1
|
Li F, Xie L, Xiao Q, Li J, Zhong H, Xu X, Tu J, Luo Q. Benzo[a]pyrene exposure induces anxiety-like behaviors in the mice through brain metabolic alterations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176215. [PMID: 39276998 DOI: 10.1016/j.scitotenv.2024.176215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
The deleterious health impacts of polycyclic aromatic hydrocarbons (PAHs) on the population have been extensively substantiated and acknowledged. Mounting evidence underscores that PAH exposure is closely linked to an elevated risk of mental disorders, particularly in populations experiencing occupational and high-level exposure. In this study, we aimed to investigate the mechanisms underlying anxiety-like behaviors induced by different dosages of PAHs, with a concentrated focus on brain region-specific metabolic alterations in mice using various metabolomics approaches. Male C57BL/6 mice were exposed to benzo[a]pyrene (B[a]P), a typical PAH, through gavage at occupational exposure and EPA toxicologically relevant dosages (2.0 and 20.0 mg/kg/day) for 21 days, respectively. Behavioral assessments revealed that occupational exposure to B[a]P induced anxiety-like behaviors in C57BL/6 mice. Meanwhile, elevated serum norepinephrine and corticotropin-releasing hormone further confirmed the anxiety-inducing effects of B[a]P exposure. Metabolomics analysis uncovered dysregulation across various metabolic pathways following B[a]P exposure, encompassing brain neurotransmitter, organic acid, amino acid, lipid, fatty acid, and cholesterol. Anxiety levels and lipid metabolic abnormalities were notably exacerbated at the higher dosage, despite being only a 10-fold increase. Of particular significance, a decrease in lysophosphatidic acid (LPA) and lysophosphatidylserine (LPS) emerged as pivotal indicators of B[a]P neurotoxicity. Spatial-resolved metabolomics further demonstrated distinctive lipid and metabolite profiles across different brain subregions after exposure to B[a]P. Remarkably, alterations were specifically observed in the anxiety-related brain regions, such as the hippocampus, cortex, white matter, and thalamus, varying with exposure dosages. These findings underscore the significance of brain metabolic abnormalities in the development of mental disorders triggered by B[a]P exposure and highlight the need for establishing precise exposure limits of B[a]P to safeguard public mental health.
Collapse
Affiliation(s)
- Fang Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Li Xie
- Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen 518055, China; Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518067, China
| | - Qian Xiao
- Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen 518055, China
| | - Jingguang Li
- The Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center of Food Safety and Risk Assessment, Beijing 100021, China
| | - Huifang Zhong
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xirong Xu
- Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Tu
- Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Qian Luo
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Scheggi S, Concas L, Corsi S, Carta M, Melis M, Frau R. Expanding the therapeutic potential of neuro(active)steroids: a promising strategy for hyperdopaminergic behavioral phenotypes. Neurosci Biobehav Rev 2024; 164:105842. [PMID: 39103066 DOI: 10.1016/j.neubiorev.2024.105842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/10/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Imbalances in dopamine activity significantly contribute to the pathophysiology of several neuropsychiatric disorders, including addiction, ADHD, schizophrenia, impulse control disorders, and Parkinson's Disease. Neuro(active)steroids, comprising endogenous steroids that finely modulate neuronal activity, are considered crucial regulators of brain function and behavior, with implications in various physiological processes and pathological conditions. Specifically, subclasses of Neuro(active)steroids belonging to the 5α reductase pathway are prominently involved in brain disorders characterized by dopaminergic signaling imbalances. This review highlights the neuromodulatory effects of Neuro(active)steroids on the dopamine system and related aberrant behavioral phenotypes. We critically appraise the role of pregnenolone, progesterone, and allopregnanolone on dopamine signaling. Additionally, we discuss the impact of pharmacological interventions targeting 5α reductase activity in neuropsychiatric conditions characterized by excessive activation of the dopaminergic system, ranging from psychotic (endo)phenotypes and motor complications to decision-making problems and addiction.
Collapse
Affiliation(s)
- Simona Scheggi
- Dept. of Molecular and Developmental Medicine, University of Siena, Italy
| | - Luca Concas
- Dept. Of Biomedical Sciences, University of Cagliari, Italy
| | - Sara Corsi
- Dept. of Developmental and Regenerative Neurobiology, Lund University, Sweden
| | - Manolo Carta
- Dept. Of Biomedical Sciences, University of Cagliari, Italy
| | - Miriam Melis
- Dept. Of Biomedical Sciences, University of Cagliari, Italy
| | - Roberto Frau
- Dept. Of Biomedical Sciences, University of Cagliari, Italy; Guy Everett Laboratory, University of Cagliari, Cagliari, Italy.
| |
Collapse
|
3
|
Kaleta M, Oklestkova J, Klíčová K, Kvasnica M, Koníčková D, Menšíková K, Strnad M, Novák O. Simultaneous Determination of Selected Steroids with Neuroactive Effects in Human Serum by Ultrahigh-Performance Liquid Chromatography-Tandem Mass Spectrometry. ACS Chem Neurosci 2024; 15:1990-2005. [PMID: 38655788 PMCID: PMC11099924 DOI: 10.1021/acschemneuro.3c00824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/27/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
Neuroactive steroids are a group of steroid molecules that are involved in the regulation of functions of the nervous system. The nervous system is not only the site of their action, but their biosynthesis can also occur there. Neuroactive steroid levels depend not only on the physiological state of an individual (person's sex, age, diurnal variation, etc.), but they are also affected by various pathological processes in the nervous system (some neurological and psychiatric diseases or injuries), and new knowledge can be gained by monitoring these processes. The aim of our research was to develop and validate a comprehensive method for the simultaneous determination of selected steroids with neuroactive effects in human serum. The developed method enables high throughput and a sensitive quantitative analysis of nine neuroactive steroid substances (pregnenolone, progesterone, 5α-dihydroprogesterone, allopregnanolone, testosterone, 5α-dihydrotestosterone, androstenedione, dehydroepiandrosterone, and epiandrosterone) in 150 μL of human serum by ultrahigh-performance liquid chromatography with tandem mass spectrometry. The correlation coefficients above 0.999 indicated that the developed analytical procedure was linear in the range of 0.90 nmol/L to 28.46 μmol/L in human serum. The accuracy and precision of the method for all analytes ranged from 83 to 118% and from 0.9 to 14.1%, respectively. This described method could contribute to a deeper understanding of the pathophysiology of various diseases. Similarly, it can also be helpful in the search for new biomarkers and diagnostic options or therapeutic approaches.
Collapse
Affiliation(s)
- Michal Kaleta
- Laboratory
of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany
of the Czech Academy of Sciences, Šlechtitelů 27, Olomouc 783 71, Czech Republic
- Department
of Neurology, Faculty of Medicine and Dentistry, Palacký University, Olomouc 779 00, Czech Republic
| | - Jana Oklestkova
- Laboratory
of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany
of the Czech Academy of Sciences, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Kateřina Klíčová
- Department
of Neurology, Faculty of Medicine and Dentistry, Palacký University, Olomouc 779 00, Czech Republic
- Department
of Neurology, University Hospital Olomouc, Olomouc 779 00, Czech Republic
| | - Miroslav Kvasnica
- Laboratory
of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany
of the Czech Academy of Sciences, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Dorota Koníčková
- Department
of Neurology, Faculty of Medicine and Dentistry, Palacký University, Olomouc 779 00, Czech Republic
- Department
of Neurology, University Hospital Olomouc, Olomouc 779 00, Czech Republic
| | - Kateřina Menšíková
- Department
of Neurology, Faculty of Medicine and Dentistry, Palacký University, Olomouc 779 00, Czech Republic
- Department
of Neurology, University Hospital Olomouc, Olomouc 779 00, Czech Republic
| | - Miroslav Strnad
- Laboratory
of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany
of the Czech Academy of Sciences, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Ondřej Novák
- Laboratory
of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany
of the Czech Academy of Sciences, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| |
Collapse
|
4
|
Monti L, Hanover R, Salmán E, Baker RA, Lappalainen J, Smith M. Effect of fasedienol (PH94B) pherine nasal spray and steroidal hormones on electrogram responses and autonomic nervous system activity in healthy adult volunteers. Hum Psychopharmacol 2024; 39:e2892. [PMID: 38193849 DOI: 10.1002/hup.2892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/10/2024]
Abstract
OBJECTIVE Fasedienol (PH94B) is a pherine compound formulated as a nasal spray that is hypothesized to regulate olfactory-amygdala circuits of fear and anxiety. Fasedienol's effect on the local electrogram of nasal chemosensory neurons (EGNR) and autonomic nervous system (ANS) responses versus steroidal hormones and controls in healthy adults is reported. METHODS Eight males and 8 females randomly received aerosolized control (propylene glycol) and study drugs (fasedienol, 17β-estradiol, progesterone, cortisol, and testosterone, 0.4 μg each in propylene glycol) onto the nasal septum mucosal lining at 30-min intervals over 2 sessions. EGNR was continuously monitored; autonomic parameters were recorded before and after administration. RESULTS Fasedienol significantly increased EGNR amplitude (males: 5.0 vs. 0.6 mV, p < 0.001; females:5.7 vs. 0.6 mV, p < 0.001), and rapidly reduced respiratory rate (p < 0.05), heart rate (p < 0.01), and electrodermal activity (p < 0.05) versus control. EGNR and ANS responses after steroidal hormone administration were similar to control. 81% reported feeling less tense/more relaxed after receiving fasedienol, but not after receiving either control or steroidal hormones. CONCLUSIONS Intranasal fasedienol, but not control or steroidal hormones, activated EGNR and rapidly reduced ANS responses, consistent with sympatholytic effects. Combined with subjective reports, results suggest fasedienol may provide acute relief in anxiety conditions.
Collapse
Affiliation(s)
- Louis Monti
- Vistagen Therapeutics, Inc., South San Francisco, California, USA
| | - Rita Hanover
- Vistagen Therapeutics, Inc., South San Francisco, California, USA
| | - Ester Salmán
- Vistagen Therapeutics, Inc., South San Francisco, California, USA
| | - Ross A Baker
- Vistagen Therapeutics, Inc., South San Francisco, California, USA
| | | | - Mark Smith
- Vistagen Therapeutics, Inc., South San Francisco, California, USA
| |
Collapse
|
5
|
Xu FR, Wei ZH, Xu XX, Zhang XG, Wei CJ, Qi XM, Li YH, Gao XL, Wu Y. The hypothalamic steroidogenic pathway mediates susceptibility to inflammation-evoked depression in female mice. J Neuroinflammation 2023; 20:293. [PMID: 38062440 PMCID: PMC10704691 DOI: 10.1186/s12974-023-02976-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Depression is two-to-three times more frequent among women. The hypothalamus, a sexually dimorphic area, has been implicated in the pathophysiology of depression. Neuroinflammation-induced hypothalamic dysfunction underlies behaviors associated with depression. The lipopolysaccharide (LPS)-induced mouse model of depression has been well-validated in numerous laboratories, including our own, and is widely used to investigate the relationship between neuroinflammation and depression. However, the sex-specific differences in metabolic alterations underlying depression-associated hypothalamic neuroinflammation remain unknown. METHODS Here, we employed the LPS-induced mouse model of depression to investigate hypothalamic metabolic changes in both male and female mice using a metabolomics approach. Through bioinformatics analysis, we confirmed the molecular pathways and biological processes associated with the identified metabolites. Furthermore, we employed quantitative real-time PCR, enzyme-linked immunosorbent assay, western blotting, and pharmacological interventions to further elucidate the underlying mechanisms. RESULTS A total of 124 and 61 differential metabolites (DMs) were detected in male and female mice with depressive-like behavior, respectively, compared to their respective sex-matched control groups. Moreover, a comparison between female and male model mice identified 37 DMs. We capitalized on biochemical clustering and functional enrichment analyses to define the major metabolic changes in these DMs. More than 55% of the DMs clustered into lipids and lipid-like molecules, and an imbalance in lipids metabolism was presented in the hypothalamus. Furthermore, steroidogenic pathway was confirmed as a potential sex-specific pathway in the hypothalamus of female mice with depression. Pregnenolone, an upstream component of the steroid hormone biosynthesis pathway, was downregulated in female mice with depressive-like phenotypes but not in males and had considerable relevance to depressive-like behaviors in females. Moreover, exogenous pregnenolone infusion reversed depressive-like behaviors in female mice with depression. The 5α-reductase type I (SRD5A1), a steroidogenic hub enzyme involved in pregnenolone metabolism, was increased in the hypothalamus of female mice with depression. Its inhibition increased hypothalamic pregnenolone levels and ameliorated depressive-like behaviors in female mice with depression. CONCLUSIONS Our study findings demonstrate a marked sexual dimorphism at the metabolic level in depression, particularly in hypothalamic steroidogenic metabolism, identifying a potential sex-specific pathway in female mice with depressive-like behaviors.
Collapse
Affiliation(s)
- Fu-Rong Xu
- Department of Nursing, The Second People's Hospital of Wuwei, Wuwei, 733000, China
| | - Zhen-Hong Wei
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China
- Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Xiao-Xia Xu
- Department of Nursing, People's Hospital of Wuwei, Wuwei, 733000, China
| | - Xiao-Gang Zhang
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Chao-Jun Wei
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China
- Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Xiao-Ming Qi
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China
- Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Yong-Hong Li
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China.
- Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, 730000, China.
| | - Xiao-Ling Gao
- The Clinical Laboratory Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570100, China.
| | - Yu Wu
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China.
- Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, 730000, China.
