1
|
Liyanage W, Kale N, Kannan S, Kannan RM. Journey from lab to clinic: Design, preclinical, and clinical development of systemic, targeted dendrimer-N-acetylcysteine (D-NAC) nanomedicines. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 100:119-155. [PMID: 39034050 DOI: 10.1016/bs.apha.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Drug discovery is challenging task with numerous obstacles in translating drug candidates into clinical products. Dendrimers are highly adaptable nanostructured polymers with significant potential to improve the chances of clinical success for drugs. Yet, dendrimer-based drug products are still in their infancy. However, Hydroxyl polyamidoamine (PAMAM) dendrimers showed significant promise in drug discovery efforts, owning their remarkable potential to selectively target and deliver drugs specifically to activated microglia and astrocytes at the site of brain injury in several preclinical models. After a decade's worth of academic research and pre-clinical efforts, the hydroxyl PAMAM dendrimer-N-acetyl cysteine conjugate (OP-101) nanomedicine has made a significant advancement in the field of nanomedicine and targeted delivery. The OP-101 conjugate, primarily developed and validated in academic labs, has now entered clinical trials as a potential treatment for hyperinflammation in hospitalized adults with severe COVID-19 through Ashvattha Therapeutics. This chapter, we delve into the journey of the hydroxyl PAMAM dendrimer-N-acetylcysteine (NAC) OP-101 formulation from the laboratory to the clinic. It will specifically focus on the design, synthesis, preclinical, and clinical development of OP-101, highlighting the potential it holds for the future of medicine and the positive Phase 2a results for treating severe COVID-19.
Collapse
Affiliation(s)
- Wathsala Liyanage
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Narendra Kale
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sujatha Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Hugo W. Moser Research Institute, Kennedy Krieger, Inc., Baltimore, MD, United States; Kennedy Krieger Institute, Johns Hopkins University for Cerebral Palsy Research Excellence, Baltimore, MD, United States
| | - Rangaramanujam M Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Hugo W. Moser Research Institute, Kennedy Krieger, Inc., Baltimore, MD, United States; Kennedy Krieger Institute, Johns Hopkins University for Cerebral Palsy Research Excellence, Baltimore, MD, United States; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
2
|
Cui Y, Zhu Q, Hao H, Flaker GC, Liu Z. N-Acetylcysteine and Atherosclerosis: Promises and Challenges. Antioxidants (Basel) 2023; 12:2073. [PMID: 38136193 PMCID: PMC10741030 DOI: 10.3390/antiox12122073] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/21/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Atherosclerosis remains a leading cause of cardiovascular diseases. Although the mechanism for atherosclerosis is complex and has not been fully understood, inflammation and oxidative stress play a critical role in the development and progression of atherosclerosis. N-acetylcysteine (NAC) has been used as a mucolytic agent and an antidote for acetaminophen overdose with a well-established safety profile. NAC has antioxidant and anti-inflammatory effects through multiple mechanisms, including an increase in the intracellular glutathione level and an attenuation of the nuclear factor kappa-B mediated production of inflammatory cytokines like tumor necrosis factor-alpha and interleukins. Numerous animal studies have demonstrated that NAC significantly decreases the development and progression of atherosclerosis. However, the data on the outcomes of clinical studies in patients with atherosclerosis have been limited and inconsistent. The purpose of this review is to summarize the data on the effect of NAC on atherosclerosis from both pre-clinical and clinical studies and discuss the potential mechanisms of action of NAC on atherosclerosis, as well as challenges in the field.
Collapse
Affiliation(s)
- Yuqi Cui
- Department of Geriatrics, Donald W. Reynolds Institute on Aging, University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, AR 72205, USA;
| | - Qiang Zhu
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Hong Hao
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Gregory C. Flaker
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Zhenguo Liu
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
3
|
Bauzá-Thorbrügge M, Peris E, Zamani S, Micallef P, Paul A, Bartesaghi S, Benrick A, Wernstedt Asterholm I. NRF2 is essential for adaptative browning of white adipocytes. Redox Biol 2023; 68:102951. [PMID: 37931470 PMCID: PMC10652207 DOI: 10.1016/j.redox.2023.102951] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023] Open
Abstract
White adipose tissue browning, defined by accelerated mitochondrial metabolism and biogenesis, is considered a promising mean to treat or prevent obesity-associated metabolic disturbances. We hypothesize that redox stress acutely leads to increased production of reactive oxygen species (ROS), which activate electrophile sensor nuclear factor erythroid 2-Related Factor 2 (NRF2) that over time results in an adaptive adipose tissue browning process. To test this, we have exploited adipocyte-specific NRF2 knockout mice and cultured adipocytes and analyzed time- and dose-dependent effect of NAC and lactate treatment on antioxidant expression and browning-like processes. We found that short-term antioxidant treatment with N-acetylcysteine (NAC) induced reductive stress as evident from increased intracellular NADH levels, increased ROS-production, reduced oxygen consumption rate (OCR), and increased NRF2 levels in white adipocytes. In contrast, and in line with our hypothesis, longer-term NAC treatment led to a NRF2-dependent browning response. Lactate treatment elicited similar effects as NAC, and mechanistically, these NRF2-dependent adipocyte browning responses in vitro were mediated by increased heme oxygenase-1 (HMOX1) activity. Moreover, this NRF2-HMOX1 axis was also important for β3-adrenergic receptor activation-induced adipose tissue browning in vivo. In conclusion, our findings show that administration of exogenous antioxidants can affect biological function not solely through ROS neutralization, but also through reductive stress. We also demonstrate that NRF2 is essential for white adipose tissue browning processes.
Collapse
Affiliation(s)
- Marco Bauzá-Thorbrügge
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Eduard Peris
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Shabnam Zamani
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Peter Micallef
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Alexandra Paul
- Department of Biology and Biological Engineering, Division of Chemical Biology, Chalmers University of Technology, Gothenburg, Sweden; The Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Stefano Bartesaghi
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anna Benrick
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden; School of Health Sciences, University of Skövde, Skövde, Sweden
| | - Ingrid Wernstedt Asterholm
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
4
|
Montaldo L, Gallo A, Rocha G, Csernoch C, Marzi MD, Guerra LN. Anthocyanin-enriched extract from Ribes nigrum inhibits triglyceride and cholesterol accumulation in adipocytes. Ther Deliv 2023; 14:675-687. [PMID: 38018449 DOI: 10.4155/tde-2023-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
Aim: Obesity is a chronic pathology of epidemic proportions. Mature adipocytes from a 3T3-L1 cell line were used as in vitro obesity model to test different bioactive compounds. We aim to evaluate cassis (Ribes nigrum) extract antioxidant activity and its antiadipogenic effect on mature adipocytes. Results: We produced an extract by using enzyme that combines cellulase and pectinase; we obtained high yield of the bioactive compound anthocyanin. Extract showed high antioxidant capacity. We conducted in vitro assays by adding the extract to adipocytes culture medium. Extract reduced intracellular levels of triglyceride by 62% and cholesterol by 32%. Conclusion: Enzymatic extract's high antioxidant activity was likely attributable to its high concentration of anthocyanin. This extract inhibits lipid accumulation in adipocytes.
