1
|
Nehzomi ZS, Shirani K. Investigating the role of food pollutants in autism spectrum disorder: a comprehensive analysis of heavy metals, pesticides, and mycotoxins. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2511-2533. [PMID: 39466439 DOI: 10.1007/s00210-024-03551-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024]
Abstract
Food pollutants, including heavy metals, pesticides, and mycotoxins, have been proposed as potential risk factors for autism spectrum disorder (ASD) during pregnancy and early childhood. This paper examines the impact of food pollutants on ASD risk. A systematic search through PubMed, Google Scholar, and Sciverse yielded studies from 1990 to present. Research indicates elevated levels of heavy metals in children with ASD, linking pesticides and toxins to brain development disruptions. Mycotoxins, specifically, show a correlation with ASD and can contaminate food, posing a threat to neurodevelopment. Strategies like choosing organic foods and reducing exposure to toxins may benefit individuals with ASD and those vulnerable to the disorder. Further research is essential to comprehend the food pollutant-ASD relationship and devise effective exposure reduction strategies.
Collapse
Affiliation(s)
| | - Kobra Shirani
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
2
|
Green JE, Wrobel A, Todd E, Marx W, Berk M, Lotfaliany M, Castle D, Cryan JF, Athan E, Hair C, Nierenberg AA, Jacka FN, Dawson S. Early antibiotic exposure and risk of psychiatric and neurocognitive outcomes: systematic review and meta-analysis. Br J Psychiatry 2025; 226:171-183. [PMID: 39658347 DOI: 10.1192/bjp.2024.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
BACKGROUND The prenatal and early-life periods pose a crucial neurodevelopmental window whereby disruptions to the intestinal microbiota and the developing brain may have adverse impacts. As antibiotics affect the human intestinal microbiome, it follows that early-life antibiotic exposure may be associated with later-life psychiatric or neurocognitive outcomes. AIMS To explore the association between early-life (in utero and early childhood (age 0-2 years)) antibiotic exposure and the subsequent risk of psychiatric and neurocognitive outcomes. METHOD A search was conducted using Medline, PsychINFO and Excerpta Medica databases on 20 November 2023. Risk of bias was assessed using the Newcastle-Ottawa scale, and certainty was assessed using the grading of recommendations, assessment, development and evaluation (GRADE) certainty assessment. RESULTS Thirty studies were included (n = 7 047 853 participants). Associations were observed between in utero antibiotic exposure and later development of autism spectrum disorder (ASD) (odds ratio 1.09, 95% CI: 1.02-1.16) and attention-deficit hyperactivity disorder (ADHD) (odds ratio 1.19, 95% CI: 1.11-1.27) and early-childhood exposure and later development of ASD (odds ratio 1.19, 95% CI: 1.01-1.40), ADHD (odds ratio 1.33, 95% CI: 1.20-1.48) and major depressive disorder (MDD) (odds ratio 1.29, 95% CI: 1.04-1.60). However, studies that used sibling control groups showed no significant association between early-life exposure and ASD or ADHD. No studies in MDD used sibling controls. Using the GRADE certainty assessment, all meta-analyses but one were rated very low certainty, largely owing to methodological and statistical heterogeneity. CONCLUSIONS While there was weak evidence for associations between antibiotic use in early-life and later neurodevelopmental outcomes, these were attenuated in sibling-controlled subgroup analyses. Thus, associations may be explained by genetic and familial confounding, and studies failing to utilise sibling-control groups must be interpreted with caution. PROSPERO ID: CRD42022304128.
Collapse
Affiliation(s)
- Jessica Emily Green
- IMPACT, the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
- Monash Alfred Psychiatry Research Centre (MAPrc), Central Clinical School, Faculty of Medicine Nursing and Health Sciences, Monash University, Prahran, Australia
- Department of Psychiatry, Peninsula Health, Frankston, Australia
| | - Anna Wrobel
- IMPACT, the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| | - Emma Todd
- IMPACT, the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| | - Wolfgang Marx
- IMPACT, the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| | - Michael Berk
- IMPACT, the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
- Department of Psychiatry, University of Melbourne, Parkville, Australia
- Orygen Youth Health Research Centre and the Centre of Youth Mental Health, Melbourne, Australia
- The Florey Institute for Neuroscience and Mental Health, Parkville, Australia
- Department of Mental Health Drug and Alcohol Services, Barwon Health, Geelong, Australia
| | - Mojtaba Lotfaliany
- IMPACT, the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| | - David Castle
- School of Psychological Sciences, University of Tasmania, Hobart, Tasmania
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork and APC Microbiome, Cork, Ireland
| | - Eugene Athan
- Department of Mental Health Drug and Alcohol Services, Barwon Health, Geelong, Australia
| | - Christopher Hair
- Department of Mental Health Drug and Alcohol Services, Barwon Health, Geelong, Australia
| | - Andrew A Nierenberg
- Dauten Family Center for Bipolar Treatment Innovation, Department of Psychiatry, Massachusetts General Hospital, Boston, USA
- Department of Psychiatry, Harvard Medical School, Boston, USA
| | - Felice N Jacka
- IMPACT, the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Australia
- Department of Immunology, Therapeutics, and Vaccines, James Cook University, Townsville, Australia
| | - Samantha Dawson
- IMPACT, the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| |
Collapse
|
3
|
Han S, Gilmartin M, Sheng W, Jin VX. Integrating rare variant genetics and brain transcriptome data implicates novel schizophrenia putative risk genes. Schizophr Res 2025; 276:205-213. [PMID: 39919691 DOI: 10.1016/j.schres.2025.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/31/2025] [Accepted: 01/31/2025] [Indexed: 02/09/2025]
Abstract
The etiology of schizophrenia is elusive, in part due to its polygenic nature. Genome-wide association studies (GWAS) have successfully identified hundreds of schizophrenia risk loci, that are pinpointed to over one hundred genes through fine mapping. Besides common variants with relatively small effect size from GWAS, rare variants or ultra rare variants also play a significant role in conferring the schizophrenia risk from SCHEMA (Schizophrenia Exome Sequencing Meta-Analysis) results. However, burden results from SCHEMA study indicate that more new risk genes remain hidden and to be discovered. To boost the power of identifying new risk genes, we integrated genetics from SCHEMA and transcriptome data from BrainSpan using a multi-omics integration tool, DAWN, through which we have identified 47 schizophrenia putative risk genes that include 19 new risk genes, in addition to nearly all SCHEMA risk genes with FDR < 5 %. GO functional enrichment reveals that 47 SCZ putative risk genes are significantly enriched in cell to cell signaling, cell communications, transporter, in line with the hypothesis of two hit schizophrenia model. SynGO analysis suggests 47 schizophrenia putative risk genes are enriched in pre-synapse, synapse and post-synapse, supporting the well established link between synapses and schizophrenia.
Collapse
Affiliation(s)
- Shengtong Han
- School of Dentistry, Marquette University, Milwaukee, WI 53233, USA.
| | - Marieke Gilmartin
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Wenhui Sheng
- Department of Mathematical and Statistical Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Victor X Jin
- Data Science Institute and MCW Cancer Center, The Medical College of Wisconsin, Milwaukee, WI 53326, USA
| |
Collapse
|
4
|
Guma E, Chakravarty MM. Immune Alterations in the Intrauterine Environment Shape Offspring Brain Development in a Sex-Specific Manner. Biol Psychiatry 2025; 97:12-27. [PMID: 38679357 PMCID: PMC11511788 DOI: 10.1016/j.biopsych.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/20/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
Exposure to immune dysregulation in utero or in early life has been shown to increase risk for neuropsychiatric illness. The sources of inflammation can be varied, including acute exposures due to maternal infection or acute stress, or persistent exposures due to chronic stress, obesity, malnutrition, or autoimmune diseases. These exposures may cause subtle alteration in brain development, structure, and function that can become progressively magnified across the lifespan, potentially increasing the likelihood of developing a neuropsychiatric conditions. There is some evidence that males are more susceptible to early-life inflammatory challenges than females. In this review, we discuss the various sources of in utero or early-life immune alteration and the known effects on fetal development with a sex-specific lens. To do so, we leveraged neuroimaging, behavioral, cellular, and neurochemical findings. Gaining clarity about how the intrauterine environment affects offspring development is critically important for informing preventive and early intervention measures that may buffer against the effects of these early-life risk factors.
Collapse
Affiliation(s)
- Elisa Guma
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, Maryland; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts.
| | - M Mallar Chakravarty
- Computational Brain Anatomy Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Khosroshahi PA, Ghanbari M. MicroRNA dysregulation in glutamate and dopamine pathways of schizophrenia: From molecular pathways to diagnostic and therapeutic approaches. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111081. [PMID: 39002925 DOI: 10.1016/j.pnpbp.2024.111081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024]
Abstract
Schizophrenia is a complex psychiatric disorder, and genetic and environmental factors have been implicated in its development. Dysregulated glutamatergic and dopaminergic transmission pathways are involved in schizophrenia development. Besides genetic mutations, epigenetic dysregulation has a considerable role in dysregulating molecular pathways involved in schizophrenia. MicroRNAs (miRNAs) are small, non-coding RNAs that target specific mRNAs and inhibit their translation into proteins. As epigenetic factors, miRNAs regulate many genes involved in glutamate and dopamine signaling pathways; thereby, their dysregulation can contribute to the development of schizophrenia. Secretion of specific miRNAs from damaged cells into body fluids can make them one of the ideal non-invasive biomarkers in the early diagnosis of schizophrenia. Also, understanding the molecular mechanisms of miRNAs in schizophrenia pathogenesis can pave the way for developing novel treatments for patients with schizophrenia. In this study, we reviewed the glutamatergic and dopaminergic pathophysiology and highlighted the role of miRNA dysregulation in schizophrenia development. Besides, we shed light on the significance of circulating miRNAs for schizophrenia diagnosis and the recent findings on the miRNA-based treatment for schizophrenia.
Collapse
Affiliation(s)
| | - Mohammad Ghanbari
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
6
|
Li N, Chen S, Wu Z, Dong J, Wang J, Lei Y, Mo J, Wei W, Li T. Secular trends in the prevalence of schizophrenia among different age, period and cohort groups between 1990 and 2019. Asian J Psychiatr 2024; 101:104192. [PMID: 39232389 DOI: 10.1016/j.ajp.2024.104192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Schizophrenia remains a major public health challenge, and designing efforts to manage it requires understanding its prevalence over time at different geographic scales and population groups. METHODS Drawing on data from the Global Burden of Disease study 2019, annual percentage change of schizophrenia was assessed across different age, period and cohort groups at different geographic scales from 1990 to 2019. We examined associations of prevalence with the sociodemographic index. RESULTS Global prevalence of schizophrenia in 2019 was 23.60 million (95 % uncertainty interval: 20.23-27.15), with China, India, the USA and Indonesia accounting for 50.72 % of it. Global prevalence increased slightly from 1990 to 2019, with an annual percentage change of 0.03 % (95 % confidence interval 0.01-0.05). Regions with intermediate sociodemographic index accounted for greater proportion of prevalence increasing than regions with high index. Prevalence decreased among those born after 1979 in regions with intermediate sociodemographic index, whereas it consistently improved among all birth cohorts in regions with low index. Regardless of sociodemographic index, prevalence was highest among individuals 30-59 years old than younger or older groups. CONCLUSIONS Prevalence of schizophrenia has shown small increases globally over the last three decades. The burden of disease is heavier in relatively less affluent regions, and it disproportionately affects individuals 30-59 years in all regions. Meanwhile, for regions with lower sociodemographic indices, the recent increasing burden among birth cohorts is more pronounced. These findings may help guide futural design of measures to manage or prevent schizophrenia in communities at higher risk.
Collapse
Affiliation(s)
- Nanxi Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Sihao Chen
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zitao Wu
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Jiangwen Dong
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Juan Wang
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yuyan Lei
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Junjian Mo
- Department of Hematology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Wei Wei
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China.
| | - Tao Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
7
|
Okuda T, Kimoto S, Kawabata R, Bian Y, Tsubomoto M, Okamura K, Enwright JF, Kikuchi M, Lewis DA, Hashimoto T. Alterations in inhibitory neuron subtype-selective transcripts in the prefrontal cortex: comparisons across schizophrenia and mood disorders. Psychol Med 2024; 54:1-10. [PMID: 39478366 PMCID: PMC11578916 DOI: 10.1017/s0033291724002344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/19/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND In schizophrenia (SZ), impairments in cognitive functions, such as working memory, have been associated with alterations in certain types of inhibitory neurons that utilize the neurotransmitter γ-aminobutyric acid (GABA) in the dorsolateral prefrontal cortex (DLPFC). For example, GABA neurons that express parvalbumin (PV) or somatostatin (SST) have more prominent gene expression alterations than those that express vasoactive intestinal peptide (VIP). In bipolar disorder (BD) and major depression (MD), which exhibit similar, but less severe, cognitive impairments than SZ, alterations of transcript levels in GABA neurons have also been reported. However, the extent to which GABA neuron subtype-selective transcripts in the DLPFC are affected, and the relative magnitudes of the diagnosis-associated effects, have not been directly compared across SZ, BD, and MD in the same study. METHODS We used quantitative polymerase chain reaction to examine levels of GABA neuron subtype-selective transcripts (PV, potassium voltage-gated channel modifier subfamily-S member-3, SST, VIP, and calretinin mRNAs), as well as the pan-GABA neuron marker 67 kDa glutamate decarboxylase mRNA, in DLPFC total gray matter of 160 individuals, including those with SZ, BD, or MD and unaffected comparison (UC) individuals. RESULTS Relative to UC individuals, individuals with SZ exhibited large deficits in levels of all transcripts except for calretinin mRNA, whereas individuals with BD or MD showed a marked deficit only for PV or SST mRNAs, respectively. CONCLUSIONS These findings suggest that broader and more severe alterations in DLPFC GABA neurons might contribute to the greater cognitive impairments in SZ relative to BD and MD.
