1
|
Schwabe L. Memory Under Stress: From Adaptation to Disorder. Biol Psychiatry 2025; 97:339-348. [PMID: 38880463 DOI: 10.1016/j.biopsych.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/02/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Stressful events are ubiquitous in everyday life. Exposure to these stressors initiates the temporally orchestrated release of a multitude of hormones, peptides, and neurotransmitters that target brain areas that have been critically implicated in learning and memory. This review summarizes recent insights on the profound impact of stress on 4 fundamental processes of memory: memory formation, memory contextualization, memory retrieval, and memory flexibility. Stress mediators instigate dynamic alterations in these processes, thereby facilitating efficient responding under stress and the creation of a decontextualized memory representation that can effectively aid coping with novel future threats. While they are generally adaptive, the same stress-related changes may contribute to the rigid behaviors, uncontrollable intrusions, and generalized fear responding seen in anxiety disorders and posttraumatic stress disorder. Drawing on recent discoveries in cognitive neuroscience and psychiatry, this review discusses how stress-induced alterations in memory processes can simultaneously foster adaptation to stressors and fuel psychopathology. The transition from adaptive to maladaptive changes in the impact of stress on memory hinges on the nuanced interplay of stressor characteristics and individual predispositions. Thus, taking individual differences in the cognitive response to stressors into account is essential for any successful treatment of stress-related mental disorders.
Collapse
Affiliation(s)
- Lars Schwabe
- Department of Cognitive Psychology, Institute of Psychology, Universität Hamburg, Hamburg, Germany.
| |
Collapse
|
2
|
Hiraga T, Miyoshi K, Shimizu R, Yook JS, Okamoto M, Soya H. Very-light-intensity exercise as minimal intensity threshold for activating dorsal hippocampal neurons: Evidence from rat physiological exercise model. Biochem Biophys Res Commun 2025; 746:151243. [PMID: 39752975 DOI: 10.1016/j.bbrc.2024.151243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 12/24/2024] [Indexed: 01/15/2025]
Abstract
Exercise benefits the brain, particularly the learning and memory center-the dorsal hippocampus (dHPC)-and holds promise for therapeutic applications addressing age-related cognitive deficits. While moderate-to-vigorous-intensity exercise is commonly recommended for health benefits, our translational research proposes the effectiveness of very-light-intensity exercise in enhancing cognitive functions. However, the intensity-dependent characteristics of HPC activation have yet to be fully delineated; therefore, there is no evidence of whether such easily accessible exercises for people of all ages and most fitness levels can activate HPC neurons. Here, we aimed to clarify this question using a physiologically sound rat exercise model. We used a previously established rat treadmill running model within a metabolic chamber and measured maximal oxygen uptake (V˙O2max) during an incremental running test. Referring to the American College of Sports Medicine's V˙O2max-based intensity classification, rats were assigned to one of five groups: resting control, very-light, light, moderate, and vigorous exercise intensity. We immunohistochemically assessed the effects of a single bout of exercise on dHPC neuronal activity and measured V˙O2 and blood lactate as exercise intensity indicators. dHPC neuronal activity increased with exercise intensity, even at light-intensity without blood lactate accumulation, and correlated positively with increasing V˙O2. The dorsal dentate gyrus and CA1 sub-regions were markedly activated even by very-light-intensity exercise. Our findings demonstrate the intensity-dependent activation of dHPC neurons, with very-light-intensity exercise as the minimal intensity threshold. These strongly support our hypothesis that very-light-intensity exercise serves as a viable memory-enhancing strategy, beneficial for various populations including low-fitness individuals and the elderly.
Collapse
Affiliation(s)
- Taichi Hiraga
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8574, Japan
| | - Kota Miyoshi
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8574, Japan
| | - Ryo Shimizu
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8574, Japan
| | - Jang Soo Yook
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8574, Japan; Institute of Sports and Arts Convergence (ISAC), Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Masahiro Okamoto
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8574, Japan; Division of Sport Neuroscience, Kokoro Division, Advanced Research Initiative for Human High Performance (ARIHHP), Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8574, Japan
| | - Hideaki Soya
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8574, Japan; Division of Sport Neuroscience, Kokoro Division, Advanced Research Initiative for Human High Performance (ARIHHP), Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8574, Japan.
| |
Collapse
|
3
|
Tang X, Zhu C, Liu TC, Zhu R, Deng G, Zhou P, Liu D. Sunflower Oil Fortified with Vitamins D and A and Sunflower Lecithin Ameliorated Scopolamine-Induced Cognitive Dysfunction in Mice and Exploration of the Underlying Protective Pathways. Nutrients 2025; 17:553. [PMID: 39940410 PMCID: PMC11819866 DOI: 10.3390/nu17030553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
The incidence of cognitive disorders is increasing globally, with a reported prevalence of over 50 million individuals affected, and current interventions offer limited efficacy. This study investigates the effects of sunflower oil fortified with sunflower lecithin, vitamin D, and vitamin A on scopolamine-induced cognitive dysfunction in mice and explores the underlying mechanisms. The incidence of cognitive disorders, such as Alzheimer's disease, is increasing yearly, and current interventions offer limited efficacy. Therefore, this research aims to evaluate the cognitive improvement effects of the three added functional factors on mice with learning and memory impairments, along with the associated molecular mechanisms. Behavioral tests, biochemical assays, and real-time quantitative polymerase chain reaction (RT-qPCR) were utilized to examine the intervention effects of these functional factors on scopolamine-induced cognitive impairment in mice. The results revealed that the groups treated with sunflower lecithin and vitamin D significantly enhanced the mice's exploratory behavior, working memory, and spatial memory, with increases of 1.6 times and 4.5 times, respectively, in the open field and novel object recognition tests (VD group). Additionally, these treatments reduced levels of inflammatory markers and IL-6, increased antioxidant GSH levels, and decreased oxidative stress marker MDA levels, with all effects showing significant differences (p < 0.01). The effects were further enhanced when vitamin A was combined with these treatments. Transcriptomic analysis demonstrated that the intervention groups had markedly improved learning and memory abilities through upregulation of key gene expression levels in the PI3K-AKT signaling pathway, cholinergic pathway, and folate biosynthesis pathway. These findings provide a theoretical basis for the development of nutritionally fortified edible oils with added sunflower lecithin, vitamin D, and vitamin A, which may help prevent and ameliorate cognitive disorders.
Collapse
Grants
- Standard Foods (China) Co., Ltd., No. 88 Dalian West Road, Taicang Port Economic and Technological Development Zone New Zone, Suzhou, Jiangsu 215400, China Standard Foods (China) Co., Ltd., No. 88 Dalian West Road, Taicang Port Economic and Technological Development Zone New Zone, Suzhou, Jiangsu 215400, China
Collapse
Affiliation(s)
- Xue Tang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.T.); (C.Z.); (R.Z.); (G.D.)
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China; (P.Z.); (D.L.)
| | - Chengkai Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.T.); (C.Z.); (R.Z.); (G.D.)
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China; (P.Z.); (D.L.)
| | - Tristan C. Liu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.T.); (C.Z.); (R.Z.); (G.D.)
| | - Rongxiang Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.T.); (C.Z.); (R.Z.); (G.D.)
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China; (P.Z.); (D.L.)
| | - Guoliang Deng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.T.); (C.Z.); (R.Z.); (G.D.)
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China; (P.Z.); (D.L.)
| | - Peng Zhou
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China; (P.Z.); (D.L.)
| | - Dasong Liu
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China; (P.Z.); (D.L.)
| |
Collapse
|
4
|
Nada N, El-Tabbakh AR, Elgohary MM, Mandour AE. The Neural Correlates of Central Auditory Dysfunction in Chronic Tinnitus: A Multimodal Approach. Laryngoscope 2025; 135:316-323. [PMID: 39082623 DOI: 10.1002/lary.31663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 12/13/2024]
Abstract
OBJECTIVES It was aimed at assessing the connection between tinnitus and central auditory dysfunction using both central auditory tests (CATs) and diffusion tensor imaging (DTI) for brain regions that are crucial for central auditory processing. METHODS This prospective case-control study included 15 patients with persistent tinnitus and 20 healthy volunteers as controls. They underwent CATs for memory, attention, and DTI. The Tinnitus Handicap Inventory (THI) Questionnaire was applied as well. From several brain regions, the values of mean diffusivity (MD) and fractional anisotropy (FA) were determined. RESULTS Comparing both groups, the tinnitus group showed statistically worse values as regards the CATs (memory for content, sequence memory, speech perception in noise (SPIN) at different signal-to-noise ratios, "SNRs") compared with the control group. As regards DTI, the tinnitus group showed decreased FA in several brain areas, including the cingulum, prefrontal-cortex (PFC), insula, and hippocampus. Furthermore, the tinnitus group showed significantly higher MD in the cingulum, BA-46, and amygdala compared with the control group. FA values of BA-46 were positively correlated with the SPIN-SNR-10 scores. Also, FA values of the middle cingulum were positively correlated with SPIN-SNRzero scores. MD values at BA-46 were negatively correlated with SPIN-SNR-10. THI scores were negatively correlated with FA at BA-46; however, they were positively correlated with MD at the amygdala. CONCLUSIONS Central auditory dysfunction may be linked to the underlying neurophysiological changes in chronic tinnitus. LEVEL OF EVIDENCE 2 Laryngoscope, 135:316-323, 2025.
Collapse
Affiliation(s)
- Nashwa Nada
- Audiovestibular Unit, ORL Department, Tanta University, Tanta, Egypt
| | - Amira Roshdy El-Tabbakh
- Department of Radiology and Medical Imaging, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | | |
Collapse
|
5
|
Castillo-Navarrete JL, Guzmán-Castillo A, Bustos C. Longitudinal analysis of academic stress and its effects on salivary cortisol, alpha-amylase, and academic outcomes: Study protocol. PLoS One 2024; 19:e0315650. [PMID: 39705290 DOI: 10.1371/journal.pone.0315650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 11/27/2024] [Indexed: 12/22/2024] Open
Abstract
INTRODUCTION Academic stress is a prevalent problem among university students, affecting both their psychological well-being and academic performance. This study aims to investigate the mediating roles of biological and psycho-behavioural variables in the relationship between academic stress and academic performance over the course of a semester. Through a longitudinal approach and using accessible data collection technologies, the results will enable the design of effective interventions to mitigate the impact of academic stress. HYPOTHESES (i) Biological variables related to academic performance will mediate the relationship between academic stress and students' academic performance. (ii) Psycho-behavioural variables will also act as mediators in this relationship, impacting academic performance differently. GENERAL OBJECTIVE To explore the mediating roles of biological and psycho-behavioural variables in the relationship between academic stress and academic performance over the course of a university semester. DESIGN A longitudinal non-experimental observational design will be applied. Data will be collected in three assessment cycles, each consisting of three consecutive weeks during the academic semester. PARTICIPANTS A sample of 160 undergraduate students from the Faculty of Medicine of the University of Concepción will be included. Students will be recruited on a voluntary basis through social networks and student associations. Students under psychological or pharmacological treatment will also be included to more representatively reflect the student reality and to ensure the ecological validity of the study. BIOLOGICAL AND PSYCHO-BEHAVIOURAL DATA COLLECTION Participants will answer electronic questionnaires on academic stress and psycho-behavioural variables three times a week via the REDCap platform. In addition, smart devices will be used to continuously collect biological data such as heart rate, oxygen saturation, and sleep patterns. Students will also collect saliva samples three times a week to measure cortisol levels, and alpha-amylase enzyme activity. STATISTICAL ANALYSIS (i) Descriptive analysis of variables will be performed using measures of central tendency and dispersion for continuous variables and frequencies and percentages for categorical variables. (ii) Bivariate and multivariate analyses will be conducted to compare groups. (iii) Random intercept cross-lagged models will be used to assess the direction and reciprocal effects between variables over time. To analyze mediations, structural models (SEM) will be applied, considering biological and psycho-behavioural variables as mediators. EXPECTED RESULTS It is anticipated that (i) biological variables, such as cortisol and salivary alpha-amylase, will play a significant mediating role in the relationship between academic stress and academic performance, particularly towards the end of the semester. (ii) psycho-behavioural variables will also have a mediating effect, with different impacts on academic performance depending on the level of stress experienced. The use of accessible technologies and non-invasive methods such as saliva sample collection will provide a replicable model for future research.