- School of Psychology, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
6
|
Cutler AJ, Mattingly GW, Maletic V. Understanding the mechanism of action and clinical effects of neuroactive steroids and GABAergic compounds in major depressive disorder. Transl Psychiatry 2023; 13:228. [PMID: 37365161 PMCID: PMC10293235 DOI: 10.1038/s41398-023-02514-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/12/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
The pathophysiology of major depressive disorder (MDD) is thought to result from impaired connectivity between key brain networks. Gamma-aminobutyric acid (GABA) is the key inhibitory neurotransmitter in the brain, working primarily via GABAA receptors, with an important role in virtually all physiologic functions in the brain. Some neuroactive steroids (NASs) are positive allosteric modulators (PAMs) of GABAA receptors and potentiate phasic and tonic inhibitory responses via activation of synaptic and extrasynaptic GABAA receptors, respectively. This review first discusses preclinical and clinical data that support the association of depression with diverse defects in the GABAergic system of neurotransmission. Decreased levels of GABA and NASs have been observed in adults with depression compared with healthy controls, while treatment with antidepressants normalized the altered levels of GABA and NASs. Second, as there has been intense interest in treatment approaches for depression that target dysregulated GABAergic neurotransmission, we discuss NASs approved or currently in clinical development for the treatment of depression. Brexanolone, an intravenous NAS and a GABAA receptor PAM, is approved by the U.S. Food and Drug Administration for the treatment of postpartum depression (PPD) in patients 15 years and older. Other NASs include zuranolone, an investigational oral GABAA receptor PAM, and PH10, which acts on nasal chemosensory receptors; clinical data to date have shown improvement in depressive symptoms with these investigational NASs in adults with MDD or PPD. Finally, the review discusses how NAS GABAA receptor PAMs may potentially address the unmet need for novel and effective treatments with rapid and sustained antidepressant effects in patients with MDD.
Collapse
|
7
|
Söderqvist G, Naessén S. Androgens impact on psychopathological variables according to CPRS, and EDI 2 scores: In women with bulimia nervosa, and eating disorder not otherwise specified. J Steroid Biochem Mol Biol 2023; 226:106217. [PMID: 36368624 DOI: 10.1016/j.jsbmb.2022.106217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/28/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022]
Abstract
Bulimia nervosa (BN) is characterized by binge eating, compensatory behavior, over-evaluation of weight and shape, which often co-occur with symptoms of anxiety and depression. Depression is the most common comorbid diagnosis in women with eating disorders. The role of androgens in the pathophysiology of depression has been recognized in recent years. However, the research on psychopathological comorbidity and androgen levels in bulimic disease is sparse. This study aimed to investigate, if there were any correlations between the androgens, testosterone (T), dehydroepiandrosterone sulphate (DHEAS), androstenedione (A4), 5α-dihydrotestosterone, (5α-DHT), and test scores of psychopathological variables, in women with bulimia nervosa (BN), eating disorder not otherwise specified of purging subtype (EDNOS-P) assessed by CPRS, and EDI 2. Women with DSM-IV diagnosis of BN (n = 36), EDNOS-P (n = 27), and healthy control subjects (n = 58) evaluated for fifteen psychopathological variables, i.a. depressive symptoms, impulsivity, personal traits, as well as serum androgen levels. All women were euthyroid, and polycystic ovarian syndrome (PCOS) diagnosis was excluded. Although androgen levels were almost equal for all three groups, significant correlations between core psychopathological symptoms (9/15) of bulimia nervosa and the most potent endogenous androgen, 5α-DHT, was found only in the EDNOS-P group. The role of 5α-DHT in women is not fully elucidated. Both animal and human studies have shown that the brain is able to locally synthesize steroids de novo and is a target of steroid hormones. Maybe these results can be interpreted in the light of differences in androgen receptor variability, metabolism and origin of T and 5α-DHT.
Collapse
Affiliation(s)
- Gunnar Söderqvist
- Department of Women's, and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Sabine Naessén
- Department of Women's, and Children's Health, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
8
|
Garcia-Argibay M, Hiyoshi A, Fall K, Montgomery S. Association of 5α-Reductase Inhibitors With Dementia, Depression, and Suicide. JAMA Netw Open 2022; 5:e2248135. [PMID: 36547981 PMCID: PMC9857015 DOI: 10.1001/jamanetworkopen.2022.48135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/06/2022] [Indexed: 12/24/2022] Open
Abstract
Importance In recent decades, there has been increased interest in the possible adverse neurological effects of 5α-reductase inhibitors (5-ARIs), which have been used mainly for benign prostatic hyperplasia and androgenic alopecia. Numerous studies and reports have indicated associations of 5-ARIs with depression and suicide. However, most of these studies had methodological shortcomings, and very little is known about the potential association of 5-ARIs with dementia. Objective To investigate the association of 5-ARI use with all-cause dementia, Alzheimer disease, vascular dementia, depression, and suicide. Design, Setting, and Participants This Swedish register-based cohort study included 2 236 876 men aged 50 to 90 years between July 1, 2005, and December 31, 2018. Statistical analyses were performed from September 15, 2021, to May 25, 2022. Main Outcomes and Measures A diagnosis of all-cause dementia, Alzheimer disease, vascular dementia, depression, or completed suicide. Exposures A recorded prescription in the Swedish national prescription register of finasteride or dutasteride and duration of use. Results Of 2 236 876 men (median age at the start of follow-up, 55 years [IQR, 50-65 years] and at treatment initiation, 73 years [IQR, 66-80 years]), 70 645 (3.2%) started finasteride treatment, and 8774 (0.4%) started dutasteride treatment. Men taking finasteride or dutasteride were at increased risk of all-cause dementia (finasteride: hazard ratio [HR], 1.22 [95% CI, 1.17-1.28]; dutasteride: HR, 1.10 [95% CI, 1.01-1.20]), Alzheimer disease (finasteride: HR, 1.20 [95% CI, 1.10-1.31]; dutasteride: HR, 1.28 [95% CI, 1.09-1.50]), vascular dementia (finasteride: HR, 1.44 [95% CI, 1.30-1.58]; dutasteride: HR, 1.31 [95% CI, 1.08-1.59]), and depression (finasteride: HR, 1.61 [95% CI, 1.48-1.75]; dutasteride: HR, 1.68 [95% CI, 1.43-1.96]). However, the magnitude of the association decreased over time, and the findings became statistically nonsignificant with continuous exposures over 4 years, except for depression, which showed a constant risk over time, with no differences between finasteride and dutasteride. In contrast, 5-ARIs were not associated with suicide (finasteride: HR, 1.22 [95% CI, 0.99-1.49]; dutasteride: HR, 0.98 [95% CI, 0.62-1.54]). Conclusions and Relevance This cohort study found that, while men receiving 5-ARI treatment showed a higher risk for dementia in the initial periods after starting treatment, the decreasing magnitude of the association over time suggested that the risk may be, entirely or in part, due to increased dementia detection among patients with benign prostate enlargement. Both finasteride and dutasteride were similarly associated with depression with a constant risk over time, while neither drug was associated with suicide. Prescribing clinicians and potential users should be aware of the possible risks for depression associated with 5-ARI use.
Collapse
Affiliation(s)
- Miguel Garcia-Argibay
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Ayako Hiyoshi
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Public Health Sciences, Stockholm University, Stockholm, Sweden
- Department of Epidemiology and Public Health, University College London, London, United Kingdom
- Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Katja Fall
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Scott Montgomery
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Epidemiology and Public Health, University College London, London, United Kingdom
- Clinical Epidemiology Division, Department of Medicine, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
9
|
Neuropeptidergic control of neurosteroids biosynthesis. Front Neuroendocrinol 2022; 65:100976. [PMID: 34999057 DOI: 10.1016/j.yfrne.2021.100976] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/12/2021] [Accepted: 12/22/2021] [Indexed: 01/14/2023]
Abstract
Neurosteroids are steroids synthesized within the central nervous system either from cholesterol or by metabolic reactions of circulating steroid hormone precursors. It has been suggested that neurosteroids exert pleiotropic activities within the central nervous system, such as organization and activation of the central nervous system and behavioral regulation. It is also increasingly becoming clear that neuropeptides exert pleiotropic activities within the central nervous system, such as modulation of neuronal functions and regulation of behavior, besides traditional neuroendocrinological functions. It was hypothesized that some of the physiological functions of neuropeptides acting within the central nervous system may be through the regulation of neurosteroids biosynthesis. Various neuropeptides reviewed in this study possibly regulate neurosteroids biosynthesis by controlling the activities of enzymes that catalyze the production of neurosteroids. It is now required to thoroughly investigate the neuropeptidergic control mechanisms of neurosteroids biosynthesis to characterize the physiological significance of this new neuroendocrinological phenomenon.
Collapse
|
10
|
Pérez-Valdecantos D, Caballero-García A, del Castillo-Sanz T, Bello HJ, Roche E, Roche A, Córdova A. Variations in Salivary Stress Biomarkers and Their Relationship with Anxiety, Self-Efficacy and Sleeping Quality in Emergency Health Care Professionals. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:9277. [PMID: 34501877 PMCID: PMC8431039 DOI: 10.3390/ijerph18179277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 12/02/2022]
Abstract
Hospital healthcare workers of emergency departments (EDs) face a variety of occupational stressors on a daily basis. We have recently published that emergency professionals display increased salivary levels of α-amylase and dehydroepiandrosterone during the working day. The pattern of these markers may suggest a counteracting mechanism of dehydroepiandrosterone against the stress reflected by amylase increases. In order to verify this hypothesis, we have analysed different psychological aspects in the same group of healthcare professionals through different tests related to behaviours resulting from stress. These include the state-trait anxiety inventory, the self-efficacy test and the sleeping quality questionnaire. The tests were provided at the beginning of the working day and collected at the end. STAI scores (trait and state) were indicative of no anxiety. Self-efficacy scores were considered optimal, as well as those from the sleeping quality questionnaire. This is supported by the modest correlation between STAI scores and salivary levels of α-amylase and dehydroepiandrosterone. In conclusion, the emergency professionals of the studied hospitals seem to have adequate work management. Altogether it means that the stress generated during work performance is controlled, allowing a correct adaptation to the demanding situations undergone in emergency departments.
Collapse
Affiliation(s)
- Daniel Pérez-Valdecantos
- Departamento de Bioquímica, Campus Universitario “Los Pajaritos”, Biología Molecular y Fisiología, Facultad de Ciencias de la Salud, GIR de “Ejercicio Físico y Envejecimiento”, Universidad de Valladolid, 42004 Soria, Spain;
| | - Alberto Caballero-García
- Departamento de Anatomía y Radiología, Facultad de Ciencias de la Salud, GIR de “Ejercicio Físico y Envejecimiento”, Campus Universitario “Los Pajaritos”, Universidad Valladolid, 42004 Soria, Spain;
| | - Teodosia del Castillo-Sanz
- Gerencia de Emergencias Sanitarias de Castilla y León, UME Soria, Hospital Virgen del Mirón, 42005 Soria, Spain;
| | - Hugo J. Bello
- Departamento de Matemáticas, Escuela de Ingeniería de la Industria Forestal, Agronómica y de la Bioenergía, GIR de “Ejercicio Físico y Envejecimiento”, Campus Universitario “Los Pajaritos”, Universidad de Valladolid, 42004 Soria, Spain;
| | - Enrique Roche
- Department of Applied Biology-Nutrition, Institute of Bioengineering, Miguel Hernández University, 03202 Elche, Spain; (E.R.); (A.R.)
- Alicante Institute for Health and Biomedical Research (ISABIAL Foundation), 03010 Alicante, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alba Roche
- Department of Applied Biology-Nutrition, Institute of Bioengineering, Miguel Hernández University, 03202 Elche, Spain; (E.R.); (A.R.)
| | - Alfredo Córdova
- Departamento de Bioquímica, Campus Universitario “Los Pajaritos”, Biología Molecular y Fisiología, Facultad de Ciencias de la Salud, GIR de “Ejercicio Físico y Envejecimiento”, Universidad de Valladolid, 42004 Soria, Spain;
| |
Collapse
|
11
|
Teubel J, Parr MK. Determination of neurosteroids in human cerebrospinal fluid in the 21st century: A review. J Steroid Biochem Mol Biol 2020; 204:105753. [PMID: 32937199 DOI: 10.1016/j.jsbmb.2020.105753] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/19/2022]
Abstract
Determination of steroid hormones synthesized by the human body plays an important role in various fields of endocrinology. Neurosteroids (NS) are steroids that are synthesized in the central (CNS) or peripheral nervous system (PNS), which is not only a source but also a target for neurosteroids. They are discussed as possible biomarkers in various cognitive disorders and research interest in this topic raises continuously. Nevertheless, knowledge on functions and metabolism is still limited, although the concept of neurosteroids was already introduced in the 1980s. Until today, the analysis of neurosteroids is truly challenging. The only accessible matrix for investigations of brain metabolism in living human beings is cerebrospinal fluid (CSF), which therefore becomes a very interesting specimen for analysis. However, neurosteroid concentrations are expected to be very low and the available amount of cerebrospinal fluid is limited. Further, high structural similarities of endogenous neurosteroids challenges analysis. Therefore, comprehensive methods, highly selective and sensitive for a large range of concentrations for different steroids in one aliquot are required and under continuous development. Although research has been increasingly intensified, still only few data are available on reference levels of neurosteroids in human cerebrospinal fluid. In this review, published literature of the last twenty years, as a period with relatively contemporary analytical methods, was systematically investigated. Considerations on human cerebrospinal fluid, different analytical approaches, and available data on levels of in analogy to periphery conceivable occurring neurosteroids, including (pro-) gestagens, androgens, corticoids, estrogens, and steroid conjugates, and their interpretation are intensively discussed.
