1
|
Li Y, Zhang Y, He G, Qiao Z, Yang R, Zhou X, Chen L, Feng X. Soy protein isolate ameliorate gel properties by regulating the non-covalent interaction between epigallocatechin-3-gallate and myofibrillar protein. Food Chem 2024; 460:140655. [PMID: 39128365 DOI: 10.1016/j.foodchem.2024.140655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024]
Abstract
This study primarily investigated the improvement of high-dose Epigallocatechin-3-Gallate (EGCG)-induced deterioration of MP gel by soy protein isolate (SPI) addition. The results showed that EGCG could interact with MP, SPI, and HSPI (heated), indicating the competitive ability of SPI/HSPI against EGCG with MP. EGCG was encapsulated by SPI/HSPI with high encapsulation efficiency and antioxidation, with antioxidant activities of 78.5% ∼ 79.2%. FTIR and molecular docking results revealed that MP, SPI, and HSPI interacted with EGCG through hydrogen bonding and hydrophobic interactions. SPI/HSPI competed with MP for EGCG, leading to the restoration of MHC and Actin bands, alleviating the aggregation caused by EGCG and oxidation. Additionally, SPI/HSPI-E significantly reduced the high cooking loss (23.71 and 26.65%) and gel strength (13.60 and 17.02%) induced by EGCG. Hence, SPI competed with MP for EGCG binding site to ameliorate MP gel properties, thereby alleviating the detrimental changes in MP caused by high-dose EGCG and oxidation.
Collapse
Affiliation(s)
- Ying Li
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Yijun Zhang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Gongchen He
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Ziyan Qiao
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Rong Yang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Xi Zhou
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Lin Chen
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China.
| | - Xianchao Feng
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Holman AP, Pickett DN, Orr AE, Tarone AM, Kurouski D. A nondestructive technique for the sex identification of third instar Cochliomyia macellaria larvae. J Forensic Sci 2024; 69:2075-2081. [PMID: 39223721 DOI: 10.1111/1556-4029.15619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Forensic entomology plays an important role in medicolegal investigations by using insects, primarily flies, to estimate the time of colonization. This estimation relies on the development of the flies found at the (death) scene and can be affected (and sometimes corrected) by external factors, such as temperature and humidity, and internal factors, such as species and sex. This study leverages infrared (IR) spectroscopy combined with machine learning models-Partial Least Squares Discriminant Analysis (PLS-DA) and eXtreme Gradient Boosting trees Discriminant Analysis (XGBDA)-to differentiate between male and female Cochliomyia macellaria larvae, commonly found on human remains. Significant vibrational differences were detected in the infrared spectra of third instar C. macellaria larvae, with distinct peaks showing variations in relative absorbance between sexes, suggesting differences in biochemical compositions such as cuticular proteins and lipids. The application of PLS-DA and XGBDA yielded high classification accuracies of about 94% and 96%, respectively, with female spectra consistently having higher sensitivity than males. This non-destructive approach offers the potential to refine supplemental post-mortem interval estimations significantly, enhancing the accuracy of forensic analyses.
Collapse
Affiliation(s)
- Aidan P Holman
- Department of Entomology, Texas A&M University, College Station, Texas, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Davis N Pickett
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Abigail E Orr
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Aaron M Tarone
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
3
|
Kalisz G, Budzynska B, Sroka-Bartnicka A. The optimization of sample preparation on zebrafish larvae in vibrational spectroscopy imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 326:125288. [PMID: 39437695 DOI: 10.1016/j.saa.2024.125288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 09/20/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
The zebrafish (Danio rerio) larvae are widely used in biomedical, pharmaceutical, and ecotoxicological studies. Their transparency and translational potential make them particularly valuable for fluorescence imaging. In addition to fluorescence imaging, microspectroscopy, which combines vibrational spectroscopy: Raman or Fourier transform infrared (FT-IR) with microscopy, allows the collection of spatially resolved, label-free information. According to available literature, it was the first application of FT-IR imaging in zebrafish larvae. This study aims to compare different fixation methods for 10-day post-fertilization (dpf) zebrafish larvae using vibrational spectroscopy imaging. Paraformaldehyde (PFA), glutaraldehyde (GA), low temperature, and embedding in gelatin and agarose were investigated. Amides, lipids, and phosphates distribution were more informative in embedded samples but with challenging handling of the sample due to stiffness at -20 °C. FT-IR and Raman mapping revealed that frozen samples had better-preserved tissue structure than chemical fixation. PFA showed uniform amide distribution, while GA treatment exhibited tissue disruptions and denser protein networks in both. Handling of embedded samples is challenging for an operator, but provides more reliable results in developmental biology or disease modeling, compared to chemical treatment.
Collapse
Affiliation(s)
- Grzegorz Kalisz
- Independent Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Chodzki 4a Street, 20-093 Lublin, Poland; Department of Bioanalytics, Medical University of Lublin, Jaczewskiego 8b Street, 20-090 Lublin, Poland.
| | - Barbara Budzynska
- Independent Unit of Behavioral Studies, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland.
| | - Anna Sroka-Bartnicka
- Independent Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Chodzki 4a Street, 20-093 Lublin, Poland.
| |
Collapse
|
4
|
Ni R, Zhang L, Ma J, Zhang J, Xu X, Shi H, Deng Q, Hu W, Hu J, Ke Q, Zhao Y. Versatile Keratin Fibrous Adsorbents with Rapid-Response Shape-Memory Features for Sustainable Water Remediation. NANO LETTERS 2024. [PMID: 39365030 DOI: 10.1021/acs.nanolett.4c03276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Biodegradable shape-memory polymers derived from protein substrates are attractive alternatives with strong potential for valorization, although their reconstruction remains a challenge due to the poor processability and inherent instability. Herein, based on Maillard reaction and immobilization, a feather keratin fibrous adsorbent featuring dual-response shape-memory is fabricated by co-spinning with pullulan, heating, and air-assisted spraying ZIF-8-NH2. Maillard reaction between the amino group of keratin and the carbonyl group of pullulan improves the mechanics and thermal performance of the adsorbent. ZIF-8-NH2 immobilization endows the adsorbent with outstanding multipollutant removal efficiency (over 90%), water stability, and photocatalytic degradation and sterilization performance. Furthermore, the adsorbent can be folded to 1/12 of its original size to save space for transportation and allow for rapid on-demand unfolding (12 s) upon exposure to water and ultraviolet irradiation to facilitate the adsorption and photocatalytic activity with a larger water contact area. This research provides new insight for further applications of keratin-based materials with rapid shape-memory features.
Collapse
Affiliation(s)
- Ruiyan Ni
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Le Zhang
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Jiajia Ma
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Jiawen Zhang
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Xiaoyun Xu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong S.A.R, 999077, China
| | - Huan Shi
- Science and Technology Innovation Center, Hunan University of Chinese Medicine, Hunan 410208, China
| | - Qiong Deng
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Wenfeng Hu
- School of Textiles and Fashion Central Laboratory, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Jinlian Hu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong S.A.R, 999077, China
| | - Qinfei Ke
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yi Zhao
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| |
Collapse
|
5
|
Sharma M, Bains A, Goksen G, Dhull SB, Ali N, Rashid S, Elossaily GM, Chawla P. A review of valorization of agricultural waste for the synthesis of cellulose membranes: Separation of organic, inorganic, and microbial pollutants. Int J Biol Macromol 2024; 277:134170. [PMID: 39067731 DOI: 10.1016/j.ijbiomac.2024.134170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Agricultural waste presents a significant environmental challenge due to improper disposal and management practices, contributing to soil degradation, biodiversity loss, and pollution of water and air resources. To address these issues, there is a growing emphasis on the valorization of agricultural waste. Cellulose, a major component of agricultural waste, offers promising opportunities for resource utilization due to its unique properties, including biodegradability, biocompatibility, and renewability. Thus, this review explored various types of agricultural waste, their chemical composition, and pretreatment methods for cellulose extraction. It also highlights the significance of rice straw, sugarcane bagasse, and other agricultural residues as cellulose-rich resources. Among the various membrane fabrication techniques, phase inversion is highly effective for creating porous membranes with controlled thickness and uniformity, while electrospinning produces nanofibrous membranes with high surface area and exceptional mechanical properties. The review further explores the separation of pollutants including using cellulose membranes, demonstrating their potential in environmental remediation. Hence, by valorizing agricultural residues into functional materials, this approach addresses the challenge of agricultural waste management and contributes to the development of innovative solutions for pollution control and water treatment.
