP. Potassium in plant physiological adaptation to abiotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 186:279-289. [PMID: 35932652 DOI: 10.1016/j.plaphy.2022.07.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 06/30/2022] [Accepted: 07/09/2022] [Indexed: 05/02/2023]
Abstract
Potassium (K) is an integral part of plant nutrition, playing essential roles in plant growth and development. Despite its abundance in soils, the limitedly available form of K ion (K+) for plant uptake is a critical factor for agricultural production. Plants have evolved complex transport systems to maintain appropriate K+ levels in tissues under changing environmental conditions. Adequate stimulation and coordinated actions of multiple K+-channels and K+-transporters are required for nutrient homeostasis, reproductive growth, cellular signaling and stress adaptation responses in plants. Various contemporary studies revealed that K+-homeostasis plays a substantial role in plant responses and tolerance to abiotic stresses. The beneficial effects of K+ in plant responses to abiotic stresses include its roles in physiological and biochemical mechanisms involved in photosynthesis, osmoprotection, stomatal regulation, water-nutrient absorption, nutrient translocation and enzyme activation. Over the last decade, we have seen considerable breakthroughs in K research, owing to the advances in omics technologies. In this aspect, omics investigations (e.g., transcriptomics, metabolomics, and proteomics) in systems biology manner have broadened our understanding of how K+ signals are perceived, conveyed, and integrated for improving plant physiological resilience to abiotic stresses. Here, we update on how K+-uptake and K+-distribution are regulated under various types of abiotic stress. We discuss the effects of K+ on several physiological functions and the interaction of K+ with other nutrients to improve plant potential against abiotic stress-induced adverse consequences. Understanding of how K+ orchestrates physiological mechanisms and contributes to abiotic stress tolerance in plants is essential for practicing sustainable agriculture amidst the climate crisis in global agriculture.
Collapse
Affiliation(s)
- Mohammad Golam Mostofa
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA.
| | - Md Mezanur Rahman
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Totan Kumar Ghosh
- Department of Crop Botany, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | | | | | - Md Arifur Rahman Khan
- Department of Agronomy, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Keiichi Mochida
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan; Microalgae Production Control Technology Laboratory, RIKEN Baton Zone Program, Yokohama 230-0045, Japan; Kihara Institute for Biological Research, Yokohama City University, Yokohama 230-0045, Japan; School of Information and Data Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA; Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam.
| |
Collapse
|
28
|
Zhai J, Luo B, Li A, Dong H, Jin X, Wang X. Unlocking All-Solid Ion Selective Electrodes: Prospects in Crop Detection. SENSORS (BASEL, SWITZERLAND) 2022; 22:5541. [PMID: 35898054 PMCID: PMC9331676 DOI: 10.3390/s22155541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
This paper reviews the development of all-solid-state ion-selective electrodes (ASSISEs) for agricultural crop detection. Both nutrient ions and heavy metal ions inside and outside the plant have a significant influence on crop growth. This review begins with the detection principle of ASSISEs. The second section introduces the key characteristics of ASSISE and demonstrates its feasibility in crop detection based on previous research. The third section considers the development of ASSISEs in the detection of corps internally and externally (e.g., crop nutrition, heavy metal pollution, soil salinization, N enrichment, and sensor miniaturization, etc.) and discusses the interference of the test environment. The suggestions and conclusions discussed in this paper may provide the foundation for additional research into ion detection for crops.
Collapse
Affiliation(s)
- Jiawei Zhai
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (B.L.); (A.L.); (H.D.); (X.J.)
