1
|
Prajapati SK, Wang S, Mishra SP, Jain S, Yadav H. Protection of Alzheimer's disease progression by a human-origin probiotics cocktail. Sci Rep 2025; 15:1589. [PMID: 39794404 PMCID: PMC11724051 DOI: 10.1038/s41598-024-84780-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Microbiome abnormalities (dysbiosis) significantly contribute to the progression of Alzheimer's disease (AD). However, the therapeutic efficacy of microbiome modulators in protecting against these ailments remains poorly studied. Herein, we tested a cocktail of unique probiotics, including 5 Lactobacillus and 5 Enterococcus strains isolated from infant gut with proven microbiome modulating capabilities. We aimed to determine the probiotics cocktail's efficacy in ameliorating AD pathology in a humanized AD mouse model of APP/PS1 strains. Remarkably, feeding mice with 1 × 1011 CFU per day in drinking water for 16 weeks significantly reduced cognitive decline (measured by the Morris Water Maze test) and AD pathology markers, such as Aβ aggregation, microglia activation, neuroinflammation, and preserved blood-brain barrier (BBB) tight junctions. The beneficial effects were linked to a reduced inflammatory microbiome, leading to decreased gut permeability and inflammation in both systemic circulation and the brain. Although both male and female mice showed overall improvements in cognition and biological markers, females did not exhibit improvements in specific markers related to inflammation and barrier permeability, suggesting that the underlying mechanisms may differ depending on sex. In conclusion, our results suggest that this unique probiotics cocktail could serve as a prophylactic agent to reduce the progression of cognitive decline and AD pathology. This is achieved by beneficially modulating the microbiome, improving intestinal tight junction proteins, reducing permeability in both gut and BBB, and decreasing inflammation in the gut, blood circulation, and brain, ultimately mitigating AD pathology and cognitive decline.
Collapse
Affiliation(s)
- Santosh Kumar Prajapati
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
- Department of Neurosurgery and Brain Repair, Center of Excellence in Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Shaohua Wang
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
- Department of Neurosurgery and Brain Repair, Center of Excellence in Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Department of Biomedical Sciences, Infectious and Tropical Disease Institute, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Sidharth P Mishra
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
- Department of Neurosurgery and Brain Repair, Center of Excellence in Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Shalini Jain
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
- Department of Neurosurgery and Brain Repair, Center of Excellence in Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Hariom Yadav
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA.
- Department of Neurosurgery and Brain Repair, Center of Excellence in Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
- Department of Internal Medicine-Digestive Diseases and Nutrition, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
| |
Collapse
|
2
|
Alvarez GM, Jolink TA, West TN, Cardenas MN, Feldman MJ, Cohen JR, Muscatell KA. Differential effects of social versus monetary incentives on inhibitory control under acute inflammation. Brain Behav Immun 2025; 123:950-964. [PMID: 39293694 DOI: 10.1016/j.bbi.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 08/25/2024] [Accepted: 09/07/2024] [Indexed: 09/20/2024] Open
Abstract
While the impact of chronic, low-grade inflammation on cognitive functioning is documented in the context of neurodegenerative disease, less is known about the association between acute increases in inflammation and cognitive functioning in daily life. This study investigated how changes in interleukin-6 (IL-6) levels were associated with performance on an inhibitory control task, the go/no-go task. We further examined whether the opportunity to earn different incentive types (social or monetary) and magnitudes (high or low) was associated with differential performance on the task, depending on IL-6 levels. Using a within-participant design, individuals completed an incentivized go/no-go task before and after receiving the annual influenza vaccine. Multilevel logistic regressions were performed on the trial-level data (Nobs = 30,528). For no-go trials, we did not find significant associations in IL-6 reactivity and changes in trial accuracy between sessions. For go trials, we found significant differences in the associations between IL-6 reactivity and changes in accuracy as a function of the incentive condition. Notably, greater IL-6 reactivity was consistently associated with fewer omission errors (i.e., greater accuracy on go trials) on high-magnitude social incentives (i.e., viewing a picture of a close-other) when compared to both low-magnitude social and high-magnitude monetary incentives. Together, these results suggest that mild fluctuations in inflammation might alter the valuation of an incentive, and possibly a shift toward devoting greater attentional resources when a large social incentive is on the line. Overall, this study sheds light on how everyday, low-grade fluctuations in inflammation may influence cognitive abilities essential for daily life and effective inhibitory control.
Collapse
Affiliation(s)
- Gabriella M Alvarez
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA USA; Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC USA.
| | - Tatum A Jolink
- Department of Psychology, University of Michigan, Ann Arbor, MI USA; Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Taylor N West
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Megan N Cardenas
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Mallory J Feldman
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Jessica R Cohen
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Keely A Muscatell
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC USA; Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| |
Collapse
|
3
|
Kristof Z, Gal Z, Torok D, Eszlari N, Sutori S, Sperlagh B, Anderson IM, Deakin B, Bagdy G, Juhasz G, Gonda X. Embers of the Past: Early Childhood Traumas Interact with Variation in P2RX7 Gene Implicated in Neuroinflammation on Markers of Current Suicide Risk. Int J Mol Sci 2024; 25:865. [PMID: 38255938 PMCID: PMC10815854 DOI: 10.3390/ijms25020865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Both early childhood traumatic experiences and current stress increase the risk of suicidal behaviour, in which immune activation might play a role. Previous research suggests an association between mood disorders and P2RX7 gene encoding P2X7 receptors, which stimulate neuroinflammation. We investigated the effect of P2RX7 variation in interaction with early childhood adversities and traumas and recent stressors on lifetime suicide attempts and current suicide risk markers. Overall, 1644 participants completed questionnaires assessing childhood adversities, recent negative life events, and provided information about previous suicide attempts and current suicide risk-related markers, including thoughts of ending their life, death, and hopelessness. Subjects were genotyped for 681 SNPs in the P2RX7 gene, 335 of which passed quality control and were entered into logistic and linear regression models, followed by a clumping procedure to identify clumps of SNPs with a significant main and interaction effect. We identified two significant clumps with a main effect on current suicidal ideation with top SNPs rs641940 and rs1653613. In interaction with childhood trauma, we identified a clump with top SNP psy_rs11615992 and another clump on hopelessness containing rs78473339 as index SNP. Our results suggest that P2RX7 variation may mediate the effect of early childhood adversities and traumas on later emergence of suicide risk.
Collapse
Affiliation(s)
- Zsuliet Kristof
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa utca 6, 1082 Budapest, Hungary;
- Laboratory of Molecular Pharmacology, HUN-REN Institute of Experimental Medicine, Szigony utca 43, 1083 Budapest, Hungary;
| | - Zsofia Gal
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvarad ter 4, 1089 Budapest, Hungary; (Z.G.); (D.T.); (N.E.); (G.B.); (G.J.)
| | - Dora Torok
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvarad ter 4, 1089 Budapest, Hungary; (Z.G.); (D.T.); (N.E.); (G.B.); (G.J.)
| | - Nora Eszlari
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvarad ter 4, 1089 Budapest, Hungary; (Z.G.); (D.T.); (N.E.); (G.B.); (G.J.)
- NAP3.0 Neuropsychopharmacology Research Group, Semmelweis University, Nagyvarad ter 4, 1089 Budapest, Hungary
| | - Sara Sutori
- National Centre for Suicide Research and Prevention (NASP), Department of Learning, Informatics, Management and Ethics, Karolinska Institutet, Granits väg 4, 17165 Solna, Sweden;
| | - Beata Sperlagh
- Laboratory of Molecular Pharmacology, HUN-REN Institute of Experimental Medicine, Szigony utca 43, 1083 Budapest, Hungary;
| | - Ian M. Anderson
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biological, Medical and Human Sciences, The University of Manchester and Manchester Academic Health Sciences Centre, 46 Grafton Street, Manchester M13 9NT, UK; (I.M.A.); (B.D.)
| | - Bill Deakin
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biological, Medical and Human Sciences, The University of Manchester and Manchester Academic Health Sciences Centre, 46 Grafton Street, Manchester M13 9NT, UK; (I.M.A.); (B.D.)
| | - Gyorgy Bagdy
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvarad ter 4, 1089 Budapest, Hungary; (Z.G.); (D.T.); (N.E.); (G.B.); (G.J.)
- NAP3.0 Neuropsychopharmacology Research Group, Semmelweis University, Nagyvarad ter 4, 1089 Budapest, Hungary
| | - Gabriella Juhasz
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvarad ter 4, 1089 Budapest, Hungary; (Z.G.); (D.T.); (N.E.); (G.B.); (G.J.)
- NAP3.0 Neuropsychopharmacology Research Group, Semmelweis University, Nagyvarad ter 4, 1089 Budapest, Hungary
| | - Xenia Gonda
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa utca 6, 1082 Budapest, Hungary;
- NAP3.0 Neuropsychopharmacology Research Group, Semmelweis University, Nagyvarad ter 4, 1089 Budapest, Hungary
| |
Collapse
|
4
|
Evans E, Ellis C. Looking Upstream to Understand Race/Ethnicity as a Moderator for Poststroke Neuroinflammation and a Social Determinant for Poststroke Aphasia Outcomes. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2024; 33:74-86. [PMID: 38085794 PMCID: PMC11000804 DOI: 10.1044/2023_ajslp-23-00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/06/2023] [Accepted: 11/02/2023] [Indexed: 01/05/2024]
Abstract
INTRODUCTION Over the past decade, the stroke literature has begun to acknowledge and explore explanations for longstanding racial/ethnic differences in stroke outcomes. Poststroke cognitive impairment (PSCI) and poststroke aphasia are two such negative poststroke outcomes where racial/ethnic differences exist. Physiological differences, such as stroke type and lesion size, have been used to partially explain the variation in PSCI and aphasia. However, there is some evidence, although limited, that suggests neuroinflammatory processes as part of allostatic load may be a key contributor to the observed disparities. METHOD In this tutorial, we explore the influence of race differences in inflammation on poststroke cognitive outcomes. We suggest lifetime stress and other external determinants of health such as neighborhood environment and discriminatory practices through "weathering" explain differences in inflammation. While using an allostatic load framework, we explore the literature focusing specifically on the role of neuroinflammation on poststroke outcomes. CONCLUSIONS Examination of the immune response poststroke provides a foundation for understanding the mechanisms of PSCI and poststroke aphasia and the potential contributions of neuroinflammatory processes on poststroke cognitive outcomes. Furthermore, understanding of racial differences in those processes may contribute to a better understanding of racial disparities in general stroke outcomes as well as poststroke aphasia.
Collapse
Affiliation(s)
- Elizabeth Evans
- Department of Speech, Language and Hearing Sciences, College of Public Health and Health Professions, University of Florida, Gainesville
| | - Charles Ellis
- Department of Speech, Language and Hearing Sciences, College of Public Health and Health Professions, University of Florida, Gainesville
| |
Collapse
|
5
|
Lisco G, Giagulli VA, De Pergola G, Guastamacchia E, Jirillo E, Vitale E, Triggiani V. Chronic Stress as a Risk Factor for Type 2 Diabetes: Endocrine, Metabolic, and Immune Implications. Endocr Metab Immune Disord Drug Targets 2024; 24:321-332. [PMID: 37534489 DOI: 10.2174/1871530323666230803095118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/01/2023] [Accepted: 06/20/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND Chronic stress is a condition of pressure on the brain and whole body, which in the long term may lead to a frank disease status, even including type 2 diabetes (T2D). Stress activates the hypothalamus-pituitary-adrenal axis with release of glucocorticoids (GCs) and catecholamines, as well as activation of the inflammatory pathway of the immune system, which alters glucose and lipid metabolism, ultimately leading to beta-cell destruction, insulin resistance and T2D onset. Alteration of the glucose and lipid metabolism accounts for insulin resistance and T2D outcome. Furthermore, stress-related subversion of the intestinal microbiota leads to an imbalance of the gut-brain-immune axis, as evidenced by the stress-related depression often associated with T2D. A condition of generalized inflammation and subversion of the intestinal microbiota represents another facet of stress-induced disease. In fact, chronic stress acts on the gut-brain axis with multiorgan consequences, as evidenced by the association between depression and T2D. Oxidative stress with the production of reactive oxygen species and cytokine-mediated inflammation represents the main hallmarks of chronic stress. ROS production and pro-inflammatory cytokines represent the main hallmarks of stress-related disorders, and therefore, the use of natural antioxidant and anti-inflammatory substances (nutraceuticals) may offer an alternative therapeutic approach to combat stress-related T2D. Single or combined administration of nutraceuticals would be very beneficial in targeting the neuro-endocrine-immune axis, thus, regulating major pathways involved in T2D onset. However, more clinical trials are needed to establish the effectiveness of nutraceutical treatment, dosage, time of administration and the most favorable combinations of compounds. Therefore, in view of their antioxidant and anti-inflammatory properties, the use of natural products or nutraceuticals for the treatment of stress-related diseases, even including T2D, will be discussed. Several evidences suggest that chronic stress represents one of the main factors responsible for the outcome of T2D.
