1
|
Riaz A, Thomas J, Ali HH, Zaheer MS, Ahmad N, Pereira A. High night temperature stress on rice ( Oryza sativa) - insights from phenomics to physiology. A review. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP24057. [PMID: 38815128 DOI: 10.1071/fp24057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/12/2024] [Indexed: 06/01/2024]
Abstract
Rice (Oryza sativa ) faces challenges to yield and quality due to urbanisation, deforestation and climate change, which has exacerbated high night temperature (HNT). This review explores the impacts of HNT on the physiological, molecular and agronomic aspects of rice growth. Rise in minimum temperature threatens a potential 41% reduction in rice yield by 2100. HNT disrupts rice growth stages, causing reduced seed germination, biomass, spikelet sterility and poor grain development. Recent findings indicate a 4.4% yield decline for every 1°C increase beyond 27°C, with japonica ecotypes exhibiting higher sensitivity than indica. We examine the relationships between elevated CO2 , nitrogen regimes and HNT, showing that the complexity of balancing positive CO2 effects on biomass with HNT challenges. Nitrogen enrichment proves crucial during the vegetative stage but causes disruption to reproductive stages, affecting grain yield and starch synthesis. Additionally, we elucidate the impact of HNT on plant respiration, emphasising mitochondrial respiration, photorespiration and antioxidant responses. Genomic techniques, including CRISPR-Cas9, offer potential for manipulating genes for HNT tolerance. Plant hormones and carbohydrate enzymatic activities are explored, revealing their intricate roles in spikelet fertility, grain size and starch metabolism under HNT. Gaps in understanding genetic factors influencing heat tolerance and potential trade-offs associated with hormone applications remain. The importance of interdisciplinary collaboration is needed to provide a holistic approach. Research priorities include the study of regulatory mechanisms, post-anthesis effects, cumulative HNT exposure and the interaction between climate variability and HNT impact to provide a research direction to enhance rice resilience in a changing climate.
Collapse
Affiliation(s)
- Awais Riaz
- Department of Crop, Soil, and Environmental Sciences, Faculty of Agriculture Food and Life Sciences, University of Arkansas System Division of Agriculture, Fayetteville, AR 72701, USA
| | - Julie Thomas
- Department of Crop, Soil, and Environmental Sciences, Faculty of Agriculture Food and Life Sciences, University of Arkansas System Division of Agriculture, Fayetteville, AR 72701, USA
| | - Hafiz Haider Ali
- Department of Crop, Soil, and Environmental Sciences, Faculty of Agriculture Food and Life Sciences, University of Arkansas System Division of Agriculture, Fayetteville, AR 72701, USA; and Department of Agriculture, Government College University Lahore, Lahore 54000, Pakistan; and Department of Plant Sciences, Aberdeen Research & Extension Center, University of Idaho, Aberdeen, ID, USA
| | - Muhammad Saqlain Zaheer
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Naushad Ahmad
- Department of Chemistry, College of Science, King Saud University, Riyadh11451, Saudi Arabia
| | - Andy Pereira
- Department of Crop, Soil, and Environmental Sciences, Faculty of Agriculture Food and Life Sciences, University of Arkansas System Division of Agriculture, Fayetteville, AR 72701, USA
| |
Collapse
|
2
|
Chaudhary MT, Majeed S, Rana IA, Ali Z, Jia Y, Du X, Hinze L, Azhar MT. Impact of salinity stress on cotton and opportunities for improvement through conventional and biotechnological approaches. BMC PLANT BIOLOGY 2024; 24:20. [PMID: 38166652 PMCID: PMC10759391 DOI: 10.1186/s12870-023-04558-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 10/24/2023] [Indexed: 01/05/2024]
Abstract
Excess salinity can affect the growth and development of all plants. Salinization jeopardizes agroecosystems, induces oxidative reactions in most cultivated plants and reduces biomass which affects crop yield. Some plants are affected more than others, depending upon their ability to endure the effects of salt stress. Cotton is moderately tolerant to salt stress among cultivated crops. The fundamental tenet of plant breeding is genetic heterogeneity in available germplasm for acquired characteristics. Variation for salinity tolerance enhancing parameters (morphological, physiological and biochemical) is a pre-requisite for the development of salt tolerant cotton germplasm followed by indirect selection or hybridization programs. There has been a limited success in the development of salt tolerant genotypes because this trait depends on several factors, and these factors as well as their interactions are not completely understood. However, advances in biochemical and molecular techniques have made it possible to explore the complexity of salt tolerance through transcriptomic profiling. The focus of this article is to discuss the issue of salt stress in crop plants, how it alters the physiology and morphology of the cotton crop, and breeding strategies for the development of salinity tolerance in cotton germplasm.
Collapse
Affiliation(s)
| | - Sajid Majeed
- Federal Seed Certification and Registration Department, Ministry of National Food Security and Research, Islamabad, 44090, Pakistan
| | - Iqrar Ahmad Rana
- Center of Agricultural Biochemistry and Biotechnology/Centre of Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Zulfiqar Ali
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Yinhua Jia
- State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang, 455000, China
| | - Xiongming Du
- State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang, 455000, China
| | - Lori Hinze
- US Department of Agriculture, Southern Plains Agricultural Research Center, College Station, TX, 77845, USA
| | - Muhammad Tehseen Azhar
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, 38040, Pakistan.
- School of Agriculture Sciences, Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
3
|
Chakraborty N, Mitra R, Dasgupta D, Ganguly R, Acharya K, Minkina T, Popova V, Churyukina E, Keswani C. Unraveling lipid peroxidation-mediated regulation of redox homeostasis for sustaining plant health. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108272. [PMID: 38100892 DOI: 10.1016/j.plaphy.2023.108272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/12/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Lipid peroxidation (LPO) is a complex process that, depending on the context, can either result in oxidative injury or promote redox homeostasis. LPO is a series of reactions in which polyunsaturated fatty acids are attacked by free radicals that result in the synthesis of lipid peroxides. LPO can alter membrane fluidity and operation and produce secondary products that amplify oxidative stress. LPO can activate cellular signaling pathways that promote antioxidant defense mechanisms that provide oxidative stress protection by elevating antioxidant enzyme action potentials. Enzymatic and nonenzymatic mechanisms tightly regulate LPO to prevent excessive LPO and its adverse consequences. This article emphasizes the dual nature of LPO as a mechanism that can both damage cells and regulate redox homeostasis. In addition, it also highlights the major enzymatic and nonenzymatic mechanisms that tightly regulate LPO to prevent excessive oxidative damage. More importantly, it emphasizes the importance of understanding the cellular and biochemical complexity of LPO for developing strategies targeting this process for efficient management of plant stress.
Collapse
Affiliation(s)
- Nilanjan Chakraborty
- Department of Botany, Scottish Church College (affiliated to University of Calcutta), Kolkata, 700006, India
| | - Rusha Mitra
- Department of Botany, Scottish Church College (affiliated to University of Calcutta), Kolkata, 700006, India
| | - Disha Dasgupta
- Department of Botany, Scottish Church College (affiliated to University of Calcutta), Kolkata, 700006, India
| | - Retwika Ganguly
- Department of Botany, Scottish Church College (affiliated to University of Calcutta), Kolkata, 700006, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, 700019, India
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344000, Russia
| | - Victoria Popova
- Rostov Research Institute of Obstetrics and Pediatrics, Rostov-on-Don, 344012, Russia
| | - Ella Churyukina
- Rostov State Medical University, Rostov-on-Don, 344000, Russia
| | - Chetan Keswani
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344000, Russia.
| |
Collapse
|
4
|
Wang W, Cheng Y, Ruan M, Ye Q, Yao Z, Wang R, Zhou G, Liu D, Wan H. Comprehensive identification of glutathione peroxidase (GPX) gene family in response to abiotic stress in pepper (Capsicum annuum L.). Gene 2023:147625. [PMID: 37433355 DOI: 10.1016/j.gene.2023.147625] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/01/2023] [Accepted: 07/06/2023] [Indexed: 07/13/2023]
Abstract
Plant glutathione peroxidase (GPX) plays an important role in the maintenance of cell homeostasis and in the antioxidant response in plants. In this study, the peroxidase (GPX) gene family was identified in the whole genome of pepper using bioinformatic method. As a result, a total of 5 CaGPX genes were identified, which were unevenly distributed on 3 of the 12 chromosomes of pepper genome. Based on phylogenetic analysis, 89 GPX genes in 17 species from lower plants to higher plants can be divided into 4 groups GroupⅠ, Group Ⅱ, Group Ⅲ, Group Ⅳ). The MEME Suite analysis of GPX proteins shows that all these proteins contain four highly conserved motifs, as well as other conserved sequences and amino acid residues. Gene structure analysis revealed the conservative exon-intron organization pattern of these genes. In the promoter region of CaGPX genes, many cis elements of plant hormone and abiotic stress response were identified in each of CaGPX proteins. In addition, expression patterns of CaGPX genes in different tissues, developmental stages and responses to abiotic stress were also performed. The results of qRT-PCR showed that the transcripts of CaGPX genes varied greatly under abiotic stress at different time points. There results suggest that the GPX gene family of pepper may play a role in plant development andstress response. In conclusion, our research provides new insights into the evolution of pepper GPX gene family, and understanding for functional of these genes in response to abiotic stresses.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; College of Agriculture, Yunnan University, Kunming 650504, China
| | - Yuan Cheng
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Meiying Ruan
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qingjing Ye
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhuping Yao
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Rongqing Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guozhi Zhou
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Dandan Liu
- College of Agriculture, Yunnan University, Kunming 650504, China.
| | - Hongjian Wan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; China-Australia Research Centre for Crop Improvement, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
5
|
Farag MM, Arafa RAA, Abou-zeid MA, Alwutayd KM, Moneim DAE, Ghebrial EW. First Appearance of Verticillium tricorpus Causing Verticillium Wilt in tested Okra varieties.. [DOI: 10.21203/rs.3.rs-3044783/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
Symptoms of Verticillium wilt were observed on okra (Abelmoschus esculentus L.) grown widely in Beni Suef Governorate (Nasser, Beba and El-Wasta Counties) in summer 2021. All disease symptoms are externally, infected shoots' leaves turn a light green to yellow colour, lose their turgor, and finally desiccate. Individual shoots in a portion of the plant stem may show symptoms, or the symptoms may emerge over the entire plant. In certain cases, the disease typically progresses over months. According to the morphological characteristics of the isolated fungus, disease symptoms and pathogenicity test, Verticillium tricorpus was identified as the causal agent of Verticillium wilt of okra. Identification of this species was confirmed by sequencing of internal transcribed space (ITS region) of ribosomal RNA gene. V. tricorpus absolutely has not previously been reported on okra. The sequencing of this fungus showed close ties with V. tricorpus, as evidenced by the 99.24–100% identity and 97–100% coverage with several strains of V. tricorpus, including the type strain CBS447.54 (NR_126128). The obtained sequences were deposited in the GenBank with accession number MZ936483. Pathogenicity tests confirmed that V. tricorpus was pathogenic showing the same disease symptoms previously observed on okra plants in the surveyed areas. The infection sensitivity showed that Iranian red cv. is more sensitive to infection than Balady green cv. This appears to be the first record of V. tricorpus associated with Verticillium okra wilt disease.
Collapse
|
6
|
Thye KL, Wan Abdullah WMAN, Ong-Abdullah J, Lamasudin DU, Wee CY, Mohd Yusoff MHY, Loh JY, Cheng WH, Lai KS. Calcium lignosulfonate modulates physiological and biochemical responses to enhance shoot multiplication in Vanilla planifolia Andrews. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:377-392. [PMID: 37033764 PMCID: PMC10073391 DOI: 10.1007/s12298-023-01293-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/01/2023] [Accepted: 02/14/2023] [Indexed: 06/19/2023]
Abstract
Utilisation of calcium lignosulfonate (CaLS) in Vanilla planifolia has been reported to improve shoot multiplication. However, mechanisms responsible for such observation remain unknown. Here, we elucidated the underlying mechanisms of CaLS in promoting shoot multiplication of V. planifolia via comparative proteomics, biochemical assays, and nutrient analysis. The proteome profile of CaLS-treated plants showed enhancement of several important cellular metabolisms such as photosynthesis, protein synthesis, Krebs cycle, glycolysis, gluconeogenesis, and carbohydrate synthesis. Further biochemical analysis recorded that CaLS increased Rubisco activity, hexokinase activity, isocitrate dehydrogenase activity, total carbohydrate content, glutamate synthase activity and total protein content in plant shoot, suggesting the role of CaLS in enhancing shoot growth via upregulation of cellular metabolism. Subsequent nutrient analysis showed that CaLS treatment elevated the contents of several nutrient ions especially calcium and sodium ions. In addition, our study also revealed that CaLS successfully maintained the cellular homeostasis level through the regulation of signalling molecules such as reactive oxygen species and calcium ions. These results demonstrated that the CaLS treatment can enhance shoot multiplication in V. planifolia Andrews by stimulating nutrient uptake, inducing cell metabolism, and regulating cell homeostasis. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01293-w.