Collapse
Affiliation(s)
- Juliane Teubel
- Freie Universität Berlin, Institute of Pharmacy, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Maria Kristina Parr
- Freie Universität Berlin, Institute of Pharmacy, Königin-Luise-Str. 2+4, 14195 Berlin, Germany.
| |
Collapse
|
12
|
Aleman M, Chigerwe M, Varga A, Madigan JE. Steroid precursors, steroids, neuroactive steroids, and neurosteroids concentrations in serum and saliva of healthy neonatal heifer Holstein calves. J Vet Intern Med 2020; 34:2767-2775. [PMID: 33201530 PMCID: PMC7694825 DOI: 10.1111/jvim.15957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Persistence of high neurosteroid concentrations in blood is associated with neonatal encephalopathy and septicemia in foals. This has not been investigated in calves. OBJECTIVES To determine concentrations of steroid compounds in serum and saliva within the first 48 hours after birth in healthy neonatal calves, identify potential markers for disease, and investigate the association between serum steroid compounds concentrations in calves and their respective dams within 2 hours after birth. ANIMALS Twelve healthy neonatal heifer Holstein calves and their dams. METHODS Prospective study. Serum and saliva were collected from calves at 2, 6, 24, and 48 hours after birth. Steroid compounds were analyzed using liquid chromatography-mass spectrometry. A nonlinear regression model was used to determine half-lives of the neurosteroids. Serum concentrations of neurosteroids between the cows and calves were compared using the Wilcoxon signed rank test. RESULTS Half-lives (95% confidence intervals) of dehydroepiandrosterone (DHEA) and 17α,20α-dihydroxyprogesterone in calf serum were 2.9 (2.1, 4.3), and 2.1 (1.3, 3.0) hours, respectively. Pregnanediol in saliva had a half-life (95% confidence interval) of 24.5 (14.2, 66.5) hours. Serum DHEA (1718.7 ± 2313 vs 57.7 ± 44) and 17α,20α-dihydroxyprogesterone (207.8 ± 198.2 vs 43.5 ± 33.5) concentrations respectively were higher (P < .05) in calves compared to cows. CONCLUSIONS AND CLINICAL IMPORTANCE Dehydroepiandrosterone, 17α,20α-dihydroxyprogesterone, and pregnanediol could be potential markers of disease in neonatal heifer calves with unexplained failure to thrive or encephalopathy. However, because of the wide 95% confidence interval of the half-life, pregnanediol in saliva might not be a potential marker.
Collapse
Affiliation(s)
- Monica Aleman
- Department of Medicine and EpidemiologySchool of Veterinary Medicine, University of CaliforniaDavisCaliforniaUSA
| | - Munashe Chigerwe
- Department of Medicine and EpidemiologySchool of Veterinary Medicine, University of CaliforniaDavisCaliforniaUSA
| | - Anita Varga
- Department of Medicine and EpidemiologySchool of Veterinary Medicine, University of CaliforniaDavisCaliforniaUSA
| | - John E. Madigan
- Department of Medicine and EpidemiologySchool of Veterinary Medicine, University of CaliforniaDavisCaliforniaUSA
| |
Collapse
|
13
|
Chustecka M, Blügental N, Majewski PM, Adamska I. 24 hour patterning in gene expression of pineal neurosteroid biosynthesis in young chickens ( Gallus gallus domesticus L.). Chronobiol Int 2020; 38:46-60. [PMID: 32990093 DOI: 10.1080/07420528.2020.1823404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The pineal gland, one of the three equivalent avian biological clock structures, is also the site of intensive neurosteroid synthesis (7α-hydroxypregnenolone and allopregnanolone). Pineal neurosteroid biosynthesis involves six enzymes: cytochrome P450 side-chain cleavage - Cyp11a1 encoded, cytochrome P4507α - Cyp7b1, 3β-hydroxysteroid dehydrogenase - Hsd3b2, 5α-reductase - Srd5a1, 3α-hydroxysteroid dehydrogenase - Akr1d1, and 5β-reductase - Srd5a3. Regulation of neurosteroid biosynthesis is not fully understood; although it is known that the E4BP4 transcription factor induces activation of biosynthetic cholesterol genes, which are the targets for SREBP (element-binding protein transcription factor). SREBP principal activity in the pineal gland is suppression and inhibition of the Period2 canonical clock gene, suggesting our hypothesis that genes encoding enzymes involved in neurosteroidogenesis are under circadian clock control and are the Clock Control Genes (CCGs). Therefore, through investigation of daily changes in Cyp11a1, Cyp7b1, Hsd3b2, Akr1d1, Srd5a1, and Srd5a3, pineal genes were tested in vivo and in vitro, in cultured pinealocytes. Experiments were carried out on pineal glands taken from 16-day-old chickens in vivo or using in vitro cultures of pinealocytes collected from 16-day-old animals. Both the birds in the in vivo experiments and the pinealocytes were kept under controlled light conditions (LD 12:12) or in constant darkness (DD). Subsequently, materials were prepared for RT-qPCR analysis. Results revealed that three of the six tested genes: Cyp11a1, Cyp7b1, and Srd5a3 demonstrated significant 24-hour variation in in vivo and in vitro. Findings of this study confirm that these genes could be under clock control and satisfy many of the requirements to be identified as CCGs.
Collapse
Affiliation(s)
- Magdalena Chustecka
- Department of Animal Physiology, Faculty of Biology, University of Warsaw , Warsaw, Poland
| | - Natalia Blügental
- Department of Animal Physiology, Faculty of Biology, University of Warsaw , Warsaw, Poland
| | - Pawel Marek Majewski
- Department of Animal Physiology, Faculty of Biology, University of Warsaw , Warsaw, Poland
| | - Iwona Adamska
- Department of Animal Physiology, Faculty of Biology, University of Warsaw , Warsaw, Poland
| |
Collapse
|
14
|
La Vignera S, Aversa A, Cannarella R, Condorelli RA, Duca Y, Russo GI, Calogero AE. Pharmacological treatment of lower urinary tract symptoms in benign prostatic hyperplasia: consequences on sexual function and possible endocrine effects. Expert Opin Pharmacother 2020; 22:179-189. [DOI: 10.1080/14656566.2020.1817382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Antonio Aversa
- Department of Experimental and Clinical Medicine, “Magna Graecia” University, Catanzaro, Italy
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rosita A. Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Ylenia Duca
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Giorgio I. Russo
- Department of Experimental and Clinical Medicine, “Magna Graecia” University, Catanzaro, Italy
| | - Aldo E. Calogero
- Department of Surgery, Urology Section, University of Catania, Catania, Italy
| |
Collapse
|
15
|
Site of Action of Brain Neurosteroid Pregnenolone Sulfate at the N-Methyl-D-Aspartate Receptor. J Neurosci 2020; 40:5922-5936. [PMID: 32611707 DOI: 10.1523/jneurosci.3010-19.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/09/2020] [Accepted: 06/17/2020] [Indexed: 12/19/2022] Open
Abstract
N-methyl-D-aspartate receptor (NMDAR) hypofunction has been implicated in several neurodevelopmental disorders. NMDAR function can be augmented by positive allosteric modulators, including endogenous compounds, such as cholesterol and neurosteroid pregnenolone sulfate (PES). Here we report that PES accesses the receptor via the membrane, and its binding site is different from that of cholesterol. Alanine mutagenesis has identified residues that disrupt the steroid potentiating effect at the rat GluN1 (G638; I642) and GluN2B (W559; M562; Y823; M824) subunit. Molecular dynamics simulation indicates that, in the absence of PES, the GluN2B M1 helix residue W559 interacts with the M4 helix residue M824. In the presence of PES, the M1 and M4 helices of agonist-activated receptor rearrange, forming a tighter interaction with the GluN1 M3 helix residues G638 and I642. This stabilizes the open-state position of the GluN1 M3 helices. Together, our data identify a likely binding site for the NMDAR-positive allosteric modulator PES and describe a novel molecular mechanism by which NMDAR activity can be augmented.SIGNIFICANCE STATEMENT There is considerable interest in drugs that enhance NMDAR function and could compensate for receptor hypofunction associated with certain neuropsychiatric disorders. Positive allosteric modulators of NMDARs include an endogenous neurosteroid pregnenolone sulfate (PES), but the binding site of PES on the NMDAR and the molecular mechanism of potentiation are unknown. We use patch-clamp electrophysiology in combination with mutagenesis and in silico modeling to describe the interaction of PES with the NMDAR. Our data indicate that PES binds to the transmembrane domain of the receptor at a discrete group of residues at the GluN2B membrane helices M1 and M4 and the GluN1 helix M3, and that PES potentiates NMDAR function by stabilizing the open-state position of the GluN1 M3 helices.
Collapse
|
16
|
Sinchak K, Mohr MA, Micevych PE. Hypothalamic Astrocyte Development and Physiology for Neuroprogesterone Induction of the Luteinizing Hormone Surge. Front Endocrinol (Lausanne) 2020; 11:420. [PMID: 32670203 PMCID: PMC7333179 DOI: 10.3389/fendo.2020.00420] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/26/2020] [Indexed: 12/26/2022] Open
Abstract
Neural circuits in female rats sequentially exposed to estradiol and progesterone underlie so-called estrogen positive feedback that induce the surge release of pituitary luteinizing hormone (LH) leading to ovulation and luteinization of the corpus hemorrhagicum. It is now well-established that gonadotropin releasing hormone (GnRH) neurons express neither the reproductively critical estrogen receptor-α (ERα) nor classical progesterone receptor (PGR). Estradiol from developing ovarian follicles acts on ERα-expressing kisspeptin neurons in the rostral periventricular region of the third ventricle (RP3V) to induce PGR expression, and kisspeptin release. Circulating estradiol levels that induce positive feedback also induce neuroprogesterone (neuroP) synthesis in hypothalamic astrocytes. This local neuroP acts on kisspeptin neurons that express PGR to augment kisspeptin expression and release needed to stimulate GnRH release, triggering the LH surge. In vitro and in vivo studies demonstrate that neuroP signaling in kisspeptin neurons occurs through membrane PGR activation of Src family kinase (Src). This signaling cascade has been also implicated in PGR signaling in the arcuate nucleus of the hypothalamus, suggesting that Src may be a common mode of membrane PGR signaling. Sexual maturation requires that signaling between neuroP synthesizing astrocytes, kisspeptin and GnRH neurons be established. Prior to puberty, estradiol does not facilitate the synthesis of neuroP in hypothalamic astrocytes. During pubertal development, levels of membrane ERα increase in astrocytes coincident with an increase of PKA phosphorylation needed for neuroP synthesis. Currently, it is not clear whether these developmental changes occur in existing astrocytes or are due to a new population of astrocytes born during puberty. However, strong evidence suggests that it is the former. Blocking new cell addition during puberty attenuates the LH surge. Together these results demonstrate the importance of pubertal maturation involving hypothalamic astrocytes, estradiol-induced neuroP synthesis and membrane-initiated progesterone signaling for the CNS control of ovulation and reproduction.
Collapse
Affiliation(s)
- Kevin Sinchak
- Department of Biological Sciences, California State University, Long Beach, Long Beach, CA, United States
| | - Margaret A Mohr
- The Laboratory of Neuroendocrinology, Department of Neurobiology, David Geffen School of Medicine at UCLA, Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Paul E Micevych
- The Laboratory of Neuroendocrinology, Department of Neurobiology, David Geffen School of Medicine at UCLA, Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
17
|
Yuan T, Wang S, Le J, Li Y. Effects of Atypical Antipsychotics on Neuroactive Vitamins in Patients With Schizophrenia. J Clin Pharmacol 2020; 60:1355-1361. [PMID: 32428979 DOI: 10.1002/jcph.1625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 03/26/2020] [Indexed: 01/20/2023]
Abstract
In schizophrenia, neuroactive vitamins A/D/E play vital neuroprotective roles in its pathophysiological processes. During medical treatment, atypical antipsychotics, including aripiprazole, amisulpride, olanzapine, and paliperidone, were widely used at present. However, their impact on vitamin metabolism in vivo remained unclear. In this study, we conducted a case-control research to investigate the impacts of antipsychotics on vitamin metabolism. Schizophrenic patients (n = 163), who were divided into 5 groups (aripiprazole group, amisulpride group, olanzapine group, paliperidone group, nonmedication group) according to their different medication patterns, and healthy controls (n = 75) were involved. The concentrations of vitamin A/D/E and antipsychotics were measured using liquid chromatography-tandem mass spectrometry methods. Compared with healthy controls, significantly lower vitamin D and E concentrations were found in the nonmedication group after covariance analysis adjusting for age, sex, albumin, bilirubin, triglyceride, and cholesterol. We found that aripiprazole could affect vitamin D concentrations in vivo, and a positive correlation between aripiprazole concentrations and vitamin D concentrations (r = 0.319, P = 0.025) was observed in aripiprazole group. Such result revealed the very first observation for the influence of atypical antipsychotics medication toward vitamin status in vivo. Our study showed that low concentrations of vitamin D and E in vivo could be associated with schizophrenia, suggesting that hypovitaminosis may lead to a vulnerability to schizophrenia. More importantly, aripiprazole may potentially benefit the patients through improving their vitamin D status in vivo.