Collapse
Affiliation(s)
- Giuseppe Lisco
- Interdisciplinary Department of Medicine, University of Bari, "Aldo Moro", Bari, Italy
| | - Vito Angelo Giagulli
- Interdisciplinary Department of Medicine, University of Bari, "Aldo Moro", Bari, Italy
| | - Giovanni De Pergola
- Interdisciplinary Department of Medicine, University of Bari, "Aldo Moro", Bari, Italy
| | - Edoardo Guastamacchia
- Interdisciplinary Department of Medicine, University of Bari, "Aldo Moro", Bari, Italy
| | - Emilio Jirillo
- Interdisciplinary Department of Medicine, University of Bari, "Aldo Moro", Bari, Italy
| | - Elsa Vitale
- Department of Mental Health, University of Bari Aldo Moro, Local Health Authority Bari, Bari, Italy
| | - Vincenzo Triggiani
- Interdisciplinary Department of Medicine, University of Bari, "Aldo Moro", Bari, Italy
| |
Collapse
|
6
|
Yan R, Wang W, Yang W, Huang M, Xu W. Mitochondria-Related Candidate Genes and Diagnostic Model to Predict Late-Onset Alzheimer's Disease and Mild Cognitive Impairment. J Alzheimers Dis 2024; 99:S299-S315. [PMID: 37334608 PMCID: PMC11091583 DOI: 10.3233/jad-230314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2023] [Indexed: 06/20/2023]
Abstract
Background Late-onset Alzheimer's disease (LOAD) is the most common type of dementia, but its pathogenesis remains unclear, and there is a lack of simple and convenient early diagnostic markers to predict the occurrence. Objective Our study aimed to identify diagnostic candidate genes to predict LOAD by machine learning methods. Methods Three publicly available datasets from the Gene Expression Omnibus (GEO) database containing peripheral blood gene expression data for LOAD, mild cognitive impairment (MCI), and controls (CN) were downloaded. Differential expression analysis, the least absolute shrinkage and selection operator (LASSO), and support vector machine recursive feature elimination (SVM-RFE) were used to identify LOAD diagnostic candidate genes. These candidate genes were then validated in the validation group and clinical samples, and a LOAD prediction model was established. Results LASSO and SVM-RFE analyses identified 3 mitochondria-related genes (MRGs) as candidate genes, including NDUFA1, NDUFS5, and NDUFB3. In the verification of 3 MRGs, the AUC values showed that NDUFA1, NDUFS5 had better predictability. We also verified the candidate MRGs in MCI groups, the AUC values showed good performance. We then used NDUFA1, NDUFS5 and age to build a LOAD diagnostic model and AUC was 0.723. Results of qRT-PCR experiments with clinical blood samples showed that the three candidate genes were expressed significantly lower in the LOAD and MCI groups when compared to CN. Conclusion Two mitochondrial-related candidate genes, NDUFA1 and NDUFS5, were identified as diagnostic markers for LOAD and MCI. Combining these two candidate genes with age, a LOAD diagnostic prediction model was successfully constructed.
Collapse
Affiliation(s)
- Ran Yan
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjing Wang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Yang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Masha Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Xu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurology, Ruijin Hospital, Zhoushan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Dye CN, Franceschelli D, Leuner B, Lenz KM. Microglia depletion facilitates the display of maternal behavior and alters activation of the maternal brain network in nulliparous female rats. Neuropsychopharmacology 2023; 48:1869-1877. [PMID: 37330580 PMCID: PMC10584962 DOI: 10.1038/s41386-023-01624-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/17/2023] [Accepted: 05/29/2023] [Indexed: 06/19/2023]
Abstract
The peripartum period is accompanied by peripheral immune alterations to promote a successful pregnancy. We and others have also demonstrated significant neuroimmune changes that emerge during late pregnancy and persist postpartum, most prominently decreased microglia numbers within limbic brain regions. Here we hypothesized that microglial downregulation is important for the onset and display of maternal behavior. To test this, we recapitulated the peripartum neuroimmune profile by depleting microglia in non-mother (i.e., nulliparous) female rats who are typically not maternal but can be induced to behave maternally towards foster pups after repeated exposure, a process called maternal sensitization. BLZ945, a selective colony-stimulating factor 1 receptor (CSF1R) inhibitor, was administered systemically to nulliparous rats, which led to ~75% decrease in microglia number. BLZ- and vehicle-treated females then underwent maternal sensitization and tissue was stained for ∆fosB to examine activation across maternally relevant brain regions. We found BLZ-treated females with microglial depletion met criteria for displaying maternal behavior significantly sooner than vehicle-treated females and displayed increased pup-directed behaviors. Microglia depletion also reduced threat appraisal behavior in an open field test. Notably, nulliparous females with microglial depletion had decreased numbers of ∆fosB+ cells in the medial amygdala and periaqueductal gray, and increased numbers in the prefrontal cortex and somatosensory cortex, compared to vehicle. Our results demonstrate that microglia regulate maternal behavior in adult females, possibly by shifting patterns of activity in the maternal brain network.
Collapse
Affiliation(s)
- Courtney N Dye
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | | | - Benedetta Leuner
- Department of Psychology, The Ohio State University, Columbus, OH, USA
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Kathryn M Lenz
- Department of Psychology, The Ohio State University, Columbus, OH, USA.
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA.
- Institute of Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
8
|
Gao Z, Lv H, Wang Y, Xie Y, Guan M, Xu Y. TET2 deficiency promotes anxiety and depression-like behaviors by activating NLRP3/IL-1β pathway in microglia of allergic rhinitis mice. Mol Med 2023; 29:160. [PMID: 38012545 PMCID: PMC10680276 DOI: 10.1186/s10020-023-00757-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/12/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Anxiety and depression-like behaviors in allergic rhinitis (AR) are attracting attention, while the precise mechanism has not been clearly elucidated. Recent evidence shows that neuroinflammation in anterior cingulate cortex (ACC) may be the core of these neuropsychiatric symptoms in AR. Here, we investigated the molecular link between the anxiety and depression-like behaviors and neuroinflammation in ACC. METHODS Mice were sensitized and challenged with ovalbumin (OVA) to induce AR. Nasal inflammation levels were assessed by H&E staining and PAS staining. Anxiety and depression-like behaviors were evaluated by behavioral experiments including open field test, forced swimming test, and sucrose preference test. Neuronal impairment was characterized via Nissl staining and 18FDG-PET. The role of ten-eleven translocation 2 (TET2) in AR-related anxiety and depression was assessed by Tet2-/- mice. In addition, the murine BV2 microglial cell line was utilized to explore the molecular mechanisms by which TET2 mediates neuroinflammation. The levels of TET2, NLRP3 and their downstream molecules were detected by immunohistochemistry, Western blot, Dot blot and ELISA. The effects of metformin on depression-like behaviors in AR mice were also evaluated. RESULTS AR mice showed significant anxiety and depression-like behaviors, which associated with the activation of ACC. Loss of TET2 activated the NLRP3/IL-1β pathway of microglia in AR mice, further accelerating the anxiety and depression-like behaviors. In addition, knockdown of TET2 activated the NLRP3/IL-1β pathway in BV2 cells. Metformin improved the neuropsychiatric symptoms of AR mice by reducing the activation of NLRP3/IL-1β pathway after upregulating TET2. CONCLUSION TET2 deficiency activates the NLRP3/IL-1β pathway of microglia in the ACC, promoting the pathological process of anxiety and depression-like behavior in AR. Metformin could be effective in treating neuroinflammation by regulating microglia via TET2 up-regulation, indicating that metformin is a potential way to treat anxiety and depression-like behaviors in AR.
Collapse
Affiliation(s)
- Ziang Gao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Soochow Hospital, Suzhou, 215000, China
| | - Hao Lv
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Institute of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yunfei Wang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Institute of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yulie Xie
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Institute of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mengting Guan
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Institute of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yu Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Institute of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
9
|
Tong RL, Kahn UN, Grafe LA, Hitti FL, Fried NT, Corbett BF. Stress circuitry: mechanisms behind nervous and immune system communication that influence behavior. Front Psychiatry 2023; 14:1240783. [PMID: 37706039 PMCID: PMC10495591 DOI: 10.3389/fpsyt.2023.1240783] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/16/2023] [Indexed: 09/15/2023] Open
Abstract
Inflammatory processes are increased by stress and contribute to the pathology of mood disorders. Stress is thought to primarily induce inflammation through peripheral and central noradrenergic neurotransmission. In healthy individuals, these pro-inflammatory effects are countered by glucocorticoid signaling, which is also activated by stress. In chronically stressed individuals, the anti-inflammatory effects of glucocorticoids are impaired, allowing pro-inflammatory effects to go unchecked. Mechanisms underlying this glucocorticoid resistance are well understood, but the precise circuits and molecular mechanisms by which stress increases inflammation are not as well known. In this narrative review, we summarize the mechanisms by which chronic stress increases inflammation and contributes to the onset and development of stress-related mood disorders. We focus on the neural substrates and molecular mechanisms, especially those regulated by noradrenergic signaling, that increase inflammatory processes in stressed individuals. We also discuss key knowledge gaps in our understanding of the communication between nervous and immune systems during stress and considerations for future therapeutic strategies. Here we highlight the mechanisms by which noradrenergic signaling contributes to inflammatory processes during stress and how this inflammation can contribute to the pathology of stress-related mood disorders. Understanding the mechanisms underlying crosstalk between the nervous and immune systems may lead to novel therapeutic strategies for mood disorders and/or provide important considerations for treating immune-related diseases in individuals suffering from stress-related disorders.
Collapse
Affiliation(s)
- Rose L. Tong
- Corbett Laboratory, Department of Biology, Rutgers University, Camden, NJ, United States
| | - Ubaidah N. Kahn
- Fried Laboratory, Department of Biology, Rutgers University, Camden, NJ, United States
| | - Laura A. Grafe
- Grafe Laboratory, Department of Psychology, Bryn Mawr College, Bryn Mawr, PA, United States
| | - Frederick L. Hitti
- Hitti Laboratory, Department of Neurological Surgery and Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Nathan T. Fried
- Fried Laboratory, Department of Biology, Rutgers University, Camden, NJ, United States
| | - Brian F. Corbett
- Corbett Laboratory, Department of Biology, Rutgers University, Camden, NJ, United States
| |
Collapse
|
10
|
Guerrin CGJ, de Vries EFJ, Prasad K, Vazquez-Matias DA, Manusiwa LE, Barazzuol L, Doorduin J. Maternal infection during pregnancy aggravates the behavioral response to an immune challenge during adolescence in female rats. Behav Brain Res 2023; 452:114566. [PMID: 37419332 DOI: 10.1016/j.bbr.2023.114566] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/23/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
Prenatal and early postnatal infection have been associated with changes in microglial activity and the development of psychiatric disorders. Here, we investigated the effect of prenatal immune activation and postnatal immune challenge, alone and combined, on behavior and microglial cell density in female Wistar rats. Pregnant rats were injected with poly I:C to induce a maternal immune activation (MIA). Their female offspring were subsequently exposed to a lipopolysaccharide (LPS) immune challenge during adolescence. Anhedonia, social behavior, anxiety, locomotion, and working memory were measured with the sucrose preference, social interaction, open field, elevated-plus maze, and Y-maze test, respectively. Microglia cell density was quantified by counting the number of Iba-1 positive cells in the brain cortex. Female MIA offspring were more susceptible to the LPS immune challenge during adolescence than control offspring as demonstrated by a more pronounced reduction in sucrose preference and body weight on the days following the LPS immune challenge. Furthermore, only the rats exposed to both MIA and LPS showed long-lasting changes in social behavior and locomotion. Conversely, the combination MIA and LPS prevented the anxiety induced by MIA alone during adulthood. MIA, LPS, or their combination did not change microglial cell density in the parietal and frontal cortex of adult rats. The results of our study suggest that the maternal immune activation during pregnancy aggravates the response to an immune challenge during adolescence in female rats.
Collapse
Affiliation(s)
- Cyprien G J Guerrin
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen 9713 GZ, the Netherlands
| | - Erik F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen 9713 GZ, the Netherlands
| | - Kavya Prasad
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen 9713 GZ, the Netherlands
| | - Daniel A Vazquez-Matias
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen 9713 GZ, the Netherlands
| | - Lesley E Manusiwa
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen 9713 GZ, the Netherlands
| | - Lara Barazzuol
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen 9713 GZ, the Netherlands; Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen 9713 GZ, the Netherlands
| | - Janine Doorduin
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen 9713 GZ, the Netherlands.
| |
Collapse
|
11
|
Dehdar K, Salimi M, Tabasi F, Dehghan S, Sumiyoshi A, Garousi M, Jamaati H, Javan M, Reza Raoufy M. Allergen induces depression-like behavior in association with altered prefrontal-hippocampal circuit in male rats. Neuroscience 2023:S0306-4522(23)00254-3. [PMID: 37286161 DOI: 10.1016/j.neuroscience.2023.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023]
Abstract
Allergic asthma is a common chronic inflammatory condition associated with psychiatric comorbidities. Notably depression, correlated with adverse outcomes in asthmatic patients. Peripheral inflammation's role in depression has been shown previously. However, evidence regarding the effects of allergic asthma on the medial prefrontal cortex (mPFC)-ventral hippocampus (vHipp) interactions, an important neurocircuitry in affective regulation, is yet to be demonstrated. Herein, we investigated the effects of allergen exposure in sensitized rats on the immunoreactivity of glial cells, depression-like behavior, brain regions volume, as well as activity and connectivity of the mPFC-vHipp circuit. We found that allergen-induced depressive-like behavior was associated with more activated microglia and astrocytes in mPFC and vHipp, as well as reduced hippocampus volume. Intriguingly, depressive-like behavior was negatively correlated with mPFC and hippocampus volumes in the allergen-exposed group. Moreover, mPFC and vHipp activity were altered in asthmatic animals. Allergen disrupted the strength and direction of functional connectivity in the mPFC-vHipp circuit so that, unlike normal conditions, mPFC causes and modulates vHipp activity. Our results provide new insight into the underlying mechanism of allergic inflammation-induced psychiatric disorders, aiming to develop new interventions and therapeutic approaches for improving asthma complications.