Collapse
Affiliation(s)
- Takeshi Okuda
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Sohei Kimoto
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, 634-8521, Japan
- Department of Neuropsychiatry, Wakayama Medical University School of Medicine, Wakayama, 641-8509, Japan
| | - Rika Kawabata
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Yufan Bian
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Makoto Tsubomoto
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Kazuya Okamura
- Department of Neuropsychiatry, Wakayama Medical University School of Medicine, Wakayama, 641-8509, Japan
| | - John F. Enwright
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Mitsuru Kikuchi
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
- Research Center for Child Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - David A. Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Takanori Hashimoto
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Psychiatry, National Hospital Organization Hokuriku Hospital, Nanto, 939-1893, Japan
| |
Collapse
|
8
|
Clarin JD, Bouras NN, Gao WJ. Genetic Diversity in Schizophrenia: Developmental Implications of Ultra-Rare, Protein-Truncating Mutations. Genes (Basel) 2024; 15:1214. [PMID: 39336805 PMCID: PMC11431303 DOI: 10.3390/genes15091214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The genetic basis of schizophrenia (SZ) remains elusive despite its characterization as a highly heritable disorder. This incomplete understanding has led to stagnation in therapeutics and treatment, leaving many suffering with insufficient relief from symptoms. However, recent large-cohort genome- and exome-wide association studies have provided insights into the underlying genetic machinery. The scale of these studies allows for the identification of ultra-rare mutations that confer substantial disease risk, guiding clinicians and researchers toward general classes of genes that are central to SZ etiology. One such large-scale collaboration effort by the Schizophrenia Exome Sequencing Meta-Analysis consortium identified ten, high-risk, ultra-rare, protein-truncating variants, providing the clearest picture to date of the dysfunctional gene products that substantially increase risk for SZ. While genetic studies of SZ provide valuable information regarding "what" genes are linked with the disorder, it is an open question as to "when" during brain development these genetic mutations impose deleterious effects. To shed light on this unresolved aspect of SZ etiology, we queried the BrainSpan developmental mRNA expression database for these ten high-risk genes and discovered three general expression trajectories throughout pre- and postnatal brain development. The elusiveness of SZ etiology, we infer, is not only borne out of the genetic heterogeneity across clinical cases, but also in our incomplete understanding of how genetic mutations perturb neurodevelopment during multiple critical periods. We contextualize this notion within the National Institute of Mental Health's Research Domain Criteria framework and emphasize the utility of considering both genetic variables and developmental context in future studies.
Collapse
Affiliation(s)
- Jacob D Clarin
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Nadia N Bouras
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| |
Collapse
|
9
|
Ketharanathan T, Pereira A, Sundram S. Gene expression changes in Brodmann's Area 46 differentiate epidermal growth factor and immune system interactions in schizophrenia and mood disorders. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:76. [PMID: 39242583 PMCID: PMC11379811 DOI: 10.1038/s41537-024-00488-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 07/16/2024] [Indexed: 09/09/2024]
Abstract
How early in life stress-immune related environmental factors increase risk predisposition to schizophrenia remains unknown. We examined if pro-inflammatory changes perturb the brain epidermal growth factor (EGF) system, a system critical for neurodevelopment and mature CNS functions including synaptic plasticity. We quantified genes from key EGF and immune system pathways for mRNA levels and eight immune proteins in post-mortem dorsolateral prefrontal (DLPFC; Brodmann's Area (BA) 46) and orbitofrontal (OFC; BA11) cortices from people with schizophrenia, mood disorders and neurotypical controls. In BA46, 64 genes were differentially expressed, predominantly in schizophrenia, where attenuated expression of the MAPK-ERK, NRG1-PI3K-AKT and mTOR cascades indicated reduced EGF system signalling, and similarly diminished immune molecular expression, notably in TLR, TNF and complement pathways, along with low NF-κB1 and elevated IL12RB2 protein levels were noted. There was nominal evidence for altered convergence between ErbB-PI3K-AKT-mTOR and TLR pathways in BA46 in schizophrenia. Comparatively minimal changes were noted in BA11. Overall, distinct pathway gene expression changes may reflect variant pathological processes involving immune and EGF system signalling between schizophrenia and mood disorder, particularly in DLPFC. Further, the abnormal convergence between innate immune signalling and candidate EGF signalling pathways may indicate a pathologically important interaction in the developing brain in response to environmental stressors.
Collapse
Affiliation(s)
- Tharini Ketharanathan
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia.
- Department of Psychiatry, University of Melbourne, Parkville, VIC 3052, Australia.
- Northern Health, Epping, VIC 3076, Australia.
| | - Avril Pereira
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia
- Department of Psychiatry, University of Melbourne, Parkville, VIC 3052, Australia
| | - Suresh Sundram
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
- Mental Health Program, Monash Health, Clayton, VIC 3168, Australia
| |
Collapse
|
10
|
Bergstrom JJD, Fu MM. Dysregulation of myelination-related genes in schizophrenia. J Neurochem 2024; 168:2227-2242. [PMID: 39086020 PMCID: PMC11449665 DOI: 10.1111/jnc.16152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 08/02/2024]
Abstract
Schizophrenic individuals display disrupted myelination patterns, altered oligodendrocyte distribution, and abnormal oligodendrocyte morphology. Schizophrenia is linked with dysregulation of a variety of genes involved in oligodendrocyte function and myelin production. Single-nucleotide polymorphisms (SNPs) and rare mutations in myelination-related genes are observed in certain schizophrenic populations, representing potential genetic risk factors. Downregulation of myelination-related RNAs and proteins, particularly in frontal and limbic regions, is consistently associated with the disorder across multiple studies. These findings support the notion that disruptions in myelination may contribute to the cognitive and behavioral impairments experienced in schizophrenia, although further evidence of causation is needed.
Collapse
Affiliation(s)
| | - Meng-Meng Fu
- Department of Molecular and Cell Biology, UC Berkeley, Berkeley, California, USA
| |
Collapse
|
11
|
Debs SR, Rothmond DA, Zhu Y, Weickert CS, Purves-Tyson TD. Molecular evidence of altered stress responsivity related to neuroinflammation in the schizophrenia midbrain. J Psychiatr Res 2024; 177:118-128. [PMID: 39004003 DOI: 10.1016/j.jpsychires.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/12/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024]
Abstract
Stress and inflammation are risk factors for schizophrenia. Chronic psychosocial stress is associated with subcortical hyperdopaminergia, a core feature of schizophrenia. Hyperdopaminergia arises from midbrain neurons, leading us to hypothesise that changes in stress response pathways may occur in this region. To identify whether transcriptional changes in glucocorticoid and mineralocorticoid receptors (NR3C1/GR, NR3C2/MR) or other stress signalling molecules (FKBP4, FKBP5) exist in schizophrenia midbrain, we measured gene expression in the human brain (N = 56) using qRT-PCR. We assessed whether alterations in these mRNAs were related to previously identified high/low inflammatory status. We investigated relationships between stress-related transcripts themselves, and between FKBP5 mRNA, dopaminergic, and glial cell transcripts in diagnostic and inflammatory subgroups. Though unchanged by diagnosis, GR mRNA levels were reduced in high inflammatory compared to low inflammatory schizophrenia cases (p = 0.026). We found no effect of diagnosis or inflammation on MR mRNA. FKBP4 mRNA was decreased and FKBP5 mRNA was increased in schizophrenia (p < 0.05). FKBP5 changes occurred in high inflammatory (p < 0.001), whereas FKBP4 changes occurred in low inflammatory schizophrenia cases (p < 0.05). The decrease in mRNA encoding the main stress receptor (GR), as well as increased transcript levels of the stress-responsive negative regulator (FKBP5), may combine to blunt the midbrain response to stress in schizophrenia when neuroinflammation is present. Negative correlations between FKBP5 mRNA and dopaminergic transcripts in the low inflammatory subgroup suggest higher levels of FKBP5 mRNA may also attenuate dopaminergic neurotransmission in schizophrenia even when inflammation is absent. We report alterations in GR-mediated stress signalling in the midbrain in schizophrenia.
Collapse
Affiliation(s)
- Sophie R Debs
- Preclinical Neuropsychiatry Laboratory, Neuroscience Research Australia, Randwick, New South Wales, 2031, Australia; Discipline of Psychiatry & Mental Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Debora A Rothmond
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, New South Wales, 2031, Australia
| | - Yunting Zhu
- Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, New South Wales, 2031, Australia; Discipline of Psychiatry & Mental Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, 2052, Australia; Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Tertia D Purves-Tyson
- Preclinical Neuropsychiatry Laboratory, Neuroscience Research Australia, Randwick, New South Wales, 2031, Australia; Discipline of Psychiatry & Mental Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, 2052, Australia.
| |
Collapse
|
12
|
Same K, Shobeiri P, Rashidi MM, Ghasemi E, Saeedi Moghaddam S, Mohammadi E, Masinaei M, Salehi N, Mohammadi Fateh S, Farzad Maroufi S, Abdolhamidi E, Moghimi M, Abbasi-Kangevari Z, Rezaei N, Larijani B. A Global, Regional, and National Burden and Quality of Care Index for Schizophrenia: Global Burden of Disease Systematic Analysis 1990-2019. Schizophr Bull 2024; 50:1083-1093. [PMID: 37738499 PMCID: PMC11349008 DOI: 10.1093/schbul/sbad120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
BACKGROUND AND HYPOTHESIS Schizophrenia is a mental disorder usually presented in adulthood that affects roughly 0.3 percent of the population. The disease contributes to more than 13 million years lived with disability the global burden of disease. The current study aimed to provide new insights into the quality of care in Schizophrenia via the implementation of the newly introduced quality of care index (QCI) into the existing data. STUDY DESIGN The data from the global burden of disease database was used for schizophrenia. Two secondary indices were calculated from the available indices and used in a principal component analysis to develop a proxy of QCI for each country. The QCI was then compared between different sociodemographic index (SDI) and ages. To assess the disparity in QCI between the sexes, the gender disparity ratio (GDR) was also calculated and analyzed in different ages and SDIs. STUDY RESULTS The global QCI proxy score has improved between 1990 and 2019 by roughly 13.5%. Concerning the gender disparity, along with a rise in overall GDR the number of countries having a GDR score of around one has decreased which indicates an increase in gender disparity regarding quality of care of schizophrenia. Bhutan and Singapore had 2 of the highest QCIs in 2019 while also showing GDR scores close to one. CONCLUSIONS While the overall conditions in the quality of care have improved, significant disparities and differences still exist between different countries, genders, and ages in the quality of care regarding schizophrenia.
Collapse
Affiliation(s)
- Kaveh Same
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parnian Shobeiri
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Mahdi Rashidi
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Erfan Ghasemi
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Saeedi Moghaddam
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Kiel Institute for the World Economy, Kiel, Germany
| | - Esmaeil Mohammadi
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Neurological Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Masoud Masinaei
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloufar Salehi
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Mohammadi Fateh
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Farzad Maroufi
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Abdolhamidi
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mana Moghimi
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Abbasi-Kangevari
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Negar Rezaei
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Digestive Disease Research Center (DDRC), Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Sheinbaum T, Gizdic A, Kwapil TR, Barrantes-Vidal N. A longitudinal study of the impact of childhood adversity dimensions on social and psychological factors and symptoms of psychosis, depression, and anxiety. Schizophr Res 2024; 270:102-110. [PMID: 38889654 DOI: 10.1016/j.schres.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/12/2024] [Accepted: 05/26/2024] [Indexed: 06/20/2024]
Abstract
The present study examined three empirically-derived childhood adversity dimensions as predictors of social, psychological, and symptom outcomes across three prospective assessments of a young adult sample. Participants were assessed five times over eight years with semi-structured interviews and questionnaires. The analyses used the dimensions underlying multiple subscales from well-established childhood adversity measures administered at the first two assessment waves (described in a previous report). Outcome data pertain to the last three assessment waves, with sample sizes ranging from 89 to 169. As hypothesized, the childhood adversity dimensions demonstrated overlapping and differential longitudinal associations with the outcomes. Deprivation predicted the negative (deficit-like) dimension of psychosis, while Threat and Intrafamilial Adversity predicted the positive (psychotic-like) dimension. Depression and anxiety symptoms were predicted by different childhood adversity dimensions over time. Furthermore, Threat predicted a smaller and less diverse social network, Intrafamilial Adversity predicted anxious attachment, and Deprivation predicted a smaller social network, anxious and avoidant attachment, perceived social support, and loneliness. The three adversity dimensions combined accounted for moderate to large proportions of variance in several outcomes. These results extend prior work by identifying associations of three meaningful dimensions of childhood adversity with different risk profiles across psychological, social, and psychopathological domains. The findings enhance our understanding of the impact of childhood adversity across young adulthood.