Collapse
Affiliation(s)
- Tengfei Yuan
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shaoting Wang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Juan Le
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Li
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
18
|
Bi WK, Luan SS, Wang J, Wu SS, Jin XC, Fu YL, Gao L, Zhao JJ, He Z. FSH signaling is involved in affective disorders. Biochem Biophys Res Commun 2020; 525:915-920. [DOI: 10.1016/j.bbrc.2020.03.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/06/2020] [Indexed: 01/15/2023]
|
19
|
Miziak B, Chrościńska-Krawczyk M, Czuczwar SJ. Neurosteroids and Seizure Activity. Front Endocrinol (Lausanne) 2020; 11:541802. [PMID: 33117274 PMCID: PMC7561372 DOI: 10.3389/fendo.2020.541802] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022] Open
Abstract
Still circa 25% to 30% of patients with epilepsy cannot be efficiently controlled with available antiepileptic drugs so newer pharmacological treatment options have been continuously searched for. In this context, a group of endogenous or exogenous neurosteroids allosterically positively modulating GABA-A receptors may offer a promising approach. Among endogenous neurosteroids synthesized in the brain, allopregnanolone or allotetrahydrodeoxycorticosterone have been documented to exert anticonvulsant activity in a number of experimental models of seizures-pentylenetetrazol-, bicuculline- pilocarpine-, or 6 Hz-induced convulsions in rodents. Neurosteroids can also inhibit fully kindled seizures and some of them have been reported to counteract maximal electroshock-induced convulsions. An exogenous neurosteroid, alphaxalone, significantly elevated the threshold for maximal electroconvulsions in mice but it did not potentiate the anticonvulsive action of a number of conventional antiepileptic drugs against maximal electroshock-induced seizures. Androsterone not only elevated the threshold but significantly enhanced the protective action of carbamazepine, gabapentin and phenobarbital against maximal electroshock in mice, as well. Ganaxolone (a 3beta-methylated analog of allopregnanolone) needs special consideration for two reasons. First, it performed better than conventional antiepileptic drugs, diazepam or valproate, in suppressing convulsive and lethal effects of pentylenetetrazol in pentylenetetrazol-kindled mice. Second, ganaxolone has been evaluated in the randomized, double-blind, placebo-controlled phase 2 trial in patients with intractable partial seizures, taking maximally 3 antiepileptic drugs. The initial results indicate that add-on therapy with ganaxolone resulted in reduced seizure frequency with adverse effect being mainly mild to moderate. Possibly, ganaxolone may be also considered against catamenial seizures. Some positive effects of ganaxolone as an adjuvant were also observed in children with refractory seizures and its use may also prove efficient for the management of neonatal seizures associated with hypoxic injury. Neurosteroids positively modulating GABA-A receptor complex exert anticonvulsive activity in many experimental models of seizures. Their interactions with antiepileptic drugs seem ambiguous in mice. Initial clinical data indicate that ganaxolone may provide a better seizure control in patients with drug-resistant epilepsy.
Collapse
Affiliation(s)
- Barbara Miziak
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
| | | | - Stanisław J. Czuczwar
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
- *Correspondence: Stanisław J. Czuczwar,
| |
Collapse
|
20
|
Bartolomé I, Llidó A, Darbra S, Pallarès M. Early postnatal allopregnanolone levels alteration and adult behavioral disruption in rats: Implication for drug abuse. Neurobiol Stress 2019; 12:100208. [PMID: 32435661 PMCID: PMC7231993 DOI: 10.1016/j.ynstr.2019.100208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/14/2019] [Accepted: 12/23/2019] [Indexed: 02/01/2023] Open
Abstract
Several studies have highlighted the role that early postnatal levels of allopregnanolone play in the development of the CNS and adult behavior. Changes in allopregnanolone levels related to stress have been observed during early postnatal periods, and perinatal stress has been linked to neuropsychiatric disorders. The alteration of early postnatal allopregnanolone levels in the first weeks of life has been proven to affect adult behaviors, such as anxiety-related behaviors and the processing of sensory inputs. This review focuses on the first studies about the possible relationship between the early postnatal allopregnanolone levels and the vulnerability to abuse of drugs such as alcohol in adulthood, given that (1) changes in neonatal allopregnanolone levels affect novelty exploration and novelty seeking has been linked to vulnerability to drug abuse; (2) early postnatal administration of progesterone, the main allopregnanolone precursor, affects the maturation of dopaminergic meso-striatal systems, which have been related to novelty seeking and drug abuse; and (3) alcohol consumption increases plasma and brain allopregnanolone levels in animals and humans. Manipulating neonatal allopregnanolone by administering finasteride, an inhibitor of the 5α-reductase enzyme that participates in allopregnanolone synthesis, increases alcohol consumption and decreases the locomotor stimulant effects of low alcohol doses. At a molecular level, finasteride decreases dopamine and serotonin in ventral striatum and dopamine release in nucleus accumbens. Preliminary results suggest that serotonin 5HT3 receptors could also be affected. Although an in-depth study is necessary, evidence suggests that there is a relation between early postnatal allopregnanolone and vulnerability to drug use/abuse. Early postnatal AlloP levels alteration affects brain maturation and adult behavior. Early stress interacts to AlloP influencing neuropsychiatric disorders vulnerability. Fluctuations in neonatal AlloP levels play a role in alcohol abuse vulnerability. Neonatal finasteride induces novelty-seeking profile and increases ethanol intake.
Collapse
Affiliation(s)
- Iris Bartolomé
- Institut de Neurociències, Departament de Psicobiologia I Metodologia en Ciències de La Salut, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Anna Llidó
- Institut de Neurociències, Departament de Psicobiologia I Metodologia en Ciències de La Salut, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Sònia Darbra
- Institut de Neurociències, Departament de Psicobiologia I Metodologia en Ciències de La Salut, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Marc Pallarès
- Institut de Neurociències, Departament de Psicobiologia I Metodologia en Ciències de La Salut, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| |
Collapse
|
21
|
Sze Y, Brunton PJ. Sex, stress and steroids. Eur J Neurosci 2019; 52:2487-2515. [DOI: 10.1111/ejn.14615] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Ying Sze
- Centre for Discovery Brain Sciences University of Edinburgh Edinburgh UK
| | - Paula J. Brunton
- Centre for Discovery Brain Sciences University of Edinburgh Edinburgh UK
- Zhejiang University‐University of Edinburgh Joint Institute Haining Zhejiang China
| |
Collapse
|
22
|
Aleman M, McCue PM, Chigerwe M, Madigan JE. Plasma concentrations of steroid precursors, steroids, neuroactive steroids, and neurosteroids in healthy neonatal foals from birth to 7 days of age. J Vet Intern Med 2019; 33:2286-2293. [PMID: 31489708 PMCID: PMC6766486 DOI: 10.1111/jvim.15618] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/26/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Transient hypothalamic-pituitary-adrenal axis dysfunction occurs in critically ill foals with sepsis and neonatal maladjustment syndrome (NMS). Cortisol is the most commonly measured steroid. However, a complex interaction of various steroid compounds might play a role in pathophysiology of this disorder. OBJECTIVE To identify steroid compounds present at high concentrations at birth that rapidly and steadily decrease within the first 7 days of life in healthy foals and that might be supportive diagnosis of NMS and other neonatal disorders. ANIMALS Ten healthy neonatal Quarter Horse foals (5 females and 5 males). METHODS Prospective study. Blood was collected in heparinized tubes within 30 minutes after birth, and at 12, 24, 48, 72, 96, 120, 144, and 168 hours of age. Plasma was separated and a panel of steroid compounds was analyzed using liquid chromatography-mass spectrometry. A nonlinear regression model was used to determine decay concentrations over time. Confidence intervals (CIs) were calculated and significance was set a P ≤ .05. RESULTS Five compounds were identified: pregnenolone, progesterone, deoxycorticosterone, dehydroepiandrosterone, and dehydroepiandrosterone sulfate. Pregnenolone and progesterone concentrations rapidly decreased by 24 hours of age and remained low throughout the first 7 days of life. Their half-life (95% CI) was short at 3.7 (3.4, 4.0) and 4.5 (2.8, 6.1) hours, respectively. No statistical differences in the concentrations of these compounds were found between males and females. CONCLUSIONS AND CLINICAL RELEVANCE Progesterone might be a useful marker for identifying continuous endogenous production of neuroactive steroids in foals with suspected NMS and other neonatal diseases.
Collapse
Affiliation(s)
- Monica Aleman
- Medicine and EpidemiologyUniversity of California, DavisDavisCalifornia
| | | | - Munashe Chigerwe
- Medicine and EpidemiologyUniversity of California, DavisDavisCalifornia
| | - John E. Madigan
- Medicine and EpidemiologyUniversity of California, DavisDavisCalifornia
| |
Collapse
|
23
|
Mouro FM, Miranda-Lourenço C, Sebastião AM, Diógenes MJ. From Cannabinoids and Neurosteroids to Statins and the Ketogenic Diet: New Therapeutic Avenues in Rett Syndrome? Front Neurosci 2019; 13:680. [PMID: 31333401 PMCID: PMC6614559 DOI: 10.3389/fnins.2019.00680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/13/2019] [Indexed: 12/21/2022] Open
Abstract
Rett syndrome (RTT) is an X-linked neurodevelopmental disorder caused mainly by mutations in the MECP2 gene, being one of the leading causes of mental disability in females. Mutations in the MECP2 gene are responsible for 95% of the diagnosed RTT cases and the mechanisms through which these mutations relate with symptomatology are still elusive. Children with RTT present a period of apparent normal development followed by a rapid regression in speech and behavior and a progressive deterioration of motor abilities. Epilepsy is one of the most common symptoms in RTT, occurring in 60 to 80% of RTT cases, being associated with worsening of other symptoms. At this point, no cure for RTT is available and there is a pressing need for the discovery of new drug candidates to treat its severe symptoms. However, despite being a rare disease, in the last decade research in RTT has grown exponentially. New and exciting evidence has been gathered and the etiopathogenesis of this complex, severe and untreatable disease is slowly being unfolded. Advances in gene editing techniques have prompted cure-oriented research in RTT. Nonetheless, at this point, finding a cure is a distant reality, highlighting the importance of further investigating the basic pathological mechanisms of this disease. In this review, we focus our attention in some of the newest evidence on RTT clinical and preclinical research, evaluating their impact in RTT symptomatology control, and pinpointing possible directions for future research.
Collapse
Affiliation(s)
- Francisco Melo Mouro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Catarina Miranda-Lourenço
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Maria Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Maria José Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
24
|
Maguire J. Neuroactive Steroids and GABAergic Involvement in the Neuroendocrine Dysfunction Associated With Major Depressive Disorder and Postpartum Depression. Front Cell Neurosci 2019; 13:83. [PMID: 30906252 PMCID: PMC6418819 DOI: 10.3389/fncel.2019.00083] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 02/19/2019] [Indexed: 12/21/2022] Open
Abstract
Stress and previous adverse life events are well-established risk factors for depression. Further, neuroendocrine disruptions are associated with both major depressive disorder (MDD) and postpartum depression (PPD). However, the mechanisms whereby stress contributes to the underlying neurobiology of depression remains poorly understood. The hypothalamic-pituitary-adrenal (HPA) axis, which mediates the body's neuroendocrine response to stress, is tightly controlled by GABAergic signaling and there is accumulating evidence that GABAergic dysfunction contributes to the impact of stress on depression. GABAergic signaling plays a critical role in the neurobiological effects of stress, not only by tightly controlling the activity of the HPA axis, but also mediating stress effects in stress-related brain regions. Deficits in neuroactive steroids and neurosteroids, some of which are positive allosteric modulators of GABAA receptors (GABAARs), such as allopregnanolone and THDOC, have also been implicated in MDD and PPD, further supporting a role for GABAergic signaling in depression. Alterations in neurosteroid levels and GABAergic signaling are implicated as potential contributing factors to neuroendocrine dysfunction and vulnerability to MDD and PPD. Further, potential novel treatment strategies targeting these proposed underlying neurobiological mechanisms are discussed. The evidence summarized in the current review supports the notion that MDD and PPD are stress-related psychiatric disorders involving neurosteroids and GABAergic dysfunction.
Collapse
Affiliation(s)
- Jamie Maguire
- Neuroscience Department, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
25
|
Fujii M, Ohgami S, Asano E, Nakayama T, Toda T, Nabe T, Ohya S. Brain allopregnanolone induces marked scratching behaviour in diet-induced atopic dermatitis mouse model. Sci Rep 2019; 9:2364. [PMID: 30787375 PMCID: PMC6382911 DOI: 10.1038/s41598-019-38858-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 01/07/2019] [Indexed: 12/12/2022] Open
Abstract
Allopregnanolone (ALLO) is a neurosteroid produced in the brain, but so far, no study has explored its link with itching. Herein, we used a diet-induced atopic dermatitis mouse model to examine whether exogenously administered and endogenously produced ALLO contribute to inducing scratching. Systemic administration of ALLO elicited robust scratching in the atopic dermatitis model, while it did not affect spontaneous and pruritogen-induced scratching in normal mice. ALLO caused scratching when administered intracisternally, but not when administered intrathecally or intradermally, suggesting the involvement of supraspinal mechanisms. Pharmacological analyses suggested that both γ-aminobutyric acid type A receptor activation and serotonin type 3 receptor inhibition were involved in ALLO-induced scratching. We next examined whether endogenously produced ALLO is involved in ethanol-induced scratching in atopic dermatitis mice, because ethanol administration increases ALLO in rodent brain. Acute ethanol administration increased brain ALLO levels, which coincided with increased scratching. Pre-treatment with finasteride, a synthetic ALLO inhibitor, suppressed ethanol-induced scratching and ALLO production in the brain. Collectively, our results demonstrated for the first time that ALLO administration caused marked scratching in atopic dermatitis mice, and ethanol-induced scratching may be mediated through endogenously produced brain ALLO.