Collapse
Affiliation(s)
- Kolsoum Dehdar
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Morteza Salimi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farhad Tabasi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Institute for Brain Sciences and Cognition, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Samaneh Dehghan
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran; Eye Research Center, The Five Senses Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Akira Sumiyoshi
- Institute of Development, Aging and Cancer, Tohoku University, Seiryo-machi, Aoba-ku, Sendai, Japan; National Institutes for Quantum and Radiological Science and Technology, Anagawa, Inage-ku, Chiba, Japan
| | - Mani Garousi
- Department of Electrical and Engineering, Tarbiat Modares University, Tehran, Iran
| | - Hamidreza Jamaati
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Institute for Brain Sciences and Cognition, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Institute for Brain Sciences and Cognition, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
12
|
Zhang Y, Liu J, Wei Z, Mei J, Li Q, Zhen X, Zhang Y. Elevated serum platelet count inhibits the effects of brain functional changes on cognitive function in patients with mild cognitive impairment: A resting-state functional magnetic resonance imaging study. Front Aging Neurosci 2023; 15:1088095. [PMID: 37051376 PMCID: PMC10083369 DOI: 10.3389/fnagi.2023.1088095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
ObjectiveBrain function remodeling has been observed in patients with mild cognitive impairment (MCI) and is closely associated with cognitive performance. However, it is not clear if this relationship is influenced by complete blood counts. This study investigated the role of complete blood counts in the relationship between brain function and cognitive performance.MethodsTwenty-two MCI patients and eighteen controls were enrolled. All subjects underwent resting-state functional magnetic resonance imaging. A neuropsychological battery [Mini-Mental Status Examination, Auditory Verbal Learning Test (AVLT), Symbol Digit Modalities Test, Boston Naming Test (BNT), Shape Trails Test B (STT-B), Rey Complex Figure Test (RCFT), Hamilton Anxiety Rating Scale (HAMA), and Hamilton Depression Scale] was used to assess cognitive function, and MCI patients received complete blood counts tests for red blood cells (RBC), white blood cells, hemoglobin (HGB), monocytes, and platelet counts (PLT).ResultsCompared with controls, MCI patients demonstrated significantly decreased amplitude of low-frequency fluctuation (ALFF) values in the left dorsolateral superior frontal gyrus, left post orbitofrontal cortex, right medial superior frontal gyrus, right insula, and left triangular inferior frontal gyrus. In the MCI group, there were associations between ALFF values of the left hippocampus (HIP.L) and AVLT (p = 0.003) and AVLT-N5 scores (p = 0.001); ALFF values of the right supramarginal gyrus (SMG.R) and BNT scores (p = 0.044); ALFF values of the right superior temporal gyrus (STG.R) and BNT scores (p = 0.022); ALFF values of the left precuneus (PCUN.L) and STT-B time (p = 0.012); and ALFF values of the left caudate nucleus (CAU.L) and RCFT-time (p = 0.036). Moreover, the HAMA scores were negatively correlated with RBC and HGB levels, and positively correlated with monocyte count. The PLT count was positively correlated with STT-B time. Additionally, high PLT count inhibited the effect of ALFF values of the PCUN. L on STT-B performance in MCI patients (p = 0.0207).ConclusionALFF values of the HIP. L, SMG.R, STG. R, PCUN.L, and CAU. L were associated with decreased memory, language, executive function, and visuospatial ability in MCI patients. Notably, elevated PLT count could inhibit the effect of brain functional changes in the PCUN.L on executive function in MCI patients.
Collapse
Affiliation(s)
- Yuechan Zhang
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Liu
- Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zijun Wei
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianing Mei
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qianqian Li
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaomin Zhen
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Xiaomin Zhen, ; Yunyun Zhang,
| | - Yunyun Zhang
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Xiaomin Zhen, ; Yunyun Zhang,
| |
Collapse
|
13
|
Radford-Smith DE, Anthony DC. Mechanisms of Maternal Diet-Induced Obesity Affecting the Offspring Brain and Development of Affective Disorders. Metabolites 2023; 13:455. [PMID: 36984895 PMCID: PMC10053489 DOI: 10.3390/metabo13030455] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
Depression and metabolic disease are common disorders that share a bidirectional relationship and continue to increase in prevalence. Maternal diet and maternal behaviour both profoundly influence the developmental trajectory of offspring during the perinatal period. At an epidemiological level, both maternal depression and obesity during pregnancy have been shown to increase the risk of neuropsychiatric disease in the subsequent generation. Considerable progress has been made to understand the mechanisms by which maternal obesity disrupts the developing offspring gut-brain axis, priming offspring for the development of affective disorders. This review outlines such mechanisms in detail, including altered maternal care, the maternal microbiome, inflammation, breast milk composition, and maternal and placental metabolites. Subsequently, offspring may be prone to developing gut-brain interaction disorders with concomitant changes to brain energy metabolism, neurotransmission, and behaviour, alongside gut dysbiosis. The gut microbiome may act as a key modifiable, and therefore treatable, feature of the relationship between maternal obesity and the offspring brain function. Further studies examining the relationship between maternal nutrition, the maternal microbiome and metabolites, and offspring neurodevelopment are warranted to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Daniel E. Radford-Smith
- Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Lane, Oxford OX37JX, UK
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX13TA, UK
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX13QT, UK
| | - Daniel C. Anthony
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX13QT, UK
| |
Collapse
|
14
|
Proteome analysis of monocytes implicates altered mitochondrial biology in adults reporting adverse childhood experiences. Transl Psychiatry 2023; 13:31. [PMID: 36720844 PMCID: PMC9889346 DOI: 10.1038/s41398-023-02320-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 02/02/2023] Open
Abstract
The experience of adversity in childhood has been associated with poor health outcomes in adulthood. In search of the biological mechanisms underlying these effects, research so far focused on alterations of DNA methylation or shifts in transcriptomic profiles. The level of protein, however, has been largely neglected. We utilized mass spectrometry to investigate the proteome of CD14+ monocytes in healthy adults reporting childhood adversity and a control group before and after psychosocial stress exposure. Particular proteins involved in (i) immune processes, such as neutrophil-related proteins, (ii) protein metabolism, or (iii) proteins related to mitochondrial biology, such as those involved in energy production processes, were upregulated in participants reporting exposure to adversity in childhood. This functional triad was further corroborated by protein interaction- and co-expression analyses, was independent of stress exposure, i.e. observed at both pre- and post-stress time points, and became evident especially in females. In line with the mitochondrial allostatic load model, our findings provide evidence for the long-term effects of childhood adversity on mitochondrial biology.
Collapse
|
15
|
Shalaginova IG, Tuchina OP, Turkin AV, Vylegzhanina AE, Nagumanova AN, Zachepilo TG, Pavlova MB, Dyuzhikova NA. The Effect of Long-Term Emotional and Painful Stress on the Expression of Proinflammatory Cytokine Genes in Rats with High and Low Excitability of the Nervous System. J EVOL BIOCHEM PHYS+ 2023; 59:642-652. [PMID: 37128572 PMCID: PMC10132918 DOI: 10.1134/s0022093023020291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 05/03/2023]
Abstract
Stress plays an important role in the pathogenesis of anxiety and depressive disorders. Neuroinflammation is considered as one of the mechanisms by which stress alters the molecular and cellular plasticity in the nervous tissue and thus entails CNS dysfunction. The contribution of genetically determined features of the nervous system to the development of post-stress neuroinflammation has not been sufficiently studied. In this study, the dynamics of post-stress changes in mRNA levels of the il-1β and tnf genes encoding proinflammatory cytokines interleukin-1 beta (IL-1β) and tumor necrosis factor (TNF) were evaluated in the blood and brain of two rat strains with high and low excitability thresholds of the nervous system (HT and LT, respectively). Changes in IL-1β and TNF mRNA levels were assessed by real-time PCR 24 h, 7, 24 and 60 days after long-term long-term emotional and painful stress in the blood and three brain structures involved in the development of post-stress pathology (prefrontal cortex, hippocampus, amygdala). In highly excitable LT rats, IL-1β mRNA level in the hippocampus and amygdala increased compared to the control 24 days after stress termination, while in low-excitable HT animals, an increase in the level of IL-1β mRNA was only detected in the hippocampus at the same time point. TNF mRNA level did not change in any of the rat strains at any of the post-stress time points. Genetically determined excitability of the nervous system is a promising marker of individual stress vulnerability, as manifested in post-stress disorders associated with developmental and time-course features of neuroinflammation.
Collapse
Affiliation(s)
| | - O. P. Tuchina
- Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - A. V. Turkin
- Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | | | | | - T. G. Zachepilo
- Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | - M. B. Pavlova
- Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | - N. A. Dyuzhikova
- Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
16
|
Wang X, Liu X, Chen L, Zhang X. The inflammatory injury in the striatal microglia-dopaminergic-neuron crosstalk involved in Tourette syndrome development. Front Immunol 2023; 14:1178113. [PMID: 37187752 PMCID: PMC10175669 DOI: 10.3389/fimmu.2023.1178113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Background Tourette syndrome (TS) is associated with immunological dysfunction. The DA system is closely related to TS development, or behavioral stereotypes. Previous evidence suggested that hyper-M1-polarized microglia may exist in the brains of TS individuals. However, the role of microglia in TS and their interaction with dopaminergic neurons is unclear. In this study, we applied iminodipropionitrile (IDPN) to establish a TS model and focused on the inflammatory injury in the striatal microglia-dopaminergic-neuron crosstalk. Methods Male Sprague-Dawley rats were intraperitoneally injected with IDPN for seven consecutive days. Stereotypic behavior was observed to verify the TS model. Striatal microglia activation was evaluated based on different markers and expressions of inflammatory factors. The striatal dopaminergic neurons were purified and co-cultured with different microglia groups, and dopamine-associated markers were assessed. Results First, there was pathological damage to striatal dopaminergic neurons in TS rats, as indicated by decreased expression of TH, DAT, and PITX3. Next, the TS group showed a trend of increased Iba-1 positive cells and elevated levels of inflammatory factors TNF-α and IL-6, as well as an enhanced M1-polarization marker (iNOS) and an attenuated M2-polarization marker (Arg-1). Finally, in the co-culture experiment, IL-4-treated microglia could upregulate the expression of TH, DAT, and PITX3 in striatal dopaminergic neurons vs LPS-treated microglia. Similarly, the TS group (microglia from TS rats) caused a decreased expression of TH, DAT, and PITX3 compared with the Sham group (microglia from control rats) in the dopaminergic neurons. Conclusion In the striatum of TS rats, microglia activation is M1 hyperpolarized, which transmits inflammatory injury to striatal dopaminergic neurons and disrupts normal dopamine signaling.
Collapse
Affiliation(s)
- Xueming Wang
- Plastic Surgery Department, Fujian Children’s Hospital, Fuzhou, China
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xiumei Liu
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Developmental and Behavior Pediatrics Department, Fujian Children’s Hospital, Fuzhou, China
- *Correspondence: Xiumei Liu,
| | - Liangliang Chen
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Developmental and Behavior Pediatrics Department, Fujian Children’s Hospital, Fuzhou, China
| | - Xiaoling Zhang
- Child Healthcare Department, Fuzhou Maternal and Child Health Hospital, Fuzhou, China
| |
Collapse
|
17
|
Innate immune tolerance against adolescent intermittent alcohol exposure-induced behavioral abnormalities in adult mice. Int Immunopharmacol 2022; 113:109250. [DOI: 10.1016/j.intimp.2022.109250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/23/2022] [Accepted: 09/09/2022] [Indexed: 11/05/2022]
|
18
|
McMurray KMJ, Sah R. Neuroimmune mechanisms in fear and panic pathophysiology. Front Psychiatry 2022; 13:1015349. [PMID: 36523875 PMCID: PMC9745203 DOI: 10.3389/fpsyt.2022.1015349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/02/2022] [Indexed: 12/02/2022] Open
Abstract
Panic disorder (PD) is unique among anxiety disorders in that the emotional symptoms (e.g., fear and anxiety) associated with panic are strongly linked to body sensations indicative of threats to physiological homeostasis. For example, panic attacks often present with feelings of suffocation that evoke hyperventilation, breathlessness, or air hunger. Due to the somatic underpinnings of PD, a major focus has been placed on interoceptive signaling and it is recognized that dysfunctional body-to-brain communication pathways promote the initiation and maintenance of PD symptomatology. While body-to-brain signaling can occur via several pathways, immune and humoral pathways play an important role in communicating bodily physiological state to the brain. Accumulating evidence suggests that neuroimmune mediators play a role in fear and panic-associated disorders, although this has not been systematically investigated. Currently, our understanding of the role of immune mechanisms in the etiology and maintenance of PD remains limited. In the current review, we attempt to summarize findings that support a role of immune dysregulation in PD symptomology. We compile evidence from human studies and panic-relevant rodent paradigms that indicate a role of systemic and brain immune signaling in the regulation of fear and panic-relevant behavior and physiology. Specifically, we discuss how immune signaling can contribute to maladaptive body-to-brain communication and conditioned fear that are relevant to spontaneous and conditioned symptoms of PD and identify putative avenues warranting future investigation.
Collapse
Affiliation(s)
- Katherine M. J. McMurray
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States
- Veterans Affairs Medical Center, Cincinnati, OH, United States
| | - Renu Sah
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States
- Veterans Affairs Medical Center, Cincinnati, OH, United States
| |
Collapse
|
19
|
Kai-Xin-San Protects Depression Mice Against CORT-Induced Neuronal Injury by Inhibiting Microglia Activation and Oxidative Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5845800. [PMID: 36310618 PMCID: PMC9605849 DOI: 10.1155/2022/5845800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/20/2022] [Indexed: 11/07/2022]
Abstract
Objective Traditional Chinese medicine formula Kai-Xin-San (KXS) is used to treat psychiatric disorders, especially in anxiety and depression. However, the precise molecular mechanism of action remains unclear. In this study, we investigated the antidepressant effect of KXS on inhibiting inflammation and oxidative stress in corticosterone (CORT)-induced depression. Methods The therapeutic efficacy of KXS was evaluated in a mouse model of depression induced by CORT. Behavioral tests were conducted to evaluate the effectiveness of KXS in treating depressive-like behavior. Nissl staining and β-galactosidase staining were used to assess the effects of KXS on neuronal injury in depressed mice. To screen key potential therapeutic targets of KXS, transcriptome sequences and data analysis were performed. Then, Iba1 immunofluorescence staining and their relative inflammatory factors mRNA expression were conducted to assess the effect of KXS in inhibiting microglial inflammation activation response. Concurrently, the measurement of 4-Hydroxynonenal (4-HNE) immunohistochemistry staining, malondialdehyde (MDA), superoxide dismutase (SOD), and reactive oxygen species (ROS) were performed to evaluate the effect of KXS on anti-oxidative stress of depression in vivo. Besides, nitric oxide (NO), relative inflammatory factors mRNA expression, JC-1 staining, and ROS were used to evaluate the effect of KXS by lipopolysaccharide (LPS)/interferon-gamma (IFNγ)-induced BV2 cells. Results KXS significantly relieved the depressive-like symptoms induced by CORT, as well as ameliorating the neuronal damage, which decreased microglia inflammatory activation response of IL-1β, IL-6, and tumor necrosis factor α (TNFα) in vivo or in vitro too. Transcriptome Sequencing and Data Analysis showed that KXS mainly by regulating immune system and transduction pathways decreased CORT-induced depression in mice. And showed that there were 19 Principal components and 10 genes in the main regulatory position with the strongest correlation in depression mice. Meanwhile, KXS effectively decreased senescence, the expression of 4-HNE, MDA content, and the production of ROS, while increasing the SOD activity in CORT-induced mice. Besides, KXS significantly reversed the mitochondrial membrane potential loss and excessive ROS production in LPS/IFNγ-induced BV2 cells. Conclusion Our research suggested that KXS might protect depressed mice against CORT-induced neuronal injury by inhibiting microglia activation and oxidative stress.