- College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China
| | - Bin Luo
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (B.L.); (A.L.); (H.D.); (X.J.)
| | - Aixue Li
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (B.L.); (A.L.); (H.D.); (X.J.)
| | - Hongtu Dong
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (B.L.); (A.L.); (H.D.); (X.J.)
| | - Xiaotong Jin
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (B.L.); (A.L.); (H.D.); (X.J.)
| | - Xiaodong Wang
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (B.L.); (A.L.); (H.D.); (X.J.)
| |
Collapse
|
29
|
Ankit A, Kamali S, Singh A. Genomic & structural diversity and functional role of potassium (K +) transport proteins in plants. Int J Biol Macromol 2022; 208:844-857. [PMID: 35367275 DOI: 10.1016/j.ijbiomac.2022.03.179] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/11/2022] [Accepted: 03/25/2022] [Indexed: 01/03/2023]
Abstract
Potassium (K+) is an essential macronutrient for plant growth and productivity. It is the most abundant cation in plants and is involved in various cellular processes. Variable K+ availability is sensed by plant roots, consequently K+ transport proteins are activated to optimize K+ uptake. In addition to K+ uptake and translocation these proteins are involved in other important physiological processes like transmembrane voltage regulation, polar auxin transport, maintenance of Na+/K+ ratio and stomata movement during abiotic stress responses. K+ transport proteins display tremendous genomic and structural diversity in plants. Their key structural features, such as transmembrane domains, N-terminal domains, C-terminal domains and loops determine their ability of K+ uptake and transport and thus, provide functional diversity. Most K+ transporters are regulated at transcriptional and post-translational levels. Genetic manipulation of key K+ transporters/channels could be a prominent strategy for improving K+ utilization efficiency (KUE) in plants. This review discusses the genomic and structural diversity of various K+ transport proteins in plants. Also, an update on the function of K+ transport proteins and their regulatory mechanism in response to variable K+ availability, in improving KUE, biotic and abiotic stresses is provided.
Collapse
Affiliation(s)
- Ankit Ankit
- National Institute of Plant Genome Research, New Delhi 110067, India
| | | | - Amarjeet Singh
- National Institute of Plant Genome Research, New Delhi 110067, India.
| |
Collapse
|
30
|
Ruiz-Castilla FJ, Ruiz Pérez FS, Ramos-Moreno L, Ramos J. Candida albicans Potassium Transporters. Int J Mol Sci 2022; 23:ijms23094884. [PMID: 35563275 PMCID: PMC9105532 DOI: 10.3390/ijms23094884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 12/10/2022] Open
Abstract
Potassium is basic for life. All living organisms require high amounts of intracellular potassium, which fulfils multiple functions. To reach efficient potassium homeostasis, eukaryotic cells have developed a complex and tightly regulated system of transporters present both in the plasma membrane and in the membranes of internal organelles that allow correct intracellular potassium content and distribution. We review the information available on the pathogenic yeast Candida albicans. While some of the plasma membrane potassium transporters are relatively well known and experimental data about their nature, function or regulation have been published, in the case of most of the transporters present in intracellular membranes, their existence and even function have just been deduced because of their homology with those present in other yeasts, such as Saccharomyces cerevisiae. Finally, we analyse the possible links between pathogenicity and potassium homeostasis. We comment on the possibility of using some of these transporters as tentative targets in the search for new antifungal drugs.
Collapse
|
31
|
Monder H, Maillard M, Chérel I, Zimmermann SD, Paris N, Cuéllar T, Gaillard I. Adjustment of K + Fluxes and Grapevine Defense in the Face of Climate Change. Int J Mol Sci 2021; 22:10398. [PMID: 34638737 PMCID: PMC8508874 DOI: 10.3390/ijms221910398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 12/18/2022] Open
Abstract
Grapevine is one of the most economically important fruit crops due to the high value of its fruit and its importance in winemaking. The current decrease in grape berry quality and production can be seen as the consequence of various abiotic constraints imposed by climate changes. Specifically, produced wines have become too sweet, with a stronger impression of alcohol and fewer aromatic qualities. Potassium is known to play a major role in grapevine growth, as well as grape composition and wine quality. Importantly, potassium ions (K+) are involved in the initiation and maintenance of the berry loading process during ripening. Moreover, K+ has also been implicated in various defense mechanisms against abiotic stress. The first part of this review discusses the main negative consequences of the current climate, how they disturb the quality of grape berries at harvest and thus ultimately compromise the potential to obtain a great wine. In the second part, the essential electrical and osmotic functions of K+, which are intimately dependent on K+ transport systems, membrane energization, and cell K+ homeostasis, are presented. This knowledge will help to select crops that are better adapted to adverse environmental conditions.