Collapse
Affiliation(s)
- Kah-Lok Thye
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Wan Muhamad Asrul Nizam Wan Abdullah
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Janna Ong-Abdullah
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Dhilia Udie Lamasudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Chien-Yeong Wee
- Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute, 43400 Serdang, Selangor Malaysia
| | | | - Jiun-Yan Loh
- Centre of Research for Advanced Aquaculture, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, 56000 Cheras, Kuala Lumpur Malaysia
| | - Wan-Hee Cheng
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, 71800 Nilai, Negeri Sembilan Malaysia
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, 41012 Abu Dhabi, United Arab Emirates
| |
Collapse
|
7
|
Agathokleous E, Zhou B, Geng C, Xu J, Saitanis CJ, Feng Z, Tack FMG, Rinklebe J. Mechanisms of cerium-induced stress in plants: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158352. [PMID: 36063950 DOI: 10.1016/j.scitotenv.2022.158352] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/12/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
A comprehensive evaluation of the effects of cerium on plants is lacking even though cerium is extensively applied to the environment. Here, the effects of cerium on plants were meta-analyzed using a newly developed database consisting of approximately 8500 entries of published data. Cerium affects plants by acting as oxidative stressor causing hormesis, with positive effects at low concentrations and adverse effects at high doses. Production of reactive oxygen species and its linked induction of antioxidant enzymes (e.g. catalase and superoxide dismutase) and non-enzymatic antioxidants (e.g. glutathione) are major mechanisms driving plant response mechanisms. Cerium also affects redox signaling, as indicated by altered GSH/GSSG redox pair, and electrolyte leakage, Ca2+, K+, and K+/Na+, indicating an important role of K+ and Na+ homeostasis in cerium-induced stress and altered mineral (ion) balance. The responses of the plants to cerium are further extended to photosynthesis rate (A), stomatal conductance (gs), photosynthetic efficiency of PSII, electron transport rate, and quantum yield of PSII. However, photosynthesis response is regulated not only by physiological controls (e.g. gs), but also by biochemical controls, such as via changed Hill reaction and RuBisCO carboxylation. Cerium concentrations <0.1-25 mg L-1 commonly enhance chlorophyll a and b, gs, A, and plant biomass, whereas concentrations >50 mg L-1 suppress such fitness-critical traits at trait-specific concentrations. There was no evidence that cerium enhances yields. Observations were lacking for yield response to low concentrations of cerium, whereas concentrations >50 mg Kg-1 suppress yields, in line with the response of chlorophyll a and b. Cerium affects the uptake and tissue concentrations of several micro- and macro-nutrients, including heavy metals. This study enlightens the understanding of some mechanisms underlying plant responses to cerium and provides critical information that can pave the way to reducing the cerium load in the environment and its associated ecological and human health risks.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China.
| | - Boya Zhou
- School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China; Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, UK
| | - Caiyu Geng
- School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China
| | - Jianing Xu
- School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China
| | - Costas J Saitanis
- Lab of Ecology and Environmental Science, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Zhaozhong Feng
- School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China.
| | - Filip M G Tack
- Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Wuppertal, Germany
| |
Collapse
|
8
|
Physcomitrium patens Infection by Colletotrichum gloeosporioides: Understanding the Fungal-Bryophyte Interaction by Microscopy, Phenomics and RNA Sequencing. J Fungi (Basel) 2021; 7:jof7080677. [PMID: 34436216 PMCID: PMC8401727 DOI: 10.3390/jof7080677] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 01/10/2023] Open
Abstract
Anthracnose caused by the hemibiotroph fungus Colletotrichum gloeosporioides is a devastating plant disease with an extensive impact on plant productivity. The process of colonization and disease progression of C. gloeosporioides has been studied in a number of angiosperm crops. To better understand the evolution of the plant response to pathogens, the study of this complex interaction has been extended to bryophytes. The model moss Physcomitrium patens Hedw. B&S (former Physcomitrella patens) is sensitive to known bacterial and fungal phytopathogens, including C. gloeosporioides, which cause infection and cell death. P. patens responses to these microorganisms resemble that of the angiosperms. However, the molecular events during the interaction of P. patens and C. gloeosporioides have not been explored. In this work, we present a comprehensive approach using microscopy, phenomics and RNA-seq analysis to explore the defense response of P. patens to C. gloeosporioides. Microscopy analysis showed that appressoria are already formed at 24 h after inoculation (hai) and tissue colonization and cell death occur at 24 hai and is massive at 48 hai. Consequently, the phenomics analysis showed progressing browning of moss tissues and impaired photosynthesis from 24 to 48 hai. The transcriptomic analysis revealed that more than 1200 P. patens genes were differentially expressed in response to Colletotrichum infection. The analysis of differentially expressed gene function showed that the C. gloeosporioides infection led to a transcription reprogramming in P. patens that upregulated the genes related to pathogen recognition, secondary metabolism, cell wall reinforcement and regulation of gene expression. In accordance with the observed phenomics results, some photosynthesis and chloroplast-related genes were repressed, indicating that, under attack, P. patens changes its transcription from primary metabolism to defend itself from the pathogen.
Collapse
|
9
|
Pastuszak J, Szczerba A, Dziurka M, Hornyák M, Kopeć P, Szklarczyk M, Płażek A. Physiological and Biochemical Response to Fusarium culmorum Infection in Three Durum Wheat Genotypes at Seedling and Full Anthesis Stage. Int J Mol Sci 2021; 22:ijms22147433. [PMID: 34299055 PMCID: PMC8303160 DOI: 10.3390/ijms22147433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 01/24/2023] Open
Abstract
Fusarium culmorum is a worldwide, soil-borne plant pathogen. It causes diseases of cereals, reduces their yield, and fills the grain with toxins. The main direction of modern breeding is to select wheat genotypes the most resistant to Fusarium diseases. This study uses seedlings and plants at the anthesis stage to analyze total soluble carbohydrates, total and cell-wall bound phenolics, chlorophyll content, antioxidant activity, hydrogen peroxide content, mycotoxin accumulation, visual symptoms of the disease, and Fusarium head blight index (FHBi). These results determine the resistance of three durum wheat accessions. We identify physiological or biochemical markers of durum wheat resistance to F. culmorum. Our results confirm correlations between FHBi and mycotoxin accumulation in the grain, which results in grain yield decrease. The degree of spike infection (FHBi) may indicate accumulation mainly of deoxynivalenol and nivalenol in the grain. High catalase activity in the infected leaves could be considered a biochemical marker of durum sensitivity to this fungus. These findings allowed us to formulate a strategy for rapid evaluation of the disease severity and the selection of plants with higher level, or resistance to F. culmorum infection.
Collapse
Affiliation(s)
- Jakub Pastuszak
- Department of Plant Breeding, Physiology and Seed Science, University of Agriculture, Podłużna 3, 30-239 Kraków, Poland; (A.S.); (M.H.); (A.P.)
- Correspondence:
| | - Anna Szczerba
- Department of Plant Breeding, Physiology and Seed Science, University of Agriculture, Podłużna 3, 30-239 Kraków, Poland; (A.S.); (M.H.); (A.P.)
| | - Michał Dziurka
- Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (M.D.); (P.K.)
| | - Marta Hornyák
- Department of Plant Breeding, Physiology and Seed Science, University of Agriculture, Podłużna 3, 30-239 Kraków, Poland; (A.S.); (M.H.); (A.P.)
- Polish Academy of Sciences, W. Szafer Institute of Botany, Lubicz 46, 31-512 Kraków, Poland
| | - Przemysław Kopeć
- Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (M.D.); (P.K.)
| | - Marek Szklarczyk
- Faculty of Biotechnology and Horticulture, University of Agriculture, 29 Listopada 54, 31-425 Kraków, Poland;
| | - Agnieszka Płażek
- Department of Plant Breeding, Physiology and Seed Science, University of Agriculture, Podłużna 3, 30-239 Kraków, Poland; (A.S.); (M.H.); (A.P.)
| |
Collapse
|
10
|
Hunt L, Klem K, Lhotáková Z, Vosolsobě S, Oravec M, Urban O, Špunda V, Albrechtová J. Light and CO 2 Modulate the Accumulation and Localization of Phenolic Compounds in Barley Leaves. Antioxidants (Basel) 2021; 10:385. [PMID: 33807526 PMCID: PMC7999350 DOI: 10.3390/antiox10030385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/21/2022] Open
Abstract
Barley (Hordeum vulgare) accumulates phenolic compounds (PhCs), which play a key role in plant defense against environmental stressors as antioxidants or UV screening compounds. The influence of light and atmospheric CO2 concentration ([CO2]) on the accumulation and localization of PhCs in barley leaves was examined for two varieties with different tolerances to oxidative stress. PhC localization was visualized in vivo using fluorescence microscopy. Close relationships were found between fluorescence-determined localization of PhCs in barley leaves and PhC content estimated using liquid chromatography coupled with mass spectroscopy detection. Light intensity had the strongest effect on the accumulation of PhCs, but the total PhC content was similar at elevated [CO2], minimizing the differences between high and low light. PhCs localized preferentially near the surfaces of leaves, but under low light, an increasing allocation of PhCs in deeper mesophyll layers was observed. The PhC profile was significantly different between barley varieties. The relatively tolerant variety accumulated significantly more hydroxycinnamic acids, indicating that these PhCs may play a more prominent role in oxidative stress prevention. Our research presents novel evidence that [CO2] modulates the accumulation of PhCs in barley leaves. Mesophyll cells, rather than epidermal cells, were most responsive to environmental stimuli in terms of PhC accumulation.
Collapse
Affiliation(s)
- Lena Hunt
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12844 Praha, Czech Republic; (L.H.); (Z.L.); (S.V.)
| | - Karel Klem
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 4a, 60300 Brno, Czech Republic; (K.K.); (M.O.); (O.U.); (V.Š.)
| | - Zuzana Lhotáková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12844 Praha, Czech Republic; (L.H.); (Z.L.); (S.V.)
| | - Stanislav Vosolsobě
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12844 Praha, Czech Republic; (L.H.); (Z.L.); (S.V.)
| | - Michal Oravec
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 4a, 60300 Brno, Czech Republic; (K.K.); (M.O.); (O.U.); (V.Š.)
| | - Otmar Urban
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 4a, 60300 Brno, Czech Republic; (K.K.); (M.O.); (O.U.); (V.Š.)
| | - Vladimír Špunda
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 4a, 60300 Brno, Czech Republic; (K.K.); (M.O.); (O.U.); (V.Š.)
- Department of Physics, Faculty of Science, University of Ostrava, Dvořákova 7, 70103 Ostrava, Czech Republic
| | - Jana Albrechtová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12844 Praha, Czech Republic; (L.H.); (Z.L.); (S.V.)
| |
Collapse
|
11
|
Xiao M, Li Z, Zhu L, Wang J, Zhang B, Zheng F, Zhao B, Zhang H, Wang Y, Zhang Z. The Multiple Roles of Ascorbate in the Abiotic Stress Response of Plants: Antioxidant, Cofactor, and Regulator. FRONTIERS IN PLANT SCIENCE 2021; 12:598173. [PMID: 33912200 PMCID: PMC8072462 DOI: 10.3389/fpls.2021.598173] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/17/2021] [Indexed: 05/13/2023]
Abstract
Ascorbate (ASC) plays a critical role in plant stress response. The antioxidant role of ASC has been well-studied, but there are still several confusing questions about the function of ASC in plant abiotic stress response. ASC can scavenge reactive oxygen species (ROS) and should be helpful for plant stress tolerance. But in some cases, increasing ASC content impairs plant abiotic stress tolerance, whereas, inhibiting ASC synthesis or regeneration enhances plant stress tolerance. This confusing phenomenon indicates that ASC may have multiple roles in plant abiotic stress response not just as an antioxidant, though many studies more or less ignored other roles of ASC in plant. In fact, ACS also can act as the cofactor of some enzymes, which are involved in the synthesis, metabolism, and modification of a variety of substances, which has important effects on plant stress response. In addition, ASC can monitor and effectively regulate cell redox status. Therefore, we believe that ASC has atleast triple roles in plant abiotic stress response: as the antioxidant to scavenge accumulated ROS, as the cofactor to involve in plant metabolism, or as the regulator to coordinate the actions of various signal pathways under abiotic stress. The role of ASC in plant abiotic stress response is important and complex. The detail role of ASC in plant abiotic stress response should be analyzed according to specific physiological process in specific organ. In this review, we discuss the versatile roles of ASC in the response of plants to abiotic stresses.
Collapse
Affiliation(s)
- Minggang Xiao
- Biotechnology Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Zixuan Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
| | - Li Zhu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
| | - Jiayi Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
| | - Bo Zhang
- Biotechnology Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Fuyu Zheng
- Biotechnology Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Beiping Zhao
- Biotechnology Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Haiwen Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
| | - Yujie Wang
- Biotechnology Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Yujie Wang,
| | - Zhijin Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
- *Correspondence: Zhijin Zhang,
| |
Collapse
|
12
|
Significance of Apoidea as Main Pollinators. Ecological and Economic Impact and Implications for Human Nutrition. DIVERSITY 2020. [DOI: 10.3390/d12070280] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Wild and managed bees provide pollination services to crops and wild plants, as well as a variety of other services beneficial to humans. Honey bees are the most economically valuable pollinator worldwide. It has been calculated that 9.5% of the total economic value of agricultural production comes from insect pollination, thus amounting to just under USD 200 billion globally. More than 100 important crops depend on pollination by honey bees. The latter pollinate not only a wide number of commercial crops but also many wild plants, some of which are threatened by extinction and constitute a valuable genetic resource. Moreover, as pollinators, honey bees play a significant role in every aspect of the ecosystem by facilitating the growth of trees, flowers, and other plants that serve as food and shelter for many large and small creatures. In this paper, we describe how the reduction in honey bee populations affects various economic sectors, as well as human health.
