1
|
Pepper M, Rebouças P, Falcão IR, Sanchez Clemente N, Lowe R, Schneider R, Pescarini JM, Santos GFD, Andrade RF, Cortes TR, Ranzani OT, Brickley EB, Barreto ML, Paixao ES. Prenatal exposure to ambient air pollution and subsequent risk of lower respiratory tract infections in childhood and adolescence: A systematic review. Int J Hyg Environ Health 2024; 263:114473. [PMID: 39368219 DOI: 10.1016/j.ijheh.2024.114473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND Pregnancy represents a critical window of vulnerability to the harmful effects of air pollution on health. However, long-term consequences such as risk of having lower respiratory tract infections (LRTIs) are less explored. This systematic review aims to synthesize previous research on prenatal exposure to ambient (outdoor) air pollution and LRTIs in childhood and adolescence. METHODS We systematically searched Embase, MEDLINE, Web of Science Core Collection, CINAHL, and Global Health up to May 17, 2024. We included peer-reviewed publications of studies which investigated the association between prenatal exposure to ambient air pollution and LRTIs up to the age of 19. We excluded conference abstracts, study protocols, review articles, and grey literature. Screening and data extraction was conducted by two reviewers independently. We used the Office of Health Assessment and Translation tool to assess risk of bias and conducted a narrative synthesis. RESULTS The search yielded 6056 records, of which 16 publications describing 12 research studies were eligible for the synthesis. All studies were conducted in high- or upper-middle-income countries in Europe or Asia. Half (6) of the studies focused on LRTIs occurring within the first three years of life, and the others also included LRTIs in older children (up to age 14). Air pollutants investigated included nitrogen dioxide, sulphur dioxide, particulate matter (PM2.5: diameter ≤2.5 μm and PM10: diameter ≤10 μm), carbon monoxide, ozone, and benzene. Findings on a potential association between prenatal ambient air pollution exposure and LRTIs were inconclusive, without a clear and consistent direction. There was some suggestion of a positive association with prenatal PM2.5 exposure. The small number of studies identified, their poor geographical representation, and their methodological limitations including concerns for risk of bias preclude more definitive conclusions. CONCLUSION The available published evidence is insufficient to establish whether prenatal exposure to ambient air pollution increases risk of LRTIs in children and adolescents. With many populations exposed to high levels of air pollution, there is an urgent need for research in more diverse settings, more transparent reporting of methods, and exploring how, when, and for whom prenatal exposure to ambient air pollution leads to the greatest health risks. PROSPERO REGISTRATION NUMBER CRD42023407689.
Collapse
Affiliation(s)
- Maxine Pepper
- Department of Infectious Disease Epidemiology & International Health, London School of Hygiene & Tropical Medicine, London, United Kingdom.
| | - Poliana Rebouças
- Centro de Integração de Dados e Conhecimentos para Saúde (CIDACS), Oswaldo Cruz Foundation, Salvador, Brazil
| | - Ila R Falcão
- Centro de Integração de Dados e Conhecimentos para Saúde (CIDACS), Oswaldo Cruz Foundation, Salvador, Brazil
| | - Nuria Sanchez Clemente
- Department of Infectious Disease Epidemiology & International Health, London School of Hygiene & Tropical Medicine, London, United Kingdom; Centre for Neonatal and Paediatric Infection, St. George's University of London, London, United Kingdom
| | - Rachel Lowe
- Department of Infectious Disease Epidemiology & International Health, London School of Hygiene & Tropical Medicine, London, United Kingdom; Barcelona Supercomputing Center (BSC), Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | | | - Julia M Pescarini
- Department of Infectious Disease Epidemiology & International Health, London School of Hygiene & Tropical Medicine, London, United Kingdom; Centro de Integração de Dados e Conhecimentos para Saúde (CIDACS), Oswaldo Cruz Foundation, Salvador, Brazil
| | - Gervásio F Dos Santos
- Centro de Integração de Dados e Conhecimentos para Saúde (CIDACS), Oswaldo Cruz Foundation, Salvador, Brazil
| | - Roberto Fs Andrade
- Centro de Integração de Dados e Conhecimentos para Saúde (CIDACS), Oswaldo Cruz Foundation, Salvador, Brazil
| | - Taísa R Cortes
- Centro de Integração de Dados e Conhecimentos para Saúde (CIDACS), Oswaldo Cruz Foundation, Salvador, Brazil
| | - Otavio T Ranzani
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
| | - Elizabeth B Brickley
- Department of Infectious Disease Epidemiology & International Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Mauricio L Barreto
- Centro de Integração de Dados e Conhecimentos para Saúde (CIDACS), Oswaldo Cruz Foundation, Salvador, Brazil
| | - Enny S Paixao
- Department of Infectious Disease Epidemiology & International Health, London School of Hygiene & Tropical Medicine, London, United Kingdom; Centro de Integração de Dados e Conhecimentos para Saúde (CIDACS), Oswaldo Cruz Foundation, Salvador, Brazil
| |
Collapse
|
2
|
Hansel MC, Rosenberg AM, Kinkade CW, Capurro C, Rivera-Núñez Z, Barrett ES. Exposure to Synthetic Endocrine-Disrupting Chemicals in Relation to Maternal and Fetal Sex Steroid Hormones: A Scoping Review. Curr Environ Health Rep 2024; 11:356-379. [PMID: 39037689 PMCID: PMC11324767 DOI: 10.1007/s40572-024-00455-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 07/23/2024]
Abstract
PURPOSE OF REVIEW Many synthetic endocrine-disrupting chemicals (EDCs) are ubiquitous in the environment and highly detected among pregnant people. These chemicals may disrupt maternal and/or fetal sex steroid hormones, which are critical to pregnancy maintenance and fetal development. Here, we review the epidemiological literature examining prenatal exposure to common synthetic EDCs in relation to maternal and fetal sex steroid hormones. RECENT FINDINGS We performed a literature search using PubMed, SCOPUS, and Embase, ultimately identifying 29 articles for full review. Phenols, parabens, and persistent organic pollutants generally showed inverse associations with androgens, estrogens, and progesterone. Phthalates and per-and polyfluoroalkyl substances tended to be inversely associated with progesterone, while evidence regarding androgens and estrogens was mixed. Inconsistent, but noteworthy, differences by fetal sex and timing of exposure/outcome were observed. Overall, the literature suggests EDCs may disrupt maternal and fetal sex steroid activity, though findings are mixed. Given the pervasive, high-volume production of these synthetic chemicals and the critical functions sex steroid hormones play during gestation, additional research is warranted.
Collapse
Affiliation(s)
- Megan C Hansel
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Abigail M Rosenberg
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, 601 Elmwood Ave., Rochester, NY, 14642, USA
| | - Carolyn W Kinkade
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA
| | - Camila Capurro
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Zorimar Rivera-Núñez
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA.
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, 601 Elmwood Ave., Rochester, NY, 14642, USA.
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA.
| |
Collapse
|
3
|
Dye JA, Nguyen HH, Stewart EJ, Schladweiler MCJ, Miller CN. Sex Differences in Impacts of Early Gestational and Peri-Adolescent Ozone Exposure on Lung Development in Rats: Implications for Later Life Disease in Humans. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1636-1663. [PMID: 39182948 DOI: 10.1016/j.ajpath.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/05/2024] [Accepted: 05/17/2024] [Indexed: 08/27/2024]
Abstract
Air pollution exposure during pregnancy may affect fetal growth. Fetal growth restriction (FGR) is associated with reduced lung function in children that can persist into adulthood. Using an established model of asymmetrical FGR in Long-Evans rats, this study investigated sex differences in effects of early life ozone exposure on lung development and maturation. Adverse health effects for i) gestational exposure (with impacts on primary alveolarization), ii) peri-adolescent exposure (with impacts on secondary alveolarization), and iii) cumulative exposure across both periods were evaluated. Notably, female offspring were most affected by gestational ozone exposure, likely because of impaired angiogenesis and corresponding decreases in primary alveolarization. Females had diminished lung capacity, fewer mature alveoli, and medial hypertrophy of small and large pulmonary arteries. Males, especially FGR-prone offspring, were more affected by peri-adolescent ozone exposure. Males had increased ductal areas, likely due to disrupted secondary alveolarization. Altered lung development may increase risk of developing diseases, such as pulmonary arterial hypertension or chronic obstructive pulmonary disease. Pulmonary arterial hypertension disproportionately affects women. In the United States, chronic obstructive pulmonary disease prevalence is increasing, especially in women; and prevalence for both men and women is highest in urbanized areas. This investigation underlines the importance of evaluating results separately by sex, and provides biologic plausibility for later consequences of early-life exposure to ozone, a ubiquitous urban air pollutant.
Collapse
Affiliation(s)
- Janice A Dye
- Cardiopulmonary and Immunotoxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, North Carolina.
| | - Helen H Nguyen
- Oak Ridge Institute for Science and Education, Research Triangle Park, North Carolina
| | - Erica J Stewart
- Oak Ridge Institute for Science and Education, Research Triangle Park, North Carolina
| | - Mette C J Schladweiler
- Cardiopulmonary and Immunotoxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Colette N Miller
- Cardiopulmonary and Immunotoxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, North Carolina
| |
Collapse
|
4
|
Tartour AI, Chivese T, Eltayeb S, Elamin FM, Fthenou E, Seed Ahmed M, Babu GR. Prenatal psychological distress and 11β-HSD2 gene expression in human placentas: Systematic review and meta-analysis. Psychoneuroendocrinology 2024; 166:107060. [PMID: 38677195 DOI: 10.1016/j.psyneuen.2024.107060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/10/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND The placenta acts as a buffer to regulate the degree of fetal exposure to maternal cortisol through the 11-Beta Hydroxysteroid Dehydrogenase isoenzyme type 2 (11-β HSD2) enzyme. We conducted a systematic review and meta-analysis to assess the effect of prenatal psychological distress (PPD) on placental 11-β HSD2 gene expression and explore the related mechanistic pathways involved in fetal neurodevelopment. METHODS We searched PubMed, Embase, Scopus, APA PsycInfo®, and ProQuest Dissertations for observational studies assessing the association between PPD and 11-β HSD2 expression in human placentas. Adjusted regression coefficients (β) and corresponding 95% confidence intervals (CIs) were pooled based on three contextual PPD exposure groups: prenatal depression, anxiety symptoms, and perceived stress. RESULTS Of 3159 retrieved records, sixteen longitudinal studies involving 1869 participants across seven countries were included. Overall, exposure to PPD disorders showed weak negative associations with the placental 11-β HSD2 gene expression as follows: prenatal depression (β -0.01, 95% CI 0.05-0.02, I2=0%), anxiety symptoms (β -0.02, 95% CI 0.06-0.01, I2=0%), and perceived stress (β -0.01 95% CI 0.06-0.04, I2=62.8%). Third-trimester PPD exposure was more frequently associated with lower placental 11-β HSD2 levels. PPD and placental 11-β HSD2 were associated with changes in cortisol reactivity and the development of adverse health outcomes in mothers and children. Female-offspring were more vulnerable to PPD exposures. CONCLUSION The study presents evidence of a modest role of prenatal psychological distress in regulating placental 11-β HSD2 gene expression. Future prospective cohorts utilizing larger sample sizes or advanced statistical methods to enhance the detection of small effect sizes should be planned. Additionally, controlling for key predictors such as the mother's ethnicity, trimester of PPD exposure, mode of delivery, and infant sex is crucial for valid exploration of PPD effects on fetal programming.
Collapse
Affiliation(s)
- Angham Ibrahim Tartour
- Department of Population Medicine, College of Medicine, QU Health, Qatar University, P. O. Box:2713, Doha, Qatar.
| | - Tawanda Chivese
- Department of Population Medicine, College of Medicine, QU Health, Qatar University, P. O. Box:2713, Doha, Qatar
| | - Safa Eltayeb
- Qatar Biobank for Medical Research, Qatar Foundation, Doha, Qatar
| | - Fatima M Elamin
- Office of Research Ethics and Integrity, Qatar University, P. O. Box:2713, Doha, Qatar
| | - Eleni Fthenou
- Qatar Biobank for Medical Research, Qatar Foundation, Doha, Qatar
| | - Mohammed Seed Ahmed
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, P. O. Box:2713, Doha, Qatar
| | - Giridhara Rathnaiah Babu
- Department of Population Medicine, College of Medicine, QU Health, Qatar University, P. O. Box:2713, Doha, Qatar
| |
Collapse
|
5
|
Bergman NJ. New policies on skin-to-skin contact warrant an oxytocin-based perspective on perinatal health care. Front Psychol 2024; 15:1385320. [PMID: 39049943 PMCID: PMC11267429 DOI: 10.3389/fpsyg.2024.1385320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/10/2024] [Indexed: 07/27/2024] Open
Abstract
Background In 2023, the World Health Organization (WHO) published a Global Position Paper on Kangaroo Mother Care (KMC), which is applicable to all countries worldwide: from the moment of birth, every "small and sick" newborn should remain with mother in immediate and continuous skin-to-skin contact (SSC), receiving all required clinical care in that place. This was prompted by the startling results of a randomized controlled trial published in 2021: in which 1,609 infants receiving immediate SSC were compared with 1,602 controls that were separated from their mothers but otherwise received identical conventional state-of-the-art care. The intervention infants showed a 25% reduction in mortality after 28 days. New perspectives The new WHO guidelines are a significant change from earlier guidance and common clinical practice. The author presents that separating mothers and babies is assumed to be "normal" (a paradigm) but actually puts newborns at increased risk for morbidity and mortality. The author presents arguments and ethical perspectives for a new perspective on what is "normal," keeping newborns with their mothers is the infant's physiological expectation and critical requirement for healthy development. The author reviews the scientific rationale for changing the paradigm, based on synchronous interactions of oxytocin on both mother and infant. This follows a critique of the new policies that highlights the role of immediate SSC. Actionable recommendations This critique strengthens the case for implementing the WHO guidelines on KMC for small and sick babies. System changes will be necessary in both obstetric and neonatal settings to ensure seamless perinatal care. Based on the role of oxytocin, the author identifies that many current routine care practices may actually contribute to stress and increased vulnerability to the newborn. WHO has actionable recommendations about family involvement and presence in newborn intensive care units. Discussion The concepts of resilience and vulnerability have specific definitions well known in perinatal care: the key outcome of care should be resilience rather than merely the absence of vulnerability. Newborns in all settings and contexts need us to re-evaluate our paradigms and adopt and implement the new WHO guidelines on KMC in perinatal care.
Collapse
Affiliation(s)
- Nils J. Bergman
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Baker S, Biroli P, van Kippersluis H, von Hinke S. Advantageous early-life environments cushion the genetic risk for ischemic heart disease. Proc Natl Acad Sci U S A 2024; 121:e2314056121. [PMID: 38917008 PMCID: PMC11228495 DOI: 10.1073/pnas.2314056121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 04/18/2024] [Indexed: 06/27/2024] Open
Abstract
In one of the first papers on the impact of early-life conditions on individuals' health in older age, Barker and Osmond [Lancet, 327, 1077-1081 (1986)] show a strong positive relationship between infant mortality rates in the 1920s and ischemic heart disease in the 1970s. We merge historical data on infant mortality rates to 370,000 individual records in the UK Biobank using information on local area and year of birth. We replicate the association between the early-life infant mortality rate and later-life ischemic heart disease in our sample. We then go "beyond Barker," by showing considerable genetic heterogeneity in this association that is robust to within-area as well as within-family analyses. We find no association between the polygenic index and heart disease in areas with the lowest infant mortality rates, but a strong positive relationship in areas characterized by high infant mortality. These findings suggest that advantageous environments can cushion one's genetic disease risk.