Collapse
Affiliation(s)
- Juan Luis Castillo-Navarrete
- Facultad de Medicina, Departamento de Tecnología Médica, Universidad de Concepción, Concepción, Chile
- Programa de Neurociencia, Psiquiatría y Salud Mental, NEPSAM, Universidad de Concepción, Concepción, Chile
- Facultad de Medicina, Programa Doctorado en Salud Mental, Universidad de Concepción, Concepción, Chile
| | - Alejandra Guzmán-Castillo
- Programa de Neurociencia, Psiquiatría y Salud Mental, NEPSAM, Universidad de Concepción, Concepción, Chile
- Facultad de Medicina, Programa Doctorado en Salud Mental, Universidad de Concepción, Concepción, Chile
- Facultad de Medicina, Departamento de Ciencias Básicas y Morfología, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Claudio Bustos
- Programa de Neurociencia, Psiquiatría y Salud Mental, NEPSAM, Universidad de Concepción, Concepción, Chile
- Facultad de Medicina, Programa Doctorado en Salud Mental, Universidad de Concepción, Concepción, Chile
- Facultad de Ciencias Sociales, Departamento de Psicología, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
6
|
Safiri S, Ghaffari Jolfayi A, Fazlollahi A, Morsali S, Sarkesh A, Daei Sorkhabi A, Golabi B, Aletaha R, Motlagh Asghari K, Hamidi S, Mousavi SE, Jamalkhani S, Karamzad N, Shamekh A, Mohammadinasab R, Sullman MJM, Şahin F, Kolahi AA. Alzheimer's disease: a comprehensive review of epidemiology, risk factors, symptoms diagnosis, management, caregiving, advanced treatments and associated challenges. Front Med (Lausanne) 2024; 11:1474043. [PMID: 39736972 PMCID: PMC11682909 DOI: 10.3389/fmed.2024.1474043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/18/2024] [Indexed: 01/01/2025] Open
Abstract
Background Alzheimer's disease (AD) is a chronic, progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and impaired reasoning. It is the leading cause of dementia in older adults, marked by the pathological accumulation of amyloid-beta plaques and neurofibrillary tangles. These pathological changes lead to widespread neuronal damage, significantly impacting daily functioning and quality of life. Objective This comprehensive review aims to explore various aspects of Alzheimer's disease, including its epidemiology, risk factors, clinical presentation, diagnostic advancements, management strategies, caregiving challenges, and emerging therapeutic interventions. Methods A systematic literature review was conducted across multiple electronic databases, including PubMed, MEDLINE, Cochrane Library, and Scopus, from their inception to May 2024. The search strategy incorporated a combination of keywords and Medical Subject Headings (MeSH) terms such as "Alzheimer's disease," "epidemiology," "risk factors," "symptoms," "diagnosis," "management," "caregiving," "treatment," and "novel therapies." Boolean operators (AND, OR) were used to refine the search, ensuring a comprehensive analysis of the existing literature on Alzheimer's disease. Results AD is significantly influenced by genetic predispositions, such as the apolipoprotein E (APOE) ε4 allele, along with modifiable environmental factors like diet, physical activity, and cognitive engagement. Diagnostic approaches have evolved with advances in neuroimaging techniques (MRI, PET), and biomarker analysis, allowing for earlier detection and intervention. The National Institute on Aging and the Alzheimer's Association have updated diagnostic criteria to include biomarker data, enhancing early diagnosis. Conclusion The management of AD includes pharmacological treatments, such as cholinesterase inhibitors and NMDA receptor antagonists, which provide symptomatic relief but do not slow disease progression. Emerging therapies, including amyloid-beta and tau-targeting treatments, gene therapy, and immunotherapy, offer potential for disease modification. The critical role of caregivers is underscored, as they face considerable emotional, physical, and financial burdens. Support programs, communication strategies, and educational interventions are essential for improving caregiving outcomes. While significant advancements have been made in understanding and managing AD, ongoing research is necessary to identify new therapeutic targets and enhance diagnostic and treatment strategies. A holistic approach, integrating clinical, genetic, and environmental factors, is essential for addressing the multifaceted challenges of Alzheimer's disease and improving outcomes for both patients and caregivers.
Collapse
Affiliation(s)
- Saeid Safiri
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Social Determinants of Health Research Center, Department of Community Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ghaffari Jolfayi
- Cardiovascular Research Center, Rajaie Cardiovascular, Medical, and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Asra Fazlollahi
- Social Determinants of Health Research Center, Department of Community Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soroush Morsali
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Tabriz USERN Office, Universal Scientific Education and Research Network (USERN), Tabriz, Iran
| | - Aila Sarkesh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Daei Sorkhabi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnam Golabi
- Social Determinants of Health Research Center, Department of Community Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Aletaha
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kimia Motlagh Asghari
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sana Hamidi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Tabriz USERN Office, Universal Scientific Education and Research Network (USERN), Tabriz, Iran
| | - Seyed Ehsan Mousavi
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepehr Jamalkhani
- Cardiovascular Research Center, Rajaie Cardiovascular, Medical, and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nahid Karamzad
- Department of Persian Medicine, School of Traditional, Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Shamekh
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Mohammadinasab
- Department of History of Medicine, School of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mark J. M. Sullman
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
- Department of Social Sciences, University of Nicosia, Nicosia, Cyprus
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Türkiye
| | - Ali-Asghar Kolahi
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Hiraga T, Hata T, Soya S, Shimoda R, Takahashi K, Soya M, Inoue K, Johansen JP, Okamoto M, Soya H. Light-exercise-induced dopaminergic and noradrenergic stimulation in the dorsal hippocampus: Using a rat physiological exercise model. FASEB J 2024; 38:e70215. [PMID: 39668509 PMCID: PMC11638517 DOI: 10.1096/fj.202400418rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 12/14/2024]
Abstract
Exercise activates the dorsal hippocampus that triggers synaptic and cellar plasticity and ultimately promotes memory formation. For decades, these benefits have been explored using demanding and stress-response-inducing exercise at moderate-to-vigorous intensities. In contrast, our translational research with animals and humans has focused on light-intensity exercise (light exercise) below the lactate threshold (LT), which almost anyone can safely perform with minimal stress. We found that even light exercise can stimulate hippocampal activity and enhance memory performance. Although the circuit mechanism of this boost remains unclear, arousal promotion even with light exercise implies the involvement of the ascending monoaminergic system that is essential to modulate hippocampal activity and impact memory. To test this hypothesis, we employed our physiological exercise model based on the LT of rats and immunohistochemically assessed the neuronal activation of the dorsal hippocampal sub-regions and brainstem monoaminergic neurons. Also, we monitored the extracellular concentration of monoamines in the dorsal hippocampus using in vivo microdialysis. We found that even light exercise increased neuronal activity in the dorsal hippocampal sub-regions and elevated the extracellular concentrations of noradrenaline and dopamine. Furthermore, we found that tyrosine hydroxylase-positive neurons in the locus coeruleus (LC) and the ventral tegmental area (VTA) were activated even by light exercise and were both positively correlated with the dorsal hippocampal activation. In conclusion, our findings demonstrate that light exercise stimulates dorsal hippocampal neurons, which are associated with LC-noradrenergic and VTA-dopaminergic activation. This shed light on the circuit mechanisms responsible for hippocampal neural activation during exercise, consequently enhancing memory function.
Collapse
Affiliation(s)
- Taichi Hiraga
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport SciencesUniversity of TsukubaTsukubaJapan
| | - Toshiaki Hata
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport SciencesUniversity of TsukubaTsukubaJapan
- Division of Sport Neuroscience, Kokoro Division, Advanced Research Initiative for Human High Performance (ARIHHP), Institute of Health and Sport SciencesUniversity of TsukubaTsukubaJapan
| | - Shingo Soya
- International Institute for Integrative Sleep Medicine (WPI‐IIIS)University of TsukubaTsukubaJapan
- Department of Molecular Behavioral Physiology, Institute of MedicineUniversity of TsukubaTsukubaJapan
| | - Ryo Shimoda
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport SciencesUniversity of TsukubaTsukubaJapan
| | - Kanako Takahashi
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport SciencesUniversity of TsukubaTsukubaJapan
- Division of Sport Neuroscience, Kokoro Division, Advanced Research Initiative for Human High Performance (ARIHHP), Institute of Health and Sport SciencesUniversity of TsukubaTsukubaJapan
| | - Mariko Soya
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport SciencesUniversity of TsukubaTsukubaJapan
- Department of Anatomy and Neuroscience, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Koshiro Inoue
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport SciencesUniversity of TsukubaTsukubaJapan
- Center for Education in Liberal Arts and SciencesHealth Sciences University of HokkaidoIshikariJapan
| | - Joshua P. Johansen
- Laboratory for Neural Circuitry of MemoryRIKEN Center for Brain ScienceSaitamaJapan
| | - Masahiro Okamoto
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport SciencesUniversity of TsukubaTsukubaJapan
- Division of Sport Neuroscience, Kokoro Division, Advanced Research Initiative for Human High Performance (ARIHHP), Institute of Health and Sport SciencesUniversity of TsukubaTsukubaJapan
| | - Hideaki Soya
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport SciencesUniversity of TsukubaTsukubaJapan
- Division of Sport Neuroscience, Kokoro Division, Advanced Research Initiative for Human High Performance (ARIHHP), Institute of Health and Sport SciencesUniversity of TsukubaTsukubaJapan
| |
Collapse
|
8
|
Bakhtazad A, Kabbaj M, Garmabi B, Joghataei MT. The role of CART peptide in learning and memory: A potential therapeutic target in memory-related disorders. Peptides 2024; 181:171298. [PMID: 39317295 DOI: 10.1016/j.peptides.2024.171298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/19/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Cocaine and amphetamine-regulated transcript (CART) mRNA and peptide are vastly expressed in both cortical and subcortical brain areas and are involved in critical cognitive functions. CART peptide (CARTp), described in reward-related brain structures, regulates drug-induced learning and memory, and its role appears specific to psychostimulants. However, many other drugs of abuse, such as alcohol, opiates, nicotine, and caffeine, have been shown to alter the expression levels of CART mRNA and peptides in brain structures directly or indirectly associated with learning and memory processes. However, the number of studies demonstrating the contribution of CARTp in learning and memory is still minimal. Notably, the exact cellular and molecular mechanisms underlying CARTp effects are still unknown. The discoveries that CARTp effects are mediated through a putative G-protein coupled receptor and activation of cellular signaling cascades via NMDA receptor-coupled ERK have enhanced our knowledge about the action of this neuropeptide and allowed us to comprehend better CARTp exact cellular/molecular mechanisms that could mediate drug-induced changes in learning and memory functions. Unfortunately, these efforts have been impeded by the lack of suitable and specific CARTp receptor antagonists. In this review, following a short introduction about CARTp, we report on current knowledge about CART's roles in learning and memory processes and its recently described role in memory-related neurological disorders. We will also discuss the importance of further investigating how CARTp interacts with its receptor(s) and other neurotransmitter systems to influence learning and memory functions. This topic is sure to intrigue and motivate further exploration in the field of neuroscience.
Collapse
Affiliation(s)
- Atefeh Bakhtazad
- Cellular and Molecular Research Center, Deputy of Research and Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohamed Kabbaj
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306-1270, United States; Program of Neuroscience, Florida State University, Tallahassee, FL 32306-1270, United States
| | - Behzad Garmabi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center, Deputy of Research and Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Girotti M, Bulin SE, Carreno FR. Effects of chronic stress on cognitive function - From neurobiology to intervention. Neurobiol Stress 2024; 33:100670. [PMID: 39295772 PMCID: PMC11407068 DOI: 10.1016/j.ynstr.2024.100670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024] Open
Abstract
Exposure to chronic stress contributes considerably to the development of cognitive impairments in psychiatric disorders such as depression, generalized anxiety disorder (GAD), obsessive-compulsive disorder (OCD), post-traumatic stress disorder (PTSD), and addictive behavior. Unfortunately, unlike mood-related symptoms, cognitive impairments are not effectively treated by available therapies, a situation in part resulting from a still incomplete knowledge of the neurobiological substrates that underly cognitive domains and the difficulty in generating interventions that are both efficacious and safe. In this review, we will present an overview of the cognitive domains affected by stress with a specific focus on cognitive flexibility, behavioral inhibition, and working memory. We will then consider the effects of stress on neuronal correlates of cognitive function and the factors which may modulate the interaction of stress and cognition. Finally, we will discuss intervention strategies for treatment of stress-related disorders and gaps in knowledge with emerging new treatments under development. Understanding how cognitive impairment occurs during exposure to chronic stress is crucial to make progress towards the development of new and effective therapeutic approaches.
Collapse
Affiliation(s)
| | - Sarah E. Bulin
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr., San Antonio, TX, 78229, USA
| | - Flavia R. Carreno
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr., San Antonio, TX, 78229, USA
| |
Collapse
|
10
|
Wiest A, Maurer JJ, Weber F, Chung S. A hypothalamic circuit mechanism underlying the impact of stress on memory and sleep. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618467. [PMID: 39463948 PMCID: PMC11507874 DOI: 10.1101/2024.10.17.618467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Stress profoundly affects sleep and memory processes. Stress impairs memory consolidation, and similarly, disruptions in sleep compromise memory functions. Yet, the neural circuits underlying stress-induced sleep and memory disturbances are still not fully understood. Here, we show that activation of CRHPVN neurons, similar to acute restraint stress, decreases sleep and impairs memory in a spatial object recognition task. Conversely, inhibiting CRHPVN neurons during stress reverses stress-induced memory deficits while slightly increasing the amount of sleep. We found that both stress and stimulation of CRHPVN neurons activate neurons in the lateral hypothalamus (LH), and that their projections to the LH are critical for mediating stress-induced memory deficits and sleep disruptions. Our results suggest a pivotal role for CRHPVN neuronal pathways in regulating the adverse effects of stress on memory and sleep, an important step towards improving sleep and ameliorating the cognitive deficits that occur in stress-related disorders.
Collapse
Affiliation(s)
- Alyssa Wiest
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Pharmacology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John J. Maurer
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Pharmacology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Franz Weber
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shinjae Chung
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
Becegato M, Silva RH. Female rodents in behavioral neuroscience: Narrative review on the methodological pitfalls. Physiol Behav 2024; 284:114645. [PMID: 39047942 DOI: 10.1016/j.physbeh.2024.114645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Since the NIH 'Sex as biological variable' policy, the percentage of studies including female subjects have increased largely. Nonetheless, many researchers fail to adequate their protocols to include females. In this narrative review, we aim to discuss the methodological pitfalls of the inclusion of female rodents in behavioral neuroscience. We address three points to consider in studies: the manipulations conducted only in female animals (such as estrous cycle monitoring, ovariectomy, and hormone replacement), the consideration of males as the standard, and biases related to interpretation and publication of the results. In addition, we suggest guidelines and perspectives for the inclusion of females in preclinical research.
Collapse
Affiliation(s)
- Marcela Becegato
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil
| | - Regina H Silva
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil; MaternaCiência, Federal University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
12
|
Lin L, Xu M, Ma J, Du C, Zang Y, Huang A, Wei C, Gao Q, Gan S. Behavioral Assessment Reveals GnRH Immunocastration as a Better Alternative to Surgical Castration. Animals (Basel) 2024; 14:2796. [PMID: 39409745 PMCID: PMC11475323 DOI: 10.3390/ani14192796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Castration is often employed in animal management for reproductive control. However, it is important to evaluate its impact on animal welfare. In this study, we developed rat models for both surgical (n = 6) and GnRH immunocastration (n = 6) to assess the effects of these castration methods on physiological and behavioral characteristics. The novel GnRH-based vaccine significantly increased serum GnRH antibody levels and drastically reduced testosterone, with the testes shrinking to one-fifth the size of those in the control group, thereby halting spermatogenesis at the secondary spermatocyte stage. Behavioral evaluations demonstrated that sexual behavior was significantly suppressed in both surgically and immunologically castrated groups compared to the control, confirming the effectiveness of both methods. However, psychological tests revealed significant signs of depression and social deficits in the surgically castrated group, whereas the behavior of the GnRH-immunocastrated group did not significantly differ from the control. Furthermore, no significant differences in learning and memory were observed among the three groups in the water maze test. Compared to surgical castration, GnRH immunocastration offers effective results and better animal welfare, providing a more humane alternative for livestock management.