Collapse
|
13
|
García-Ulloa A, Sanjurjo L, Cimini S, Encina A, Martínez-Rubio R, Bouza R, Barral L, Estévez-Pérez G, Novo-Uzal E, De Gara L, Pomar F. Overexpression of ZePrx in Nicotiana tabacum Affects Lignin Biosynthesis Without Altering Redox Homeostasis. FRONTIERS IN PLANT SCIENCE 2020; 11:900. [PMID: 32676088 PMCID: PMC7333733 DOI: 10.3389/fpls.2020.00900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/02/2020] [Indexed: 05/30/2023]
Abstract
Class III plant peroxidases (Prxs) are involved in the oxidative polymerization of lignins. Zinnia elegans Jacq. Basic peroxidase (ZePrx) has been previously characterized as capable of catalyzing this reaction in vitro and the role in lignin biosynthesis of several of its Arabidopsis thaliana homologous has been previously confirmed. In the present work, ZePrx was overexpressed in Nicotiana tabacum to further characterize its function in planta with particular attention to its involvement in lignin biosynthesis. Since Prxs are known to alter ROS levels by using them as electron acceptor or producing them in their catalytic activity, the impact of this overexpression in redox homeostasis was studied by analyzing the metabolites and enzymes of the ascorbate-glutathione cycle. In relation to the modification induced by ZePrx overexpression in lignin composition and cellular metabolism, the carbohydrate composition of the cell wall as well as overall gene expression through RNA-Seq were analyzed. The obtained results indicate that the overexpression of ZePrx caused an increase in syringyl lignin in cell wall stems, suggesting that ZePrx is relevant for the oxidation of sinapyl alcohol during lignin biosynthesis, coherently with its S-peroxidase nature. The increase in the glucose content of the cell wall and the reduction of the expression of several genes involved in secondary cell wall biosynthesis suggests the occurrence of a possible compensatory response to maintain cell wall properties. The perturbation of cellular redox homeostasis occurring as a consequence of ZePrx overexpression was kept under control by an increase in APX activity and a reduction in ascorbate redox state. In conclusion, our results confirm the role of ZePrx in lignin biosynthesis and highlight that its activity alters cellular pathways putatively aimed at maintaining redox homeostasis.
Collapse
Affiliation(s)
- Alba García-Ulloa
- Departamento de Biología, Centro de Investigaciones Científicas Avanzadas, Universidade da Coruña, A Coruña, Spain
| | - Laura Sanjurjo
- Departamento de Biología, Centro de Investigaciones Científicas Avanzadas, Universidade da Coruña, A Coruña, Spain
| | - Sara Cimini
- Unit of Food Science and Human Nutrition, Department of Science and Technology for Humans and the Environment, Campus Bio-Medico University, Rome, Italy
| | - Antonio Encina
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
| | - Romina Martínez-Rubio
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
| | - Rebeca Bouza
- Grupo de Polímeros, Departamento de Física y Ciencias de la Tierra Escuela Universitaria Politécnica, Universidade da Coruña, Serantes, Ferrol, Spain
| | - Luis Barral
- Grupo de Polímeros, Departamento de Física y Ciencias de la Tierra Escuela Universitaria Politécnica, Universidade da Coruña, Serantes, Ferrol, Spain
| | | | | | - Laura De Gara
- Unit of Food Science and Human Nutrition, Department of Science and Technology for Humans and the Environment, Campus Bio-Medico University, Rome, Italy
| | - Federico Pomar
- Departamento de Biología, Centro de Investigaciones Científicas Avanzadas, Universidade da Coruña, A Coruña, Spain
| |
Collapse
|
14
|
Wang R, Wang X, Liu K, Zhang XJ, Zhang LY, Fan SJ. Comparative Transcriptome Analysis of Halophyte Zoysia macrostachya in Response to Salinity Stress. PLANTS (BASEL, SWITZERLAND) 2020; 9:E458. [PMID: 32260413 PMCID: PMC7238138 DOI: 10.3390/plants9040458] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
As one of the most severe environmental stresses, salt stress can cause a series of changes in plants. In salt tolerant plant Zoysia macrostachya, germination, physiology, and genetic variation under salinity have been studied previously, and the morphology and distribution of salt glands have been clarified. However, no study has investigated the transcriptome of such species under salt stress. In the present study, we compared transcriptome of Z. macrostachya under normal conditions and salt stress (300 mmol/L NaCl, 24 h) aimed to identify transcriptome responses and molecular mechanisms under salt stress in Z. macrostachya. A total of 8703 differently expressed genes (DEGs) were identified, including 4903 up-regulated and 3800 down-regulated ones. Moreover, a series of molecular processes were identified by Gene Ontology (GO) analysis, and these processes were suggested to be closely related to salt tolerance in Z. macrostachya. The identified DEGs concentrated on regulating plant growth via plant hormone signal transduction, maintaining ion homeostasis via salt secretion and osmoregulatory substance accumulation and preventing oxidative damage via increasing the activity of ROS (reactive oxygen species) scavenging system. These changes may be the most important responses of Z. macrostachya under salt stress. Some key genes related to salt stress were identified meanwhile. Collectively, our findings provided valuable insights into the molecular mechanisms and genetic underpinnings of salt tolerance in Z. macrostachya.
Collapse
Affiliation(s)
| | | | | | | | - Luo-Yan Zhang
- Key Lab of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (R.W.); (X.W.); (K.L.); (X.-J.Z.)
| | - Shou-Jin Fan
- Key Lab of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (R.W.); (X.W.); (K.L.); (X.-J.Z.)
| |
Collapse
|
15
|
Nazar Pour F, Ferreira V, Félix C, Serôdio J, Alves A, Duarte AS, Esteves AC. Effect of temperature on the phytotoxicity and cytotoxicity of Botryosphaeriaceae fungi. Fungal Biol 2020; 124:571-578. [PMID: 32448448 DOI: 10.1016/j.funbio.2020.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/26/2020] [Accepted: 02/19/2020] [Indexed: 12/27/2022]
Abstract
Botryosphaeriaceae fungi are phytopathogens and human opportunists. The influence of temperature on the phytotoxicity and cytotoxicity of culture filtrates of five Botryosphaeriaceae species was investigated. All culture filtrates of fungi grown at 25 °C were phytotoxic: symptoms were evaluated based on visual inspection of necrosis areas and on the maximum quantum yield of photosystem II, Fv/Fm. Diplodiacorticola and Neofusicoccum kwambonambiense were the most phytotoxic, followed by Neofusicoccum parvum CAA704 and Botryosphaeria dothidea. Phytotoxicity dramatically decreased when strains were grown at 37 °C, except for B. dothidea. All strains, except N. parvum CAA366 and Neofusicoccum eucalyptorum, grown either at 25 °C or 37 °C, were toxic to mammalian cells; at 25 °C and at 37°C, D. corticola and B. dothidea were the most cytotoxic, respectively. Although the toxicity of B. dothidea to both cell lines and of N. kwambonambiense to Vero cells increased with temperature, the opposite was found for the other species tested. Our results suggest that temperature modulates the expression of toxic compounds that, in a scenario of a global increase of temperature, may contribute to new plant infections but also human infections, especially in the case of B. dothidea.
Collapse
Affiliation(s)
- Forough Nazar Pour
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Vanessa Ferreira
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Carina Félix
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João Serôdio
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Artur Alves
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana Sofia Duarte
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana Cristina Esteves
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
16
|
Sun M, Voorrips RE, van Kaauwen M, Visser RGF, Vosman B. The ability to manipulate ROS metabolism in pepper may affect aphid virulence. HORTICULTURE RESEARCH 2020; 7:6. [PMID: 31908809 PMCID: PMC6938493 DOI: 10.1038/s41438-019-0231-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/13/2019] [Accepted: 12/04/2019] [Indexed: 05/14/2023]
Abstract
Myzus persicae has severe economic impact on pepper (Capsicum) cultivation. Previously, we identified two populations of M. persicae, NL and SW, that were avirulent and virulent, respectively on C. baccatum accession PB2013071. The transcriptomics approach used in the current study, which is the first study to explore the pepper-aphid interaction at the whole genome gene expression level, revealed genes whose expression is differentially regulated in pepper accession PB2013071 upon infestation with these M. persicae populations. The NL population induced ROS production genes, while the SW population induced ROS scavenging genes and repressed ROS production genes. We also found that the SW population can induce the removal of ROS which accumulated in response to preinfestion with the NL population, and that preinfestation with the SW population significantly improved the performance of the NL population. This paper supports the hypothesis that M. persicae can overcome the resistance in accession PB2013071 probably because of its ability to manipulate plant defense response especially the ROS metabolism and such ability may benefit avirulent conspecific aphids.
Collapse
Affiliation(s)
- Mengjing Sun
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, Netherlands
| | - Roeland E. Voorrips
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, Netherlands
| | - Martijn van Kaauwen
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, Netherlands
| | - Richard G. F. Visser
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, Netherlands
| | - Ben Vosman
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, Netherlands
| |
Collapse
|
17
|
Gionfriddo M, De Gara L, Loreto F. Directed Evolution of Plant Processes: Towards a Green (r)Evolution? TRENDS IN PLANT SCIENCE 2019; 24:999-1007. [PMID: 31604600 DOI: 10.1016/j.tplants.2019.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/11/2019] [Accepted: 08/13/2019] [Indexed: 05/13/2023]
Abstract
Directed evolution (DE) is a powerful approach for generating proteins with new chemical and physical properties. It mimics the principles of Darwinian evolution by imposing selective pressure on a large population of molecules harboring random genetic variation in DNA, such that sequences with specific desirable properties are generated and selected. We propose that combining DE and genome-editing (DE-GE) technologies represents a powerful tool to discover and integrate new traits into plants for agronomic and biotechnological gain. DE-GE has the potential to deliver a new green (r)evolution research platform that can provide novel solutions to major trait delivery aspirations for sustainable agriculture, climate-resilient crops, and improved food security and nutritional quality.
Collapse
Affiliation(s)
- Matteo Gionfriddo
- Unit of Food Science and Human Nutrition, Campus Bio-Medico, University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy; Department of Biology, Agriculture, and Food Sciences, National Research Council of Italy (CNR-DISBA), Piazzale Aldo Moro 7, 00185 Rome, Italy
| | - Laura De Gara
- Unit of Food Science and Human Nutrition, Campus Bio-Medico, University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy.
| | - Francesco Loreto
- Department of Biology, Agriculture, and Food Sciences, National Research Council of Italy (CNR-DISBA), Piazzale Aldo Moro 7, 00185 Rome, Italy; Department of Biology, University Federico II, Via Cinthia, 80126 Naples, Italy.
| |
Collapse
|
18
|
Oliveira RADC, de Andrade AS, Imparato DO, de Lima JGS, de Almeida RVM, Lima JPMS, Pasquali MADB, Dalmolin RJS. Analysis of Arabidopsis thaliana Redox Gene Network Indicates Evolutionary Expansion of Class III Peroxidase in Plants. Sci Rep 2019; 9:15741. [PMID: 31673065 PMCID: PMC6823369 DOI: 10.1038/s41598-019-52299-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 08/16/2019] [Indexed: 12/14/2022] Open
Abstract
Reactive oxygen species (ROS) are byproducts of aerobic metabolism and may cause oxidative damage to biomolecules. Plants have a complex redox system, involving enzymatic and non-enzymatic compounds. The evolutionary origin of enzymatic antioxidant defense in plants is yet unclear. Here, we describe the redox gene network for A. thaliana and investigate the evolutionary origin of this network. We gathered from public repositories 246 A. thaliana genes directly involved with ROS metabolism and proposed an A. thaliana redox gene network. Using orthology information of 238 Eukaryotes from STRINGdb, we inferred the evolutionary root of each gene to reconstruct the evolutionary history of A. thaliana antioxidant gene network. We found two interconnected clusters: one formed by SOD-related, Thiol-redox, peroxidases, and other oxido-reductase; and the other formed entirely by class III peroxidases. Each cluster emerged in different periods of evolution: the cluster formed by SOD-related, Thiol-redox, peroxidases, and other oxido-reductase emerged before opisthokonta-plant divergence; the cluster composed by class III peroxidases emerged after opisthokonta-plant divergence and therefore contained the most recent network components. According to our results, class III peroxidases are in expansion throughout plant evolution, with new orthologs emerging in each evaluated plant clade divergence.