Collapse
Affiliation(s)
- Samuel Baker
- School of Economics, University of Bristol, Bristol BS8 1TU, United Kingdom
| | - Pietro Biroli
- Department of Economic Sciences, University of Bologna, Bologna, Italy
| | - Hans van Kippersluis
- Erasmus School of Economics, Erasmus University Rotterdam, 3062 PA Rotterdam, The Netherlands
| | - Stephanie von Hinke
- School of Economics, University of Bristol, Bristol BS8 1TU, United Kingdom
- Institute for Fiscal Studies, London WC1E 7AE, United Kingdom
| |
Collapse
|
7
|
Ha S, Abatzoglou JT, Adebiyi A, Ghimire S, Martinez V, Wang M, Basu R. Impacts of heat and wildfire on preterm birth. ENVIRONMENTAL RESEARCH 2024; 252:119094. [PMID: 38723988 DOI: 10.1016/j.envres.2024.119094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Climate change continues to increase the frequency, intensity, and duration of heat events and wildfires, both of which are associated with adverse pregnancy outcomes. Few studies simultaneously evaluated exposures to these increasingly common exposures. OBJECTIVES We investigated the relationship between exposure to heat and wildfire smoke and preterm birth (PTB). METHODS In this time-stratified case-crossover study, participants consisted of 85,806 California singleton PTBs (20-36 gestational weeks) from May through October of 2015-2019. Birthing parent ZIP codes were linked to high-resolution daily weather, PM2.5 from wildfire smoke, and ambient air pollution data. Heat day was defined as a day with apparent temperature >98th percentile within each ZIP code and heat wave was defined as ≥2 consecutive heat days. Wildfire-smoke day was defined as a day with any exposure to wildfire-smoke PM2.5. Conditional logistic regression was used to calculate the odds ratio (OR) and 95% confidence intervals (CI) comparing exposures during a hazard period (lags 0-6) compared to control periods. Analyses were adjusted for relative humidity, fine particles, and ozone. RESULTS Wildfire-smoke days were associated with 3.0% increased odds of PTB (ORlag0: 1.03, CI: 1.00-1.05). Compared with white participants, associations appeared stronger among Black, Hispanic, Asian, and American Indians/Alaskan Native participants. Heatwave days (ORlag2: 1.07, CI: 1.02-1.13) were positively associated with PTB, with stronger associations among those simultaneously exposed to wildfire smoke days (ORlag2: 1.19, CI: 1.11-1.27). Similar findings were observed for heat days and when other temperature metrics (e.g., maximum, minimum) were used. DISCUSSION Heat and wildfire increased PTB risk with evidence of synergism. As the occurrence and co-occurrence of these events increase, exposure reduction among pregnant people is critical, especially among racial/ethnic minorities.
Collapse
Affiliation(s)
- Sandie Ha
- Department of Public Health, School of Social Sciences, Humanities and Arts, Health Science Research Institute, University of California, 5200 N Lake Rd, 95343, Merced, CA, USA.
| | - John T Abatzoglou
- Department of Management of Complex Systems, School of Engineering, University of California, Merced, USA
| | - Adeyemi Adebiyi
- Department of Life and Environmental Sciences, School of Natural Sciences, University of California, Merced, USA
| | - Sneha Ghimire
- Department of Public Health, School of Social Sciences, Humanities and Arts, Health Science Research Institute, University of California, 5200 N Lake Rd, 95343, Merced, CA, USA
| | - Valerie Martinez
- Department of Public Health, School of Social Sciences, Humanities and Arts, Health Science Research Institute, University of California, 5200 N Lake Rd, 95343, Merced, CA, USA
| | - Meng Wang
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Rupa Basu
- Air and Climate Epidemiology Section, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| |
Collapse
|
8
|
Kocaman EM, Şenol O, Yıldırım S, Atamanalp M, Özcan S, Bolat İ, Ucar A, Kiliçlioğlu M, Parlak V, Takkac M, Alak G. Analyzing the impact of synthetic and natural steroids: a study of cytochrome P450 metabolism, morphological alterations through metabolomics, and histopathological Examination. Toxicol Mech Methods 2024; 34:628-638. [PMID: 38379298 DOI: 10.1080/15376516.2024.2322006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/26/2024] [Indexed: 02/22/2024]
Abstract
This study focuses on the comparative metabolic profiling and effects of two steroid types: natural and synthetic, specifically 17α-methyl testosterone (17α-MT) at varying concentrations (1.5, 2, and 3 mg/kg) in rainbow trout (Oncorhynchus mykiss). Over a 75-day feeding trial, growth metrics, such as feed efficiency, daily specific growth, live weight gain, total weight gain, and survival rate were systematically monitored every 15 days. At the end of the feeding trial, histopathology, immunohistochemistry, and metabolome analyses were performed in the high-concentration groups (3 mg/kg natural and 3 mg/kg synthetic), in which the lowest survival rate was determined. Key findings reveal that the type of hormone significantly influences growth parameters. While some natural steroids enhanced certain growth aspects, synthetic variants often yielded better results. The metabolomic analysis highlighted significant shifts in the metabolism of tryptophan, purine, folate, primary bile acids, phosphonates, phosphinates, and xenobiotics via cytochrome P450 pathways. Histopathologically, the natural hormone groups showed similar testicular, hepatic, muscular, gill, cerebral, renal, and intestinal tissue structures to the control, with minor DNA damage and apoptosis observed through immunohistochemistry. Conversely, the synthetic hormone groups exhibited moderate DNA damage and mild degenerative and necrotic changes in histopathology.
Collapse
Affiliation(s)
- Esat Mahmut Kocaman
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, Erzurum, Turkey
| | - Onur Şenol
- Department of Analytic Chemistry, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
| | - Serkan Yıldırım
- Department of Pathology, Veterinary Faculty, Ataturk University, Erzurum, Turkey
| | - Muhammed Atamanalp
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, Erzurum, Turkey
| | - Sinan Özcan
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, Erzurum, Turkey
| | - İsmail Bolat
- Department of Pathology, Veterinary Faculty, Ataturk University, Erzurum, Turkey
| | - Arzu Ucar
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, Erzurum, Turkey
| | - Metin Kiliçlioğlu
- Department of Pathology, Veterinary Faculty, Ataturk University, Erzurum, Turkey
| | - Veysel Parlak
- Department of Basic Sciences, Faculty of Fisheries, Atatürk University, Erzurum, Turkey
| | - Mehmet Takkac
- Department of English Language Education, Kazım Karabekir Faculty of Education, Ataturk University, Erzurum, Turkey
| | - Gonca Alak
- Department of Seafood Processing Technology, Faculty of Fisheries, Atatürk University, Erzurum, Turkey
| |
Collapse
|
9
|
vom Saal FS, Antoniou M, Belcher SM, Bergman A, Bhandari RK, Birnbaum LS, Cohen A, Collins TJ, Demeneix B, Fine AM, Flaws JA, Gayrard V, Goodson WH, Gore AC, Heindel JJ, Hunt PA, Iguchi T, Kassotis CD, Kortenkamp A, Mesnage R, Muncke J, Myers JP, Nadal A, Newbold RR, Padmanabhan V, Palanza P, Palma Z, Parmigiani S, Patrick L, Prins GS, Rosenfeld CS, Skakkebaek NE, Sonnenschein C, Soto AM, Swan SH, Taylor JA, Toutain PL, von Hippel FA, Welshons WV, Zalko D, Zoeller RT. The Conflict between Regulatory Agencies over the 20,000-Fold Lowering of the Tolerable Daily Intake (TDI) for Bisphenol A (BPA) by the European Food Safety Authority (EFSA). ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:45001. [PMID: 38592230 PMCID: PMC11003459 DOI: 10.1289/ehp13812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND The European Food Safety Authority (EFSA) recommended lowering their estimated tolerable daily intake (TDI) for bisphenol A (BPA) 20,000-fold to 0.2 ng / kg body weight ( BW ) / day . BPA is an extensively studied high production volume endocrine disrupting chemical (EDC) associated with a vast array of diseases. Prior risk assessments of BPA by EFSA as well as the US Food and Drug Administration (FDA) have relied on industry-funded studies conducted under good laboratory practice protocols (GLP) requiring guideline end points and detailed record keeping, while also claiming to examine (but rejecting) thousands of published findings by academic scientists. Guideline protocols initially formalized in the mid-twentieth century are still used by many regulatory agencies. EFSA used a 21st century approach in its reassessment of BPA and conducted a transparent, but time-limited, systematic review that included both guideline and academic research. The German Federal Institute for Risk Assessment (BfR) opposed EFSA's revision of the TDI for BPA. OBJECTIVES We identify the flaws in the assumptions that the German BfR, as well as the FDA, have used to justify maintaining the TDI for BPA at levels above what a vast amount of academic research shows to cause harm. We argue that regulatory agencies need to incorporate 21st century science into chemical hazard identifications using the CLARITY-BPA (Consortium Linking Academic and Regulatory Insights on BPA Toxicity) nonguideline academic studies in a collaborative government-academic program model. DISCUSSION We strongly endorse EFSA's revised TDI for BPA and support the European Commission's (EC) apparent acceptance of this updated BPA risk assessment. We discuss challenges to current chemical risk assessment assumptions about EDCs that need to be addressed by regulatory agencies to, in our opinion, become truly protective of public health. Addressing these challenges will hopefully result in BPA, and eventually other structurally similar bisphenols (called regrettable substitutions) for which there are known adverse effects, being eliminated from all food-related and many other uses in the EU and elsewhere. https://doi.org/10.1289/EHP13812.
Collapse
Affiliation(s)
- Frederick S. vom Saal
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Michael Antoniou
- Department of Medical and Molecular Genetics, King’s College London School of Medicine, London, UK
| | - Scott M. Belcher
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Ake Bergman
- Department of Environmental Science (ACES), Stockholm University, Stockholm, Sweden
| | - Ramji K. Bhandari
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Linda S. Birnbaum
- Scientist Emeritus and Former Director, National Toxicology Program (NTP), National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
- Scholar in Residence, Duke University, Durham, North Carolina, USA
| | - Aly Cohen
- Integrative Rheumatology Associates, Princeton, New Jersey, USA
| | - Terrence J. Collins
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Barbara Demeneix
- Comparative Physiology Laboratory, Natural History Museum, Paris, France
| | - Anne Marie Fine
- Environmental Medicine Education International, Mancos, Colorado, USA
| | - Jodi A. Flaws
- Department of Comparative Biosciences, University of Illinois Urbana—Champaign, Urbana-Champaign, Illinois, USA
| | - Veronique Gayrard
- ToxAlim (Research Centre in Food Toxicology), University of Toulouse, Toulouse, France
| | - William H. Goodson
- California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Andrea C. Gore
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, Texas, USA
| | - Jerrold J. Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Raleigh, North Carolina, USA
| | - Patricia A. Hunt
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Taisen Iguchi
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| | - Christopher D. Kassotis
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan, USA
- Department of Pharmacology, Wayne State University, Detroit, Michigan, USA
| | - Andreas Kortenkamp
- Centre for Pollution Research and Policy, Brunel University London, Uxbridge, UK
| | - Robin Mesnage
- Department of Medical and Molecular Genetics, King’s College London School of Medicine, London, UK
| | - Jane Muncke
- Food Packaging Forum Foundation, Zurich, Switzerland
| | | | - Angel Nadal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and CIBERDEM, Miguel Hernandez University of Elche, Elche, Alicante, Spain
| | - Retha R. Newbold
- Scientist Emeritus, NTP, NIEHS, Research Triangle Park, North Carolina, USA
| | - Vasantha Padmanabhan
- Department of Pediatrics, Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Paola Palanza
- Unit of Neuroscience, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Stefano Parmigiani
- Unit of Evolutionary and Functional Biology, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Lyn Patrick
- Environmental Medicine Education International, Mancos, Colorado, USA
| | - Gail S. Prins
- Department of Urology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Cheryl S. Rosenfeld
- Biomedical Sciences, Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri—Columbia, Columbia, Missouri, USA
- MU Institute of Data Science and Informatics, University of Missouri—Columbia, Columbia, Missouri, USA
| | - Niels E. Skakkebaek
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Carlos Sonnenschein
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Ana M. Soto
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Shanna H. Swan
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Julia A. Taylor
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Pierre-Louis Toutain
- Royal Veterinary College, University of London, London, UK
- NTHERES, INRAE, ENVT, Université de Toulouse, Toulouse, France
| | - Frank A. von Hippel
- Department of Community, Environment & Policy, University of Arizona, Tucson, Arizona, USA
| | - Wade V. Welshons
- Department of Biomedical Sciences, University of Missouri—Columbia, Columbia, Missouri, USA
| | - Daniel Zalko
- ToxAlim (Research Centre in Food Toxicology), University of Toulouse, Toulouse, France
| | - R. Thomas Zoeller
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
10
|
Frangione B, Birk S, Benzouak T, Rodriguez-Villamizar LA, Karim F, Dugandzic R, Villeneuve PJ. Exposure to perfluoroalkyl and polyfluoroalkyl substances and pediatric obesity: a systematic review and meta-analysis. Int J Obes (Lond) 2024; 48:131-146. [PMID: 37907715 PMCID: PMC10824662 DOI: 10.1038/s41366-023-01401-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/22/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023]
Abstract
INTRODUCTION Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are potentially obesogenic for children. We undertook a systematic review to synthesize this literature and explore sources of heterogeneity in previously published epidemiological studies. METHODS Studies that collected individual-level PFAS and anthropometric data from children up to 12 years of age were identified by searching six databases. We excluded studies that only evaluated obesity measures at the time of birth. A full-text review and quality assessment of the studies was performed using the Office of Health Assessment and Translation (OHAT) criteria. Forest plots were created to summarize measures of association and assess heterogeneity across studies by chemical type and exposure timing. Funnel plots were used to assess small-study effects. RESULTS We identified 24 studies, of which 19 used a cohort design. There were 13 studies included in the meta-analysis examining various chemicals and outcomes. Overall prenatal exposures to four different types of PFAS were not statistically associated with changes in body mass index (BMI) or waist circumference. In contrast, for three chemicals, postnatal exposures were inversely related to changes in BMI (i.e., per log10 increase in PFOS: BMI z-score of -0.16 (95% CI: -0.22, -0.10)). There was no substantial heterogeneity in the reported measures of association within prenatal and postnatal subgroups. We observed modest small-study effects, but correction for these effects using the Trim and Fill method did not change our summary estimate(s). CONCLUSION Our review found no evidence of a positive association between prenatal PFAS exposure and pediatric obesity, whereas an inverse association was found for postnatal exposure. These findings should be interpreted cautiously due to the small number of studies. Future research that can inform on the effects of exposure mixtures, the timing of the exposure, outcome measures, and the shape of the exposure-response curve is needed.