Collapse
Affiliation(s)
- Tamara Sheinbaum
- Dirección de Investigaciones Epidemiológicas y Psicosociales. Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Alena Gizdic
- Departament de Psicología Clínica i de la Salut, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Thomas R Kwapil
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Neus Barrantes-Vidal
- Departament de Psicología Clínica i de la Salut, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Spain.
| |
Collapse
|
14
|
Buck T, Dong E, McCarthy M, Guidotti A, Sodhi M. Prenatal stress alters transcription of NMDA-type glutamate receptors in the hippocampus. Neurosci Lett 2024; 836:137886. [PMID: 38917870 DOI: 10.1016/j.neulet.2024.137886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 06/27/2024]
Abstract
Prenatal stress increases the risk of neurodevelopmental disorders. NMDA-type glutamate receptor (NMDAR) activity plays an important pathophysiological role in the cortico-hippocampal circuit in these disorders. We tested the hypothesis that transcription of NMDAR subunits is modified in the frontal cortex (FCx) and hippocampus after exposure to prenatal restraint stress (PRS) in mice. At 10 weeks of age, male PRS offspring (n = 20) and non-stressed controls (NS, n = 20) were treated with haloperidol (1 mg/kg), clozapine (5 mg/kg) or saline twice daily for 5 days, before measuring social approach (SOC). Saline-treated and haloperidol-treated PRS mice had reduced SOC relative to NS (P < 0.01), but clozapine-treated PRS mice had similar SOC to NS mice. These effects of PRS were associated with increased transcription of NMDAR subunits encoded by GRIN2A and GRIN2B genes in the hippocampus but not FCx. GRIN transcription in FCx correlated positively with SOC, but hippocampal GRIN transcription had negative correlation with SOC. The ratio of GRIN2A/GRIN2B transcription is known to increase during development but was lower in PRS mice. These results suggest that GRIN2A and GRIN2B transcript levels are modified in the hippocampus by PRS, leading to life-long deficits in social behavior. These data have some overlap with the molecular pathophysiology of schizophrenia. Similar to PRS in mice, schizophrenia, has been associated with social withdrawal, with increased GRIN2 expression in the hippocampus, and reduced GRIN2A/GRIN2B expression ratios in the hippocampus. These findings suggest that PRS in mice may have construct validity as a preclinical model for antipsychotic drug development.
Collapse
Affiliation(s)
- Tristram Buck
- Department of Molecular Pharmacology and Neuroscience, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Erbo Dong
- Department of Physiology and Cell Biology, Ohio State University, Columbus, OH, USA
| | - Michael McCarthy
- Department of Molecular Pharmacology and Neuroscience, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Alessandro Guidotti
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Monsheel Sodhi
- Department of Molecular Pharmacology and Neuroscience, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA.
| |
Collapse
|
15
|
Arraes GC, Barreto FS, Vasconcelos GS, Lima CNDC, da Silva FER, Ribeiro WLC, de Sousa FCF, Furtado CLM, Macêdo DS. Long-term Environmental Enrichment Normalizes Schizophrenia-like Abnormalities and Promotes Hippocampal Slc6a4 Promoter Demethylation in Mice Submitted to a Two-hit Model. Neuroscience 2024; 551:205-216. [PMID: 38843988 DOI: 10.1016/j.neuroscience.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024]
Abstract
Here, we explored the impact of prolonged environmental enrichment (EE) on behavioral, neurochemical, and epigenetic changes in the serotonin transporter gene in mice subjected to a two-hit schizophrenia model. The methodology involved administering the viral mimetic PolyI:C to neonatal Swiss mice as a first hit during postnatal days (PND) 5-7, or a sterile saline solution as a control. At PND21, mice were randomly assigned either to standard environment (SE) or EE housing conditions. Between PND35-44, the PolyI:C-treated group was submitted to various unpredictable stressors, constituting the second hit. Behavioral assessments were conducted on PND70, immediately after the final EE exposure. Following the completion of behavioral assessments, we evaluated the expression of proteins in the hippocampus that are indicative of microglial activation, such as Iba-1, as well as related to neurogenesis, including doublecortin (Dcx). We also performed methylation analysis on the serotonin transporter gene (Slc6a4) to investigate alterations in serotonin signaling. The findings revealed that EE for 50 days mitigated sensorimotor gating deficits and working memory impairments in two-hit mice and enhanced their locomotor and exploratory behaviors. EE also normalized the overexpression of hippocampal Iba-1 and increased the expression of hippocampal Dcx. Additionally, we observed hippocampal demethylation of the Slc6a4 gene in the EE-exposed two-hit group, indicating epigenetic reprogramming. These results contribute to the growing body of evidence supporting the protective effects of long-term EE in counteracting behavioral disruptions caused by the two-hit schizophrenia model, pointing to enhanced neurogenesis, diminished microglial activation, and epigenetic modifications of serotonergic pathways as underlying mechanisms.
Collapse
Affiliation(s)
- Greicy Coelho Arraes
- Neuropsychopharmacology and Translational Psychiatry Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; Christus University Center (Unichristus-CE), Fortaleza, CE, Brazil
| | - Francisco Stefânio Barreto
- Neuropsychopharmacology and Translational Psychiatry Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; Laboratory of Experimental Oncology, Postgraduate Program in Translational Medicine, Drug Research and Development Center, Federal University of Ceara, Fortaleza, Ceará, Brazil
| | - Germana Silva Vasconcelos
- Neuropsychopharmacology and Translational Psychiatry Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Camila Nayane de Carvalho Lima
- Neuropsychopharmacology and Translational Psychiatry Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; Translational Psychiatry Program, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, TX, USA.
| | - Francisco Eliclécio Rodrigues da Silva
- Neuropsychopharmacology and Translational Psychiatry Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Francisca Cléa Florenço de Sousa
- Neuropsychopharmacology and Translational Psychiatry Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| | - Cristiana Libardi Miranda Furtado
- Laboratory of Experimental Oncology, Postgraduate Program in Translational Medicine, Drug Research and Development Center, Federal University of Ceara, Fortaleza, Ceará, Brazil; Graduate Program in Medical Sciences, Experimental Biology Center - NUBEX, University of Fortaleza, UNIFOR, Fortaleza, Ceará, Brazil
| | - Danielle S Macêdo
- Neuropsychopharmacology and Translational Psychiatry Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; National Institute for Translational Medicine (INCT-TM. CNPq), Brazil.
| |
Collapse
|
16
|
Oliver D, Chesney E, Cullen AE, Davies C, Englund A, Gifford G, Kerins S, Lalousis PA, Logeswaran Y, Merritt K, Zahid U, Crossley NA, McCutcheon RA, McGuire P, Fusar-Poli P. Exploring causal mechanisms of psychosis risk. Neurosci Biobehav Rev 2024; 162:105699. [PMID: 38710421 PMCID: PMC11250118 DOI: 10.1016/j.neubiorev.2024.105699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/17/2024] [Accepted: 04/28/2024] [Indexed: 05/08/2024]
Abstract
Robust epidemiological evidence of risk and protective factors for psychosis is essential to inform preventive interventions. Previous evidence syntheses have classified these risk and protective factors according to their strength of association with psychosis. In this critical review we appraise the distinct and overlapping mechanisms of 25 key environmental risk factors for psychosis, and link these to mechanistic pathways that may contribute to neurochemical alterations hypothesised to underlie psychotic symptoms. We then discuss the implications of our findings for future research, specifically considering interactions between factors, exploring universal and subgroup-specific factors, improving understanding of temporality and risk dynamics, standardising operationalisation and measurement of risk and protective factors, and developing preventive interventions targeting risk and protective factors.
Collapse
Affiliation(s)
- Dominic Oliver
- Department of Psychiatry, University of Oxford, Oxford, UK; NIHR Oxford Health Biomedical Research Centre, Oxford, UK; OPEN Early Detection Service, Oxford Health NHS Foundation Trust, Oxford, UK; Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Edward Chesney
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Addictions Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 4 Windsor Walk, London SE5 8AF, UK
| | - Alexis E Cullen
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Clinical Neuroscience, Karolinska Institutet, Sweden
| | - Cathy Davies
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Amir Englund
- Addictions Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 4 Windsor Walk, London SE5 8AF, UK
| | - George Gifford
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Sarah Kerins
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Paris Alexandros Lalousis
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Yanakan Logeswaran
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Biostatistics & Health Informatics, King's College London, London, UK
| | - Kate Merritt
- Division of Psychiatry, Institute of Mental Health, UCL, London, UK
| | - Uzma Zahid
- Department of Psychology, King's College London, London, UK
| | - Nicolas A Crossley
- Department of Psychiatry, University of Oxford, Oxford, UK; Department of Psychiatry, School of Medicine, Pontificia Universidad Católica de Chile, Chile
| | - Robert A McCutcheon
- Department of Psychiatry, University of Oxford, Oxford, UK; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Oxford Health NHS Foundation Trust, Oxford, UK
| | - Philip McGuire
- Department of Psychiatry, University of Oxford, Oxford, UK; NIHR Oxford Health Biomedical Research Centre, Oxford, UK; OPEN Early Detection Service, Oxford Health NHS Foundation Trust, Oxford, UK
| | - Paolo Fusar-Poli
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University Munich, Munich, Germany; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; OASIS Service, South London and Maudsley NHS Foundation Trust, London SE11 5DL, UK
| |
Collapse
|
17
|
Azargoonjahromi A. Current Findings and Potential Mechanisms of KarXT (Xanomeline-Trospium) in Schizophrenia Treatment. Clin Drug Investig 2024; 44:471-493. [PMID: 38904739 DOI: 10.1007/s40261-024-01377-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 06/22/2024]
Abstract
Standard schizophrenia treatment involves antipsychotic medications that target D2 dopamine receptors. However, these drugs have limitations in addressing all symptoms and can lead to adverse effects such as motor impairments, metabolic effects, sedation, sexual dysfunction, cognitive impairment, and tardive dyskinesia. Recently, KarXT has emerged as a novel drug for schizophrenia. KarXT combines xanomeline, a muscarinic receptor M1 and M4 agonist, with trospium, a nonselective antimuscarinic agent. Of note, xanomeline can readily cross blood-brain barrier (BBB) and, thus, enter into the brain, thereby stimulating muscarinic receptors (M1 and M4). By doing so, xanomeline has been shown to target negative symptoms and potentially improve positive symptoms. Trospium, on the other hand, is not able to cross BBB, thereby not affecting M1 and M4 receptors; instead, it acts as an antimuscarinic agent and, hence, diminishes peripheral activity of muscarinic receptors to minimize side effects probably stemming from xanomeline in other organs. Accordingly, ongoing clinical trials investigating KarXT's efficacy in schizophrenia have demonstrated positive outcomes, including significant improvements in the Positive and Negative Syndrome Scale (PANSS) total score and cognitive function compared with placebo. These findings emphasize the potential of KarXT as a promising treatment for schizophrenia, providing symptom relief while minimizing side effects associated with xanomeline monotherapy. Despite such promising evidence, further research is needed to confirm the efficacy, safety, and tolerability of KarXT in managing schizophrenia. This review article explores the current findings and potential mechanisms of KarXT in the treatment of schizophrenia.
Collapse
Affiliation(s)
- Ali Azargoonjahromi
- Shiraz University of Medical Sciences, Janbazan Blv, 14th Alley, Jahrom, Shiraz, 7417773539, Fars, Iran.
| |
Collapse
|
18
|
Cheng Y, Chen X, Zhang XQ, Ju PJ, Wang WD, Fang Y, Lin GN, Cui DH. Interaction between RNF4 and SART3 is associated with the risk of schizophrenia. Heliyon 2024; 10:e32743. [PMID: 38975171 PMCID: PMC11226853 DOI: 10.1016/j.heliyon.2024.e32743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024] Open
Abstract
The pathogenesis of schizophrenia (SCZ) is heavily influenced by genetic factors. Ring finger protein 4 (RNF4) and squamous cell carcinoma antigen recognized by T cells 3 (SART3) are thought to be involved in nervous system growth and development via oxidative stress pathways. Moreover, they have previously been linked to SCZ. Yet the role of RNF4 and SART3 in SCZ remains unclear. Here, we investigated how these two genes are involved in SCZ by studying their variants observed in patients. We first observed significantly elevated mRNA levels of RNF4 and SART3 in the peripheral blood in both first-episode (n = 30) and chronic (n = 30) SCZ patients compared to controls (n = 60). Next, we targeted-sequenced three single nucleotide polymorphisms (SNPs) in SART3 and six SNPs in RNF4 for association with SCZ using the genomic DNA extracted from peripheral blood leukocytes from SCZ participants (n = 392) and controls (n = 572). We observed a combination of SNPs that included rs1203860, rs2282765 (both in RNF4), and rs2287550 (in SART3) was associated with increased risk of SCZ, suggesting common pathogenic mechanisms between these two genes. We then conducted experiments in HEK293T cells to better understand the interaction between RNF4 and SART3. We observed that SART3 lowered the expression of RNF4 through ubiquitination and downregulated the expression of nuclear factor E2-related factor 2 (NRF2), a downstream factor of RNF4, implicating the existence of a possible shared regulatory mechanism for RNF4 and SART3. In conclusion, our study provides evidence that the interaction between RNF4 and SART3 contributes to the risk of SCZ. The findings shed light on the underlying molecular mechanisms of SCZ and may lead to the development of new therapies and interventions for this disorder.
Collapse
Affiliation(s)
- Ying Cheng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Xi Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Xiao Qing Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Pei Jun Ju
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Di Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Division of Imaging, Computational and Systems Biomedicine, School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Fang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Guan Ning Lin
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Division of Imaging, Computational and Systems Biomedicine, School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Dong Hong Cui
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
- Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
19
|
Çukurova M, Sancak B, Özdemir A. Investigation of Siblings of Patients Diagnosed with Substance-Induced Psychotic Disorder in terms of Cognitive Functions and Clinical High-Risk State for Psychosis. Psychopathology 2024; 57:412-422. [PMID: 38885619 DOI: 10.1159/000538478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 03/18/2024] [Indexed: 06/20/2024]
Abstract
OBJECTIVE This study aimed to investigate the influence of familial predisposition on substance-induced psychosis among healthy siblings of patients diagnosed with substance-induced psychotic disorder, who themselves lack any family history of psychotic disorders. Additionally, the study aimed to explore clinical high-risk states for psychosis, schizotypal features, and neurocognitive functions in comparison to a healthy control group. METHOD The study compared healthy siblings of 41 patients diagnosed with substance-induced psychotic disorder with 41 healthy volunteers without a family history of psychotic disorders, matching age, gender, and education. Sociodemographic and clinical characteristics of participants were obtained using data collection forms. The Comprehensive Assessment of At-Risk Mental States (CAARMS) and the Structured Interview for Schizotypy-Revised Form (SIS-R) scales were utilized to assess clinical high risk for psychosis. Neurocognitive functions were evaluated with digit span test (DST), trail making test part A-B (TMT), verbal fluency test (VFT), and Stroop test (ST). RESULTS Analysis using the CAARMS scale revealed that 39% of siblings and 7.3% of the control group were at clinically high risk for psychosis, indicating a significant difference in rates of psychotic vulnerability. Comparison between siblings and the control group showed significant differences in mean SIS-R subscale scores, including social behavior, hypersensitivity, referential thinking, suspiciousness, illusions, and overall oddness, as well as in mean neurocognitive function scores, including errors in TMT-A, TMT-B, and VFT out-of-category errors, with siblings exhibiting poorer performance. CONCLUSION Our study suggests that healthy siblings of patients with substance-induced psychosis exhibit more schizotypal features and have a higher risk of developing psychosis compared to healthy controls. Additionally, siblings demonstrate greater impairment in attention, response inhibition, and executive functions compared to healthy controls, indicating the potential role of genetic predisposition in the development of substance-induced psychotic disorder.