Collapse
Affiliation(s)
- Liuxia Lin
- College of Life Science, Tarim University, Alaer 843300, China; (L.L.); (A.H.)
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.M.); (C.D.); (C.W.)
| | - Mengsi Xu
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China;
| | - Jian Ma
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.M.); (C.D.); (C.W.)
| | - Chunmei Du
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.M.); (C.D.); (C.W.)
| | - Yaxin Zang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China;
| | - Amei Huang
- College of Life Science, Tarim University, Alaer 843300, China; (L.L.); (A.H.)
| | - Chen Wei
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.M.); (C.D.); (C.W.)
| | - Qinghua Gao
- College of Animal Science and Technology, Tarim University, Alaer 843300, China
| | - Shangquan Gan
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.M.); (C.D.); (C.W.)
| |
Collapse
|
13
|
Conrad CD, Peay DN, Acuña AM, Whittaker K, Donnay ME. Corticosterone disrupts spatial working memory during retention testing when highly taxed, which positively correlates with depressive-like behavior in middle-aged, ovariectomized female rats. Horm Behav 2024; 164:105600. [PMID: 39003890 PMCID: PMC11330725 DOI: 10.1016/j.yhbeh.2024.105600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
Major Depressive Disorder affects 8.4 % of the U.S. population, particularly women during perimenopause. This study implemented a chronic corticosterone manipulation (CORT, a major rodent stress hormone) using middle-aged, ovariectomized female rats to investigate depressive-like behavior, anxiety-like symptoms, and cognitive ability. CORT (400 μg/ml, in drinking water) was administered for four weeks before behavioral testing began and continued throughout all behavioral assessments. Compared to vehicle-treated rats, CORT significantly intensified depressive-like behaviors: CORT decreased sucrose preference, enhanced immobility on the forced swim test, and decreased sociability on a choice task between a novel conspecific female rat and an inanimate object. Moreover, CORT enhanced anxiety-like behavior on a marble bury task by reducing time investigating tabasco-topped marbles. No effects were observed on novelty suppressed feeding or the elevated plus maze. For spatial working memory using an 8-arm radial arm maze, CORT did not alter acquisition but disrupted performance during retention. CORT enhanced the errors committed during the highest working memory load following a delay and during the last trial requiring the most items to remember; this cognitive metric positively correlated with a composite depressive-like score to reveal that as depressive-like symptoms increased, cognitive performance worsened. This protocol allowed for the inclusion of multiple behavioral assessments without stopping the CORT treatment needed to produce a MDD phenotype and to assess a battery of behaviors. Moreover, that when middle-age was targeted, chronic CORT produced a depressive-like phenotype in ovariectomized females, who also comorbidly expressed aspects of anxiety and cognitive dysfunction.
Collapse
Affiliation(s)
- Cheryl D Conrad
- Arizona State University, Department of Psychology, Box 1104, Tempe 85287, AZ, United States.
| | - Dylan N Peay
- Arizona State University, Department of Psychology, Box 1104, Tempe 85287, AZ, United States
| | - Amanda M Acuña
- Arizona State University, Department of Psychology, Box 1104, Tempe 85287, AZ, United States
| | - Kennedy Whittaker
- Arizona State University, Department of Psychology, Box 1104, Tempe 85287, AZ, United States
| | - Megan E Donnay
- Arizona State University, Department of Psychology, Box 1104, Tempe 85287, AZ, United States
| |
Collapse
|
14
|
Broad HR, Dibnah AJ, Smith AE, Thornton A. Anthropogenic disturbance affects calling and collective behaviour in corvid roosts. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230185. [PMID: 38768208 PMCID: PMC11391286 DOI: 10.1098/rstb.2023.0185] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 05/22/2024] Open
Abstract
Acoustic communication plays an important role in coordinating group dynamics and collective movements across a range of taxa. However, anthropogenic disturbance can inhibit the production or reception of acoustic signals. Here, we investigate the effects of noise and light pollution on the calling and collective behaviour of wild jackdaws (Corvus monedula), a highly social corvid species that uses vocalizations to coordinate collective movements at winter roosting sites. Using audio and video monitoring of roosts in areas with differing degrees of urbanization, we evaluate the influence of anthropogenic disturbance on vocalizations and collective movements. We found that when levels of background noise were higher, jackdaws took longer to settle following arrival at the roost in the evening and also called more during the night, suggesting that human disturbance may cause sleep disruption. High levels of overnight calling were, in turn, linked to disruption of vocal consensus decision-making and less cohesive group departures in the morning. These results raise the possibility that, by affecting cognitive and perceptual processes, human activities may interfere with animals' ability to coordinate collective behaviour. Understanding links between anthropogenic disturbance, communication, cognition and collective behaviour must be an important research priority in our increasingly urbanized world. This article is part of the theme issue 'The power of sound: unravelling how acoustic communication shapes group dynamics'.
Collapse
Affiliation(s)
- Hannah R Broad
- Centre for Ecology and Conservation, University of Exeter , Penryn TR10 9FE, UK
| | - Alex J Dibnah
- Centre for Ecology and Conservation, University of Exeter , Penryn TR10 9FE, UK
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales , Sydney, 2052 NSW, Australia
| | - Anna E Smith
- Centre for Ecology and Conservation, University of Exeter , Penryn TR10 9FE, UK
| | - Alex Thornton
- Centre for Ecology and Conservation, University of Exeter , Penryn TR10 9FE, UK
| |
Collapse
|
15
|
Sun Z, Liu K, Liang C, Wen L, Wu J, Liu X, Li X. Diosmetin as a promising natural therapeutic agent: In vivo, in vitro mechanisms, and clinical studies. Phytother Res 2024; 38:3660-3694. [PMID: 38748620 DOI: 10.1002/ptr.8214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/09/2024] [Accepted: 04/13/2024] [Indexed: 07/12/2024]
Abstract
Diosmetin, a natural occurring flavonoid, is primarily found in citrus fruits, beans, and other plants. Diosmetin demonstrates a variety of pharmacological activities, including anticancer, antioxidant, anti-inflammatory, antibacterial, metabolic regulation, cardiovascular function improvement, estrogenic effects, and others. The process of literature search was done using PubMed, Web of Science and ClinicalTrials databases with search terms containing Diosmetin, content, anticancer, anti-inflammatory, antioxidant, pharmacological activity, pharmacokinetics, in vivo, and in vitro. The aim of this review is to summarize the in vivo, in vitro and clinical studies of Diosmetin over the last decade, focusing on studies related to its anticancer, anti-inflammatory, and antioxidant activities. It is found that DIO has significant therapeutic effects on skin and cardiovascular system diseases, and its research in pharmacokinetics and toxicology is summarized. It provides the latest information for researchers and points out the limitations of current research and areas that should be strengthened in future research, so as to facilitate the relevant scientific research and clinical application of DIO.
Collapse
Affiliation(s)
- Zihao Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kai Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuipeng Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jijiao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolian Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
16
|
Negrón-Oyarzo I, Dib T, Chacana-Véliz L, López-Quilodrán N, Urrutia-Piñones J. Large-scale coupling of prefrontal activity patterns as a mechanism for cognitive control in health and disease: evidence from rodent models. Front Neural Circuits 2024; 18:1286111. [PMID: 38638163 PMCID: PMC11024307 DOI: 10.3389/fncir.2024.1286111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/11/2024] [Indexed: 04/20/2024] Open
Abstract
Cognitive control of behavior is crucial for well-being, as allows subject to adapt to changing environments in a goal-directed way. Changes in cognitive control of behavior is observed during cognitive decline in elderly and in pathological mental conditions. Therefore, the recovery of cognitive control may provide a reliable preventive and therapeutic strategy. However, its neural basis is not completely understood. Cognitive control is supported by the prefrontal cortex, structure that integrates relevant information for the appropriate organization of behavior. At neurophysiological level, it is suggested that cognitive control is supported by local and large-scale synchronization of oscillatory activity patterns and neural spiking activity between the prefrontal cortex and distributed neural networks. In this review, we focus mainly on rodent models approaching the neuronal origin of these prefrontal patterns, and the cognitive and behavioral relevance of its coordination with distributed brain systems. We also examine the relationship between cognitive control and neural activity patterns in the prefrontal cortex, and its role in normal cognitive decline and pathological mental conditions. Finally, based on these body of evidence, we propose a common mechanism that may underlie the impaired cognitive control of behavior.
Collapse
Affiliation(s)
- Ignacio Negrón-Oyarzo
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Tatiana Dib
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Lorena Chacana-Véliz
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias Mención en Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Nélida López-Quilodrán
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias Mención en Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Jocelyn Urrutia-Piñones
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias Mención en Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
17
|
Huang J, Wu H, Jiang J, Yang L, Li K, Wang T. The enhanced emotional negativity bias in parents of atypically developing children: Evidence from an event-related potentials study. Psychophysiology 2024; 61:e14517. [PMID: 38189559 DOI: 10.1111/psyp.14517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/28/2023] [Accepted: 12/18/2023] [Indexed: 01/09/2024]
Abstract
Parents of atypically developing children such as parents of children with ASD, attention deficit hyperactivity disorder, and intellectual disability experience higher levels of parenting stress than parents of typically developing children. However, whether they possess enhanced emotional negativity bias was unclear. In the present study, 28 parents of typically developing children and 29 parents of atypically developing children were recruited. The emotional Stroop task and event-related potentials were adopted to measure their emotional negativity bias, in which participants were required to respond to the borders' color of face pictures. Behaviorally, the impact of parenting stress on emotional negativity bias was not found. At the electrophysiological level, the P2 differential amplitude (negative minus positive) was greater in parents of atypically developing children than in parents of typically developing children, reflecting an enhanced early attentional bias toward negative faces. N2 amplitude for the emotionally negative face was smaller than the positive face in parents of atypically developing children, indicating a too weak attentional control to inhibit distractors. Furthermore, sustained attention to negative faces was observed in parents of atypically developing children, that is, the emotionally negative face elicited greater frontal P3 (300 ~ 500 ms) than the positive faces. These findings revealed that compared to parents of typically developing children, parents of atypically developing children owned an enhanced emotional negativity bias at the early and late stages of information processing.
Collapse
Affiliation(s)
- Jun Huang
- School of Education Science, Chongqing Normal University, Chongqing, China
- Chongqing Key Laboratory of Psychological Diagnosis and Education Technology for Children with Special Needs, Chongqing, China
| | - Haidong Wu
- Chongqing Key Laboratory of Psychological Diagnosis and Education Technology for Children with Special Needs, Chongqing, China
- School of Mathematics, Yunnan Normal University, Kunming, China
| | - Jun Jiang
- Department of Basic Psychology, School of Psychology, Army Medical University, Chongqing, China
| | - Linhui Yang
- Chongqing Key Laboratory of Psychological Diagnosis and Education Technology for Children with Special Needs, Chongqing, China
- Changsha Special Education School, Changsha, China
| | - Kuiliang Li
- School of Education Science, Chongqing Normal University, Chongqing, China
- Chongqing Key Laboratory of Psychological Diagnosis and Education Technology for Children with Special Needs, Chongqing, China
| | - Tao Wang
- School of Education Science, Chongqing Normal University, Chongqing, China
- Chongqing Key Laboratory of Psychological Diagnosis and Education Technology for Children with Special Needs, Chongqing, China
| |
Collapse
|
18
|
D'Oliveira da Silva F, Robert C, Lardant E, Pizzano C, Bruchas MR, Guiard BP, Chauveau F, Moulédous L. Targeting Nociceptin/Orphanin FQ receptor to rescue cognitive symptoms in a mouse neuroendocrine model of chronic stress. Mol Psychiatry 2024; 29:718-729. [PMID: 38123728 DOI: 10.1038/s41380-023-02363-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
Chronic stress causes cognitive deficits, such as impairments in episodic-like hippocampus-dependent memory. Stress regulates an opioid-related neuropeptide named Nociceptin/Orphanin FQ (N/OFQ), the ligand of the G protein-coupled receptor NOP. Since this peptide has deleterious effects on memory, we hypothesized that the N/OFQ system could be a mediator of the negative effects of stress on memory. Chronic stress was mimicked by chronic exposure to corticosterone (CORT). The NOP receptor was either acutely blocked using selective antagonists, or knocked-down specifically in the hippocampus using genetic tools. Long-term memory was assessed in the object recognition (OR) and object location (OL) paradigms. Acute injection of NOP antagonists before learning had a negative impact on memory in naive mice whereas it restored memory performances in the chronic stress model. This rescue was associated with a normalization of neuronal cell activity in the CA3 part of the hippocampus. Chronic CORT induced an upregulation of the N/OFQ precursor in the hippocampus. Knock-down of the NOP receptor in the CA3/Dentate Gyrus region prevented memory deficits in the CORT model. These data demonstrate that blocking the N/OFQ system can be beneficial for long-term memory in a neuroendocrine model of chronic stress. We therefore suggest that NOP antagonists could be useful for the treatment of memory deficits in stress-related disorders.