Collapse
Affiliation(s)
- Brianna Frangione
- Department of Neuroscience, Carleton University, K1S 5B6, Ottawa, Canada
| | - Sapriya Birk
- Department of Neuroscience, Carleton University, K1S 5B6, Ottawa, Canada
| | - Tarek Benzouak
- Faculty of Medicine, McGill University, H3A 0G4, Montreal, Canada
| | - Laura A Rodriguez-Villamizar
- Department of Neuroscience, Carleton University, K1S 5B6, Ottawa, Canada
- Faculty of Health, Universidad Industrial de Santander, 680002, Bucaramanga, Colombia
| | - Fatima Karim
- Department of Neuroscience, Carleton University, K1S 5B6, Ottawa, Canada
| | | | - Paul J Villeneuve
- Department of Neuroscience, Carleton University, K1S 5B6, Ottawa, Canada.
- CHAIM Research Centre, Carleton University, K1S 5B6, Ottawa, Canada.
| |
Collapse
|
11
|
Foster C, Wignall J, Kovach S, Choksi N, Allen D, Trgovcich J, Rochester JR, Ceger P, Daniel A, Hamm J, Truax J, Blake B, McIntyre B, Sutherland V, Stout MD, Kleinstreuer N. Standardizing Extracted Data Using Automated Application of Controlled Vocabularies. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:27006. [PMID: 38349723 PMCID: PMC10863721 DOI: 10.1289/ehp13215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 02/15/2024]
Abstract
BACKGROUND Extraction of toxicological end points from primary sources is a central component of systematic reviews and human health risk assessments. To ensure optimal use of these data, consistent language should be used for end point descriptions. However, primary source language describing treatment-related end points can vary greatly, resulting in large labor efforts to manually standardize extractions before data are fit for use. OBJECTIVES To minimize these labor efforts, we applied an augmented intelligence approach and developed automated tools to support standardization of extracted information via application of preexisting controlled vocabularies. METHODS We created and applied a harmonized controlled vocabulary crosswalk, consisting of Unified Medical Language System (UMLS) codes, German Federal Institute for Risk Assessment (BfR) DevTox harmonized terms, and The Organization for Economic Co-operation and Development (OECD) end point vocabularies, to roughly 34,000 extractions from prenatal developmental toxicology studies conducted by the National Toxicology Program (NTP) and 6,400 extractions from European Chemicals Agency (ECHA) prenatal developmental toxicology studies, all recorded based on the original study report language. RESULTS We automatically applied standardized controlled vocabulary terms to 75% of the NTP extracted end points and 57% of the ECHA extracted end points. Of all the standardized extracted end points, about half (51%) required manual review for potential extraneous matches or inaccuracies. Extracted end points that were not mapped to standardized terms tended to be too general or required human logic to find a good match. We estimate that this augmented intelligence approach saved > 350 hours of manual effort and yielded valuable resources including a controlled vocabulary crosswalk, organized related terms lists, code for implementing an automated mapping workflow, and a computationally accessible dataset. DISCUSSION Augmenting manual efforts with automation tools increased the efficiency of producing a findable, accessible, interoperable, and reusable (FAIR) dataset of regulatory guideline studies. This open-source approach can be readily applied to other legacy developmental toxicology datasets, and the code design is customizable for other study types. https://doi.org/10.1289/EHP13215.
Collapse
Affiliation(s)
| | | | | | - Neepa Choksi
- ILS, Research Triangle Park, North Carolina, USA
| | - Dave Allen
- ILS, Research Triangle Park, North Carolina, USA
| | | | | | | | - Amber Daniel
- ILS, Research Triangle Park, North Carolina, USA
| | - Jon Hamm
- ILS, Research Triangle Park, North Carolina, USA
| | - Jim Truax
- ILS, Research Triangle Park, North Carolina, USA
| | - Bevin Blake
- Division of Translational Toxicology (DTT), NIEHS, NIH, Research Triangle Park, North Carolina, USA
| | - Barry McIntyre
- Division of Translational Toxicology (DTT), NIEHS, NIH, Research Triangle Park, North Carolina, USA
| | - Vicki Sutherland
- Division of Translational Toxicology (DTT), NIEHS, NIH, Research Triangle Park, North Carolina, USA
| | - Matthew D. Stout
- Division of Translational Toxicology (DTT), NIEHS, NIH, Research Triangle Park, North Carolina, USA
| | - Nicole Kleinstreuer
- National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM), DTT, NIEHS, NIH, Research Triangle Park, North Carolina, USA
| |
Collapse
|
12
|
Xiao J, Jain A, Bellia G, Nyhan K, Liew Z. A scoping review of multigenerational impacts of grandparental exposures on mental health in grandchildren. Curr Environ Health Rep 2023; 10:369-382. [PMID: 38008881 DOI: 10.1007/s40572-023-00413-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2023] [Indexed: 11/28/2023]
Abstract
PURPOSE OF REVIEW The multigenerational effects of grandparental exposures on their grandchildren's mental health and neurodevelopment are gaining research attention. We conducted a scoping review to summarize the current epidemiological studies investigating pregnancy-related and environmental factors that affected grandparental pregnancies and mental health outcomes in their grandchildren. We also identified methodological challenges that affect these multigenerational health studies and discuss opportunities for future research. RECENT FINDINGS We performed a literature search using PubMed and Embase and included 18 articles for this review. The most investigated grandparental pregnancy-related factors were the grandparental age of pregnancy (N = 6), smoking during pregnancy (N = 4), and medication intake (N = 3). The most frequently examined grandchild outcomes were autism spectrum disorder (N = 6) and attention-deficit/hyperactivity disorder (N = 4). Among these studies, grandparental smoking and the use of diethylstilbestrol were more consistently reported to be associated with neurodevelopmental disorders, while the findings for grandparental age vary across the maternal or paternal line. Grandmaternal weight, adverse delivery outcomes, and other spatial-temporal markers of physical and social environmental stressors require further scrutiny. The current body of literature has suggested that mental and neurodevelopmental disorders may be outcomes of unfavorable exposures originating from the grandparental generation during their pregnancies. To advance the field, we recommend research efforts into setting up multigenerational studies with prospectively collected data that span through at least three generations, incorporating spatial, environmental, and biological markers for exposure assessment, expanding the outcome phenotypes evaluated, and developing a causal analytical framework including mediation analyses specific for multigenerational research.
Collapse
Affiliation(s)
- Jingyuan Xiao
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, USA
- Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, USA
| | - Anushka Jain
- Department of Social Behavioral Sciences, Yale School of Public Health, New Haven, USA
| | - Giselle Bellia
- Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, USA
| | - Kate Nyhan
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, USA
| | - Zeyan Liew
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, USA.
- Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, USA.
| |
Collapse
|
13
|
Svensson K, Gennings C, Lindh C, Kiviranta H, Rantakokko P, Wikström S, Bornehag CG. Prenatal exposures to mixtures of endocrine disrupting chemicals and sex-specific associations with children's BMI and overweight at 5.5 years of age in the SELMA study. ENVIRONMENT INTERNATIONAL 2023; 179:108176. [PMID: 37672941 DOI: 10.1016/j.envint.2023.108176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND Prenatal exposure to mixtures of endocrine disrupting chemicals (EDC) has the potential to disrupt human metabolism. Prenatal periods are especially sensitive as many developmental processes are regulated by hormones. Prenatal exposure to EDCs has inconsistently been associated with children's body mass index (BMI) and obesity. The objective of this study was to investigate if prenatal exposure to a mixture of EDCs was associated with children's BMI and overweight (ISO-BMI ≥ 25) at 5.5 years of age, and if there were sex-specific effects. METHODS A total of 1,105 mother-child pairs with complete data on prenatal EDCs concentrations (e.g., phthalates, non-phthalate plasticizers, phenols, PAH, pesticides, PFAS, organochlorine pesticides, and PCBs), children's measured height and weight, and selected covariates in the Swedish Environmental Longitudinal, Mother and child, Asthma and allergy (SELMA) study were included in this analysis. The mixture effect of EDCs with children's BMI and overweight was assessed using WQS regression with 100 repeated holdouts. A positively associated WQS index with higher BMI and odds of overweight was derived. Models with interaction term and stratified weights by sex was applied in order to evaluate sex-specific associations. RESULTS A significant WQS*sex interaction term was identified and associations for boys and girls were in opposite directions. Higher prenatal exposure to a mixture of EDCs was associated with lower BMI (Mean β = -0.19, 95%CI: -0.40, 0.01) and lower odds of overweight (Mean OR = 0.72, 95%CI: 0.48, 1.04) among girls with borderline significance. However, the association among boys did not reach statistical significance. Among girls, the possible chemicals of concern were MEP, 2-OHPH, BPF, BPS, DPP and PFNA. CONCLUSION Prenatal exposure to a mixture of EDCs was associated with lower BMI and overweight among girls, and non-significant associations among boys. Chemicals of concern for girls included phthalates, non-phthalate plasticizers, bisphenols, PAHs, and PFAS.
Collapse
Affiliation(s)
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christian Lindh
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Hannu Kiviranta
- Environmental Health Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Panu Rantakokko
- Environmental Health Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Sverre Wikström
- Department of Health Sciences, Karlstad University, Karlstad, Sweden; Centre for Clinical Research and Education, County Council of Värmland, Sweden; School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Carl-Gustaf Bornehag
- Department of Health Sciences, Karlstad University, Karlstad, Sweden; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
14
|
Plattard N, Gnanasegaran R, Krekesheva A, Carato P, Dupuis A, Migeot V, Albouy M, Haddad S, Venisse N. Quantification of the Conjugated Forms of Dichlorobisphenol A (3,3'-Cl 2 BPA) in Rat and Human Plasma Using HPLC-MS/MS. Ther Drug Monit 2023; 45:554-561. [PMID: 36649713 DOI: 10.1097/ftd.0000000000001074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/28/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND Bisphenol A (BPA) is a ubiquitous contaminant that has endocrine-disrupting effects. Chlorinated derivatives of BPA are formed during chlorination of drinking water and have higher endocrine-disrupting activity. Dichlorobisphenol A (Cl 2 BPA) is the most abundant chlorinated BPA derivative found in several human biological matrices. Recent in vitro experiments have shown that Cl 2 BPA is metabolized in sulpho- and glucuro-conjugated compounds. To date, no assay has been developed to quantify the sulfo- and glucuro-conjugates of 3,3'-Cl 2 BPA (3,3'-Cl 2 BPA-S and 3,3'-Cl 2 BPA-G, respectively). METHODS A high-performance liquid chromatography-tandem mass spectrometry assay for the determination of 3,3'-Cl 2 BPA conjugated forms in plasma samples was developed and validated according to the European Medicines Agency guidelines. Quantification was performed in the multiple reaction monitoring mode for all target analytes using a SCIEX 6500 + tandem mass spectrometer with an electrospray source operating in the negative ionization mode. Chromatographic separation was achieved using a C18 column maintained at 40°C and a binary mobile phase delivered in the gradient mode at a flow rate of 0.35 mL/min. Sample was prepared via simple precipitation using acetonitrile. The assay was validated and applied to rat and human plasma samples. RESULTS Linearity was demonstrated over the range of 0.006-25 ng/mL for 3,3'-Cl 2 BPA-G and 0.391-100 ng/mL for 3,3'-Cl 2 BPA-S. Intraday and interday bias values were in the 95%-109% range, and the imprecision <9%. Internal standard corrected matrix effects were also investigated. This method enabled quantification of the conjugated forms of 3,3'-Cl 2 BPA in plasma samples. CONCLUSIONS This is the first report on the development and validation of an analytical method for the quantification of 3,3'-Cl 2 BPA-G and 3,3'-Cl 2 BPA-S in the plasma matrix. This study is also the first report on the in vivo occurrence of these metabolites.
Collapse
Affiliation(s)
- Noemie Plattard
- Department of Environmental and Occupational Health, School of Public Health, CresP, Université de Montréal, Montreal, Quebec, Canada
- CHU Poitiers, INSERM CIC1402, Université de Poitiers, CNRS 7267 EBI, Poitiers, France; and
| | - Riciga Gnanasegaran
- CHU Poitiers, INSERM CIC1402, Université de Poitiers, CNRS 7267 EBI, Poitiers, France; and
| | - Aida Krekesheva
- CHU Poitiers, INSERM CIC1402, Université de Poitiers, CNRS 7267 EBI, Poitiers, France; and
| | - Pascal Carato
- CHU Poitiers, INSERM CIC1402, Université de Poitiers, CNRS 7267 EBI, Poitiers, France; and
| | - Antoine Dupuis
- CHU Poitiers, INSERM CIC1402, Université de Poitiers, CNRS 7267 EBI, Poitiers, France; and
- Biology-Pharmacy-Public Health Department, CHU de Poitiers, Poitiers Cedex, France
| | - Virginie Migeot
- CHU Poitiers, INSERM CIC1402, Université de Poitiers, CNRS 7267 EBI, Poitiers, France; and
- Biology-Pharmacy-Public Health Department, CHU de Poitiers, Poitiers Cedex, France
| | - Marion Albouy
- CHU Poitiers, INSERM CIC1402, Université de Poitiers, CNRS 7267 EBI, Poitiers, France; and
- Biology-Pharmacy-Public Health Department, CHU de Poitiers, Poitiers Cedex, France
| | - Sami Haddad
- Department of Environmental and Occupational Health, School of Public Health, CresP, Université de Montréal, Montreal, Quebec, Canada
| | - Nicolas Venisse
- CHU Poitiers, INSERM CIC1402, Université de Poitiers, CNRS 7267 EBI, Poitiers, France; and
- Biology-Pharmacy-Public Health Department, CHU de Poitiers, Poitiers Cedex, France
| |
Collapse
|
15
|
Heindel JJ, Alvarez JA, Atlas E, Cave MC, Chatzi VL, Collier D, Corkey B, Fischer D, Goran MI, Howard S, Kahan S, Kayhoe M, Koliwad S, Kotz CM, La Merrill M, Lobstein T, Lumeng C, Ludwig DS, Lustig RH, Myers P, Nadal A, Trasande L, Redman LM, Rodeheffer MS, Sargis RM, Stephens JM, Ziegler TR, Blumberg B. Obesogens and Obesity: State-of-the-Science and Future Directions Summary from a Healthy Environment and Endocrine Disruptors Strategies Workshop. Am J Clin Nutr 2023; 118:329-337. [PMID: 37230178 PMCID: PMC10731763 DOI: 10.1016/j.ajcnut.2023.05.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
On September 7 and 8, 2022, Healthy Environment and Endocrine Disruptors Strategies, an Environmental Health Sciences program, convened a scientific workshop of relevant stakeholders involved in obesity, toxicology, or obesogen research to review the state of the science regarding the role of obesogenic chemicals that might be contributing to the obesity pandemic. The workshop's objectives were to examine the evidence supporting the hypothesis that obesogens contribute to the etiology of human obesity; to discuss opportunities for improved understanding, acceptance, and dissemination of obesogens as contributors to the obesity pandemic; and to consider the need for future research and potential mitigation strategies. This report details the discussions, key areas of agreement, and future opportunities to prevent obesity. The attendees agreed that environmental obesogens are real, significant, and a contributor at some degree to weight gain at the individual level and to the global obesity and metabolic disease pandemic at a societal level; moreover, it is at least, in theory, remediable.