Collapse
|
20
|
Chen H, Liu F, Sun D, Zhang J, Luo S, Liao Q, Tian F. The potential risk factors of early-onset post-stroke depression from immuno-inflammatory perspective. Front Immunol 2022; 13:1000631. [PMID: 36225923 PMCID: PMC9549963 DOI: 10.3389/fimmu.2022.1000631] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/23/2022] [Indexed: 01/08/2023] Open
Abstract
Background Mounting evidence strongly uncovered that peripheral immuno-inflammatory response induced by acute stroke is associated with the appearance of post-stroke depression (PSD), but the mechanism remains unclear. Methods 103 stroke patients were assessed at 2 weeks after onset using Diagnostic and Statistical Manual of Mental Disorders, 5th edition and then divided into PSD and non-PSD groups. Polymorphisms of inflammatory molecules (interleukin [IL]-1β, IL-6, IL-10, IL-18, tumor necrosis factor-α [TNF-α], interferon-γ [IFN-γ] and C-reactive protein [CRP]), complete blood count parameters, splenic attenuation (SA) and splenic volume (SV) on unenhanced chest computed tomography, demographic and other clinical characteristics were obtained. Binary logistic regression model was used to analyze the associations between inflammation-related factors and the occurrence of PSD at 2 weeks after stroke. Results 49 patients were diagnosed with PSD at 2 weeks after onset (early-onset PSD). The C/T genotypes of CRP rs2794520 and rs1205 were less in PSD group than non-PSD group (both adjusted odds ratio = 3.364; 95%CI: 1.039-10.898; p = 0.043). For CRP rs3091244, the frequency of G allele was higher (80.61% vs. 13.89%) while the frequency of A allele was lower (6.12% vs. 71.30%) in PSD patients than non-PSD patients (χ2 = 104.380; p<0.001). SA of PSD patients was lower than that of non-PSD patients in the presence of CRP rs2794520 C/T genotype and rs1205 C/T genotype (both t = 2.122; p = 0.039). Peripheral monocyte count was less in PSD group than non-PSD group (adjusted odds ratio = 0.057; 95%CI: 0.005-0.686; p = 0.024). Conclusions CRP polymorphisms, SA based on CRP genotype, and peripheral monocytes are associated with the risk of early-onset PSD, suggesting peripheral immuno-inflammatory activities elicited by stroke in its aetiology.
Collapse
|
21
|
Brisch R, Wojtylak S, Saniotis A, Steiner J, Gos T, Kumaratilake J, Henneberg M, Wolf R. The role of microglia in neuropsychiatric disorders and suicide. Eur Arch Psychiatry Clin Neurosci 2022; 272:929-945. [PMID: 34595576 PMCID: PMC9388452 DOI: 10.1007/s00406-021-01334-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023]
Abstract
This narrative review examines the possible role of microglial cells, first, in neuroinflammation and, second, in schizophrenia, depression, and suicide. Recent research on the interactions between microglia, astrocytes and neurons and their involvement in pathophysiological processes of neuropsychiatric disorders is presented. This review focuses on results from postmortem, positron emission tomography (PET) imaging studies, and animal models of schizophrenia and depression. Third, the effects of antipsychotic and antidepressant drug therapy, and of electroconvulsive therapy on microglial cells are explored and the upcoming development of therapeutic drugs targeting microglia is described. Finally, there is a discussion on the role of microglia in the evolutionary progression of human lineage. This view may contribute to a new understanding of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ralf Brisch
- Department of Forensic Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Szymon Wojtylak
- Department of Pathomorphology, Medical University of Gdańsk, Gdańsk, Poland
| | - Arthur Saniotis
- Department of Anthropology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
- Department of Pharmacy, Knowledge University, Erbil, Kurdistan Region, Iraq
| | - Johann Steiner
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University, Magdeburg, Germany
| | - Tomasz Gos
- Department of Forensic Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Jaliya Kumaratilake
- Biological Anthropology and Comparative Anatomy Research Unit, Medical School, The University of Adelaide, Adelaide, Australia
| | - Maciej Henneberg
- Biological Anthropology and Comparative Anatomy Research Unit, Medical School, The University of Adelaide, Adelaide, Australia
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Rainer Wolf
- Department of Nursing and Health, Hochschule Fulda, University of Applied Sciences, Fulda, Germany.
| |
Collapse
|
22
|
Kim IB, Lee JH, Park SC. The Relationship between Stress, Inflammation, and Depression. Biomedicines 2022; 10:1929. [PMID: 36009476 PMCID: PMC9405608 DOI: 10.3390/biomedicines10081929] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/29/2022] [Accepted: 07/31/2022] [Indexed: 12/18/2022] Open
Abstract
A narrative review about the relationship between stress, inflammation, and depression is made as follows: Chronic stress leads to various stress-related diseases such as depression. Although most human diseases are related to stress exposure, the common pathways between stress and pathophysiological processes of different disorders are still debatable. Chronic inflammation is a crucial component of chronic diseases, including depression. Both experimental and clinical studies have demonstrated that an increase in the levels of pro-inflammatory cytokines and stress hormones, such as glucocorticoids, substantially contributes to the behavioral alterations associated with depression. Evidence suggests that inflammation plays a key role in the pathology of stress-related diseases; however, this link has not yet been completely explored. In this study, we aimed to determine the role of inflammation in stress-induced diseases and whether a common pathway for depression exists. Recent studies support pharmacological and non-pharmacological treatment approaches significantly associated with ameliorating depression-related inflammation. In addition, major depression can be associated with an activated immune system, whereas antidepressants can exert immunomodulatory effects. Moreover, non-pharmacological treatments for major depression (i.e., exercise) may be mediated by anti-inflammatory actions. This narrative review highlights the mechanisms underlying inflammation and provides new insights into the prevention and treatment of stress-related diseases, particularly depression.
Collapse
Affiliation(s)
- Il-Bin Kim
- Department of Psychiatry, Hanyang University Guri Hospital, Guri 11923, Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Jae-Hon Lee
- Department of Psychiatry, Schulich of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Seon-Cheol Park
- Department of Psychiatry, Hanyang University Guri Hospital, Guri 11923, Korea
- Department of Psychiatry, Hanyang University College of Medicine, Seoul 04763, Korea
| |
Collapse
|
23
|
Chen Z, Liu H, Ye Y, Chen D, Lu Q, Lu X, Huang C. Granulocyte-macrophage colony-stimulating factor-triggered innate immune tolerance against chronic stress-induced behavioral abnormalities in mice. Int Immunopharmacol 2022; 109:108924. [PMID: 35704970 DOI: 10.1016/j.intimp.2022.108924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/25/2022] [Accepted: 06/02/2022] [Indexed: 11/05/2022]
Abstract
Pre-stimulation of the innate immune is considered a potential strategy to prevent chronic stress-induced behavioral abnormalities in animals. In this study, we investigated whether granulocyte-macrophage colony-stimulating factor (GM-CSF), an immunostimulant used in the clinic to treat diseases of the hematopoietic system, can prevent chronic stress-induced behavioral abnormalities in mice. Our results showed that a single intraperitoneal injection of GM-CSF (100 μg/kg) one day before stress exposure prevented the depression- and anxiety-like behaviors induced by chronic social defeat stress (CSDS) in mice, including preventing the CSDS-induced increase in the immobility time in the tail suspension test and forced swimming test and decrease in the time spent in the interaction zone in the social interaction test, as well as preventing the CSDS-induced decrease in the time spent (i) in open arms in the elevated plus maze test, (ii) on the illuminated side in the light-dark test, and (iii) in the central region of the open field test. The single GM-CSF preinjection (100 μg/kg) also prevented the CSDS-induced increase in the expression levels of interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α (TNF-α) mRNA in the hippocampus and medial prefrontal cortex of the mice. Further analysis showed that the preventive effect of GM-CSF on CSDS-induced depression- and anxiety-like behaviors and neuroinflammatory responses was abolished by pretreatment with minocycline (an innate immune inhibitor). These results indicate that a single low dose of GM-CSF before injection could be a potential way to prevent behavioral abnormalities induced by chronic stress in mice.
Collapse
Affiliation(s)
- Zhuo Chen
- Invasive Technology Department, Affiliated Hospital 2 of Nantong University, First People's Hospital of Nantong City, No. 6 Haierxiang North Road, Nantong, 226001, China.
| | - Huijun Liu
- Department of Pharmacy, Yancheng First Hopital, the Fourth Affiliated Hospital of Nantong University, #66 Renmin South Road, Yancheng 224008, Jiangsu, China
| | - Ying Ye
- Department of Ultrasound, Affiliated Hospital of Nantong University, #20 Xisi Road, Nantong 226001, Jiangsu, China
| | - Dongjian Chen
- Invasive Technology Department, Affiliated Hospital 2 of Nantong University, First People's Hospital of Nantong City, No. 6 Haierxiang North Road, Nantong, 226001, China
| | - Qun Lu
- Department of Pharmacy, Nantong Third Hospital Affiliated to Nantong University, #60 Middle Qingnian Road, Nantong 226006, Jiangsu, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China.
| |
Collapse
|
24
|
Asano H, Hasegawa-Ishii S, Arae K, Obara A, Laumet G, Dantzer R, Shimada A. Infiltration of peripheral immune cells into the olfactory bulb in a mouse model of acute nasal inflammation. J Neuroimmunol 2022; 368:577897. [PMID: 35661951 PMCID: PMC9903215 DOI: 10.1016/j.jneuroim.2022.577897] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/24/2022] [Accepted: 05/14/2022] [Indexed: 01/19/2023]
Abstract
Chronic nasal inflammation induces robust olfactory bulb (OB) atrophy in mice. Here we examined initial events that occur in the OB after bilateral intranasal administration of lipopolysaccharide, focusing on the olfactory nerve fibers and meninges. We analyzed the time course of OB and meninges inflammation using histological and biochemical approaches. Within 12 h, we observed increased chemokine expression and transient infiltration of peripheral immune cells into the OB, resulting in the development of pro-inflammatory status in the OB. Meningeal immunity was activated. Resident microglia produced anti-inflammatory cytokines within 24 h. These could be the initial events that lead to OB atrophy.
Collapse
Affiliation(s)
- Hinami Asano
- Pathology Research Team, Faculty of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka-shi, Tokyo 181-8612, Japan
| | - Sanae Hasegawa-Ishii
- Pathology Research Team, Faculty of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka-shi, Tokyo 181-8612, Japan,Corresponding author at: Pathology Research Team, Faculty of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka-shi, Tokyo 181-8612, Japan. (S. Hasegawa-Ishii)
| | - Ken Arae
- Department of Immunology, Faculty of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka-shi, Tokyo 181-8612, Japan
| | - Aki Obara
- Department of Analytical Chemistry, Faculty of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka-shi, Tokyo 181-8612, Japan
| | - Geoffroy Laumet
- Department of Physiology, Michigan State University, 766 Service Rd, East Lansing, MI 48824, USA
| | - Robert Dantzer
- Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe, Blvd., Houston, TX 77030, USA
| | - Atsuyoshi Shimada
- Pathology Research Team, Faculty of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka-shi, Tokyo 181-8612, Japan
| |
Collapse
|
25
|
Olude MA, Mouihate A, Mustapha OA, Farina C, Quintana FJ, Olopade JO. Astrocytes and Microglia in Stress-Induced Neuroinflammation: The African Perspective. Front Immunol 2022; 13:795089. [PMID: 35707531 PMCID: PMC9190229 DOI: 10.3389/fimmu.2022.795089] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Africa is laden with a youthful population, vast mineral resources and rich fauna. However, decades of unfortunate historical, sociocultural and leadership challenges make the continent a hotspot for poverty, indoor and outdoor pollutants with attendant stress factors such as violence, malnutrition, infectious outbreaks and psychological perturbations. The burden of these stressors initiate neuroinflammatory responses but the pattern and mechanisms of glial activation in these scenarios are yet to be properly elucidated. Africa is therefore most vulnerable to neurological stressors when placed against a backdrop of demographics that favor explosive childbearing, a vast population of unemployed youths making up a projected 42% of global youth population by 2030, repressive sociocultural policies towards women, poor access to healthcare, malnutrition, rapid urbanization, climate change and pollution. Early life stress, whether physical or psychological, induces neuroinflammatory response in developing nervous system and consequently leads to the emergence of mental health problems during adulthood. Brain inflammatory response is driven largely by inflammatory mediators released by glial cells; namely astrocytes and microglia. These inflammatory mediators alter the developmental trajectory of fetal and neonatal brain and results in long-lasting maladaptive behaviors and cognitive deficits. This review seeks to highlight the patterns and mechanisms of stressors such as poverty, developmental stress, environmental pollutions as well as malnutrition stress on astrocytes and microglia in neuroinflammation within the African context.
Collapse
Affiliation(s)
- Matthew Ayokunle Olude
- Vertebrate Morphology, Environmental Toxicology and Neuroscience Unit, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta, Nigeria
- *Correspondence: Matthew Ayokunle Olude,
| | - Abdeslam Mouihate
- Department of Physiology, Faculty of Medicine, Health Sciences Centre, Kuwait University, Kuwait City, Kuwait
| | - Oluwaseun Ahmed Mustapha
- Vertebrate Morphology, Environmental Toxicology and Neuroscience Unit, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta, Nigeria
| | - Cinthia Farina
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCSS) San Raffaele Scientific Institute, Institute of Experimental Neurology (INSPE) and Division of Neuroscience, Milan, Italy
| | - Francisco Javier Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - James Olukayode Olopade
- Neuroscience Unit, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
26
|
Iban-Arias R, Sebastian-Valverde M, Wu H, Lyu W, Wu Q, Simon J, Pasinetti GM. Role of Polyphenol-Derived Phenolic Acid in Mitigation of Inflammasome-Mediated Anxiety and Depression. Biomedicines 2022; 10:1264. [PMID: 35740286 PMCID: PMC9219614 DOI: 10.3390/biomedicines10061264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 02/01/2023] Open
Abstract
Overexposure to mental stress throughout life is a significant risk factor for the development of neuropsychiatric disorders, including depression and anxiety. The immune system can initiate a physiological response, releasing stress hormones and pro-inflammatory cytokines, in response to stressors. These effects can overcome allostatic physiological mechanisms and generate a pro-inflammatory environment with deleterious effects if occurring chronically. Previous studies in our lab have identified key anti-inflammatory properties of a bioavailable polyphenolic preparation BDPP and its ability to mitigate stress responses via the attenuation of NLRP3 inflammasome-dependent responses. Inflammasome activation is part of the first line of defense against stimuli of different natures, provides a rapid response, and, therefore, is of capital importance within the innate immunity response. malvidin-3-O-glucoside (MG), a natural anthocyanin present in high proportions in grapes, has been reported to exhibit anti-inflammatory effects, but its mechanisms remain poorly understood. This study aims to elucidate the therapeutic potential of MG on inflammasome-induced inflammation in vitro and in a mouse model of chronic unpredictable stress (CUS). Here, it is shown that MG is an anti-pyroptotic phenolic metabolite that targets NLRP3, NLRC4, and AIM2 inflammasomes, subsequently reducing caspase-1 and IL-1β protein levels in murine primary cortical microglia and the brain, as its beneficial effect to counteract anxiety and depression is also demonstrated. The present study supports the role of MG to mitigate bacterial-mediated inflammation (lipopolysaccharide or LPS) in vitro and CUS-induced behavior impairment in vivo to address stress-induced inflammasome-mediated innate response.