Collapse
Affiliation(s)
- Madhu Sharma
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey.
| | - Sanju Bala Dhull
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa, Haryana 125055, India
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia.
| | - Gehan M Elossaily
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | - Prince Chawla
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India.
| |
Collapse
|
6
|
Gillani SMH, Mughal A, Khan RAA, Nawaz MH, Razzaq Z, Ismat MS, Hussain R, Wadood A, Ahmed S, Minhas B, Abbas M, Vayalpurayil T, Rehman MAU. Development of hybrid polyvinylpyrrolidone/carboxymethyl cellulose/collagen incorporated oregano scaffolds via direct ink write printing for potential wound healing applications. Int J Biol Macromol 2024; 278:134528. [PMID: 39111499 DOI: 10.1016/j.ijbiomac.2024.134528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/08/2024] [Accepted: 08/04/2024] [Indexed: 08/20/2024]
Abstract
Additive manufacturing can develop regenerative scaffolds for wound healing. 3D printing offers meticulous porosity, mechanical integrity, cell adhesion and cost-effectiveness. Herein, we prepared ink composed of carboxymethyl cellulose (CMC), polyvinylpyrrolidone (PVP), collagen, and oregano extract for the fabrication of tissue constructs. The blend was optimized to form a homogeneous ink and rheological characterization demonstrated shear thinning behavior. The scaffolds were printed using Direct Ink Write (DIW) at a flow speed of 4 mm3/s and a layer height of 0.18 mm. The fabricated scaffolds demonstrated an ultimate tensile strength (UTS) and toughness of 730 KPa and 2.72 MJ/m3, respectively. Scanning Electron Microscopy (SEM) revealed an average pore size of 300 ± 30 μm. Fourier transform infrared spectroscopy (FTIR) analysis confirmed that all materials were present. The contact angle of the composite scaffold was 68° ± 1°. Moreover, the scaffolds presented 82 % mass loss (degradation) in phosphate buffer saline (PBS) over 14 days. The composite scaffold exhibited inhibition zones of 9 mm and 12 mm against Staphylococcus aureus and Escherichia coli, respectively. The PVP/CMC/collagen/oregano 3D printed scaffolds exhibited excellent biocompatibility with the mesenchymal stem cells and humman dermal fibroblast cells, confirmed by water-soluble tetrazolium - 8 (WST-8) assay (test conducted for 7 days). The enhanced angiogenic potential of said scaffold was assesed by release of vascular endothelial growth factor followed by further validation through in-vivo CAM assay. Thus, confirming suitability for the potential wound healing application.
Collapse
Affiliation(s)
- Syed Muneeb Haider Gillani
- Center of Excellence in Biomaterials and Tissue Engineering, Materials Science and Engineering Department Government Collage University, 54000 Lahore, Pakistan
| | - Awab Mughal
- Center of Excellence in Biomaterials and Tissue Engineering, Materials Science and Engineering Department Government Collage University, 54000 Lahore, Pakistan
| | - Raja Aqib Akmal Khan
- Department of Materials Science & Engineering, Institute of Space Technology, 44000 Islamabad, Pakistan
| | - Muhammad Haseeb Nawaz
- Department of Materials Science & Engineering, Institute of Space Technology, 44000 Islamabad, Pakistan
| | - Zohaib Razzaq
- Department of Materials Science & Engineering, Institute of Space Technology, 44000 Islamabad, Pakistan
| | - Muhammad Sameet Ismat
- Center of Excellence in Biomaterials and Tissue Engineering, Materials Science and Engineering Department Government Collage University, 54000 Lahore, Pakistan
| | - Rabia Hussain
- Center of Excellence in Biomaterials and Tissue Engineering, Materials Science and Engineering Department Government Collage University, 54000 Lahore, Pakistan
| | - Abdul Wadood
- Department of Materials Science & Engineering, Institute of Space Technology, 44000 Islamabad, Pakistan
| | - Sheraz Ahmed
- Department of Materials Science & Engineering, Institute of Space Technology, 44000 Islamabad, Pakistan
| | - Badar Minhas
- Center of Excellence in Biomaterials and Tissue Engineering, Materials Science and Engineering Department Government Collage University, 54000 Lahore, Pakistan.
| | - Mohamed Abbas
- Central Labs, King Khalid University, AlQura'a, Abha, P.O. Box 960, Saudi Arabia; Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Thafasalijyas Vayalpurayil
- Central Labs, King Khalid University, AlQura'a, Abha, P.O. Box 960, Saudi Arabia; Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Muhammad Atiq Ur Rehman
- Center of Excellence in Biomaterials and Tissue Engineering, Materials Science and Engineering Department Government Collage University, 54000 Lahore, Pakistan; Department of Materials Science & Engineering, Institute of Space Technology, 44000 Islamabad, Pakistan.
| |
Collapse
|
7
|
Pan M, Sun Z, Zhang Y, Chen J, Zhao Z, He H, Zeng H, Li Q, Gu N. Aggregation-Disruption-Induced Multi-Scale Mediating Strategy for Anticoagulation in Blood-Contacting Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2412701. [PMID: 39344862 DOI: 10.1002/adma.202412701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/11/2024] [Indexed: 10/01/2024]
Abstract
Minimally invasive blood-contacting interventional devices are increasingly used to treat cardiovascular diseases. However, the risk of device-related thrombosis remains a significant concern, particularly the formation of cycling thrombi, which pose life-threatening risks. To better understand the interactions between these devices and blood, the initial stages of coagulation contact activation on extrinsic surfaces are investigated. Direct force measurements reveals that activated contact factors stimulate the intrinsic coagulation pathway and promote surface crosslinking of fibrin. Furthermore, fibrin aggregation is disrupted by surface-grafted inhibitors, as confirmed by ex vivo coagulation tests. An engineered serum protein with zwitterion grafts to resist the deposition of biological species such as fibrin, platelets, and red blood cells is also developed. Simultaneously, a protease inhibitor-based coacervate is incorporated into the coating to inhibit the intrinsic pathway effectively. The loaded coacervate can be released and reloaded through modulation of catechol-amine interactions, facilitating material regeneration. The strategy offers a novel multi-scale mediation strategy that simultaneously inhibits nanoscale coagulation factors and resists microscale thrombus aggregation, providing a long-term solution for anticoagulation in blood-contacting devices.