Collapse
Affiliation(s)
- Laura Montaldo
- Universidad Nacional de Luján, Departamento de Ciencias Básicas, Av Constitución y Ruta 5, Luján, Buenos Aires, 6700, Argentina
| | - Alicia Gallo
- Universidad Nacional de Luján, Departamento de Tecnología, Av Constitución y Ruta 5, Luján, Buenos Aires, 6700, Argentina
| | - Gabriela Rocha
- Universidad Nacional de Luján, Departamento de Ciencias Básicas, Av Constitución y Ruta 5, Luján, Buenos Aires, 6700, Argentina
- CONICET-INEDES, Grupo de Investigación Básica y Clínica en Inmunología y Bioactivos (GIBAIB), Av Constitución y Ruta 5, Luján, Buenos Aires, 6700, Argentina
| | - Cecilia Csernoch
- Universidad Nacional de Luján, Departamento de Tecnología, Av Constitución y Ruta 5, Luján, Buenos Aires, 6700, Argentina
| | - Mauricio De Marzi
- Universidad Nacional de Luján, Departamento de Ciencias Básicas, Av Constitución y Ruta 5, Luján, Buenos Aires, 6700, Argentina
- CONICET-INEDES, Grupo de Investigación Básica y Clínica en Inmunología y Bioactivos (GIBAIB), Av Constitución y Ruta 5, Luján, Buenos Aires, 6700, Argentina
| | - Liliana N Guerra
- Universidad Nacional de Luján, Departamento de Ciencias Básicas, Av Constitución y Ruta 5, Luján, Buenos Aires, 6700, Argentina
- CONICET-INEDES, Grupo de Investigación Básica y Clínica en Inmunología y Bioactivos (GIBAIB), Av Constitución y Ruta 5, Luján, Buenos Aires, 6700, Argentina
| |
Collapse
|
5
|
Wang X, Liu B, Liu Y, Wang Y, Wang Z, Song Y, Xu J, Xue C. Antioxidants ameliorate oxidative stress in alcoholic liver injury by modulating lipid metabolism and phospholipid homeostasis. Lipids 2023; 58:229-240. [PMID: 37547958 DOI: 10.1002/lipd.12377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/02/2023] [Accepted: 07/13/2023] [Indexed: 08/08/2023]
Abstract
Alcoholic liver disease (ALD) is a significant risk factor in the global disease burden. The antioxidants vitamin C (Vc) and N-acetyl cysteine (NAC) have shown hepatoprotective effects in preventing and treating ALD. However, the correlation between the improved effect of antioxidants and lipid metabolism is still unclear. In this study, AML12 cells and C57BL/6 mice stimulated with alcohol were used to investigate the protective effects and potential mechanisms of two antioxidants (Vc and NAC) on alcoholic liver injury. Results showed that Vc and NAC attenuated intracellular lipid accumulation and oxidative damage induced by excessive alcohol exposure in hepatic AML12 cells. The in vivo results indicated that antioxidants ameliorated alcohol-induced changes in histopathology, reducing the levels of alcohol metabolizing factors and aspartate aminotransferase (AST), alanine aminotransferase (ALT), triglyceride (TG), and total cholesterol (TC) contents, which demonstrated that antioxidants effectively mitigated liver injury in ALD mice. Further studies showed that antioxidants reversed the disruption of fatty acid (FA) synthesis and lipid transport induced by alcohol exposure, and restored phospholipid levels. Especially, Vc and NAC increased the endogenous antioxidant plasmenyl phosphatidylethanolamine (PlsEtn). Additionally, antioxidants ameliorated the alcohol-impaired mitochondrial function and inhibited excessive oxidative stress. In conclusion, antioxidants can regulate lipid metabolism and phospholipid homeostasis, which in turn inhibit oxidative stress and thereby exert protective effects against ALD.
Collapse
Affiliation(s)
- Xiaoxu Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, China
| | - Bin Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
| | - Yanjun Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
| | - Yuliu Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
| | - Zhigao Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
| | - Yu Song
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, China
| |
Collapse
|
6
|
Zhang Q, Liu W, Li Q, Zeng Y, Wu M, Wu T, Guo S, Wang L, Zhao D, Yi D, Hou Y. Protective effects and mechanisms of N-acetylcysteine on indomethacin-induced intestinal injury in a porcine model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115173. [PMID: 37356397 DOI: 10.1016/j.ecoenv.2023.115173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
This study aimed to investigate the effect of N-acetylcysteine (NAC) on indomethacin (IDMT)-induced intestinal injury in a piglet model and explore the underlying molecular mechanisms. Piglets were randomly divided into 3 treatment groups: (1) control group; (2) IDMT group; (3) NAC+IDMT group. The results showed that NAC administration significantly increased the average daily gain of piglets, attenuated the intestine hyperemia, and restored normal jejunal morphology. Further studies indicated that NAC administration significantly increased plasma citrulline concentration and jejunal villin expression, but decreased the content of proinflammatory cytokines in plasma and jejunum of IDMT-stimulated piglets. NAC administration selectively decreased the proportion of eosinophils but not neutrophils in plasma. Furthermore, NAC administration significantly increased the activities of superoxide dismutase and catalase in plasma but decreased the concentrations of hydrogen peroxide (plasma) and malondialdehyde (plasma and jejunum), as well as the activity of myeloperoxidase (jejunum) when comparing NAC+IDMT group with IDMT group. Gene Ontology analysis showed that the significantly enriched molecular function term was "ubiquitin-like protein ligase binding" for NAC+IDMT versus IDMT differentially regulated genes. In the biological process category, differentially regulated genes of NAC+IDMT versus IDMT were mainly enriched in immune-related terms. The major enrichments for differentially regulated proteins (DRPs) of NAC+IDMT versus IDMT were terms involved in lipid metabolism and immune response. KEGG pathway enrichment analysis showed that "arginine biosynthesis" was a significant enrichment term for the DRPs of NAC+IDMT versus IDMT. Further studies demonstrated that NAC administration up-regulated argininosuccinate synthase 1 mRNA expression and down-regulated arginase mRNA expression in the jejunum of IDMT-stimulated piglets. Moreover, the content of nitric oxide was restored to a normal level with the reduction of nitric oxide synthase activity. NAC administration ameliorated intestinal injury in IDMT-challenged piglets by enhancing antioxidant and anti-inflammatory functions and modulating arginine metabolism in the small intestine.