Collapse
Affiliation(s)
- Flora D'Oliveira da Silva
- Research Center on Animal Cognition (CRCA), Center of Integrative Biology (CBI), University of Toulouse, CNRS UMR-5169, UPS, Toulouse, France
| | - Cathaline Robert
- Research Center on Animal Cognition (CRCA), Center of Integrative Biology (CBI), University of Toulouse, CNRS UMR-5169, UPS, Toulouse, France
| | - Emma Lardant
- IRBA (Army Biomedical Research Institute), Brétigny-sur-Orge, France
| | - Carina Pizzano
- Department of Anesthesiology; Center of Excellence in Neurobiology of Addiction, Pain, and Emotion (NAPE), University of Washington, Seattle, WA, 98195, USA
| | - Michael R Bruchas
- Department of Anesthesiology; Center of Excellence in Neurobiology of Addiction, Pain, and Emotion (NAPE), University of Washington, Seattle, WA, 98195, USA
| | - Bruno P Guiard
- Research Center on Animal Cognition (CRCA), Center of Integrative Biology (CBI), University of Toulouse, CNRS UMR-5169, UPS, Toulouse, France
| | - Frédéric Chauveau
- IRBA (Army Biomedical Research Institute), Brétigny-sur-Orge, France
| | - Lionel Moulédous
- Research Center on Animal Cognition (CRCA), Center of Integrative Biology (CBI), University of Toulouse, CNRS UMR-5169, UPS, Toulouse, France.
| |
Collapse
|
19
|
Qi M, Gai R, Gao H. The effect of chronic academic stress on intentional forgetting. Q J Exp Psychol (Hove) 2024; 77:433-445. [PMID: 37042464 DOI: 10.1177/17470218231171481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
This study investigated whether chronic academic stress could affect the directed forgetting (DF) process. Both the stress group (undergoing preparation for a major academic examination) and the control group performed a DF task. A forgetting cue was presented after a to-be-forgotten (TBF) word, whereas no cue appeared after a to-be-remembered (TBR) item in the study phase. An old/new recognition test was used in the test phase. The results showed that (1) the stress group showed a higher level of self-reported stress, state anxiety, negative affect, and decreased cortisol awakening response (CAR) compared with the control group, suggesting a higher level of stress for the stress group. (2) Both groups showed superior recognition performance of TBR than TBF items, suggesting a DF effect. (3) The stress group showed inferior recognition performance of TBF items and an enhanced DF effect compared with the control group. These results demonstrated that the intentional memory control process might be enhanced under chronic academic stress.
Collapse
Affiliation(s)
- Mingming Qi
- School of Psychology, Liaoning Normal University, Dalian, China
| | - Ru Gai
- School of Psychology, Liaoning Normal University, Dalian, China
| | - Heming Gao
- School of Psychology, Liaoning Normal University, Dalian, China
| |
Collapse
|
20
|
Vorhees CV, Williams MT. Tests for learning and memory in rodent regulatory studies. Curr Res Toxicol 2024; 6:100151. [PMID: 38304257 PMCID: PMC10832385 DOI: 10.1016/j.crtox.2024.100151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 02/03/2024] Open
Abstract
For decades, regulatory guidelines for safety assessment in rodents for drugs, chemicals, pesticides, and food additives with developmental neurotoxic potential have recommended a single test of learning and memory (L&M). In recent years some agencies have requested two such tests. Given the importance of higher cognitive function to health, and the fact that different types of L&M are mediated by different brain regions assessing higher functions represents a step forward in providing better evidence-based protection against adverse brain effects. Given the myriad of tests available for assessing L&M in rodents this leads to the question of which tests best fit regulatory guidelines. To address this question, we begin by describing the central role of two types of L&M essential to all mammalian species and the regions/networks that mediate them. We suggest that the tests recommended possess characteristics that make them well suited to the needs in regulatory safety studies. By brain region, these are (1) the hippocampus and entorhinal cortex for spatial navigation, which assesses explicit L&M for reference and episodic memory and (2) the striatum and related structures for egocentric navigation, which assesses implicit or procedural memory and path integration. Of the tests available, we suggest that in this context, the evidence supports the use of water mazes, specifically, the Morris water maze (MWM) for spatial L&M and the Cincinnati water maze (CWM) for egocentric/procedural L&M. We review the evidentiary basis for these tests, describe their use, and explain procedures that optimize their sensitivity.
Collapse
Affiliation(s)
- Charles V. Vorhees
- Corresponding author at: Div. of Neurology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA.
| | | |
Collapse
|
21
|
Meng X, Chen P, Veltien A, Palavra T, In't Veld S, Grandjean J, Homberg JR. Estimating foraging behavior in rodents using a modified paradigm measuring threat imminence dynamics. Neurobiol Stress 2024; 28:100585. [PMID: 38024390 PMCID: PMC10661863 DOI: 10.1016/j.ynstr.2023.100585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/18/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Animals need to respond to threats to avoid danger and approach rewards. In nature, these responses did not evolve alone but are always accompanied by motivational conflict. A semi-naturalistic threat imminence continuum model models the approach-avoidance conflict and is able to integrate multiple behaviors into a single paradigm. However, its comprehensive application is hampered by the lack of a detailed protocol and data about some fundamental factors including sex, age, and motivational level. Here, we modified a previously established paradigm measuring threat imminence continuum dynamics, involving modifications of training and testing protocols, and utilization of commercial materials combined with open science codes, making it easier to replicate. We demonstrate that foraging behavior is modulated by age, hunger level, and sex. This paradigm can be used to study foraging behaviors in animals in a more naturalistic manner with relevance to human approach-avoid conflicts and associated psychopathologies.
Collapse
Affiliation(s)
- Xianzong Meng
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6525 AJ, Nijmegen, the Netherlands
| | - Ping Chen
- Department of Psychiatry, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Andor Veltien
- Department of Medical Imaging, Radboud University Medical Centre, 6525 GA, Nijmegen, the Netherlands
| | - Tony Palavra
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6525 AJ, Nijmegen, the Netherlands
| | - Sjors In't Veld
- Department of Medical Imaging, Radboud University Medical Centre, 6525 GA, Nijmegen, the Netherlands
| | - Joanes Grandjean
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6525 AJ, Nijmegen, the Netherlands
- Department of Medical Imaging, Radboud University Medical Centre, 6525 GA, Nijmegen, the Netherlands
| | - Judith R. Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6525 AJ, Nijmegen, the Netherlands
| |
Collapse
|
22
|
Pujo JM, Fitriani DY, Ben Saad H, Ghariani M, Dghim A, Mellouli M, Burin A, Mutricy R, Houcke S, Roujansky A, Mansyur M, Nkontcho F, de Toffol B, Ben Amara I, Kallel H. The effects of prolonged stress exposure on the brain of rats and insights to understand the impact of work-related stress on caregivers. Front Behav Neurosci 2023; 17:1288814. [PMID: 38098499 PMCID: PMC10720043 DOI: 10.3389/fnbeh.2023.1288814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/20/2023] [Indexed: 12/17/2023] Open
Abstract
Introduction Stress exposure is a significant concern in the healthcare sector. This animal model study aims to reproduce caregivers' working conditions and determine their impact on the brain. Method Twenty-four healthy male rats of the Wistar strain were divided into four groups. Three groups were submitted each to one stressor for 21 days, while the fourth group was used as a control. Stressors were food and water deprivation (FW), permanent illumination (PI), and forced swimming (FS). At the end of the experiment, rats were euthanized, and stress biomarkers, biological parameters, and DNA damage were measured. Results Prooxidant biomarker rates increased in the different groups (+50 to +75%) compared to the control (p < 0.0001). Urinary corticosterone rates increased in all stressed animals, mainly in the PI group, with changes of up to +50% compared to the control group. Acetylcholinesterase levels decreased to -50% (p < 0.0001 for the three exposed groups). Total ATPase, (Na+/K+)-ATPase, and Mg2+-ATPase activities decreased in all stressed groups. The percentage of brain cell congestion and apoptosis was 3% for the FW group (p < 0.0001), 2% for the PI group (p < 0.0001), and 4% for the FS group (p < 0.0001) compared to the control (0.8%). DNA damage was observed in all exposed groups. Finally, we noticed behavioral changes and a depression-like syndrome in all stressed rats. Conclusion Stressful conditions such as the working environment of caregivers can trigger several pathophysiological processes leading to oxidative, neurochemical, and hypothalamic-pituitary-adrenal disorders. These changes can progress to cell damage and apoptosis in the brain and trigger psychological and physical disorders.
Collapse
Affiliation(s)
- Jean Marc Pujo
- Emergency Department, Cayenne General Hospital, Cayenne, French Guiana
| | - Dewi Yunia Fitriani
- Community Medicine Department, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
- Occupational Medicine Specialist Program, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Occupational and Environmental Health Research Center, IMERI, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Hajer Ben Saad
- Laboratory of Medicinal and Environment Chemistry, Higher Institute of Biotechnology, University of Sfax, Sfax, Tunisia
| | - Marwa Ghariani
- Laboratory of Medicinal and Environment Chemistry, Higher Institute of Biotechnology, University of Sfax, Sfax, Tunisia
- Laboratory of Molecular and Cellular Screening Processes (LPCMC), LR15CBS07, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Amel Dghim
- Laboratory of Medicinal and Environment Chemistry, Higher Institute of Biotechnology, University of Sfax, Sfax, Tunisia
| | - Manel Mellouli
- Laboratory of Anatomopathology, CHU Habib Bourguiba, University of Sfax, Sfax, Tunisia
| | - Antoine Burin
- Emergency Department, Cayenne General Hospital, Cayenne, French Guiana
| | - Remi Mutricy
- Emergency Department, Cayenne General Hospital, Cayenne, French Guiana
| | - Stephanie Houcke
- Intensive Care Unit, Cayenne General Hospital, Cayenne, French Guiana
| | - Ariane Roujansky
- Intensive Care Unit, Cayenne General Hospital, Cayenne, French Guiana
| | - Muchtaruddin Mansyur
- Community Medicine Department, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
- Occupational Medicine Specialist Program, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Occupational and Environmental Health Research Center, IMERI, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Flaubert Nkontcho
- Pharmacy Department, Cayenne General Hospital, Cayenne, French Guiana
| | | | - Ibtissem Ben Amara
- Laboratory of Medicinal and Environment Chemistry, Higher Institute of Biotechnology, University of Sfax, Sfax, Tunisia
| | - Hatem Kallel
- Intensive Care Unit, Cayenne General Hospital, Cayenne, French Guiana
- Tropical Biome and Immunopathology CNRS UMR-9017, Inserm U 1019, Université de Guyane, Cayenne, French Guiana
| |
Collapse
|
23
|
Wallace D, Cooper NR, Sel A, Russo R. Do non-traumatic stressful life events and ageing negatively impact working memory performance and do they interact to further impair working memory performance? PLoS One 2023; 18:e0290635. [PMID: 38019767 PMCID: PMC10686508 DOI: 10.1371/journal.pone.0290635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 08/13/2023] [Indexed: 12/01/2023] Open
Abstract
Stress and normal ageing produce allostatic load, which may lead to difficulties with cognition thereby degrading quality of life. The current study's objective was to assess whether ageing and cumulative stress interact to accelerate cognitive decline. With 60 participants, Marshall et al. found that ageing and cumulative stress interact significantly to impair working memory performance in older adults, suggesting vulnerability to the cumulative effects of life events beyond 60 years old. To replicate and extend this finding, we increased the sample size by conducting 3 independent studies with 156 participants and improved the statistical methods by conducting an iterative Bayesian meta-analysis with Bayes factors. Bayes factors deliver a more comprehensive result because they provide evidence for either the null hypothesis (H0), the alternative hypothesis (H1) or for neither hypothesis due to evidence not being sufficiently sensitive. Young (18-35 yrs) and older (60-85 yrs) healthy adults were categorised as high or low stress based on their life events score derived from the Life Events Scale for Students or Social Readjustment Rating Scale, respectively. We measured accuracy and reaction time on a 2-back working memory task to provide: a) Bayes factors and b) Bayesian meta-analysis, which iteratively added each study's effect sizes to evaluate the overall strength of evidence that ageing, cumulative stress and/or the combination of the two detrimentally affect working memory performance. Using a larger sample (N = 156 vs. N = 60) and a more powerful statistical approach, we did not replicate the robust age by cumulative stress interaction effect found by Marshall et al.. The effects of ageing and cumulative stress also fell within the anecdotal range (⅓
Collapse
Affiliation(s)
- Denise Wallace
- Department of Psychology and Centre for Brain Science, University of Essex, Colchester, Essex, United Kingdom
| | - Nicholas R. Cooper
- Department of Psychology and Centre for Brain Science, University of Essex, Colchester, Essex, United Kingdom
| | - Alejandra Sel
- Department of Psychology and Centre for Brain Science, University of Essex, Colchester, Essex, United Kingdom
| | - Riccardo Russo
- Department of Psychology and Centre for Brain Science, University of Essex, Colchester, Essex, United Kingdom
- Department of Behavioral and Brain Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
24
|
Désiré GNS, Simplice FH, Guillaume CW, Kamal FZ, Parfait B, Hermann TDS, Hervé NAH, Eglantine KW, Linda DKJ, Roland RN, Balbine KN, Blondelle KDL, Ciobica A, Romila L. Cashew ( Anacardium occidentale) Extract: Possible Effects on Hypothalamic-Pituitary-Adrenal (HPA) Axis in Modulating Chronic Stress. Brain Sci 2023; 13:1561. [PMID: 38002521 PMCID: PMC10670073 DOI: 10.3390/brainsci13111561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Depression presents a significant global health burden, necessitating the search for effective and safe treatments. This investigation aims to assess the antidepressant effect of the hydroethanolic extract of Anacardium occidentale (AO) on depression-related behaviors in rats. The depression model involved 42 days of unpredictable chronic mild stress (UCMS) exposure and was assessed using the sucrose preference and the forced swimming (FST) test. Additionally, memory-related aspects were examined using the tests Y-maze and Morris water maze (MWM), following 21 days of treatment with varying doses of the AO extract (150, 300, and 450 mg/kg) and Imipramine (20 mg/kg), commencing on day 21. The monoamines (norepinephrine, serotonin, and dopamine), oxidative stress markers (MDA and SOD), and cytokines levels (IL-1β, IL-6, and TNF-α) within the brain were evaluated. Additionally, the concentration of blood corticosterone was measured. Treatment with AO significantly alleviated UCMS-induced and depressive-like behaviors in rats. This was evidenced by the ability of the extract to prevent further decreases in body mass, increase sucrose consumption, reduce immobility time in the test Forced Swimming, improve cognitive performance in both tests Y-maze and the Morris water maze by increasing the target quadrant dwelling time and spontaneous alternation percentage, and promote faster feeding behavior in the novelty-suppressed feeding test. It also decreased pro-inflammatory cytokines, corticosterone, and MDA levels, and increased monoamine levels and SOD activity. HPLC-MS analysis revealed the presence of triterpenoid compounds (ursolic acid, oleanolic acid, and lupane) and polyphenols (catechin quercetin and kaempferol). These results evidenced the antidepressant effects of the AO, which might involve corticosterone and monoaminergic regulation as antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Guedang Nyayi Simon Désiré
- Department of Biological Sciences, Faculty of Science, University of Maroua, Maroua P.O. Box 814, Cameroon (F.H.S.); (C.W.G.); (B.P.); (T.D.S.H.); (K.W.E.); (K.D.L.B.)