Collapse
Affiliation(s)
- Mingfei Pan
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Zhaoyun Sun
- Cardiovascular Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210028, China
| | - Yuhao Zhang
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Jiangwei Chen
- Cardiovascular Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210028, China
| | - Ziqian Zhao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Hongliang He
- State Key Laboratory of Digital Medical Engineering, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210009, China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Qingguo Li
- Cardiovascular Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210028, China
| | - Ning Gu
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
- Nanjing Key Laboratory for Cardiovascular Information and Health Engineering Medicine, Institute of Clinical Medicine, Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
8
|
Kwon S, Lee S, Jang J, Lee JB, Kim KS. Quantifying the effects of repeated dyeing: Morphological, mechanical, and chemical changes in human hair fibers. Heliyon 2024; 10:e37871. [PMID: 39315135 PMCID: PMC11417257 DOI: 10.1016/j.heliyon.2024.e37871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024] Open
Abstract
As hair dyeing gains popularity across all age groups, concerns about the potential damage caused by chemical treatments are also on the rise. Chemical dyes have a multifaceted impact on hair fibers, affecting their morphology, physical structure, and protein composition. In a comprehensive study, we investigated the alterations in morphological and mechanical properties, as well as the chemical composition of hair fibers following continuous dyeing. Our analysis employed various techniques, including atomic force microscopy (AFM), Fourier transform infrared (FT-IR) spectroscopy, and tensile strength measurements. To assess the cumulative damage resulting from repeated dyeing, we progressively increased the number of dyeing up to 10. Surprisingly, even a single dyeing session inflicted noticeable harm on the hair. However, the detrimental effects escalated significantly when hair underwent three or more consecutive dye treatments. While the mechanical properties and protein composition exhibited non-linear changes with increasing the number of dyeing, we observed that nanoscale damage to the cuticle surface intensified proportionally with the number of dyeing. These results highlight the critical need to consider the impacts of hair dyeing practices on both the health and the structural integrity of hair.
Collapse
Affiliation(s)
- Sangwoo Kwon
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Seoyoon Lee
- Department of innovation, Innovation Lab, Cosmax R&I, Gyeonggi-do, Republic of Korea
| | - Jihui Jang
- Department of innovation, Innovation Lab, Cosmax R&I, Gyeonggi-do, Republic of Korea
| | - Jun Bae Lee
- Department of innovation, Innovation Lab, Cosmax R&I, Gyeonggi-do, Republic of Korea
| | - Kyung Sook Kim
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Biomedical Engineering, Graduate school, Kyung Hee University, Seoul, 02447, Republic of Korea
| |
Collapse
|
9
|
Geminiani L, Paolo Campione F, Corti C, Giussani B, Gorla G, Luraschi M, Recchia S, Rampazzi L. Non-invasive identification of historical textiles and leather by means of external reflection FTIR spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 326:125184. [PMID: 39332177 DOI: 10.1016/j.saa.2024.125184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/08/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024]
Abstract
Identifying the fibres in historical textiles presents a complex challenge due to the wide variety of plant, animal and early synthetic materials that have been used. Traditionally, this identification process involves sampling followed by either microscopic examination or ATR-FTIR spectroscopy. However, there are instances when sampling is restricted due to the good condition or significant value of the object under analysis. Additionally, the presence of leather components alongside textiles can further complicate the identification. This paper proposes a novel non-invasive method for fibre identification based on External Reflection (ER) FTIR spectroscopy, which has been rarely applied to textiles or leather. The current research demonstrates that ER-FTIR spectrum is a viable tool for fibre identification on both recent and historical textiles. The non-invasiveness of the analytical approach enables a comprehensive investigation without compromising the number or position of samples. Respect to ATR-FTIR spectra, the ER-FTIR spectra frequently exhibit an amplification of certain diagnostic bands, facilitating the identification of the various fibres examined in this study (cotton, hemp, viscose, silk, wool, leather, polyamide, acrylic, polyester). The extended spectral range (7500-375 cm-1) which is provided by ER-FTIR spectrometry also contains extra bands in the near infrared region, which can provide key information for the discrimination due to the lack of distortion phenomena. The technique was applied to the characterisation of textile materials coming from a collection of 10 traditional Japanese samurai armours spanning from the 16th to the 20th century (Museo delle Culture, Lugano, Switzerland). For the first time, the results provided a comprehensive overview of the textiles utilized in Japanese armours across various historical periods. Overall, the appearance of materials in samurai armours reflects the evolution of armour-making techniques and the influence of socio-cultural factors throughout Japanese history. Synthetic and semi-synthetic materials were easily detected, revealing the occurrence of a past conservation treatment or the early adoption of modern man-made materials in the manufacturing of traditional armours. The approach outlined in this case study can be applied to textile collections of various kinds, offering a reliable mean to discern the yarn composition and detect non-original components. The method also appears as a valuable prescreening tool for designing a less intrusive yet more informative sampling strategy, should additional details about fibre type and dyeing be necessary.
Collapse
Affiliation(s)
- Ludovico Geminiani
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria, Via Valleggio 11, 22100 Como, Italy; Centro Speciale di Scienze e Simbolica dei Beni Culturali, Università degli Studi dell'Insubria, Via Sant'Abbondio 12, 22100 Como, Italy.
| | - Francesco Paolo Campione
- Museo delle Culture, Villa Malpensata, Riva Antonio Caccia 5, Lugano, Switzerland; Centro Speciale di Scienze e Simbolica dei Beni Culturali, Università degli Studi dell'Insubria, Via Sant'Abbondio 12, 22100 Como, Italy
| | - Cristina Corti
- Dipartimento di Scienze Umane e dell'Innovazione per il Territorio, Università degli Studi dell'Insubria, Via Sant'Abbondio 12, 22100 Como, Italy; Centro Speciale di Scienze e Simbolica dei Beni Culturali, Università degli Studi dell'Insubria, Via Sant'Abbondio 12, 22100 Como, Italy
| | - Barbara Giussani
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria, Via Valleggio 11, 22100 Como, Italy
| | - Giulia Gorla
- Research and Innovation in Analytical Chemistry group (IBeA), Departamento de Quìmica Analìtica, University of Basque Country, Barrio Sarriena, s/n, 48940 Leioia - Bizkaia, Spain
| | - Moira Luraschi
- Museo delle Culture, Villa Malpensata, Riva Antonio Caccia 5, Lugano, Switzerland
| | - Sandro Recchia
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria, Via Valleggio 11, 22100 Como, Italy
| | - Laura Rampazzi
- Dipartimento di Scienze Umane e dell'Innovazione per il Territorio, Università degli Studi dell'Insubria, Via Sant'Abbondio 12, 22100 Como, Italy; Centro Speciale di Scienze e Simbolica dei Beni Culturali, Università degli Studi dell'Insubria, Via Sant'Abbondio 12, 22100 Como, Italy
| |
Collapse
|
10
|
Meivita MP, Mozar FS, Go SX, Li L, Bajalovic N, Loke DK. Energy-Efficient and Effective MCF-7 Cell Ablation and Electrothermal Therapy Enabled by M13-WS 2-PEG Nanostructures. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4624. [PMID: 39336365 PMCID: PMC11433225 DOI: 10.3390/ma17184624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/14/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024]
Abstract
Thermal agents (TAs) have exhibited promise in clinical tests when utilized in cancer thermal therapy (TT). While rapid degradation of TAs may address safety concerns, it limits the thermal stability required for effective treatment. TAs, which possess exceptional thermal stability, experience gradual deterioration. There are few approaches that effectively address the trade-off between improving thermal stability and simultaneously boosting material deterioration. Here, we control the thermal character of tungsten disulfide (WS2)-based 2D materials by utilizing an M13 phage through Joule heating (the M13-WS2-PEG nanostructures were generated and termed a tripartite (T) nanostructure), and developed a T nanostructure-driven TT platform (we called it T-TT) for efficient thermal ablation of clinically relevant MCF-7 cells. A relative cell viability of ~59% was achieved, as well as onset time of degradation of ~0.5 week. The T-TT platform also discloses an energy density of 5.9 J/mL. Furthermore, the phage-conjugated WS2 can be utilized to achieve ultrasound imaging for disease monitoring. Therefore, this research not only presents a thermal agent that overcomes TA limitations, but also demonstrates a practical application of WS2-type material system in ultra-energy efficient and effective cancer therapy.