Collapse
Affiliation(s)
- Qian Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wenkai Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China; Huanggang Academy of Agricultural Sciences, Huanggang 438000, China
| | - Qian Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yitong Zeng
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Mengjun Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Tao Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shuangshuang Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lei Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Di Zhao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Dan Yi
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Yongqing Hou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
7
|
Higa Y, Hiasa M, Tenshin H, Nakaue E, Tanaka M, Kim S, Nakagawa M, Shimizu S, Tanimoto K, Teramachi J, Harada T, Oda A, Oura M, Sogabe K, Hara T, Sumitani R, Maruhashi T, Yamagami H, Endo I, Matsumoto T, Tanaka E, Abe M. The Xanthine Oxidase Inhibitor Febuxostat Suppresses Adipogenesis and Activates Nrf2. Antioxidants (Basel) 2023; 12:antiox12010133. [PMID: 36670994 PMCID: PMC9854541 DOI: 10.3390/antiox12010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Xanthine oxidoreductase (XOR) is a rate-limiting enzyme in purine catabolism that acts as a novel regulator of adipogenesis. In pathological states, xanthine oxidoreductase activity increases to produce excess reactive oxygen species (ROS). The nuclear factor erythroid 2-related factor 2 (Nrf2) is a critical inducer of antioxidants, which is bound and repressed by a kelch-like ECH-associated protein 1 (Keap1) in the cytoplasm. The Keap1-Nrf2 axis appears to be a major mechanism for robust inducible antioxidant defenses. Here, we demonstrate that febuxostat, a xanthine oxidase inhibitor, alleviates the increase in adipose tissue mass in obese mouse models with a high-fat diet or ovariectomy. Febuxostat disrupts in vitro adipocytic differentiation in adipogenic media. Adipocytes appeared at day 7 in absence or presence of febuxostat were 160.8 ± 21.2 vs. 52.5 ± 12.7 (p < 0.01) in 3T3−L1 cells, and 126.0 ± 18.7 vs. 55.3 ± 13.4 (p < 0.01) in 10T1/2 cells, respectively. Adipocyte differentiation was further enhanced by the addition of hydrogen peroxide, which was also suppressed by febuxostat. Interestingly, febuxostat, but not allopurinol (another xanthine oxidase inhibitor), rapidly induced the nuclear translocation of Nrf2 and facilitated the degradation of Keap1, similar to the electrophilic Nrf2 activator omaveloxolone. These results suggest that febuxostat alleviates adipogenesis under oxidative conditions, at least in part by suppressing ROS production and Nrf2 activation. Regulation of adipocytic differentiation by febuxostat is expected to inhibit obesity due to menopause or overeating.
Collapse
Affiliation(s)
- Yoshiki Higa
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
- Department of Hematology, Endocrinology and Metabolism, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Masahiro Hiasa
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
- Correspondence: (M.H.); (M.A.); Tel.: +81-88-633-7357 (M.H.); +81-88-633-7120 (M.A.); Fax: +81-88-633-9139 (M.H.); +81-88-633-7121 (M.A.)
| | - Hirofumi Tenshin
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Emiko Nakaue
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Mariko Tanaka
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Sooha Kim
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Motosumi Nakagawa
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - So Shimizu
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Kotaro Tanimoto
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Jumpei Teramachi
- Department of Oral Function and Anatomy, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8530, Japan
| | - Takeshi Harada
- Department of Hematology, Endocrinology and Metabolism, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Asuka Oda
- Department of Hematology, Endocrinology and Metabolism, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Masahiro Oura
- Department of Hematology, Endocrinology and Metabolism, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Kimiko Sogabe
- Department of Hematology, Endocrinology and Metabolism, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Tomoyo Hara
- Department of Hematology, Endocrinology and Metabolism, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Ryohei Sumitani
- Department of Hematology, Endocrinology and Metabolism, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Tomoko Maruhashi
- Department of Hematology, Endocrinology and Metabolism, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Hiroki Yamagami
- Department of Hematology, Endocrinology and Metabolism, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Itsuro Endo
- Department of Bioregulatory Sciences, Graduate School of Medical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Toshio Matsumoto
- Fujii Memorial Institute of Medical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Eiji Tanaka
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Masahiro Abe
- Department of Hematology, Endocrinology and Metabolism, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
- Correspondence: (M.H.); (M.A.); Tel.: +81-88-633-7357 (M.H.); +81-88-633-7120 (M.A.); Fax: +81-88-633-9139 (M.H.); +81-88-633-7121 (M.A.)
| |
Collapse
|
8
|
Emojevwe V, Nwangwa EK, Naiho AO, Oyovwi MO, Ben-Azu B. Toxicological outcome of phthalate exposure on male fertility: Ameliorative impacts of the co-administration of N-acetylcysteine and zinc sulfate in rats. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2022. [DOI: 10.1186/s43043-022-00096-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Reports have shown that humans are consistently exposed to environmental toxicants such as phthalate (PHT) during their daily activities. This results in reproductive dysfunction and infertility-related issues as already noted in human and experimental animals. We therefore designed this study to investigate fertility outcome in phthalate-exposed male rats treated with N-acetylcysteine (NAC) and zinc sulfate (ZnSO4) with the view of providing a therapeutic alternative to reproductive toxicity caused by phthalate. The research was done in two phases. In phase 1, thirty-five male Wistar rats were randomly assigned to one of five (n = 7) groups given the following treatments for 21 days: group A was given distilled water as a control, while groups B, C, D, and E were given phthalate (750 mg/kg/day). Animals in groups C to E were also given ZnSO4 (0.5 mg/kg/day), N-acetylcysteine (100 mg/kg/day), and ZnSO4 (0.5 mg/kg/day) + N-acetylcysteine (100 mg/kg/day) in addition to phthalate. In phase 2, animals from groups in phase 1 were mated with females for fecundity testing.
Results
The result shows alteration in testicular and epididymis weight and testis/epididymis ratio, semen parameters, sperm capacitation and acrosome reaction, sperm DNA, serum Zn and Mg, testicular mitochondria apoptosis mechanisms (TNF-α and BCL-2), and testicular Ca2+-ATPase as well as fecundity outcome in the phthalate-treated group. However, ZnSO4 and NAC successfully ameliorated the deleterious effects of phthalate on semen parameters, sperm capacitation and acrosome reaction, serum electrolyte and mitochondria apoptosis mechanisms, and testicular electrogenic Ca2+-ATPase in phthalate-induced male rats with a better outcome in the combined therapy. Pregnancy outcome and litter sizes were also higher in the combined therapy when also compared with the phthalate-treated groups.
Conclusion
According to the result, ZnSO4 and NAC increased fertility outcome in phthalate-treated male rats through enhancement of testicular BCL-2, serum electrolyte, testicular Ca2+ATPase pumps, and cytoprotection.
Collapse
|
9
|
Dietary Supplements for Female Infertility: A Critical Review of Their Composition. Nutrients 2021; 13:nu13103552. [PMID: 34684554 PMCID: PMC8541636 DOI: 10.3390/nu13103552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/06/2021] [Indexed: 12/25/2022] Open
Abstract
Infertility is the condition of about 15% of couples that cannot get a conception after one year of unprotected sexual intercourse. In females, the reduced reproductive capacity underlies the most varied causes. Dietary supplements (DS) might be used to improve the pregnancy rate and a wide range of DS are proposed today to support female fertility. Although many authors demonstrated the positive effect of some of these products, the real efficacy of this approach is still debated. In order to evaluate the potential efficacy of DS for female infertility, we analysed the products marketed in Italy, using an original approach. A review of literature was performed to evaluate the effect of nutraceuticals on various female reproductive outcomes and to detect the minimal effective daily dose (mED) able to improve at least one of these. Thereafter, we conceived a formula to classify the expected efficacy of each DS. Each DS was scored and included into three classes of expected efficacy: higher, lower, and none. Ten out of 24 supplements (41.7%) resulted in the higher and 8 (34.3%) in the lower efficacy group, the remaining 6 DS (25.0%) were expected to have no efficacy. DS marketed in Italy are usually blends of many substances that are frequently employed at a negligible dose or without any evidence of efficacy. These findings raise serious doubt about the potential effectiveness of most commercial DS for female infertility.