| | - Foyet Harquin Simplice
- Department of Biological Sciences, Faculty of Science, University of Maroua, Maroua P.O. Box 814, Cameroon (F.H.S.); (C.W.G.); (B.P.); (T.D.S.H.); (K.W.E.); (K.D.L.B.)
| | - Camdi Woumitna Guillaume
- Department of Biological Sciences, Faculty of Science, University of Maroua, Maroua P.O. Box 814, Cameroon (F.H.S.); (C.W.G.); (B.P.); (T.D.S.H.); (K.W.E.); (K.D.L.B.)
| | - Fatima Zahra Kamal
- Laboratory of Physical Chemistry of Processes and Materials, Faculty of Sciences and Techniques, Hassan First University, B.P. 539, Settat P.O. Box 26000, Morocco
- Preclinical Department, Apollonia University, Păcurari Street 11, 700511 Iași, Romania
| | - Bouvourné Parfait
- Department of Biological Sciences, Faculty of Science, University of Maroua, Maroua P.O. Box 814, Cameroon (F.H.S.); (C.W.G.); (B.P.); (T.D.S.H.); (K.W.E.); (K.D.L.B.)
| | - Tchinda Defo Serge Hermann
- Department of Biological Sciences, Faculty of Science, University of Maroua, Maroua P.O. Box 814, Cameroon (F.H.S.); (C.W.G.); (B.P.); (T.D.S.H.); (K.W.E.); (K.D.L.B.)
| | - Ngatanko Abaissou Hervé Hervé
- Department of Biological Sciences, Faculty of Science, University of Maroua, Maroua P.O. Box 814, Cameroon (F.H.S.); (C.W.G.); (B.P.); (T.D.S.H.); (K.W.E.); (K.D.L.B.)
| | - Keugong Wado Eglantine
- Department of Biological Sciences, Faculty of Science, University of Maroua, Maroua P.O. Box 814, Cameroon (F.H.S.); (C.W.G.); (B.P.); (T.D.S.H.); (K.W.E.); (K.D.L.B.)
| | - Damo Kamda Jorelle Linda
- Department of Biological Sciences, Faculty of Science, University of Maroua, Maroua P.O. Box 814, Cameroon (F.H.S.); (C.W.G.); (B.P.); (T.D.S.H.); (K.W.E.); (K.D.L.B.)
| | - Rebe Nhouma Roland
- Department of Biological Sciences, Faculty of Science, University of Maroua, Maroua P.O. Box 814, Cameroon (F.H.S.); (C.W.G.); (B.P.); (T.D.S.H.); (K.W.E.); (K.D.L.B.)
| | - Kamleu Nkwingwa Balbine
- Department of Biological Sciences, Faculty of Science, University of Maroua, Maroua P.O. Box 814, Cameroon (F.H.S.); (C.W.G.); (B.P.); (T.D.S.H.); (K.W.E.); (K.D.L.B.)
| | - Kenko Djoumessi Lea Blondelle
- Department of Biological Sciences, Faculty of Science, University of Maroua, Maroua P.O. Box 814, Cameroon (F.H.S.); (C.W.G.); (B.P.); (T.D.S.H.); (K.W.E.); (K.D.L.B.)
| | - Alin Ciobica
- Center of Biomedical Research of the Romanian Academy, 700506 Iasi, Romania
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University, 11 Carol I Blvd., 700505 Iasi, Romania
| | - Laura Romila
- Preclinical Department, Apollonia University, Păcurari Street 11, 700511 Iași, Romania
| |
Collapse
|
25
|
Castillo-Navarrete JL, Bustos C, Guzman-Castillo A, Vicente B. Increased academic stress is associated with decreased plasma BDNF in Chilean college students. PeerJ 2023; 11:e16357. [PMID: 37941931 PMCID: PMC10629390 DOI: 10.7717/peerj.16357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023] Open
Abstract
Introduction Academic stress (AS) is a prevalent challenge faced by university students, potentially affecting molecular indicators such as brain-derived neurotrophic factor (BDNF) and global DNA methylation (G-DNA-M). These indicators could illuminate the physiological ramifications of academic stress. Study Design and Methods This research followed a quantitative, non-experimental, longitudinal panel design spanning two academic semesters, observing phenomena in their natural context. Students from the Medical Technology program at Universidad de Concepción, Chile were involved, with assessments at the beginning and during heightened academic stress periods. Sample Of the total participants, 63.0% were females, with an average age of 21.14 years at baseline, and 36.92% were males, averaging 21.36 years. By the study's conclusion, female participants averaged 21.95 years, and males 22.13 years. Results Significant differences were observed between initial and final assessments for the SISCO-II Inventory of Academic Stress and Beck Depression Inventory-II, notably in stressor scores, and physical, and psychological reactions. Gender differences emerged in the final physical and psychological reactions. No significant changes were detected between the two assessments in plasma BDNF or G-DNA-M values. A refined predictive model showcased that, on average, there was a 3.56% decrease in females' plasma BDNF at the final assessment and a 17.14% decrease in males. In the sample, the G-DNA-M percentage at the final assessment increased by 15.06% from the baseline for females and 18.96% for males. Conclusions The study underscores the physiological impact of academic stress on university students, evidenced by changes in markers like BDNF and G-DNA-M. These findings offer an in-depth understanding of the intricate mechanisms regulating academic stress responses and highlight the need for interventions tailored to mitigate its physiological and psychological effects.
Collapse
Affiliation(s)
- Juan-Luis Castillo-Navarrete
- Departamento Tecnología Médica, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
- PhD Programme in Mental Health, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
- Programa de Neurociencia, Psiquiatría y Salud Mental, NEPSAM, Universidad de Concepción, Concepción, Chile
| | - Claudio Bustos
- PhD Programme in Mental Health, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
- Programa de Neurociencia, Psiquiatría y Salud Mental, NEPSAM, Universidad de Concepción, Concepción, Chile
- Departamento de Psicología, Facultad de Ciencias Sociales, Universidad de Concepción, Chile, Chile
| | - Alejandra Guzman-Castillo
- PhD Programme in Mental Health, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
- Programa de Neurociencia, Psiquiatría y Salud Mental, NEPSAM, Universidad de Concepción, Concepción, Chile
- Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Benjamin Vicente
- PhD Programme in Mental Health, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
- Programa de Neurociencia, Psiquiatría y Salud Mental, NEPSAM, Universidad de Concepción, Concepción, Chile
- Departamento de Psiquiatría y Salud Mental, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
26
|
Aguirre López LO, Cuéllar Pérez JR, Santerre A, Moreno YS, Hernández De Anda Y, Bañuelos Pineda J. Effect of consumption of blue maize tortilla on anxiety-like behaviour, learning, memory and hippocampal BDNF expression in a chronic stress model in rats. Nutr Neurosci 2023; 26:1058-1067. [PMID: 36173025 DOI: 10.1080/1028415x.2022.2126757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
BACKGROUND Pigmented maize consumption is of much interest because of its high anthocyanin content and multiple health benefits. OBJETIVES This study was aimed to assess the effect of consuming blue maize tortillas on the anxiolytic capacity, preserve emotional memory, and the expression of brain-derived neurotrophic factor (BDNF) in rats subjected to chronic stress. METHODS Sixty-four 3-month-old male Wistar rats were used, divided into eight groups (n = 8). Four groups were subjected to chronic stress by movement restriction (7 h/daily/7 consecutive days) and the remaining four groups were subjected to standard management. The treatments were commercial food, blue tortilla, anthocyanin extract, or white tortilla, administered for nine weeks to stressed or unstressed animals. In the eighth week, the animals were subjected to the restraint stress model. Subsequently, anxiety-like behaviour was assessed using the elevated plus-maze, and memory and emotional learning were evaluated by the step-down passive avoidance test. The animals were then sacrificed to quantify the relative expression of hippocampal BDNF by RT-qPCR. RESULTS The consumption of anthocyanin extract or tortilla made with blue corn decreased anxiety-like behaviours, additionally, it improved the ability to retain emotionally relevant information, and it upregulated BDNF mRNA expression. PERSPECTIVE Thus, the analyse of the impact of blue tortilla consumption on the nervous system is now necessary to guarantee the nutraceutical value of this food.
Collapse
Affiliation(s)
| | | | - Anne Santerre
- Laboratorio de Biomarcadores Moleculares en Biomedicina y Ecología, Universidad de Guadalajara, Zapopan, México
| | - Yolanda Salinas Moreno
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Tepatitlán, México
| | | | | |
Collapse
|
27
|
Dorofeikova M, Stelly CE, Duong A, Basavanhalli S, Bean E, Weissmuller K, Sifnugel N, Resendez A, Corey DM, Tasker JG, Fadok JP. The Role of Genetically Distinct Central Amygdala Neurons in Appetitive and Aversive Responding Assayed with a Novel Dual Valence Operant Conditioning Paradigm. eNeuro 2023; 10:ENEURO.0319-22.2023. [PMID: 37640541 PMCID: PMC10488222 DOI: 10.1523/eneuro.0319-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/05/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023] Open
Abstract
To survive, animals must meet their biological needs while simultaneously avoiding danger. However, the neurobiological basis of appetitive and aversive survival behaviors has historically been studied using separate behavioral tasks. While recent studies in mice have quantified appetitive and aversive conditioned responses simultaneously (Jikomes et al., 2016; Heinz et al., 2017), these tasks required different behavioral responses to each stimulus. As many brain regions involved in survival behavior process stimuli of opposite valence, we developed a paradigm in which mice perform the same response (nose poke) to distinct auditory cues to obtain a rewarding outcome (palatable food) or avoid an aversive outcome (mild footshoock). This design allows for both within-subject and between-subject comparisons as animals respond to appetitive and aversive cues. The central nucleus of the amygdala (CeA) is implicated in the regulation of responses to stimuli of either valence. Considering its role in threat processing (Wilensky et al., 2006; Haubensak et al., 2010) and regulation of incentive salience (Warlow and Berridge, 2021), it is important to examine the contribution of the CeA to mechanisms potentially underlying comorbid dysregulation of avoidance and reward (Sinha, 2008; Bolton et al., 2009). Using this paradigm, we tested the role of two molecularly defined CeA subtypes previously linked to consummatory and defensive behaviors. Significant strain differences in the acquisition and performance of the task were observed. Bidirectional chemogenetic manipulation of CeA somatostatin (SOM) neurons altered motivation for reward and perseveration of reward-seeking responses on avoidance trials. Manipulation of corticotropin-releasing factor neurons (CRF) had no significant effect on food reward consumption, motivation, or task performance. This paradigm will facilitate investigations into the neuronal mechanisms controlling motivated behavior across valences.
Collapse
Affiliation(s)
- Mariia Dorofeikova
- Department of Psychology, Tulane University, New Orleans, LA 70118
- Tulane Brain Institute, Tulane University, New Orleans, LA 70118
| | - Claire E Stelly
- Department of Psychology, Tulane University, New Orleans, LA 70118
- Tulane Brain Institute, Tulane University, New Orleans, LA 70118
- Department of Cellular and Molecular Biology, Tulane University, New Orleans, LA 70118
| | - Anh Duong
- Program in Neuroscience, Tulane University, New Orleans, LA 70118
| | | | - Erin Bean
- Program in Neuroscience, Tulane University, New Orleans, LA 70118
| | | | - Natalia Sifnugel
- Program in Neuroscience, Tulane University, New Orleans, LA 70118
| | - Alexis Resendez
- Department of Psychology, Tulane University, New Orleans, LA 70118
- Tulane Brain Institute, Tulane University, New Orleans, LA 70118
| | - David M Corey
- Department of Psychology, Tulane University, New Orleans, LA 70118
| | - Jeffrey G Tasker
- Tulane Brain Institute, Tulane University, New Orleans, LA 70118
- Department of Cellular and Molecular Biology, Tulane University, New Orleans, LA 70118
| | - Jonathan P Fadok
- Department of Psychology, Tulane University, New Orleans, LA 70118
- Tulane Brain Institute, Tulane University, New Orleans, LA 70118
| |
Collapse
|
28
|
Dorofeikova M, Stelly CE, Duong A, Basavanhalli S, Bean E, Weissmuller K, Sifnugel N, Resendez A, Corey DM, Tasker JG, Fadok JP. The role of genetically distinct central amygdala neurons in appetitive and aversive responding assayed with a novel dual valence operant conditioning paradigm. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.07.547979. [PMID: 37461627 PMCID: PMC10350072 DOI: 10.1101/2023.07.07.547979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
Abstract
To survive, animals must meet their biological needs while simultaneously avoiding danger. However, the neurobiological basis of appetitive and aversive survival behaviors has historically been studied using separate behavioral tasks. While recent studies in mice have quantified appetitive and aversive conditioned responses simultaneously (Heinz et al., 2017; Jikomes et al., 2016), these tasks required different behavioral responses to each stimulus. As many brain regions involved in survival behavior process stimuli of opposite valence, we developed a paradigm in which mice perform the same response (nosepoke) to distinct auditory cues to obtain a rewarding outcome (palatable food) or avoid an aversive outcome (mild footshoock). This design allows for both within- and between-subject comparisons as animals respond to appetitive and aversive cues. The central nucleus of the amygdala (CeA) is implicated in the regulation of responses to stimuli of either valence. Considering its role in threat processing (Haubensak et al., 2010; Wilensky et al., 2006) and regulation of incentive salience (Warlow and Berridge, 2021), it is important to examine the contribution of the CeA to mechanisms potentially underlying comorbid dysregulation of avoidance and reward (Bolton et al., 2009; Sinha, 2008). Using this paradigm, we tested the role of two molecularly defined CeA subtypes previously linked to consummatory and defensive behaviors. Significant strain differences in the acquisition and performance of the task were observed. Bidirectional chemogenetic manipulation of CeA somatostatin (SOM) neurons altered motivation for reward and perseveration of reward-seeking responses on avoidance trials. Manipulation of corticotropin-releasing factor neurons (CRF) had no significant effect on food reward consumption, motivation, or task performance. This paradigm will facilitate investigations into the neuronal mechanisms controlling motivated behavior across valences. Significance Statement It is unclear how different neuronal populations contribute to reward- and aversion-driven behaviors within a subject. To address this question, we developed a novel behavioral paradigm in which mice obtain food and avoid footshocks via the same operant response. We then use this paradigm to test how the central amygdala coordinates appetitive and aversive behavioral responses. By testing somatostatin-IRES-Cre and CRF-IRES-Cre transgenic lines, we found significant differences between strains on task acquisition and performance. Using chemogenetics, we demonstrate that CeA SOM+ neurons regulate motivation for reward, while manipulation of CeA CRF+ neurons had no effect on task performance. Future studies investigating the interaction between positive and negative motivation circuits should benefit from the use of this dual valence paradigm.