Collapse
Affiliation(s)
- Merve Çukurova
- Department of Psychiatry, Bakırköy Prof. Dr. Mazhar Osman Psychiatry, Neurology and Neurosurgery Training and Research Hospital, Istanbul, Turkey
| | - Barış Sancak
- Department of Psychiatry, Acıbadem Mehmet Ali Aydınlar University School of Medicine, Istanbul, Turkey
| | - Armağan Özdemir
- Department of Psychiatry, Bakırköy Prof. Dr. Mazhar Osman Psychiatry, Neurology and Neurosurgery Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
20
|
Yang S, Datta D, Krienen FM, Ling E, Woo E, May A, Anderson GM, Galvin VC, Gonzalez-Burgos G, Lewis DA, McCarroll SA, Arnsten AF, Wang M. Kynurenic acid inflammatory signaling expands in primates and impairs prefrontal cortical cognition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598842. [PMID: 38915595 PMCID: PMC11195225 DOI: 10.1101/2024.06.13.598842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Cognitive deficits from dorsolateral prefrontal cortex (dlPFC) dysfunction are common in neuroinflammatory disorders, including long-COVID, schizophrenia and Alzheimer's disease, and have been correlated with kynurenine inflammatory signaling. Kynurenine is further metabolized to kynurenic acid (KYNA) in brain, where it blocks NMDA and α7-nicotinic receptors (nic-α7Rs). These receptors are essential for neurotransmission in dlPFC, suggesting that KYNA may cause higher cognitive deficits in these disorders. The current study found that KYNA and its synthetic enzyme, KAT II, have greatly expanded expression in primate dlPFC in both glia and neurons. Local application of KYNA onto dlPFC neurons markedly reduced the delay-related firing needed for working memory via actions at NMDA and nic-α7Rs, while inhibition of KAT II enhanced neuronal firing in aged macaques. Systemic administration of agents that reduce KYNA production similarly improved cognitive performance in aged monkeys, suggesting a therapeutic avenue for the treatment of cognitive deficits in neuroinflammatory disorders.
Collapse
|
21
|
Obeagu EI, Bluth MH. Eosinophils and Cognitive Impairment in Schizophrenia: A New Perspective. J Blood Med 2024; 15:227-237. [PMID: 38800637 PMCID: PMC11127652 DOI: 10.2147/jbm.s451988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/15/2024] [Indexed: 05/29/2024] Open
Abstract
Schizophrenia is a complex psychiatric disorder characterized by a wide array of cognitive impairments. While research has predominantly focused on the neurological aspects of schizophrenia, emerging evidence suggests that the immune system, specifically eosinophils, may play a significant role in the cognitive deficits associated with the disorder. This review presents a novel perspective on the interplay between eosinophils and cognitive impairment in schizophrenia. Eosinophils, traditionally associated with allergic responses and inflammation, have garnered limited attention within the realm of neuropsychiatry. Recent studies have hinted at a potential link between eosinophil activation and the pathogenesis of schizophrenia. In this comprehensive review, we delve into the world of eosinophils, elucidating their nature, functions, and interactions with the immune system. We examine the cognitive deficits observed in individuals with schizophrenia and discuss existing theories on the etiology of these impairments, focusing on immune system involvement. The paper also highlights the evolving body of research that supports the idea of eosinophilic influence on schizophrenia-related cognitive deficits. Furthermore, we explore potential mechanisms through which eosinophils may exert their effects on cognitive function in schizophrenia, including interactions with other immune cells and inflammatory pathways. By discussing the clinical implications and potential therapeutic avenues stemming from this newfound perspective, we underscore the practical significance of this emerging field of research. While this paper acknowledges the limitations and challenges inherent in studying eosinophils within the context of schizophrenia, it serves as a posit for novel thought in this vexing disease space as well as a call to action for future research endeavors. By providing a comprehensive survey of the existing literature and posing unanswered questions, we aim to inspire a reimagining of the relationship between eosinophils and cognitive impairment in schizophrenia, ultimately advancing our understanding and treatment of this debilitating disorder.
Collapse
Affiliation(s)
| | - Martin H Bluth
- Department of Pathology, Division of Blood Transfusion Medicine, Maimonides Medical Center, Brooklyn, NY, USA
| |
Collapse
|
22
|
Elam HB, Perez SM, Donegan JJ, Eassa NE, Lodge DJ. Knockdown of Lhx6 during embryonic development results in neurophysiological alterations and behavioral deficits analogous to schizophrenia in adult rats. Schizophr Res 2024; 267:113-121. [PMID: 38531158 DOI: 10.1016/j.schres.2024.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 12/15/2023] [Accepted: 03/18/2024] [Indexed: 03/28/2024]
Abstract
A decreased expression of specific interneuron subtypes, containing either the calcium binding protein parvalbumin (PV) or the neurotransmitter somatostatin (SST), are observed in the cortex and hippocampus of both patients with schizophrenia and rodent models used to study the disorder. Moreover, preclinical studies suggest that this loss of inhibitory function is a key pathological mechanism underlying the symptoms of schizophrenia. Interestingly, decreased expression of Lhx6, a key transcriptional regulator specific to the development and migration of PV and SST interneurons, is seen in human postmortem studies and following multiple developmental disruptions used to model schizophrenia preclinically. These results suggest that disruptions in interneuron development in utero may contribute to the pathology of the disorder. To recapitulate decreased Lhx6 expression during development, we used in utero electroporation to introduce an Lhx6 shRNA plasmid and knockdown Lhx6 expression in the brains of rats on gestational day 17. We then examined schizophrenia-like neurophysiological and behavioral alterations in the offspring once they reached adulthood. In utero Lhx6 knockdown resulted in increased ventral tegmental area (VTA) dopamine neuron population activity and a sex-specific increase in locomotor response to a psychotomimetic, consistent with positive symptomology of schizophrenia. However, Lhx6 knockdown had no effect on social interaction or spatial working memory, suggesting behaviors associated with negative and cognitive symptom domains were unaffected. These results suggest that knockdown of Lhx6 during development results in neurophysiological and behavioral alterations consistent with the positive symptom domain of schizophrenia in adult rats.
Collapse
Affiliation(s)
- Hannah B Elam
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX 78229, USA.
| | - Stephanie M Perez
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Jennifer J Donegan
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX 78229, USA; Department of Psychiatry and Behavioral Sciences, Dell Medical School at UT Austin, Austin, TX, USA
| | - Nicole E Eassa
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Daniel J Lodge
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX 78229, USA; South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, USA
| |
Collapse
|
23
|
Kumar S, Davidson CA, Jain R, Saini R. Factor structure and measurement invariance of Schizotypal Personality Questionnaire-Brief Revised (Updated) in India. Early Interv Psychiatry 2024; 18:312-319. [PMID: 37650484 DOI: 10.1111/eip.13463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/23/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
AIM Schizotypal Personality Questionnaire-Brief Revised-Updated (SPQ-BRU) is an easy-to-conduct, theoretically consistent, and psychometrically better measure of schizotypal personality. However, its study is limited to developed countries. Thus, in the present study, we tested the factor structure and measurement invariance of SPQ-BRU in India. METHODS A sample of 734 college students was selected from two sites (n = 614 from Muzaffarnagar in western Uttar Pradesh and n = 120 from Guhana in Haryana). Confirmatory factor analysis was used to test the good fitness of the different models of SPQ-BRU and the measurement invariance across sex and region. RESULTS The first-order nine-factor model was a better-fit model (among a set of first-order and second-order models), whereas the second-order three-factor model was a more parsimonious good-fit model of SPQ-BRU. The nine-factor model was strongly invariant across sex and region. Women had higher social anxiety, ideas of reference, and lower constricted affect than men. Moreover, the Gohana sample was higher on several schizotypal personality facades than the Muzaffarnagar sample. CONCLUSIONS The present study supported the cross-cultural validity of schizotypal personality and partially established a reliable and valid SPQ-BRU-Hindi language version.
Collapse
Affiliation(s)
- Sanjay Kumar
- Department of Psychology, D.A.V. College, Muzaffarnagar, India
| | - Charlie A Davidson
- Department of Psychology, Emory University, Atlanta, Georgia, USA
- Clinical Development Lead, Akin Mental Health, San Francisco, California, USA
| | - Ranjeeta Jain
- Department of Psychology, D.A.V. College, Muzaffarnagar, India
| | - Reena Saini
- Department of Psychology, D.A.V. College, Muzaffarnagar, India
| |
Collapse
|
24
|
Mitteroecker P, Merola GP. The cliff edge model of the evolution of schizophrenia: Mathematical, epidemiological, and genetic evidence. Neurosci Biobehav Rev 2024; 160:105636. [PMID: 38522813 DOI: 10.1016/j.neubiorev.2024.105636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/27/2024] [Accepted: 03/16/2024] [Indexed: 03/26/2024]
Abstract
How has schizophrenia, a condition that significantly reduces an individual's evolutionary fitness, remained common across generations and cultures? Numerous theories about the evolution of schizophrenia have been proposed, most of which are not consistent with modern epidemiological and genetic evidence. Here, we briefly review this evidence and explore the cliff edge model of schizophrenia. It suggests that schizophrenia is the extreme manifestation of a polygenic trait or a combination of traits that, within a normal range of variation, confer cognitive, linguistic, and/or social advantages. Only beyond a certain threshold, these traits precipitate the onset of schizophrenia and reduce fitness. We provide the first mathematical model of this qualitative concept and show that it requires only very weak positive selection of the underlying trait(s) to explain today's schizophrenia prevalence. This prediction, along with expectations about the effect size of schizophrenia risk alleles, are surprisingly well matched by empirical evidence. The cliff edge model predicts a dynamic change of selection of risk alleles, which explains the contradictory findings of evolutionary genetic studies.
Collapse
Affiliation(s)
- Philipp Mitteroecker
- Unit for Theoretical Biology, Department of Evolutionary Biology, University of Vienna, Djerassiplatz 1, Vienna, Austria; Konrad Lorenz Institute for Evolution and Cognition Research, Martinstrasse 12, Klosterneuburg, Vienna, Austria.
| | | |
Collapse
|
25
|
Palmisano A, Pandit S, Smeralda CL, Demchenko I, Rossi S, Battelli L, Rivolta D, Bhat V, Santarnecchi E. The Pathophysiological Underpinnings of Gamma-Band Alterations in Psychiatric Disorders. Life (Basel) 2024; 14:578. [PMID: 38792599 PMCID: PMC11122172 DOI: 10.3390/life14050578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 05/26/2024] Open
Abstract
Investigating the biophysiological substrates of psychiatric illnesses is of great interest to our understanding of disorders' etiology, the identification of reliable biomarkers, and potential new therapeutic avenues. Schizophrenia represents a consolidated model of γ alterations arising from the aberrant activity of parvalbumin-positive GABAergic interneurons, whose dysfunction is associated with perineuronal net impairment and neuroinflammation. This model of pathogenesis is supported by molecular, cellular, and functional evidence. Proof for alterations of γ oscillations and their underlying mechanisms has also been reported in bipolar disorder and represents an emerging topic for major depressive disorder. Although evidence from animal models needs to be further elucidated in humans, the pathophysiology of γ-band alteration represents a common denominator for different neuropsychiatric disorders. The purpose of this narrative review is to outline a framework of converging results in psychiatric conditions characterized by γ abnormality, from neurochemical dysfunction to alterations in brain rhythms.
Collapse
Affiliation(s)
- Annalisa Palmisano
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, TUD Dresden University of Technology, 01069 Dresden, Germany
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA (E.S.)
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Siddhartha Pandit
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA (E.S.)
| | - Carmelo L. Smeralda
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA (E.S.)
- Siena Brain Investigation and Neuromodulation (SI-BIN) Laboratory, Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, 53100 Siena, Italy;
| | - Ilya Demchenko
- Interventional Psychiatry Program, St. Michael’s Hospital—Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (I.D.)
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Simone Rossi
- Siena Brain Investigation and Neuromodulation (SI-BIN) Laboratory, Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, 53100 Siena, Italy;
| | - Lorella Battelli
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
| | - Davide Rivolta
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Venkat Bhat
- Interventional Psychiatry Program, St. Michael’s Hospital—Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (I.D.)
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Emiliano Santarnecchi
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA (E.S.)