Collapse
Affiliation(s)
- Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Boseman, Montana, United States.
| | - Jessica A Alvarez
- Department of Medicine, Emory University, Atlanta, GA, United States
| | | | - Matthew C Cave
- Department of Medicine, Pharmacology and Toxicology, Biochemistry and Molecular Genetics, University of Louisville, Lousiville, KY, United States
| | - Vaia Lida Chatzi
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - David Collier
- Department of Pediatrics, East Carolina University, Greenville, NC, United States
| | - Barbara Corkey
- Chobanian and Avedesian School of Medicine, Boston University, Boston, MA, United States
| | | | - Michael I Goran
- Department of Pediatrics, Keck School of Medicine, USC, Los Angeles, CA, United States
| | - Sarah Howard
- Healthy Environment and Endocrine Disruptor Strategies, Boseman, Montana, United States
| | - Scott Kahan
- National Center for Weight and Wellness, Johns Hopkins Blumberg School of Public Health, Baltimore, MD, United States
| | | | - Suneil Koliwad
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Catherine M Kotz
- Department of Integrative Biology and Physiology, University of Minnesota and Minneapolis VA Health Care System, Minneapolis, MN, United States
| | - Michele La Merrill
- Department of Environmental Toxicology, University of California, Davis, CA, United States
| | - Tim Lobstein
- World Obesity Federation, London, United Kingdom
| | - Carey Lumeng
- Department of Pediatrics, University of Michigan Medical School, University of Michigan, Ann Arbor, MI, United States
| | - David S Ludwig
- New Balance Foundation Obesity Prevention Center, Boston Children's Hospital, Boston, MA, United States
| | - Robert H Lustig
- Department of Physiology, Miguel Hernandez University of Elche, Elche, Spain
| | - Pete Myers
- Environmental Health Sciences, Boseman, MT, United States
| | - Angel Nadal
- Department of Physiology, Miguel Hernandez University of Elche, Elche, Spain
| | - Leonardo Trasande
- Department of Pediatrics, New York University Langone Health, New York, NY, United States; Department of Population Health, New York University Langone Health, New York, NY, United States
| | - Leanne M Redman
- Department of Reproductive Endocrinology & Women's Health, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Matthew S Rodeheffer
- Department of Comparative Medicine, Yale University, New Haven, CT, United States
| | - Robert M Sargis
- Department of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, United States
| | - Jacqueline M Stephens
- Department of Pediatrics, New York University Langone Health, New York, NY, United States
| | - Thomas R Ziegler
- Department of Medicine, Emory University, Atlanta, GA, United States
| | - Bruce Blumberg
- Department of Developmental and Cell BiologyUniversity of California Irvine, Irvine, CA, United States
| |
Collapse
|
16
|
El Mouchtari EM, El Mersly L, Belkodia K, Piram A, Lebarillier S, Briche S, Rafqah S, Wong-Wah-Chung P. Sol-Gel Synthesis of New TiO 2 Ball/Activated Carbon Photocatalyst and Its Application for Degradation of Three Hormones: 17α-EthinylEstradiol, Estrone, and β-Estradiol. TOXICS 2023; 11:299. [PMID: 37112526 PMCID: PMC10143179 DOI: 10.3390/toxics11040299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Many approaches have been investigated to eliminate pharmaceuticals in wastewater treatment plants during the last decades. However, a lack of sustainable and efficient solutions exists for the removal of hormones by advanced oxidation processes. The aim of this study was to synthesize and test new photoactive bio composites for the elimination of these molecules in wastewater effluents. The new materials were obtained from the activated carbon (AC) of Arganian spinosa tree nutshells and titanium tetrachloride by the sol gel method. SEM analysis allowed one to confirm the formation of TiO2 particles homogeneously dispersed at the surface of AC with a controlled titanium dioxide mass ratio, a specific TiO2 anatase structure, and a highly specific surface area, evidenced by ATG, XRD, and BET analysis, respectively. The obtained composites were revealed to quantitatively absorb carbamazepine (CBZ), which is used as a referred pharmaceutical, and leading to its total elimination after 40 min under irradiation with the most effective material. TiO2 high content disfavors CBZ adsorption but improves its degradation. In the presence of the composite, three hormones (17α-ethinylestradiol, estrone, and β-estradiol) are partially adsorbed onto the composite and totally degraded after 60 min under UV light exposure. This study constitutes a promising solution for the efficient treatment of wastewater contaminated by hormones.
Collapse
Affiliation(s)
- El Mountassir El Mouchtari
- Laboratoire Chimie Analytique et Moléculaire (LCAM), Faculté Polydisciplinaire de Safi, Université Cadi Ayyad, Marrakech 40000, Morocco; (E.M.E.M.)
- Laboratoire Chimie Environnement (LCE), Centre National de la Recherche Scientifique (CNRS), Aix-Marseille University, 13000 Marseille, France
| | - Lekbira El Mersly
- Laboratoire Chimie Analytique et Moléculaire (LCAM), Faculté Polydisciplinaire de Safi, Université Cadi Ayyad, Marrakech 40000, Morocco; (E.M.E.M.)
| | - Kaltoum Belkodia
- Laboratoire Chimie Analytique et Moléculaire (LCAM), Faculté Polydisciplinaire de Safi, Université Cadi Ayyad, Marrakech 40000, Morocco; (E.M.E.M.)
| | - Anne Piram
- Laboratoire Chimie Environnement (LCE), Centre National de la Recherche Scientifique (CNRS), Aix-Marseille University, 13000 Marseille, France
| | - Stéphanie Lebarillier
- Laboratoire Chimie Environnement (LCE), Centre National de la Recherche Scientifique (CNRS), Aix-Marseille University, 13000 Marseille, France
| | - Samir Briche
- Département Stockage de l’Energie et Revêtements Multifonctionnels (SERM), Moroccan Foundation for Advanced Science Innovation and Research (MAScIR), Rabat 10100, Morocco
| | - Salah Rafqah
- Laboratoire Chimie Analytique et Moléculaire (LCAM), Faculté Polydisciplinaire de Safi, Université Cadi Ayyad, Marrakech 40000, Morocco; (E.M.E.M.)
| | - Pascal Wong-Wah-Chung
- Laboratoire Chimie Environnement (LCE), Centre National de la Recherche Scientifique (CNRS), Aix-Marseille University, 13000 Marseille, France
| |
Collapse
|
17
|
Kello E, Vieira AR, Rivas-Tumanyan S, Campos-Rivera M, Martinez-Gonzalez KG, Buxó CJ, Morou-Bermúdez E. Pre- and peri-natal hurricane exposure alters DNA methylation patterns in children. Sci Rep 2023; 13:3875. [PMID: 36890172 PMCID: PMC9995354 DOI: 10.1038/s41598-023-30645-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 02/27/2023] [Indexed: 03/10/2023] Open
Abstract
Hurricane Maria was the worst recorded natural disaster to affect Puerto Rico. Increased stress in pregnant women during and in the aftermath of the hurricane may have induced epigenetic changes in their infants, which could affect gene expression. Stage of gestation at the time of the event was associated with significant differences in DNA methylation in the infants, especially those who were at around 20-25 weeks of gestation when the hurricane struck. Significant differences in DNA methylation were also associated with maternal mental status assessed after the hurricane, and with property damage. Hurricane Maria could have long lasting consequences to children who were exposed to this disaster during pregnancy.
Collapse
Affiliation(s)
- Erin Kello
- University of Pittsburgh, Pittsburgh, USA
| | | | | | | | | | - Carmen J Buxó
- University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | | |
Collapse
|
18
|
Sheffield PE. Mental health and climate change: The critical window of pregnancy. Int J Gynaecol Obstet 2023; 160:383-384. [PMID: 36271702 DOI: 10.1002/ijgo.14501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 01/20/2023]
Affiliation(s)
- Perry E Sheffield
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
19
|
Association between perfluoroalkyl substances exposure and the prevalence of nonalcoholic fatty liver disease in the different sexes: a study from the National Health and Nutrition Examination Survey 2005-2018. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:44292-44303. [PMID: 36692718 DOI: 10.1007/s11356-023-25258-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/07/2023] [Indexed: 01/25/2023]
Abstract
There is evidence that perfluoroalkyl substances (PFASs) have effects on liver toxicity, and the effects may exhibit sex differences. Our study aims to explore the association between exposure to four PFASs (perfluorooctanoic acid, PFOA; perfluorooctane sulfonate, PFOS; perfluorohexane sulfonate, PFHxS; and perfluorononanoate, PFNA) and the risk of nonalcoholic fatty liver disease (NAFLD) in adults ≥ 20 years old in the US population. The data were based on the National Health and Nutrition Examination Survey (NHANES) 2005-2018. We used Poisson regression to explore the association between the four PFASs and NAFLD. We included 3464 participants; of these, 1200 (34.64%) individuals were defined as having NAFLD, and the prevalence of NAFLD was 39.52% in men and 30.40% in women. After Poisson regression, among the premenopausal and postmenopausal and total women, PFOA had a significantly positive association with NAFLD (p < 0.05). After principal component analysis, the "composite PFAS" was associated with NAFLD in postmenopausal and total women, and the RRs (95% CIs) were 1.306 (1.075, 1.586) and 1.161 (1.007, 1.339), respectively. In adults, we found that PFASs were associated with NAFLD, and the associations varied by sex, particularly for PFOA and PFNA, which had a positive association with NAFLD in women.
Collapse
|
20
|
Holladay SD. Environmental contaminants, endocrine disruption, and transgender: Can "born that way" in some cases be toxicologically real? Hum Exp Toxicol 2023; 42:9603271231203382. [PMID: 37751728 DOI: 10.1177/09603271231203382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Gender is viewed by many as strictly binary based on a collection of body traits typical of a female or male phenotype, presence of a genotype that includes at least one copy of a Y chromosome, or ability to produce either egg or sperm cells. A growing non-binary view is that these descriptors, while compelling, may nonetheless fail to accurately capture an individual's true gender. The position of the American Psychological Association (APA) agrees with this view and is that transgender people are a defendable and real part of the human population. The considerable diversity of transgender expression then argues against any unitary or simple explanations, however, prenatal hormone levels, genetic influences, and early and later life experiences have been suggested as playing roles in development of transgender identities. The present review considers existing and emerging toxicologic data that may also support an environmental chemical contribution to some transgender identities, and suggest the possibility of a growing nonbinary brain gender continuum in the human population.
Collapse
Affiliation(s)
- Steven David Holladay
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
21
|
Land KL, Miller FG, Fugate AC, Hannon PR. The effects of endocrine-disrupting chemicals on ovarian- and ovulation-related fertility outcomes. Mol Reprod Dev 2022; 89:608-631. [PMID: 36580349 PMCID: PMC10100123 DOI: 10.1002/mrd.23652] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/21/2022]
Abstract
Exposure to endocrine-disrupting chemicals (EDCs) is unavoidable, which represents a public health concern given the ability of EDCs to target the ovary. However, there is a large gap in the knowledge about the impact of EDCs on ovarian function, including the process of ovulation. Defects in ovulation are the leading cause of infertility in women, and EDC exposures are contributing to the prevalence of infertility. Thus, investigating the effects of EDCs on the ovary and ovulation is an emerging area for research and is the focus of this review. The effects of EDCs on gametogenesis, uterine function, embryonic development, and other aspects of fertility are not addressed to focus on ovarian- and ovulation-related fertility issues. Herein, findings from epidemiological and basic science studies are summarized for several EDCs, including phthalates, bisphenols, per- and poly-fluoroalkyl substances, flame retardants, parabens, and triclosan. Epidemiological literature suggests that exposure is associated with impaired fecundity and in vitro fertilization outcomes (decreased egg yield, pregnancies, and births), while basic science literature reports altered ovarian follicle and corpora lutea numbers, altered hormone levels, and impaired ovulatory processes. Future directions include identification of the mechanisms by which EDCs disrupt ovulation leading to infertility, especially in women.
Collapse
Affiliation(s)
- Katie L. Land
- Department of Obstetrics & Gynecology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Frances G. Miller
- Department of Obstetrics & Gynecology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Ava C. Fugate
- Department of Obstetrics & Gynecology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Patrick R. Hannon
- Department of Obstetrics & Gynecology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| |
Collapse
|
22
|
Gaylord A, Kannan K, Lakuleswaran M, Zhu H, Ghassabian A, Jacobson MH, Long S, Liu H, Afanasyeva Y, Kahn LG, Gu B, Liu M, Mehta-Lee SS, Brubaker SG, Trasande L. Variability and correlations of synthetic chemicals in urine from a New York City-based cohort of pregnant women. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119774. [PMID: 35841991 PMCID: PMC9600950 DOI: 10.1016/j.envpol.2022.119774] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/05/2022] [Accepted: 07/10/2022] [Indexed: 05/19/2023]
Abstract
Fetal exposure to environmental chemicals has been associated with adverse health outcomes in children and later into adulthood. While several studies have examined correlations and variability of non-persistent chemical exposures throughout pregnancy, many do not capture more recent exposures, particularly in New York City. Our goal was to characterize exposure to phthalates, bisphenols, polycyclic aromatic hydrocarbons, and organophosphate pesticides among pregnant women residing in New York City who enrolled in the New York University Children's Health and Environment Study (NYU CHES) between 2016 and 2018. We measured urinary chemical metabolite concentrations in 671 women at early, mid, and late pregnancy (median 10.8, 20.8, and 29.3 weeks, respectively). We calculated Spearman correlation coefficients among chemical concentrations at each measurement time point. We compared changes in population-level urinary metabolites at each stage using paired Wilcoxon signed-rank tests and calculated intraclass correlation coefficients (ICCs) to quantify intra-individual variability of metabolites across pregnancy. Geometric means and ICCs were compared to nine other pregnancy cohorts that recruited women in 2011 or later as well as nationally reported levels from women of child-bearing age. Compared with existing cohorts, women in NYU CHES had higher geometric means of organophosphate pesticides (Σdiethylphosphates = 28.7 nmol/g cr, Σdimethylphosphates = 57.3 nmol/g cr, Σdialkyl phosphates = 95.9 nmol/g cr), bisphenol S (0.56 μg/g cr), and 2-naphthalene (8.98 μg/g cr). Five PAH metabolites and two phthalate metabolites increased between early to mid and early to late pregnancy at the population level. Spearman correlation coefficients for chemical metabolites were generally below 0.50. Intra-individual exposures varied over time, as indicated by low ICCs (0.22-0.88, median = 0.38). However, these ICCs were often higher than those observed in other pregnancy cohorts. These results provide a general overview of the chemical metabolites measured in NYU CHES in comparison to other contemporary pregnancy cohorts and highlight directions for future studies.