Collapse
Affiliation(s)
- Maria P. Meivita
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Fitya S. Mozar
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Shao-Xiang Go
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Lunna Li
- Thomas Young Centre and Department of Chemical Engineering, University College London, London WC1E 7JE, UK
| | - Natasa Bajalovic
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Desmond K. Loke
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore
| |
Collapse
|
11
|
Brebu M, Pamfil D, Stoica I, Aflori M, Voicu G, Stoleru E. Photo-crosslinked chitosan-gelatin xerogel-like coating onto "cold" plasma functionalized poly(lactic acid) film as cell culture support. Carbohydr Polym 2024; 339:122288. [PMID: 38823936 DOI: 10.1016/j.carbpol.2024.122288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/03/2024]
Abstract
This paper reports on biofunctionalisation of a poly(lactic acid) (PLA) film by surface activation through cold plasma treatment followed by coating with a chitosan-gelatin xerogel. The UV cross-linking of the xerogel precursor was simultaneously performed with the fixation onto the PLA support. This has a strong effect on surface properties, in terms of wettability, surface free energy, morphology and micromechanical features. The hydrophilic - hydrophobic character of the surface, determined by contact angle measurements, was tuned along the process, passing from moderate hydrophobic PLA to enhanced hydrophilic plasma activated surface, which favors coating adhesion, then to moderate hydrophobic chitosan-gelatin coating. The coating has a Lewis amphoteric surface, with a porous xerogel-like morphology, as revealed by scanning electron microscopy images. By riboflavin mediated UV cross-linking the chitosan-gelatin coating becomes high adhesive and with a more pronounced plasticity, as shown by AFM force-distance spectroscopy. Thus prepared surface-coated PLA supports were successfully tested for growth of dermal fibroblasts, which are known for their induction potential of chondrogenic cells, which is very important in cartilage tissue engineering.
Collapse
Affiliation(s)
- Mihai Brebu
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 41A, 700487, Iasi, Romania
| | - Daniela Pamfil
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 41A, 700487, Iasi, Romania
| | - Iuliana Stoica
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 41A, 700487, Iasi, Romania
| | - Magdalena Aflori
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 41A, 700487, Iasi, Romania
| | - Geanina Voicu
- "Medical and Pharmaceutical BioNanoTechnologies" Laboratory (BioNanoMed) Institute of Cellular Biology and Pathology, "Nicolae Simionescu" 8, BP Hasdeu Street, 050568 Bucharest, Romania
| | - Elena Stoleru
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 41A, 700487, Iasi, Romania.
| |
Collapse
|
12
|
Yun SM, Kim CS, Lee JJ, Chung JS. Application of ATR-FTIR Spectroscopy for Analysis of Salt Stress in Brussels Sprouts. Metabolites 2024; 14:470. [PMID: 39330477 PMCID: PMC11433683 DOI: 10.3390/metabo14090470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024] Open
Abstract
Salt stress is one of the environmental stresses that significantly reduces crop productivity and quality worldwide. Methods to overcome salt stress include developing salt-resistant crops by inserting various resistance genes or to diagnosing and responding to the effects of salt stress at an early stage. In this study, we investigate the effects of salinity stress on growth, photosynthetic efficiency, and metabolic changes in Brussels sprouts (Brassica oleracea var. gemmifera). Fresh weight and leaf area decreased significantly with increasing NaCl concentration, indicating that salinity stress has a detrimental effect on plant growth. However, chlorophyll fluorescence parameters did not show significant changes, suggesting that photosynthetic efficiency was not significantly affected over 10 days. Fourier transform infrared (FTIR) spectroscopy revealed notable metabolic adjustments, especially in lipids, plastids, proteins, and carbohydrates, indicating biosynthesis of protective compounds such as anthocyanins and proline in response to salinity stress. Pearson correlation analysis confirmed a strong relationship between NaCl concentration and the observed physiological and metabolic changes. The findings highlight the potential of FTIR spectroscopy as a non-destructive tool for early detection of salinity stress and timely intervention to improve crop resilience and yield. This study highlights the widespread application of FTIR spectroscopy in agricultural research to manage abiotic stresses in crops.
Collapse
Affiliation(s)
- Su-Min Yun
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Cheol-Soo Kim
- Department of Applied Biology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jeung-Joo Lee
- Department of Plant Medicine, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jung-Sung Chung
- Department of Agronomy, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
13
|
Longo M, Francia C, Sangermano M, Hakkarainen M, Amici J. Methacrylated Wood Flour-Reinforced Gelatin-Based Gel Polymer as Green Electrolytes for Li-O 2 Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44033-44043. [PMID: 39105724 DOI: 10.1021/acsami.4c09073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
With its very high theoretical energy density, the Li-O2 battery could be considered a valid candidate for future advanced energy storage solutions. However, the challenges hindering the practical application of this technology are many, as for example electrolyte degradation under the action of superoxide radicals produced upon cycling. In that frame, a gel polymer electrolyte was developed starting from waste-derived components: gelatin from cold water fish skin, waste from the fishing industry, and wood flour waste from the wood industry. Both were methacrylated and then easily cross-linked through a one-pot ultraviolet (UV)-initiated free radical polymerization, directly in the presence of the liquid electrolyte (0.5 M LiTFSI in DMSO). The wood flour works as cross-linking points, reinforcing the mechanical properties of the obtained gel polymer electrolyte, but it also increases Li-ion transport properties with an ionic conductivity of 3.3 mS cm-1 and a transference number of 0.65 at room temperature. The Li-O2 cells assembled with this green gel polymer electrolyte were able to perform 180 cycles at 0.1 mA cm-2, at a fixed capacity of 0.2 mAh cm-2, under a constant O2 flow. Cathodes post-mortem analysis confirmed that this electrolyte was able to slow down solvent degradation, but it also revealed that the higher reversibility of the cells could be explained by the formation of Li2O2 in the amorphous phase for a higher number of cycles compared to a purely gelatin-based electrolyte.
Collapse
Affiliation(s)
- Mattia Longo
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Carlotta Francia
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Marco Sangermano
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Minna Hakkarainen
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 58, 100 44 Stockholm, Sweden
| | - Julia Amici
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
14
|
Grasso F, Martínez MMA, Turrini F, Méndez Paz D, Vázquez Sobrado R, Orlandi V, Jenssen M, Lian K, Rombi J, Tiso M, Razzuoli E, Costas C, Boggia R. Antioxidant Marine Hydrolysates Isolated from Tuna Mixed Byproducts: An Example of Fishery Side Streams Upcycling. Antioxidants (Basel) 2024; 13:1011. [PMID: 39199255 PMCID: PMC11351660 DOI: 10.3390/antiox13081011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
The aim of this research is to propose simple and scalable processes to obtain bioactive peptides extensively hydrolyzed starting from a tuna mixed biomass. The upcycling of this powdered biomass is challenging since it comes from the unsorted industrial side streams of the tuna canning process (cooked residues from fillet trimming) after a patented mild dehydration useful for preventing its degradation until its exploitation. Two different protocols were proposed, with and without the inclusion of an exogenous enzyme (Enzymatic-Assisted Extraction, EAE), with no relevant differences in yields (24% vs. 22%) and a comparable amino acid composition. Nevertheless, the former protocol (with EAE) provided peptides with an average molecular weight of 1.3 kDa, and the second one (without EAE) provided peptides with an average molecular weight of 2.2 kDa. The two corresponding types of tuna protein hydrolysates (Enzymatic Hydrolysates (EH) and Non-Enzymatic Hydrolysates (NEH)) were characterized by proximate compositions, pH, color profile, amino acid analysis, FTIR spectra, and molecular weight distribution. In addition, several biological analyses were performed to assess their potential use as nutraceutical supplements: special attention has been paid to antioxidant activity using three different methods to quantify it. EH showed the most promising antioxidant activity which could be exploited also in other fields (e.g., biomaterials, cosmetics).
Collapse
Affiliation(s)
- Federica Grasso
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (F.G.); (V.O.); (R.B.)
| | - María Mercedes Alonso Martínez
- ANFACO-CECOPESCA, Department of Circular Economy, Colexio Universitario, 36310 Vigo, Spain; (M.M.A.M.); (D.M.P.); (R.V.S.); (C.C.)
| | - Federica Turrini
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (F.G.); (V.O.); (R.B.)