Collapse
Affiliation(s)
- Ruth Iban-Arias
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (R.I.-A.); (M.S.-V.); (H.W.)
| | - Maria Sebastian-Valverde
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (R.I.-A.); (M.S.-V.); (H.W.)
| | - Henry Wu
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (R.I.-A.); (M.S.-V.); (H.W.)
| | - Weiting Lyu
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology, Center for Agricultural Food Ecosystems, Institute of Food, Nutrition & Health, SEBS, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901, USA; (W.L.); (Q.W.); (J.S.)
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Qingli Wu
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology, Center for Agricultural Food Ecosystems, Institute of Food, Nutrition & Health, SEBS, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901, USA; (W.L.); (Q.W.); (J.S.)
| | - Jim Simon
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology, Center for Agricultural Food Ecosystems, Institute of Food, Nutrition & Health, SEBS, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901, USA; (W.L.); (Q.W.); (J.S.)
| | - Giulio Maria Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (R.I.-A.); (M.S.-V.); (H.W.)
| |
Collapse
|
27
|
Agbayani CJ, Tucker JA, Nelson EL, Martinez F, Cortes H, Khoury D, Kain ZN, Lin C, Torno L, Fortier MA. Immunological and psychosocial functioning in parents of children with cancer. Support Care Cancer 2022; 30:3379-3388. [PMID: 34994860 PMCID: PMC9833860 DOI: 10.1007/s00520-021-06770-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 12/16/2021] [Indexed: 01/13/2023]
Abstract
PURPOSE Research has shown that parents of children with cancer exhibit an altered immune profile compared to parents of healthy children, reflective of increased susceptibility to illness. These parents are also at risk for poorer psychosocial outcomes and quality of life. The current study compares peripheral blood cell analyses and psychosocial self-reports from parents of children being treated for cancer (n = 21) to parents of healthy children (n = 30). METHODS A blood sample was drawn from parents to analyze immune profiles. Parents also completed the Perceived Stress Scale (PSS), Medical Outcomes Study Short Form-36 (MOS), and Patient-Reported Outcomes Measurement Information System Short Form v1.0 Emotional Distress-Anxiety 8a, and Emotional Distress-Depression 8a (PROMIS). Mann-Whitney U tests and independent samples t-tests were conducted to examine differences in outcomes between parent groups. RESULTS Parents of children with cancer exhibited higher monocyte percentages in their peripheral blood compared to peers with healthy children. Parents of children with cancer also reported poorer psychosocial outcomes: higher perceived stress, higher anxiety and depression symptoms, more role disability resulting from emotional problems, poorer general and mental health, and poorer social functioning. CONCLUSION These findings support research that has shown a direct effect of chronic stress on the immune system. Symptoms reported by parents of children with cancer indicate unmet psychosocial needs that could potentially affect long-term health. Given the central role of parents in their children's cancer care, it is compelling to address and work to improve parent immunological and psychosocial well-being.
Collapse
Affiliation(s)
- Crystle-Joie Agbayani
- UCI Center on Stress and Health, School of Medicine, University of California-Irvine, Irvine, CA, USA,Department of Psychological Science, University of California-Irvine, Irvine, CA, USA
| | - Jo A. Tucker
- Department of Medicine, Division of Hematology Oncology, University of California-Irvine, Irvine, CA, USA,Institute for Immunology, University of California-Irvine, Irvine, CA, USA
| | - Edward L. Nelson
- Department of Medicine, Division of Hematology Oncology, University of California-Irvine, Irvine, CA, USA,Institute for Immunology, University of California-Irvine, Irvine, CA, USA,NCI-Designated Chao Family Comprehensive Cancer Center, Irvine, CA, USA
| | - Freddy Martinez
- UCI Center on Stress and Health, School of Medicine, University of California-Irvine, Irvine, CA, USA
| | - Haydee Cortes
- UCI Center on Stress and Health, School of Medicine, University of California-Irvine, Irvine, CA, USA,Department of Anesthesiology & Perioperative Care, University of California-Irvine, Irvine, CA, USA
| | - Dina Khoury
- UCI Center on Stress and Health, School of Medicine, University of California-Irvine, Irvine, CA, USA,Department of Medicine, Division of Hematology Oncology, University of California-Irvine, Irvine, CA, USA
| | - Zeev N. Kain
- UCI Center on Stress and Health, School of Medicine, University of California-Irvine, Irvine, CA, USA,Department of Anesthesiology & Perioperative Care, University of California-Irvine, Irvine, CA, USA,Department of Pediatrics, CHOC, Orange, CA, USA,Child Study Center, School of Medicine, Yale University, New Haven, CT, USA
| | - Carol Lin
- Hyundai Cancer Institute, CHOC, Orange, CA, USA
| | | | - Michelle A Fortier
- UCI Center on Stress and Health, School of Medicine, University of California-Irvine, Irvine, CA, USA,Department of Psychological Science, University of California-Irvine, Irvine, CA, USA,NCI-Designated Chao Family Comprehensive Cancer Center, Irvine, CA, USA,Department of Anesthesiology & Perioperative Care, University of California-Irvine, Irvine, CA, USA,Department of Psychology, CHOC, Orange, CA, USA,Sue & Bill Gross School of Nursing, University of California-Irvine, Irvine, CA, USA
| |
Collapse
|
28
|
Old and New Biomarkers for Infection, Inflammation, and Autoimmunity in Treatment-Resistant Affective and Schizophrenic Spectrum Disorders. Pharmaceuticals (Basel) 2022; 15:ph15030299. [PMID: 35337097 PMCID: PMC8949012 DOI: 10.3390/ph15030299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
Affective (AF) and Schizophrenic (SZ) Spectrum disorders manifest with risk factors, involving inflammatory processes linked to infections and autoimmunity. This study searched for novel biomarkers in cerebrospinal fluid (CSF) and peripheral blood. A total of 29 AF and 39 SZ patients with treatment-resistant disease were included. In CSF, the chemokine IL-8 was significantly elevated in AF and SZ patients. IL-8 promotes chemotaxis by neutrophils and may originate from different tissues. S100B, a glia-derived brain damage marker, was higher in CSF from AF than SZ patients. Among the plasma-derived biomarkers, ferritin was elevated in AF and SZ. Soluble CD25, indicating Treg dysfunction, was higher in SZ than in AF patients. Interferon-γ, implying virus-specific immune activation, was positive in selective AF patients, only. Both groups showed elevated expression of immunosuppressive CD33 on monocytes, but higher amounts of CD123+ plasmacytoid dendritic cells were restricted to SZ. In conclusion, chemotactic IL-8 indicates neuronal stress and inflammation in the CSF of both groups. Novel plasma-derived biomarkers such as sCD25 and monocytic CD33 distinguish SZ from AF with an autoimmune phenotype.
Collapse
|
29
|
Innate immune stimulation prevents the development of anxiety-like behaviors in chronically stressed mice. Neuropharmacology 2022; 207:108950. [PMID: 35074304 DOI: 10.1016/j.neuropharm.2022.108950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 12/30/2021] [Accepted: 01/12/2022] [Indexed: 12/19/2022]
Abstract
Anxiety is a common psychological disease which can induce severe social burdens. Searching methods that prevent the onset of anxiety is of great significance for ameliorating the social and individual problems induced by this type of disease. In this study, we investigated how innate immune pre-stimulation influences the anxiety-like behaviors in chronically stressed mice. Our results showed that a single injection of an innate immune stimulant lipopolysaccharide (LPS) at the dose of 50, 100, and 500 μg/kg 1 day before stress exposure prevented chronic social defeat stress (CSDS)-induced anxiety-like behaviors in mice. A single injection of LPS (100 μg/kg) 5 days before stress exposure produced similar preventive effects on CSDS-induced anxiety-like behaviors, while similar effects were not observed at the condition of 10-days interval between LPS injection and stress exposure. A second LPS injection 10 days after the first LPS injection or a 4 × LPS injection 10 days before stress exposure also prevented CSDS-induced anxiety-like behaviors. Moreover, a single injection of LPS (100 μg/kg) 1 day before stress exposure prevented the production of pro-inflammatory cytokines in the hippocampus and prefrontal cortex of CSDS mice. Suppression of innate immune stimulation by minocycline pretreatment simultaneously abrogated the preventive effect of LPS pre-injection (100 μg/kg) on CSDS-induced anxiety-like behaviors and pro-inflammatory cytokine production in the brain. Our results demonstrated that the pre-stimulation of the innate immune system can prevent the development of anxiety-like behaviors and the progression of the neuroinflammatory responses in the brain in chronically stressed mice.
Collapse
|
30
|
Abstract
In order to survive and thrive, organisms must adapt to constantly changing environmental pressures. When there are significant shifts in the environment, the brain and body engage a set of physiological and behavioral countermeasures collectively known as the "stress response". These responses, which include changes at the cellular, systems, and organismal level, are geared toward protecting homeostasis and adapting physiological operating parameters so as to enable the organism to overcome short-term challenges. It is the shift of these well-organized acute responses to dysregulated chronic responses that leads to pathologies. In a sense, the protective measures become destructive, causing the myriad health problems that are associated with chronic stress. To further complicate the situation, these challenges need not be purely physical in nature. Indeed, psychosocial stressors such as ruminating about challenges at work, resource insecurity, and unstable social environments can engage the very same emergency threat systems and eventually lead to the same types of pathologies that sometimes are described as "burnout" in humans. This short review focuses on very recent empirical work exploring the effects of chronic stress on key brain circuits, metabolism and metabolic function, and immune function.
Collapse
Affiliation(s)
- Brandon L Roberts
- Department of Psychological and Brain Sciences, Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA, USA
| | - Ilia N Karatsoreos
- Department of Psychological and Brain Sciences, Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA, USA
| |
Collapse
|
31
|
Al Omran AJ, Shao AS, Watanabe S, Zhang Z, Zhang J, Xue C, Watanabe J, Davies DL, Shao XM, Liang J. Social isolation induces neuroinflammation and microglia overactivation, while dihydromyricetin prevents and improves them. J Neuroinflammation 2022; 19:2. [PMID: 34983568 PMCID: PMC8724741 DOI: 10.1186/s12974-021-02368-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/20/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Anxiety disorders are the most prevalent mental illnesses in the U.S. and are estimated to consume one-third of the country's mental health treatment cost. Although anxiolytic therapies are available, many patients still exhibit treatment resistance, relapse, or substantial side effects. Further, due to the COVID-19 pandemic and stay-at-home order, social isolation, fear of the pandemic, and unprecedented times, the incidence of anxiety has dramatically increased. Previously, we have demonstrated dihydromyricetin (DHM), the major bioactive flavonoid extracted from Ampelopsis grossedentata, exhibits anxiolytic properties in a mouse model of social isolation-induced anxiety. Because GABAergic transmission modulates the immune system in addition to the inhibitory signal transmission, we investigated the effects of short-term social isolation on the neuroimmune system. METHODS Eight-week-old male C57BL/6 mice were housed under absolute social isolation for 4 weeks. The anxiety-like behaviors after DHM treatment were examined using elevated plus-maze and open field behavioral tests. Gephyrin protein expression, microglial profile changes, NF-κB pathway activation, cytokine level, and serum corticosterone were measured. RESULTS Socially isolated mice showed increased anxiety levels, reduced exploratory behaviors, and reduced gephyrin levels. Also, a dynamic alteration in hippocampal microglia were detected illustrated as a decline in microglia number and overactivation as determined by significant morphological changes including decreases in lacunarity, perimeter, and cell size and increase in cell density. Moreover, social isolation induced an increase in serum corticosterone level and activation in NF-κB pathway. Notably, DHM treatment counteracted these changes. CONCLUSION The results suggest that social isolation contributes to neuroinflammation, while DHM has the ability to improve neuroinflammation induced by anxiety.
Collapse
Affiliation(s)
- Alzahra J. Al Omran
- Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy, Los Angeles, CA 90033 USA
| | - Amy S. Shao
- Homer Stryker M.D. School of Medicine, Western Michigan University, Kalamazoo, MI 49007 USA
| | - Saki Watanabe
- Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy, Los Angeles, CA 90033 USA
| | - Zeyu Zhang
- Translational Research Lab, School of Pharmacy, University of Southern California, Los Angeles, CA 90033 USA
| | - Jifeng Zhang
- Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy, Los Angeles, CA 90033 USA
| | - Chen Xue
- Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy, Los Angeles, CA 90033 USA
| | - Junji Watanabe
- Translational Research Lab, School of Pharmacy, University of Southern California, Los Angeles, CA 90033 USA
| | - Daryl L. Davies
- Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy, Los Angeles, CA 90033 USA
| | - Xuesi M. Shao
- Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 USA
| | - Jing Liang
- Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy, Los Angeles, CA 90033 USA
| |
Collapse
|
32
|
Zhu Y, Geng X, Stone C, Guo S, Syed S, Ding Y. Forkhead Box 1(FoxO1) mediates psychological stress-induced neuroinflammation. Neurol Res 2022; 44:483-495. [PMID: 34983317 DOI: 10.1080/01616412.2021.2022913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Neuroinflammation plays a key role in cerebrovascular disease (CVD). Neuropsychiatric disorders appear to share an epidemiological association with inflammation, but the mechanisms are unclear. Forkhead box 1 (FoxO1) regulates inflammatory signaling in diabetes and cardiovascular diseases, but its role in psychological stress-induced neuroinflammation remains unknown. Therefore, we investigated the potential involvement of FoxO1 in repeated social defeat stress (RSDS)-induced neuroinflammation. METHODS 6-week-old male C57BL/6 J mice were randomly divided into RSDS or control groups. In the RSDS group, mice (18-22 g) were individually subjected to social defeat by an 8-week-old CD-1 mouse (28-32 g) for 10 min daily for 10 consecutive days. At 24 h after this 10-day process, corticosterone (CORT), epinephrine (EPI), hydrogen peroxide, and inflammatory factors (TNF-α, IL-6, IL-1β, and VCAM-1) from serum and brain tissues were assayed using ELISA, real-time PCR, and Western blot. Iba-1 was determined by immunofluorescence (IF), and FoxO1 siRNA was transfected into BV2 cells to further analyze the expression of inflammatory factors. RESULTS RSDS significantly increased the levels of TNF-α, IL-6, IL-1β, and VCAM-1 in the serum; it also increased both mRNA and protein expression of these in the brain. FoxO1 was significantly increased after stress, while its knockdown significantly suppressed stress-induced inflammation. Immunofluorescence demonstrated the activation of microglia in the setting of RSDS. CONCLUSION RSDS induced a measurable inflammatory response in the blood and brain, and FoxO1 was demonstrated in vitro to aggravate stress-induced inflammation.