- Department of Neurology and Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
26
|
Mosquera FEC, Lizcano Martinez S, Liscano Y. Effectiveness of Psychobiotics in the Treatment of Psychiatric and Cognitive Disorders: A Systematic Review of Randomized Clinical Trials. Nutrients 2024; 16:1352. [PMID: 38732599 PMCID: PMC11085935 DOI: 10.3390/nu16091352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
In this study, a systematic review of randomized clinical trials conducted from January 2000 to December 2023 was performed to examine the efficacy of psychobiotics-probiotics beneficial to mental health via the gut-brain axis-in adults with psychiatric and cognitive disorders. Out of the 51 studies involving 3353 patients where half received psychobiotics, there was a notably high measurement of effectiveness specifically in the treatment of depression symptoms. Most participants were older and female, with treatments commonly utilizing strains of Lactobacillus and Bifidobacteria over periods ranging from 4 to 24 weeks. Although there was a general agreement on the effectiveness of psychobiotics, the variability in treatment approaches and clinical presentations limits the comparability and generalization of the findings. This underscores the need for more personalized treatment optimization and a deeper investigation into the mechanisms through which psychobiotics act. The research corroborates the therapeutic potential of psychobiotics and represents progress in the management of psychiatric and cognitive disorders.
Collapse
Affiliation(s)
- Freiser Eceomo Cruz Mosquera
- Grupo de Investigación en Salud Integral (GISI), Departamento Facultad de Salud, Universidad Santiago de Cali, Cali 760035, Colombia
| | - Santiago Lizcano Martinez
- Área Servicio de Alimentación, Área Nutrición Clínica Hospitalización UCI Urgencias Y Equipo de Soporte nutricional, Clínica Nuestra, Cali 760041, Colombia;
| | - Yamil Liscano
- Grupo de Investigación en Salud Integral (GISI), Departamento Facultad de Salud, Universidad Santiago de Cali, Cali 760035, Colombia
| |
Collapse
|
27
|
Mosquera FEC, Guevara-Montoya MC, Serna-Ramirez V, Liscano Y. Neuroinflammation and Schizophrenia: New Therapeutic Strategies through Psychobiotics, Nanotechnology, and Artificial Intelligence (AI). J Pers Med 2024; 14:391. [PMID: 38673018 PMCID: PMC11051547 DOI: 10.3390/jpm14040391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
The prevalence of schizophrenia, affecting approximately 1% of the global population, underscores the urgency for innovative therapeutic strategies. Recent insights into the role of neuroinflammation, the gut-brain axis, and the microbiota in schizophrenia pathogenesis have paved the way for the exploration of psychobiotics as a novel treatment avenue. These interventions, targeting the gut microbiome, offer a promising approach to ameliorating psychiatric symptoms. Furthermore, advancements in artificial intelligence and nanotechnology are set to revolutionize psychobiotic development and application, promising to enhance their production, precision, and effectiveness. This interdisciplinary approach heralds a new era in schizophrenia management, potentially transforming patient outcomes and offering a beacon of hope for those afflicted by this complex disorder.
Collapse
Affiliation(s)
| | | | | | - Yamil Liscano
- Grupo de Investigación en Salud Integral (GISI), Departamento Facultad de Salud, Universidad Santiago de Cali, Cali 760035, Colombia; (F.E.C.M.); (M.C.G.-M.); (V.S.-R.)
| |
Collapse
|
28
|
Haroon H, Ho AMC, Gupta VK, Dasari S, Sellgren CM, Cervenka S, Engberg G, Eren F, Erhardt S, Sung J, Choi DS. Cerebrospinal fluid proteomic signatures are associated with symptom severity of first-episode psychosis. J Psychiatr Res 2024; 171:306-315. [PMID: 38340697 PMCID: PMC10995989 DOI: 10.1016/j.jpsychires.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/04/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Apart from their diagnostic, monitoring, or prognostic utility in clinical settings, molecular biomarkers may be instrumental in understanding the pathophysiology of psychiatric disorders, including schizophrenia. Using untargeted metabolomics, we recently identified eight cerebrospinal fluid (CSF) metabolites unique to first-episode psychosis (FEP) subjects compared to healthy controls (HC). In this study, we sought to investigate the CSF proteomic signatures associated with FEP. We employed 16-plex tandem mass tag (TMT) mass spectrometry (MS) to examine the relative protein abundance in CSF samples of 15 individuals diagnosed with FEP and 15 age-and-sex-matched healthy controls (HC). Multiple linear regression model (MLRM) identified 16 differentially abundant CSF proteins between FEP and HC at p < 0.01. Among them, the two most significant CSF proteins were collagen alpha-2 (IV) chain (COL4A2: standard mean difference [SMD] = -1.12, p = 1.64 × 10-4) and neuron-derived neurotrophic factor (NDNF: SMD = -1.03, p = 4.52 × 10-4) both of which were down-regulated in FEP subjects compared to HC. We also identified several potential CSF proteins associated with the pathophysiology and the symptom profile and severity in FEP subjects, including COL4A2, NDNF, hornerin (HRNR), contactin-6 (CNTN6), voltage-dependent calcium channel subunit alpha-2/delta-3 (CACNA2D3), tropomyosin alpha-3 chain (TPM3 and TPM4). Moreover, several protein signatures were associated with cognitive performance. Although the results need replication, our exploratory study suggests that CSF protein signatures can be used to increase the understanding of the pathophysiology of psychosis.
Collapse
Affiliation(s)
- Humza Haroon
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Ada Man-Choi Ho
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Vinod K Gupta
- Division of Surgery Research, Department of Surgery, Rochester, MN, USA; Microbiome Program, Center for Individualized Medicine, Rochester, MN, USA
| | - Surendra Dasari
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Carl M Sellgren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Simon Cervenka
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden; Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Göran Engberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Feride Eren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Sophie Erhardt
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jaeyun Sung
- Division of Surgery Research, Department of Surgery, Rochester, MN, USA; Microbiome Program, Center for Individualized Medicine, Rochester, MN, USA; Division of Rheumatology, Department of Internal Medicine, Rochester, MN, USA
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, USA; Department of Psychiatry and Psychology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA; Neuroscience Program, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.
| |
Collapse
|
29
|
Matrisciano F. Functional foods and neuroinflammation: Focus on autism spectrum disorder and schizophrenia. FUNCTIONAL FOODS AND CHRONIC DISEASE 2024:213-230. [DOI: 10.1016/b978-0-323-91747-6.00012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
30
|
Abstract
The developing brain is particularly vulnerable to extrinsic environmental events such as anemia and iron deficiency during periods of rapid development. Studies of infants with postnatal iron deficiency and iron deficiency anemia clearly demonstrated negative effects on short-term and long-term brain development and function. Randomized interventional trials studied erythropoiesis-stimulating agents and hemoglobin-based red blood cell transfusion thresholds to determine how they affect preterm infant neurodevelopment. Studies of red blood cell transfusion components are limited in preterm neonates. A biomarker strategy measuring brain iron status and health in the preanemic period is desirable to evaluate treatment options and brain response.
Collapse
Affiliation(s)
- Tate Gisslen
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Academic Office Building, 2450 Riverside Avenue, SAO-401, Minneapolis, MN 55454, USA.
| | - Raghavendra Rao
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Academic Office Building, 2450 Riverside Avenue, SAO-401, Minneapolis, MN 55454, USA
| | - Michael K Georgieff
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Academic Office Building, 2450 Riverside Avenue, SAO-401, Minneapolis, MN 55454, USA
| |
Collapse
|
31
|
Liang Q, Jiang Y, Shieh AW, Zhou D, Chen R, Wang F, Xu M, Niu M, Wang X, Pinto D, Wang Y, Cheng L, Vadukapuram R, Zhang C, Grennan K, Giase G, White KP, Peng J, Li B, Liu C, Chen C, Wang SH. The impact of common variants on gene expression in the human brain: from RNA to protein to schizophrenia risk. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.04.543603. [PMID: 37873195 PMCID: PMC10592607 DOI: 10.1101/2023.06.04.543603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Background The impact of genetic variants on gene expression has been intensely studied at the transcription level, yielding in valuable insights into the association between genes and the risk of complex disorders, such as schizophrenia (SCZ). However, the downstream impact of these variants and the molecular mechanisms connecting transcription variation to disease risk are not well understood. Results We quantitated ribosome occupancy in prefrontal cortex samples of the BrainGVEX cohort. Together with transcriptomics and proteomics data from the same cohort, we performed cis-Quantitative Trait Locus (QTL) mapping and identified 3,253 expression QTLs (eQTLs), 1,344 ribosome occupancy QTLs (rQTLs), and 657 protein QTLs (pQTLs) out of 7,458 genes quantitated in all three omics types from 185 samples. Of the eQTLs identified, only 34% have their effects propagated to the protein level. Further analysis on the effect size of prefrontal cortex eQTLs identified from an independent dataset showed clear post-transcriptional attenuation of eQTL effects. To investigate the biological relevance of the attenuated eQTLs, we identified 70 expression-specific QTLs (esQTLs), 51 ribosome-occupancy-specific QTLs (rsQTLs), and 107 protein-specific QTLs (psQTLs). Five of these omics-specific QTLs showed strong colocalization with SCZ GWAS signals, three of them are esQTLs. The limited number of GWAS colocalization discoveries from omics-specific QTLs and the apparent prevalence of eQTL attenuation prompted us to take a complementary approach to investigate the functional relevance of attenuated eQTLs. Using S-PrediXcan we identified 74 SCZ risk genes, 34% of which were novel, and 67% of these risk genes were replicated in a MR-Egger test. Notably, 52 out of 74 risk genes were identified using eQTL data and 70% of these SCZ-risk-gene-driving eQTLs show little to no evidence of driving corresponding variations at the protein level. Conclusion The effect of eQTLs on gene expression in the prefrontal cortex is commonly attenuated post-transcriptionally. Many of the attenuated eQTLs still correlate with SCZ GWAS signal. Further investigation is needed to elucidate a mechanistic link between attenuated eQTLs and SCZ disease risk.
Collapse
Affiliation(s)
- Qiuman Liang
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
| | - Yi Jiang
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Annie W. Shieh
- Center for Human Genetics, The Brown foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Dan Zhou
- School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Department of Molecular Physiology and Biophysics, Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Rui Chen
- Department of Molecular Physiology and Biophysics, Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Feiran Wang
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
| | - Meng Xu
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
| | - Mingming Niu
- Department of Structural Biology, Department of Developmental Neurobiology, Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Xusheng Wang
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Dalila Pinto
- Department of Psychiatry, and Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yue Wang
- Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Lijun Cheng
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA
| | - Ramu Vadukapuram
- Department of Psychiatry, The University of Texas Rio Grande Valley, Harlingen, TX 78550, USA
| | - Chunling Zhang
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Kay Grennan
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Gina Giase
- The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | - Kevin P White
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Junmin Peng
- Department of Structural Biology, Department of Developmental Neurobiology, Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Bingshan Li
- Department of Molecular Physiology and Biophysics, Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Chunyu Liu
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- School of Psychology, Shaanxi Normal University, Xi’an, Shaanxi 710062, China
| | - Chao Chen
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- Furong Laboratory, Changsha, Hunan 410000, China
- National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, Hunan 410000, China
| | - Sidney H. Wang
- Center for Human Genetics, The Brown foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
32
|
Guerrin CG, Prasad K, Vazquez-Matias DA, Zheng J, Franquesa-Mullerat M, Barazzuol L, Doorduin J, de Vries EF. Prenatal infection and adolescent social adversity affect microglia, synaptic density, and behavior in male rats. Neurobiol Stress 2023; 27:100580. [PMID: 37920548 PMCID: PMC10618826 DOI: 10.1016/j.ynstr.2023.100580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/27/2023] [Accepted: 10/12/2023] [Indexed: 11/04/2023] Open
Abstract
Maternal infection during pregnancy and childhood social trauma have been associated with neurodevelopmental and affective disorders, such as schizophrenia, autism spectrum disorders, bipolar disorder and depression. These disorders are characterized by changes in microglial cells, which play a notable role in synaptic pruning, and synaptic deficits. Here, we investigated the effect of prenatal infection and social adversity during adolescence - either alone or in combination - on behavior, microglia, and synaptic density. Male offspring of pregnant rats injected with poly I:C, mimicking prenatal infection, were exposed to repeated social defeat during adolescence. We found that maternal infection during pregnancy prevented the reduction in social behavior and increase in anxiety induced by social adversity during adolescence. Furthermore, maternal infection and social adversity, alone or in combination, induced hyperlocomotion in adulthood. Longitudinal in vivo imaging with [11C]PBR28 positron emission tomography revealed that prenatal infection alone and social adversity during adolescence alone induced a transient increase in translocator protein TSPO density, an indicator of glial reactivity, whereas their combination induced a long-lasting increase that remained until adulthood. Furthermore, only the combination of prenatal infection and social adversity during adolescence induced an increase in microglial cell density in the frontal cortex. Prenatal infection increased proinflammatory cytokine IL-1β protein levels in hippocampus and social adversity reduced anti-inflammatory cytokine IL-10 protein levels in hippocampus during adulthood. This reduction in IL-10 was prevented if rats were previously exposed to prenatal infection. Adult offspring exposed to prenatal infection or adolescent social adversity had a higher synaptic density in the frontal cortex, but not hippocampus, as evaluated by synaptophysin density. Interestingly, such an increase in synaptic density was not observed in rats exposed to the combination of prenatal infection and social adversity, perhaps due to the long-lasting increase in microglial density, which may lead to an increase in microglial synaptic pruning. These findings suggest that changes in microglia activity and cytokine release induced by prenatal infection and social adversity during adolescence may be related to a reduced synaptic pruning, resulting in a higher synaptic density and behavioral changes in adulthood.