Collapse
Affiliation(s)
- Raffael Azevedo de Carvalho Oliveira
- Bioinformatics Multidisciplinary Environment - IMD, Federal University of Rio Grande do Norte, Natal, Brazil.,Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Abraão Silveira de Andrade
- Bioinformatics Multidisciplinary Environment - IMD, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Danilo Oliveira Imparato
- Bioinformatics Multidisciplinary Environment - IMD, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | | | - João Paulo Matos Santos Lima
- Bioinformatics Multidisciplinary Environment - IMD, Federal University of Rio Grande do Norte, Natal, Brazil.,Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Matheus Augusto de Bittencourt Pasquali
- Institute of Tropical Medicine, Federal University of Rio Grande do Norte, Natal, Brazil.,Food Engineering Unit, UAEALI, UFCG, Campina Grande, Brazil.,Graduate Program in Natural Resources, PPGRN, UFCG, Campina Grande, Brazil
| | - Rodrigo Juliani Siqueira Dalmolin
- Bioinformatics Multidisciplinary Environment - IMD, Federal University of Rio Grande do Norte, Natal, Brazil. .,Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, Brazil.
| |
Collapse
|
19
|
López-Orenes A, Bueso MC, Conesa H, Calderón AA, Ferrer MA. Seasonal ionomic and metabolic changes in Aleppo pines growing on mine tailings under Mediterranean semi-arid climate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 637-638:625-635. [PMID: 29758419 DOI: 10.1016/j.scitotenv.2018.05.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/28/2018] [Accepted: 05/04/2018] [Indexed: 06/08/2023]
Abstract
Aleppo pine is the most abundant conifer species in Mediterranean basin. Knowledge of adaptive mechanisms to cope with different environmental stresses simultaneously is necessary to improve its resilience to the predicted climatic changes and anthropogenic stressors, such as heavy metal/metal(loid)s (HMMs) pollution. Here, one year-old needles and rhizosphere soil samples from five mining and non-mining (NM) populations of Aleppo pines grown spontaneously in SE Spain were sampled in two consecutive years during spring and summer. Quantitative determination of a wide suite of edaphic, biochemical, and physiological parameters was performed, including soil physicochemical properties, ionome profile, foliar redox components, primary and secondary metabolites. Mining rhizosphere soils were characterized by elevated contents of HMMs, particularly lead and zinc, and low carbon, nitrogen and potassium levels. Multivariate data analysis based on needle ionome and antioxidative/oxidative parameters revealed a clear distinction between seasons irrespective of the population considered. Spring needles were characterized by higher levels of HMMs, sulfur, glutathione (GSH), proanthocyanidins (PAs), and soluble phenols (TPC), whereas reduced chlorophylls and increased levels of carotenoids, relative water content and K+, Na+ and Cl- typified summer needles. In general mining populations had higher levels of ascorbate, and TPC, and exhibited higher antioxidant activities than the NM population. This could contribute to prevent oxidative injury induced by HMMs. Taken together, results suggest that seasonal factors have a more marked effect on the metabolism of the Aleppo pine populations studied than that exerted by soil conditions. This effect could be mediated by water availability in surface soil layers. If this conclusion is right, predicted rainfall reduction and temperature increase in the Mediterranean basin associated to global climate change would lead to pine needle metabolism to express the summer pattern for more prolonged periods. This, in turn, could negatively affect the performance of Aleppo pine populations.
Collapse
Affiliation(s)
- Antonio López-Orenes
- Department of Agricultural Science and Technology, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Murcia, Spain
| | - María C Bueso
- Department of Applied Mathematics and Statistics, Universidad Politécnica de Cartagena, Doctor Fleming s/n, 30202 Cartagena, Murcia, Spain
| | - Héctor Conesa
- Department of Agricultural Science and Technology, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Murcia, Spain
| | - Antonio A Calderón
- Department of Agricultural Science and Technology, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Murcia, Spain
| | - María A Ferrer
- Department of Agricultural Science and Technology, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Murcia, Spain.
| |
Collapse
|
20
|
Sun Y, Li Y, Wang M, Wang C, Ling N, Mur LAJ, Shen Q, Guo S. Redox imbalance contributed differently to membrane damage of cucumber leaves under water stress and Fusarium infection. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:171-180. [PMID: 30080601 DOI: 10.1016/j.plantsci.2018.05.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 05/29/2023]
Abstract
Redox-associated events are important in plant development and responses to environmental stresses. In this study, we investigated spatial redox responses of cucumber (Cucumis sativus L.) leaves to biotic stress (Fusarium infection) or abiotic stress (water stress). Plants were grown under hydroponic conditions and either treated with polyethylene glycol to simulate drought or infected with Fusarium oxysporum f. sp. cucumerinum. Both water stress and Fusarium infection restricted cucumber growth and were associated with cellular plasma-membrane damage, reactive oxygen species accumulation, and changes in antioxidants; however, the responses to each stress were distinctive. Under water stress, H2O2 generation at the leaf edge increased 29.7% compared with that at the centre but with Fusarium infection there was a relative 10.4% decrease at the edge. These changes correlated with changes in antioxidants and linked enzyme activities. The key sources of variation in oxidative events were defined by principal component analysis of all of the data and redox balance evaluations. We suggest that these spatial differences under water stress and Fusarium infection arise from discrete regulatory mechanisms, reflecting either developmental effect over the leaf regions or systemic anti-oxidative events occurred following infection.
Collapse
Affiliation(s)
- Yuming Sun
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Centre for Organic-based Fertilizers, Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yingrui Li
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Centre for Organic-based Fertilizers, Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Min Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Centre for Organic-based Fertilizers, Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Chengzi Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Centre for Organic-based Fertilizers, Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Ning Ling
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Centre for Organic-based Fertilizers, Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Luis A J Mur
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK.
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Centre for Organic-based Fertilizers, Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Shiwei Guo
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Centre for Organic-based Fertilizers, Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
21
|
Ansah FA, Amodio ML, Colelli G. Quality of fresh-cut products as affected by harvest and postharvest operations. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:3614-3626. [PMID: 29327344 DOI: 10.1002/jsfa.8885] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/22/2017] [Accepted: 01/07/2018] [Indexed: 06/07/2023]
Abstract
There is a rising demand for fresh-cut convenience products with high quality and nutritional standards that needs to be met by the fresh-cut industry. It is well known that harvest and postharvest handling of fresh produce has a paramount impact on its quality and storage, although most of the existing literature has focused on these impacts related only to fresh produce that is destined for the final consumers. Indeed, current harvest methods and postharvest technologies have improved fruit and vegetable handling and distribution processes by slowing down physiological processes and senescence. Nonetheless, these technologies and methods may influence the quality of fresh produce as raw material for fresh-cut processing as a result of the dynamic responses of fresh produce to handling procedures and treatments. Here, we review the existing literature on the challenges facing the fresh-cut industry, focusing on the impact of harvest, maturity, and handling of fruit and vegetables on the quality of raw materials, as well as the implications for fresh-cut products. The review also highlights areas for further research with the aim of enhancing the sensorial, nutritional and biochemical quality of such products. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Francisca A Ansah
- Università di Foggia, Dipartimento di Scienze Agrarie, degli alimenti e dell'Ambiente, Foggia, Italy
| | - Maria L Amodio
- Università di Foggia, Dipartimento di Scienze Agrarie, degli alimenti e dell'Ambiente, Foggia, Italy
| | - Giancarlo Colelli
- Università di Foggia, Dipartimento di Scienze Agrarie, degli alimenti e dell'Ambiente, Foggia, Italy
| |
Collapse
|
22
|
Locato V, Cimini S, De Gara L. ROS and redox balance as multifaceted players of cross-tolerance: epigenetic and retrograde control of gene expression. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3373-3391. [PMID: 29722828 DOI: 10.1093/jxb/ery168] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 04/27/2018] [Indexed: 05/07/2023]
Abstract
Retrograde pathways occurring between chloroplasts, mitochondria, and the nucleus involve oxidative and antioxidative signals that, working in a synergistic or antagonistic mode, control the expression of specific patterns of genes following stress perception. Increasing evidence also underlines the relevance of mitochondrion-chloroplast-nucleus crosstalk in modulating the whole cellular redox metabolism by a controlled and integrated flux of information. Plants can maintain the acquired tolerance by a stress memory, also operating at the transgenerational level, via epigenetic and miRNA-based mechanisms controlling gene expression. Data discussed in this review strengthen the idea that ROS, redox signals, and shifts in cellular redox balance permeate the signalling network leading to cross-tolerance. The identification of specific ROS/antioxidative signatures leading a plant to different fates under stress is pivotal for identifying strategies to monitor and increase plant fitness in a changing environment. This review provides an update of the plant redox signalling network implicated in stress responses, in particular in cross-tolerance acquisition. The interplay between reactive oxygen species (ROS), ROS-derived signals, and antioxidative pathways is also discussed in terms of plant acclimation to stress in the short and long term.
Collapse
Affiliation(s)
- Vittoria Locato
- Unit of Food Science and Human Nutrition, Campus Bio-Medico University, Rome, Italy
| | - Sara Cimini
- Unit of Food Science and Human Nutrition, Campus Bio-Medico University, Rome, Italy
| | - Laura De Gara
- Unit of Food Science and Human Nutrition, Campus Bio-Medico University, Rome, Italy
| |
Collapse
|
23
|
Environmental conditions influence the biochemical properties of the fruiting bodies of Tuber magnatum Pico. Sci Rep 2018; 8:7243. [PMID: 29740145 PMCID: PMC5940868 DOI: 10.1038/s41598-018-25520-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 04/16/2018] [Indexed: 11/30/2022] Open
Abstract
The influences of various factors, including the symbiosis established with the roots of specific tree species, on the production of volatiles in the fruiting bodies of Tuber magnatum have not been investigated yet. Volatiles in T. magnatum fruiting bodies were quantitatively and qualitatively determined by both PTR-MS and GC-MS in order to compare the accuracy of the two methods. An electronic nose was also used to characterize truffle samples. The influence of environmental changes on the antioxidant capabilities of fruiting bodies was also determined. Statistically significant differences were found between fruiting bodies with different origins. The relationship between the quality of white truffle fruiting bodies and their specific host plant is described along with an analysis of metabolites other than VOCs that have ecological roles. Our results indicate that the geographical origin (Italy and Istria) of the fruiting bodies is correlated with the quantity and quality of volatiles and various antioxidant metabolites. This is the first report characterizing antioxidant compounds other than VOCs in white truffles. The correlation between geographical origin and antioxidant contents suggests that these compounds may be useful for certifying the geographical origin of truffles.
Collapse
|
24
|
Abreu ME, Carvalho V, Mercier H. Antioxidant capacity along the leaf blade of the C 3-CAM facultative bromeliad Guzmania monostachia under water deficit conditions. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:620-629. [PMID: 32290964 DOI: 10.1071/fp17162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/29/2017] [Indexed: 06/11/2023]
Abstract
Guzmania monostachia (L.) Rusby ex Mez is an epiphytic, rosette-shaped bromeliad that displays variable degrees of crassulacean acid metabolism (CAM) along the leaf under water deficit. The aim of our study was to evaluate whether the production-scavenging system of reactive oxygen species (ROS) along the leaf length of G. monostachia plants is related to the foliar gradient of CAM when irrigation is withheld. Among the leaf portions, the apex was exposed to the highest photosynthetic flux density and presented the highest relative water content, CAM activity, hydrogen peroxide and lipid peroxidation after treatment. Hence, the most intense CAM at the leaf apex may not have prevented higher oxidative burden in that region during water deficiency. However, the photosynthetic efficiency in the apex seemed unaffected by irrigation withholding or light intensity. The leaf apex also had the highest carotenoid content and increased superoxide dismutase and ascorbate peroxidase activities under treatment. Hence, G. monostachia was able to maintain ROS under tolerable levels by increasing antioxidant capacity. Our results suggest the metabolic differences within the same leaf under water deficit may derive from the gradient of light incidence, which emphasises the physiological plasticity this bromeliad applies to adapt to the adverse conditions of the canopy.
Collapse
Affiliation(s)
- Maria E Abreu
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-090, São Paulo, SP, Brazil
| | - Victória Carvalho
- Núcleo de Pesquisa em Plantas Ornamentais, Instituto de Botânica SMA/SP, 04301-902, São Paulo, SP, Brazil
| | - Helenice Mercier
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-090, São Paulo, SP, Brazil
| |
Collapse
|
25
|
Formentin E, Sudiro C, Ronci MB, Locato V, Barizza E, Stevanato P, Ijaz B, Zottini M, De Gara L, Lo Schiavo F. H 2O 2 Signature and Innate Antioxidative Profile Make the Difference Between Sensitivity and Tolerance to Salt in Rice Cells. FRONTIERS IN PLANT SCIENCE 2018; 9:1549. [PMID: 30405678 PMCID: PMC6206305 DOI: 10.3389/fpls.2018.01549] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/03/2018] [Indexed: 05/07/2023]
Abstract
Salt tolerance is a complex trait that varies between and within species. H2O2 profiles as well as antioxidative systems have been investigated in the cultured cells of rice obtained from Italian rice varieties with different salt tolerance. Salt stress highlighted differences in extracellular and intracellular H2O2 profiles in the two cell cultures. The tolerant variety had innate reactive oxygen species (ROS) scavenging systems that enabled ROS, in particular H2O2, to act as a signal molecule rather than a damaging one. Different intracellular H2O2 profiles were also observed: in tolerant cells, an early and narrow peak was detected at 5 min; while in sensitive cells, a large peak was associated with cell death. Likewise, the transcription factor salt-responsive ethylene responsive factor 1 (TF SERF1), which is known for being regulated by H2O2, showed a different expression profile in the two cell lines. Notably, similar H2O2 profiles and cell fates were also obtained when exogenous H2O2 was produced by glucose/glucose oxidase (GOX) treatment. Under salt stress, the tolerant variety also exhibited rapid upregulation of K+ transporter genes in order to deal with K+/Na+ impairment. This upregulation was not detected in the presence of oxidative stress alone. The importance of the innate antioxidative profile was confirmed by the protective effect of experimentally increased glutathione in salt-treated sensitive cells. Overall, these results underline the importance of specific H2O2 signatures and innate antioxidative systems in modulating ionic and redox homeostasis for salt stress tolerance.