Collapse
Affiliation(s)
- Yuequan Zhu
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China.,Department of Neurology, Beijing Luhe Hospital, Capital Medical University, China.,Department of Neurosurgery, Wayne State University School of Medicine, MI, USA
| | - Christopher Stone
- Department of Neurosurgery, Wayne State University School of Medicine, MI, USA
| | - Sichao Guo
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China
| | - Shabber Syed
- Department of Neurosurgery, Wayne State University School of Medicine, MI, USA
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, MI, USA
| |
Collapse
|
33
|
Sealock JM, Lee YH, Moscati A, Venkatesh S, Voloudakis G, Straub P, Singh K, Feng YCA, Ge T, Roussos P, Smoller JW, Chen G, Davis LK. Use of the PsycheMERGE Network to Investigate the Association Between Depression Polygenic Scores and White Blood Cell Count. JAMA Psychiatry 2021; 78:1365-1374. [PMID: 34668925 PMCID: PMC8529528 DOI: 10.1001/jamapsychiatry.2021.2959] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
IMPORTANCE Although depression is a common psychiatric disorder, its underlying biological basis remains poorly understood. Pairing depression polygenic scores with the results of clinical laboratory tests can reveal biological processes involved in depression etiology and in the physiological changes resulting from depression. OBJECTIVE To characterize the association between depression polygenic scores and an inflammatory biomarker, ie, white blood cell count. DESIGN, SETTING, AND PARTICIPANTS This genetic association study was conducted from May 19, 2019, to June 5, 2021, using electronic health record data from 382 452 patients across 4 health care systems. Analyses were conducted separately in each health care system and meta-analyzed across all systems. Primary analyses were conducted in Vanderbilt University Medical Center's biobank. Replication analyses were conducted across 3 other PsycheMERGE sites: Icahn School of Medicine at Mount Sinai, Mass General Brigham, and the Million Veteran Program. All patients with available genetic data and recorded white blood cell count measurements were included in the analyses. Primary analyses were conducted in individuals of European descent and then repeated in a population of individuals of African descent. EXPOSURES Depression polygenic scores. MAIN OUTCOMES AND MEASURES White blood cell count. RESULTS Across the 4 PsycheMERGE sites, there were 382 452 total participants of European ancestry (18.7% female; median age, 57.9 years) and 12 383 participants of African ancestry (61.1% female; median age, 39.0 [range, birth-90.0 years]). A laboratory-wide association scan revealed a robust association between depression polygenic scores and white blood cell count (β, 0.03; SE, 0.004; P = 1.07 × 10-17), which was replicated in a meta-analysis across the 4 health care systems (β, 0.03; SE, 0.002; P = 1.03 × 10-136). Mediation analyses suggested a bidirectional association, with white blood cell count accounting for 2.5% of the association of depression polygenic score with depression diagnosis (95% CI, 2.2%-20.8%; P = 2.84 × 10-70) and depression diagnosis accounting for 9.8% of the association of depression polygenic score with white blood cell count (95% CI, 8.4%-11.1%; P = 1.78 × 10-44). Mendelian randomization provided additional support for an association between increased white blood count and depression risk, but depression modeled as the exposure showed no evidence of an influence on white blood cell counts. CONCLUSIONS AND RELEVANCE This genetic association study found that increased depression polygenic scores were associated with increased white blood cell count, and suggests that this association may be bidirectional. These findings highlight the potential importance of the immune system in the etiology of depression and may motivate future development of clinical biomarkers and targeted treatment options for depression.
Collapse
Affiliation(s)
- Julia M. Sealock
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee,Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Younga H. Lee
- Psychiatric & Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston,Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Boston,Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Arden Moscati
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sanan Venkatesh
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York,Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, New York,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York,Mental Illness Research, Education and Clinical Centers, James J. Peters VA Medical Center, Bronx, New York
| | - Georgios Voloudakis
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York,Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, New York,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York,Mental Illness Research, Education and Clinical Centers, James J. Peters VA Medical Center, Bronx, New York
| | - Peter Straub
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee,Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Kritika Singh
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee,Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yen-Chen A. Feng
- Psychiatric & Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston,Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Boston
| | - Tian Ge
- Psychiatric & Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston,Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Boston
| | - Panos Roussos
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York,Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, New York,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York,Mental Illness Research, Education and Clinical Centers, James J. Peters VA Medical Center, Bronx, New York
| | - Jordan W. Smoller
- Psychiatric & Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston,Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Boston,Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Guanhua Chen
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison
| | - Lea K. Davis
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee,Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee,Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee,Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee,Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee,Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
34
|
Omran AJA, Shao AS, Watanabe S, Zhang Z, Zhang J, Xue C, Watanabe J, Davies DL, Shao XM, Liang J. Social Isolation Induces Neuroinflammation And Microglia Overactivation, While Dihydromyricetin Prevents And Improves Them. RESEARCH SQUARE 2021. [PMID: 34611661 PMCID: PMC8491854 DOI: 10.21203/rs.3.rs-923871/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Background: Anxiety disorders are the most prevalent mental illnesses in the U.S. and are estimated to consume one-third of the country’s mental health treatment cost. Although anxiolytic therapies are available, many patients still exhibit treatment-resistance, relapse, or substantial side effects. Further, due to the COVID-19 pandemic and stay-at-home order, social isolation, fear of the pandemic, and unprecedented times, the incidence of anxiety has dramatically increased. Previously, we have demonstrated dihydromyricetin (DHM), the major bioactive flavonoid extracted from Ampelopsis grossedentata, exhibits anxiolytic properties in a mouse model of social isolation-induced anxiety. Because GABAergic transmission modulates the immune system in addition to the inhibitory signal transmission, we investigated the effects of short-term social isolation on the neuroimmune system. Methods: Eight-week-old male C57BL/6 mice were housed under absolute social isolation for 4 weeks. The anxiety like behaviors after DHM treatment were examined using elevated plus maze and open field behavioral tests. Gephyrin protein expression, microglial profile changes, NF-κB pathway activation, cytokine level, and serum corticosterone were measured. Results: Socially isolated mice showed increased anxiety levels, reduced exploratory behaviors, and reduced gephyrin levels. Also, a dynamic alteration in hippocampal microglia were detected illustrated as a decline in microglia number and overactivation as determined by significant morphological changes including decreases in lacunarity, perimeter, and cell size and increase in cell density. Moreover, social isolation also induced an increase in serum corticosterone level and activation in NF-κB pathway. Notably, DHM treatment counteracted these changes. Conclusion: The results suggest that social isolation contributes to neuroinflammation, while DHM has the ability to restore neuroinflammatory changes induced by anxiety.
Collapse
|
35
|
Han VX, Patel S, Jones HF, Dale RC. Maternal immune activation and neuroinflammation in human neurodevelopmental disorders. Nat Rev Neurol 2021; 17:564-579. [PMID: 34341569 DOI: 10.1038/s41582-021-00530-8] [Citation(s) in RCA: 275] [Impact Index Per Article: 68.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2021] [Indexed: 02/06/2023]
Abstract
Maternal health during pregnancy plays a major role in shaping health and disease risks in the offspring. The maternal immune activation hypothesis proposes that inflammatory perturbations in utero can affect fetal neurodevelopment, and evidence from human epidemiological studies supports an association between maternal inflammation during pregnancy and offspring neurodevelopmental disorders (NDDs). Diverse maternal inflammatory factors, including obesity, asthma, autoimmune disease, infection and psychosocial stress, are associated with an increased risk of NDDs in the offspring. In addition to inflammation, epigenetic factors are increasingly recognized to operate at the gene-environment interface during NDD pathogenesis. For example, integrated brain transcriptome and epigenetic analyses of individuals with NDDs demonstrate convergent dysregulated immune pathways. In this Review, we focus on the emerging human evidence for an association between maternal immune activation and childhood NDDs, including autism spectrum disorder, attention-deficit/hyperactivity disorder and Tourette syndrome. We refer to established pathophysiological concepts in animal models, including immune signalling across the placenta, epigenetic 'priming' of offspring microglia and postnatal immune-brain crosstalk. The increasing incidence of NDDs has created an urgent need to mitigate the risk and severity of these conditions through both preventive strategies in pregnancy and novel postnatal therapies targeting disease mechanisms.
Collapse
Affiliation(s)
- Velda X Han
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Shrujna Patel
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Hannah F Jones
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,Department of Neuroservices, Starship Children's Hospital, Auckland, New Zealand
| | - Russell C Dale
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia. .,The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia. .,The Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
36
|
Shalaginova IG, Tuchina OP, Sidorova MV, Levina AS, Khlebaeva DAA, Vaido AI, Dyuzhikova NA. Effects of psychogenic stress on some peripheral and central inflammatory markers in rats with the different level of excitability of the nervous system. PLoS One 2021; 16:e0255380. [PMID: 34324596 PMCID: PMC8321229 DOI: 10.1371/journal.pone.0255380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/14/2021] [Indexed: 11/19/2022] Open
Abstract
Patients with post-stress pathologies display the signs of inflammation in the peripheral blood as well as in the brain. The mechanisms of such post-stress neuroimmune changes, their contribution to the behavior, the relationship of the intensity of inflammation with genetically determined features have not been clarified. The goal of this work was to evaluate the dynamics of post-stress inflammation in the blood and hippocampus of rats which differ in level of excitability of the nervous system. Rats of two strains (high/low excitability threshold) were subjected to stress according to the K. Hecht protocol and their behavior, neutrophil:lymphocyte ratio and the number of Iba+ cells in the hippocampus were analysed 24 hours, 7 and 24 days after stress exposure. Highly excitable animals show an increase in anxiety-like behavior, in the number of neutrophils compared to lymphocytes as well as in the number of Iba1+ cells in CA1, CA3 and DG areas of the hippocampus in response to stress. Thus, hereditary high excitability of the nervous system is a possible risk factor for the development of post-stress pathologies.
Collapse
Affiliation(s)
| | - O. P. Tuchina
- Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - M. V. Sidorova
- Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - A. S. Levina
- Pavlov Institute of Physiology, Russian Academy of Sciences, Saint- Petersburg, Russia
| | - D. A-A. Khlebaeva
- Pavlov Institute of Physiology, Russian Academy of Sciences, Saint- Petersburg, Russia
| | - A. I. Vaido
- Pavlov Institute of Physiology, Russian Academy of Sciences, Saint- Petersburg, Russia
| | - N. A. Dyuzhikova
- Pavlov Institute of Physiology, Russian Academy of Sciences, Saint- Petersburg, Russia
| |
Collapse
|
37
|
Robinson-Agramonte MA, Gonçalves CA, Noris-García E, Préndes Rivero N, Brigida AL, Schultz S, Siniscalco D, García García RJ. Impact of SARS-CoV-2 on neuropsychiatric disorders. World J Psychiatry 2021; 11:347-354. [PMID: 34327127 PMCID: PMC8311516 DOI: 10.5498/wjp.v11.i7.347] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/18/2021] [Accepted: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
Evolving data show a variable expression of clinical neurological manifestations in patients suffering with coronavirus disease 2019 (COVID-19) from early disease onset. The most frequent symptoms and signs are fatigue, dizziness, impaired consciousness, ageusia, anosmia, radicular pain, and headache, as well as others. Based on the high number of series of cases reported, there is evidence for the implication of the immune system in the pathological mechanism of COVID-19. Although the exact role of the immunological mechanism is not elucidated, two main mechanisms are suggested which implicate the direct effect of severe acute respiratory syndrome coronavirus 2 infection in the central nervous system and neuroinflammation. In the context of neurological manifestations associated with COVID-19, neuropsychiatric disorders show an exacerbation and are described by symptoms and signs such as depression, anxiety, mood alterations, psychosis, post-traumatic stress disorder, delirium, and cognitive impairment, which appear to be common in COVID-19 survivors. A worsened score on psychopathological measures is seen in those with a history of psychiatric comorbidities. We review the neuropsychiatric manifestations associated with COVID-19 and some critical aspects of the innate and adaptive immune system involved in mental health disorders occurring in COVID-19.
Collapse
Affiliation(s)
| | - Carlos-Alberto Gonçalves
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre 90040-060, Brazil
| | - Elena Noris-García
- Immunology Department, National Institute of Nephrology, Havana 10600, Cuba
| | - Naybí Préndes Rivero
- Department of Mental Health, San Antonio de los Baños Hospital, Havana 38100, Cuba
| | - Anna Lisa Brigida
- Department of Mental and Physical Health and Preventive Medicine, University of Campania, Naples 80138, Italy
| | - Stephen Schultz
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, United States
| | - Dario Siniscalco
- Department of Experimental Medicine, University of Campania, Naples 80138, Italy
| | | |
Collapse
|
38
|
Bajpai G, Nahrendorf M. Infectious and lifestyle modifiers of immunity and host resilience. Immunity 2021; 54:1110-1122. [PMID: 34107270 DOI: 10.1016/j.immuni.2021.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/25/2021] [Accepted: 05/11/2021] [Indexed: 12/30/2022]
Abstract
The interindividual heterogeneity of the immune system likely determines the personal risk for acquiring infections and developing diseases with inflammatory components. In addition to genetic factors, the immune system's heterogeneity is driven by diverging exposures of leukocytes and their progenitors to infections, vaccinations, and health behavior, including lifestyle-related stimuli such as diet, physical inactivity, and psychosocial stress. We review how such experiences alter immune cell responses to concurrent and subsequent challenges, leading to either improved host resilience or disease susceptibility due to a muted or overzealous immune system, with a primary focus on the contribution of innate immune cells. We explore the involvement of diverse mechanisms, including trained immunity, and their relevance for infections and cardiovascular disease, as these prevalent conditions are heavily influenced by immune cell abundance and phenotypic adaptions. Understanding the mechanistic bases of immune modulations by prior or co-exposures may lead to new therapies targeting dysfunctional inflammation.