Collapse
Affiliation(s)
- Cyprien G.J. Guerrin
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Kavya Prasad
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Daniel A. Vazquez-Matias
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Jing Zheng
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Maria Franquesa-Mullerat
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Lara Barazzuol
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Janine Doorduin
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Erik F.J. de Vries
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| |
Collapse
|
33
|
Xu J, Lan Z, Xu P, Zhang Z. The association between short-term exposure to nitrogen dioxide and hospital admission for schizophrenia: A systematic review and meta-analysis. Medicine (Baltimore) 2023; 102:e35024. [PMID: 37773873 PMCID: PMC10545286 DOI: 10.1097/md.0000000000035024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 08/09/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Ambient air pollution has been identified as a primary risk factor for mental disorders. In recent years, the relationship between exposure to ambient nitrogen dioxide (NO2) and the risk of hospital admissions (HAs) for schizophrenia has garnered increasing scientific interest, but evidence from epidemiological studies has been inconsistent. Therefore, a systematic review and meta-analysis were conducted to comprehensively identify potential correlations. METHODS A literature search in 3 international databases was conducted before December 31, 2022. Relative risk (RR) and corresponding 95% confidence intervals (CI) were calculated to evaluate the strength of the associations. Summary effect sizes were calculated using a random-effects model due to the expected heterogeneity (I2 over 50%). RESULTS A total of ten eligible studies were included in the meta-analysis, including 1,412,860 participants. The pooled analysis found that an increased risk of HAs for schizophrenia was associated with exposure to each increase of 10 μg/m3 in NO2 (RR = 1.029, 95% CI = 1.016-1.041, P < .001). However, the heterogeneity was high for the summary estimates, reducing the credibility of the evidence. In 2-pollutant models, results for NO2 increased by 0.3%, 0.2% and 2.3%, respectively, after adjusting for PM2.5, PM10 and SO2. CONCLUSIONS This study provides evidence that NO2 exposure significantly increases the risk of hospital admission for schizophrenia. Future studies are required to clarify the potential biological mechanism between schizophrenia and NO2 exposure to provide a more definitive result.
Collapse
Affiliation(s)
- Jiating Xu
- Department of General Psychiatry II, The Third Hospital of Quzhou, Quzhou City, China
| | - Zhiyong Lan
- Department of General Psychiatry II, The Third Hospital of Quzhou, Quzhou City, China
| | - Penghao Xu
- Department of Geriatric Psychiatry II, The Third Hospital of Quzhou, Quzhou City, China
| | - Zhihua Zhang
- Department of Geriatric Psychiatry II, The Third Hospital of Quzhou, Quzhou City, China
| |
Collapse
|
34
|
Eichenauer H, Ehlert U. The association between prenatal famine, DNA methylation and mental disorders: a systematic review and meta-analysis. Clin Epigenetics 2023; 15:152. [PMID: 37716973 PMCID: PMC10505322 DOI: 10.1186/s13148-023-01557-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/14/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND Undernutrition in pregnant women is an unfavorable environmental condition that can affect the intrauterine development via epigenetic mechanisms and thus have long-lasting detrimental consequences for the mental health of the offspring later in life. One epigenetic mechanism that has been associated with mental disorders and undernutrition is alterations in DNA methylation. The effect of prenatal undernutrition on the mental health of adult offspring can be analyzed through quasi-experimental studies such as famine studies. The present systematic review and meta-analysis aims to analyze the association between prenatal famine exposure, DNA methylation, and mental disorders in adult offspring. We further investigate whether altered DNA methylation as a result of prenatal famine exposure is prospectively linked to mental disorders. METHODS We conducted a systematic search of the databases PubMed and PsycINFO to identify relevant records up to September 2022 on offspring whose mothers experienced famine directly before and/or during pregnancy, examining the impact of prenatal famine exposure on the offspring's DNA methylation and/or mental disorders or symptoms. RESULTS The systematic review showed that adults who were prenatally exposed to famine had an increased risk of schizophrenia and depression. Several studies reported an association between prenatal famine exposure and hyper- or hypomethylation of specific genes. The largest number of studies reported differences in DNA methylation of the IGF2 gene. Altered DNA methylation of the DUSP22 gene mediated the association between prenatal famine exposure and schizophrenia in adult offspring. Meta-analysis confirmed the increased risk of schizophrenia following prenatal famine exposure. For DNA methylation, meta-analysis was not suitable due to different microarrays/data processing approaches and/or unavailable data. CONCLUSION Prenatal famine exposure is associated with an increased risk of mental disorders and DNA methylation changes. The findings suggest that changes in DNA methylation of genes involved in neuronal, neuroendocrine, and immune processes may be a mechanism that promotes the development of mental disorders such as schizophrenia and depression in adult offspring. Such findings are crucial given that undernutrition has risen worldwide, increasing the risk of famine and thus also of negative effects on mental health.
Collapse
Affiliation(s)
- Heike Eichenauer
- Clinical Psychology and Psychotherapy, University of Zurich, Binzmühlestrasse 14, 8050, Zurich, Switzerland
| | - Ulrike Ehlert
- Clinical Psychology and Psychotherapy, University of Zurich, Binzmühlestrasse 14, 8050, Zurich, Switzerland.
| |
Collapse
|
35
|
Jansåker F, Sundquist J, Sundquist K, Li X. Association between neighborhood deprivation and mortality in patients with schizophrenia and bipolar disorder-A nationwide follow-up study. Bipolar Disord 2023; 25:489-498. [PMID: 36751995 DOI: 10.1111/bdi.13309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
OBJECTIVES The aim was to explore the association between neighborhood deprivation and all-cause mortality and cause-specific mortalities in patients with schizophrenia and bipolar disorder. A better understanding of this potential relationship may help to identify patients with schizophrenia and bipolar disorder with an increased mortality risk. METHODS This nationwide study included practically all adults (≥30 years) diagnosed with schizophrenia (n = 34,544) and bipolar disorder (n = 64,035) in Sweden (1997-2017). The association between neighborhood deprivation and mortality was explored using Cox regression. All models were conducted in both men and women and adjusted for individual-level sociodemographic factors and comorbidities. RESULTS There was an association between level of neighborhood deprivation and all-cause mortality in both groups. The adjusted hazard ratios for all-cause mortality associated with high compared to low neighborhood deprivation were 1.18 (95% confidence interval 1.11-1.25) in patients with schizophrenia and 1.33 (1.26-1.41) in patients with bipolar disorder. The two most common mortality causes in both groups were coronary heart disease and cancer. The mortality due to coronary heart disease increased when neighborhood deprivation increased and reached 1.37 (1.18-1.60) in patients with schizophrenia and 1.70 (1.44-2.01) in patients with bipolar disorder living in the most deprived neighborhoods. CONCLUSIONS This study shows that neighborhood deprivation is an important risk factor for all-cause mortality and most cause-specific mortalities among patients with schizophrenia and bipolar disorder. These findings could serve as aid to policymakers when allocating healthcare resources and to clinicians who encounter patients with these conditions in deprived neighborhoods.
Collapse
Affiliation(s)
- Filip Jansåker
- Center for Primary Health Care Research, Lund University, Lund, Sweden
- Department of Clinical Microbiology, Center of Diagnostic Investigations, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jan Sundquist
- Center for Primary Health Care Research, Lund University, Lund, Sweden
- Department of Family Medicine and Community Health, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Center for Community-based Healthcare Research and Education (CoHRE), Department of Functional Pathology, School of Medicine, Shimane University, Matsue, Japan
| | - Kristina Sundquist
- Center for Primary Health Care Research, Lund University, Lund, Sweden
- Department of Family Medicine and Community Health, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Center for Community-based Healthcare Research and Education (CoHRE), Department of Functional Pathology, School of Medicine, Shimane University, Matsue, Japan
| | - Xinjun Li
- Center for Primary Health Care Research, Lund University, Lund, Sweden
| |
Collapse
|
36
|
Abstract
BACKGROUND Schizophrenia is a severe, chronic mental disorder that causes many psychosocial problems. In order to reveal these problems, it is necessary to measure the quality of life of people with schizophrenia. AIM The aim of this meta-analysis is to compare the quality of life of people with schizophrenia and healthy subjects. METHODS Literature search was conducted in the Web of Science Core Collection database including the dates of January 2000 and March 2021. The systematic search provided 464 potentially relevant studies. The final sample consisted of 18 studies. RESULTS The results of using a random effects model for analysis indicated that schizophrenia subjects showed considerably lower quality of life scores compared to healthy controls. CONCLUSION Determining the quality of people with schizophrenia will help us to create effective psychosocial intervention programs.
Collapse
Affiliation(s)
| | - Melike Tekindal
- Department of Social Work, İzmir Katip Çelebi University, İzmir, Turkey
| | | |
Collapse
|
37
|
Ruffalo ML. The Psychotherapy of Schizophrenia: A Review of the Evidence for Psychodynamic and Nonpsychodynamic Treatments. PSYCHIAT CLIN PSYCH 2023; 33:222-228. [PMID: 38765312 PMCID: PMC11082629 DOI: 10.5152/pcp.2023.23627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/19/2023] [Indexed: 05/22/2024] Open
Abstract
Following the discovery of chlorpromazine's effectiveness as a treatment for schizophrenia in the 1950s, a gradual shift away from psychotherapeutic and toward biological methods of investigation has ensued. Nevertheless, psychological approaches to schizophrenia have a long history and continue to represent an important component of schizophrenia treatment. In the past 2 decades, there has been renewed interest in psychotherapy for schizophrenia among some clinicians and researchers. This article examines the current evidence for both psychodynamic and nonpsychodynamic (cognitive-behavioral, cognitive enhancement, and psychoeducational) therapies for schizophrenic illness. There is evidence to support the use of both types of therapies though these orientations generally differ in their views on the role of psychological factors in the etiology of schizophrenia. It is argued that a pluralistic or biopsychosocial model of schizophrenia is necessary to account for the complexity of the disease and to provide the most effective treatment.
Collapse
Affiliation(s)
- Mark L. Ruffalo
- Department of Psychiatry, University of Central Florida College of Medicine, Orlando, FL, USA; Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
38
|
Win PW, Singh SM, Castellani CA. Mitochondrial DNA Copy Number and Heteroplasmy in Monozygotic Twins Discordant for Schizophrenia. Twin Res Hum Genet 2023:1-10. [PMID: 37655526 DOI: 10.1017/thg.2023.34] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Schizophrenia (SZ) is a severe, complex, and common mental disorder with high heritability (80%), an adult age of onset, and high discordance (∼50%) in monozygotic twins (MZ). Extensive studies on familial and non-familial cases have implicated a number of segregating mutations and de novo changes in SZ that may include changes to the mitochondrial genome. Yet, no single universally causal variant has been identified, highlighting its extensive genetic heterogeneity. This report specifically focuses on the assessment of changes in the mitochondrial genome in a unique set of monozygotic twins discordant (MZD) for SZ using blood. Genomic DNA from six pairs of MZD twins and two sets of parents (N = 16) was hybridized to the Affymetrix Human SNP Array 6.0 to assess mitochondrial DNA copy number (mtDNA-CN). Whole genome sequencing (WGS) and quantitative polymerase chain reaction (qPCR) was performed for a subset of MZD pairs and their parents and was also used to derive mtDNA-CN estimates. The WGS data were further analyzed to generate heteroplasmy (HP) estimates. Our results show that mtDNA-CN estimates for within-pair and mother-child differences were smaller than comparisons involving unrelated individuals, as expected. MZD twins showed discordance in mtDNA-CN estimates and displayed concordance in directionality of differences for mtDNA-CN across all technologies. Further, qPCR performed better than Affymetrix in estimating mtDNA-CN based on relatedness. No reliable differences in HP were detected between MZD twins. The within-MZD differences in mtDNA-CN observed represent postzygotic somatic changes that may contribute to discordance of MZ twins for diseases, including SZ.
Collapse
Affiliation(s)
- Phyo W Win
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Shiva M Singh
- Department of Biology, Western University, London, Canada
| | - Christina A Castellani
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Canada
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Canada
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
39
|
Guerrin CGJ, de Vries EFJ, Prasad K, Vazquez-Matias DA, Manusiwa LE, Barazzuol L, Doorduin J. Maternal infection during pregnancy aggravates the behavioral response to an immune challenge during adolescence in female rats. Behav Brain Res 2023; 452:114566. [PMID: 37419332 DOI: 10.1016/j.bbr.2023.114566] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/23/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
Prenatal and early postnatal infection have been associated with changes in microglial activity and the development of psychiatric disorders. Here, we investigated the effect of prenatal immune activation and postnatal immune challenge, alone and combined, on behavior and microglial cell density in female Wistar rats. Pregnant rats were injected with poly I:C to induce a maternal immune activation (MIA). Their female offspring were subsequently exposed to a lipopolysaccharide (LPS) immune challenge during adolescence. Anhedonia, social behavior, anxiety, locomotion, and working memory were measured with the sucrose preference, social interaction, open field, elevated-plus maze, and Y-maze test, respectively. Microglia cell density was quantified by counting the number of Iba-1 positive cells in the brain cortex. Female MIA offspring were more susceptible to the LPS immune challenge during adolescence than control offspring as demonstrated by a more pronounced reduction in sucrose preference and body weight on the days following the LPS immune challenge. Furthermore, only the rats exposed to both MIA and LPS showed long-lasting changes in social behavior and locomotion. Conversely, the combination MIA and LPS prevented the anxiety induced by MIA alone during adulthood. MIA, LPS, or their combination did not change microglial cell density in the parietal and frontal cortex of adult rats. The results of our study suggest that the maternal immune activation during pregnancy aggravates the response to an immune challenge during adolescence in female rats.