Collapse
Affiliation(s)
| | | | - Maria Beatrice Ronci
- Unit of Food Science and Human Nutrition, Campus Bio-Medico University of Rome, Rome, Italy
| | - Vittoria Locato
- Unit of Food Science and Human Nutrition, Campus Bio-Medico University of Rome, Rome, Italy
| | | | - Piergiorgio Stevanato
- Department of Agronomy, Food, Natural Resources, Animal and Environment, DAFNAE, University of Padova, Padova, Italy
| | - Bushra Ijaz
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | | | - Laura De Gara
- Unit of Food Science and Human Nutrition, Campus Bio-Medico University of Rome, Rome, Italy
- *Correspondence: Laura De Gara,
| | | |
Collapse
|
26
|
Boughalleb F, Abdellaoui R, Nbiba N, Mahmoudi M, Neffati M. Effect of NaCl stress on physiological, antioxidant enzymes and anatomical responses of Astragalus gombiformis. Biologia (Bratisl) 2017. [DOI: 10.1515/biolog-2017-0169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
27
|
Zhou H, Zhao J, Cai J, Patil SB. UBIQUITIN-SPECIFIC PROTEASES function in plant development and stress responses. PLANT MOLECULAR BIOLOGY 2017; 94:565-576. [PMID: 28695315 DOI: 10.1007/s11103-017-0633-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/05/2017] [Indexed: 05/08/2023]
Abstract
UBIQUITIN-SPECIFIC PROTEASES play important roles in plant development and stress responses. Protein ubiquitination and deubiquitination are reversible processes, which can modulate the stability, activity as well as subcellular localization of the substrate proteins. UBIQUITIN-SPECIFIC PROTEASE (UBP) protein family participates in protein deubiquitination. Members of UBP family are involved in a variety of physiological processes in plants, as evidenced by their functional characterization in model plant Arabidopsis and other plants. UBPs are conserved in plants and distinct UBPs function in different regulatory processes, although functional redundancies exist between some members. Here we briefly reviewed recent advances in understanding the biological functions of UBP protein family in Arabidopsis, particularly the molecular mechanisms by which UBPs regulate plant development and stress responses. We believe that elucidation of UBPs function and regulation in Arabidopsis will provide new insights about protein deubiquitination and might shed light on the understanding of the mechanistic roles of UBPs in general, which will definitely contribute to crop improvement in agriculture.
Collapse
Affiliation(s)
- Huapeng Zhou
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China.
| | - Jinfeng Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jingqing Cai
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Suyash B Patil
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
28
|
Brandão SE, Bulbovas P, Lima MEL, Domingos M. Biochemical leaf traits as indicators of tolerance potential in tree species from the Brazilian Atlantic Forest against oxidative environmental stressors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 575:406-417. [PMID: 27750137 DOI: 10.1016/j.scitotenv.2016.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/01/2016] [Accepted: 10/01/2016] [Indexed: 06/06/2023]
Abstract
The tolerance potential against the oxidative injury in native plants from forest ecosystems affected by environmental stressors depends on how efficiently they keep their pro-oxidant/antioxidant balance. Great variations in plant tolerance are expected, highlighting the higher relevance of measuring biochemical leaf trait indicators of oxidative injury in species with similar functions in the forest than in single species. The use of this functional approach seems very useful in the Brazilian Atlantic Forest because it still holds high plant diversity and was the focus of this study. We aimed at determining the tolerance potential of tree species from the Atlantic Forest remnants in SE Brazil against multiple oxidative environmental stressors. We assumed that pioneer tree species are more tolerant against oxidative stress than non-pioneer tree species and that their tolerance potential vary spatially in response to distinct combined effects of oxidative environmental stressors. The study was carried out in three Atlantic Forest remnants, which differ in physiognomy, species composition, climatic characteristics and air pollution exposure. Leaves of three pioneer and three non-pioneer species were collected from each forest remnant during wet (January 2015) and dry periods (June 2015), for analyses of non-enzymatic and enzymatic antioxidants and oxidative injury indicators. Both hypotheses were confirmed. The pioneer tree species displayed biochemical leaf traits (e.g. high levels of ascorbic acid, glutathione and carotenoids and lower lipid peroxidation) that indicate their higher potential tolerance against oxidative environmental stressors than non-pioneer species. The biochemical leaf traits of both successional groups of species varied between the forest remnants, in response to a linear combination of oxidative environmental stressors, from natural (relative humidity and temperature) and anthropogenic sources (ozone and nitrogen dioxide).
Collapse
Affiliation(s)
- Solange E Brandão
- Instituto de Botânica, Caixa Postal 68041, 04045-972, São Paulo, Brazil
| | - Patricia Bulbovas
- Instituto de Botânica, Caixa Postal 68041, 04045-972, São Paulo, Brazil
| | - Marcos E L Lima
- Instituto de Botânica, Caixa Postal 68041, 04045-972, São Paulo, Brazil
| | - Marisa Domingos
- Instituto de Botânica, Caixa Postal 68041, 04045-972, São Paulo, Brazil.
| |
Collapse
|
29
|
Peng R, Bian Z, Zhou L, Cheng W, Hai N, Yang C, Yang T, Wang X, Wang C. Hydrogen sulfide enhances nitric oxide-induced tolerance of hypoxia in maize (Zea mays L.). PLANT CELL REPORTS 2016; 35:2325-2340. [PMID: 27516180 DOI: 10.1007/s00299-016-2037-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/03/2016] [Indexed: 05/07/2023]
Abstract
Our data present H 2 S in a new role, serving as a multi-faceted transducer to different response mechanisms during NO-induced acquisition of tolerance to flooding-induced hypoxia in maize seedling roots. Nitric oxide (NO), serving as a secondary messenger, modulates physiological processes in plants. Recently, hydrogen sulfide (H2S) has been demonstrated to have similar signaling functions. This study focused on the effects of treatment with H2S on NO-induced hypoxia tolerance in maize seedlings. The results showed that treatment with the NO donor sodium nitroprusside (SNP) enhanced survival rate of submerged maize roots through induced accumulation of endogenous H2S. The induced H2S then enhanced endogenous Ca2+ levels as well as the Ca2+-dependent activity of alcohol dehydrogenase (ADH), improving the capacity for antioxidant defense and, ultimately, the hypoxia tolerance in maize seedlings. In addition, NO induced the activities of key enzymes in H2S biosynthesis, such as L-cysteine desulfhydrases (L-CDs), O-acetyl-L-serine (thiol)lyase (OAS-TL), and β-Cyanoalanine Synthase (CAS). SNP-induced hypoxia tolerance was enhanced by the application of NaHS, but was eliminated by the H2S-synthesis inhibitor hydroxylamine (HA) and the H2S-scavenger hypotaurine (HT). H2S concurrently enhanced the transcriptional levels of relative hypoxia-induced genes. Together, our findings indicated that H2S serves as a multi-faceted transducer that enhances the nitric oxide-induced hypoxia tolerance in maize (Zea mays L.).
Collapse
Affiliation(s)
- Renyi Peng
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhiyuan Bian
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Lina Zhou
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Wei Cheng
- Department of Pharmacy and Medical Technology, Hanzhong Vocational and Technical College, Hanzhong, 723002, China
| | - Na Hai
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Changquan Yang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Tao Yang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xinyu Wang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Chongying Wang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
30
|
Esposito MP, Pedroso ANV, Domingos M. Assessing redox potential of a native tree from the Brazilian Atlantic Rainforest: a successful evaluation of oxidative stress associated to a new power generation source of an oil refinery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 550:861-870. [PMID: 26851758 DOI: 10.1016/j.scitotenv.2016.01.196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/28/2016] [Accepted: 01/28/2016] [Indexed: 06/05/2023]
Abstract
The antioxidant responses in saplings of Tibouchina pulchra (a native tree from the Brazilian Atlantic Rainforest) exposed around an oil refinery in the city of Cubatão (SE Brazil), varied during the exchange of its power generation source, from boilers fueled with oil to a thermoelectric fueled with natural gas. The redox potential changed in response to an interaction of air pollution and meteorological parameters, indicating that the pro-oxidant/antioxidant balance was not reached after the exchange of the power generation system. The gain in environmental quality in the region was not achieved as expected due the technological modernization, at least relative to oxidative stressors. These conclusions were based on results of analyses of enzymatic antioxidants: superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR); non-enzymatic antioxidants: reduced, oxidized and total ascorbic acid (AsA, DHA, totAA) and glutathione (GSH, GSSG, totG), their redox state (AsA/totAA and GSH/totG) and an indicator of lipid peroxidation (MDA). We also applied exploratory multivariate statistics in order to verify if the temporal sequence of changes in the plant redox capacity coincided with changes in the profile of air pollution, climatic conditions or with their interactions and if the environmental benefits that would supposedly be promoted by the mentioned exchange of power generation system were achieved in the region.
Collapse
Affiliation(s)
- Marisia Pannia Esposito
- Instituto de Botânica, Núcleo de Pesquisa em Ecologia, PO Box 68041, 04045-972 São Paulo, SP, Brazil.
| | - Andrea Nunes Vaz Pedroso
- Instituto de Botânica, Núcleo de Pesquisa em Ecologia, PO Box 68041, 04045-972 São Paulo, SP, Brazil
| | - Marisa Domingos
- Instituto de Botânica, Núcleo de Pesquisa em Ecologia, PO Box 68041, 04045-972 São Paulo, SP, Brazil
| |
Collapse
|
31
|
Falagán N, Artés F, Gómez PA, Artés-Hernández F, Conejero W, Aguayo E. Deficit irrigation strategies enhance health-promoting compounds through the intensification of specific enzymes in early peaches. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:1803-13. [PMID: 26041335 DOI: 10.1002/jsfa.7290] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 05/29/2015] [Accepted: 05/31/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND Biochemical and enzymatic responses to long-term regulated deficit irrigation (RDI) at harvest, during cold storage and after the retail sale period of 'Flordastar' early peaches were evaluated. Irrigation strategies were Control, and two RDI applied during post-harvest period (RDI1 , severe; RDI2 , moderate), based on different thresholds of maximum daily shrinkage signal intensity (RDI1 , 1.4 to dry; RDI2 , 1.3 to 1.6). RESULTS Both RDI provoked stress in the plant. This meant higher antioxidant concentration [averaging 1.30 ± 0.27 g ascorbic acid equivalents (AAE) kg(-1) fresh weight (FW) for control and 1.77 ± 0.35 and 1.50 ± 0.30 g AAE kg(-1) FW for RDI1 and RDI2 , respectively]. Antioxidant levels decreased with storage by polyphenoloxydase action, which increased (from 0.04 ± 0.01 U mg(-1) protein to 0.32 ± 0.08 U mg(-1) protein). Vitamin C was initially higher in RDI samples (44.22 ± 0.05 g total vitamin C kg(-1) FW for control vs. 46.77 ± 0.02 and 46.27 ± 0.03 g total vitamin C kg(-1) FW for RDI1 and RDI2 , respectively). CONCLUSION The way RDI was applied affected bioactive fruit composition, being catalase and dehydroascorbic acid good water stress indicators. RDI strategies can be used as field practice, allowing water savings while enhanced healthy compound content in early peaches.