Collapse
|
10
|
Sommariva E, Stadiotti I, Casella M, Catto V, Dello Russo A, Carbucicchio C, Arnaboldi L, De Metrio S, Milano G, Scopece A, Casaburo M, Andreini D, Mushtaq S, Conte E, Chiesa M, Birchmeier W, Cogliati E, Paolin A, König E, Meraviglia V, De Musso M, Volani C, Cattelan G, Rauhe W, Turnu L, Porro B, Pedrazzini M, Camera M, Corsini A, Tondo C, Rossini A, Pompilio G. Oxidized LDL-dependent pathway as new pathogenic trigger in arrhythmogenic cardiomyopathy. EMBO Mol Med 2021; 13:e14365. [PMID: 34337880 PMCID: PMC8422076 DOI: 10.15252/emmm.202114365] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 12/30/2022] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is hallmarked by ventricular fibro-adipogenic alterations, contributing to cardiac dysfunctions and arrhythmias. Although genetically determined (e.g., PKP2 mutations), ACM phenotypes are highly variable. More data on phenotype modulators, clinical prognosticators, and etiological therapies are awaited. We hypothesized that oxidized low-density lipoprotein (oxLDL)-dependent activation of PPARγ, a recognized effector of ACM adipogenesis, contributes to disease pathogenesis. ACM patients showing high plasma concentration of oxLDL display severe clinical phenotypes in terms of fat infiltration, ventricular dysfunction, and major arrhythmic event risk. In ACM patient-derived cardiac cells, we demonstrated that oxLDLs are major cofactors of adipogenesis. Mechanistically, the increased lipid accumulation is mediated by oxLDL cell internalization through CD36, ultimately resulting in PPARγ upregulation. By boosting oxLDL in a Pkp2 heterozygous knock-out mice through high-fat diet feeding, we confirmed in vivo the oxidized lipid dependency of cardiac adipogenesis and right ventricle systolic impairment, which are counteracted by atorvastatin treatment. The modulatory role of oxidized lipids on ACM adipogenesis, demonstrated at cellular, mouse, and patient levels, represents a novel risk stratification tool and a target for ACM pharmacological strategies.
Collapse
Affiliation(s)
- Elena Sommariva
- Unit of Vascular Biology and Regenerative MedicineCentro Cardiologico Monzino IRCCSMilanItaly
| | - Ilaria Stadiotti
- Unit of Vascular Biology and Regenerative MedicineCentro Cardiologico Monzino IRCCSMilanItaly
| | - Michela Casella
- Heart Rhythm CenterCentro Cardiologico Monzino IRCCSMilanItaly
| | - Valentina Catto
- Heart Rhythm CenterCentro Cardiologico Monzino IRCCSMilanItaly
| | | | | | - Lorenzo Arnaboldi
- Department of Pharmacological and Biomolecular SciencesUniversità degli Studi di MilanoMilanItaly
| | - Simona De Metrio
- Department of Pharmacological and Biomolecular SciencesUniversità degli Studi di MilanoMilanItaly
| | - Giuseppina Milano
- Unit of Vascular Biology and Regenerative MedicineCentro Cardiologico Monzino IRCCSMilanItaly
- Department of Heart and VesselsLaboratory of Cardiovascular ResearchUniversity Hospital of LausanneLausanneSwitzerland
| | - Alessandro Scopece
- Unit of Vascular Biology and Regenerative MedicineCentro Cardiologico Monzino IRCCSMilanItaly
| | - Manuel Casaburo
- Unit of Vascular Biology and Regenerative MedicineCentro Cardiologico Monzino IRCCSMilanItaly
| | - Daniele Andreini
- Unit of Cardiovascular ImagingCentro Cardiologico Monzino IRCCSMilanItaly
- Department of Clinical Sciences and Community HealthUniversità degli Studi di MilanoMilanItaly
| | - Saima Mushtaq
- Unit of Cardiovascular ImagingCentro Cardiologico Monzino IRCCSMilanItaly
| | - Edoardo Conte
- Unit of Cardiovascular ImagingCentro Cardiologico Monzino IRCCSMilanItaly
| | - Mattia Chiesa
- Bioinformatics and Artificial Intelligence facilityCentro Cardiologico Monzino IRCCSMilanItaly
| | | | | | | | - Eva König
- Institute for BiomedicineEurac ResearchAffiliated Institute of the University of LübeckBozenItaly
| | - Viviana Meraviglia
- Institute for BiomedicineEurac ResearchAffiliated Institute of the University of LübeckBozenItaly
| | - Monica De Musso
- Institute for BiomedicineEurac ResearchAffiliated Institute of the University of LübeckBozenItaly
| | - Chiara Volani
- Institute for BiomedicineEurac ResearchAffiliated Institute of the University of LübeckBozenItaly
| | - Giada Cattelan
- Institute for BiomedicineEurac ResearchAffiliated Institute of the University of LübeckBozenItaly
| | | | - Linda Turnu
- Unit of Metabolomics and Cellular Biochemistry of AtherothrombosisCentro Cardiologico Monzino IRCCSMilanItaly
| | - Benedetta Porro
- Unit of Metabolomics and Cellular Biochemistry of AtherothrombosisCentro Cardiologico Monzino IRCCSMilanItaly
| | - Matteo Pedrazzini
- Laboratory of Cardiovascular GeneticsIstituto Auxologico ItalianoIRCCSMilanItaly
| | - Marina Camera
- Department of Pharmacological and Biomolecular SciencesUniversità degli Studi di MilanoMilanItaly
- Unit of Cell and Molecular Biology in Cardiovascular DiseasesCentro Cardiologico Monzino IRCCSMilanItaly
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular SciencesUniversità degli Studi di MilanoMilanItaly
- IRCCS MultiMedicaMilanItaly
| | - Claudio Tondo
- Heart Rhythm CenterCentro Cardiologico Monzino IRCCSMilanItaly
- Department of BiomedicalSurgical and Dental SciencesUniversità degli Studi di MilanoMilanItaly
| | - Alessandra Rossini
- Institute for BiomedicineEurac ResearchAffiliated Institute of the University of LübeckBozenItaly
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative MedicineCentro Cardiologico Monzino IRCCSMilanItaly
- Department of BiomedicalSurgical and Dental SciencesUniversità degli Studi di MilanoMilanItaly
| |
Collapse
|
11
|
Osman KA, Ezz El-Din EM, Ahmed NS, El-Seedy AS. Effect of N-acetylcysteine on attenuation of chlropyrifos and its methyl analogue toxicity in male rats. Toxicology 2021; 461:152904. [PMID: 34425170 DOI: 10.1016/j.tox.2021.152904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 02/01/2023]
Abstract
The attenuating effect of 150 mg/kg of N-acetylcysteine (NAC) against the oral administration of 7.88 and 202.07 mg/kg/day for 14 days of either chlropyrifos-ethyl (CPE-E) or chlropyrifos-methyl (CPF-M), respectively, in male rat was investigated using biochemical and genetic markers. Biomarkers such as acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), paraoxonase (PON), adenosine 5'-triphosphatase (ATP-ase), glutathione-S-transferase (GST), catalase (CAT), glutathione reduced (GSH) in serum showed a significant decline in their levels, while calcium (Ca+2), cytochrome C reduction (CYC-R), lipid peroxidation (LPO), nitric oxide (NO) levels showed a significant increase in serum of treated rats. Regarding the genotoxic parameters, when rats are treated either with CPE-E or CPF-M, liver DNA, chromosomal aberration (CA), and micronucleated polychromatic erythrocytes (MnPCE) significantly increased, while the mitotic index (MI) and polychromatic erythrocytes (PCE)/ normochromatic erythrocytes (NCE) ratio were significantly decreased. However, the administration of NAC following the intoxication of CPF-E or CPF-M attenuated the tested biochemical and genotoxic markers. It can be concluded that NAC can be used to ameliorate the toxicity of certain organophosphorus compounds such as CPF-E and CPF-M.