Collapse
Affiliation(s)
- Geetika Bajpai
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Internal Medicine I, University Hospital Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
39
|
Peng L, Zhu M, Yang Y, Lu F, Liu X, Guo Q, Zhong T. Repeated Neonatal Isoflurane Exposure is Associated with Higher Susceptibility to Chronic Variable Stress-induced Behavioural and Neuro-inflammatory Alterations. Neuroscience 2021; 465:166-176. [PMID: 33951503 DOI: 10.1016/j.neuroscience.2021.04.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/11/2021] [Accepted: 04/21/2021] [Indexed: 01/22/2023]
Abstract
Numerous studies have reported that prolonged or multiple exposures to anaesthetics in early life lead to detrimental effects on brain function, most having focused on neurocognitive function, and relatively few on long term neuropsychiatric performance. The present study investigated the impact of repeated neonatal isoflurane exposure on chronic variable stress (CVS)-induced psychiatric and behavioural outcomes together with CVS-related neuronal activity and neuro-inflammatory reactivity in relevant brain circuits. In the present study, C57BL/6J mice received either three exposures to isoflurane at postnatal days 7, 8, and 9 or a control exposure. From postnatal day 45, mice were exposed to a mild, 3-week, CVS paradigm or none and the CVS-related neuropsychiatric performance was evaluated using a series of behavioural tests. The neuronal activity in relevant brain regions was measured by ΔFosB immunopositivity and CVS-related neuroinflammation was assessed by analysing levels of pro-inflammatory cytokines IL-1α, IL-1β, IL-6, and TNF-α. In mice experiencing serial neonatal isoflurane exposure, we detected a significant enhancement in anxiety levels following CVS procedures, together with enhanced neuronal activity, and exacerbated neuroinflammation in the basolateral amygdaloid nuclei (BLA) and hippocampal dentate gyrus (DG) regions. No such change was found in control mice. These results indicate an association between early multiple isoflurane exposures in infant mice and susceptibility to a CVS-evoked anxious phenotype accompanied by enhanced neuronal activity in BLA and DG regions and high inflammatory reactivity in response to CVS.
Collapse
Affiliation(s)
- Luofang Peng
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital of Central South University, Changsha City, Hunan Province, PR China; Department of Anaesthesiology and Operating Theatre Services, Xiangya Hospital of Central South University, Changsha City, Hunan Province, PR China
| | - Maoen Zhu
- Department of Anaesthesiology and Operating Theatre Services, Xiangya Hospital of Central South University, Changsha City, Hunan Province, PR China; Teaching and Research Section of Anesthesia and Critical Care Medicine, Xiangya Hospital of Central South University, Changsha City, Hunan Province, PR China
| | - Yong Yang
- Department of Anaesthesiology and Operating Theatre Services, Xiangya Hospital of Central South University, Changsha City, Hunan Province, PR China; Teaching and Research Section of Anesthesia and Critical Care Medicine, Xiangya Hospital of Central South University, Changsha City, Hunan Province, PR China
| | - Feng Lu
- Department of Anaesthesiology and Operating Theatre Services, Xiangya Hospital of Central South University, Changsha City, Hunan Province, PR China; Teaching and Research Section of Anesthesia and Critical Care Medicine, Xiangya Hospital of Central South University, Changsha City, Hunan Province, PR China
| | - Xian Liu
- Department of Anaesthesiology and Operating Theatre Services, Xiangya Hospital of Central South University, Changsha City, Hunan Province, PR China; Teaching and Research Section of Anesthesia and Critical Care Medicine, Xiangya Hospital of Central South University, Changsha City, Hunan Province, PR China
| | - Qulian Guo
- Department of Anaesthesiology and Operating Theatre Services, Xiangya Hospital of Central South University, Changsha City, Hunan Province, PR China; Teaching and Research Section of Anesthesia and Critical Care Medicine, Xiangya Hospital of Central South University, Changsha City, Hunan Province, PR China
| | - Tao Zhong
- Department of Anaesthesiology and Operating Theatre Services, Xiangya Hospital of Central South University, Changsha City, Hunan Province, PR China; Teaching and Research Section of Anesthesia and Critical Care Medicine, Xiangya Hospital of Central South University, Changsha City, Hunan Province, PR China.
| |
Collapse
|
40
|
Leite Dantas R, Freff J, Ambrée O, Beins EC, Forstner AJ, Dannlowski U, Baune BT, Scheu S, Alferink J. Dendritic Cells: Neglected Modulators of Peripheral Immune Responses and Neuroinflammation in Mood Disorders? Cells 2021; 10:941. [PMID: 33921690 PMCID: PMC8072712 DOI: 10.3390/cells10040941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/25/2021] [Accepted: 04/07/2021] [Indexed: 12/11/2022] Open
Abstract
Affective disorders (AD) including major depressive disorder (MDD) and bipolar disorder (BD) are common mood disorders associated with increased disability and poor health outcomes. Altered immune responses characterized by increased serum levels of pro-inflammatory cytokines and neuroinflammation are common findings in patients with AD and in corresponding animal models. Dendritic cells (DCs) represent a heterogeneous population of myeloid cells that orchestrate innate and adaptive immune responses and self-tolerance. Upon sensing exogenous and endogenous danger signals, mature DCs secrete proinflammatory factors, acquire migratory and antigen presenting capacities and thus contribute to neuroinflammation in trauma, autoimmunity, and neurodegenerative diseases. However, little is known about the involvement of DCs in the pathogenesis of AD. In this review, we summarize the current knowledge on DCs in peripheral immune responses and neuroinflammation in MDD and BD. In addition, we consider the impact of DCs on neuroinflammation and behavior in animal models of AD. Finally, we will discuss therapeutic perspectives targeting DCs and their effector molecules in mood disorders.
Collapse
Affiliation(s)
- Rafael Leite Dantas
- Department of Mental Health, University of Münster, 48149 Münster, Germany; (R.L.D.); (J.F.); (U.D.); (B.T.B.)
- Cells in Motion Interfaculty Centre, University of Münster, 48149 Münster, Germany
| | - Jana Freff
- Department of Mental Health, University of Münster, 48149 Münster, Germany; (R.L.D.); (J.F.); (U.D.); (B.T.B.)
- Cells in Motion Interfaculty Centre, University of Münster, 48149 Münster, Germany
| | - Oliver Ambrée
- Department of Behavioural Biology, University of Osnabrück, 49076 Osnabrück, Germany;
- Center of Cellular Nanoanalytics, University of Osnabrück, 49076 Osnabrück, Germany
| | - Eva C. Beins
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, 53127 Bonn, Germany; (E.C.B.); (A.J.F.)
| | - Andreas J. Forstner
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, 53127 Bonn, Germany; (E.C.B.); (A.J.F.)
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, 52428 Jülich, Germany
| | - Udo Dannlowski
- Department of Mental Health, University of Münster, 48149 Münster, Germany; (R.L.D.); (J.F.); (U.D.); (B.T.B.)
| | - Bernhard T. Baune
- Department of Mental Health, University of Münster, 48149 Münster, Germany; (R.L.D.); (J.F.); (U.D.); (B.T.B.)
- Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Parkville, VIC 3010, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, 40225 Düsseldorf, Germany;
| | - Judith Alferink
- Department of Mental Health, University of Münster, 48149 Münster, Germany; (R.L.D.); (J.F.); (U.D.); (B.T.B.)
- Cells in Motion Interfaculty Centre, University of Münster, 48149 Münster, Germany
| |
Collapse
|
41
|
Ortega VA, Mercer EM, Giesbrecht GF, Arrieta MC. Evolutionary Significance of the Neuroendocrine Stress Axis on Vertebrate Immunity and the Influence of the Microbiome on Early-Life Stress Regulation and Health Outcomes. Front Microbiol 2021; 12:634539. [PMID: 33897639 PMCID: PMC8058197 DOI: 10.3389/fmicb.2021.634539] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Stress is broadly defined as the non-specific biological response to changes in homeostatic demands and is mediated by the evolutionarily conserved neuroendocrine networks of the hypothalamus-pituitary-adrenal (HPA) axis and the sympathetic nervous system. Activation of these networks results in transient release of glucocorticoids (cortisol) and catecholamines (epinephrine) into circulation, as well as activation of sympathetic fibers innervating end organs. These interventions thus regulate numerous physiological processes, including energy metabolism, cardiovascular physiology, and immunity, thereby adapting to cope with the perceived stressors. The developmental trajectory of the stress-axis is influenced by a number of factors, including the gut microbiome, which is the community of microbes that colonizes the gastrointestinal tract immediately following birth. The gut microbiome communicates with the brain through the production of metabolites and microbially derived signals, which are essential to human stress response network development. Ecological perturbations to the gut microbiome during early life may result in the alteration of signals implicated in developmental programming during this critical window, predisposing individuals to numerous diseases later in life. The vulnerability of stress response networks to maladaptive development has been exemplified through animal models determining a causal role for gut microbial ecosystems in HPA axis activity, stress reactivity, and brain development. In this review, we explore the evolutionary significance of the stress-axis system for health maintenance and review recent findings that connect early-life microbiome disturbances to alterations in the development of stress response networks.
Collapse
Affiliation(s)
- Van A Ortega
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,International Microbiome Centre, Cumming School of Medicine, Health Sciences Centre, University of Calgary, Calgary, AB, Canada
| | - Emily M Mercer
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,International Microbiome Centre, Cumming School of Medicine, Health Sciences Centre, University of Calgary, Calgary, AB, Canada.,Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| | - Gerald F Giesbrecht
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada.,Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada.,Owerko Centre, The Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| | - Marie-Claire Arrieta
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,International Microbiome Centre, Cumming School of Medicine, Health Sciences Centre, University of Calgary, Calgary, AB, Canada.,Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
42
|
Gonçalves de Andrade E, Šimončičová E, Carrier M, Vecchiarelli HA, Robert MÈ, Tremblay MÈ. Microglia Fighting for Neurological and Mental Health: On the Central Nervous System Frontline of COVID-19 Pandemic. Front Cell Neurosci 2021; 15:647378. [PMID: 33737867 PMCID: PMC7961561 DOI: 10.3389/fncel.2021.647378] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is marked by cardio-respiratory alterations, with increasing reports also indicating neurological and psychiatric symptoms in infected individuals. During COVID-19 pathology, the central nervous system (CNS) is possibly affected by direct severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) invasion, exaggerated systemic inflammatory responses, or hypoxia. Psychosocial stress imposed by the pandemic further affects the CNS of COVID-19 patients, but also the non-infected population, potentially contributing to the emergence or exacerbation of various neurological or mental health disorders. Microglia are central players of the CNS homeostasis maintenance and inflammatory response that exert their crucial functions in coordination with other CNS cells. During homeostatic challenges to the brain parenchyma, microglia modify their density, morphology, and molecular signature, resulting in the adjustment of their functions. In this review, we discuss how microglia may be involved in the neuroprotective and neurotoxic responses against CNS insults deriving from COVID-19. We examine how these responses may explain, at least partially, the neurological and psychiatric manifestations reported in COVID-19 patients and the general population. Furthermore, we consider how microglia might contribute to increased CNS vulnerability in certain groups, such as aged individuals and people with pre-existing conditions.
Collapse
Affiliation(s)
| | - Eva Šimončičová
- Division of Medical Science, University of Victoria, Victoria, BC, Canada
| | - Micaël Carrier
- Division of Medical Science, University of Victoria, Victoria, BC, Canada.,Axe Neurosciences, Centre de Recherche du CHU de Québec, Université de Laval, Québec City, QC, Canada
| | | | - Marie-Ève Robert
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université de Laval, Québec City, QC, Canada
| | - Marie-Ève Tremblay
- Division of Medical Science, University of Victoria, Victoria, BC, Canada.,Axe Neurosciences, Centre de Recherche du CHU de Québec, Université de Laval, Québec City, QC, Canada.,Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada.,Department of Molecular Medicine, Université de Laval, Québec City, QC, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
43
|
Picard K, St-Pierre MK, Vecchiarelli HA, Bordeleau M, Tremblay MÈ. Neuroendocrine, neuroinflammatory and pathological outcomes of chronic stress: A story of microglial remodeling. Neurochem Int 2021; 145:104987. [PMID: 33587954 DOI: 10.1016/j.neuint.2021.104987] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
Microglia, the resident macrophage cells of the central nervous system (CNS), are involved in a myriad of processes required to maintain CNS homeostasis. These cells are dynamic and can adapt their phenotype and functions to the physiological needs of the organism. Microglia rapidly respond to changes occurring in their microenvironment, such as the ones taking place during stress. While stress can be beneficial for the organism to adapt to a situation, it can become highly detrimental when it turns chronic. Microglial response to prolonged stress may lead to an alteration of their beneficial physiological functions, becoming either maladaptive or pro-inflammatory. In this review, we aim to summarize the effects of chronic stress exerted on microglia through the neuroendocrine system and inflammation at adulthood. We also discuss how these effects of chronic stress could contribute to microglial involvement in neuropsychiatric and sleep disorders, as well as neurodegenerative diseases.