Collapse
Affiliation(s)
- Mariia Dorofeikova
- Department of Psychology, Tulane University, New Orleans, LA 70118, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - Claire E. Stelly
- Department of Psychology, Tulane University, New Orleans, LA 70118, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
- Department of Cellular and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Anh Duong
- Program in Neuroscience, Tulane University, New Orleans, LA 70118, USA
| | | | - Erin Bean
- Program in Neuroscience, Tulane University, New Orleans, LA 70118, USA
| | | | - Natalia Sifnugel
- Program in Neuroscience, Tulane University, New Orleans, LA 70118, USA
| | - Alexis Resendez
- Department of Psychology, Tulane University, New Orleans, LA 70118, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - David M. Corey
- Department of Psychology, Tulane University, New Orleans, LA 70118, USA
| | - Jeffrey G. Tasker
- Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
- Department of Cellular and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Jonathan P. Fadok
- Department of Psychology, Tulane University, New Orleans, LA 70118, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
29
|
Coutts JJ, Al-Kire RL, Weidler DJ. I can see (myself) clearly now: Exploring the mediating role of self-concept clarity in the association between self-compassion and indicators of well-being. PLoS One 2023; 18:e0286992. [PMID: 37390089 PMCID: PMC10313035 DOI: 10.1371/journal.pone.0286992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 05/27/2023] [Indexed: 07/02/2023] Open
Abstract
Is there a connection between loving oneself, knowing oneself, and mental well-being? Self-compassion-a construct that consists of self-kindness, acknowledgment of common humanity, and mindfulness-is associated with numerous positive outcomes including indicators of mental well-being. However, little research exists exploring the mechanism(s) by which self-compassion operates to influence these outcomes. It is possible that self-concept clarity, or the extent to which one's self-beliefs are clearly defined and stable, acts as such a mechanism. In the current study, we explored the mediating role of self-concept clarity in the associations between self-compassion and three indicators of mental well-being: perceived stress, depressive symptomatology, and life satisfaction. Self-compassion was significantly associated with each of the three indicators of well-being. Additionally, self-concept clarity statistically mediated the relationships between self-compassion and depressive symptomatology, perceived stress, and satisfaction with life. The results of this study suggest a potential mechanism by which self-compassion is associated with greater well-being.
Collapse
Affiliation(s)
- Jacob J. Coutts
- Department of Psychology, The Ohio State University, Columbus, Ohio, United States of America
| | - Rosemary L. Al-Kire
- Department of Psychological Sciences, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Daniel J. Weidler
- Department of Psychological Sciences, Northern Arizona University, Flagstaff, Arizona, United States of America
| |
Collapse
|
30
|
Bublatzky F, Allen P, Riemer M. Spatial navigation under threat: aversive apprehensions improve route retracing in higher versus lower trait anxious individuals. Front Psychol 2023; 14:1166594. [PMID: 37251045 PMCID: PMC10213730 DOI: 10.3389/fpsyg.2023.1166594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
Spatial navigation is a basic function for survival, and the ability to retrace a route has direct relevance for avoiding dangerous places. This study investigates the effects of aversive apprehensions on spatial navigation in a virtual urban environment. Healthy participants with varying degrees of trait anxiety performed a route-repetition and a route-retracing task under threatening and safe context conditions. Results reveal an interaction between the effect of threatening/safe environments and trait anxiety: while threat impairs route-retracing in lower-anxious individuals, this navigational skill is boosted in higher-anxious individuals. According to attentional control theory, this finding can be explained by an attentional shift toward information relevant for intuitive coping strategies (i.e., running away), which should be more pronounced in higher-anxious individuals. On a broader scale, our results demonstrate an often-neglected advantage of trait anxiety, namely that it promotes the processing of environmental information relevant for coping strategies and thus prepares the organism for adequate flight responses.
Collapse
Affiliation(s)
- Florian Bublatzky
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Psychology, University of Koblenz-Landau, Landau, Germany
| | - Peter Allen
- Department of Creative Technology, Bournemouth University, Dorset, United Kingdom
| | - Martin Riemer
- Biological Psychology and Neuroergonomics, Technical University of Berlin, Berlin, Germany
| |
Collapse
|
31
|
Akan O, Bierbrauer A, Kunz L, Gajewski PD, Getzmann S, Hengstler JG, Wascher E, Axmacher N, Wolf OT. Chronic stress is associated with specific path integration deficits. Behav Brain Res 2023; 442:114305. [PMID: 36682499 DOI: 10.1016/j.bbr.2023.114305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
Repeated exposure to stress (chronic stress) can cause excess levels of circulating cortisol and has detrimental influences on various cognitive functions including long-term memory and navigation. However, it remains an open question whether chronic stress affects path integration, a navigational strategy that presumably relies on the functioning of grid cells in the medial entorhinal cortex. The entorhinal cortex is a brain region in the medial temporal lobe, which contains multiple cell types involved in spatial navigation (and episodic memory), and a high number of corticosteroid receptors, predisposing it as a potential target of cortisol effects. Here, our goal was to investigate the association between chronic stress and path integration performance. We assessed chronic stress via hair cortisol concentration (physiological measure) and the Perceived Stress Questionnaire (subjective measure) in 52 female participants aged 22-65 years. Path integration was measured using a virtual homing task. Linear mixed models revealed selective impairments associated with chronic stress that depended on error type and environmental features. When focusing on distance estimations in the path integration task, we observed a significant relationship to hair cortisol concentrations indicating impaired path integration particularly during trials with higher difficulty in participants with high hair cortisol concentrations. This relationship especially emerged in the absence of spatial cues (a boundary or a landmark), and particularly in participants who reported high levels of subjectively experienced chronic stress. The findings are in line with the hypothesis that chronic stress compromises path integration, possibly via an effect on the entorhinal grid cell system.
Collapse
Affiliation(s)
- Osman Akan
- Department of Cognitive Psychology, Faculty of Psychology, Ruhr University Bochum, Germany.
| | - Anne Bierbrauer
- Institute for Systems Neuroscience, Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neuropsychology, Faculty of Psychology, Ruhr University Bochum, Germany
| | - Lukas Kunz
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Patrick D Gajewski
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, Germany
| | - Stephan Getzmann
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, Germany
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, Germany
| | - Edmund Wascher
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, Germany
| | - Nikolai Axmacher
- Department of Neuropsychology, Faculty of Psychology, Ruhr University Bochum, Germany
| | - Oliver T Wolf
- Department of Cognitive Psychology, Faculty of Psychology, Ruhr University Bochum, Germany
| |
Collapse
|
32
|
Pansarim V, Leite-Panissi CRA, Schmidt A. Chronic Restraint Stress Alters Rat Behavior Depending on Sex and Duration of Stress. Behav Processes 2023; 207:104856. [PMID: 36921909 DOI: 10.1016/j.beproc.2023.104856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/29/2022] [Accepted: 03/05/2023] [Indexed: 03/16/2023]
Abstract
Chronic restraint stress (CRS) can have different behavioral effects depending on variables associated with the stressor and the organism. This study aimed to verify the effect of the interaction between sex and duration of the CRS protocol in rats. Sprague-Dawley rats were divided by sex, intervention (CRS; control), and CRS duration (11 days; 22 days). Rats exposed to CRS showed better spatial learning than controls in the Morris water maze test, regardless of sex and stress duration. Males exposed to CRS for 11 days showed a higher rate of behaviors associated with anxiety than males exposed to 22 days of CRS at the elevated plus maze test, but the same was not observed in females. The weight gain of animals exposed to stress decreased in the first 11 days, showing a recovery from day 11 to day 22 of intervention. No effects of CRS were observed on behaviors associated with depression in the sucrose preference test. The results suggest habituation to the protocol, with a progressive decrease in the harmful effects of stress on and maintenance of the beneficial effects. It is possible that females are more resistant to the harmful effects of CRS on anxiety.
Collapse
Affiliation(s)
- Vítor Pansarim
- Department of Psychology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto,; University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Christie R A Leite-Panissi
- Department of Psychology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto,; University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Andréia Schmidt
- Department of Psychology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto,; University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
33
|
Elevated Hippocampal CRMP5 Mediates Chronic Stress-Induced Cognitive Deficits by Disrupting Synaptic Plasticity, Hindering AMPAR Trafficking, and Triggering Cytokine Release. Int J Mol Sci 2023; 24:ijms24054898. [PMID: 36902337 PMCID: PMC10003309 DOI: 10.3390/ijms24054898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Chronic stress is a critical risk factor for developing depression, which can impair cognitive function. However, the underlying mechanisms involved in chronic stress-induced cognitive deficits remain unclear. Emerging evidence suggests that collapsin response mediator proteins (CRMPs) are implicated in the pathogenesis of psychiatric-related disorders. Thus, the study aims to examine whether CRMPs modulate chronic stress-induced cognitive impairment. We used the chronic unpredictable stress (CUS) paradigm to mimic stressful life situations in C57BL/6 mice. In this study, we found that CUS-treated mice exhibited cognitive decline and increased hippocampal CRMP2 and CRMP5 expression. In contrast to CRMP2, CRMP5 levels strongly correlated with the severity of cognitive impairment. Decreasing hippocampal CRMP5 levels through shRNA injection rescued CUS-induced cognitive impairment, whereas increasing CRMP5 levels in control mice exacerbated memory decline after subthreshold stress treatment. Mechanistically, hippocampal CRMP5 suppression by regulating glucocorticoid receptor phosphorylation alleviates chronic stress-induced synaptic atrophy, disruption of AMPA receptor trafficking, and cytokine storms. Our findings show that hippocampal CRMP5 accumulation through GR activation disrupts synaptic plasticity, impedes AMPAR trafficking, and triggers cytokine release, thus playing a critical role in chronic stress-induced cognitive deficits.
Collapse
|
34
|
Moses TE, Gray E, Mischel N, Greenwald MK. Effects of neuromodulation on cognitive and emotional responses to psychosocial stressors in healthy humans. Neurobiol Stress 2023; 22:100515. [PMID: 36691646 PMCID: PMC9860364 DOI: 10.1016/j.ynstr.2023.100515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/19/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Physiological and psychological stressors can exert wide-ranging effects on the human brain and behavior. Research has improved understanding of how the sympatho-adreno-medullary (SAM) and hypothalamic-pituitary-adrenocortical (HPA) axes respond to stressors and the differential responses that occur depending on stressor type. Although the physiological function of SAM and HPA responses is to promote survival and safety, exaggerated psychobiological reactivity can occur in psychiatric disorders. Exaggerated reactivity may occur more for certain types of stressors, specifically, psychosocial stressors. Understanding stressor effects and how the body regulates these responses can provide insight into ways that psychobiological reactivity can be modulated. Non-invasive neuromodulation is one way that responding to stressors may be altered; research into these interventions may provide further insights into the brain circuits that modulate stress reactivity. This review focuses on the effects of acute psychosocial stressors and how neuromodulation might be effective in altering stress reactivity. Although considerable research into stress interventions focuses on treating pathology, it is imperative to first understand these mechanisms in non-clinical populations; therefore, this review will emphasize populations with no known pathology and consider how these results may translate to those with psychiatric pathologies.
Collapse
Affiliation(s)
| | | | | | - Mark K. Greenwald
- Corresponding author. Department of Psychiatry and Behavioral Neurosciences, Tolan Park Medical Building, 3901 Chrysler Service Drive, Suite 2A, Detroit, MI, 48201, USA.
| |
Collapse
|
35
|
Castillo-Navarrete JL, Guzmán-Castillo A, Bustos C, Rojas R. Peripheral brain-derived neurotrophic factor (BDNF) and salivary cortisol levels in college students with different levels of academic stress. Study protocol. PLoS One 2023; 18:e0282007. [PMID: 36812175 PMCID: PMC9946253 DOI: 10.1371/journal.pone.0282007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/05/2023] [Indexed: 02/24/2023] Open
Abstract
INTRODUCTION Brain-derived neurotrophic factor (BDNF) is essential for brain physiological processes influencing memory and learning. BDNF levels can be affected by many factors, including stress. Stress increase serum and salivary cortisol levels. Academic stress is of the chronic type. BDNF levels can be measure from serum, plasma or platelets, and there is still no standard methodology, which is relevant to ensure reproducibility and comparability between studies. HYPOTHESIS (i) BDNF concentrations in serum show greater variability than in plasma. (ii) In college students with academic stress, peripheral BDNF decreases and salivary cortisol increases. GENERAL OBJECTIVE To standardize plasma and serum collection for BDNF levels and to determine whether academic stress affects peripheral BDNF and salivary cortisol levels. DESIGN Quantitative research, with a non-experimental cross-sectional descriptive design. PARTICIPANTS Student volunteers. Under convenience sampling, 20 individuals will be included for standardization of plasma and serum collection and between 70 and 80 individuals to determine the effect of academic stress on BDNF and salivary cortisol. PERIPHERAL BLOOD AND SALIVARY CORTISOL SAMPLING, MEASUREMENTS 12 mL of peripheral blood (with and without anticoagulant) will be drawn per participant, separated from plasma or serum and cryopreserved at -80°C. Additionally, they will be instructed in the collection of 1 mL of saliva samples, which will be centrifuged. Val66Met polymorphism will be performed by allele-specific PCR, while BDNF and salivary cortisol levels will be determined by ELISA. STATISTICAL ANALYSIS (i) descriptive analysis of the variables, through measures of central tendency and dispersion, and the categorical variables through their frequency and percentage. (ii) Then a bivariate analysis will be performed comparing groups using each variable separately. EXPECTED RESULTS We expect to (i) determine the analytical factors that allow a better reproducibility in the measurement of peripheral BDNF, and (ii) the effect of academic stress on BDNF and salivary cortisol levels.