Collapse
Affiliation(s)
- Abigail Gaylord
- Department of Population Health, New York University School of Medicine, New York, NY, USA.
| | - Kurunthachalam Kannan
- Department of Pediatrics, New York University School of Medicine, New York, NY, USA; Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Mathusa Lakuleswaran
- Department of Pediatrics, New York University School of Medicine, New York, NY, USA
| | - Hongkai Zhu
- Department of Pediatrics, New York University School of Medicine, New York, NY, USA
| | - Akhgar Ghassabian
- Department of Population Health, New York University School of Medicine, New York, NY, USA; Department of Pediatrics, New York University School of Medicine, New York, NY, USA; Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Melanie H Jacobson
- Department of Pediatrics, New York University School of Medicine, New York, NY, USA
| | - Sara Long
- Department of Pediatrics, New York University School of Medicine, New York, NY, USA
| | - Hongxiu Liu
- Department of Pediatrics, New York University School of Medicine, New York, NY, USA; Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
| | - Yelena Afanasyeva
- Department of Population Health, New York University School of Medicine, New York, NY, USA; Department of Pediatrics, New York University School of Medicine, New York, NY, USA
| | - Linda G Kahn
- Department of Population Health, New York University School of Medicine, New York, NY, USA; Department of Pediatrics, New York University School of Medicine, New York, NY, USA
| | - Bo Gu
- Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Mengling Liu
- Department of Population Health, New York University School of Medicine, New York, NY, USA; Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Shilpi S Mehta-Lee
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY, USA
| | - Sara G Brubaker
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY, USA
| | - Leonardo Trasande
- Department of Population Health, New York University School of Medicine, New York, NY, USA; Department of Pediatrics, New York University School of Medicine, New York, NY, USA; Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA; New York University Wagner School of Public Service, New York, NY, USA; New York University College of Global Public Health, New York, NY, USA
| |
Collapse
|
23
|
Wu R, Chen X, Wu H, Hu Y, Wang G, Wang H, Yang B, Fu J, Gao Y, Pi J, Xu Y. Nrf2 activation contributes to hepatic tumor-augmenting effects of developmental arsenic exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155685. [PMID: 35523338 DOI: 10.1016/j.scitotenv.2022.155685] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
Developmental arsenic exposure increases cancer risk in later life with the mechanism elusive. Oxidative stress is a dominant determinant in arsenic toxicity. However, the role of Nrf2, a key regulator in antioxidative response, in tumor-augmenting effects by developmental arsenic exposure is unclear. In the present study, wild-type C57BL/6J and Nrf2-konckout (Nrf2-KO) were developmentally exposed to inorganic arsenic via drinking water. For hepatic tumorigenesis analysis, mice were intraperitoneally injected with diethylnitrosamine (DEN) at two weeks of age. Developmental arsenic exposure aggravated tumor multiplicity and burden, and expression of PCNA and AFP in hepatic tumors induced by DEN. Nrf2 activation as indicated by over-expression of Nrf2 and its downstream genes, including Gss, Gsr, p62, Gclc and Gclm, was found in liver tumors, as well as in the livers in developmentally arsenic-exposed pups at weaning. Notably, Nrf2 deficiency attenuated tumor-augmenting effects and over-expression of Nrf2 downstream genes due to developmental arsenic exposure. Furthermore, the levels of urinary DEN metabolite (acetaldehyde) and hepatic DNA damage markers (O6-ethyl-2-deoxyguanosine adducts and γ-histone H2AX) after DEN treatment were elevated by Nrf2 agonist, 2-Cyano-3,12-dioxooleana-1,9-dien-28-imidazolide. Collectively, our data suggest that augmentation of DEN-induced hepatic tumorigenesis by developmental arsenic exposure is dependent on Nrf2 activation, which may be related to the role of Nrf2 in DEN metabolic activation. Our findings reveal, at least in part, the mechanism underlying increased susceptibility to developing cancer due to developmental arsenic exposure.
Collapse
Affiliation(s)
- Ruirui Wu
- School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Xin Chen
- School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Hengchao Wu
- School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Yuxin Hu
- School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Gang Wang
- School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Huihui Wang
- School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Bei Yang
- College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Jingqi Fu
- School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
| | - Jingbo Pi
- School of Public Health, China Medical University, Shenyang, Liaoning, China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, Liaoning, China
| | - Yuanyuan Xu
- School of Public Health, China Medical University, Shenyang, Liaoning, China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
24
|
Lizé M, Monfort C, Rouget F, Limon G, Durand G, Tillaut H, Chevrier C. Prenatal exposure to organophosphate pesticides and autism spectrum disorders in 11-year-old children in the French PELAGIE cohort. ENVIRONMENTAL RESEARCH 2022; 212:113348. [PMID: 35500857 DOI: 10.1016/j.envres.2022.113348] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/25/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Organophosphate (OP) pesticides act by inhibiting acetylcholinesterase activity at synaptic junctions and have already been linked with deleterious effects on neurodevelopment, including autism spectrum disorders (ASD). OBJECTIVES To investigate the association of prenatal exposure to OP pesticides with traits related to ASD in 11-year-old children. METHODS The "Childhood Autism Spectrum Test" (CAST) parent questionnaire was used to screen for autistic traits in 792 children from the French PELAGIE cohort. Prenatal maternal urine samples were collected <19 weeks of gestation in which metabolites of organophosphate insecticides were assessed for 185 of them. Negative binomial regression models were performed to explore the association between the CAST score and 8 groups of urine components, adjusted for potential ASD risk factors. RESULTS In these urine samples, dialkylphosphates (DAP) were detected most often (>80%), terbufos and its metabolites least often (<10%). No association with ASD was found for DAP, terbufos or its metabolites. Incidence rate ratios (IRRs) increased with maternal urinary diazinon concentrations, from 1.11 (95% CI: 0.87-1.42) to 1.17 (95% CI: 0.94-1.46). Higher CAST scores were statistically significantly associated with the maternal urine samples in which chlorpyrifos or two of its metabolites (chlorpyrifos-oxon and 3,5,6-trichloro-2-pyridinol) were detected. The IRR for exposure to chlorpyrifos or chlorpyrifos-oxon was 1.27 (95%CI: 1.05-1.52) among all children, and 1.39 (95%CI: 1.07-1.82) among boys. CONCLUSION These findings suggest an increase in autistic traits among 11-year-old children in association with prenatal maternal exposure to chlorpyrifos and possibly diazinon. These associations were previously suspected in the literature, in particular for chlorpyrifos. Further work establishing the causal mechanisms behind these risk association is needed.
Collapse
Affiliation(s)
- Mathilde Lizé
- Université Rennes 1, CHU Rennes, Irset (institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France.
| | - Christine Monfort
- Université Rennes 1, CHU Rennes, Irset (institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France.
| | - Florence Rouget
- CHU Rennes, Université Rennes 1, Inserm, EHESP, Irset (institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000 Rennes, France.
| | - Gwendolina Limon
- LABOCEA (Laboratoire public Conseil, Expertise et Analyse in Brittany), F-29280, Plouzané, France.
| | - Gaël Durand
- LABOCEA (Laboratoire public Conseil, Expertise et Analyse in Brittany), F-29280, Plouzané, France.
| | - Hélène Tillaut
- Université Rennes 1, Inserm, EHESP, Irset (institut de Recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France.
| | - Cécile Chevrier
- Université Rennes 1, Inserm, EHESP, Irset (institut de Recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France.
| |
Collapse
|
25
|
Gao H, Geng ML, Gan H, Huang K, Zhang C, Zhu BB, Sun L, Wu X, Zhu P, Tao FB. Prenatal single and combined exposure to phthalates associated with girls' BMI trajectory in the first six years. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113837. [PMID: 36068761 DOI: 10.1016/j.ecoenv.2022.113837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Evidence of the influence of prenatal phthalate exposure on childhood longitudinal obesity markers is limited. Nested on the Ma'anshan birth cohort study, 990 mother-daughter pairs were included. Seven phthalate metabolites were determined in urine collected in each trimester. Each child underwent a physical examination from birth to 6 years of age twelve times. Latent class growth models were used to identify three trajectories of girls' body mass index (BMI). Logistic regression, quantile g-computation and Bayesian kernel machine regression models analyzed the relationships of prenatal exposure to individual and mixed phthalates with girls' body mass index (BMI) trajectory. Compared to the "lowest trajectory" class, prenatal average concentrations of mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP, ORcrude = 2.095, 95 % CI = 1.014-4.328) and di(2-ethylhexyl) phthalate (DEHP, ORcrude = 2.336, 95 % CI = 1.022-5.338) during pregnancy were associated with an increased probability of being in the "highest trajectory" class. The average concentration of DEHP (ORcrude = 1.879, 95 % CI = 1.002-3.522) was associated with an increased probability of being in the "moderate trajectory" class. Stratified analyses by trimester of pregnancy mainly showed that third-trimester exposure to monoethyl phthalate (MEP, ORadjusted = 1.584, 95 % CI = 1.094-2.292), mono(2-ethyl-5-oxohexyl) phthalate (MEOHP, ORadjusted = 2.885, 95 % CI = 1.367-6.088), MEHHP (ORadjusted = 2.425, 95 % CI = 1.335-4.407), DEHP (ORadjusted = 2.632, 95 % CI = 1.334-5.193) and high molecular weight phthalate (ORadjusted = 2.437, 95 % CI = 1.239-4.792) was associated with an increased probability of being in the "highest trajectory" class. However, the mixture of phthalates was not significantly related to the girl's BMI trajectory. In conclusion, in utero exposure to phthalates, including MEP and DEHP metabolites (MEHHP and MEOHP), was significantly associated with early childhood high BMI trajectories in girls. The third trimester of pregnancy seemed to be the window of vulnerability to phthalate exposure for girls' high BMI trajectory at periods of prenatal development. No evidence supported a significant relationship between combined exposure to phthalate metabolites and girls' high BMI trajectory.
Collapse
Affiliation(s)
- Hui Gao
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Meng-Long Geng
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Hong Gan
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Kun Huang
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Cheng Zhang
- Anhui Provincial Cancer Institute, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Bei-Bei Zhu
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No. 81 Meishan Road, Hefei 230032, Anhui, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Li Sun
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Xiulong Wu
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Peng Zhu
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Fang-Biao Tao
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No. 81 Meishan Road, Hefei 230032, Anhui, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
26
|
Heindel JJ, Howard S, Agay-Shay K, Arrebola JP, Audouze K, Babin PJ, Barouki R, Bansal A, Blanc E, Cave MC, Chatterjee S, Chevalier N, Choudhury M, Collier D, Connolly L, Coumoul X, Garruti G, Gilbertson M, Hoepner LA, Holloway AC, Howell G, Kassotis CD, Kay MK, Kim MJ, Lagadic-Gossmann D, Langouet S, Legrand A, Li Z, Le Mentec H, Lind L, Monica Lind P, Lustig RH, Martin-Chouly C, Munic Kos V, Podechard N, Roepke TA, Sargis RM, Starling A, Tomlinson CR, Touma C, Vondracek J, Vom Saal F, Blumberg B. Obesity II: Establishing causal links between chemical exposures and obesity. Biochem Pharmacol 2022; 199:115015. [PMID: 35395240 PMCID: PMC9124454 DOI: 10.1016/j.bcp.2022.115015] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023]
Abstract
Obesity is a multifactorial disease with both genetic and environmental components. The prevailing view is that obesity results from an imbalance between energy intake and expenditure caused by overeating and insufficient exercise. We describe another environmental element that can alter the balance between energy intake and energy expenditure: obesogens. Obesogens are a subset of environmental chemicals that act as endocrine disruptors affecting metabolic endpoints. The obesogen hypothesis posits that exposure to endocrine disruptors and other chemicals can alter the development and function of the adipose tissue, liver, pancreas, gastrointestinal tract, and brain, thus changing the set point for control of metabolism. Obesogens can determine how much food is needed to maintain homeostasis and thereby increase the susceptibility to obesity. The most sensitive time for obesogen action is in utero and early childhood, in part via epigenetic programming that can be transmitted to future generations. This review explores the evidence supporting the obesogen hypothesis and highlights knowledge gaps that have prevented widespread acceptance as a contributor to the obesity pandemic. Critically, the obesogen hypothesis changes the narrative from curing obesity to preventing obesity.
Collapse
Affiliation(s)
- Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, USA.
| | - Sarah Howard
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, USA
| | - Keren Agay-Shay
- Health and Environment Research (HER) Lab, The Azrieli Faculty of Medicine, Bar Ilan University, Israel
| | - Juan P Arrebola
- Department of Preventive Medicine and Public Health University of Granada, Granada, Spain
| | - Karine Audouze
- Department of Systems Biology and Bioinformatics, University of Paris, INSERM, T3S, Paris France
| | - Patrick J Babin
- Department of Life and Health Sciences, University of Bordeaux, INSERM, Pessac France
| | - Robert Barouki
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Amita Bansal
- College of Health & Medicine, Australian National University, Canberra, Australia
| | - Etienne Blanc
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Matthew C Cave
- Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY 40402, USA
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, University of South Carolina, Columbia, SC 29208, USA
| | - Nicolas Chevalier
- Obstetrics and Gynecology, University of Cote d'Azur, Cote d'Azur, France
| | - Mahua Choudhury
- College of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - David Collier
- Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Lisa Connolly
- The Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast, Northern Ireland, UK
| | - Xavier Coumoul
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Gabriella Garruti
- Department of Endocrinology, University of Bari "Aldo Moro," Bari, Italy
| | - Michael Gilbertson
- Occupational and Environmental Health Research Group, University of Stirling, Stirling, Scotland
| | - Lori A Hoepner
- Department of Environmental and Occupational Health Sciences, School of Public Health, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Alison C Holloway
- McMaster University, Department of Obstetrics and Gynecology, Hamilton, Ontario, CA, USA
| | - George Howell
- Center for Environmental Health Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Christopher D Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA
| | - Mathew K Kay
- College of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - Min Ji Kim
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | | | - Sophie Langouet
- Univ Rennes, INSERM EHESP, IRSET UMR_5S 1085, 35000 Rennes, France
| | - Antoine Legrand
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Zhuorui Li
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Helene Le Mentec
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Lars Lind
- Clinical Epidemiology, Department of Medical Sciences, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - P Monica Lind
- Occupational and Environmental Medicine, Department of Medical Sciences, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Robert H Lustig
- Division of Endocrinology, Department of Pediatrics, University of California San Francisco, CA 94143, USA
| | | | - Vesna Munic Kos
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Normand Podechard
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Troy A Roepke
- Department of Animal Science, School of Environmental and Biological Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Robert M Sargis
- Division of Endocrinology, Diabetes and Metabolism, The University of Illinois at Chicago, Chicago, Il 60612, USA
| | - Anne Starling
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Craig R Tomlinson
- Norris Cotton Cancer Center, Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Charbel Touma
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Jan Vondracek
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Frederick Vom Saal
- Division of Biological Sciences, The University of Missouri, Columbia, MO 65211, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
27
|
Zhu X, Zou Y, Qi X, Sheng Y, Lv S, Yu J, Wang X, Ding G, Duan Y. 2,3',4,4',5-Pentachlorobiphenyl attenuated fast-twitch fibers and fiber size of skeletal muscle via disturbing thyroid hormone signaling and mitochondrial dynamics. J Appl Toxicol 2022; 42:1628-1638. [PMID: 35411558 DOI: 10.1002/jat.4330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 11/08/2022]
Abstract
Polychlorinated biphenyls (PCBs) affect multiple organs, and some of the effects are mediated by interfering with thyroid hormone (TH) signaling that regulates physiological processes in mammals. It remains unclear how PCBs affect skeletal muscle (SM). In our study, wistar rats were injected 2,3',4,4',5-Pentachlorobiphenyl (PCB118) intraperitoneally at 0, 10, 100, and 1,000 μg / kg / day for 13 weeks and C2C12 myoblasts were treated PCB118 (0, 0.25, 25, and 50 nM) for 24 hours or 48 hours. We found that myocyte cross sectional area (MCSA) was reduced, MyHC IIa and MyHC IIb mRNA levels significantly decreased, and muscle strength was weakened in PCB118-exposed rats. TH receptor α (TRα) and iodothyronine deiodinase type 2 (DIO2) were upregulated after PCB118 exposure both in vivo and vitro. Transmission electron microscopy showed significant mitochondrial abnormalities in PCB118-treated rats, and the expression of mitochondrial regulators such as PTEN-induced kinase 1 (PINK1) and GTPase dynamin-related protein 1 (DRP1) were altered after PCB118 exposure. These results suggest that PCB118 could weaken muscle strength and attenuate fast-twitch fibers and fiber size of SM in rats. TH signaling, mitochondrial dynamics and mitophagy were also disturbed by PCB118, which may contribute to the alternations of SM structure and function.