Collapse
Affiliation(s)
- Natalia Falagán
- Postharvest and Refrigeration Group, Regional Campus of International Excellence 'Campus Mare Nostrum' - UPCT, Paseo Alfonso XIII, 48, 30203, Cartagena, Murcia, Spain
- Institute of Plant Biotechnology, UPCT, Campus Muralla del Mar, 30202, Cartagena, Murcia, Spain
| | - Francisco Artés
- Postharvest and Refrigeration Group, Regional Campus of International Excellence 'Campus Mare Nostrum' - UPCT, Paseo Alfonso XIII, 48, 30203, Cartagena, Murcia, Spain
- Institute of Plant Biotechnology, UPCT, Campus Muralla del Mar, 30202, Cartagena, Murcia, Spain
| | - Perla Azucena Gómez
- Institute of Plant Biotechnology, UPCT, Campus Muralla del Mar, 30202, Cartagena, Murcia, Spain
| | - Francisco Artés-Hernández
- Postharvest and Refrigeration Group, Regional Campus of International Excellence 'Campus Mare Nostrum' - UPCT, Paseo Alfonso XIII, 48, 30203, Cartagena, Murcia, Spain
- Institute of Plant Biotechnology, UPCT, Campus Muralla del Mar, 30202, Cartagena, Murcia, Spain
| | - Wenceslao Conejero
- Department of Irrigation, CEBAS-CSIC, P.O. Box 164, 30100, Espinardo, Murcia, Spain
| | - Encarna Aguayo
- Postharvest and Refrigeration Group, Regional Campus of International Excellence 'Campus Mare Nostrum' - UPCT, Paseo Alfonso XIII, 48, 30203, Cartagena, Murcia, Spain
- Institute of Plant Biotechnology, UPCT, Campus Muralla del Mar, 30202, Cartagena, Murcia, Spain
| |
Collapse
|
32
|
Wang YJ, Dong YX, Wang J, Cui XM. Alleviating effects of exogenous NO on tomato seedlings under combined Cu and Cd stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:4826-36. [PMID: 26545885 DOI: 10.1007/s11356-015-5525-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 10/01/2015] [Indexed: 05/10/2023]
Abstract
To investigate the effect of NO on the different origin and regulation of oxidative stress of Cu and/or Cd, tomato seedlings were treated with Cu, Cd, or Cu + Cd in a nutrient solution culture system. The main effect of Cu(2+) was a significant reduction in root activity and nitrate reductase (NR) activity, which was similar to that under 50 μM Cd treatment, but promoted Cu accumulation. The supply of Cu under Cd treatment decreased Cd concentration, while not altered Cu concentration by contrast with Cu treatment, which is suggestive of a replacement of Cu(2+) with Cd(2+) and effective decrease in the boiotoxicity of 50 μM Cd(2+) to tomato seedlings. However, NO alleviated the restriction to NR activity significantly and made the biomass of tomato seedlings recover under Cd treatment, and also increased root activity under Cu and Cu + Cd treatment. Exogenous NO markedly reduced the absorption and transportation of Cu but did not obviously change the translocation of Cd to the aboveground parts under Cu + Cd treatment. Both metals induced lipid peroxidation via the decreasing activation of antioxidant enzymes. The antioxidant enzyme system worked differently under Cu, Cd, or Cu + Cd stress. The activities of peroxidase (POD) and catalase (CAT) were higher under single Cd stress than under the control. Meanwhile, Cu + Cd treatment decreased the activities of POD, superoxide dismutase (SOD), and ascorbic acid peroxidase (APX). Exogenous NO increased POD and SOD activities in the leaves and roots, and CAT activity in the roots under combined Cu and Cd stress. These results suggest that a different response and regulation mechanism that involves exogenous NO is present in tomato seedlings under Cu and Cd stress.
Collapse
Affiliation(s)
- Yi-Jun Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'an, China
| | - Yu-Xiu Dong
- College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Juan Wang
- Department of Landscape Engineering, Heze University, Heze, China
| | - Xiu-Min Cui
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'an, China.
| |
Collapse
|
33
|
Ortiz-Espín A, Locato V, Camejo D, Schiermeyer A, De Gara L, Sevilla F, Jiménez A. Over-expression of Trxo1 increases the viability of tobacco BY-2 cells under H2O2 treatment. ANNALS OF BOTANY 2015; 116:571-82. [PMID: 26041732 PMCID: PMC4577997 DOI: 10.1093/aob/mcv076] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 02/24/2015] [Accepted: 04/16/2015] [Indexed: 05/23/2023]
Abstract
BACKGROUND AND AIMS Reactive oxygen species (ROS), especially hydrogen peroxide, play a critical role in the regulation of plant development and in the induction of plant defence responses during stress adaptation, as well as in plant cell death. The antioxidant system is responsible for controlling ROS levels in these processes but redox homeostasis is also a key factor in plant cell metabolism under normal and stress situations. Thioredoxins (Trxs) are ubiquitous small proteins found in different cell compartments, including mitochondria and nuclei (Trxo1), and are involved in the regulation of target proteins through reduction of disulphide bonds, although their role under oxidative stress has been less well studied. This study describes over-expression of a Trxo1 for the first time, using a cell-culture model subjected to an oxidative treatment provoked by H2O2. METHODS Control and over-expressing PsTrxo1 tobacco (Nicotiana tabacum) BY-2 cells were treated with 35 mm H2O2 and the effects were analysed by studying the growth dynamics of the cultures together with oxidative stress parameters, as well as several components of the antioxidant systems involved in the metabolism of H2O2. Analysis of different hallmarks of programmed cell death was also carried out. KEY RESULTS Over-expression of PsTrxo1 caused significant differences in the response of TBY-2 cells to high concentrations of H2O2, namely higher and maintained viability in over-expressing cells, whilst the control line presented a severe decrease in viability and marked indications of oxidative stress, with generalized cell death after 3 d of treatment. In over-expressing cells, an increase in catalase activity, decreases in H2O2 and nitric oxide contents and maintenance of the glutathione redox state were observed. CONCLUSIONS A decreased content of endogenous H2O2 may be responsible in part for the delayed cell death found in over-expressing cells, in which changes in oxidative parameters and antioxidants were less extended after the oxidative treatment. It is concluded that PsTrxo1 transformation protects TBY-2 cells from exogenous H2O2, thus increasing their viability via a process in which not only antioxidants but also Trxo1 seem to be involved.
Collapse
Affiliation(s)
- Ana Ortiz-Espín
- CEBAS-CSIC, Department of Stress Biology and Plant Pathology, Campus Universitario de Espinardo Murcia, E-30100, Spain
| | - Vittoria Locato
- Laboratory of Plant Biochemistry and Food Science, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, I-00128, Rome, Italy and
| | - Daymi Camejo
- CEBAS-CSIC, Department of Stress Biology and Plant Pathology, Campus Universitario de Espinardo Murcia, E-30100, Spain
| | - Andreas Schiermeyer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Department of Plant Biotechnology, Forckenbeckstrasse 6, D-52074, Aachen, Germany
| | - Laura De Gara
- Laboratory of Plant Biochemistry and Food Science, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, I-00128, Rome, Italy and
| | - Francisca Sevilla
- CEBAS-CSIC, Department of Stress Biology and Plant Pathology, Campus Universitario de Espinardo Murcia, E-30100, Spain
| | - Ana Jiménez
- CEBAS-CSIC, Department of Stress Biology and Plant Pathology, Campus Universitario de Espinardo Murcia, E-30100, Spain,
| |
Collapse
|
34
|
de Pinto MC, Locato V, Paradiso A, De Gara L. Role of redox homeostasis in thermo-tolerance under a climate change scenario. ANNALS OF BOTANY 2015; 116:487-96. [PMID: 26034009 PMCID: PMC4577993 DOI: 10.1093/aob/mcv071] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/17/2015] [Accepted: 03/30/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND Climate change predictions indicate a progressive increase in average temperatures and an increase in the frequency of heatwaves, which will have a negative impact on crop productivity. Over the last decade, a number of studies have addressed the question of how model plants or specific crops modify their metabolism when exposed to heat stress. SCOPE This review provides an overview of the redox pathways that contribute to how plants cope with heat stress. The focus is on the role of reactive oxygen species (ROS), redox metabolites and enzymes in the signalling pathways leading to the activation of defence responses. Additional attention is paid to the regulating mechanisms that lead to an increase in specific ROS-scavenging systems during heat stress, which have been studied in different model systems. Finally, increasing thermo-tolerance in model and crop plants by exposing them to heat acclimation or to exogenous treatments is discussed. CONCLUSIONS Although there is clear evidence that several strategies are specifically activated according to the intensity and the duration of heat stress, as well as the capacity of the different species or genotypes to overcome stress, an alteration in redox homeostasis seems to be a common event. Different mechanisms that act to enhance redox systems enable crops to overcome heat stress more effectively. Knowledge of thermo-tolerance within agronomic biodiversity is thus of key importance to enable researchers to identify new strategies for overcoming the impacts of climate change, and for decision-makers in planning for an uncertain future with new choices and options open to them.
Collapse
Affiliation(s)
- Maria Concetta de Pinto
- Dipartimento di Biologia, Università degli Studi di Bari 'Aldo Moro', via E. Orabona 4, I-70125 Bari, Italy and
| | - Vittoria Locato
- Laboratory of Plant Biochemistry and Food Sciences, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, I-00128 Roma, Italy
| | - Annalisa Paradiso
- Dipartimento di Biologia, Università degli Studi di Bari 'Aldo Moro', via E. Orabona 4, I-70125 Bari, Italy and
| | - Laura De Gara
- Laboratory of Plant Biochemistry and Food Sciences, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, I-00128 Roma, Italy
| |
Collapse
|
35
|
Nagel M, Kranner I, Neumann K, Rolletschek H, Seal CE, Colville L, Fernández-Marín B, Börner A. Genome-wide association mapping and biochemical markers reveal that seed ageing and longevity are intricately affected by genetic background and developmental and environmental conditions in barley. PLANT, CELL & ENVIRONMENT 2015; 38:1011-22. [PMID: 25328120 DOI: 10.1111/pce.12474] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/30/2014] [Accepted: 10/02/2014] [Indexed: 05/08/2023]
Abstract
Globally, over 7.4 million accessions of crop seeds are stored in gene banks, and conservation of genotypic variation is pivotal for breeding. We combined genetic and biochemical approaches to obtain a broad overview of factors that influence seed storability and ageing in barley (Hordeum vulgare). Seeds from a germplasm collection of 175 genotypes from four continents grown in field plots with different nutrient supply were subjected to two artificial ageing regimes. Genome-wide association mapping revealed 107 marker trait associations, and hence, genotypic effects on seed ageing. Abiotic and biotic stresses were found to affect seed longevity. To address aspects of abiotic, including oxidative, stress, two major antioxidant groups were analysed. No correlation was found between seed deterioration and the lipid-soluble tocochromanols, nor with oil, starch and protein contents. Conversely, the water-soluble glutathione and related thiols were converted to disulphides, indicating a strong shift towards more oxidizing intracellular conditions, in seeds subjected to long-term dry storage at two temperatures or to two artificial ageing treatments. The data suggest that intracellular pH and (bio)chemical processes leading to seed deterioration were influenced by the type of ageing or storage. Moreover, seed response to ageing or storage treatment appears to be significantly influenced by both maternal environment and genetic background.
Collapse
Affiliation(s)
- Manuela Nagel
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben), Stadt Seeland, Germany
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Nováková S, Flores-Ramírez G, Glasa M, Danchenko M, Fiala R, Skultety L. Partially resistant Cucurbita pepo showed late onset of the Zucchini yellow mosaic virus infection due to rapid activation of defense mechanisms as compared to susceptible cultivar. FRONTIERS IN PLANT SCIENCE 2015; 6:263. [PMID: 25972878 PMCID: PMC4411989 DOI: 10.3389/fpls.2015.00263] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 04/02/2015] [Indexed: 05/29/2023]
Abstract
Zucchini yellow mosaic virus (ZYMV) is an emerging viral pathogen in cucurbit-growing areas wordwide. Infection causes significant yield losses in several species of the family Cucurbitaceae. To identify proteins potentially involved with resistance toward infection by the severe ZYMV-H isolate, two Cucurbita pepo cultivars (Zelena susceptible and Jaguar partially resistant) were analyzed using a two-dimensional gel electrophoresis-based proteomic approach. Initial symptoms on leaves (clearing veins) developed 6-7 days post-inoculation (dpi) in the susceptible C. pepo cv. Zelena. In contrast, similar symptoms appeared on the leaves of partially resistant C. pepo cv. Jaguar only after 15 dpi. This finding was confirmed by immune-blot analysis which showed higher levels of viral proteins at 6 dpi in the susceptible cultivar. Leaf proteome analyses revealed 28 and 31 spots differentially abundant between cultivars at 6 and 15 dpi, respectively. The variance early in infection can be attributed to a rapid activation of proteins involved with redox homeostasis in the partially resistant cultivar. Changes in the proteome of the susceptible cultivar are related to the cytoskeleton and photosynthesis.
Collapse
Affiliation(s)
| | | | - Miroslav Glasa
- Institute of Virology, Slovak Academy of SciencesBratislava, Slovakia
| | - Maksym Danchenko
- Institute of Virology, Slovak Academy of SciencesBratislava, Slovakia
| | - Roderik Fiala
- Institute of Botany, Slovak Academy of SciencesBratislava, Slovakia
| | - Ludovit Skultety
- Institute of Virology, Slovak Academy of SciencesBratislava, Slovakia
- Institute of Microbiology, Academy of Sciences of Czech RepublicPrague, Czech Republic
| |
Collapse
|
37
|
Flores-Cáceres ML, Hattab S, Hattab S, Boussetta H, Banni M, Hernández LE. Specific mechanisms of tolerance to copper and cadmium are compromised by a limited concentration of glutathione in alfalfa plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 233:165-173. [PMID: 25711824 DOI: 10.1016/j.plantsci.2015.01.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/11/2014] [Accepted: 01/23/2015] [Indexed: 05/27/2023]
Abstract
The induction of oxidative stress is a characteristic symptom of metal phytotoxicity and is counteracted by antioxidants such as glutathione (GSH) or homoglutathione (hGSH). The depletion of GSH│hGSH in fifteen-day-old alfalfa (Medicago sativa) plants pre-incubated with 1mM buthionine sulfoximine (BSO) affected antioxidant responses in a metal-specific manner under exposure to copper (Cu; 0, 6, 30 and 100μM) or cadmium (Cd; 0, 6 and 30μM) for 7 days. The phytotoxic symptoms observed with excess Cu were accompanied by an inhibition of root glutathione reductase (GR) activity, a response that was augmented in Cd-treated plants but reverted when combined with BSO. The synthesis of phytochelatins (PCs) was induced by Cd, whereas the biothiol concentration decreased in Cu-treated plants, which did not accumulate PCs. The depletion of GSH│hGSH by BSO also produced a strong induction of oxidative stress under excess Cu stress, primarily due to impaired GSH│hGSH-dependent redox homeostasis. In addition, the synthesis of PCs was required for Cd detoxification, apparently also determining the distribution of Cd in plants, as less metal was translocated to the shoots in BSO-incubated plants. Therefore, specific GSH│hGSH-associated mechanisms of tolerance were triggered by stress due to each metal.