- National Center for the Development of New Technologies in Agriculture (Agritech), 80121 Napoli, Italy
| | - Diego Méndez Paz
- ANFACO-CECOPESCA, Department of Circular Economy, Colexio Universitario, 36310 Vigo, Spain; (M.M.A.M.); (D.M.P.); (R.V.S.); (C.C.)
| | - Rebeca Vázquez Sobrado
- ANFACO-CECOPESCA, Department of Circular Economy, Colexio Universitario, 36310 Vigo, Spain; (M.M.A.M.); (D.M.P.); (R.V.S.); (C.C.)
| | - Valentina Orlandi
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (F.G.); (V.O.); (R.B.)
| | - Marte Jenssen
- Nofima, Muninbakken, 9-13, 9019 Tromsø, Norway; (M.J.); (K.L.)
| | - Kjersti Lian
- Nofima, Muninbakken, 9-13, 9019 Tromsø, Norway; (M.J.); (K.L.)
| | - Junio Rombi
- MICAMO LAB, Via XX Settembre 33/10, 16121 Genova, Italy; (J.R.); (M.T.)
| | - Micaela Tiso
- MICAMO LAB, Via XX Settembre 33/10, 16121 Genova, Italy; (J.R.); (M.T.)
| | - Elisabetta Razzuoli
- Sezione di Genova Portualità Marittima, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 16129 Genova, Italy;
| | - Celina Costas
- ANFACO-CECOPESCA, Department of Circular Economy, Colexio Universitario, 36310 Vigo, Spain; (M.M.A.M.); (D.M.P.); (R.V.S.); (C.C.)
| | - Raffaella Boggia
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (F.G.); (V.O.); (R.B.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
15
|
Cheng X, Zhang S, Qian Y, Ren Y, Chen C, Zhao B, Chen M, Liu H, Zhang C. Construction and characterization of Zn-WPH-COS complex nanoparticles with improved zinc bioavailability. Food Chem 2024; 449:139163. [PMID: 38604024 DOI: 10.1016/j.foodchem.2024.139163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
Precipitation was an important obstacle to improving zinc's bioavailability. Therefore, zinc-whey protein hydrolysate-chitosan oligosaccharide (Zn-WPH-COS) complexes (167 nm) were prepared by linking Zn-WPH (zinc: 18.4%) with COS (1:1, 2 h) to enhance zinc's bioaccessibility. Fourier-transform infrared showed Zn-WPH formed with zinc replaced hydrogen (from 3274 to 3279 cm-1) and reacted with COO- (C-N: from 1394 to 1402 cm-1), a new peak at 1025 cm-1 proved COS can be successful cross-linked (Zn-WPH-COS). Fluorescence spectra showed zinc and COS reduced WPH hydrophobicity (28.0 and 39.0%, respectively). Circular dichroism showed zinc decreased WPH α-helix (from 13.7 to 11.5%), in contrast with COS to Zn-WPH. Zinc solubility and dialyzability were increased (64.5/ 54.2% vs 50.2/ 41.2% vs 29.5/ 21.7%) in Zn-WPH-COS, compared with Zn-WPH and ZnSO4·7H2O, respectively, due to the smallest size (167 nm) and COS protection on Zn-WPH (gastric digestion). These results indicate Zn-WPH-COS could significantly improve the digestion and absorption of zinc.
Collapse
Affiliation(s)
- Xiaofang Cheng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Shuangling Zhang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| | - Yaru Qian
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Yuhang Ren
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Chengwang Chen
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Bingnan Zhao
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Wisconsin 53706, United States
| | - Min Chen
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Heping Liu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Cheng Zhang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
16
|
Fornal M, Krawczyńska A, Belcarz A. Comparison of the Impact of NaIO 4-Accelerated, Cu 2+/H 2O 2-Accelerated, and Novel Ion-Accelerated Methods of Poly(l-DOPA) Coating on Collagen-Sealed Vascular Prostheses: Strengths and Weaknesses. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40515-40530. [PMID: 39044622 PMCID: PMC11310904 DOI: 10.1021/acsami.4c05979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
Sensitive biomaterials subjected to surface modification require delicate methods to preserve their structures and key properties. These include collagen-sealed polyester vascular prostheses. For their functionalization, coating with polycatecholamines (PCAs) can be used. PCAs change some important biological properties of biomaterials, e.g., hydrophilicity, bioactivity, antibacterial activity, and drug binding. The coating process can be stimulated by oxidants, organic solvents, or process conditions. However, these factors may change the properties of the PCA layer and the matrix itself. In this work, collagen-sealed vascular grafts were functionalized with a poly(l-DOPA) (PLD) layer using novel seawater-inspired ion combination as an accelerator, compared to the sodium periodate, Cu2+/H2O2 mixture, and accelerator-free reference methods. Then, poly(l-DOPA) was used as the interface for antibiotic binding. The coated prostheses were characterized (SEM, FIB-SEM, FTIR, UV/vis), and their important functional parameters (mechanical, antioxidant, hemolytic, and prothrombotic properties, bioactivity, stability in human blood and simulated body fluid (SBF), antibiotic binding, release, and antibacterial activity) were compared. It was found that although sodium periodate increased the strength and drug-binding capacity of the prosthesis, it also increased the blood hemolysis risk. Cu2+/H2O2 destabilized the mechanical properties of the coating and the graft. The seawater-inspired ion-accelerated method was efficient, stable, and matrix- and human blood-friendly, and it stimulated hydroxyapatite formation on the prosthesis surface. The results lead to the conclusion that selection of the PCA formation accelerator should be based on a careful analysis of the biological properties of medical devices. They also suggest that the ion-accelerated method of PLD coating on medical devices may be highly effective and safer than the oxidant-accelerated coating method.
Collapse
Affiliation(s)
- Michał Fornal
- Chair
and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Agnieszka Krawczyńska
- Faculty
of Materials Science and Engineering, Warsaw
University of Technology, 141 Wołoska, 02-507 Warsaw, Poland
| | - Anna Belcarz
- Chair
and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| |
Collapse
|
17
|
Scaffa P, Logan MG, Icimoto MY, Fugolin A, Tsuzuki FM, Lewis SH, Pfeifer CS. Mechanistic study of the stabilization of dentin-bonded restorative interfaces via collagen reinforcement by multi-acrylamides. Dent Mater 2024; 40:1128-1137. [PMID: 38821837 PMCID: PMC11260233 DOI: 10.1016/j.dental.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 05/29/2024] [Indexed: 06/02/2024]
Abstract
Hydrolytically and enzymatically-stable multi-acrylamides have been proposed to increase the long-term durability of dental adhesive interfaces as alternatives to methacrylates. The aim of this study was to investigate the mechanical and biochemical properties of experimental adhesives containing multi-functional acrylamides concerning collagen reinforcement and metalloproteinases (MMP) activity. Multi-functional acrylamides, TMAAEA (Tris[(2-methylaminoacryl) ethylamine) and DEBAAP (N,N-Diethyl-1,3-bis(acrylamido) propane), along with the commercially available DMAM (N,N-dimethylacrylamide) (monofunctional acrylamide) and HEMA (2-Hydroxyethyl methacrylate) (monofunctional methacrylate - control) were tested for stability against enzymatic hydrolysis by cholesterol esterase/pseudocholinesterase (PC/PCE) solutions for up to 30 days. Collagen-derived substrate and gelatin zymography were performed to examine the effect of the compounds on the biological activity of human recombinant and dentin-extracted gelatinases MMP-2 and MMP-9. In situ zymography was carried out by fluorescent collagen degradation combined with confocal microscopy analysis. Hydroxyproline content was measured in collagen derived from dentin extracts though reaction with Ehrlich's reagent p-dimethylaminobenzaldehyde (DMAB), generating a stable chromophore measured at 550 nm. Storage shear modulus of demineralized dentin discs treated with the tested compounds was measured by oscillatory rheometry, in order to investigate potential collagen reinforcement. FT-IR was performed to determine qualitative differences in collagen based on observed changes in amide bands. The results were analyzed by ANOVA/Tukey's test (α = 0.05). Multi-acrylamides survived 30 days of incubation in cholinesterase/pseudo-cholinesterase (PC/PCE) solutions, while HEMA showed approximately 70 % overall degradation. Incubation with multi-acrylamides reduced collagen degradation as evidenced by the reduced hydroxyproline levels and by the 30 % increase inshear storage modulus. Biochemical and zymography assays showed no noticeable inhibition of recombinant and extracted MMPs enzymatic activity. The infra-red spectroscopy results for multi-functional acrylamides treated samples demonstrated shifts of the amide II bonds and marked increase in intensity of the bands 1200 cm-1, which may indicate partial collagen denaturation and some degree of cross-linking of the compounds with collagen, respectively. The multi-acrylamides exhibited not only comparable mechanical properties but also demonstrated significantly enhanced biochemical stability when compared to the widely used methacrylate control. Clinical relevance: These findings highlight the potential of multi-acrylamides to increase the bonding stability to tissues and, ultimately, contribute to the longevity of dental restorations.