Collapse
Affiliation(s)
- Cyprien G J Guerrin
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen 9713 GZ, the Netherlands
| | - Erik F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen 9713 GZ, the Netherlands
| | - Kavya Prasad
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen 9713 GZ, the Netherlands
| | - Daniel A Vazquez-Matias
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen 9713 GZ, the Netherlands
| | - Lesley E Manusiwa
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen 9713 GZ, the Netherlands
| | - Lara Barazzuol
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen 9713 GZ, the Netherlands; Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen 9713 GZ, the Netherlands
| | - Janine Doorduin
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen 9713 GZ, the Netherlands.
| |
Collapse
|
40
|
Shetty N, Mantri S, Agarwal S, Potdukhe A, Wanjari MB, Taksande AB, Yelne S. Unraveling the Challenges: A Critical Review of Congenital Malformations in Low Socioeconomic Strata of Developing Countries. Cureus 2023; 15:e41800. [PMID: 37575853 PMCID: PMC10422057 DOI: 10.7759/cureus.41800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023] Open
Abstract
Congenital malformations pose significant challenges in the low socioeconomic strata of developing countries. This review critically examines the prevalence, patterns, and factors influencing congenital malformations in these settings. It explores the physical, psychological, and economic consequences for affected individuals and their families and the social stigma and discrimination they face. The review highlights the importance of equity and access to healthcare services, the role of environmental factors and nutritional deficiencies, and the ethical considerations and policy implications associated with congenital malformations. Existing interventions, challenges in implementation, and innovative approaches are discussed. Gaps in knowledge and areas for further research are identified. Addressing congenital malformations in low socioeconomic strata requires multidisciplinary collaboration, advocacy, and inclusive policies. By prioritizing preventive measures, early detection, and comprehensive care, the burden of congenital malformations can be reduced, improving the quality of life for affected individuals and their communities.
Collapse
Affiliation(s)
- Nidhi Shetty
- Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Saket Mantri
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sristy Agarwal
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Ashwini Potdukhe
- Medical Surgical Nursing, Srimati Radhikabai Meghe Memorial College of Nursing, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Mayur B Wanjari
- Research and Development, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Avinash B Taksande
- Physiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Seema Yelne
- Nursing, Shalinitai Meghe College of Nursing, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
41
|
Zhan N, Sham PC, So HC, Lui SSY. The genetic basis of onset age in schizophrenia: evidence and models. Front Genet 2023; 14:1163361. [PMID: 37441552 PMCID: PMC10333597 DOI: 10.3389/fgene.2023.1163361] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Schizophrenia is a heritable neurocognitive disorder affecting about 1% of the population, and usually has an onset age at around 21-25 in males and 25-30 in females. Recent advances in genetics have helped to identify many common and rare variants for the liability to schizophrenia. Earlier evidence appeared to suggest that younger onset age is associated with higher genetic liability to schizophrenia. Clinical longitudinal research also found that early and very-early onset schizophrenia are associated with poor clinical, neurocognitive, and functional profiles. A recent study reported a heritability of 0.33 for schizophrenia onset age, but the genetic basis of this trait in schizophrenia remains elusive. In the pre-Genome-Wide Association Study (GWAS) era, genetic loci found to be associated with onset age were seldom replicated. In the post-Genome-Wide Association Study era, new conceptual frameworks are needed to clarify the role of onset age in genetic research in schizophrenia, and to identify its genetic basis. In this review, we first discussed the potential of onset age as a characterizing/subtyping feature for psychosis, and as an important phenotypic dimension of schizophrenia. Second, we reviewed the methods, samples, findings and limitations of previous genetic research on onset age in schizophrenia. Third, we discussed a potential conceptual framework for studying the genetic basis of onset age, as well as the concepts of susceptibility, modifier, and "mixed" genes. Fourth, we discussed the limitations of this review. Lastly, we discussed the potential clinical implications for genetic research of onset age of schizophrenia, and how future research can unveil the potential mechanisms for this trait.
Collapse
Affiliation(s)
- Na Zhan
- Department of Psychiatry, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Pak C. Sham
- Department of Psychiatry, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Centre of PanorOmic Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Hon-Cheong So
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunming Institute of Zoology and the Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Psychiatry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- CUHK Shenzhen Research Institute, Shenzhen, China
- Margaret K. L. Cheung Research Centre for Management of Parkinsonism, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Hong Kong Branch of the Chinese Academy of Sciences Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Simon S. Y. Lui
- Department of Psychiatry, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
42
|
Matrisciano F. Epigenetic regulation of metabotropic glutamate 2/3 receptors: Potential role for ultra-resistant schizophrenia? Pharmacol Biochem Behav 2023:173589. [PMID: 37348609 DOI: 10.1016/j.pbb.2023.173589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/05/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023]
Abstract
Schizophrenia is a severe and debilitating psychiatric disorder characterized by early cognitive deficits, emotional and behavioral abnormalities resulted by a dysfunctional gene x environment interaction. Genetic and epigenetic abnormalities in cortical parvalbumin-positive GABAergic interneurons lead to alterations in glutamate-mediated excitatory neurotransmission, synaptic plasticity, and neuronal development. Epigenetic alterations during pregnancy or early phases of postnatal life are associated with schizophrenia vulnerability as well as inflammatory processes which are at the basis of brain pathology. An epigenetic animal model of schizophrenia showed specific changes in promoter DNA methylation activity of genes related to schizophrenia such as reelin, BDNF and GAD67, and altered expression and function of mGlu2/3 receptors in the frontal cortex. Although antipsychotic medications represent the main treatment for schizophrenia and generally show an optimal efficacy profile for positive symptoms and relatively poor efficacy for negative or cognitive symptoms, a considerable percentage of individuals show poor response, do not achieve a complete remission, and approximately 30 % of patients show treatment-resistance. Here, we explore the potential role of epigenetic abnormalities linked to metabotropic glutamate 2/3 receptors changes in expression and function as key molecular factors underlying the difference in response to antipsychotics.
Collapse
Affiliation(s)
- Francesco Matrisciano
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois Chicago (UIC), Chicago, IL, USA.
| |
Collapse
|
43
|
Gine-Serven E, Martinez-Ramirez M, Boix-Quintana E, Davi-Loscos E, Guanyabens N, Casado V, Muriana D, Torres-Rivas C, Cuesta M, Labad J. Association between free thyroxine levels and clinical phenotype in first-episode psychosis: a prospective observational study. PeerJ 2023; 11:e15347. [PMID: 37283900 PMCID: PMC10241168 DOI: 10.7717/peerj.15347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/13/2023] [Indexed: 06/08/2023] Open
Abstract
Aim To determine whether thyroid hormone levels are associated with a specific clinical phenotype in patients with first-episode psychosis (FEP). Methods Ninety-eight inpatients experiencing FEP and with less than 6 weeks of antipsychotic treatment were included in the study and were followed up for one year. Baseline psychiatric evaluation included assessment of prodromal symptoms, positive and negative symptoms, depressive symptoms, stressful life events and cycloid psychosis criteria. Thyroid function (thyroid-stimulating hormone (TSH) and free thyroxin (FT4)) was determined at admission. Partial correlation analysis was conducted to analyse the correlation between levels of TSH/FT4 and symptoms. Logistic regression was performed to explore the association between psychopathological symptoms, 12-month diagnoses and thyroid hormones while adjusting for covariates. Results Patients with prodromal symptomatology showed lower baseline FT4 levels (OR = 0.06; p = 0.018). The duration of untreated psychosis (DUP) was inversely associated with FT4 concentrations (r = - 0.243; p = 0.039). FEP patients with sudden onset of psychotic symptoms (criteria B, cycloid psychosis) showed higher FT4 levels at admission (OR = 10.49; p = 0.040). Patients diagnosed with affective psychotic disorders (BD or MDD) at the 12-month follow-up showed higher FT4 levels at admission than patients diagnosed with nonaffective psychosis (schizophrenia, schizoaffective) (OR = 8.57; p = 0.042). Conclusions Our study suggests that higher free-thyroxine levels are associated with a specific clinical phenotype of FEP patients (fewer prodromal symptoms, shorter DUP duration and sudden onset of psychosis) and with affective psychosis diagnoses at the 12-month follow-up.
Collapse
Affiliation(s)
- Eloi Gine-Serven
- Department of Mental Health, Hospital de Mataró, Consorci Sanitari del Maresme, Mataró, Spain
| | - Maria Martinez-Ramirez
- Department of Mental Health, Hospital de Mataró, Consorci Sanitari del Maresme, Mataró, Spain
| | - Ester Boix-Quintana
- Department of Mental Health, Hospital de Mataró, Consorci Sanitari del Maresme, Mataró, Spain
| | - Eva Davi-Loscos
- Department of Mental Health, Hospital de Mataró, Consorci Sanitari del Maresme, Mataró, Spain
| | - Nicolau Guanyabens
- Department of Neurology, Hospital de Mataró, Consorci Sanitari del Maresme, Mataró, Spain
| | - Virginia Casado
- Department of Neurology, Hospital de Mataró, Consorci Sanitari del Maresme, Mataró, Spain
| | - Desiree Muriana
- Department of Neurology, Hospital de Mataró, Consorci Sanitari del Maresme, Mataró, Spain
| | - Cristina Torres-Rivas
- Department of Mental Health, Hospital de Mataró, Consorci Sanitari del Maresme, Mataró, Spain
| | - M.J. Cuesta
- Department of Psychiatry, Complejo Hospitalario de Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Javier Labad
- Department of Mental Health, Hospital de Mataró, Consorci Sanitari del Maresme, Mataró, Spain
- Translational Neuroscience Research Unit I3PT-INc-UAB, Institut de Innovació i Investigació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación en Red de Salud Mental (CIBERSAM), Madrid, Spain
| |
Collapse
|
44
|
Dwir D, Khadimallah I, Xin L, Rahman M, Du F, Öngür D, Do KQ. Redox and Immune Signaling in Schizophrenia: New Therapeutic Potential. Int J Neuropsychopharmacol 2023; 26:309-321. [PMID: 36975001 PMCID: PMC10229853 DOI: 10.1093/ijnp/pyad012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/27/2023] [Indexed: 03/29/2023] Open
Abstract
Redox biology and immune signaling play major roles in the body, including in brain function. A rapidly growing literature also suggests that redox and immune abnormalities are implicated in neuropsychiatric conditions such as schizophrenia (SZ), bipolar disorder, autism, and epilepsy. In this article we review this literature, its implications for the pathophysiology of SZ, and the potential for development of novel treatment interventions targeting redox and immune signaling. Redox biology and immune signaling in the brain are complex and not fully understood; in addition, there are discrepancies in the literature, especially in patient-oriented studies. Nevertheless, it is clear that abnormalities arise in SZ from an interaction between genetic and environmental factors during sensitive periods of brain development, and these abnormalities disrupt local circuits and long-range connectivity. Interventions that correct these abnormalities may be effective in normalizing brain function in psychotic disorders, especially in early phases of illness.
Collapse
Affiliation(s)
- Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Route de Cery, 1008 Prilly-Lausanne, Switzerland
| | - Ines Khadimallah
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Route de Cery, 1008 Prilly-Lausanne, Switzerland
| | - Lijing Xin
- Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Meredith Rahman
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| | - Fei Du
- Psychotic Disorders Division, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Dost Öngür
- Psychotic Disorders Division, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Route de Cery, 1008 Prilly-Lausanne, Switzerland
| |
Collapse
|
45
|
Khan A, Zahid S, Hasan B, Asif AR, Ahmed N. Mass Spectrometry based identification of site-specific proteomic alterations and potential pathways underlying the pathophysiology of schizophrenia. Mol Biol Rep 2023; 50:4931-4943. [PMID: 37076706 DOI: 10.1007/s11033-023-08431-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/04/2023] [Indexed: 04/21/2023]
Abstract
BACKGROUND Schizophrenia (SZ) is a complex multifactorial disorder that affects 1% of the population worldwide with no available effective treatment. Although proteomic alterations are reported in SZ however proteomic expression aberrations among different brain regions are not fully determined. Therefore, the present study aimed spatial differential protein expression profiling of three distinct regions of SZ brain and identification of associated affected biological pathways in SZ progression. METHODS AND RESULTS Comparative protein expression profiling of three distinct autopsied human brain regions (i.e., substantia nigra, hippocampus and prefrontal cortex) of SZ was performed with respective healthy controls. Using two-dimensional electrophoresis (2DE)-based nano liquid chromatography tandem mass spectrometry (Nano-LC MS /MS) analysis, 1443 proteins were identified out of which 58 connote to be significantly dysregulated, representing 26 of substantia nigra,14 of hippocampus and 18 of prefrontal cortex. The 58 differentially expressed proteins were further analyzed using Ingenuity pathway analysis (IPA). The IPA analysis provided protein-protein interaction networks of several proteins including nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kb), extracellular signal regulated kinases 1/2 (ERK1/2), alpha serine / Threonine-protein kinase (AKT1), cellular tumor antigen p53 (TP53) and amyloid precursor protein (APP), holding prime positions in networks and interacts with most of the identified proteins and their closely interacting partners. CONCLUSION These findings provide conceptual insights of novel SZ related pathways and the cross talk of co and contra regulated proteins. This spatial proteomic analysis will further broaden the conceptual framework for schizophrenia research in future.
Collapse
Affiliation(s)
- Ayesha Khan
- Neurochemistry Research Laboratory, Department of Biochemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Saadia Zahid
- Neurochemistry Research Laboratory, Department of Biochemistry, University of Karachi, Karachi, 75270, Pakistan
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Beena Hasan
- Neurochemistry Research Laboratory, Department of Biochemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Abdul R Asif
- Institute of Clinical Chemistry, University Medical Center, Robert-Koch-Str. 40, 37075, Göttingen, Göttingen, Germany
| | - Nikhat Ahmed
- Neurochemistry Research Laboratory, Department of Biochemistry, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
46
|
Vaquero-Rodríguez A, Ortuzar N, Lafuente JV, Bengoetxea H. Enriched environment as a nonpharmacological neuroprotective strategy. Exp Biol Med (Maywood) 2023; 248:553-560. [PMID: 37309729 PMCID: PMC10350798 DOI: 10.1177/15353702231171915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023] Open
Abstract
The structure and functions of the central nervous system are influenced by environmental stimuli, which also play an important role in brain diseases. Enriched environment (EE) consists of producing modifications in the environment of standard laboratory animals to induce an improvement in their biological conditions. This paradigm promotes transcriptional and translational effects that result in ameliorated motor, sensory, and cognitive stimulation. EE has been shown to enhance experience-dependent cellular plasticity and cognitive performance in animals housed under these conditions compared with animals housed under standard conditions. In addition, several studies claim that EE induces nerve repair by restoring functional activities through morphological, cellular, and molecular adaptations in the brain that have clinical relevance in neurological and psychiatric disorders. In fact, the effects of EE have been studied in different animal models of psychiatric and neurological diseases, such as Alzheimer's disease, Parkinson's disease, schizophrenia, ischemic brain injury, or traumatic brain injury, delaying the onset and progression of a wide variety of symptoms of these disorders. In this review, we analyze the action of EE focused on diseases of the central nervous system and the translation to humans to develop a bridge to its application.