Collapse
Affiliation(s)
- Khaled A Osman
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, Egypt.
| | - Eslam M Ezz El-Din
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, Egypt
| | - Nabila S Ahmed
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, Egypt
| | - Ayman S El-Seedy
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Faculty of Agriculture, Alexandria University, P.O Box 21545, Alexandria, Egypt
| |
Collapse
|
12
|
Abo El-Magd NF, Barbosa PO, Nick J, Covalero V, Grignetti G, Bermano G. Selenium, as selenite, prevents adipogenesis by modulating selenoproteins gene expression and oxidative stress-related genes. Nutrition 2021; 93:111424. [PMID: 34592570 DOI: 10.1016/j.nut.2021.111424] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 07/02/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The aim of this study was to assess the effect of the micronutrient selenium, as inorganic selenite, on adipocytes differentiation, and to identify underlying molecular mechanisms to advance the understanding of basic cellular mechanisms associated with adipogenesis. METHODS The effect of sodium selenite (Na2SeO3) on cell viability (bromide 3-[4,5-dimethylthiazol-2-yl]-2,5-difeniltetrazol [MTT] assay) in preadipocytes, lipid accumulation (oil red O [ORO] assay) and intracellular reactive oxygen species (ROS, [NBT assay]) in mature adipocytes, as well as explore molecular mechanisms via gene expression analyses (real-time quantitative polymerase chain reaction), before and after differentiation, was investigated using 3T3-L1 murine preadipocytes. RESULTS Selenite (100, 200, and 400 nM) significantly decreased lipid accumulation during differentiation compared with untreated adipocytes (P < 0.05, 0.001, and 0.01, respectively). Preadipocytes exposure (48 h) to selenite caused an increase in glutathione peroxidase 1 (Gpx1) gene expression in a dose-dependent manner. Adipogenesis significantly increased intracellular reactive oxygen species levels (P < 0.05) while decreasing gene expression of antioxidant enzymes (Gpx1: P < 0.05) and significantly increasing gene expression of regulators of lipid catabolism (type II iodothyronine deiodinase [Dio2], P < 0.01) and markers of differentiation (eg, selenium-binding protein 1 [Selenbp1], peroxisome proliferator activated receptor gamma [Pparg], CCAAT/enhancer binding protein alpha [Cebpa], and fatty acid binding protein 4 [Fab4]) compared with preadipocytes (P < 0.01, 0.01, 0.01, and 0.001, respectively). Selenite exposure (200 nM) caused a significant increase in Gpx1, selenoprotein W (Selenow) and selenoprotein P (Selenop) gene expression, in adipocytes compared with untreated ones (P < 0.01, 0.001, and 0.05, respectively) with a significant decrease in heme oxygenase 1 (Ho-1), cyclooxygenase 2 (Cox2), Dio2, and Fabp4 gene expression (P < 0.001, 0.05, 0.05, and 0.01, respectively). CONCLUSIONS Selenium, as selenite, prevented adipogenesis through increasing antioxidant selenoprotein expression, leading to decreased inflammatory markers and, subsequently, to a decrease in differentiation and lipid deposition. These findings, if demonstrated in vivo, could provide valuable data for novel dietary approaches to prevent obesity.
Collapse
Affiliation(s)
- Nada F Abo El-Magd
- Centre for Obesity Research and Education, School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, United Kingdom; Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Priscila O Barbosa
- Centre for Obesity Research and Education, School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | - Julia Nick
- Centre for Obesity Research and Education, School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | - Viviana Covalero
- Centre for Obesity Research and Education, School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | - Giacomo Grignetti
- Centre for Obesity Research and Education, School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | - Giovanna Bermano
- Centre for Obesity Research and Education, School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, United Kingdom.
| |
Collapse
|
13
|
KLF4 Upregulation in Atherosclerotic Thoracic Aortas: Exploring the Protective Effect of Colchicine-based Regimens in a Hyperlipidemic Rabbit Model. Ann Vasc Surg 2021; 78:328-335. [PMID: 34182114 DOI: 10.1016/j.avsg.2021.04.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Inflammatory dysregulation of KLF4 is related to atheromatosis. In the present study, we explored the impact of colchicine-based regimens on the development of thoracic aortic atheromatosis and KLF4 expression. METHODS Twenty-eight New Zealand White rabbits were divided to 4 groups. The control group (n = 6) was fed standard chow, group A (n = 6) was fed chow enriched with 1% w/w cholesterol, group B (n = 8) was fed the same cholesterol-enriched diet plus 2 mg/kg body weight/day colchicine and 250 mg/kg body weight/day fenofibrate, while group C (n = 8) was also fed the same diet plus 2 mg/kg body weight/day colchicine and 15 mg/kg body weight/day N-acetylcysteine. After 7 weeks, all animals were euthanized, and their thoracic aortas were isolated. Atherosclerotic plaque area was estimated with morphometric analysis. KLF4 expression was quantified with quantitative RT-PCR. RESULTS Group A developed significantly more atherosclerosis compared to group B (MD: 13.67, 95% CI: 7.49-19.84) and C (MD: 20.29, 95% CI: 14.12-26.47). Colchicine with N-acetylcysteine resulted in more pronounced reduction in the extent of atherosclerotic plaques compared to colchicine/fibrate (MD: 6.62, 95% CI: 0.90-12.34). Group A exhibited significantly greater KLF4 expression compared to group B (MD: 4.94, 95% CI: 1.11-8.77) and C (MD: 9.94, 95% CI: 6.11-13.77). Combining colchicine with N-acetylcysteine instead of fenofibrate (MD: 5.00, 95% CI: 1.45-8.54) led to a more robust reduction in KLF4 expression. CONCLUSIONS In the present hyperlipidemic animal model, colchicine-based regimens curtailed de novo atherogenesis and KLF4 overexpression in thoracic aortas.