Collapse
Affiliation(s)
- Masanori Fujii
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina, Kyoto, 607-8414, Japan.
| | - Sayaka Ohgami
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina, Kyoto, 607-8414, Japan
| | - Erika Asano
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina, Kyoto, 607-8414, Japan
| | - Takanori Nakayama
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina, Kyoto, 607-8414, Japan
| | - Takahiro Toda
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina, Kyoto, 607-8414, Japan
| | - Takeshi Nabe
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina, Kyoto, 607-8414, Japan.,Laboratory of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Susumu Ohya
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina, Kyoto, 607-8414, Japan.,Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho, Nagoya, 467-8601, Japan
| |
Collapse
|
26
|
Bennell PM, Whittem T, Tudor E. A controlled randomized clinical trial to assess postoperative analgesia after thiopental-isoflurane anaesthesia or total intravenous anaesthesia with alfaxalone in dogs. J Vet Pharmacol Ther 2019; 42:268-277. [PMID: 30666663 DOI: 10.1111/jvp.12740] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/25/2018] [Accepted: 11/26/2018] [Indexed: 11/26/2022]
Abstract
Alfaxalone, a synthetic neuroactive steroid, has been attributed with properties including sedation, anaesthesia and analgesia. The clinical relevance of any analgesic properties of alfaxalone has not been demonstrated. This study was a prospective, blinded, randomized, negative control clinical trial in 65 healthy dogs presented for ovariohysterectomy. Anaesthesia was induced and maintained, for Group 1 (TIVA) dogs (n = 30) with intravenous alfaxalone alone and for Group 2 dogs (n = 35) with thiopental followed by isoflurane in 100% oxygen inhalation. After ovariohysterectomy, quantitative measures of pain or nociception were recorded at 15 min intervals for 4 hr using three independent scoring systems, a composite measure pain scale (CMPS), von Frey threshold testing and measures of fentanyl rescue analgesia. The mean CMPS scores of Group 2 (THIO/ISO) dogs remained higher than Group 1 (TIVA) dogs from 15 to 135 min post-surgery but this difference was not statistically significant. There were no significant differences between groups in the proportions of dogs requiring rescue fentanyl analgesia, the total fentanyl dose used or the time to first fentanyl dose. The Von Frey threshold testing was found to be unsuitable for measurement of pain in this experimental model. When administered as total intravenous anaesthesia, alfaxalone did not provide analgesia in the postoperative period.
Collapse
Affiliation(s)
- Paula M Bennell
- Melbourne Veterinary School, University of Melbourne, Parkville, Victoria, Australia
| | - Ted Whittem
- Melbourne Veterinary School, University of Melbourne, Parkville, Victoria, Australia
| | - Elizabeth Tudor
- Melbourne Veterinary School, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
27
|
Bacqué-Cazenave J, Berthomieu M, Cattaert D, Fossat P, Delbecque JP. Do arthropods feel anxious during molts? ACTA ACUST UNITED AC 2019; 222:jeb.186999. [PMID: 30530836 DOI: 10.1242/jeb.186999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/30/2018] [Indexed: 11/20/2022]
Abstract
The molting process of arthropods, chiefly controlled by ecdysteroids, is generally considered very stressful. Our previous investigations have shown that crayfish, after having experienced stressful situations, display anxiety-like behavior (ALB), characterized by aversion to light in a dark/light plus-maze (DLPM). In the present experiments, the spontaneous exploratory behavior of isolated crayfish was analyzed in a DLPM at different stages of their molt cycle. All tested animals displayed transitory aversion to light similar to ALB, before and, mostly, after molting, but not during inter-molt. Injection of ecdysteroids into inter-molt animals elicited ALB after a delay of 4 days, suggesting a long-term, possibly indirect, hormonal effect. Importantly, ecdysteroid-induced ALB was suppressed by the injection of an anxiolytic benzodiazepine. Thus, molts and their hormonal control impose internal stress on crayfish, leading to aversion behavior that has the main characteristics of anxiety. These observations are possibly generalizable to many other arthropods.
Collapse
Affiliation(s)
- Julien Bacqué-Cazenave
- Department of Life and Health Science, Université de Bordeaux. CNRS, UMR5287, INCIA (Institut des Neurosciences Cognitives et Intégratives d'Aquitaine), 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Marion Berthomieu
- Department of Life and Health Science, Université de Bordeaux. CNRS, UMR5287, INCIA (Institut des Neurosciences Cognitives et Intégratives d'Aquitaine), 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Daniel Cattaert
- Department of Life and Health Science, Université de Bordeaux. CNRS, UMR5287, INCIA (Institut des Neurosciences Cognitives et Intégratives d'Aquitaine), 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Pascal Fossat
- Department of Life and Health Science, Université de Bordeaux. CNRS, UMR5287, INCIA (Institut des Neurosciences Cognitives et Intégratives d'Aquitaine), 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Jean Paul Delbecque
- Department of Life and Health Science, Université de Bordeaux. CNRS, UMR5287, INCIA (Institut des Neurosciences Cognitives et Intégratives d'Aquitaine), 146 Rue Léo Saignat, 33076 Bordeaux, France
| |
Collapse
|
28
|
Depression as a Neuroendocrine Disorder: Emerging Neuropsychopharmacological Approaches beyond Monoamines. Adv Pharmacol Sci 2019; 2019:7943481. [PMID: 30719038 PMCID: PMC6335777 DOI: 10.1155/2019/7943481] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/27/2018] [Accepted: 12/05/2018] [Indexed: 01/26/2023] Open
Abstract
Depression is currently recognized as a crucial problem in everyday clinical practice, in light of ever-increasing rates of prevalence, as well as disability, morbidity, and mortality related to this disorder. Currently available antidepressant drugs are notoriously problematic, with suboptimal remission rates and troubling side-effect profiles. Their mechanisms of action focus on the monoamine hypothesis for depression, which centers on the disruption of serotonergic, noradrenergic, and dopaminergic neurotransmission in the brain. Nevertheless, views on the pathophysiology of depression have evolved notably, and the comprehension of depression as a complex neuroendocrine disorder with important systemic implications has sparked interest in a myriad of novel neuropsychopharmacological approaches. Innovative pharmacological targets beyond monoamines include glutamatergic and GABAergic neurotransmission, brain-derived neurotrophic factor, various endocrine axes, as well as several neurosteroids, neuropeptides, opioids, endocannabinoids and endovanilloids. This review summarizes current knowledge on these pharmacological targets and their potential utility in the clinical management of depression.
Collapse
|
29
|
Knytl P, Voráčková V, Dorazilová A, Rodriguez M, Cvrčková A, Kofroňová E, Kuchař M, Kratochvílová Z, Šustová P, Čerešňáková S, Mohr P. Neuroactive Steroids and Cognitive Functions in First-Episode Psychosis Patients and Their Healthy Siblings. Front Psychiatry 2019; 10:390. [PMID: 31275177 PMCID: PMC6591670 DOI: 10.3389/fpsyt.2019.00390] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/17/2019] [Indexed: 12/23/2022] Open
Abstract
Background: Neuroactive steroids (NAS) affect neurotransmitter systems and cognition; thus, they play role in etiopathogenesis of psychiatric disorders. Aims: The primary aim was to examine cognition and effects of NAS on cognitive functioning in first-episode psychosis patients and in their healthy siblings. The secondary aims were to verify whether cognitive deficit is an endophenotype of psychosis and whether higher NAS levels represent a high-risk factor for psychosis. Methods: Studied participants were 1) patients with first episode of psychosis, 2) healthy siblings of the patients, and 3) matching healthy controls. Study procedures included administration of a battery of neuropsychological tests assessing six cognitive domains and examination of NAS plasma levels [cortisol (CORT), 11-deoxycorticosterone (DOC), testosterone (TEST), dehydroepiandrostendione (DHEA), dihydrotestosterone (DHT), and progesterone (PROG)]. Results: A total of 67 subjects were analyzed (16 patients, 22 siblings, and 29 controls). Significant group differences were found in most of the cognitive domains; the patients had the lowest scores. The Kruskal-Wallis test revealed significant group differences in CORT levels (p < 0.01), TEST (p < 0.01), and DHT (p < 0.001); no difference was found in PROG, DHEA, and DOC. All cognitive domains, except for attention, were affected by the NAS levels. CORT levels of patients correlated with speed of processing (r = 0.55) and working memory (r = 0.52), while PROG levels correlated with abstraction (r = -0.63). In siblings, there was a negative correlation between TEST levels and verbal memory (r = -0.51) and PROG with attention (r = -0.47). Conclusions: Our results verified that individual domains of cognitive deficit (abstraction and verbal memory) can be considered as an endophenotype of psychosis. Higher levels of cortisol and testosterone in siblings are consistent with high-risk states for psychosis. Multiple interactions between NAS and cognitive functioning, particularly memory functions, were observed. Study limitations (small sample size and administration of antipsychotic medication) did not allow us to establish unequivocally NAS as an endophenotype.
Collapse
Affiliation(s)
- Pavel Knytl
- National Institute of Mental Health, Klecany, Czechia.,Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Veronika Voráčková
- National Institute of Mental Health, Klecany, Czechia.,Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Aneta Dorazilová
- National Institute of Mental Health, Klecany, Czechia.,Faculty of Arts, Masaryk University, Brno, Czechia
| | - Mabel Rodriguez
- National Institute of Mental Health, Klecany, Czechia.,Faculty of Arts, Charles University, Prague, Czechia
| | - Aneta Cvrčková
- National Institute of Mental Health, Klecany, Czechia.,Faculty of Social Studies, Masaryk University, Brno, Czechia
| | | | - Martin Kuchař
- National Institute of Mental Health, Klecany, Czechia.,University of Chemistry and Technology, Prague, Czechia
| | | | - Petra Šustová
- National Institute of Mental Health, Klecany, Czechia
| | - Silvie Čerešňáková
- National Institute of Mental Health, Klecany, Czechia.,First Faculty of Medicine, Charles University, Prague, Czechia
| | - Pavel Mohr
- National Institute of Mental Health, Klecany, Czechia.,Third Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
30
|
Toro-Urrego N, Vesga-Jiménez DJ, Herrera MI, Luaces JP, Capani F. Neuroprotective Role of Hypothermia in Hypoxic-ischemic Brain Injury: Combined Therapies using Estrogen. Curr Neuropharmacol 2019; 17:874-890. [PMID: 30520375 PMCID: PMC7052835 DOI: 10.2174/1570159x17666181206101314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/26/2018] [Accepted: 11/28/2018] [Indexed: 12/15/2022] Open
Abstract
Hypoxic-ischemic brain injury is a complex network of factors, which is mainly characterized by a decrease in levels of oxygen concentration and blood flow, which lead to an inefficient supply of nutrients to the brain. Hypoxic-ischemic brain injury can be found in perinatal asphyxia and ischemic-stroke, which represent one of the main causes of mortality and morbidity in children and adults worldwide. Therefore, knowledge of underlying mechanisms triggering these insults may help establish neuroprotective treatments. Selective Estrogen Receptor Modulators and Selective Tissue Estrogenic Activity Regulators exert several neuroprotective effects, including a decrease of reactive oxygen species, maintenance of cell viability, mitochondrial survival, among others. However, these strategies represent a traditional approach of targeting a single factor of pathology without satisfactory results. Hence, combined therapies, such as the administration of therapeutic hypothermia with a complementary neuroprotective agent, constitute a promising alternative. In this sense, the present review summarizes the underlying mechanisms of hypoxic-ischemic brain injury and compiles several neuroprotective strategies, including Selective Estrogen Receptor Modulators and Selective Tissue Estrogenic Activity Regulators, which represent putative agents for combined therapies with therapeutic hypothermia.
Collapse
Affiliation(s)
- Nicolás Toro-Urrego
- Address correspondence to this author at the Laboratorio de Citoarquitectura y Plasticidad Neuronal, Instituto de Investigaciones Cardiológicas, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; E-mail:
| | | | | | | | | |
Collapse
|
31
|
Low Testosterone Level as a Predictor of Poststroke Emotional Disturbances: Anger Proneness and Emotional Incontinence. J Stroke Cerebrovasc Dis 2018; 27:3549-3554. [DOI: 10.1016/j.jstrokecerebrovasdis.2018.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/28/2018] [Accepted: 08/08/2018] [Indexed: 11/19/2022] Open
|
32
|
Liimatta J, Sintonen H, Utriainen P, Voutilainen R, Jääskeläinen J. Children with a History of Premature Adrenarche Have Good Health-Related Quality of Life at the Age of 12 Years. Horm Res Paediatr 2018; 89:184-188. [PMID: 29502117 DOI: 10.1159/000487134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/22/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIM Children with premature adrenarche (PA) are taller and more overweight than their healthy peers, and PA girls have a slightly accelerated pubertal development. There is some evidence that early exposure to androgens may have an influence on psychosocial development. The aim of this cross-sectional case-control study was to evaluate health-related quality of life (HRQoL) in PA children at the age of 12 years. METHODS The HRQoL was assessed for 43 PA (36 girls) and 63 control children (52 girls) at the median age of 12.0 years using the standardized 16D instrument, and the scores of the PA children were compared to those of the control children and reference population. RESULTS The mean overall HRQoL scores did not differ between PA and control girls, PA and control boys, or all PA and control children or the reference population. Independently of PA, overweight girls had a lower mean overall HRQoL score than lean girls, and both overweight girls and boys were on average worse off on the dimension of appearance than their lean peers. CONCLUSIONS PA children have as good self-rated HRQoL as their peers at the age of 12 years. Overweight is associated with a worse HRQoL profile independently of PA.