Collapse
Affiliation(s)
- Katherine Picard
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Marie-Kim St-Pierre
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | | | - Maude Bordeleau
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada; Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada; Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
44
|
Guo ZP, Sörös P, Zhang ZQ, Yang MH, Liao D, Liu CH. Use of Transcutaneous Auricular Vagus Nerve Stimulation as an Adjuvant Therapy for the Depressive Symptoms of COVID-19: A Literature Review. Front Psychiatry 2021; 12:765106. [PMID: 34975571 PMCID: PMC8714783 DOI: 10.3389/fpsyt.2021.765106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/12/2021] [Indexed: 12/17/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) comprises more than just severe acute respiratory syndrome. It also interacts with the cardiovascular, nervous, renal, and immune systems at multiple levels, increasing morbidity in patients with underlying cardiometabolic conditions and inducing myocardial injury or dysfunction. Transcutaneous auricular vagus nerve stimulation (taVNS), which is derived from auricular acupuncture, has become a popular therapy that is increasingly accessible to the general public in modern China. Here, we begin by outlining the historical background of taVNS, and then describe important links between dysfunction in proinflammatory cytokine release and related multiorgan damage in COVID-19. Furthermore, we emphasize the important relationships between proinflammatory cytokines and depressive symptoms. Finally, we discuss how taVNS improves immune function via the cholinergic anti-inflammatory pathway and modulates brain circuits via the hypothalamic-pituitary-adrenal axis, making taVNS an important treatment for depressive symptoms on post-COVID-19 sequelae. Our review suggests that the link between anti-inflammatory processes and brain circuits could be a potential target for treating COVID-19-related multiorgan damage, as well as depressive symptoms using taVNS.
Collapse
Affiliation(s)
- Zhi-Peng Guo
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Peter Sörös
- Research Center Neurosensory Science, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Zhu-Qing Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Ming-Hao Yang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Dan Liao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Chun-Hong Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing Institute of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
45
|
Ferentinos P, Maratou E, Antoniou A, Serretti A, Smyrnis N, Moutsatsou P. Interleukin-1 Beta in Peripheral Blood Mononuclear Cell Lysates as a Longitudinal Biomarker of Response to Antidepressants: A Pilot Study. Front Psychiatry 2021; 12:801738. [PMID: 35002816 PMCID: PMC8738167 DOI: 10.3389/fpsyt.2021.801738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/25/2021] [Indexed: 11/22/2022] Open
Abstract
Interleukin-1 beta (IL1β) is primarily produced by monocytes in the periphery and the brain. Yet, IL1β protein levels have to date been investigated in major depressive disorder (MDD) and antidepressant response using either plasma or serum assays although with contradictory results, while mononuclear cell assays are lacking despite their extensive use in other contexts. In this pilot study, we comparatively assessed IL1β in mononuclear lysates and plasma in depressed MDD patients over treatment and healthy controls (HC). We recruited 31 consecutive adult MDD inpatients and 25 HC matched on age, sex, and BMI. Twenty-six patients completed an 8-week follow-up under treatment. IL1β was measured in both lysates and plasma in patients at baseline (T0) and at study end (T1) as well as in HC. We calculated ΔIL1β(%) for both lysates and plasma as IL1β percent changes from T0 to T1. Seventeen patients (65.4% of completers) were responders at T1 and had lower baseline BMI than non-responders (p = 0.029). Baseline IL1β from either plasma or lysates could not efficiently discriminate between depressed patients and HC, or between responders and non-responders. However, the two response groups displayed contrasting IL1β trajectories in lysates but not in plasma assays (response group by time interactions, p = 0.005 and 0.96, respectively). ΔIL1β(%) in lysates predicted response (p = 0.025, AUC = 0.81; accuracy = 84.6%) outperforming ΔIL1β(%) in plasma (p = 0.77, AUC=0.52) and was robust to adjusting for BMI. In conclusion, ΔIL1β(%) in mononuclear lysates may be a longitudinal biomarker of antidepressant response, potentially helpful in avoiding untimely switching of antidepressants, thereby warranting further investigation.
Collapse
Affiliation(s)
- Panagiotis Ferentinos
- 2nd Department of Psychiatry, "Attikon" University General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Eirini Maratou
- Department of Clinical Biochemistry, "Attikon" University General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasia Antoniou
- 2nd Department of Psychiatry, "Attikon" University General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Alessandro Serretti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Nikolaos Smyrnis
- 2nd Department of Psychiatry, "Attikon" University General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Paraskevi Moutsatsou
- Department of Clinical Biochemistry, "Attikon" University General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
46
|
Rombaut B, Kessels S, Schepers M, Tiane A, Paes D, Solomina Y, Piccart E, Hove DVD, Brône B, Prickaerts J, Vanmierlo T. PDE inhibition in distinct cell types to reclaim the balance of synaptic plasticity. Theranostics 2021; 11:2080-2097. [PMID: 33500712 PMCID: PMC7797685 DOI: 10.7150/thno.50701] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
Synapses are the functional units of the brain. They form specific contact points that drive neuronal communication and are highly plastic in their strength, density, and shape. A carefully orchestrated balance between synaptogenesis and synaptic pruning, i.e., the elimination of weak or redundant synapses, ensures adequate synaptic density. An imbalance between these two processes lies at the basis of multiple neuropathologies. Recent evidence has highlighted the importance of glia-neuron interactions in the synaptic unit, emphasized by glial phagocytosis of synapses and local excretion of inflammatory mediators. These findings warrant a closer look into the molecular basis of cell-signaling pathways in the different brain cells that are related to synaptic plasticity. In neurons, intracellular second messengers, such as cyclic guanosine or adenosine monophosphate (cGMP and cAMP, respectively), are known mediators of synaptic homeostasis and plasticity. Increased levels of these second messengers in glial cells slow down inflammation and neurodegenerative processes. These multi-faceted effects provide the opportunity to counteract excessive synapse loss by targeting cGMP and cAMP pathways in multiple cell types. Phosphodiesterases (PDEs) are specialized degraders of these second messengers, rendering them attractive targets to combat the detrimental effects of neurological disorders. Cellular and subcellular compartmentalization of the specific isoforms of PDEs leads to divergent downstream effects for these enzymes in the various central nervous system resident cell types. This review provides a detailed overview on the role of PDEs and their inhibition in the context of glia-neuron interactions in different neuropathologies characterized by synapse loss. In doing so, it provides a framework to support future research towards finding combinational therapy for specific neuropathologies.
Collapse
|
47
|
Blevins LK, Crawford RB, Azzam DJ, Guilarte TR, Kaminski NE. Surface translocator protein 18 kDa (TSPO) localization on immune cells upon stimulation with LPS and in ART-treated HIV + subjects. J Leukoc Biol 2020; 110:123-140. [PMID: 33205494 DOI: 10.1002/jlb.3a1219-729rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 11/09/2022] Open
Abstract
Translocator protein 18 kDa (TSPO) is a well-known outer mitochondrial membrane protein and it is widely used as a biomarker of neuroinflammation and brain injury. Although it is thought that TSPO plays key roles in a multitude of host cell functions, including steroid biosynthesis, apoptosis, generation of reactive oxygen species, and proliferation, some of these functions have recently been questioned. Here, we report the unexpected finding that circulating immune cells differentially express basal levels of TSPO on their cell surface, with a high percentage of monocytes and neutrophils expressing cell surface TSPO. In vitro stimulation of monocytes with LPS significantly increases the frequency of cells with surface TSPO expression in the absence of altered gene expression. Importantly, the LPS increase in TSPO cell surface expression in monocytes appears to be selective for LPS because two other distinct monocyte activators failed to increase the frequency of cells with surface TSPO. Finally, when we quantified immune cell TSPO surface expression in antiretroviral therapy-treated HIV+ donors, a chronic inflammatory disease, we found significant increases in the frequency of TSPO surface localization, which could be pharmacologically suppressed with ∆9 -tetrahydrocannabinol. These findings suggest that cell surface TSPO in circulating leukocytes could serve as a peripheral blood-based biomarker of inflammation.
Collapse
Affiliation(s)
- Lance K Blevins
- Department of Pharmacology and Toxicology, Center for Research on Ingredient Safety, Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Robert B Crawford
- Department of Pharmacology and Toxicology, Center for Research on Ingredient Safety, Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Diana J Azzam
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, Florida, USA
| | - Tomás R Guilarte
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, Florida, USA
| | - Norbert E Kaminski
- Department of Pharmacology and Toxicology, Center for Research on Ingredient Safety, Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
48
|
Figueroa-Hall LK, Paulus MP, Savitz J. Toll-Like Receptor Signaling in Depression. Psychoneuroendocrinology 2020; 121:104843. [PMID: 32911436 PMCID: PMC7883590 DOI: 10.1016/j.psyneuen.2020.104843] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/09/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022]
Abstract
Depression is one of the most prevalent, disabling, and costly mental illnesses currently affecting over 300 million people worldwide. A subset of depressed patients display inflammation as indicated by increased levels of proinflammatory mediators in the blood and cerebrospinal fluid. Longitudinal and experimental studies suggest that this inflammatory profile may causally contribute to the initiation, maintenance, or recurrence of depressive episodes in the context of major depressive disorder (MDD). While the mechanistic pathways that mediate these depressogenic effects have not yet been fully elucidated, toll-like receptor (TLR) signaling is one potential common inflammatory pathway. In this review, we focus on the role that inflammation plays in depression, TLR signaling and its plasticity as a candidate pathway, its regulation by micro ribonucleic acids (miRNAs), and their potential as diagnostic biomarkers for identification of inflammatory subtypes of depression. Pre-clinical and clinical studies have demonstrated that TLR expression and TLR signaling regulators are associated with MDD. Further, TLR expression and signaling is in-turn, regulated in part by miRNAs and some TLR-responsive miRNAs indirectly modulate pathways that are implicated in MDD pathophysiology. These data suggest an intersection between TLR signaling regulation and MDD-linked pathways. While these studies suggest that miRNAs play a role in the pathophysiology of MDD via their regulatory effects on TLR pathways, the utility of miRNAs as biomarkers and potential treatment targets remains to be determined. Developing new and innovative techniques or adapting established immunological approaches to mental health, should be at the forefront in moving the field forward, especially in terms of categorization of inflammatory subtypes in MDD.
Collapse
Affiliation(s)
| | - Martin P Paulus
- Laureate Institute for Brain Research, 6655 S. Yale Ave, Tulsa, OK, 74136, United States; Oxley College of Health Sciences, 1215 S. Boulder Ave W., The University of Tulsa, Tulsa, OK, 74199, United States.
| | - Jonathan Savitz
- Laureate Institute for Brain Research, 6655 S. Yale Ave, Tulsa, OK, 74136, United States; Oxley College of Health Sciences, 1215 S. Boulder Ave W., The University of Tulsa, Tulsa, OK, 74199, United States.
| |
Collapse
|
49
|
Post-inflammatory behavioural despair in male mice is associated with reduced cortical glutamate-glutamine ratios, and circulating lipid and energy metabolites. Sci Rep 2020; 10:16857. [PMID: 33033375 PMCID: PMC7545201 DOI: 10.1038/s41598-020-74008-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022] Open
Abstract
Post-inflammatory behaviours in rodents are widely used to model human depression and to test the efficacy of novel anti-depressants. Mice injected with lipopolysaccharide (LPS) display a depressive-like phenotype twenty-four hours after endotoxin administration. Despite the widespread use of this model, the mechanisms that underlie the persistent behavioural changes after the transient peripheral inflammatory response remain elusive. The study of the metabolome, the collection of all the small molecule metabolites in a sample, combined with multivariate statistical techniques provides a way of studying biochemical pathways influenced by an LPS challenge. Adult male CD-1 mice received an intraperitoneal injection of either LPS (0.83 mg/kg) or saline, and were assessed for depressive-like behaviour 24 h later. In a separate mouse cohort, pro-inflammatory cytokine gene expression and 1H nuclear magnetic resonance (NMR) metabolomics measurements were made in brain tissue and blood. Statistical analyses included Independent Sample t-tests for gene expression data, and supervised multi-variate analysis using orthogonal partial least squares discriminant analysis for metabolomics. Both plasma and brain metabolites in male mice were altered following a single peripheral LPS challenge that led to depressive-like behaviour in the forced swim test. The plasma metabolites altered by LPS are involved in energy metabolism, including lipoproteins, glucose, creatine, and isoleucine. In the brain, glutamate, serine, and N-acetylaspartate (NAA) were reduced after LPS, whereas glutamine was increased. Serine-modulated glutamatergic signalling and changes in bioenergetics may mediate the behavioural phenotype induced by LPS. In light of other data supporting a central imbalance of glutamate-glutamine cycling in depression, our results suggest that aberrant central glutaminergic signalling may underpin the depressive-like behaviours that result from both inflammation and non-immune pathophysiology. Normalising glutaminergic signalling, rather than seeking to increase serotonergic signalling, might prove to be a more coherent approach to the development of new treatments for mood disorder.
Collapse
|
50
|
Bollinger JL, Horchar MJ, Wohleb ES. Diazepam limits microglia-mediated neuronal remodeling in the prefrontal cortex and associated behavioral consequences following chronic unpredictable stress. Neuropsychopharmacology 2020; 45:1766-1776. [PMID: 32454511 PMCID: PMC7419496 DOI: 10.1038/s41386-020-0720-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/27/2020] [Accepted: 05/14/2020] [Indexed: 11/09/2022]
Abstract
Chronic stress induces neuronal atrophy and synaptic loss in the medial prefrontal cortex (PFC), and this leads to behavioral and cognitive impairments. Our recent findings indicate that microglia contribute to structural remodeling of neurons via increased colony-stimulating factor (CSF)-1 in the medial PFC. Other work shows that chronic stress induces aberrant neuronal activity in the medial PFC, and that neuronal hyperactivity increases CSF1 signaling and alters microglia function. Thus, the present studies were designed to examine the role of neuronal activity in stress-induced CSF1 signaling and microglia-mediated neuronal remodeling in the medial PFC. Additional analyses probed stress effects on the dorsal hippocampus (HPC), basolateral amygdala (BLA), and somatosensory cortex (SSCTX). Mice were exposed to chronic unpredictable stress (CUS) or handled intermittently as controls, and received daily injection of vehicle or diazepam (1 mg/kg). As anticipated, diazepam attenuated CUS-induced behavioral despair and cognitive impairments. Further studies showed that diazepam normalized Csf1 and C3 mRNA in the PFC, and prevented increases in Csf1r and Cd11b in frontal cortex microglia following CUS. Stress had no effect on neuroimmune gene expression in the HPC. Confocal imaging in Thy1-GFP(M) mice demonstrated that diazepam limited microglial engulfment of neuronal elements and blocked CUS-induced dendritic spine loss in the medial PFC. Altogether, these findings indicate that modulation of chronic stress-induced neuronal activity limits microglia-mediated neuronal remodeling in the medial PFC, and subsequent behavioral and cognitive consequences.
Collapse
Affiliation(s)
- Justin L Bollinger
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Matthew J Horchar
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Eric S Wohleb
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|