Collapse
|
14
|
Funk MI, Conde MA, Piwien-Pilipuk G, Uranga RM. Novel antiadipogenic effect of menadione in 3T3-L1 cells. Chem Biol Interact 2021; 343:109491. [PMID: 33945810 DOI: 10.1016/j.cbi.2021.109491] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/31/2021] [Accepted: 04/19/2021] [Indexed: 12/30/2022]
Abstract
Inhibition of adipocyte differentiation can be used as a strategy for preventing adipose tissue expansion and, consequently, for obesity management. Since reactive oxygen species (ROS) have emerged as key modulators of adipogenesis, the effect of menadione (a synthetic form of vitamin K known to induce the increase of intracellular ROS) on 3T3-L1 preadipocyte differentiation was studied. Menadione (15 μM) increased ROS and lipid peroxidation, generating mild oxidative stress without affecting cell viability. Menadione drastically inhibited adipogenesis, accompanied by decreased intracellular lipid accumulation and diminished expression of the lipo/adipogenic markers peroxisome proliferator-activated receptor (PPAR)γ, fatty acid synthase (FAS), CCAAT/enhancer-binding protein (C/EBP) α, fatty acid binding protein (FABP) 4, and perilipin. Menadione treatment also increased lipolysis, as indicated by augmented glycerol release and reinforced by the increased expression of hormone-sensitive lipase (HSL). Additionally, menadione increased the inhibitory phosphorylation of acetyl-CoA-carboxylase (ACC), which results in the inhibition of fatty acid synthesis. As a consequence, triglyceride content was decreased. Menadione also inhibited the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Further, treatment with increased concentration of insulin, a potent physiological activator of the PI3K/Akt pathway, rescued the normal level of expression of PPARγ, the master regulator of adipogenesis, and overcame the restraining effect of menadione on the differentiation capacity of 3T3-L1 preadipocytes. Our study reveals novel antiadipogenic action for menadione, which is, at least in part, mediated by the PI3K/Akt pathway signaling and raises its potential as a therapeutic agent in the treatment or prevention of adiposity.
Collapse
Affiliation(s)
- Melania Iara Funk
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional Del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina. Departamento de Biología, Bioquímica y Farmacia, UNS, Bahía Blanca, Argentina
| | - Melisa Ailén Conde
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional Del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina. Departamento de Biología, Bioquímica y Farmacia, UNS, Bahía Blanca, Argentina
| | | | - Romina María Uranga
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional Del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina. Departamento de Biología, Bioquímica y Farmacia, UNS, Bahía Blanca, Argentina.
| |
Collapse
|
15
|
Abstract
Background: The addition of 5 mM N-acetylcysteine (NAC) to 3T3-L1 adipocytes culture inhibits the accumulation of triglycerides (Tg) by 50%, but after 48 h uptake was only 16% of total NAC available. Based on these results, the aim of this study is to increase the NAC cellular uptake by encapsulating it in silica nanoparticles (NPs). Materials & methods: Silica NPs, 20 ± 4.5 nm in size, were developed, with an inner cavity loaded with 5 mM NAC. At 48 h after treatment, there was a dose-dependent cytotoxic effect. We attempted to reduce the cytotoxicity of silica NPs by coating them with bovine serum albumin. Results: While we obtained nontoxic bovine serum albumin coated NPs, their effect on Tg cellular accumulation was also reduced.
Collapse
|
16
|
Owumi SE, Akomolafe AP, Imosemi IO, Odunola OA, Oyelere AK. N-acetyl cysteine co-treatment abates perfluorooctanoic acid-induced reproductive toxicity in male rats. Andrologia 2021; 53:e14037. [PMID: 33724529 DOI: 10.1111/and.14037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/03/2021] [Accepted: 02/19/2021] [Indexed: 12/14/2022] Open
Abstract
Perfluorooctanoic acid is a synthetic perfluoroalkyl-persistent in the environment and toxic to humans. N-acetylcysteine is a pro-drug of both amino acid l-cysteine and glutathione-a non-enzymatic antioxidant. N-acetylcysteine serves as an antidote for paracetamol poisoning and alleviates cellular oxidative and inflammatory stressors. We investigated N-acetylcysteine role against reproductive toxicity in male Wistar rats (weight: 140-220 g; 10 weeks old) posed by perfluorooctanoic acid exposure. Randomised rat cohorts were dosed both with perfluorooctanoic acid (5 mg/kg; p.o) or co-dosed with N-acetylcysteine (25 and 50 mg/kg p.o) for 28 days. Sperm physiognomies, biomarkers of testicular function and reproductive hormones, oxidative stress and inflammation were evaluated. Co-treatment with N-acetylcysteine significantly (p < .05) reversed perfluorooctanoic acid-mediated decreases in reproductive enzyme activities, and adverse effect on testosterone, luteinising and follicle-stimulating hormone concentrations. N-acetylcysteine treatment alone, improved sperm motility, count and viability, and reduced total sperm abnormalities. Co-treatment with N-acetylcysteine mitigated perfluorooctanoic acid-induced alterations in sperm function parameters. N-acetylcysteine abated (p < .05) perfluorooctanoic acid-induced oxidative stress in experimental rats testes and epididymis, and generally improved antioxidant enzyme activities and cellular thiol levels. Furthermore, N-acetylcysteine suppressed inflammatory responses and remedied perfluorooctanoic acid-mediated histological injuries in rat. Cooperatively, N-acetylcysteine enhanced reproductive function in perfluorooctanoic acid dosed rats, by lessening oxidative and nitrative stressors and mitigated inflammatory responses in the examined organ.
Collapse
Affiliation(s)
- Solomon E Owumi
- Change-Lab, CRMB Laboratory, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Ayomide P Akomolafe
- Change-Lab, CRMB Laboratory, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Innocent O Imosemi
- Neuroanatomy Research Laboratories, Department of Anatomy, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Oyeronke A Odunola
- Change-Lab, CRMB Laboratory, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Adegboyega K Oyelere
- School of Biochemistry and Chemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
17
|
Regulation of lymphatic function and injury by nitrosative stress in obese mice. Mol Metab 2020; 42:101081. [PMID: 32941994 PMCID: PMC7536739 DOI: 10.1016/j.molmet.2020.101081] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 09/02/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022] Open
Abstract
Objective Obesity results in lymphatic dysfunction, but the cellular mechanisms that mediate this effect remain largely unknown. Previous studies in obese mice have shown that inducible nitric oxide synthase-expressing (iNOS+) inflammatory cells accumulate around lymphatic vessels. In the current study, we therefore tested the hypothesis that increased expression of iNOS results in nitrosative stress and injury to the lymphatic endothelial cells (LECs). In addition, we tested the hypothesis that lymphatic injury, independent of obesity, can modulate glucose and lipid metabolism. Methods We compared the metabolic changes and lymphatic function of wild-type and iNOS knockout mice fed a normal chow or high-fat diet for 16 weeks. To corroborate our in vivo findings, we analyzed the effects of reactive nitrogen species on isolated LECs. Finally, using a genetically engineered mouse model that allows partial ablation of the lymphatic system, we studied the effects of acute lymphatic injury on glucose and lipid metabolism in lean mice. Results The mesenteric lymphatic vessels of obese wild-type animals were dilated, leaky, and surrounded by iNOS+ inflammatory cells with resulting increased accumulation of reactive nitrogen species when compared with lean wild-type or obese iNOS knockout animals. These changes in obese wild-type mice were associated with systemic glucose and lipid abnormalities, as well as decreased mesenteric LEC expression of lymphatic-specific genes, including vascular endothelial growth factor receptor 3 (VEGFR-3) and antioxidant genes as compared with lean wild-type or obese iNOS knockout animals. In vitro experiments demonstrated that isolated LECs were more sensitive to reactive nitrogen species than blood endothelial cells, and that this sensitivity was ameliorated by antioxidant therapies. Finally, using mice in which the lymphatics were specifically ablated using diphtheria toxin, we found that the interaction between metabolic abnormalities caused by obesity and lymphatic dysfunction is bidirectional. Targeted partial ablation of mesenteric lymphatic channels of lean mice resulted in increased accumulation of iNOS+ inflammatory cells and increased reactive nitrogen species. Lymphatic ablation also caused marked abnormalities in insulin sensitivity, serum glucose and insulin concentrations, expression of insulin-sensitive genes, lipid metabolism, and significantly increased systemic and mesenteric white adipose tissue (M-WAT) inflammatory responses. Conclusions Our studies suggest that increased iNOS production in obese animals plays a key role in regulating lymphatic injury by increasing nitrosative stress. In addition, our studies suggest that obesity-induced lymphatic injury may amplify metabolic abnormalities by increasing systemic and local inflammatory responses and regulating insulin sensitivity. These findings suggest that manipulation of the lymphatic system may represent a novel means of treating metabolic abnormalities associated with obesity. Increased iNOS+ cells around mesenteric lymphatics of high fat diet-induced obese mice. iNOS knockout mice are protected from obesity-induced lymphatic dysfunction. Lymphatic endothelial cells are highly sensitive to nitrosative stress. Nitrosative stress causes lymphatic gene regulation. Lymphatic injury alone enhances iNOS+ cells and causes insulin resistance and dyslipidemia.