Collapse
Affiliation(s)
- María Laura Flores-Cáceres
- Laboratory of Plant Physiology, Department of Biology, Universidad Autónoma de Madrid, Spain; Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Sabrine Hattab
- Laboratory of Plant Physiology, Department of Biology, Universidad Autónoma de Madrid, Spain; Laboratory of Biochemistry and Environmental Toxicology, Institute Supérieur Agronomique de Chott-Mariem, Sousse, Tunisia; Centre Regional de Recherches en Horticulture et Agriculture Biologique, Chott-Mariem, Sousse, Tunisia
| | - Sarra Hattab
- Laboratory of Plant Physiology, Department of Biology, Universidad Autónoma de Madrid, Spain; Laboratory of Biochemistry and Environmental Toxicology, Institute Supérieur Agronomique de Chott-Mariem, Sousse, Tunisia
| | - Hamadi Boussetta
- Laboratory of Biochemistry and Environmental Toxicology, Institute Supérieur Agronomique de Chott-Mariem, Sousse, Tunisia; Centre Regional de Recherches en Horticulture et Agriculture Biologique, Chott-Mariem, Sousse, Tunisia
| | - Mohammed Banni
- Laboratory of Biochemistry and Environmental Toxicology, Institute Supérieur Agronomique de Chott-Mariem, Sousse, Tunisia; Centre Regional de Recherches en Horticulture et Agriculture Biologique, Chott-Mariem, Sousse, Tunisia
| | - Luis E Hernández
- Laboratory of Plant Physiology, Department of Biology, Universidad Autónoma de Madrid, Spain.
| |
Collapse
|
38
|
Ratajczak E, Małecka A, Bagniewska-Zadworna A, Kalemba EM. The production, localization and spreading of reactive oxygen species contributes to the low vitality of long-term stored common beech (Fagus sylvatica L.) seeds. JOURNAL OF PLANT PHYSIOLOGY 2015; 174:147-56. [PMID: 25462977 DOI: 10.1016/j.jplph.2014.08.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/28/2014] [Accepted: 08/29/2014] [Indexed: 05/11/2023]
Abstract
The common beech (Fagus sylvatica L.) is propagated by seeds, but the seed set is irregular with five to ten years in between crops. It is therefore necessary to store the seeds. However, beech seeds lose germinability during long-term storage. In this study, beech seeds were stored at -10°C under controlled conditions for 2, 5, 8, 11 and 13 years. Our results show that beech seeds lose germinability during storage in proportion to the duration of storage. The decrease in germinability correlated with increased electrolyte leakage and accumulation of superoxide anion radicals, hydrogen peroxide and hydroxyl radicals. Furthermore, a strong positive correlation was observed among the releases of superoxide anion radicals, hydrogen peroxide and hydroxyl radicals. In situ localization showed that superoxide anion radicals and hydrogen peroxide were first detectable in root cap cells. When the seed storage time was extended, the reactive oxygen species fluorescence expanded to more areas of the radicle, reaching the root apical meristem. A storage time-dependent decrease in catalase activity, observed in both embryonic axes and cotyledons, was also positively correlated with germinability. DNA fragmentation was observed in beech seeds during storage and occurred predominantly in embryonic axes stored for 5 years and more. Altogether, these results suggest that the loss of germinability in beech seeds during long-term storage depends on several factors, including strong of reactive oxygen species accumulation accompanied by reduced catalase activity as well as membrane injury and DNA alternations, which may be aging-related and ROS-derived. We suggest that the accumulating reactive oxygen species that spread to the root apical meristem are key factors that affect seed germinability after long-term storage.
Collapse
Affiliation(s)
- Ewelina Ratajczak
- Institute of Dendrology, Polish Academy of Sciences, 62-035 Kórnik, Poland.
| | - Arleta Małecka
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, Poznan, Poland
| | - Agnieszka Bagniewska-Zadworna
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | | |
Collapse
|
39
|
Sgobba A, Paradiso A, Dipierro S, De Gara L, de Pinto MC. Changes in antioxidants are critical in determining cell responses to short- and long-term heat stress. PHYSIOLOGIA PLANTARUM 2015; 153:68-78. [PMID: 24796393 DOI: 10.1111/ppl.12220] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/21/2014] [Accepted: 03/25/2014] [Indexed: 05/23/2023]
Abstract
Heat stress can have deleterious effects on plant growth by impairing several physiological processes. Plants have several defense mechanisms that enable them to cope with high temperatures. The synthesis and accumulation of heat shock proteins (HSPs), as well as the maintenance of an opportune redox balance play key roles in conferring thermotolerance to plants. In this study changes in redox parameters, the activity and/or expression of reactive oxygen species (ROS) scavenging enzymes and the expression of two HSPs were studied in tobacco Bright Yellow-2 (TBY-2) cells subjected to moderate short-term heat stress (SHS) and long-term heat stress (LHS). The results indicate that TBY-2 cells subjected to SHS suddenly and transiently enhance antioxidant systems, thus maintaining redox homeostasis and avoiding oxidative damage. The simultaneous increase in HSPs overcomes the SHS and maintains the metabolic functionality of cells. In contrast the exposure of cells to LHS significantly reduces cell growth and increases cell death. In the first phase of LHS, cells enhance antioxidant systems to prevent the formation of an oxidizing environment. Under prolonged heat stress, the antioxidant systems, and particularly the enzymatic ones, are inactivated. As a consequence, an increase in H2 O2 , lipid peroxidation and protein oxidation occurs. This establishment of oxidative stress could be responsible for the increased cell death. The rescue of cell growth and cell viability, observed when TBY-2 cells were pretreated with galactone-γ-lactone, the last precursor of ascorbate, and glutathione before exposure to LHS, highlights the crucial role of antioxidants in the acquisition of basal thermotolerance.
Collapse
Affiliation(s)
- Alessandra Sgobba
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", Bari, 70125, Italy
| | | | | | | | | |
Collapse
|
40
|
Anjum NA, Gill SS, Gill R, Hasanuzzaman M, Duarte AC, Pereira E, Ahmad I, Tuteja R, Tuteja N. Metal/metalloid stress tolerance in plants: role of ascorbate, its redox couple, and associated enzymes. PROTOPLASMA 2014; 251:1265-83. [PMID: 24682425 DOI: 10.1007/s00709-014-0636-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/11/2014] [Indexed: 05/23/2023]
Abstract
The enhanced generation of reactive oxygen species (ROS) under metal/metalloid stress is most common in plants, and the elevated ROS must be successfully metabolized in order to maintain plant growth, development, and productivity. Ascorbate (AsA) is a highly abundant metabolite and a water-soluble antioxidant, which besides positively influencing various aspects in plants acts also as an enigmatic component of plant defense armory. As a significant component of the ascorbate-glutathione (AsA-GSH) pathway, it performs multiple vital functions in plants including growth and development by either directly or indirectly metabolizing ROS and its products. Enzymes such as monodehydroascorbate reductase (MDHAR, EC 1.6.5.4) and dehydroascorbate reductase (DHAR, EC 1.8.5.1) maintain the reduced form of AsA pool besides metabolically controlling the ratio of AsA with its oxidized form (dehydroascorbate, DHA). Ascorbate peroxidase (APX, EC 1.11.1.11) utilizes the reduced AsA pool as the specific electron donor during ROS metabolism. Thus, AsA, its redox couple (AsA/DHA), and related enzymes (MDHAR, DHAR, and APX) cumulatively form an AsA redox system to efficiently protect plants particularly against potential anomalies caused by ROS and its products. Here we present a critical assessment of the recent research reports available on metal/metalloid-accrued modulation of reduced AsA pool, AsA/DHA redox couple and AsA-related major enzymes, and the cumulative significance of these antioxidant system components in plant metal/metalloid stress tolerance.
Collapse
Affiliation(s)
- Naser A Anjum
- Centre for Environmental and Marine Studies (CESAM) and Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal,
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Esposito MP, Domingos M. Establishing the redox potential of Tibouchina pulchra (Cham.) Cogn., a native tree species from the Atlantic Rain Forest, in the vicinity of an oil refinery in SE Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:5484-5495. [PMID: 24407781 DOI: 10.1007/s11356-013-2453-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 12/10/2013] [Indexed: 06/03/2023]
Abstract
The present study aimed to establish the seasonal variations in the redox potential ranges of young Tibouchina pulchra plants growing in the Cubatão region (SE Brazil) under varying levels of oxidative stress caused by air pollutants. The plants were exposed to filtered air (FA) and non-filtered air (NFA) in open-top chambers installed next to an oil refinery in Cubatão during six exposure periods of 90 days each, which included the winter and summer seasons. After exposure, several analyses were performed, including the foliar concentrations of ascorbic acid and glutathione in its reduced (AsA and GSH), total (totAA and totG) and oxidized forms (DHA and GSSG); their ratios (AsA/totAA and GSH/totG); the enzymatic activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and glutathione reductase (GR); and the content of malondialdehyde (MDA). The range of antioxidant responses in T. pulchra plants varied seasonally and was stimulated by high or low air pollutant concentrations and/or air temperatures. Glutathione and APX were primarily responsible for increasing plant tolerance to oxidative stress originating from air pollution in the region. The high or low air temperatures mainly affected enzymatic activity. The content of MDA increased in response to increasing ozone concentration, thus indicating that the pro-oxidant/antioxidant balance may not have been reached.
Collapse
Affiliation(s)
- Marisia Pannia Esposito
- Instituto de Botânica, Núcleo de Pesquisa em Ecologia, PO Box 68041, 04045-972, São Paulo, SP, Brazil,
| | | |
Collapse
|
42
|
Abstract
AbstractPlants are redox systems and redox-active compounds control and regulate all aspects of their life. Recent studies have shown that changes in reactive oxygen species (ROS) concentration mediated by enzymatic and non-enzymatic antioxidants are transferred into redox signals used by plants to activate various physiological responses. An overview of the main antioxidants and redox signaling in plant cells is presented. In this review, the biological effects of ROS and related redox signals are discussed in the context of acclimation to changing environmental conditions. Special attention is paid to the role of thiol/disulfide exchange via thioredoxins (Trxs), glutaredoxins (Grxs) and peroxiredoxins (Prxs) in the redox regulatory network. In plants, chloroplasts and mitochondria occupying a chloroplasts and mitochondria play key roles in cellular metabolism as well as in redox regulation and signaling. The integrated redox functions of these organelles are discussed with emphasis on the importance of the chloroplast and mitochondrion to the nucleus retrograde signaling in acclimatory and stress response.
Collapse
|
43
|
Overexpression of ferredoxin, PETF, enhances tolerance to heat stress in Chlamydomonas reinhardtii. Int J Mol Sci 2013; 14:20913-29. [PMID: 24141188 PMCID: PMC3821650 DOI: 10.3390/ijms141020913] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 10/10/2013] [Accepted: 10/11/2013] [Indexed: 11/16/2022] Open
Abstract
Reactive oxygen species (ROS) produced by plants in adverse environments can cause damage to organelles and trigger cell death. Removal of excess ROS can be achieved through the ascorbate scavenger pathway to prevent plant cell death. The amount of this scavenger can be regulated by ferredoxin (FDX). Chloroplastic FDXs are electron transfer proteins that perform in distributing photosynthetic reducing power. In this study, we demonstrate that overexpression of the endogenous photosynthetic FDX gene, PETF, in Chlamydomonas reinhardtii could raise the level of reduced ascorbate and diminish H2O2 levels under normal growth conditions. Furthermore, the overexpressing PETF transgenic Chlamydomonas lines produced low levels of H2O2 and exhibited protective effects that were observed through decreased chlorophyll degradation and increased cell survival under heat-stress conditions. The findings of this study suggest that overexpression of PETF can increase the efficiency of ROS scavenging in chloroplasts to confer heat tolerance. The roles of PETF in the downregulation of the ROS level offer a method for potentially improving the tolerance of crops against heat stress.