Collapse
Affiliation(s)
- Pmc Scaffa
- Oregon Health & Science University, School of Dentistry, Division of Biomaterial and Biomedical Sciences, USA
| | - M G Logan
- Oregon Health & Science University, School of Dentistry, Division of Biomaterial and Biomedical Sciences, USA
| | - M Y Icimoto
- Oregon Health & Science University, School of Dentistry, Division of Biomaterial and Biomedical Sciences, USA; Federal University of Sao Paulo, Department of Biophysics, Brazil
| | - App Fugolin
- Oregon Health & Science University, School of Dentistry, Division of Biomaterial and Biomedical Sciences, USA
| | - F M Tsuzuki
- Oregon Health & Science University, School of Dentistry, Division of Biomaterial and Biomedical Sciences, USA; State University of Campinas, Piracicaba School of Dentistry, Department of Dental Materials, Brazil
| | - S H Lewis
- Oregon Health & Science University, School of Dentistry, Division of Biomaterial and Biomedical Sciences, USA
| | - C S Pfeifer
- Oregon Health & Science University, School of Dentistry, Division of Biomaterial and Biomedical Sciences, USA.
| |
Collapse
|
18
|
Qu H, Zhang X, Ye C, Ngando FJ, Shang Y, Yang F, Xiao J, Chen S, Guo Y. Combining spectrum and machine learning algorithms to predict the weathering time of empty puparia of Sarcophaga peregrine (Diptera: Sarcophagidae). Forensic Sci Int 2024; 361:112144. [PMID: 39018983 DOI: 10.1016/j.forsciint.2024.112144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/19/2024]
Abstract
The weathering time of empty puparia could be important in predicting the minimum postmortem interval (PMImin). As corpse decomposition progresses to the skeletal stage, empty puparia often remain the sole evidence of fly activity at the scene. In this study, we used empty puparia of Sarcophaga peregrina (Diptera: Sarcophagidae) collected at ten different time points between January 2019 and February 2023 as our samples. Initially, we used the scanning electron microscope (SEM) to observe the surface of the empty puparia, but it was challenging to identify significant markers to estimate weathering time. We then utilized attenuated total internal reflectance Fourier transform infrared spectroscopy (ATR-FTIR) to detect the puparia spectrogram. Absorption peaks were observed at 1064 cm-1, 1236 cm-1, 1381 cm-1, 1538 cm-1, 1636 cm-1, 2852 cm-1, 2920 cm-1. Three machine learning models were used to regress the spectral data after dimensionality reduction using principal component analysis (PCA). Among them, eXtreme Gradient Boosting regression (XGBR) showed the best performance in the wavenumber range of 1800-600 cm-1, with a mean absolute error (MAE) of 1.20. This study highlights the value of refining these techniques for forensic applications involving entomological specimens and underscores the considerable potential of combining FTIR and machine learning in forensic practice.
Collapse
Affiliation(s)
- Hongke Qu
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China; School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Xiangyan Zhang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Chengxin Ye
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Fernand Jocelin Ngando
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Yanjie Shang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Fengqin Yang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Jiao Xiao
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Sile Chen
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Yadong Guo
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China.
| |
Collapse
|
19
|
Togni L, Furlani M, Belloni A, Riberti N, Giuliani A, Notarstefano V, Santoni C, Giorgini E, Rubini C, Santarelli A, Mascitti M. Biomolecular alterations temporally anticipate microarchitectural modifications of collagen in oral tongue squamous cell carcinoma. iScience 2024; 27:110303. [PMID: 39040062 PMCID: PMC11261445 DOI: 10.1016/j.isci.2024.110303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/03/2024] [Accepted: 06/16/2024] [Indexed: 07/24/2024] Open
Abstract
High resolution analysis of collagen bundles could provide information on tumor onset and evolution. This study was focused on the microarchitecture and biomolecular organization of collagen bundles in oral tongue squamous cell carcinoma (OTSCC). Thirty-five OTSCC biopsy samples were analyzed by synchrotron-based phase-contrast microcomputed tomography and Fourier transform infrared imaging (FTIRI) spectroscopy. PhC-microCT evidenced the presence of reduced and disorganized collagen in the tumor area compared to the extratumoral (ExtraT) one. FTIRI also revealed a reduction of folded secondary structures in the tumor area, and highlighted differences in the peritumoral (PeriT) areas in relation with the OTSCC stage, whereby a significantly lower amount of collagen with less organized fibers was found in the PeriT stroma of advanced-OTSCC stages. Interestingly, no significant morphometrical mismatches were detected in the same region by PhC-microCT analysis. These results suggest that biomolecular alterations in the OTSCC stroma temporally anticipate structural modifications of collagen bundle microarchitecture.
Collapse
Affiliation(s)
- Lucrezia Togni
- Department of Clinical Specialistic and Dental Sciences, Marche Polytechnic University, via Tronto 10, 60126 Ancona, Italy
| | - Michele Furlani
- Department of Clinical Specialistic and Dental Sciences, Marche Polytechnic University, via Tronto 10, 60126 Ancona, Italy
| | - Alessia Belloni
- Department of Life and Environmental Science, Marche Polytechnic University, via Brecce Bianche, Ancona, Italy
| | - Nicole Riberti
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d’Annunzio of Chieti-Pescara, via dei Vestini 31, 66013 Chieti, Italy
| | - Alessandra Giuliani
- Department of Clinical Specialistic and Dental Sciences, Marche Polytechnic University, via Tronto 10, 60126 Ancona, Italy
| | - Valentina Notarstefano
- Department of Life and Environmental Science, Marche Polytechnic University, via Brecce Bianche, Ancona, Italy
| | - Chiara Santoni
- Department of Life and Environmental Science, Marche Polytechnic University, via Brecce Bianche, Ancona, Italy
| | - Elisabetta Giorgini
- Department of Life and Environmental Science, Marche Polytechnic University, via Brecce Bianche, Ancona, Italy
| | - Corrado Rubini
- Department of Biomedical Sciences and Public Health, Marche Polytechnic University, via Tronto 10, Ancona, Italy
| | - Andrea Santarelli
- Department of Clinical Specialistic and Dental Sciences, Marche Polytechnic University, via Tronto 10, 60126 Ancona, Italy
- Dentistry Clinic, National Institute of Health and Science of Aging, IRCCS INRCA, via Tronto 10, 60126 Ancona, Italy
| | - Marco Mascitti
- Department of Clinical Specialistic and Dental Sciences, Marche Polytechnic University, via Tronto 10, 60126 Ancona, Italy
| |
Collapse
|
20
|
Xu H, Deng W, Shi L, Long J, Zhang Y, Xu L, Mai L. The Role of the Molecular Encapsulation Effect in Stabilizing Hydrogen-Bond-Rich Gel-State Lithium Metal Batteries. Angew Chem Int Ed Engl 2024; 63:e202400032. [PMID: 38653713 DOI: 10.1002/anie.202400032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 04/25/2024]
Abstract
Gel-state polymer electrolytes with superior mechanical properties, self-healing abilities and high Li+ transference numbers can be obtained by in situ polymerization of monomers with hydrogen-bonding moieties. However, it is overlooked that the active hydrogen atoms in hydrogen-bond donors experience displacement reactions with lithium metal in lithium metal batteries (LMBs), leading to corrosion of the lithium metal. Herein, it is discovered that the addition of hydrogen-bond acceptors to hydrogen-bond-rich gel-state electrolytes modulates the chemical activity of the active hydrogen atoms via the formation of hydrogen-bonded intermolecular interactions. The characterizations reveal that the added hydrogen-bond acceptors encapsulate the active hydrogen atoms to suppress the interfacial chemical corrosions of lithium metals, thereby enhancing the chemical stability of the polymer structure and interphase. With the employment of this strategy, a 1.1 Ah LiNi0.8Co0.1Mn0.1O2/Li metal pouch cell achieves stable cycling with 96.3 % capacity retention at 100 cycles. This new approach indicates a feasible path for achieving in situ polymerization of highly stable gel-state-based LMBs.