Collapse
Affiliation(s)
- Juan-Luis Castillo-Navarrete
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
- Programa de Neurociencia, Psiquiatría y Salud Mental, NEPSAM (http://nepsam.udec.cl), Universidad de Concepción, Concepción, Chile
- * E-mail: (JLCN); (AGC)
| | - Alejandra Guzmán-Castillo
- Programa de Neurociencia, Psiquiatría y Salud Mental, NEPSAM (http://nepsam.udec.cl), Universidad de Concepción, Concepción, Chile
- Programme in Mental Health, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
- Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción, Chile
- * E-mail: (JLCN); (AGC)
| | - Claudio Bustos
- Programa de Neurociencia, Psiquiatría y Salud Mental, NEPSAM (http://nepsam.udec.cl), Universidad de Concepción, Concepción, Chile
- Departamento de Psicología, Facultad de Ciencias Sociales, Universidad de Concepción, Concepción, Chile
| | - Romina Rojas
- Programa de Neurociencia, Psiquiatría y Salud Mental, NEPSAM (http://nepsam.udec.cl), Universidad de Concepción, Concepción, Chile
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
36
|
Maxim P, Brown TI. Toward an Understanding of Cognitive Mapping Ability Through Manipulations and Measurement of Schemas and Stress. Top Cogn Sci 2023; 15:75-101. [PMID: 34612588 DOI: 10.1111/tops.12576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 02/01/2023]
Abstract
Daily function depends on an ability to mentally map our environment. Environmental factors such as visibility and layout, and internal factors such as psychological stress, can challenge spatial memory and efficient navigation. Importantly, people vary dramatically in their ability to navigate flexibly and overcome such challenges. In this paper, we present an overview of "schema theory" and our view of its relevance to navigational memory research. We review several studies from our group and others, that integrate manipulations of environmental complexity and affective state in order to gain a richer understanding of the mechanisms that underlie individual differences in navigational memory. Our most recent data explicitly link such individual differences to ideas rooted in schema theory, and we discuss the potential for this work to advance our understanding of cognitive decline with aging. The data from this body of work highlight the powerful impacts of individual cognitive traits and affective states on the way people take advantage of environmental features and adopt navigational strategies.
Collapse
Affiliation(s)
- Paulina Maxim
- School of Psychology, Georgia Institute of Technology
| | | |
Collapse
|
37
|
Taghadosi Z, Zarifkar A, Razban V, Aligholi H. The effect of chronic stress and its preconditioning on spatial memory as well as hippocampal LRP1 and RAGE expression in a streptozotocin-induced rat model of Alzheimer's disease. Metab Brain Dis 2022; 37:2699-2710. [PMID: 35930096 DOI: 10.1007/s11011-022-01044-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/26/2022] [Indexed: 10/16/2022]
Abstract
According to available evidence, prolonged or chronic exposure to stress is detrimental to various brain structures, including the hippocampus. The current study examined the expression of two critical blood-brain barrier receptors required for amyloid-beta clearance to understand better the mechanism by which chronic stress impairs learning and memory in patients with Alzheimer's disease (AD). Rats were randomly assigned to one of two groups in this study: experiment 1 and experiment 2. Each main group was then divided into four subgroups. Rats were bilaterally injected with streptozotocin (STZ, 3 mg/kg, twice) using the intracerebroventricular (ICV) technique to induce the Alzheimer's model. Additionally, they were subjected to foot shock (1 mA, 1 Hz) for 10 s every 60 s (1 h/day) for ten consecutive days prior to and following STZ injection. The Morris Water Maze (MWM) test was used to assess spatial learning and memory. Real-time PCR was used to determine Low-density lipoprotein receptor-related protein-1 (LRP1) and receptor for advanced glycation end-products (RAGE) mRNA levels in the hippocampus. Moreover, the animals' body weights were determined as physiological parameters in all groups. The results indicated that 10-day chronic electric foot shock stress reduced body weight, impaired spatial learning and memory, decreased hippocampal LRP1 mRNA expression, and increased hippocampal RAGE mRNA expression in a rat AD model. It can be concluded that chronic stress in conjunction with AD alters the expression of LRP1 and RAGE in the hippocampus. The findings pave the way for scientists to develop novel treatment strategies for AD.
Collapse
Affiliation(s)
- Zohreh Taghadosi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asadollah Zarifkar
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Razban
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hadi Aligholi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
38
|
Henshall C, Randle H, Francis N, Freire R. Habit Formation and the Effect of Repeated Stress Exposures on Cognitive Flexibility Learning in Horses. Animals (Basel) 2022; 12:2818. [PMID: 36290204 PMCID: PMC9597801 DOI: 10.3390/ani12202818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 12/21/2024] Open
Abstract
Horse training exposes horses to an array of cognitive and ethological challenges. Horses are routinely required to perform behaviours that are not aligned to aspects of their ethology, which may delay learning. While horses readily form habits during training, not all of these responses are considered desirable, resulting in the horse being subject to retraining. This is a form of cognitive flexibility and is critical to the extinction of habits and the learning of new responses. It is underpinned by complex neural processes which can be impaired by chronic or repeated stress. Domestic horses may be repeatedly exposed to multiples stressors. The potential contribution of stress impairments of cognitive flexibility to apparent training failures is not well understood, however research from neuroscience can be used to understand horses' responses to training. We trained horses to acquire habit-like responses in one of two industry-style aversive instrumental learning scenarios (moving away from the stimulus-instinctual or moving towards the stimulus-non-instinctual) and evaluated the effect of repeated stress exposures on their cognitive flexibility in a reversal task. We measured heart rate as a proxy for noradrenaline release, salivary cortisol and serum Brain Derived Neurotrophic Factor (BDNF) to infer possible neural correlates of the learning outcomes. The instinctual task which aligned with innate equine escape responses to aversive stimuli was acquired significantly faster than the non-instinctual task during both learning phases, however contrary to expectations, the repeated stress exposure did not impair the reversal learning. We report a preliminary finding that serum BDNF and salivary cortisol concentrations in horses are positively correlated. The ethological salience of training tasks and cognitive flexibility learning can significantly affect learning in horses and trainers should adapt their practices where such tasks challenge innate equine behaviour.
Collapse
Affiliation(s)
- Cathrynne Henshall
- School of Environmental, Agricultural and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | | | | | | |
Collapse
|
39
|
Nishimura KJ, Poulos A, Drew MR, Rajbhandari AK. Know thy SEFL: Fear sensitization and its relevance to stressor-related disorders. Neurosci Biobehav Rev 2022; 142:104884. [PMID: 36174795 DOI: 10.1016/j.neubiorev.2022.104884] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/07/2022] [Accepted: 09/17/2022] [Indexed: 11/27/2022]
Abstract
Extreme stress can cause long-lasting changes in affective behavior manifesting in conditions such as post-traumatic stress disorder (PTSD). Understanding the biological mechanisms that govern trauma-induced behavioral dysregulation requires reliable and rigorous pre-clinical models that recapitulate multiple facets of this complex disease. For decades, Pavlovian fear conditioning has been a dominant paradigm for studying the effects of trauma through an associative learning framework. However, severe stress also causes long-lasting nonassociative fear sensitization, which is often overlooked in Pavlovian fear conditioning studies. This paper synthesizes recent research on the stress-enhanced fear learning (SEFL) paradigm, a valuable rodent model that can dissociate associative and nonassociative effects of stress. We discuss evidence that the SEFL paradigm produces nonassociative fear sensitization that is distinguishable from Pavlovian fear conditioning. We also discuss key biological variables, such as age and sex, neural circuit mechanisms, and crucial gaps in knowledge. We argue that nonassociative fear sensitization deserves more attention within current PTSD models and that SEFL provides a valuable complement to Pavlovian conditioning research on trauma-related pathology.
Collapse
Affiliation(s)
- Kenji J Nishimura
- Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin, Texas, USA, 78712
| | - Andrew Poulos
- Department of Psychology and Center for Neuroscience Research, State University of New York at Albany, Albany, USA, 12222
| | - Michael R Drew
- Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin, Texas, USA, 78712
| | | |
Collapse
|
40
|
Social defeat drives hyperexcitation of the piriform cortex to induce learning and memory impairment but not mood-related disorders in mice. Transl Psychiatry 2022; 12:380. [PMID: 36088395 PMCID: PMC9464232 DOI: 10.1038/s41398-022-02151-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/27/2022] [Accepted: 09/02/2022] [Indexed: 12/05/2022] Open
Abstract
Clinical studies have shown that social defeat is an important cause of mood-related disorders, accompanied by learning and memory impairment in humans. The mechanism of mood-related disorders has been widely studied. However, the specific neural network involved in learning and memory impairment caused by social defeat remains unclear. In this study, behavioral test results showed that the mice induced both learning and memory impairments and mood-related disorders after exposure to chronic social defeat stress (CSDS). c-Fos immunofluorescence and fiber photometry recording confirmed that CaMKIIα expressing neurons of the piriform cortex (PC) were selectively activated by exposure to CSDS. Next, chemogenetics and optogenetics were performed to activate PC CaMKIIα expressing neurons, which showed learning and memory impairment but not mood-related disorders. Furthermore, chemogenetic inhibition of PC CaMKIIα expressing neurons significantly alleviated learning and memory impairment induced by exposure to CSDS but did not relieve mood-related disorders. Therefore, our data suggest that the overactivation of PC CaMKIIα expressing neurons mediates CSDS-induced learning and memory impairment, but not mood-related disorders, and provides a potential therapeutic target for learning and memory impairment induced by social defeat.
Collapse
|
41
|
Bowman R, Frankfurt M, Luine V. Sex differences in cognition following variations in endocrine status. Learn Mem 2022; 29:234-245. [PMID: 36206395 PMCID: PMC9488023 DOI: 10.1101/lm.053509.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/03/2022] [Indexed: 11/24/2022]
Abstract
Spatial memory, mediated primarily by the hippocampus, is responsible for orientation in space and retrieval of information regarding location of objects and places in an animal's environment. Since the hippocampus is dense with steroid hormone receptors and is capable of robust neuroplasticity, it is not surprising that changes in spatial memory performance occur following a variety of endocrine alterations. Here, we review cognitive changes in both spatial and nonspatial memory tasks following manipulations of the hypothalamic-pituitary-adrenal and gonadal axes and after exposure to endocrine disruptors in rodents. Chronic stress impairs male performance on numerous behavioral cognitive tasks and enhances or does not impact female cognitive function. Sex-dependent changes in cognition following stress are influenced by both organizational and activational effects of estrogen and vary depending on the developmental age of the stress exposure, but responses to gonadal hormones in adulthood are more similar than different in the sexes. Also discussed are possible underlying neural mechanisms for these steroid hormone-dependent, cognitive effects. Bisphenol A (BPA), an endocrine disruptor, given at low levels during adolescent development, impairs spatial memory in adolescent male and female rats and object recognition memory in adulthood. BPA's negative effects on memory may be mediated through alterations in dendritic spine density in areas that mediate these cognitive tasks. In summary, this review discusses the evidence that endocrine status of an animal (presence or absence of stress hormones, gonadal hormones, or endocrine disruptors) impacts cognitive function and, at times, in a sex-specific manner.
Collapse
Affiliation(s)
- Rachel Bowman
- Department of Psychology, Sacred Heart University, Fairfield, Connecticut 06825, USA
| | - Maya Frankfurt
- Department of Psychology, Sacred Heart University, Fairfield, Connecticut 06825, USA
- Hofstra Northwell School of Nursing and Physician Assistant Studies, Hofstra University, Hempstead, New York 11549, USA
| | - Victoria Luine
- Department of Psychology, Hunter College of City University of New York, New York, New York 10065, USA
| |
Collapse
|
42
|
Dandi E, Spandou E, Tata DA. Investigating the role of environmental enrichment initiated in adolescence against the detrimental effects of chronic unpredictable stress in adulthood: Sex-specific differences in behavioral and neuroendocrinological findings. Behav Processes 2022; 200:104707. [PMID: 35842198 DOI: 10.1016/j.beproc.2022.104707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/10/2022] [Accepted: 07/11/2022] [Indexed: 11/19/2022]
Abstract
Environmental Enrichment (EE) improves cognitive function and enhances brain plasticity, while chronic stress increases emotionality, impairs learning and memory, and has adverse effects on brain anatomy and biochemistry. We explored the beneficial role of environmental enrichment initiated in adolescence against the negative outcomes of Chronic Unpredictable Stress (CUS) during adulthood on emotional behavior, cognitive function, as well as somatic and neuroendocrine markers in both sexes. Adolescent Wistar rats housed either in enriched or standard housing conditions for 10 weeks. On postnatal day 66, a subgroup from each housing condition was daily exposed to a 4-week stress protocol. Following stress, adult rats underwent behavioral testing to evaluate anxiety, exploration/locomotor activity, depressive-like behavior and spatial learning/memory. Upon completion of behavioral testing, animals were exposed to a 10-m stressful event to test the neuroendocrine response to acute stress. CUS decreased body weight gain and increased adrenal weight. Some stress-induced behavioral adverse effects were sex-specific since learning impairments were limited to males while depressive-like behavior to females. EE housing protected against CUS-related behavioral deficits and body weight loss. Exposure to CUS affected the neuroendocrine response of males to acute stress as revealed by the increased corticosterone levels. Our findings highlight the significant role of EE in adolescence as a protective factor against the negative effects of stress and underline the importance of inclusion of both sexes in animal studies.