Collapse
|
18
|
Vohra MS, Ahmad B, Serpell CJ, Parhar IS, Wong EH. Murine in vitro cellular models to better understand adipogenesis and its potential applications. Differentiation 2020; 115:62-84. [PMID: 32891960 DOI: 10.1016/j.diff.2020.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/08/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023]
Abstract
Adipogenesis has been extensively studied using in vitro models of cellular differentiation, enabling long-term regulation of fat cell metabolism in human adipose tissue (AT) material. Many studies promote the idea that manipulation of this process could potentially reduce the prevalence of obesity and its related diseases. It has now become essential to understand the molecular basis of fat cell development to tackle this pandemic disease, by identifying therapeutic targets and new biomarkers. This review explores murine cell models and their applications for study of the adipogenic differentiation process in vitro. We focus on the benefits and limitations of different cell line models to aid in interpreting data and selecting a good cell line model for successful understanding of adipose biology.
Collapse
Affiliation(s)
- Muhammad Sufyan Vohra
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| | - Bilal Ahmad
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| | - Christopher J Serpell
- School of Physical Sciences, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, United Kingdom.
| | - Ishwar S Parhar
- Brain Research Institute, Jeffery Cheah School of Medicine and Health Sciences, Monash University, Bandar Sunway, PJ 47500, Selangor, Malaysia.
| | - Eng Hwa Wong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
19
|
Chen Y, Chen J, Zhang C, Yang S, Zhang X, Liu Y, Su Z. Deficiency in the short-chain acyl-CoA dehydrogenase protects mice against diet-induced obesity and insulin resistance. FASEB J 2019; 33:13722-13733. [PMID: 31585505 DOI: 10.1096/fj.201901474rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yulong Chen
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Jinglu Chen
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Caixia Zhang
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Shanshan Yang
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Xueping Zhang
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Yin Liu
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Zhiguang Su
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Kim CY, Kang B, Hong J, Choi HS. Parthenolide inhibits lipid accumulation via activation of Nrf2/Keap1 signaling during adipocyte differentiation. Food Sci Biotechnol 2019; 29:431-440. [PMID: 32257527 DOI: 10.1007/s10068-019-00672-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/04/2019] [Accepted: 08/13/2019] [Indexed: 12/22/2022] Open
Abstract
The effects of parthenolide (PL), a sesquiterpene lactone obtained from feverfew plant, on lipid accumulation and signaling pathway in adipocytes were investigated. PL significantly inhibited lipid accumulation and adipogenic factors during adipogenesis. In particular, PL exerted its inhibitory effects in early adipogenic stage by regulating the early adipogenic factors. In addition, PL regulated the expression of adipokines; leptin, retinol binding protein, and resistin mRNAs were downregulated, whereas adiponectin gene expression was increased. Furthermore, PL significantly reduced intracellular reactive oxygen species (ROS) production during adipogenesis. This PL-mediated regulation of ROS production was associated with the regulation of nuclear factor erythroid 2-related factor (Nrf2)-kelch-like ECH-associated protein 1 (Keap1) pathway. PL effectively increased the abundance of Nrf2 and its target proteins, heme oxygenase-1 (HO-1) and NADPH dehydrogenase 1 (NQO1), by promoting the nuclear translocation of Nrf2, indicating that PL-mediated anti-adipogenic effects are associated with the Nrf2/Keap1 pathway.
Collapse
Affiliation(s)
- Chae Young Kim
- 1Department of Public Health Sciences, Korea University, Seoul, 07249 Republic of Korea
| | - Bobin Kang
- 1Department of Public Health Sciences, Korea University, Seoul, 07249 Republic of Korea
| | - Jungil Hong
- 2Department of Food Science and Technology, College of Natural Science, Seoul Women's University, Seoul, 139-774 Republic of Korea
| | - Hyeon-Son Choi
- 2Department of Food Science and Technology, College of Natural Science, Seoul Women's University, Seoul, 139-774 Republic of Korea
| |
Collapse
|
21
|
Dludla PV, Mazibuko-Mbeje SE, Nyambuya TM, Mxinwa V, Tiano L, Marcheggiani F, Cirilli I, Louw J, Nkambule BB. The beneficial effects of N-acetyl cysteine (NAC) against obesity associated complications: A systematic review of pre-clinical studies. Pharmacol Res 2019; 146:104332. [DOI: 10.1016/j.phrs.2019.104332] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/13/2019] [Accepted: 06/25/2019] [Indexed: 12/29/2022]
|
22
|
Šalamon Š, Kramar B, Marolt TP, Poljšak B, Milisav I. Medical and Dietary Uses of N-Acetylcysteine. Antioxidants (Basel) 2019; 8:antiox8050111. [PMID: 31035402 PMCID: PMC6562654 DOI: 10.3390/antiox8050111] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/09/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023] Open
Abstract
N-acetylcysteine (NAC), a plant antioxidant naturally found in onion, is a precursor to glutathione. It has been used as a drug since the 1960s and is listed on the World Health Organization (WHO) Model List of Essential Medicines as an antidote in poisonings. There are numerous other uses or proposed uses in medicine that are still in preclinical and clinical investigations. NAC is also used in food supplements and cosmetics. Despite its abundant use, there are projections that the NAC global market will grow in the next five years; therefore, the purpose of this work is to provide a balanced view of further uses of NAC as a dietary supplement. Although NAC is considered a safe substance, the results among clinical trials are sometimes controversial or incomplete, like for many other antioxidants. More clinical trials are underway that will improve our understanding of NAC applicability.