Collapse
Affiliation(s)
- Hantao Xu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P.R. China
| | - Wei Deng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P.R. China
| | - Lei Shi
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P.R. China
| | - Juncai Long
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P.R. China
| | - Yongcai Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, P.R. China
| | - Lin Xu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P.R. China
- Hubei Longzhong Laboratory, Wuhan University of Technology (Xiangyang Demonstration Zone), Xiangyang, 441000, Hubei, P.R. China
- Hainan Institute, Wuhan University of Technology, Sanya, 572000, P.R. China
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P.R. China
- Hubei Longzhong Laboratory, Wuhan University of Technology (Xiangyang Demonstration Zone), Xiangyang, 441000, Hubei, P.R. China
- Hainan Institute, Wuhan University of Technology, Sanya, 572000, P.R. China
| |
Collapse
|
21
|
Macchia A, Marinelli L, Barbaccia FI, de Caro T, Hansen A, Schuberthan LM, Izzo FC, Pintus V, Testa Chiari K, La Russa MF. Mattel's ©Barbie: Preventing Plasticizers Leakage in PVC Artworks and Design Objects through Film-Forming Solutions. Polymers (Basel) 2024; 16:1888. [PMID: 39000743 PMCID: PMC11244241 DOI: 10.3390/polym16131888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/17/2024] Open
Abstract
The main conservation problem of p-PVC artworks is phthalate-based plasticizer migration. Phthalate migration from the bulk to the surface of the materials leads to the formation of a glossy and oily film on the outer layers, ultimately reducing the flexibility of the material. This study aimed to develop a removable coating for the preservation of contemporary artworks and design objects made of plasticized polyvinyl chloride (p-PVC). Several coatings incorporating chitosan, collagen, and cellulose ethers were assessed as potential barriers to inhibiting plasticizer migration. Analytical techniques including optical microscopy (OM), ultraviolet/visible/near-infrared spectroscopy (UV/Vis/NIR), Fourier transform infrared spectroscopy with attenuated total reflection (FTIR-ATR), and scanning electron microscopy (SEM) were utilized to evaluate the optical and chemical stability of selected coating formulations applied to laboratory p-PVC sheet specimens. Subsequently, formulations were tested on a real tangible example of a design object, ©Barbie doll, characterized by the prevalent issue of plasticizer migration. Furthermore, the results obtained with the tested formulations were evaluated by a group of conservators using a tailored survey. Finally, a suitable coating formulation capable of safeguarding plastic substrates was suggested.
Collapse
Affiliation(s)
- Andrea Macchia
- Department of Biology, Ecology and Earth Sciences DIBEST, University of Calabria, Via Pietro Bucci, Arcavacata, 87036 Rende, Italy; (A.M.); (M.F.L.R.)
- YOCOCU, Youth in Conservation of Cultural Heritage, Via T. Tasso 108, 00185 Rome, Italy; (L.M.); (L.M.S.); (K.T.C.)
| | - Livia Marinelli
- YOCOCU, Youth in Conservation of Cultural Heritage, Via T. Tasso 108, 00185 Rome, Italy; (L.M.); (L.M.S.); (K.T.C.)
- Department of Science of Antiquities, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Francesca Irene Barbaccia
- YOCOCU, Youth in Conservation of Cultural Heritage, Via T. Tasso 108, 00185 Rome, Italy; (L.M.); (L.M.S.); (K.T.C.)
- Department of Technological Innovation Engineering, Digital Technologies for Industry 4.0, International Telematic University Uninettuno, Corso Vittorio Emanuele II 39, 00186 Rome, Italy
| | - Tilde de Caro
- CNR ISMN, Strada Provinciale 35d, 9, 00010 Rome, Italy;
| | - Alice Hansen
- Plart Museum, Via Giuseppe Martucci 48, 80121 Naples, Italy;
| | - Lisa Maria Schuberthan
- YOCOCU, Youth in Conservation of Cultural Heritage, Via T. Tasso 108, 00185 Rome, Italy; (L.M.); (L.M.S.); (K.T.C.)
| | - Francesca Caterina Izzo
- Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University of Venice, Via Torino 155, 30123 Venice, Italy;
| | - Valentina Pintus
- Institute for Natural Science and Technology in Arts, Academy of Fine Arts Vienna, Schillerplatz 3, 1010 Vienna, Austria
- Institute for Conservation and Restoration, Academy of Fine Arts Vienna, Schillerplatz 3, 1010 Vienna, Austria
| | - Katiuscia Testa Chiari
- YOCOCU, Youth in Conservation of Cultural Heritage, Via T. Tasso 108, 00185 Rome, Italy; (L.M.); (L.M.S.); (K.T.C.)
| | - Mauro Francesco La Russa
- Department of Biology, Ecology and Earth Sciences DIBEST, University of Calabria, Via Pietro Bucci, Arcavacata, 87036 Rende, Italy; (A.M.); (M.F.L.R.)
| |
Collapse
|
22
|
Batista MP, Schroeter B, Fernández N, Gaspar FB, do Rosário Bronze M, Duarte AR, Gurikov P. A Novel Collagen Aerogel with Relevant Features for Topical Biomedical Applications. Chempluschem 2024; 89:e202400122. [PMID: 38578430 DOI: 10.1002/cplu.202400122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
Collagen-based aerogels have great potential for topical biomedical applications. Collagen's natural affinity with skin, biodegradability, and gelling behavior are compelling properties to combine with the structural integrity of highly porous matrices in the dry form (aerogels). This work aimed to produce a novel collagen-based aerogel and to perform the material's solid-state and physicochemical characterization. Aerogels were obtained by performing different solvent exchange approaches of a collagen-gelled extract and drying the obtained alcogels with supercritical CO2. The resulting aerogels showed a sponge-like structure with a relatively dense mesoporous network with a specific surface area of 201-203 m2/g, a specific pore volume of 1.08-1.15 cm3/g, and a mean pore radius of ca. 14.7 nm. Physicochemical characterization confirmed that the obtained aerogels are composed of pure collagen, and the aerogel production process does not impact protein tertiary structure. Finally, the material swelling behavior was assessed at various pH values (4, 7, and 10). Collagen aerogels presented a high water uptake capacity up to ~2700 wt. %, pH-dependent stability, and swelling behavior in aqueous media. The results suggest that this collagen aerogel could be a promising scaffold candidate for topical biomedical applications.