Collapse
Affiliation(s)
- Jani Liimatta
- Department of Pediatrics, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
| | - Harri Sintonen
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Pauliina Utriainen
- Department of Pediatrics, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
| | - Raimo Voutilainen
- Department of Pediatrics, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
| | - Jarmo Jääskeläinen
- Department of Pediatrics, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
33
|
Yadid G, Ahdoot-Levi H, Bareli T, Maayan R, Weizman A. Dehydroepiandrosterone and Addiction. VITAMINS AND HORMONES 2018; 108:385-412. [PMID: 30029736 DOI: 10.1016/bs.vh.2018.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Drug addiction has a great negative influence on society, both social and economic burden. It was widely thought that addicts could choose to stop using drugs if only they had some self-control and principles. Nowadays, science has changed this view, defining drug addiction as a complex brain disease that affects behavior in many ways, both biological and psychological. Currently there is no ground-breaking reliable treatment for drug addiction. For more than a decade we are researching an alternative approach for intervention with drug craving and relapse to its usage, using DHEA, a well-being and antiaging food supplement. In this chapter we navigate through the significant therapeutic effect of DHEA on the brain circuits that control addiction and on behavioral performance both in animal models and addicts. We suggest that an integrative program of add-on DHEA treatment may further enable to dynamically evaluate the progress of rehabilitation of an individual patient, in a comprehensive assessment. Such a program may boost and support the detoxification and rehabilitation process, and help patients regain a normal life in a shorter amount of time.
Collapse
Affiliation(s)
- Gal Yadid
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel; The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel.
| | - Hadas Ahdoot-Levi
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Tzofnat Bareli
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Rachel Maayan
- Laboratory of Biological Psychiatry, Felsenstein Medical Research Center, Research Unit, Petah Tikva, Israel
| | - Abraham Weizman
- Laboratory of Biological Psychiatry, Felsenstein Medical Research Center, Research Unit, Petah Tikva, Israel; Geha Mental Health Center, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
34
|
Early post-natal neuroactive steroid manipulation modulates ondansetron effects on initial periods of alcohol consumption in rats. Physiol Behav 2018; 194:371-379. [PMID: 29935971 DOI: 10.1016/j.physbeh.2018.06.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/11/2018] [Accepted: 06/20/2018] [Indexed: 12/16/2022]
Abstract
Neuroactive steroids (NS) such as allopregnanolone are crucial for brain development and adult behaviour. Early post-natal alterations of NS by administering finasteride induce a decrease in the sensitivity to stimulant effects of low alcohol doses, an increase in alcohol consumption, and a decrease in ventrostriatal dopamine and serotonin levels. The aim of the present study is to observe if the effects of the 5HT3 receptor antagonist ondansetron on initial alcohol consumption are modulated by post-natal NS manipulation. For this purpose, allopregnanolone, finasteride, or vehicle was injected from day 5 to 9. In adulthood, a novel object preference test was carried out in order to detect a possible novelty-seeking pattern in our animals, which has been related to vulnerability to drug abuse. The subjects then had access to two bottles (alcohol or control solutions) one hour daily for two consecutive weeks. Ondansetron (0.01 mg/kg, 0.1 mg/kg or vehicle) was administered before the hour of consumption in the initial phase (days 1, 2, 3) of the procedure, and after prolonged alcohol intake (days 11, 12, 13). Results indicated that finasteride animals showed a higher preference to explore the new object, as well as a higher alcohol consumption than the rest of the groups. Moreover, 0.1 mg/kg of ondansetron decreased alcohol consumption, but only in the post-natal finasteride group, suggesting a possible increase in 5HT3 receptor sensitivity in these animals. In conclusion, NS manipulation in crucial stages of development, such as early post-natal periods, seems to play an important role on the effects of ondansetron on alcohol intake and in the vulnerability to develop drug use or abuse.
Collapse
|
35
|
Cai H, Cao T, Zhou X, Yao JK. Neurosteroids in Schizophrenia: Pathogenic and Therapeutic Implications. Front Psychiatry 2018; 9:73. [PMID: 29568275 PMCID: PMC5852066 DOI: 10.3389/fpsyt.2018.00073] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 02/21/2018] [Indexed: 12/11/2022] Open
Abstract
Neurosteroids are a group of important endogenous molecules affecting many neural functions in the brain. Increasing evidence suggests a possible role of these neurosteroids in the pathology and symptomatology of schizophrenia (SZ) and other mental disorders. The aim of this review is to summarize the current knowledge about the neural functions of neurosteroids in the brain, and to evaluate the role of the key neurosteroids as candidate modulators in the etiology and therapeutics of SZ. The present paper provides a brief introduction of neurosteroid metabolism and distribution, followed by a discussion of the mechanisms underlying neurosteroid actions in the brain. The content regarding the modulation of the GABAA receptor is elaborated, given the considerable knowledge of its interactions with other neurotransmitter and neuroprotective systems, as well as its ameliorating effects on stress that may play a role in the SZ pathophysiology. In addition, several preclinical and clinical studies suggested a therapeutic benefit of neurosteroids in SZ patients, even though the presence of altered neurosteroid pathways in the circulating blood and/or brain remains debatable. Following treatment of antipsychotic drugs in SZ, therapeutic benefits have also been linked to the regulation of neurosteroid signaling. Specifically, the neurosteroids such as pregnenolone and dehydroepiandrosterone affect a broad spectrum of behavioral functions through their unique molecular characteristics and may represent innovative therapeutic targets for SZ. Future investigations in larger cohorts with long-term follow-ups will be required to ascertain the neuropsychopharmacological role of this yet unexploited class of neurosteroid agents.
Collapse
Affiliation(s)
- HuaLin Cai
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- The Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Ting Cao
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- The Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Xiang Zhou
- Medical Research Service, VA Pittsburgh Healthcare System, Pittsburgh, PA, United States
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
| | - Jeffrey K. Yao
- Medical Research Service, VA Pittsburgh Healthcare System, Pittsburgh, PA, United States
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
36
|
Tomei G, Sancini A, Cerratti D, Fiaschetti M, Anzani M, Ciarrocca M, Rosati M, Tomao E, Giubilati R, Pimpinella B, Tomei F. Effects on Plasmatic Androstenedione in Female Workers Exposed to Urban Stressors. EUR J INFLAMM 2017. [DOI: 10.1177/1721727x0900700308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The purpose of this study is to investigate whether occupational exposure to urban stressors can cause alterations on androstenedione plasma levels and related diseases in female traffic police compared to a control group. The research was carried out on an initial sample of 468 female workers (209 traffic police and 259 controls). After excluding the subjects with confounding factors, 192 female subjects: 96 traffic police and 96 controls were included in the study. Traffic police and controls were matched by age, length of service, body mass index, alcohol consumption and cigarette smoking habits, habitual consumption of Italian coffee, and habitual intake of soy and liquorice in diet. The results show that the percentage of subjects with fertility and mental health disorders were no different between traffic police and controls. Mean androstenedione values were significantly higher in female traffic police compared to controls. The distribution into classes of androstenedione values in traffic police was statistically significant. The percentage of traffic police with fertility and mental health disorders were not significant compared to controls. Our results suggest that the occupational exposure to urban stressors could alter plasma androstenedione levels in female traffic police. According to our previous research all the hormonal parameters studied, including androstenedione, could be used as early biological markers of chronic exposure to urban stressors, usable in occupational sets.
Collapse
Affiliation(s)
- G. Tomei
- Department of Psychiatric Science and Psychological Medicine, “Sapienza” University of Rome, Rome, Italy
| | - A. Sancini
- Department of Occupational Medicine, “Sapienza” University of Rome, Rome, Italy
| | - D. Cerratti
- Department of Occupational Medicine, “Sapienza” University of Rome, Rome, Italy
| | - M. Fiaschetti
- Department of Occupational Medicine, “Sapienza” University of Rome, Rome, Italy
| | - M.F. Anzani
- Department of Occupational Medicine, “Sapienza” University of Rome, Rome, Italy
| | - M. Ciarrocca
- Department of Occupational Medicine, “Sapienza” University of Rome, Rome, Italy
| | - M.V. Rosati
- Department of Occupational Medicine, “Sapienza” University of Rome, Rome, Italy
| | - E. Tomao
- General Office for Military Health, Rome, Italy
| | - R. Giubilati
- Department of Occupational Medicine, “Sapienza” University of Rome, Rome, Italy
| | - B. Pimpinella
- Department of Occupational Medicine, “Sapienza” University of Rome, Rome, Italy
| | - F. Tomei
- Department of Occupational Medicine, “Sapienza” University of Rome, Rome, Italy
| |
Collapse
|
37
|
Frau R, Bini V, Soggiu A, Scheggi S, Pardu A, Fanni S, Roncada P, Puligheddu M, Marrosu F, Caruso D, Devoto P, Bortolato M. The Neurosteroidogenic Enzyme 5α-Reductase Mediates Psychotic-Like Complications of Sleep Deprivation. Neuropsychopharmacology 2017; 42:2196-2205. [PMID: 28102229 PMCID: PMC5603808 DOI: 10.1038/npp.2017.13] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/18/2016] [Accepted: 01/05/2017] [Indexed: 01/02/2023]
Abstract
Acute sleep deprivation (SD) can trigger or exacerbate psychosis- and mania-related symptoms; the neurobiological basis of these complications, however, remains elusive. Given the extensive involvement of neuroactive steroids in psychopathology, we hypothesized that the behavioral complications of SD may be contributed by 5α-reductase (5αR), the rate-limiting enzyme in the conversion of progesterone into the neurosteroid allopregnanolone. We first tested whether rats exposed to SD may exhibit brain-regional alterations in 5αR isoenzymes and neuroactive steroid levels; then, we assessed whether the behavioral and neuroendocrine alterations induced by SD may be differentially modulated by the administration of the 5αR inhibitor finasteride, as well as progesterone and allopregnanolone. SD selectively enhanced 5αR expression and activity, as well as AP levels, in the prefrontal cortex; furthermore, finasteride (10-100 mg/kg, IP) dose-dependently ameliorated PPI deficits, hyperactivity, and risk-taking behaviors, in a fashion akin to the antipsychotic haloperidol and the mood stabilizer lithium carbonate. Finally, PPI deficits were exacerbated by allopregnanolone (10 mg/kg, IP) and attenuated by progesterone (30 mg/kg, IP) in SD-subjected, but not control rats. Collectively, these results provide the first-ever evidence that 5αR mediates a number of psychosis- and mania-like complications of SD through imbalances in cortical levels of neuroactive steroids.
Collapse
Affiliation(s)
- Roberto Frau
- Department of Biomedical Sciences,
Division of Neuroscience and Clinical Pharmacology, Monserrato,
Italy,Tourette Syndrome Center,
Monserrato, Italy,Sleep Medicine Center; University of
Cagliari, Monserrato, Italy
| | - Valentina Bini
- Department of Biomedical Sciences,
Division of Neuroscience and Clinical Pharmacology, Monserrato,
Italy,Tourette Syndrome Center,
Monserrato, Italy
| | - Alessio Soggiu
- ‘L. Spallanzani’ Institute,
Proteomics Section—Department of Veterinary Sciences and Public Health,
University of Milan, Milan, Italy
| | - Simona Scheggi
- Department of Molecular and Developmental
Medicine, University of Siena, Siena, Italy,Department of Pharmacology and
Toxicology, College of Pharmacy, University of Utah, Salt Lake
City, UT, USA
| | - Alessandra Pardu
- Department of Biomedical Sciences,
Division of Neuroscience and Clinical Pharmacology, Monserrato,
Italy
| | - Silvia Fanni
- Department of Biomedical Sciences,
Division of Neuroscience and Clinical Pharmacology, Monserrato,
Italy
| | - Paola Roncada
- ‘L. Spallanzani’ Institute,
Proteomics Section—Department of Veterinary Sciences and Public Health,
University of Milan, Milan, Italy
| | - Monica Puligheddu
- Tourette Syndrome Center,
Monserrato, Italy,Sleep Medicine Center; University of
Cagliari, Monserrato, Italy,Department of Public Health, Section of
Neurology, Monserrato, Italy
| | - Francesco Marrosu
- Tourette Syndrome Center,
Monserrato, Italy,Sleep Medicine Center; University of
Cagliari, Monserrato, Italy,Department of Public Health, Section of
Neurology, Monserrato, Italy
| | - Donatella Caruso
- Department of Pharmacological and
Biomolecular Sciences, Center of Excellence for Neurodegenerative Diseases,
University of Milan, Milan, Italy
| | - Paola Devoto
- Department of Biomedical Sciences,
Division of Neuroscience and Clinical Pharmacology, Monserrato,
Italy,Tourette Syndrome Center,
Monserrato, Italy,Sleep Medicine Center; University of
Cagliari, Monserrato, Italy
| | - Marco Bortolato
- Department of Pharmacology and
Toxicology, College of Pharmacy, University of Utah, Salt Lake
City, UT, USA,Department of Pharmacology and Toxicology, College of
Pharmacy, University of Utah, Skaggs Hall, Room 3916, 30S 2000
E, Salt Lake City
84112, UT, USA, Tel: 801 587 3352, Fax:
801 585 5111, E-mail:
| |
Collapse
|
38
|
Cenik B, Cenik C, Snyder MP, Brown ES. Plasma sterols and depressive symptom severity in a population-based cohort. PLoS One 2017; 12:e0184382. [PMID: 28886149 PMCID: PMC5590924 DOI: 10.1371/journal.pone.0184382] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/22/2017] [Indexed: 12/30/2022] Open
Abstract
Convergent evidence strongly suggests major depressive disorder is heterogeneous in its etiology and clinical characteristics. Depression biomarkers hold potential for identifying etiological subtypes, improving diagnostic accuracy, predicting treatment response, and personalization of treatment. Human plasma contains numerous sterols that have not been systematically studied. Changes in cholesterol concentrations have been implicated in suicide and depression, suggesting plasma sterols may be depression biomarkers. Here, we investigated associations between plasma levels of 34 sterols (measured by mass spectrometry) and scores on the Quick Inventory of Depressive Symptomatology-Self Report (QIDS-SR16) scale in 3117 adult participants in the Dallas Heart Study, an ethnically diverse, population-based cohort. We built a random forest model using feature selection from a pool of 43 variables including demographics, general health indicators, and sterol concentrations. This model comprised 19 variables, 13 of which were sterol concentrations, and explained 15.5% of the variation in depressive symptoms. Desmosterol concentrations below the fifth percentile (1.9 ng/mL, OR 1.9, 95% CI 1.2–2.9) were significantly associated with depressive symptoms of at least moderate severity (QIDS-SR16 score ≥10.5). This is the first study reporting a novel association between plasma concentrations cholesterol precursors and depressive symptom severity.