Collapse
Affiliation(s)
- Špela Šalamon
- Center for human molecular genetics and pharmacogenomics, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia.
| | - Barbara Kramar
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| | - Tinkara Pirc Marolt
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| | - Borut Poljšak
- University of Ljubljana, Faculty of Health Sciences, Laboratory of Oxidative Stress Research, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia.
| | - Irina Milisav
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia.
- University of Ljubljana, Faculty of Health Sciences, Laboratory of Oxidative Stress Research, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
23
|
Kim JH, Kim CY, Kang B, Hong J, Choi HS. Dibenzoylmethane Suppresses Lipid Accumulation and Reactive Oxygen Species Production through Regulation of Nuclear Factor (Erythroid-Derived 2)-Like 2 and Insulin Signaling in Adipocytes. Biol Pharm Bull 2018; 41:680-689. [DOI: 10.1248/bpb.b17-00837] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Joo Hyoun Kim
- Department of Food Sciencfe and Technology, College of Natural Science, Seoul Women’s University
| | | | - Bobin Kang
- Department of Public Health Sciences, Korea University
| | - Jungil Hong
- Department of Food Sciencfe and Technology, College of Natural Science, Seoul Women’s University
| | - Hyeon-Son Choi
- Department of Food Sciencfe and Technology, College of Natural Science, Seoul Women’s University
| |
Collapse
|
24
|
Villagarcía HG, Castro MC, Arbelaez LG, Schinella G, Massa ML, Spinedi E, Francini F. N-Acetyl-l-Cysteine treatment efficiently prevented pre-diabetes and inflamed-dysmetabolic liver development in hypothalamic obese rats. Life Sci 2018. [PMID: 29522769 DOI: 10.1016/j.lfs.2018.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
AIM Hypothalamic obese rats are characterized by pre-diabetes, dyslipidemia, hyperadiposity, inflammation and, liver dysmetabolism with oxidative stress (OS), among others. We studied endocrine-metabolic dysfunctions and, liver OS and inflammation in both monosodium l-glutamate (MSG)-neonatally damaged and control litter-mate (C) adult male rats, either chronically treated with N-Acetyl-l-Cysteine since weaned (C-NAC and MSG-NAC) or not. METHODOLOGY We evaluated circulating TBARS, glucose, insulin, triglycerides, uric acid (UA) and, aspartate and alanine amino-transferase; insulin sensitivity markers (HOMA indexes, Liver Index of Insulin Sensitivity -LISI-) were calculated and liver steps of the insulin-signaling pathway were investigated. Additionally, we monitored liver OS (protein carbonyl groups, GSH and iNOS level) and inflammation-related markers (COX-2 and TNFα protein content; gene expression level of Il1b, Tnfα and Pai-1); and carbohydrate and lipid metabolic functions (glucokinase/fructokinase activities and, mRNA levels of Srebp1c, Fas and Gpat). KEY FINDINGS Chronic NAC treatment in MSG rats efficiently decreased the high circulating levels of triglycerides, UA, transaminases and TBARS, as well as peripheral (high insulinemia and HOMA indexes) and liver (LISI and the P-AKT:AKT and P-eNOS:eNOS protein ratio values) insulin-resistance. Moreover, NAC therapy in MSG rats prevented liver dysmetabolism by decreasing local levels of OS and inflammation markers. Finally, NAC-treated MSG rats retained normal liver glucokinase and fructokinase activities, and Srebp1c, Fas and Gpat (lipogenic genes) expression levels. SIGNIFICANCE Our study strongly supports that chronic oral antioxidant therapy (NAC administration) prevented the development of pre-diabetes, dyslipidemia, and inflamed-dysmetabolic liver in hypothalamic obese rats by efficiently decreasing high endogenous OS.
Collapse
Affiliation(s)
| | - María Cecilia Castro
- CENEXA (Centro de Endocrinología Experimental y Aplicada; UNLP-CONICET-FCM), CEAS-CICPBA, Argentina
| | | | - Guillermo Schinella
- Cátedra Farmacología Básica, Facultad de Ciencias Médicas UNLP and CICPBA, 1900 La Plata, Argentina
| | - María Laura Massa
- CENEXA (Centro de Endocrinología Experimental y Aplicada; UNLP-CONICET-FCM), CEAS-CICPBA, Argentina
| | - Eduardo Spinedi
- CENEXA (Centro de Endocrinología Experimental y Aplicada; UNLP-CONICET-FCM), CEAS-CICPBA, Argentina
| | - Flavio Francini
- CENEXA (Centro de Endocrinología Experimental y Aplicada; UNLP-CONICET-FCM), CEAS-CICPBA, Argentina.
| |
Collapse
|
25
|
de Villiers D, Potgieter M, Ambele MA, Adam L, Durandt C, Pepper MS. The Role of Reactive Oxygen Species in Adipogenic Differentiation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1083:125-144. [PMID: 29139087 DOI: 10.1007/5584_2017_119] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Interest in reactive oxygen species and adipocyte differentiation/adipose tissue function is steadily increasing. This is due in part to a search for alternative avenues for combating obesity, which results from the excess accumulation of adipose tissue. Obesity is a major risk factor for complex disorders such as cancer, type 2 diabetes, and cardiovascular diseases. The ability of mesenchymal stromal/stem cells (MSCs) to differentiate into adipocytes is often used as a model for studying adipogenesis in vitro. A key focus is the effect of both intra- and extracellular reactive oxygen species (ROS) on adipogenesis. The consensus from the majority of studies is that ROS, irrespective of the source, promote adipogenesis.The effect of ROS on adipogenesis is suppressed by antioxidants or ROS scavengers. Reactive oxygen species are generated during the process of adipocyte differentiation as well as by other cell metabolic processes. Despite many studies in this field, it is still not possible to state with certainty whether ROS measured during adipocyte differentiation are a cause or consequence of this process. In addition, it is still unclear what the exact sources are of the ROS that initiate and/or drive adipogenic differentiation in MSCs in vivo. This review provides an overview of our understanding of the role of ROS in adipocyte differentiation as well as how certain ROS scavengers and antioxidants might affect this process.
Collapse
Affiliation(s)
- Danielle de Villiers
- Department of Immunology and Institute for Cellular and Molecular Medicine; SAMRC Extramural Unit for Stem Cell Research and Therapy; Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Marnie Potgieter
- Department of Immunology and Institute for Cellular and Molecular Medicine; SAMRC Extramural Unit for Stem Cell Research and Therapy; Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.,Center for Microbial Ecology and Genomics, Department of Genetics, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Melvin A Ambele
- Department of Immunology and Institute for Cellular and Molecular Medicine; SAMRC Extramural Unit for Stem Cell Research and Therapy; Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.,Department of Oral Pathology and Oral Biology, School of Dentistry, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Ladislaus Adam
- Department of Immunology and Institute for Cellular and Molecular Medicine; SAMRC Extramural Unit for Stem Cell Research and Therapy; Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Chrisna Durandt
- Department of Immunology and Institute for Cellular and Molecular Medicine; SAMRC Extramural Unit for Stem Cell Research and Therapy; Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Michael S Pepper
- Department of Immunology and Institute for Cellular and Molecular Medicine; SAMRC Extramural Unit for Stem Cell Research and Therapy; Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|