Collapse
Affiliation(s)
- Xiaoxia Zhu
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuxin Zou
- Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyu Qi
- Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yunlu Sheng
- Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shan Lv
- Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Yu
- Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaodong Wang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guoxian Ding
- Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Duan
- Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
28
|
Quo Vadis Psychiatry? Why It Is Time to Endorse Evolutionary Theory. J Nerv Ment Dis 2022; 210:235-245. [PMID: 35349502 DOI: 10.1097/nmd.0000000000001493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In recent decades, psychiatry and the neurosciences have made little progress in terms of preventing, diagnosing, classifying, or treating mental disorders. Here we argue that the dilemma of psychiatry and the neurosciences is, in part, based on fundamental misconceptions about the human mind, including misdirected nature-nurture debates, the lack of definitional concepts of "normalcy," distinguishing defense from defect, disregarding life history theory, evolutionarily uninformed genetic and epigenetic research, the "disconnection" of the brain from the rest of the body, and lack of attention to actual behavior in real-world interactions. All these conceptual difficulties could potentially benefit from an approach that uses evolutionary theory to improve the understanding of causal mechanisms, gene-environment interaction, individual differences in behavioral ecology, interaction between the gut (and other organs) and the brain, as well as cross-cultural and across-species comparison. To foster this development would require reform of the curricula of medical schools.
Collapse
|
29
|
Kok DE, Richmond RC, Adriaens M, Evelo CT, Ford D, Mathers JC, Robinson N, McKay JA. Impact of In Utero Folate Exposure on DNA Methylation and Its Potential Relevance for Later-Life Health-Evidence from Mouse Models Translated to Human Cohorts. Mol Nutr Food Res 2022; 66:e2100789. [PMID: 34850562 PMCID: PMC7614326 DOI: 10.1002/mnfr.202100789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/29/2021] [Indexed: 11/08/2022]
Abstract
SCOPE Persistent DNA methylation changes may mediate effects of early-life exposures on later-life health. Human lifespan is challenging for prospective studies, therefore data from longitudinal studies are limited. Projecting data from mouse models of early-life exposure to human studies offers a tool to address this challenge. METHODS AND RESULTS C57BL/6J mice were fed low/normal folate diets before and during pregnancy and lactation. Genome-wide promoter methylation was measured in male offspring livers at 17.5 days gestation and 28 weeks. Eight promoters were concurrently hypermethylated by folate depletion in fetuses and adults (>1.10 fold-change; p < 0.05). Processes/pathways potentially influenced by global changes, and function of these eight genes, suggest neurocognitive effects. Human observational and randomized controlled trial data were interrogated for translation. Methylation at birth was inversely associated with maternal plasma folate in six genes (-1.15% to -0.16% per nmol L-1 ; p < 0.05), while maternal folic acid supplementation was associated with differential methylation of four genes in adulthood. Three CpGs were persistently hypermethylated with lower maternal folate (p = 0.04). CONCLUSION Some persistent folate-induced methylation changes in mice are mirrored in humans. This demonstrates utility of mouse data in identifying human loci for interrogation as biomarkers of later-life health.
Collapse
Affiliation(s)
- Dieuwertje E Kok
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Rebecca C Richmond
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Michiel Adriaens
- Maastricht Centre for Systems Biology, Maastricht University, Maastricht, The Netherlands
| | - Chris T Evelo
- Maastricht Centre for Systems Biology, Maastricht University, Maastricht, The Netherlands.,Department of Bioinformatics - BiGCaT, NUTRIM Research School, Maastricht University, Maastricht, The Netherlands
| | - Dianne Ford
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - John C Mathers
- Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Human Nutrition Research Centre, Newcastle upon Tyne, UK
| | - Natassia Robinson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jill A McKay
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| |
Collapse
|
30
|
Yan S, Lyu J, Liu Z, Zhou S, Ji Y, Wang H. Association of gestational hypertension and preeclampsia with offspring adiposity: A systematic review and meta-analysis. Front Endocrinol (Lausanne) 2022; 13:906781. [PMID: 36082079 PMCID: PMC9445980 DOI: 10.3389/fendo.2022.906781] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The association of gestational hypertension (GH) and preeclampsia (PE) with offspring adiposity outcomes had controversial results in different studies. OBJECTIVE We conducted a systematic review and meta-analysis to evaluate the relationship between maternal GH/PE and offspring adiposity outcomes. SEARCH STRATEGY Studies were identified in PubMed, Embase, and Cochrane databases, with keywords including "gestational hypertension", "preeclampsia", "offspring", "weight", "cohort study", etc., without year restriction. This study was registered with PROSPERO, CRD42022292084. SELECTION CRITERIA We set the selection criteria for six aspects: population, outcome, time frame, study design, and availability. For the studies included in the meta-analysis, we required the potential confounders in these studies have been adjusted. DATA COLLECTION AND ANALYSIS Two reviewers independently evaluated the data from the included studies. The meta-analyses included mean differences, regression coefficients, and corresponding 95% confidence intervals. Results were performed using RevMan software (version 5.4; Cochrane Collaboration). Heterogeneity among the included studies was assessed using the I2 statistic. MAIN RESULTS A total of 16 studies were included in our review, 15 of which were evaluated as high quality. In all offspring, during the early life (28 days-36 months), GH/PE exposure was found to be not or inversely associated with offspring obesity, then become positively associated at larger ages (3-19 years old). In offspring with adverse birth outcomes, the maternal GH/PE-exposed group had a lower weight in the short term (28 days to 18 months), but there was a trend of rapid weight gain as they grew older, compared with the non-exposed group. The meta-analysis showed that the BMI of the female offspring in the maternal PE-exposed group was significantly higher than that of the non-exposed offspring (MD=1.04, 95% CI: 0.67~1.42, P < 0.05). CONCLUSIONS The systematic review suggested that maternal exposure to de novo hypertension disorders of pregnancy (HDP) was associated with obesity in offspring, extending from early childhood to adolescence. The meta-analysis showed that PE was associated with higher BMI in female offspring. More studies are needed to conduct stratified analyses by PE/GH, the severity of HDP, or gender. SYSTEMATIC REVIEW REGISTRATION PROSPERO, identifier CRD42022292084.
Collapse
Affiliation(s)
- Shiyu Yan
- School of Public Health, Zhejiang University Medical School, Hangzhou, China
| | - Jinlang Lyu
- Department of Maternal and Child Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Zheng Liu
- Department of Maternal and Child Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Shuang Zhou
- Department of Maternal and Child Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Yuelong Ji
- Department of Maternal and Child Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
- *Correspondence: Haijun Wang, ; Yuelong Ji,
| | - Haijun Wang
- Department of Maternal and Child Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
- *Correspondence: Haijun Wang, ; Yuelong Ji,
| |
Collapse
|
31
|
Vandenberg LN, Turgeon JL. Endocrine disrupting chemicals: Understanding what matters. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:xiii-xxiv. [PMID: 34452698 DOI: 10.1016/s1054-3589(21)00051-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Judith L Turgeon
- Department of Internal Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of California Davis, Davis, CA, United States
| |
Collapse
|
32
|
Zhang Y, Guo J, Chen Y, Wang J, Zhou Q, Chen M, Wang C. Embryonic exposure to fenbuconazole inhibits gametogenesis in adult zebrafish by targeting gonads not brain. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112967. [PMID: 34773848 DOI: 10.1016/j.ecoenv.2021.112967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Fenbuconazole (FBZ) is widely used in agriculture. The current study was conducted to evaluate the influence of embryonic exposure to FBZ on reproduction in adult zebrafish. Embryos were exposed to 5, 50 and 500 ng/L FBZ for 72 h and then raised in clean water until adulthood. The result showed that the percentage of mature gametes was significantly reduced in adult zebrafish. The fertilization rate and survival rate of F1 embryos were decreased when the exposed fish were mated with untreated fish. The transcription of brain gnrh3, fshβ and lhγ in adult fish was upregulated, while the levels of 17β-estradiol and testosterone were not significantly changed in all treated groups, indicating that the reproduction-related genes in brain was not responsible for the reduced reproductive ability. The downregulated transcription of fshr, lhr, ar and esr2 in the gonads indicated the dysfunction of Sertoli and Leydig cells. Notably, downregulated transcription and upregulated methylation levels of genes related to germ cells were observed in treated F0 larvae and adult gonads. The elevated methylation levels of piwil1 and dnmt6 in the testes and vasa and dazl in the ovary were matched with the alterations in the expression of these genes, suggesting that germ cells are the main targets of FBZ. These results provide new mechanism underlying reproductive toxicity in fish caused by chemicals, and give potential retroactive biomarkers for monitoring reproductive toxic pollutants.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Jiaojiao Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Ying Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Jiangwei Wang
- Key Laboratory of the Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Qian Zhou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Meng Chen
- Key Laboratory of the Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China.
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, PR China.
| |
Collapse
|
33
|
Nakaoka H, Hisada A, Matsuzawa D, Yamamoto M, Mori C, Kamijima M, Yamazaki S, Ohya Y, Kishi R, Yaegashi N, Hashimoto K, Mori C, Ito S, Yamagata Z, Inadera H, Nakayama T, Iso H, Shima M, Kurozawa Y, Suganuma N, Kusuhara K, Katoh T. Associations between prenatal exposure to volatile organic compounds and neurodevelopment in 12-month-old children: The Japan Environment and Children's Study (JECS). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148643. [PMID: 34198080 DOI: 10.1016/j.scitotenv.2021.148643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/01/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
In recent years, there has been an increase in the number of problems associated with neurodevelopmental disorders in children, and there has been a growing interest in the relationship between environmental chemicals and children's health. The objective of this study was to examine whether an association exists between occupational or environmental prenatal maternal exposure to volatile organic compounds and the risk of neurodevelopmental disorders in children using Japanese translations of the Ages & Stages Questionnaires, Third Edition (J-ASQ-3). An increase in the risk of neurodevelopmental delay in 12-month-old children associated with maternal exposure to formalin or formaldehyde was identified in terms of problem-solving (odds ratio (OR): 1.76, 95% confidence interval (CI): 0.99-3.12) and personal-social skills (OR: 3.32, 95% CI: 1.46-7.55). It is not clear whether or not this tendency is reversible, and whether it is observed past 12 months of age. Further research and a preventive approach are needed.
Collapse
Affiliation(s)
- Hiroko Nakaoka
- Centre for Preventive Medical Sciences, Chiba University, Japan; Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, Japan.
| | - Aya Hisada
- Centre for Preventive Medical Sciences, Chiba University, Japan
| | - Daisuke Matsuzawa
- Research Center for Child Mental Development, Chiba University, Japan
| | - Midori Yamamoto
- Centre for Preventive Medical Sciences, Chiba University, Japan
| | - Chisato Mori
- Centre for Preventive Medical Sciences, Chiba University, Japan; Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, Japan
| | | | - Shin Yamazaki
- National Institute for Environmental Studies, Tsukuba, Japan
| | - Yukihiro Ohya
- National Center for Child Health and Development, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | - Koichi Kusuhara
- University of Occupational and Environmental Health, Kitakyushu, Japan
| | | |
Collapse
|
34
|
Vandenberg LN, Pelch KE. Systematic Review Methodologies and Endocrine Disrupting Chemicals: Improving Evaluations of the Plastic Monomer Bisphenol A. Endocr Metab Immune Disord Drug Targets 2021; 22:748-764. [PMID: 34610783 DOI: 10.2174/1871530321666211005163614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 06/25/2021] [Accepted: 08/27/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Endocrine disrupting chemicals (EDCs) are found in plastics, personal care products, household items, and other consumer goods. Risk assessments are intended to characterize a chemical's hazards, identify the doses at which adverse outcomes are observed, quantify exposure levels, and then compare these doses to determine the likelihood of risk in a given population. There are many problems with risk assessments for EDCs, allowing people to be exposed to levels that are later associated with serious health outcomes in epidemiology studies. OBJECTIVE In this review, we examine issues that affect the evaluation of EDCs in risk assessments (e.g., use of insensitive rodent strains and absence of disease-oriented outcomes in hazard assessments; inadequate exposure assessments). We then review one well-studied chemical, Bisphenol A (BPA; CAS #80-05-7) an EDC found in plastics, food packaging, and other consumer products. More than one hundred epidemiology studies suggest associations between BPA exposures and adverse health outcomes in environmentally exposed human populations. FINDINGS We present support for the use of systematic review methodologies in the evaluation of BPA and other EDCs. Systematic reviews would allow studies to be evaluated for their reliability and risk of bias. They would also allow all data to be used in risk assessments, which is a requirement for some regulatory agencies. CONCLUSION Systematic review methodologies can be used to improve evaluations of BPA and other EDCs. Their use could help to restore faith in risk assessments and ensure that all data are utilized in decision-making. Regulatory agencies are urged to conduct transparent, well-documented and proper systematic reviews for BPA and other EDCs.
Collapse
Affiliation(s)
- Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts - Amherst, United States
| | | |
Collapse
|
35
|
Development of coronary dysfunction in adult progeny after maternal engineered nanomaterial inhalation during gestation. Sci Rep 2021; 11:19374. [PMID: 34588535 PMCID: PMC8481306 DOI: 10.1038/s41598-021-98818-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/15/2021] [Indexed: 01/09/2023] Open
Abstract
Maternal exposure to environmental contaminants during pregnancy can profoundly influence the risk of developing cardiovascular disease in adult offspring. Our previous studies have demonstrated impaired cardiovascular health, microvascular reactivity, and cardiac function in fetal and young adult progeny after maternal inhalation of nano-sized titanium dioxide (nano-TiO2) aerosols during gestation. The present study was designed to evaluate the development of cardiovascular and metabolic diseases later in adulthood. Pregnant Sprague–Dawley rats were exposed to nano-TiO2 aerosols (~ 10 mg/m3, 134 nm median diameter) for 4 h per day, 5 days per week, beginning on gestational day (GD) 4 and ending on GD 19. Progeny were delivered in-house. Body weight was recorded weekly after birth. After 47 weeks, the body weight of exposed progeny was 9.4% greater compared with controls. Heart weight, mean arterial pressure, and plasma biomarkers of inflammation, dyslipidemia, and glycemic control were recorded at 3, 9 and 12 months of age, with no significant adaptations. While no clinical risk factors (i.e., hypertension, dyslipidemia, or systemic inflammation) emerged pertaining to the development of cardiovascular disease, we identified impaired endothelium-dependent and -independent arteriolar dysfunction and cardiac morphological alterations consistent with myocardial inflammation, degeneration, and necrosis in exposed progeny at 12 months. In conclusion, maternal inhalation of nano-TiO2 aerosols during gestation may promote the development of coronary disease in adult offspring.