Collapse
|
44
|
Ratajczak E, Str Her E, Oelze ML, Kalemba EM, Pukacka SA, Dietz KJ. The involvement of the mitochondrial peroxiredoxin PRXIIF in defining physiological differences between orthodox and recalcitrant seeds of two Acer species. FUNCTIONAL PLANT BIOLOGY : FPB 2013; 40:1005-1017. [PMID: 32481169 DOI: 10.1071/fp13002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 03/27/2013] [Indexed: 05/27/2023]
Abstract
Norway maple (Acer platanoides L., orthodox) and sycamore (Acer pseudoplatanus L., recalcitrant) belong to the same genus and grow under similar climatic conditions, but their seeds differ in their tolerance to desiccation. The initial water content (WC) of the seeds used in this study was 50%, and they were dried to 40, 20 and 7%. The mitochondrial peroxiredoxin IIF (PRXIIF) was identified in seeds of both species by immunoblotting. Semiquantitative RT-PCR analyses indicated that the transcript level of PRXIIF in both types of seeds increased during different stages of desiccation and was higher in seeds of Norway maple than in sycamore. General proteome analyses showed important differences between orthodox and recalcitrant seeds. In sycamore seeds that had been desiccated to a 7% WC, the number of protein spots and the levels of those spots were lower than in desiccation-tolerant Norway maple seeds. Post-translational modifications of PRXIIF in seeds at a 50% WC were detected via 2D electrophoresis and subsequent western blot analysis. The detected shift in the pI values (± 0.3) in A. pseudoplatanus was possibly caused by phosphorylation because several potential phosphorylation sites were predicted in silico for that protein. The gene and amino acid sequences were obtained and aligned with known sequences of other plant PRXIIF genes and proteins. High values of sequence identity were noted between the PRXIIF protein sequences of Acer species, Populus trichocarpa Torr. & A. Gray and Arabidopsis thaliana (L.) Heynh. The involvement of PRXIIF in defining the physiological differences between desiccation-tolerant and desiccation-sensitive Acer seeds is discussed in the context of its role in mitochondrial redox homeostasis.
Collapse
Affiliation(s)
- Ewelina Ratajczak
- Institute of Dendrology, Polish Academy of Sciences, Seed Biochemistry Laboratory, Parkowa 5, 62-035 Kórnik, Poland
| | - Elke Str Her
- Department of Biochemistry and Physiology of Plants, Bielefeld University, University Street 25, Bielefeld 33501, Germany
| | - Marie-Luise Oelze
- Department of Biochemistry and Physiology of Plants, Bielefeld University, University Street 25, Bielefeld 33501, Germany
| | - Ewa M Kalemba
- Institute of Dendrology, Polish Academy of Sciences, Seed Biochemistry Laboratory, Parkowa 5, 62-035 Kórnik, Poland
| | - Stanis Awa Pukacka
- Institute of Dendrology, Polish Academy of Sciences, Seed Biochemistry Laboratory, Parkowa 5, 62-035 Kórnik, Poland
| | - Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants, Bielefeld University, University Street 25, Bielefeld 33501, Germany
| |
Collapse
|
45
|
Bury M, Novo-Uzal E, Andolfi A, Cimini S, Wauthoz N, Heffeter P, Lallemand B, Avolio F, Delporte C, Cimmino A, Dubois J, Van Antwerpen P, Zonno MC, Vurro M, Poumay Y, Berger W, Evidente A, De Gara L, Kiss R, Locato V. Ophiobolin A, a sesterterpenoid fungal phytotoxin, displays higher in vitro growth-inhibitory effects in mammalian than in plant cells and displays in vivo antitumor activity. Int J Oncol 2013; 43:575-85. [PMID: 23754298 DOI: 10.3892/ijo.2013.1979] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 03/21/2013] [Indexed: 11/06/2022] Open
Abstract
Ophiobolin A, a sesterterpenoid produced by plant pathogenic fungi, was purified from the culture extract of Drechslera gigantea and tested for its growth-inhibitory activity in both plant and mammalian cells. Ophiobolin A induced cell death in Nicotiana tabacum L. cv. Bright Yellow 2 (TBY-2) cells at concentrations ≥10 µM, with the TBY-2 cells showing typical features of apoptosis-like cell death. At a concentration of 5 µM, ophiobolin A did not affect plant cell viability but prevented cell proliferation. When tested on eight cancer cell lines, concentrations <1 µM of ophiobolin A inhibited growth by 50% after 3 days of culture irrespective of their multidrug resistance (MDR) phenotypes and their resistance levels to pro-apoptotic stimuli. It is, thus, unlikely that ophiobolin A exerts these in vitro growth-inhibitory effects in cancer cells by activating pro-apoptotic processes. Highly proliferative human keratinocytes appeared more sensitive to the growth-inhibitory effects of ophiobolin A than slowly proliferating ones. Ophiobolin A also displayed significant antitumor activity at the level of mouse survival when assayed at 10 mg/kg in the B16F10 mouse melanoma model with lung pseudometastases. Ophiobolin A could, thus, represent a novel scaffold to combat cancer types that display various levels of resistance to pro-apoptotic stimuli and/or various MDR phenotypes.
Collapse
Affiliation(s)
- Marina Bury
- Laboratoire de Toxicologie, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Voss I, Sunil B, Scheibe R, Raghavendra AS. Emerging concept for the role of photorespiration as an important part of abiotic stress response. PLANT BIOLOGY (STUTTGART, GERMANY) 2013; 15:713-22. [PMID: 23452019 DOI: 10.1111/j.1438-8677.2012.00710.x] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 11/02/2012] [Indexed: 05/19/2023]
Abstract
When plants are exposed to stress, generation of reactive oxygen species (ROS) is often one of the first responses. In order to survive, cells attempt to down-regulate the production of ROS, while at the same time scavenging ROS. Photorespiration is now appreciated as an important part of stress responses in green tissues for preventing ROS accumulation. Photorespiratory reactions can dissipate excess reducing equivalents and energy either directly (using ATP, NAD(P)H and reduced ferredoxin) or indirectly (e.g., via alternative oxidase (AOX) and providing an internal CO2 pool). Photorespiration, however, is also a source of H2 O2 that is possibly involved in signal transduction, resulting in modulation of gene expression. We propose that photorespiration can assume a major role in the readjustment of redox homeostasis. Protection of photosynthesis from photoinhibition through photorespiration is well known. Photorespiration can mitigate oxidative stress under conditions of drought/water stress, salinity, low CO2 and chilling. Adjustments to even mild disturbances in redox status, caused by a deficiency in ascorbate, AOX or chloroplastic NADP-malate dehydrogenase, comprise increases in photorespiratory components such as catalase, P-protein of glycine decarboxylase complex (GDC) and glycine content. The accumulation of excess reducing equivalents or ROS in plant cells also affects mitochondria. Therefore, a strong interaction between the chloroplast redox status and photorespiration is not surprising, but highlights interesting properties evident in plant cells. We draw attention to the fact that a complex network of multiple and dynamic systems, including photorespiration, prevents oxidative damage while optimising photosynthesis. Further experiments are necessary to identify and validate the direct targets of redox signals among photorespiratory components.
Collapse
Affiliation(s)
- I Voss
- Lehrstuhl Pflanzenphysiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, Osnabrück, Germany
| | | | | | | |
Collapse
|
47
|
Ferreira ML, Domingos M. Seasonal characterization of antioxidant responses in plants of Ipomoea nil cv. Scarlet O'Hara. BRAZ J BIOL 2013; 72:831-7. [PMID: 23295511 DOI: 10.1590/s1519-69842012000500008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 12/01/2011] [Indexed: 12/24/2022] Open
Abstract
Reactive oxygen species can be produced in leaf cells during normal aerobic metabolism or in a variety of exogenous factors, which may cause oxidative damage to plants, unless they have an efficient antioxidant defense system, consisting of enzymatic and non-enzymatic substances. This work raised the hypothesis that plants of Ipomoea nil cv. Scarlet O'Hara, a native species and ornamental vine of the tropics, might tolerate oxidative stress factors imposed by natural fluctuations in weather conditions through changes in the antioxidant profile.The objective of this study was to determine the variations in three leaf antioxidants in plants growing inside a greenhouse without air pollutants and exposed to varying meteorological conditions throughout the four seasons of the year and to observe if such variations are related to the oscillations in meteorological factors. Four experimental campaigns were carried out, one in each season of 2006. Each campaign lasted 28 days and started with 45 plants. Ascorbic acid (AA) concentrations and superoxide dismutase (SOD) and peroxidase (POD) activities were determined in leaves of five plants in nine sampling days of each campaign. The antioxidant responses oscillated throughout the year. The highest values were found during the spring. This seasonal antioxidant profile was associated to variations in temperature, relative humidity and global radiation. Plants of this cultivar may then tolerate oxidative stress naturally imposed by meteorological conditions.
Collapse
Affiliation(s)
- M L Ferreira
- Universidade Nove de Julho - UNINOVE, Av. Adolfo Pinto, 109, Barra Funda, CEP 01156-050, São Paulo, SP, Brazil.
| | | |
Collapse
|
48
|
Lüthje S, Möller B, Perrineau FC, Wöltje K. Plasma membrane electron pathways and oxidative stress. Antioxid Redox Signal 2013; 18:2163-83. [PMID: 23265437 DOI: 10.1089/ars.2012.5130] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SIGNIFICANCE Several redox compounds, including respiratory burst oxidase homologs (Rboh) and iron chelate reductases have been identified in animal and plant plasma membrane (PM). Studies using molecular biological, biochemical, and proteomic approaches suggest that PM redox systems of plants are involved in signal transduction, nutrient uptake, transport, and cell wall-related processes. Function of PM-bound redox systems in oxidative stress will be discussed. RECENT ADVANCES Present knowledge about the properties, structures, and functions of these systems are summarized. Judging from the currently available data, it is likely that electrons are transferred from cytosolic NAD(P)H to the apoplast via quinone reductases, vitamin K, and a cytochrome b561. In tandem with these electrons, protons might be transported to the apoplastic space. CRITICAL ISSUES Recent studies suggest localization of PM-bound redox systems in microdomains (so-called lipid or membrane rafts), but also organization of these compounds in putative and high molecular mass protein complexes. Although the plant flavocytochrome b family is well characterized with respect to its function, the molecular mechanism of an electron transfer reaction by these compounds has to be verified. Localization of Rboh in other compartments needs elucidation. FUTURE DIRECTIONS Plant members of the flavodoxin and flavodoxin-like protein family and the cytochrome b561 protein family have been characterized on the biochemical level, postulated localization, and functions of these redox compounds need verification. Compositions of single microdomains and interaction partners of PM redox systems have to be elucidated. Finally, the hypothesis of an electron transfer chain in the PM needs further proof.
Collapse
Affiliation(s)
- Sabine Lüthje
- Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany.
| | | | | | | |
Collapse
|
49
|
Pétriacq P, de Bont L, Tcherkez G, Gakière B. NAD: not just a pawn on the board of plant-pathogen interactions. PLANT SIGNALING & BEHAVIOR 2013; 8:e22477. [PMID: 23104110 PMCID: PMC3745554 DOI: 10.4161/psb.22477] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/06/2012] [Accepted: 10/08/2012] [Indexed: 05/18/2023]
Abstract
Many metabolic processes that occur in living cells involve oxido-reduction (redox) chemistry underpinned by redox compounds such as glutathione, ascorbate and/or pyridine nucleotides. Among these redox carriers, nicotinamide adenine dinucleotide (NAD) is the cornerstone of cellular oxidations along catabolism and is therefore essential for plant growth and development. In addition to its redox role, there is now compelling evidence that NAD is a signal molecule controlling crucial functions like primary and secondary carbon metabolism. Recent studies using integrative -omics approaches combined with molecular pathology have shown that manipulating NAD biosynthesis and recycling lead to an alteration of metabolites pools and developmental processes, and changes in the resistance to various pathogens. NAD levels should now be viewed as a potential target to improve tolerance to biotic stress and crop improvement. In this paper, we review the current knowledge on the key role of NAD (and its metabolism) in plant responses to pathogen infections.
Collapse
Affiliation(s)
- Pierre Pétriacq
- Institut de Biologie des Plantes; CNRS UMR 8618; Université Paris-Sud; Orsay, France
| | - Linda de Bont
- Institut de Biologie des Plantes; CNRS UMR 8618; Université Paris-Sud; Orsay, France
| | - Guillaume Tcherkez
- Institut de Biologie des Plantes; CNRS UMR 8618; Université Paris-Sud; Orsay, France
- Institut Universitaire de France; Paris, France
| | - Bertrand Gakière
- Institut de Biologie des Plantes; CNRS UMR 8618; Université Paris-Sud; Orsay, France
| |
Collapse
|
50
|
de Lima JC, Loss-Morais G, Margis R. MicroRNAs play critical roles during plant development and in response to abiotic stresses. Genet Mol Biol 2012; 35:1069-77. [PMID: 23412556 PMCID: PMC3571433 DOI: 10.1590/s1415-47572012000600023] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
MicroRNAs (miRNAs) have been identified as key molecules in regulatory networks. The fine-tuning role of miRNAs in addition to the regulatory role of transcription factors has shown that molecular events during development are tightly regulated. In addition, several miRNAs play crucial roles in the response to abiotic stress induced by drought, salinity, low temperatures, and metals such as aluminium. Interestingly, several miRNAs have overlapping roles with regard to development, stress responses, and nutrient homeostasis. Moreover, in response to the same abiotic stresses, different expression patterns for some conserved miRNA families among different plant species revealed different metabolic adjustments. The use of deep sequencing technologies for the characterisation of miRNA frequency and the identification of new miRNAs adds complexity to regulatory networks in plants. In this review, we consider the regulatory role of miRNAs in plant development and abiotic stresses, as well as the impact of deep sequencing technologies on the generation of miRNA data.
Collapse
Affiliation(s)
- Júlio César de Lima
- Laboratório de Genomas e Populações de Plantas, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil. ; Laboratório de Fisiologia Vegetal, Departamento de Botânica, Instituto de Biologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil. ; Programa de Pósgraduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | |
Collapse
|