Collapse
Affiliation(s)
- Basar Cenik
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Can Cenik
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Michael P. Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - E. Sherwood Brown
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
39
|
Korade Ž, Liu W, Warren EB, Armstrong K, Porter NA, Konradi C. Effect of psychotropic drug treatment on sterol metabolism. Schizophr Res 2017; 187:74-81. [PMID: 28202290 PMCID: PMC5554466 DOI: 10.1016/j.schres.2017.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 01/08/2023]
Abstract
Cholesterol metabolism is vital for brain function. Previous work in cultured cells has shown that a number of psychotropic drugs inhibit the activity of 7-dehydrocholesterol reductase (DHCR7), an enzyme that catalyzes the final steps in cholesterol biosynthesis. This leads to the accumulation of 7-dehydrocholesterol (7DHC), a molecule that gives rise to oxysterols, vitamin D, and atypical neurosteroids. We examined levels of cholesterol and the cholesterol precursors desmosterol, lanosterol, 7DHC and its isomer 8-dehydrocholesterol (8DHC), in blood samples of 123 psychiatric patients on various antipsychotic and antidepressant drugs, and 85 healthy controls, to see if the observations in cell lines hold true for patients as well. Three drugs, aripiprazole, haloperidol and trazodone increased circulating 7DHC and 8DHC levels, while five other drugs, clozapine, escitalopram/citalopram, lamotrigine, olanzapine, and risperidone, did not. Studies in rat brain verified that haloperidol dose-dependently increased 7DHC and 8DHC levels, while clozapine had no effect. We conclude that further studies should investigate the role of 7DHC and 8DHC metabolites, such as oxysterols, vitamin D, and atypical neurosteroids, in the deleterious and therapeutic effects of psychotropic drugs. Finally, we recommend that drugs that increase 7DHC levels should not be prescribed during pregnancy, as children born with DHCR7 deficiency have multiple congenital malformations.
Collapse
Affiliation(s)
- Željka Korade
- Department of Pediatrics and Department of Biochemistry and Molecular Biology, UNMC, Omaha, NE 68198, United States
| | - Wei Liu
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Nashville, TN 37235, United States
| | - Emily B Warren
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240, United States
| | - Kristan Armstrong
- Department of Psychiatry, Vanderbilt University, Nashville, TN 37212, United States
| | - Ned A Porter
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Nashville, TN 37235, United States
| | - Christine Konradi
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240, United States; Department of Psychiatry, Vanderbilt University, Nashville, TN 37212, United States.
| |
Collapse
|
40
|
Huang J, Weinstein SJ, Kitahara CM, Karoly ED, Sampson JN, Albanes D. A prospective study of serum metabolites and glioma risk. Oncotarget 2017; 8:70366-70377. [PMID: 29050286 PMCID: PMC5642561 DOI: 10.18632/oncotarget.19705] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 06/29/2017] [Indexed: 12/30/2022] Open
Abstract
Malignant glioma is one of the most lethal adult cancers, yet its etiology remains largely unknown. We conducted a prospective serum metabolomic analysis of glioma based on 64 cases and 64 matched controls selected from Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study. Median time from collection of baseline fasting serum to diagnosis was nine years (inter-decile range 3-20 years). LC/MS-MS identified 730 known metabolites, and conditional logistic regression models estimated odds ratios for one-standard deviation differences in log-metabolite signals. Forty-three metabolites were associated with glioma at P<0.05. 2-Oxoarginine, cysteine, alpha-ketoglutarate, chenodeoxycholate and argininate yielded the strongest metabolite signals and were inversely related to overall glioma risk (0.0065≤P<0.0083). Also, seven xanthine metabolites related to caffeine metabolism were higher in cases than in controls (0.017≤P<0.042). Findings were mostly similar in high-grade glioma cases, although prominent inversely associated metabolites included the secondary bile acids glycocholenate sulfate and 3β-hydroxy-5-cholenoic acid, xenobiotic methyl 4-hydroxybenzoate sulfate, sex steroid 5alpha-pregnan-3beta, 20beta-diol-monosulfate, and cofactor/vitamin oxalate (0.0091≤P<0.021). A serum metabolomic profile of glioma identified years in advance of clinical diagnoses is characterized by altered signals in arginine/proline, antioxidant, and coffee-related metabolites. The observed pattern provides new potential leads regarding the molecular basis relevant to etiologic or sub-clinical biomarkers for glioma.
Collapse
Affiliation(s)
- Jiaqi Huang
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Department of Health and Human Services, Bethesda, MD, USA
| | - Stephanie J Weinstein
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Department of Health and Human Services, Bethesda, MD, USA
| | - Cari M Kitahara
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Department of Health and Human Services, Bethesda, MD, USA
| | - Edward D Karoly
- Director of Project Management, Metabolon, Inc., Morrisville, NC, USA
| | - Joshua N Sampson
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Department of Health and Human Services, Bethesda, MD, USA
| | - Demetrius Albanes
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Department of Health and Human Services, Bethesda, MD, USA
| |
Collapse
|
41
|
Uh D, Jeong HG, Choi KY, Oh SY, Lee S, Kim SH, Joe SH. Dehydroepiandrosterone Sulfate Level Varies Nonlinearly with Symptom Severity in Major Depressive Disorder. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2017; 15:163-169. [PMID: 28449564 PMCID: PMC5426487 DOI: 10.9758/cpn.2017.15.2.163] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/14/2016] [Accepted: 12/03/2016] [Indexed: 11/18/2022]
Abstract
Objective The pathophysiology of major depressive disorder (MDD) is still not well understood. Conflicting results for surrogate. biomarkers in MDD have been reported, which might be a consequence of the heterogeneity of MDD patients. Therefore, we aim to investigate how the severity of depression and various symptom domains are related to the levels of dehydroepiandrosterone sulfate (DHEA-s) in MDD patients. Methods We recruited 117 subjects from a general practice. Depressive symptoms were assessed using the Beck Depression Inventory (BDI). Depressive symptoms were divided into three subdomains according to BDI items; somatic symptoms, guilt and failure, and mood and inhibition. Results In subjects with very-mild-to-moderate depression, the DHEA-s level increased as BDI score did. However, the DHEA-s levels in the subjects with severe depression were significantly lower than in subjects with moderate depression (p=0.003). DHEA-s level was correlated with the BDI subscore for guilt and failure in very-mild-to-moderate depression (r=0.365, p=0.006). Conclusion The DHEA-s level appears to be indicative of MDD severity with respect to depressive symptoms, especially regarding guilt and failure. Our findings suggest that the upregulation of DHEA-s may be a part of a compensatory process in very-mild-to-moderate depression, and the failure of this compensation mechanism may underlie the development of severe depression.
Collapse
Affiliation(s)
- Dasom Uh
- Department of Psychiatry, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Hyun-Ghang Jeong
- Department of Psychiatry, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea.,Research Institute of Mental Health, Korea University, Seoul, Korea
| | - Kwang-Yeon Choi
- Department of Psychiatry, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - So-Young Oh
- Department of Psychiatry, Seoul Metropolitan Eunpyeong Hospital, Seoul, Korea
| | - Suji Lee
- Department of Biomedical Sciences, Korea University Graduate School, Seoul, Korea
| | - Seung-Hyun Kim
- Department of Psychiatry, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Sook-Haeng Joe
- Department of Psychiatry, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea.,Research Institute of Mental Health, Korea University, Seoul, Korea
| |
Collapse
|
42
|
Polymorphisms of STS gene and SULT2A1 gene and neurosteroid levels in Han Chinese boys with attention-deficit/hyperactivity disorder: an exploratory investigation. Sci Rep 2017; 7:45595. [PMID: 28367959 PMCID: PMC5377367 DOI: 10.1038/srep45595] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/28/2017] [Indexed: 11/16/2022] Open
Abstract
This study examined the relationships among polymorphisms of the STS gene and SULT2A1 gene, dehydroepiandrosterone (DHEA) and its sulfated form (DHEA-S), and characteristics of attention-deficit/hyperactivity disorder (ADHD). We used cheek swabs to obtain the genomic DNA of 200 ADHD male probands (mean age: 8.7 years), 192 patients’ mothers and 157 patients’ fathers. Three SNPs in the STS gene (rs6639786, rs2270112, and rs17268988) and one SNP in the SULT2A1 gene (rs182420) were genotyped. Saliva samples were collected from the ADHD patients to analyze DHEA and DHEA-S levels. The behavioral symptoms were evaluated with the Swanson, Nolan, and Pelham, and Version IV Scale for ADHD (SNAP-IV), and the neuropsychological function was assessed using the Conners’ Continuous Performance Tests (CPT). We found the C allele of rs2270112 within the STS gene to be over-transmitted in males with ADHD. Polymorphisms of rs182420 within the SULT2A1 gene were not associated with ADHD. In addition, the C allele carriers of rs2270112 demonstrated significantly higher DHEA-S levels than the G allele carriers. Levels of DHEA were positively correlated with attention as measured by the CPT. These findings support a potential role in the underlying biological pathogenesis of ADHD with regard to STS polymorphisms and neurosteroid levels.
Collapse
|
43
|
Welliver C, Essa A. Sexual Side Effects of Medical and Surgical Benign Prostatic Hyperplasia Treatments. Urol Clin North Am 2017; 43:393-404. [PMID: 27476132 DOI: 10.1016/j.ucl.2016.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Treatments for lower urinary tract symptoms due to benign prostatic hyperplasia can be evaluated by multiple metrics. A balance within the confines of patient expectations is key to determining the ideal treatment. A troubling adverse event for some patients is sexual dysfunction. Because the cohort of men who seek treatment of sexual dysfunction and lower urinary tract symptoms is essentially identical, these disease processes frequently overlap. This article considers potential pathophysiologic causes of dysfunction with treatment and attempts to critically review the available data to assess the true incidence of sexual adverse events with treatment.
Collapse
Affiliation(s)
- Charles Welliver
- Division of Urology, Albany Medical College, 23 Hackett Boulevard, Albany, NY 12208, USA; Division of Urology, Albany Stratton Veterans Affairs Medical Center, 113 Holland Ave, Albany, NY 12208, USA; Division of Urology, Urological Institute of Northeastern New York, 23 Hackett Boulevard, Albany, NY 12208, USA.
| | - Ahmed Essa
- Division of Urology, University of Al - Iraqi School of Medicine, Adhamyia, Haibetkhaoon, Street 22, District 308, Box office 7366, Baghdad, Iraq; Department of Urology, Al-Numan Teaching Hospital, Adhamyia, Haibetkhaoon, Street 22, District 308, Box office 7366, Baghdad, Iraq
| |
Collapse
|
44
|
Sun J, Walker AJ, Dean B, van den Buuse M, Gogos A. Progesterone: The neglected hormone in schizophrenia? A focus on progesterone-dopamine interactions. Psychoneuroendocrinology 2016; 74:126-140. [PMID: 27608362 DOI: 10.1016/j.psyneuen.2016.08.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/18/2016] [Accepted: 08/18/2016] [Indexed: 12/25/2022]
Abstract
Sex differences appear to be an important factor in schizophrenia. Women with schizophrenia tend to exhibit less disease impairment than men, typically presenting with a later age-at-onset, lower overall incidence and less severe symptoms. These observations underpin the estrogen hypothesis of schizophrenia, which postulates a protective role of estrogen against the development and severity of the disorder. While there has been significant attention placed on the impact of estrogens in schizophrenia, less consideration has been afforded to the role of progesterone, the other main female gonadal hormone. This narrative review discusses the role of progesterone as a neuroactive steroid and how it may be dysregulated in schizophrenia. Preclinical and molecular studies relevant to schizophrenia are discussed with a particular focus on the interactions between progesterone and the dopaminergic system. Notably, existing data on progesterone in relation to schizophrenia is inconsistent, with some studies suggesting a neuroprotective role for the hormone (e.g. animal models of cognitive dysfunction and positive symptoms), while other studies posit a disruptive impact of the hormone (e.g. negative correlations with symptom modulation in patients). This review aims to thoroughly address these discrepancies, concluding that altogether the data suggest that progesterone is a key modulator of central systems implicated in schizophrenia. On this basis, we argue that a more inclusive, considered effort of future studies to understand the intricacies of the interactions between progesterone and estrogen. Such an effort may enhance our understanding of the roles of sex hormones in schizophrenia, thus leading to avenues for novel therapeutic approaches.