Collapse
|
36
|
Abstract
Regulatory agencies around the world depend on standardized testing approaches to evaluate environmental chemicals for endocrine disrupting properties. The US Environmental Protection Agency (EPA) has developed a two-tiered testing approach within its Endocrine Disruptor Screening Program (EDSP). The eleven Tier 1 and three Tier 2 EDSP assays can be used to identify chemicals that act as agonists or antagonists of estrogen receptor, androgen receptor, or thyroid hormone receptor, or chemicals that interfere with steroidogenesis. Additional assays have been developed in the context of Tox21, and others have been validated by the OECD. In spite of the availability of validated toxicity tests, problems have been identified with the approaches and methods used to identify endocrine disrupting chemicals (EDCs). This chapter will provide an overview of several of these issues including: (1) The way an EDC is defined by an agency impacts whether a specific test can be used to determine if a chemical is an EDC. This is especially important when considering which assays examine outcomes that are considered "adverse effects." (2) Some assumptions about the validated studies used to identify EDCs may not be true (e.g., their reproducibility has been questioned). (3) Many of the validated assays are less sensitive than other methods that have not yet been validated. Ultimately, these and other problems contribute to the current landscape, where testing approaches have failed to protect the public from known EDCs. The chapter concludes with a review of approaches that have been taken to improve current guideline studies.
Collapse
Affiliation(s)
- Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, United States.
| |
Collapse
|
37
|
Plattard N, Dupuis A, Migeot V, Haddad S, Venisse N. An overview of the literature on emerging pollutants: Chlorinated derivatives of Bisphenol A (Cl xBPA). ENVIRONMENT INTERNATIONAL 2021; 153:106547. [PMID: 33831741 DOI: 10.1016/j.envint.2021.106547] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 05/12/2023]
Abstract
CONTEXT Bisphenol A (BPA) is a ubiquitous contaminant with endocrine-disrupting effects in mammals. During chlorination treatment of drinking water, aqueous BPA can react with chlorine to form chlorinated derivatives of BPA (mono, di, tri and tetra-chlorinated derivatives) or ClxBPA. OBJECTIVE The aim of this study is to summarize and present the state of knowledge on human toxicological risk assessment of ClxBPA. MATERIALS AND METHODS A search on ClxBPA in the PubMed database was performed based on studies published between 2002 and 2021. Forty-nine studies on chlorinated derivatives of BPA were found. Available information on their sources and levels of exposure, their effects, their possible mechanisms of action and their toxicokinetics data was extracted and presented. RESULTS ClxBPA have been essentially detected in environmental aqueous media. There is evidence in toxicological and epidemiological studies that ClxBPA also have endocrine-disrupting capabilities. These emerging pollutants have been found in human urine, serum, breast milk, adipose and placental tissue and can constitute a risk to human health. However, in vitro and in vivo toxicokinetic data on ClxBPA are scarce and do not allow characterization of the disposition kinetics of these compounds. CONCLUSION More research to assess their health risks, specifically in vulnerable populations, is needed. Some water chlorination processes are particularly hazardous, and it is important to evaluate their chlorination by-products from a public health perspective.
Collapse
Affiliation(s)
- N Plattard
- Department of Environmental and Occupational Health, School of Public Health, CresP, Université de Montréal, Montreal, Quebec, Canada; INSERM CIC1402, CHU Poitiers, Université de Poitiers, HEDEX Research Group, 86021 Poitiers Cedex, France
| | - A Dupuis
- INSERM CIC1402, CHU Poitiers, Université de Poitiers, HEDEX Research Group, 86021 Poitiers Cedex, France; Biology-Pharmacy-Public Health Department, CHU de Poitiers, 2 rue de la Milétrie, 86201 Poitiers Cedex, France
| | - V Migeot
- INSERM CIC1402, CHU Poitiers, Université de Poitiers, HEDEX Research Group, 86021 Poitiers Cedex, France
| | - S Haddad
- Department of Environmental and Occupational Health, School of Public Health, CresP, Université de Montréal, Montreal, Quebec, Canada
| | - N Venisse
- INSERM CIC1402, CHU Poitiers, Université de Poitiers, HEDEX Research Group, 86021 Poitiers Cedex, France; Biology-Pharmacy-Public Health Department, CHU de Poitiers, 2 rue de la Milétrie, 86201 Poitiers Cedex, France.
| |
Collapse
|
38
|
Bornman MS, Aneck-Hahn NH. EDCs and male urogenital cancers. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:521-553. [PMID: 34452696 DOI: 10.1016/bs.apha.2021.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Male sex determination and sexual differentiation occur between 6-12 weeks of gestation. During the "male programming window" the fetal testes start to produce testosterone that initiates the development of the male reproductive tract. Exposure to endocrine disrupting chemicals (EDCs) able to mimic or disrupt steroid hormone actions may disrupt testicular development and adversely impact reproductive health at birth, during puberty and adulthood. The testicular dysgenesis syndrome (TDS) occurs as a result inhibition of androgen action on fetal development preceding Sertoli and Leydig cell dysfunction and may result from direct or epigenetic effects. Hypospadias, cryptorchidism and poor semen quality are elements of TDS, which may be considered a risk factor for testicular germ cell cancer (TGCC). Exposure to estrogen or estrogenic EDCs results in developmental estrogenization/estrogen imprinting in the rodent for prostate cancer (PCa). This can disrupt prostate histology by disorganization of the epithelium, prostatic intraepithelial neoplasia (PIN) lesions, in particular high-grade PIN (HGPIN) lesions which are precursors of prostatic adenocarcinoma. These defects persist throughout the lifespan of the animal and later in life estrogen exposure predispose development of cancer. Exposure of pregnant dams to vinclozolin, a competitive anti-androgen, and results in prominent, focal regions of inflammation in all exposed animals. The inflammation closely resembles human nonbacterial prostatitis that occurs in young men and evidence indicates that inflammation plays a central role in the development of PCa. In conclusion, in utero exposure to endocrine disrupters may predispose to the development of TDS, testicular cancer (TCa) and PCa and are illustrations of Developmental Origins of Health and Disease (DOHaD).
Collapse
Affiliation(s)
- M S Bornman
- Environmental Chemical Pollution and Health Research Unit, Faculty of Health Sciences, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa.
| | - N H Aneck-Hahn
- Environmental Chemical Pollution and Health Research Unit, Faculty of Health Sciences, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa; Environmental Chemical Pollution and Health Research Unit, Faculty of Health Sciences, School of Medicine, Department of Urology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
39
|
Fukunaga H. Mitochondrial DNA Copy Number and Developmental Origins of Health and Disease (DOHaD). Int J Mol Sci 2021; 22:ijms22126634. [PMID: 34205712 PMCID: PMC8235559 DOI: 10.3390/ijms22126634] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial dysfunction is known to contribute to mitochondrial diseases, as well as to a variety of aging-based pathologies. Mitochondria have their own genomes (mitochondrial DNA (mtDNA)) and the abnormalities, such as point mutations, deletions, and copy number variations, are involved in mitochondrial dysfunction. In recent years, several epidemiological studies and animal experiments have supported the Developmental Origin of Health and Disease (DOHaD) theory, which states that the environment during fetal life influences the predisposition to disease and the risk of morbidity in adulthood. Mitochondria play a central role in energy production, as well as in various cellular functions, such as apoptosis, lipid metabolism, and calcium metabolism. In terms of the DOHaD theory, mtDNA copy number may be a mediator of health and disease. This paper summarizes the results of recent epidemiological studies on the relationship between environmental factors and mtDNA copy number during pregnancy from the perspective of DOHaD theory. The results of these studies suggest a hypothesis that mtDNA copy number may reflect environmental influences during fetal life and possibly serve as a surrogate marker of health risks in adulthood.
Collapse
Affiliation(s)
- Hisanori Fukunaga
- Center for Environmental and Health Sciences, Hokkaido University, N12 W7 Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
40
|
Burggren W. Developmental Physiology: Grand Challenges. Front Physiol 2021; 12:706061. [PMID: 34177630 PMCID: PMC8225327 DOI: 10.3389/fphys.2021.706061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 12/26/2022] Open
Affiliation(s)
- Warren Burggren
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX, United States
| |
Collapse
|
41
|
Tonini C, Segatto M, Bertoli S, Leone A, Mazzoli A, Cigliano L, Barberio L, Mandalà M, Pallottini V. Prenatal Exposure to BPA: The Effects on Hepatic Lipid Metabolism in Male and Female Rat Fetuses. Nutrients 2021; 13:1970. [PMID: 34201166 PMCID: PMC8227982 DOI: 10.3390/nu13061970] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 12/16/2022] Open
Abstract
Bisphenol A (BPA) is an organic chemical compound widely used for manufacturing plastics. BPA exposure originates principally from the diet, but it can also originate from dermal contact. In over 90% of individuals, including pregnant women, BPA is detectable in several body fluids. The effects of this exposure on the fetus are under active investigation in several research laboratories. The aim of our work was to study the impact of prenatal exposure to BPA in the liver of rat fetuses from a sex-dependent point of view. We particularly investigated the effects of prenatal BPA exposure on hepatic lipids because of their crucial role, not only for the liver, but also for the whole-body functions. Our results demonstrate that the liver of rat fetuses, in utero exposed to a very low dose of BPA (2.5 µg/kg/day), displays significant modulations with regard to proteins involved in cholesterol and fatty acid biosynthesis and trafficking. Moreover, an impact on inflammatory process has been observed. All these effects are dependent on sex, being observable only in female rat fetuses. In conclusion, this work demonstrates that maternal exposure to BPA compromises hepatic lipid metabolism in female offspring, and it also reveals the perspective impact of BPA on human health at doses currently considered safe.
Collapse
Affiliation(s)
- Claudia Tonini
- Department of Science, University Roma Tre, Viale Marconi 446, 00146 Rome, Italy;
| | - Marco Segatto
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy;
| | - Simona Bertoli
- International Center for the Assessment of Nutritional Status (ICANS), Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (S.B.); (A.L.)
- Lab of Nutrition and Obesity Research, Istituto Auxologico Italiano, IRCCS, 20100 Milan, Italy
| | - Alessandro Leone
- International Center for the Assessment of Nutritional Status (ICANS), Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (S.B.); (A.L.)
| | - Arianna Mazzoli
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant’Angelo, Via Cinthia—Edificio 7, 80126 Naples, Italy; (A.M.); (L.C.)
| | - Luisa Cigliano
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant’Angelo, Via Cinthia—Edificio 7, 80126 Naples, Italy; (A.M.); (L.C.)
| | - Laura Barberio
- Department of Biology, Ecology and Earth Science, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (L.B.); (M.M.)
| | - Maurizio Mandalà
- Department of Biology, Ecology and Earth Science, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (L.B.); (M.M.)
| | - Valentina Pallottini
- Department of Science, University Roma Tre, Viale Marconi 446, 00146 Rome, Italy;
- Neuroendocrinology Metabolism and Neuropharmacology Unit, IRCSS Fondazione Santa Lucia, Via del Fosso Fiorano 64, 00143 Rome, Italy
| |
Collapse
|
42
|
Svensson K, Tanner E, Gennings C, Lindh C, Kiviranta H, Wikström S, Bornehag CG. Prenatal exposures to mixtures of endocrine disrupting chemicals and children's weight trajectory up to age 5.5 in the SELMA study. Sci Rep 2021; 11:11036. [PMID: 34040006 PMCID: PMC8155069 DOI: 10.1038/s41598-021-89846-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/21/2021] [Indexed: 12/16/2022] Open
Abstract
Exposure to endocrine disrupting chemicals (EDCs) may impact early growth, although information is limited on exposure to combination of multiple EDCs. We aimed to evaluate the effect of prenatal exposure to EDC mixtures on birthweight z-scores and childhood weight trajectories. Twenty-six proven and suspected EDCs, were analyzed in prenatal urine and blood samples from 1118 mothers participating in the Swedish Environmental Longitudinal Mother and child Asthma and allergy (SELMA) study. Two growth parameters were estimated from each child's weight trajectory from birth to 5.5 years of age: infant growth spurt rate and age at infant peak growth velocity (PGV). Weighted quantile sum (WQS) regression was used to estimate the mixture effect and identify chemicals of concern. A one-unit increase in the EDC mixture WQS index, was associated with decreased birthweight z-scores of 0.11 (95% CI - 0.16, - 0.06), slower infant growth spurt rate of 0.01 (95% CI - 0.03, - 0.01, on the log10 scale), and delayed age at infant PGV of 0.15 months (95% CI 0.07, 0.24) after adjusting for potential confounders. Stratified analysis by sex, showed that delayed age at infant PGV was mostly observed in girls with 0.51 months (95% CI 0.26, 0.76). Identified chemicals of concern included perfluorinated alkyl substances (PFAS), Triclosan, phthalates, non-phthalate plasticizers, bisphenols, polycyclic aromatic hydrocarbons, pesticides and PCBs. Prenatal exposure to EDC mixtures was associated with lower birthweight and altered infant weight gain trajectories.
Collapse
Affiliation(s)
- Katherine Svensson
- Department of Health Sciences, Karlstad University, Universitetsgatan 2, 651 88, Karlstad, Sweden
| | - Eva Tanner
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christian Lindh
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Hannu Kiviranta
- Environmental Health Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Sverre Wikström
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Carl-Gustaf Bornehag
- Department of Health Sciences, Karlstad University, Universitetsgatan 2, 651 88, Karlstad, Sweden.
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
43
|
Vandenberg LN. Endocrine disrupting chemicals: strategies to protect present and future generations. Expert Rev Endocrinol Metab 2021; 16:135-146. [PMID: 33973826 DOI: 10.1080/17446651.2021.1917991] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/12/2021] [Indexed: 12/22/2022]
Abstract
Introduction: Endocrine-disrupting chemicals (EDCs) are chemicals that alter the actions of hormones. In the 21st Century, numerous expert groups of clinicians, scientists, and environmental activists have called for action to protect present and future generations from the harm induced by EDC exposures. These demands for regulatory responses come because of the strong weight of the evidence from epidemiology, wildlife, and controlled laboratory studies.Areas covered: In this review, we examine the conclusions drawn by experts from different scientific and medical disciplines. We also address several areas where recent findings or work has changed the landscape of EDC work including new approaches to identify and evaluate the evidence for EDCs using a key characteristics approach, the need to expand our understanding of vulnerable periods of development, and the increasing concern that traditional methods used to evaluate toxicity of environmental chemicals are insufficient for EDCs and how collaborative science could help to address these gaps.Expert opinion: The science is clear: there is more than enough evidence to demonstrate that EDCs affect the health of humans and wildlife. Waiting to act is a decision that puts the health of current and future generations at risk.
Collapse
Affiliation(s)
- Laura N Vandenberg
- School of Public Health & Health Sciences, Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA USA
| |
Collapse
|
44
|
Abstract
Pregnancy and early childhood are periods with high plasticity in neurological development. Environmental perturbations during these sensitive windows can have lifelong developmental consequences. This review summarizes key findings relevant to the effects of air pollution on neurological development. Mounting evidence suggests that exposure to air pollution, both during pregnancy and childhood, is associated with childhood developmental outcomes ranging from changes in brain structures to subclinical deficits in developmental test scores, and, ultimately, developmental disorders such as attention-deficit/hyperactivity disorders or autism spectrum disorders. Although the biological mechanisms of effects remain to be elucidated, multiple pathways are probably involved and include oxidative stress, inflammation, and/or endocrine disruption. Given the alarming global increase in developmental disorders in recent years, and increased human exposures to pollution, it is critical to reduce personal and community-level exposures through tight collaboration of interdisciplinary and multi-level bodies including community partners, physicians, industry partners, policy makers, public health practitioners, and researchers. WHAT THIS PAPER ADDS: Exposure to air pollution is associated with a range of childhood developmental complications. Biological mechanisms may include oxidative stress, inflammation, and endocrine disruption.