Collapse
Affiliation(s)
- Houssein Monder
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, F-34060 Montpellier, France; (H.M.); (M.M.); (I.C.); (S.D.Z.); (N.P.)
| | - Morgan Maillard
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, F-34060 Montpellier, France; (H.M.); (M.M.); (I.C.); (S.D.Z.); (N.P.)
| | - Isabelle Chérel
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, F-34060 Montpellier, France; (H.M.); (M.M.); (I.C.); (S.D.Z.); (N.P.)
| | - Sabine Dagmar Zimmermann
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, F-34060 Montpellier, France; (H.M.); (M.M.); (I.C.); (S.D.Z.); (N.P.)
| | - Nadine Paris
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, F-34060 Montpellier, France; (H.M.); (M.M.); (I.C.); (S.D.Z.); (N.P.)
| | - Teresa Cuéllar
- CIRAD, UMR AGAP, Univ Montpellier, INRAE, Institut Agro, F-34398 Montpellier, France;
| | - Isabelle Gaillard
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, F-34060 Montpellier, France; (H.M.); (M.M.); (I.C.); (S.D.Z.); (N.P.)
| |
Collapse
|
32
|
Dar JS, Cheema MA, Rehmani MIA, Khuhro S, Rajput S, Virk AL, Hussain S, Bashir MA, Alghanem SM, Al-Zuaibr FM, Ansari MJ, Hessini K. Potassium fertilization improves growth, yield and seed quality of sunflower (Helianthus annuus L.) under drought stress at different growth stages. PLoS One 2021; 16:e0256075. [PMID: 34543316 PMCID: PMC8452053 DOI: 10.1371/journal.pone.0256075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/31/2021] [Indexed: 11/18/2022] Open
Abstract
Water scarcity is a major concern for sunflower production in the semi-arid and arid regions of the world. Potassium (K) application has been found effective to alleviate the influence of drought stress; however, the impact of drought stress on seed quality of sunflower has not been reported frequently. Therefore, a field experiment was performed to determine the optimum K requirement for mitigating the adverse effects of water stress and improving growth and seed quality of spring-planted sunflower. Sunflower plants were exposed to water stress at different growth stages, i.e., Io = no stress (normal irrigation), I1 = pre-anthesisi stress (irrigation skipped at pre-anthesis stage), I2 = anthesis stress (irrigation skipped at anthesis stage) and I3 = post-anthesis stress (irrigation skipped at post-anthesis stage). Potassium was applied at four different rates, i.e., Ko = 0, K1 = 50, K2 = 100 and K3 = 150 kg ha-1. The results revealed that water stress at pre- and post-anthesis stages significantly reduced plant height, head diameter, number of achenes, oleic acid contents, and phosphorus (P) uptake. However, pre-anthesis stress improved linoleic acid contents. Treatment IoK3 (stress-free with 150 kg ha-1 K) was optimum combination for 1000-achene weight, biological and achene yields, oil contents, protein contents, and N and P uptake. Results indicated that a higher amount of K and irrigation resulted in higher yield, whereas yield and yield components decreased with early-stage water stress. Nevertheless, potassium application lowered the impacts of waters stress compared to no application. Keeping in view these results, it is recommended that sunflower must be supplied 150 kg ha-1 K in arid and semi-arid regions to achieve higher yield and better seed quality.
Collapse
Affiliation(s)
| | - Mumtaz Akhtar Cheema
- School of Science and the Environment, Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, Canada
| | | | | | | | - Ahmad Latif Virk
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Sajid Hussain
- Institute of Hydrobiology, Chinese Academy of Science, Wuhan, China
| | - Muhammad Amjad Bashir
- Department of Plant Protection Faculty of Agricultural Sciences, Ghazi University, Dera Ghazi Khan Punjab, Pakistan
| | - Suliman M. Alghanem
- Department of Biology Faculty of Science, Tabuk University, Tabuk, Saudia Arabia
| | | | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), Moradabad, India
| | - Kamel Hessini
- Department of Biology, College of Sciences, Taif University, Taif, Saudi Arabia
| |
Collapse
|