Collapse
Affiliation(s)
- Jeehae Sun
- Division of Biological Psychiatry and Mental Health, The Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, Australia
| | - Adam J Walker
- Division of Biological Psychiatry and Mental Health, The Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, Australia
| | - Brian Dean
- Division of Biological Psychiatry and Mental Health, The Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, Australia
| | - Maarten van den Buuse
- School of Psychology and Public Health, La Trobe University, VIC, Australia; Department of Pharmacology, University of Melbourne, VIC, Australia; The College of Public Health, Medical and Veterinary Sciences, James Cook University, QLD, Australia
| | - Andrea Gogos
- Division of Biological Psychiatry and Mental Health, The Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, Australia.
| |
Collapse
|
45
|
Woda A, Picard P, Dutheil F. Dysfunctional stress responses in chronic pain. Psychoneuroendocrinology 2016; 71:127-35. [PMID: 27262345 DOI: 10.1016/j.psyneuen.2016.05.017] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 04/06/2016] [Accepted: 05/18/2016] [Indexed: 11/26/2022]
Abstract
Many dysfunctional and chronic pain conditions overlap. This review describes the different modes of chronic deregulation of the adaptive response to stress which may be a common factor for these conditions. Several types of dysfunction can be identified within the hypothalamo-pituitary-adrenal axis: basal hypercortisolism, hyper-reactivity, basal hypocortisolism and hypo-reactivity. Neuroactive steroid synthesis is another component of the adaptive response to stress. Dehydroepiandrosterone (DHEA) and its sulfated form DHEA-S, and progesterone and its derivatives are synthetized in cutaneous, nervous, and adipose cells. They are neuroactive factors that act locally. They may have a role in the localization of the symptoms and their levels can vary both in the central nervous system and in the periphery. Persistent changes in neuroactive steroid levels or precursors can induce localized neurodegeneration. The autonomic nervous system is another component of the stress response. Its dysfunction in chronic stress responses can be expressed by decreased basal parasympathethic activity, increased basal sympathetic activity or sympathetic hyporeactivity to a stressful stimulus. The immune and genetic systems also participate. The helper-T cells Th1 secrete pro-inflammatory cytokines such as IL-1-β, IL-2, IL-6, IL-8, IL-12, IFN-γ, and TNF-α, whereas Th2 secrete anti-inflammatory cytokines: IL-4, IL-10, IGF-10, IL-13. Chronic deregulation of the Th1/Th2 balance can occur in favor of anti- or pro-inflammatory direction, locally or systemically. Individual vulnerability to stress can be due to environmental factors but can also be genetically influenced. Genetic polymorphisms and epigenetics are the main keys to understanding the influence of genetics on the response of individuals to constraints.
Collapse
Affiliation(s)
- Alain Woda
- Dental faculty, EA 3847, CROC, 11 Boulevard Charles-de-Gaulle, Clermont-Ferrand, France; University Hospital of Clermont-Ferrand (CHU), Odontology department, Clermont-Ferrand, France
| | - Pascale Picard
- Pain center, University Hospital of Clermont-Ferrand (CHU), Clermont-Ferrand, France
| | - Frédéric Dutheil
- Preventive and Occupational Medicine, University Hospital of Clermont-Ferrand (CHU), Clermont-Ferrand, France; University Clermont Auvergne, Laboratory of Metabolic Adaptations to Exercise in Physiological and Pathological conditions (AME2P, EA3533), Clermont-Ferrand, France; Australian Catholic University, Faculty of Health, Melbourne, Victoria, Australia; CNRS, UMR 6024, Physiological and Psychosocial Stress, LAPSCO, University Clermont Auvergne, Clermont-Ferrand, France.
| |
Collapse
|
46
|
Kazdoba TM, Hagerman RJ, Zolkowska D, Rogawski MA, Crawley JN. Evaluation of the neuroactive steroid ganaxolone on social and repetitive behaviors in the BTBR mouse model of autism. Psychopharmacology (Berl) 2016; 233:309-23. [PMID: 26525567 PMCID: PMC4703522 DOI: 10.1007/s00213-015-4115-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 10/06/2015] [Indexed: 10/22/2022]
Abstract
RATIONALE Abnormalities in excitatory/inhibitory neurotransmission are hypothesized to contribute to autism spectrum disorder (ASD) etiology. BTBR T (+) Itpr3 (tf) /J (BTBR), an inbred mouse strain, displays social deficits and repetitive self-grooming, offering face validity to ASD diagnostic symptoms. Reduced GABAergic neurotransmission in BTBR suggests that GABAA receptor positive allosteric modulators (PAMs) could improve ASD-relevant BTBR phenotypes. The neuroactive steroid ganaxolone acts as a PAM, displaying anticonvulsant properties in rodent epilepsy models and an anxiolytic-like profile in the elevated plus-maze. OBJECTIVES We evaluated ganaxolone in BTBR and C57BL/6J mice in standardized assays for sociability and repetitive behaviors. Open field and anxiety-related behaviors were tested as internal controls and for comparison with the existing neuroactive steroid literature. RESULTS Ganaxolone improved aspects of social approach and reciprocal social interactions in BTBR, with no effect on repetitive self-grooming, and no detrimental effects in C57BL/6J. Ganaxolone increased overall exploratory activity in BTBR and C57BL/6J in the open field, social approach, and elevated plus-maze, introducing a confound for the interpretation of social improvements. Allopregnanolone and diazepam similarly increased total entries in the elevated plus-maze, indicating that behavioral activation may be a general property of GABAA receptor PAMs in these strains. CONCLUSIONS Ganaxolone shows promise for improving sociability. In addition, ganaxolone, as well as other GABAA receptor PAMs, enhanced overall BTBR activity. The translational implications of specific sociability improvements and nonspecific behavioral activation by ganaxolone in the BTBR model remain to be determined. Future studies to explore whether PAMs provide a novel profile with unique benefits for ASD treatment will be worthwhile.
Collapse
Affiliation(s)
- Tatiana M Kazdoba
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.
| | - Randi J Hagerman
- MIND Institute, Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Dorota Zolkowska
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Michael A Rogawski
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Jacqueline N Crawley
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
| |
Collapse
|
47
|
Higashi T, Aiba N, Tanaka T, Yoshizawa K, Ogawa S. Methods for differential and quantitative analyses of brain neurosteroid levels by LC/MS/MS with ESI-enhancing and isotope-coded derivatization. J Pharm Biomed Anal 2015; 117:155-62. [PMID: 26355769 DOI: 10.1016/j.jpba.2015.08.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 08/26/2015] [Accepted: 08/28/2015] [Indexed: 11/29/2022]
Abstract
The analysis of changes in the brain neurosteroid (NS) levels due to various stimuli can contribute to the elucidation of their physiological roles, and the discovery and development of new antipsychotic agents targeting neurosteroidogenesis. We developed methods for the differential and quantitative analyses of the brain levels of allopregnanolene (AP) and its precursor, pregnenolone (PREG), using liquid chromatography/electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS) combined with derivatization using 2-hydrazino-1-methylpyridine (HMP) and its isotope-coded analogue, (2)H3-HMP (d-HMP). For the differential analysis, the brain sample of an untreated rat was derivatized with HMP, while the brain sample of a treated (stressed or drug-administered) rat was derivatized with d-HMP. The two derivatives were mixed and then subjected to LC/ESI-MS/MS. The stress- and drug (clozapine and fluoxetine)-evoked increases in the brain AP and PREG levels were accurately analyzed by the developed method. It was also possible to determine the absolute concentrations of the brain steroids when a deuterium-coded moiety was introduced to the standard steroids of known amounts by the derivatization and the resulting derivatives were used as internal standards. The HMP-derivatization enabled the highly sensitive detection and the use of d-HMP significantly improved the assay precision [the intra- (n=5) and inter-assay (n=5) relative standard deviations did not exceed 13.7%] and accuracy (analytical recovery ranged from 98.7 to 106.7%).
Collapse
Affiliation(s)
- Tatsuya Higashi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Naoto Aiba
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Tomoya Tanaka
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kazumi Yoshizawa
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Shoujiro Ogawa
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
48
|
Dastgheib M, Dehpour AR, Heidari M, Moezi L. The effects of intra-dorsal hippocampus infusion of pregnenolone sulfate on memory function and hippocampal BDNF mRNA expression of biliary cirrhosis-induced memory impairment in rats. Neuroscience 2015; 306:1-9. [PMID: 26272534 DOI: 10.1016/j.neuroscience.2015.08.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/22/2015] [Accepted: 08/07/2015] [Indexed: 11/24/2022]
Abstract
Learning and memory impairment is one of the most challenging complications of cirrhosis and present treatments are unsatisfactory. The exact mechanism of cirrhosis cognitive dysfunction is unknown. Pregnenolone sulfate (PREGS) is an excitatory neurosteroid that acts as a N-methyl-D-aspartate (NMDA) receptor agonist and GABAA receptor antagonist. In this study we evaluated the effect of intra CA1 infusion of PREGS on cirrhotic rats' memory function using the Y-maze test. Hippocampal brain-derived neurotrophic factor (BDNF) mRNA expression was also evaluated. Three weeks after bile duct ligation (BDL) surgery, rats were under stereotaxic surgery for insertion of two guide cannulas in the CA1 region of the hippocampus. After 1-week of recovery, PREGS was administered through CA1 cannulas in cirrhotic rats, while control or sham groups received vehicle. For evaluation of NMDA receptor role in memory-enhancing effects of PREGS, DL-2-Amino-5-phosphonopentanoic acid (AP5) which is a potent and competitive antagonist of NMDA receptor, co-administered with PREGS and for assessment of hippocampal BDNF mRNA expression, quantitative Real-time reverse transcriptase-PCR (RT-PCR) was used. Results showed that 28 days after BDL, cirrhotic animals' memory significantly decreased in comparison with control and sham groups, while PREGS infusion could restore memory impairment (P<0.05). PREGS effects on memory of cirrhotic rats were antagonized by DAP5. RT-PCR findings have shown that hippocampal relative BDNF mRNA expression was up-regulated in PREGS-treated groups in comparison with the BDL group (P<0.001). Our findings suggest that PREGS has a memory-enhancing effect in cirrhosis memory deficit in acute therapy and this effect may be through NMDA (glutamate) receptor involvement and BDNF mRNA expression.
Collapse
Affiliation(s)
- M Dastgheib
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - A R Dehpour
- Experimental research center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - M Heidari
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| | - L Moezi
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
49
|
Vyklicky V, Krausova B, Cerny J, Balik A, Zapotocky M, Novotny M, Lichnerova K, Smejkalova T, Kaniakova M, Korinek M, Petrovic M, Kacer P, Horak M, Chodounska H, Vyklicky L. Block of NMDA receptor channels by endogenous neurosteroids: implications for the agonist induced conformational states of the channel vestibule. Sci Rep 2015; 5:10935. [PMID: 26086919 PMCID: PMC4471902 DOI: 10.1038/srep10935] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 05/08/2015] [Indexed: 11/10/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) mediate synaptic plasticity, and their dysfunction is implicated in multiple brain disorders. NMDARs can be allosterically modulated by numerous compounds, including endogenous neurosteroid pregnanolone sulfate. Here, we identify the molecular basis of the use-dependent and voltage-independent inhibitory effect of neurosteroids on NMDAR responses. The site of action is located at the extracellular vestibule of the receptor's ion channel pore and is accessible after receptor activation. Mutations in the extracellular vestibule in the SYTANLAAF motif disrupt the inhibitory effect of negatively charged steroids. In contrast, positively charged steroids inhibit mutated NMDAR responses in a voltage-dependent manner. These results, in combination with molecular modeling, characterize structure details of the open configuration of the NMDAR channel. Our results provide a unique opportunity for the development of new therapeutic neurosteroid-based ligands to treat diseases associated with dysfunction of the glutamate system.
Collapse
Affiliation(s)
- Vojtech Vyklicky
- Institute of Physiology CAS, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Barbora Krausova
- Institute of Physiology CAS, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Jiri Cerny
- Institute of Physiology CAS, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Ales Balik
- Institute of Physiology CAS, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Martin Zapotocky
- Institute of Physiology CAS, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Marian Novotny
- Charles University in Prague, Faculty of Science, Albertov 6, 128 43 Prague 2, Czech Republic
| | | | - Tereza Smejkalova
- Institute of Physiology CAS, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Martina Kaniakova
- Institute of Physiology CAS, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Miloslav Korinek
- Institute of Physiology CAS, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Milos Petrovic
- Institute of Physiology CAS, Videnska 1083, 142 20 Prague 4, Czech Republic
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
- Institute of Medical Physiology, School of Medicine, University of Belgrade, Visegradska 26/II, 11000 Beograd, Srbija
| | - Petr Kacer
- Institute of Chemical Technology—Prague, Technicka 5, 166 28 Prague, Czech Republic
| | - Martin Horak
- Institute of Physiology CAS, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Hana Chodounska
- Institute of Organic Chemistry and Biochemistry CAS, Flemingovo nam. 2, 166 10 Prague 2, Czech Republic
| | - Ladislav Vyklicky
- Institute of Physiology CAS, Videnska 1083, 142 20 Prague 4, Czech Republic
| |
Collapse
|
50
|
Welliver C, Butcher M, Potini Y, McVary KT. Impact of alpha blockers, 5-alpha reductase inhibitors and combination therapy on sexual function. Curr Urol Rep 2015; 15:441. [PMID: 25118850 DOI: 10.1007/s11934-014-0441-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Medical treatments for lower urinary tract symptoms due to benign prostatic hyperplasia are frequently associated with changes in sexual function. While these medications are generally well-tolerated and have both reduced and delayed more invasive surgical options, the ramifications of long-term chronic use are largely unknown. Sexual side effects of these medications are frequently either reported as part of a short-term initial drug study or have inflexible endpoints that are not able to gauge more subtle changes in sexual performance. This review will delineate the currently known effects of these medications on sexual function and will consider mechanisms of dysfunction.
Collapse
|