Collapse
Affiliation(s)
- Andrea Vaquero-Rodríguez
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Naiara Ortuzar
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - José Vicente Lafuente
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Harkaitz Bengoetxea
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| |
Collapse
|
47
|
Chehimi SN, Crist RC, Reiner BC. Unraveling Psychiatric Disorders through Neural Single-Cell Transcriptomics Approaches. Genes (Basel) 2023; 14:771. [PMID: 36981041 PMCID: PMC10047992 DOI: 10.3390/genes14030771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The development of single-cell and single-nucleus transcriptome technologies is enabling the unraveling of the molecular and cellular heterogeneity of psychiatric disorders. The complexity of the brain and the relationships between different brain regions can be better understood through the classification of individual cell populations based on their molecular markers and transcriptomic features. Analysis of these unique cell types can explain their involvement in the pathology of psychiatric disorders. Recent studies in both human and animal models have emphasized the importance of transcriptome analysis of neuronal cells in psychiatric disorders but also revealed critical roles for non-neuronal cells, such as oligodendrocytes and microglia. In this review, we update current findings on the brain transcriptome and explore molecular studies addressing transcriptomic alterations identified in human and animal models in depression and stress, neurodegenerative disorders (Parkinson's and Alzheimer's disease), schizophrenia, opioid use disorder, and alcohol and psychostimulant abuse. We also comment on potential future directions in single-cell and single-nucleus studies.
Collapse
Affiliation(s)
| | - Richard C. Crist
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
48
|
Feng Y, Shen J. Machine learning-based predictive models and drug prediction for schizophrenia in multiple programmed cell death patterns. Front Mol Neurosci 2023; 16:1123708. [PMID: 36993785 PMCID: PMC10042291 DOI: 10.3389/fnmol.2023.1123708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/22/2023] [Indexed: 03/14/2023] Open
Abstract
Background Schizophrenia (SC) is one of the most common mental illnesses. However, the underlying genes that cause it and its effective treatments are unknown. Programmed cell death (PCD) is associated with many immune diseases and plays an important role in schizophrenia, which may be a diagnostic indicator of the disease. Methods Two groups as training and validation groups were chosen for schizophrenia datasets from the Gene Expression Omnibus Database (GEO). Furthermore, the PCD-related genes of the 12 patterns were extracted from databases such as KEGG. Limma analysis was performed for differentially expressed genes (DEG) identification and functional enrichment analysis. Machine learning was employed to identify minimum absolute contractions and select operator (LASSO) regression to determine candidate immune-related center genes, construct protein-protein interaction networks (PPI), establish artificial neural networks (ANN), and validate with consensus clustering (CC) analysis, then Receiver operating characteristic curve (ROC curve) was drawn for diagnosis of schizophrenia. Immune cell infiltration was developed to investigate immune cell dysregulation in schizophrenia, and finally, related drugs with candidate genes were collected via the Network analyst online platform. Results In schizophrenia, 263 genes were crossed between DEG and PCD-related genes, and machine learning was used to select 42 candidate genes. Ten genes with the most significant differences were selected to establish a diagnostic prediction model by differential expression profiling. It was validated using artificial neural networks (ANN) and consensus clustering (CC), while ROC curves were plotted to assess diagnostic value. According to the findings, the predictive model had a high diagnostic value. Immune infiltration analysis revealed significant differences in Cytotoxic and NK cells in schizophrenia patients. Six candidate gene-related drugs were collected from the Network analyst online platform. Conclusion Our study systematically discovered 10 candidate hub genes (DPF2, ATG7, GSK3A, TFDP2, ACVR1, CX3CR1, AP4M1, DEPDC5, NR4A2, and IKBKB). A good diagnostic prediction model was obtained through comprehensive analysis in the training (AUC 0.91, CI 0.95-0.86) and validation group (AUC 0.94, CI 1.00-0.85). Furthermore, drugs that may be useful in the treatment of schizophrenia have been obtained (Valproic Acid, Epigallocatechin gallate).
Collapse
Affiliation(s)
- Yu Feng
- The University of New South Wales, Kensington, NSW, Australia
- The University of Melbourne, Parkville, VIC, Australia
| | - Jing Shen
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
49
|
Mut-Arbona P, Huang L, Baranyi M, Tod P, Iring A, Calzaferri F, de Los Ríos C, Sperlágh B. Dual Role of the P2X7 Receptor in Dendritic Outgrowth during Physiological and Pathological Brain Development. J Neurosci 2023; 43:1125-1142. [PMID: 36732073 PMCID: PMC9962779 DOI: 10.1523/jneurosci.0805-22.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 02/04/2023] Open
Abstract
At high levels, extracellular ATP operates as a "danger" molecule under pathologic conditions through purinergic receptors, including the ionotropic P2X7 receptor (P2X7R). Its endogenous activation is associated with neurodevelopmental disorders; however, its function during early embryonic stages remains largely unclear. Our objective was to determine the role of P2X7R in the regulation of neuronal outgrowth. For this purpose, we performed Sholl analysis of dendritic branches on primary hippocampal neurons and in acute hippocampal slices from WT mice and mice with genetic deficiency or pharmacological blockade of P2X7R. Because abnormal dendritic branching is a hallmark of certain neurodevelopmental disorders, such as schizophrenia, a model of maternal immune activation (MIA)-induced schizophrenia, was used for further morphologic investigations. Subsequently, we studied MIA-induced behavioral deficits in young adult mice females and males. Genetic deficiency or pharmacological blockade of P2X7R led to branching deficits under physiological conditions. Moreover, pathologic activation of the receptor led to deficits in dendritic outgrowth on primary neurons from WT mice but not those from P2X7R KO mice exposed to MIA. Likewise, only MIA-exposed WT mice displayed schizophrenia-like behavioral and cognitive deficits. Therefore, we conclude that P2X7R has different roles in the development of hippocampal dendritic arborization under physiological and pathologic conditions.SIGNIFICANCE STATEMENT Our main finding is a novel role for P2X7R in neuronal branching in the early stages of development under physiological conditions. We show how a decrease in the expression of P2X7R during brain development causes the receptor to play pathologic roles in adulthood. Moreover, we studied a neurodevelopmental model of schizophrenia and found that, at higher ATP concentrations, endogenous activation of P2X7R is necessary and sufficient for the development of positive and cognitive symptoms.
Collapse
Affiliation(s)
- Paula Mut-Arbona
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083, Budapest, Hungary
- János Szentágothai Doctoral School, Semmelweis University, 1085, Budapest, Hungary
| | - Lumei Huang
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083, Budapest, Hungary
- János Szentágothai Doctoral School, Semmelweis University, 1085, Budapest, Hungary
| | - Mária Baranyi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083, Budapest, Hungary
| | - Pál Tod
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083, Budapest, Hungary
| | - András Iring
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083, Budapest, Hungary
| | - Francesco Calzaferri
- Instituto-Fundación Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Cristobal de Los Ríos
- Instituto-Fundación Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Beáta Sperlágh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083, Budapest, Hungary
- János Szentágothai Doctoral School, Semmelweis University, 1085, Budapest, Hungary
| |
Collapse
|
50
|
Senner F, Schneider-Axmann T, Kaurani L, Zimmermann J, Wiltfang J, von Hagen M, Vogl T, Spitzer C, Senner S, Schulte EC, Schmauß M, Schaupp SK, Reimer J, Reich-Erkelenz D, Papiol S, Kohshour MO, Lang FU, Konrad C, Kirchner SK, Kalman JL, Juckel G, Heilbronner M, Heilbronner U, Figge C, Eyl RE, Dietrich D, Budde M, Angelescu IG, Adorjan K, Schmitt A, Fischer A, Falkai P, Schulze TG. Association of early life stress and cognitive performance in patients with schizophrenia and healthy controls. Schizophr Res Cogn 2023; 32:100280. [PMID: 36846489 PMCID: PMC9945796 DOI: 10.1016/j.scog.2023.100280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/31/2023] [Accepted: 02/05/2023] [Indexed: 02/13/2023]
Abstract
As core symptoms of schizophrenia, cognitive deficits contribute substantially to poor outcomes. Early life stress (ELS) can negatively affect cognition in patients with schizophrenia and healthy controls, but the exact nature of the mediating factors is unclear. Therefore, we investigated how ELS, education, and symptom burden are related to cognitive performance. The sample comprised 215 patients with schizophrenia (age, 42.9 ± 12.0 years; 66.0 % male) and 197 healthy controls (age, 38.5 ± 16.4 years; 39.3 % male) from the PsyCourse Study. ELS was assessed with the Childhood Trauma Screener (CTS). We used analyses of covariance and correlation analyses to investigate the association of total ELS load and ELS subtypes with cognitive performance. ELS was reported by 52.1 % of patients and 24.9 % of controls. Independent of ELS, cognitive performance on neuropsychological tests was lower in patients than controls (p < 0.001). ELS load was more closely associated with neurocognitive deficits (cognitive composite score) in controls (r = -0.305, p < 0.001) than in patients (r = -0.163, p = 0.033). Moreover, the higher the ELS load, the more cognitive deficits were found in controls (r = -0.200, p = 0.006), while in patients, this correlation was not significant after adjusting for PANSS. ELS load was more strongly associated with cognitive deficits in healthy controls than in patients. In patients, disease-related positive and negative symptoms may mask the effects of ELS-related cognitive deficits. ELS subtypes were associated with impairments in various cognitive domains. Cognitive deficits appear to be mediated through higher symptom burden and lower educational level.
Collapse
Affiliation(s)
- Fanny Senner
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich 80336, Germany,Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich 80336, Germany,Corresponding author at: Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336 München, Germany.
| | - Thomas Schneider-Axmann
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich 80336, Germany
| | - Lalit Kaurani
- German Center of Neurodegenerative Diseases (DZNE), Göttingen 37075, Germany
| | - Jörg Zimmermann
- Psychiatrieverbund Oldenburger Land gGmbH, Karl-Jaspers-Klinik, Bad Zwischenahn 26160, Germany
| | - Jens Wiltfang
- German Center of Neurodegenerative Diseases (DZNE), Göttingen 37075, Germany,Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen 37075, Germany,Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Martin von Hagen
- Clinic for Psychiatry and Psychotherapy, Clinical Center Werra-Meißner, Eschwege 37269, Germany
| | - Thomas Vogl
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich 80336, Germany
| | - Carsten Spitzer
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center Rostock, Rostock 18147, Germany
| | - Simon Senner
- Center for Psychiatry Reichenau, Academic Hospital University of Konstanz, Konstanz 78479, Germany
| | - Eva C. Schulte
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich 80336, Germany,Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich 80336, Germany
| | - Max Schmauß
- Department of Psychiatry and Psychotherapy, Bezirkskrankenhaus Augsburg, Augsburg 86156, Germany
| | - Sabrina K. Schaupp
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich 80336, Germany
| | - Jens Reimer
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Daniela Reich-Erkelenz
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich 80336, Germany
| | - Sergi Papiol
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich 80336, Germany,Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich 80336, Germany
| | - Mojtaba Oraki Kohshour
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich 80336, Germany,Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fabian U. Lang
- Department of Psychiatry II, Ulm University, Bezirkskrankenhaus Günzburg, Günzburg, 89312, Germany
| | - Carsten Konrad
- Department of Psychiatry and Psychotherapy, Agaplesion Diakonieklinikum, Rotenburg 27356, Germany
| | - Sophie-Kathrin Kirchner
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich 80336, Germany,Department of Psychiatry and Psychotherapy, Bezirkskrankenhaus Augsburg, Augsburg 86156, Germany
| | - Janos L. Kalman
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich 80336, Germany,Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich 80336, Germany
| | - Georg Juckel
- Department of Psychiatry, Ruhr University Bochum, LWL University Hospital, Bochum 44791, Germany
| | - Maria Heilbronner
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich 80336, Germany
| | - Urs Heilbronner
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich 80336, Germany
| | - Christian Figge
- Karl-Jaspers Clinic, European Medical School Oldenburg-Groningen, Oldenburg 26160, Germany
| | - Ruth E. Eyl
- Stuttgart Cancer Center –Tumorzentrum Eva Mayr-Stihl, Klinikum Stuttgart, Stuttgart 70174, Germany
| | | | - Monika Budde
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich 80336, Germany
| | - Ion-George Angelescu
- Department of Psychiatry and Psychotherapy, Mental Health Institute Berlin, Berlin 14050, Germany
| | - Kristina Adorjan
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich 80336, Germany,Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich 80336, Germany
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich 80336, Germany,Laboratory of Neuroscience (LIM27), Institute of Psychiatry, University of Sao Paulo, Sao Paulo, Brazil
| | - Andre Fischer
- German Center of Neurodegenerative Diseases (DZNE), Göttingen 37075, Germany,Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen 37075, Germany,Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich 80336, Germany
| | - Thomas G. Schulze
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich 80336, Germany,Department of Psychiatry and Behavorial Sciences, SUNY Upstate Medical University, Syracuse, 54, NY, USA,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|