Collapse
Affiliation(s)
- Evgenia Dandi
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Spandou
- Laboratory of Experimental Physiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Despina A Tata
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
43
|
Zhou Z, Ma Y, Xu T, Wu S, Yang GY, Ding J, Wang X. Deeper cerebral hypoperfusion leads to spatial cognitive impairment in mice. Stroke Vasc Neurol 2022; 7:527-533. [PMID: 35817499 PMCID: PMC9811541 DOI: 10.1136/svn-2022-001594] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/11/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Vascular cognitive impairment (VCI) is the second-leading cause of dementia worldwide, which is caused by cerebrovascular diseases or relevant risk factors. However, there are no appropriate animal models, which can be used to study changes of neuropathology in the human VCI. To better understand the development of VCI, we modified three mouse models of chronical vascular diseases, and further compared the advantage and disadvantage of these models. We hope to establish a more suitable mouse model mimicking VCI in human beings. METHODS Adult male C57/BL6 mice (n=98) were used and animals underwent transient bilateral common carotid arteries occlusion (tBCCAO), or bilateral common carotid artery stenosis (BCAS), or right unilateral common carotid artery occlusion, respectively. Haemodynamic changes of surface cerebral blood flow (CBF) were examined up to 4 weeks. Spatial cognitive impairment was evaluated to determine the consequence of chronic cerebral ischaemia. RESULTS These mouse models showed different extents of CBF reduction and spatial reference memory impairment from 1 week up to 4 weeks postoperation compared with the control group (p<0.05). We found that (1) bilaterally ligation of common carotid artery caused decrease of 90% CBF in C57/BL6 mice (p<0.05) and caused acute instead of prolonged impairment of spatial reference memory (p<0.05); (2) unilateral ligation of common carotid artery did not cause severe ipsilateral ischaemia as seen in the tBCCAO mice and caused minor but significant spatial reference memory disturbance (p<0.05); and (3) 20% decrease in the bilateral CBF did not cause spatial reference memory impairment 4 weeks postoperation (p>0.05), while 30% decrease in bilateral or unilateral CBF led to significant memory disturbance in mice (p<0.05). CONCLUSION We demonstrated that BCAS using 0.16/0.18 mm microcoils is an alternative VCI mouse model when studying the mechanism and developing therapy of VCI.
Collapse
Affiliation(s)
- Zhiyuan Zhou
- Department of Neurology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Yuanyuan Ma
- Department of Neurology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Tongtong Xu
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shengju Wu
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital Fudan University, Shanghai, China,Department of the State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
44
|
Eskandari F, Salimi M, Hedayati M, Zardooz H. Maternal separation induced resilience to depression and spatial memory deficit despite intensifying hippocampal inflammatory responses to chronic social defeat stress in young adult male rats. Behav Brain Res 2022; 425:113810. [PMID: 35189174 DOI: 10.1016/j.bbr.2022.113810] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 01/03/2023]
Abstract
Early life adversity has been suggested to affect neuroendocrine responses to subsequent stressors and accordingly vulnerability for behavioral disorders. This is the first work to study the effects of maternal separation (MS) stress on the co-occurrence of depression and cognitive impairments along with hippocampal inflammatory response under chronic social defeat stress (CSDS) in young adult male rats. During the first two postnatal weeks, the male pups were either exposed to MS or left undisturbed with their mothers (Std). Subsequently, starting on postnatal day 50, the animals of each group were either left undisturbed in the standard group housing (Con) or underwent CSDS for three weeks. Totally, there were four groups (n = 10/group), namely Std-Con, Ms-Con, Std-CSDS, and MS-CSDS. Pup retrieval test was performed on daily basis from PND1 to PND14. During the last week of the CSDS exposure, in the light phase, the behavioral tests and the retro-orbital blood sampling were performed to assess basal plasma corticosterone levels. Afterwards, the hippocampus of the animals was removed to measure the interleukin 1β (IL-1β) content. Exposure to CSDS increased the plasma corticosterone levels and induced social avoidance along with memory deficit. Maternal separation intensified hippocampal IL-1β contents as well as the plasma corticosterone levels in response to CSDS. Meanwhile, it facilitated the spatial learning and potentiated resilience to social avoidance and memory deficit. In conclusion, although maternal separation increased the basal plasma corticosterone levels, it could facilitate the learning process and induce resilience to the onset of depression and memory deficit in response to CSDS, probably through the compensatory increase in maternal care and the induction of mild hippocampal inflammatory response.
Collapse
Affiliation(s)
- Farzaneh Eskandari
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Salimi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Homeira Zardooz
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
45
|
Assessing cognitive performance in dairy calves using a modified hole-board test. Anim Cogn 2022; 25:1365-1370. [DOI: 10.1007/s10071-022-01617-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 03/09/2022] [Accepted: 03/16/2022] [Indexed: 11/27/2022]
|
46
|
Schwabe L, Hermans EJ, Joëls M, Roozendaal B. Mechanisms of memory under stress. Neuron 2022; 110:1450-1467. [PMID: 35316661 DOI: 10.1016/j.neuron.2022.02.020] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 12/11/2022]
Abstract
It is well established that stress has a major impact on memory, driven by the concerted action of various stress mediators on the brain. Recent years, however, have seen considerable advances in our understanding of the cellular, neural network, and cognitive mechanisms through which stress alters memory. These novel insights highlight the intricate interplay of multiple stress mediators, including-beyond corticosteroids, catecholamines, and peptides-for instance, endocannabinoids, which results in time-dependent shifts in large-scale neural networks. Such stress-induced network shifts enable highly specific memories of the stressful experience in the long run at the cost of transient impairments in mnemonic flexibility during and shortly after a stressful event. Based on these recent discoveries, we provide a new integrative framework that links the cellular, systems, and cognitive mechanisms underlying acute stress effects on memory processes and points to potential targets for treating aberrant memory in stress-related mental disorders.
Collapse
Affiliation(s)
- Lars Schwabe
- Department of Cognitive Psychology, Universität Hamburg, Hamburg, Germany.
| | - Erno J Hermans
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands; Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marian Joëls
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Benno Roozendaal
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands; Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
47
|
Pourié G, Guéant JL, Quadros EV. Behavioral profile of vitamin B 12 deficiency: A reflection of impaired brain development, neuronal stress and altered neuroplasticity. VITAMINS AND HORMONES 2022; 119:377-404. [PMID: 35337627 DOI: 10.1016/bs.vh.2022.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Our understanding of brain biology and function is one of the least characterized and therefore, there are no effective treatments for most of neurological disorders. The influence of vitamins, and particularly vitamin B12, in neurodegenerative disease is demonstrated but largely unresolved. Behaviors are often quantified to attest brain dysfunction alone or in parallel with neuro-imaging to identify regions involved. Nevertheless, attention should be paid to extending observations made in animal models to humans, since, first, behavioral tests have to be adjusted in each model to address the initial question and second, because brain analysis should not be conducted for a whole organ but rather to specific sub-structures to better define function. Indeed, cognitive functions such as psychiatric disorders and learning and memory are often cited as the most impacted by a vitamin B12 deficiency. In addition, differential dysfunctions and mechanisms could be defined according sub-populations and ages. Vitamin B12 enters the cell bound to Transcobalamin, through the Transcobalamin Receptor and serves in two cell compartments, the lipid metabolism in the mitochondrion and the one-carbon metabolism involved in methylation reactions. Dysfunctions in these mechanisms can lead to two majors outcomes; axons demyelinisation and upregulation of cellular stress involving mislocalization of RNA binding proteins such as the ELAVL1/HuR or the dysregulation of pro- or anti-oxidant NUDT15, TXNRD1, VPO1 and ROC genes. Finally, it appears that apart from developmental problems that have to be identified and treated as early as possible, other therapeutic approaches for behavioral dysfunctions should investigate cellular methylation, oxidative and endoplasmic reticulum stress and mitochondrial function.
Collapse
Affiliation(s)
- Grégory Pourié
- Université de Lorraine, Inserm, UMRS 1256, NGERE-Nutrition, Genetics, and Environmental Risk Exposure, Nancy, France.
| | - Jean-Louis Guéant
- Université de Lorraine, Inserm, UMRS 1256, NGERE-Nutrition, Genetics, and Environmental Risk Exposure, Nancy, France; CHRU-Nancy, National Center of Inborn Errors of Metabolism, Nancy, France
| | - Edward V Quadros
- Department of Medicine, SUNY Downstate Medical Center, Brooklyn, NY, United States
| |
Collapse
|
48
|
Macartney EL, Lagisz M, Nakagawa S. The Relative Benefits of Environmental Enrichment on Learning and Memory are Greater When Stressed: A Meta-analysis of Interactions in Rodents. Neurosci Biobehav Rev 2022; 135:104554. [PMID: 35149103 DOI: 10.1016/j.neubiorev.2022.104554] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/24/2022] [Accepted: 01/30/2022] [Indexed: 12/11/2022]
Abstract
Environmental enrichment ("EE") is expected to alleviate the negative effects of stress on cognitive performance. However, there are complexities associated with interpreting interactions that obscure determining the benefit EE may play in mitigating the negative effects of stress. To clarify these complexities, we conducted a systematic review with meta-analysis on the main and interactive effects of EE and stress on learning and memory in rodents. We show that EE and stress interact 'synergistically' where EE provides a greater relative benefit to stressed individuals compared to those reared in conventional housing. Importantly, EE can fully-compensate for the negative effects of stress where stressed individuals with EE performed equally to enriched individuals without a stress manipulation. Additionally, we show the importance of other mediating factors, including the order of treatment exposure, duration and type of stress, type of EE, and type of cognitive assays used. This study not only quantifies the interactions between EE and stress, but also provides a clear example for how to conduct and interpret meta-analysis of interactions.
Collapse
Affiliation(s)
- Erin L Macartney
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia Kensington Campus, UNSW, Sydney, NSW 2052.
| | - Malgorzata Lagisz
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia Kensington Campus, UNSW, Sydney, NSW 2052
| | - Shinichi Nakagawa
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia Kensington Campus, UNSW, Sydney, NSW 2052
| |
Collapse
|
49
|
Wang H, Huang H, Jiang N, Zhang Y, Lv J, Liu X. Tenuifolin ameliorates chronic restraint stress-induced cognitive impairment in C57BL/6J mice. Phytother Res 2022; 36:1402-1412. [PMID: 35129236 DOI: 10.1002/ptr.7402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/07/2022] [Accepted: 01/15/2022] [Indexed: 12/31/2022]
Abstract
The general consensus is that stress affects the central nervous system and can lead to cognitive problems. The root of Polygala tenuifolia (P. tenuifolia) is a well-known traditional Chinese medicine used for improving brain function. Tenuifolin (TEN) is the major constituent of P. tenuifolia and has a promising neuroprotective property. The purpose of this study was to investigate the alleviating effect of TEN on cognitive impairment induced by chronic restraint stress (CRS) and its mechanism. Our results showed that CRS exposure resulted in impaired cognitive performance in C57BL/6J mice, as indicated by decreased responses in Y-maze, novel objects recognition, and step-through passive avoidance tests. TEN treated daily orally (10 and 20 mg/kg) for 30 days reversed these behavior changes. Meanwhile, TEN could significantly regulate interleukin (IL)-6 and IL-10 levels in the hippocampus. TEN inhibited the toll-like receptor 4/nuclear factor-kappa B-mediated inflammation, as well as adrenocorticotropic hormone and corticosterone levels in serum. Most importantly, we found that TEN also upregulated the expressions of brain-derived neurotrophic factor, tropomyosin kinase B, glucocorticoid receptor, glutamate receptor 1, and synapse-associated proteins. Collectively, these data suggest that TEN has a potential improvement effect on memory loss caused by CRS.
Collapse
Affiliation(s)
- Haixia Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong Huang
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Jiang
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiwen Zhang
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingwei Lv
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinmin Liu
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
50
|
Ghafarimoghadam M, Mashayekh R, Gholami M, Fereydani P, Shelley-Tremblay J, Kandezi N, Sabouri E, Motaghinejad M. A review of behavioral methods for the evaluation of cognitive performance in animal models: Current techniques and links to human cognition. Physiol Behav 2022; 244:113652. [PMID: 34801559 DOI: 10.1016/j.physbeh.2021.113652] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 10/26/2021] [Accepted: 11/15/2021] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Memory is defined as the ability to store, maintain and retrieve information. Learning is the acquisition of information that changes behavior and memory. Stress, dementia, head trauma, amnesia, Alzheimer's, Huntington, Parkinson's, Wernicke-Korsakoff syndrome (WKS) may be mentioned among the diseases in which memory and learning are affected. The task of understanding deficits in memory and learning in humans is daunting due to the complexity of neural and cognitive mechanisms in the nervous system. This job is made more difficult for clinicians and researchers by the fact that many techniques used to research memory are not ethically acceptable or technically feasible for use in humans. Thus, animal models have been necessary alternative for studying normal and disordered learning and memory. This review attempts to bridge these domains to allow biomedical researchers to have a firm grasp of "memory" and "learning" as constructs in humans whereby they may then select the proper animal cognitive test. RESULTS AND CONCLUSION Various tests (open field habituation test, Y-maze test, passive avoidance test, step-down inhibitory avoidance test, active avoidance test, 8-arms radial maze test, Morris water maze test, radial arm water maze, novel object recognition test and gait function test) have been designed to evaluate different kinds of memory. Each of these tests has their strengths and limits. Abnormal results obtained using these tasks in non-human animals indicate malfunctions in memory which may be due to several physiological and psychological diseases of nervous system. Further studies by using the discussed tests can be very beneficial for achieving a therapeutic answer to these diseases.
Collapse
Affiliation(s)
- Maryam Ghafarimoghadam
- Department of pharmaceutical chemistry, faculty of pharmaceutical chemistry, pharmaceutical sciences branch, Islamic Azad University (IUAPS), Tehran, Iran
| | - Roya Mashayekh
- Department of pharmaceutical chemistry, faculty of pharmaceutical chemistry, pharmaceutical sciences branch, Islamic Azad University (IUAPS), Tehran, Iran
| | - Mina Gholami
- School of medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pardis Fereydani
- Department of pharmaceutical chemistry, faculty of pharmaceutical chemistry, pharmaceutical sciences branch, Islamic Azad University (IUAPS), Tehran, Iran
| | | | - Niyoosha Kandezi
- Department of Psychology, University of South Alabama, Alabama, USA
| | - Erfan Sabouri
- Clinical Research Development Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Majid Motaghinejad
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|