Collapse
Affiliation(s)
- Sandie Ha
- Department of Public Health, School of Social Sciences, Humanities and Arts, Health Science Research Institute, University of California, Merced, CA, USA
| |
Collapse
|
45
|
Hougaard KS. Next Generation Reproductive and Developmental Toxicology: Crosstalk Into the Future. FRONTIERS IN TOXICOLOGY 2021; 3:652571. [PMID: 35295122 PMCID: PMC8915852 DOI: 10.3389/ftox.2021.652571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Affiliation(s)
- Karin Sørig Hougaard
- National Research Centre for the Working Environment, Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Karin Sørig Hougaard
| |
Collapse
|
46
|
DeVille NV, Khalili R, Levy JI, Korrick SA, Vieira VM. Prenatal environmental exposures and associations with teen births. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2021; 31:197-210. [PMID: 32913222 PMCID: PMC7943647 DOI: 10.1038/s41370-020-00262-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 08/25/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Children's prenatal exposure to multiple environmental chemicals may contribute to subsequent deficits in impulse control, predisposing them to risk-taking. OBJECTIVE Our goal was to investigate associations between prenatal exposure mixtures and risk of teen birth, a manifestation of high-risk sexual activity, among 5865 girls (1st generation) born in southeast Massachusetts from 1992-1998. METHODS Exposures included prenatal modeled polychlorinated biphenyls (PCBs), ρ,ρ'-dichlorodiphenyl dichloroethylene (DDE), hexachlorobenzene (HCB), lead (Pb), and mercury (Hg). We fit adjusted generalized additive models with multivariable smooths of exposure mixtures, 1st generation infant's birth year, and maternal age at 1st generation birth. Predicted odds ratios (ORs) for teen birth were mapped as a function of joint exposures. We also conducted sensitivity analyses among 1st generation girls with measured exposure biomarkers (n = 371). RESULTS The highest teen birth risk was associated with a mixture of high prenatal HCB, Hg, Pb, and PCB, but low DDE exposure, with similar associations in sensitivity analyses. The highest OR predicted for girls born in 1995 to mothers of median age (26 years) was at the 95th percentile of the HCB and PCB exposure distributions (OR = 3.09; 95% confidence interval: 0.29, 32.4). Additionally, girls born earlier in the study period or to teen mothers were at increased risk of teen birth. SIGNIFICANCE Prenatal environmental chemical exposures and sociodemographic characteristics may interact to substantially increase risk of teen births.
Collapse
Affiliation(s)
- Nicole V DeVille
- Program in Public Health, College of Health Sciences, University of California, Irvine, Irvine, CA, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Roxana Khalili
- Program in Environmental Health Sciences, College of Health Sciences, University of California, Irvine, Irvine, CA, USA
| | - Jonathan I Levy
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Susan A Korrick
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Verónica M Vieira
- Program in Public Health, College of Health Sciences, University of California, Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
47
|
Brulport A, Le Corre L, Maquart G, Barbet V, Dastugue A, Severin I, Vaiman D, Chagnon MC. Multigenerational study of the obesogen effects of bisphenol S after a perinatal exposure in C57BL6/J mice fed a high fat diet. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116243. [PMID: 33326921 DOI: 10.1016/j.envpol.2020.116243] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/13/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Bisphenol S is an endocrine disruptor exhibiting metabolic disturbances, especially following perinatal exposures. To date, no data are available on the obesogen effects of BPS in a mutligenerational issue. OBJECTIVES We investigated obesogen effects of BPS in a multigenerational study by focusing on body weight, adipose tissue and plasma parameters in male and female mice. METHODS Pregnant C57BL6/J mice were exposed to BPS (1.5 μg/kg bw/day ie a human equivalent dose of 0.12 μg/kg bw/day) by drinking water from gestational day 0 to post natal day 21. All offsprings were fed with a high fat diet during 15 weeks. Body weight was monitored weekly and fat mass was measured before euthanasia. At euthanasia, blood glucose, insuline, triglyceride, cholesterol and no esterified fatty acid plasma levels were determined and gene expressions in visceral adipose tissue were assessed. F1 males and females were mated to obtain the F2 generation. Likewise, the F2 mice were cross-bred to obtain F3. The same analyses were performed. RESULTS In F1 BPS induced an overweight in male mice associated to lipolysis gene expressions upregulation. In F1 females, dyslipidemia was observed. In F2, BPS exposure was associated to an increase in body weight, fat and VAT masses in males and females. Several plasma parameters were increased but with a sex related pattern (blood glucose, triglycerides and cholesterol in males and NEFA in females). We observed a down-regulation in mRNA expression of gene involved in lipogenesis and in lipolysis for females but only in the lipogenesis for males. In F3, a decrease in VAT mass and an upregulation of lipogenesis gene expression occurred only in females. CONCLUSIONS BPS perinatal exposure induced sex-dependent obesogen multigenerational effects, the F2 generation being the most impacted. Transgenerational disturbances persisted only in females.
Collapse
Affiliation(s)
- Axelle Brulport
- Université de Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; AgroSupdijon, LNC UMR1231, F-21000, Dijon, France; Nutrition Physiology and Toxicology Team (NUTox), INSERM, LNC UMR1231, F-21000, Dijon, France
| | - Ludovic Le Corre
- Université de Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; AgroSupdijon, LNC UMR1231, F-21000, Dijon, France; Nutrition Physiology and Toxicology Team (NUTox), INSERM, LNC UMR1231, F-21000, Dijon, France.
| | - Guillaume Maquart
- Université de Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; AgroSupdijon, LNC UMR1231, F-21000, Dijon, France; Nutrition Physiology and Toxicology Team (NUTox), INSERM, LNC UMR1231, F-21000, Dijon, France
| | - Virginie Barbet
- Université de Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; AgroSupdijon, LNC UMR1231, F-21000, Dijon, France; Nutrition Physiology and Toxicology Team (NUTox), INSERM, LNC UMR1231, F-21000, Dijon, France
| | - Aurélie Dastugue
- Université de Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; AgroSupdijon, LNC UMR1231, F-21000, Dijon, France; Nutrition Physiology and Toxicology Team (NUTox), INSERM, LNC UMR1231, F-21000, Dijon, France
| | - Isabelle Severin
- Université de Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; AgroSupdijon, LNC UMR1231, F-21000, Dijon, France; Nutrition Physiology and Toxicology Team (NUTox), INSERM, LNC UMR1231, F-21000, Dijon, France
| | - Daniel Vaiman
- From Gametes to Birth Team (FGTB), INSERM, U1016, Institut Cochin, F-75014, Paris, France; CNRS UMR8104, F-75014, Paris, France; Université Sorbonne Paris Cité, F-75014, Paris, France
| | - Marie-Christine Chagnon
- Université de Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; AgroSupdijon, LNC UMR1231, F-21000, Dijon, France; Nutrition Physiology and Toxicology Team (NUTox), INSERM, LNC UMR1231, F-21000, Dijon, France
| |
Collapse
|
48
|
Farzan SF, Howe CG, Chavez TA, Hodes TL, Johnston JE, Habre R, Dunton G, Bastain TM, Breton CV. Demographic predictors of urinary arsenic in a low-income predominantly Hispanic pregnancy cohort in Los Angeles. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2021; 31:94-107. [PMID: 32719440 PMCID: PMC7796897 DOI: 10.1038/s41370-020-0251-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 07/08/2020] [Accepted: 07/15/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Arsenic (As) is a contaminant of top public health concern, due to its range of detrimental health effects. Arsenic exposure has not been well-characterized among the US Hispanic populations and has been particularly understudied in this population during pregnancy. METHODS As part of the MADRES ongoing pregnancy cohort of predominantly lower-income, Hispanic women in Los Angeles, CA, we examined levels of maternal first trimester urinary As, including total As and As metabolites (inorganic (iAs), monomethylated (MMA) and dimethylated As (DMA)), in relation to participant demographics, lifestyle characteristics, and rice/seafood consumption, to identify factors that may influence As exposure and its metabolites during pregnancy (N = 241). RESULTS Total As concentrations ranged from low to high (0.8-506.2 μg/L, mean: 9.0 μg/L, SD: 32.9) in our study population. Foreign-born Hispanic women had 8.6% higher %DMA (95% CI: 3.3%, 13.9%) and -7.7% lower %iAs (95% CI: -12.6%, -2.9%) than non-Hispanic women. A similar trend was observed for US-born Hispanic women. In addition, maternal age was associated with 0.4% higher %iAs (95% CI: 0.1%, 0.6%) and 0.4% lower %DMA (95% CI: -0.7%, -0.1%) per year, which may indicate poor As methylation capacity. CONCLUSION Individual factors may predict As exposure and metabolism in pregnancy, and in turn, greater risk of adverse health effects.
Collapse
Affiliation(s)
- Shohreh F Farzan
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, 2001 N. Soto Street, Los Angeles, CA, 90032, USA.
| | - Caitlin G Howe
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, 2001 N. Soto Street, Los Angeles, CA, 90032, USA
| | - Thomas A Chavez
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, 2001 N. Soto Street, Los Angeles, CA, 90032, USA
| | - Tahlia L Hodes
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, 2001 N. Soto Street, Los Angeles, CA, 90032, USA
| | - Jill E Johnston
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, 2001 N. Soto Street, Los Angeles, CA, 90032, USA
| | - Rima Habre
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, 2001 N. Soto Street, Los Angeles, CA, 90032, USA
| | - Genevieve Dunton
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, 2001 N. Soto Street, Los Angeles, CA, 90032, USA
| | - Theresa M Bastain
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, 2001 N. Soto Street, Los Angeles, CA, 90032, USA
| | - Carrie V Breton
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, 2001 N. Soto Street, Los Angeles, CA, 90032, USA
| |
Collapse
|
49
|
Ruggieri S, Maltese S, Drago G, Cibella F, Panunzi S. The Neonatal Environment and Health Outcomes (NEHO) Birth Cohort Study: Behavioral and Socioeconomic Characteristics and Drop-Out Rate from a Longitudinal Birth Cohort in Three Industrially Contaminated Sites in Southern Italy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18031252. [PMID: 33573257 PMCID: PMC7908468 DOI: 10.3390/ijerph18031252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 12/23/2022]
Abstract
Pregnant women living in industrially contaminated sites (ICSs) are exposed to environmental contaminants through different pathways, and thus children’s health may be affected by pollutants. We created the Neonatal Environment and Health Outcomes (NEHO) longitudinal birth cohort in three ICSs in the Mediterranean area of southern Italy, collecting comprehensive information on personal data and lifestyles by questionnaire. Through multiple correspondence analysis, we identified possible clusters of enrolled women, and a neural network classifier analysis (NNCA) was performed to identify variables capable of predicting the attrition rate of the study. NEHO recruited 845 mother–child pairs over two years. The mothers’ mean age was 31.1 ± 5.2 SD years. We found significant differences in socioeconomic status (SES) among the three evaluated ICS, and an overall 11.1% prevalence of mothers who actively smoked during pregnancy. Active smoking during pregnancy was strongly associated with the lowest socioeconomic level (p < 0.0001). By means of the NNCA, we found that smoking during pregnancy and the lowest education level characterized the cluster with the highest attrition rate (p < 0.001). Our results demonstrate that reason for public health concern still exists regarding smoking during pregnancy and that SES influences both lifestyles, producing negative pregnancy outcomes and a higher survey attrition rate.
Collapse
Affiliation(s)
- Silvia Ruggieri
- Institute for Biomedical Research and Innovation, National Research Council of Italy, 90146 Palermo, Italy; (S.R.); (S.M.); (G.D.)
| | - Sabina Maltese
- Institute for Biomedical Research and Innovation, National Research Council of Italy, 90146 Palermo, Italy; (S.R.); (S.M.); (G.D.)
| | - Gaspare Drago
- Institute for Biomedical Research and Innovation, National Research Council of Italy, 90146 Palermo, Italy; (S.R.); (S.M.); (G.D.)
| | - Fabio Cibella
- Institute for Biomedical Research and Innovation, National Research Council of Italy, 90146 Palermo, Italy; (S.R.); (S.M.); (G.D.)
- Correspondence:
| | - Simona Panunzi
- Institute for System Analysis and Computer Science—BioMatLab, National Research Council of Italy, 00168 Rome, Italy;
| |
Collapse
|
50
|
Wang S, Maxwell CA, Akella NM. Diet as a Potential Moderator for Genome Stability and Immune Response in Pediatric Leukemia. Cancers (Basel) 2021; 13:cancers13030413. [PMID: 33499176 PMCID: PMC7865408 DOI: 10.3390/cancers13030413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Pediatric acute lymphoblastic leukemia (ALL) is the most prevalent cancer affecting children in developed societies. Here, we review the role of diet in control of the incidence and progression of childhood ALL. Prenatally, ALL risk is associated with higher birthweights of newborns, suggesting that ALL begins to evolve in-utero. Indeed, maternal diet influences the fetal genome and immune development. Postnatally, breastfeeding associates with decreased risk of ALL development. Finally, for the ALL-affected child, certain dietary regimens that impact the hormonal environment may impede disease progression. Improved understanding of the dietary regulation of hormones and immunity may inform better approaches to predict, protect, and ultimately save children afflicted with pediatric leukemia. Abstract Pediatric leukemias are the most prevalent cancers affecting children in developed societies, with childhood acute lymphoblastic leukemia (ALL) being the most common subtype. As diet is a likely modulator of many diseases, this review focuses on the potential for diet to influence the incidence and progression of childhood ALL. In particular, the potential effect of diets on genome stability and immunity during the prenatal and postnatal stages of early childhood development are discussed. Maternal diet plays an integral role in shaping the bodily composition of the newborn, and thus may influence fetal genome stability and immune system development. Indeed, higher birth weights of newborns are associated with increased risk of ALL, which suggests in-utero biology may shape the evolution of preleukemic clones. Postnatally, the ingestion of maternal breastmilk both nourishes the infant, and provides essential components that strengthen and educate the developing immune system. Consistently, breast-feeding associates with decreased risk of ALL development. For children already suffering from ALL, certain dietary regimens have been proposed. These regimens, which have been validated in both animals and humans, alter the internal hormonal environment. Thus, hormonal regulation by diet may shape childhood metabolism and immunity in a manner that is detrimental to the evolution or expansion of preleukemic and leukemic ALL clones.
Collapse
Affiliation(s)
- Shanshan Wang
- Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC V6H 3V4, Canada;
| | - Christopher A. Maxwell
- Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC V6H 3V4, Canada;
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital, Vancouver, BC V5Z 4H4, Canada
- Correspondence: (C.A.M.); (N.M.A.)
| | - Neha M. Akella
- Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC V6H 3V4, Canada;
- Correspondence: (C.A.M.); (N.M.A.)
| |
Collapse
|