Collapse
Affiliation(s)
- Miguel P Batista
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - Baldur Schroeter
- Institute of Thermal Separation Processes, Hamburg University of Technology, Eißendorfer Str. 38, 21073, Hamburg, Germany
| | - Naiara Fernández
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
| | - Frédéric Bustos Gaspar
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Maria do Rosário Bronze
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
- Faculdade de Farmácia, Universidade de, Lisboa, Avenida Professor Gama Pinto, 1649-003, Portugal
| | - Ana Rita Duarte
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - Pavel Gurikov
- Institute of Thermal Separation Processes, Hamburg University of Technology, Eißendorfer Str. 38, 21073, Hamburg, Germany
- R&D New Materials, aerogel-it GmbH, Osnabrück, Albert-Einstein-Str. 1, 49076, Germany
| |
Collapse
|
23
|
Liao X, Liu M, He M, Yuan C, Zhang Q, Wan Q, Qu Z, Kong L, Li L. Damage-Free Silica Coating for Colloidal Nanocrystals Through a Proactively Water-Generating Amidation Reaction at High Temperature. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309902. [PMID: 38402427 DOI: 10.1002/smll.202309902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/29/2024] [Indexed: 02/26/2024]
Abstract
Silica is a promising shell coating material for colloidal nanoparticles due to its excellent chemical inertness and optical transparency. To encapsulate high-quality colloidal nanocrystals with silica shells, the silane coupling hydrolysis is currently the most effective approach. However, this reaction requires water, which often adversely affects the intrinsic physicochemical properties of nanocrystals. Achieving a damage-free silica encapsulation process to nanocrystals by hydrolysis is a huge challenge. Here, a novel strategy is developed to coat colloidal nanocrystals with a denser silica shell via a proactively water-generating reaction at high temperature. In this work, water molecules are continuously and proactively released into the reaction system through the amidation reaction, followed by in situ hydrolysis of silane, completely avoiding the impacts of water on nanocrystals during the silica coating process. In this work, water sensitive perovskite nanocrystals (CsPbBr3) are selected as the typical colloidal nanocrystals for silica coating. Notably, this high-temperature in situ encapsulation technology greatly improves the optical properties of nanocrystals, and the silica shells exhibit a denser structure, providing nanocrystals with better protection. This method overcomes the challenge of the influence of water on nanocrystals during the hydrolysis process, and provides an important reference for the non-destructive encapsulation of colloidal nanocrystals.
Collapse
Affiliation(s)
- Xinrong Liao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Mingming Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Mengda He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Changwei Yuan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Qinggang Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Qun Wan
- Macao Institute of Materials Science and Engineering (MIMSE), Life Science-Nanomaterials Fusion Technology Innovation Center, Macau University of Science and Technology, Taipa, Macau, 999078, P. R. China
| | - Zan Qu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Long Kong
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Liang Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
- Macao Institute of Materials Science and Engineering (MIMSE), Life Science-Nanomaterials Fusion Technology Innovation Center, Macau University of Science and Technology, Taipa, Macau, 999078, P. R. China
| |
Collapse
|
24
|
Li S, Li N, Wang Y, Zhang X, Wang J, Zhang M, Chen H. Structural Characterization of the Staphylococcus aureus Targeting Lectin Peptides from Garlic (Allium sativum L) by Liquid Nitrogen Grinding Coupled with the Proteomic and Antimicrobial Mechanism Analysis. Probiotics Antimicrob Proteins 2024; 16:964-978. [PMID: 37217612 DOI: 10.1007/s12602-023-10078-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2023] [Indexed: 05/24/2023]
Abstract
Garlic has long been used as an antimicrobial spice and herbal remedy. The aim of this study was to isolate the antimicrobial agent in garlic water extract against Staphylococcus aureus (S. aureus) and investigate its antimicrobial mechanism. By an activity-guided separation, garlic lectin-derived peptides (GLDPs) with main molecular weight of around 12 kDa were extracted by liquid nitrogen grinding and identified with high bactericidal activity toward S. aureus, and the MIC was determined as 24.38 μg/mL. In-gel digestion-based proteomic analysis indicated that the peptide sequences were highly identical to the B strain of garlic protein lectin II. Structure analysis suggested that the secondary structure was strongly affected by lyophilization and thus resulted in the inactivation of GLDPs (P < 0.05). Mechanism study revealed that treatment of GLDPs resulted in cell membrane depolarization in a dose-dependent manner, and the disruptions of the cell wall and membrane integrities were observed under electric microscopies. GLDPs could successfully dock with cell wall component lipoteichoic acid (LTA) via van der Waals and conventional bonds in molecular docking analysis. These results suggested that GLDPs were responsible for the S. aureus targeting activity and might be promising candidates for antibiotic development against bacterial infection.
Collapse
Affiliation(s)
- Shuqin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Nannan Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Yajie Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Xiaoyu Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Jia Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Min Zhang
- Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
- State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
| |
Collapse
|
25
|
Inanc A, Bektas NI, Kecoglu I, Parlatan U, Durkut B, Ucak M, Unlu MB, Celik-Ozenci C. Label-free differentiation of functional zones in mature mouse placenta using micro-Raman imaging. BIOMEDICAL OPTICS EXPRESS 2024; 15:3441-3456. [PMID: 38855670 PMCID: PMC11161348 DOI: 10.1364/boe.521500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 06/11/2024]
Abstract
In histopathology, it is highly crucial to have chemical and structural information about tissues. Additionally, the segmentation of zones within a tissue plays a vital role in investigating the functions of these regions for better diagnosis and treatment. The placenta plays a vital role in embryonic and fetal development and in diagnosing some diseases associated with its dysfunction. This study provides a label-free approach to obtain the images of mature mouse placenta together with the chemical differences between the tissue compartments using Raman spectroscopy. To generate the Raman images, spectra of placental tissue were collected using a custom-built optical setup. The pre-processed spectra were analyzed using statistical and machine learning methods to acquire the Raman maps. We found that the placental regions called decidua and the labyrinth zone are biochemically distinct from the junctional zone. A histologist performed a comparison and evaluation of the Raman map with histological images of the placental tissue, and they were found to agree. The results of this study show that Raman spectroscopy offers the possibility of label-free monitoring of the placental tissue from mature mice while simultaneously revealing crucial structural information about the zones.
Collapse
Affiliation(s)
- Arda Inanc
- Department of Physics, Bogazici University, Bebek, Besiktas, Istanbul 34342, Turkey
| | - Nayce Ilayda Bektas
- Department of Histology and Embryology, School of Medicine, Akdeniz University, Pınarbasi, Konyaalti, Antalya 07070, Turkey
| | - Ibrahim Kecoglu
- Department of Physics, Bogazici University, Bebek, Besiktas, Istanbul 34342, Turkey
| | - Ugur Parlatan
- Department of Physics, Bogazici University, Bebek, Besiktas, Istanbul 34342, Turkey
| | - Begum Durkut
- Koc University, Graduate School of Health Sciences, Reproductive Medicine, Istanbul, Turkey
| | - Melike Ucak
- Koc University, Graduate School of Health Sciences, Reproductive Medicine, Istanbul, Turkey
| | - Mehmet Burcin Unlu
- Faculty of Engineering, Ozyegin University, Nisantepe, Cekmekoy, Istanbul 34794, Turkey
- Faculty of Aviation and Aeronautical Sciences, Ozyegin University, Nisantepe, Cekmekoy, Istanbul 34794, Turkey
| | - Ciler Celik-Ozenci
- Department of Histology and Embryology, School of Medicine, Koc University, Rumelifeneri, Sariyer, Istanbul 34450, Turkey
- Koc University Research Center for Translational Medicine (KUTTAM), Koc University, Istanbul 34450, Turkey
| |
Collapse
|
26
|
Feng Y, Zhu J, Li Y, Cheng Z. Effects of Grinding Methods of Tartary Buckwheat Leaf Powder on the Characteristics and Micromorphology of Wheat Dough. Foods 2024; 13:1233. [PMID: 38672905 PMCID: PMC11048881 DOI: 10.3390/foods13081233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The functional components in tartary buckwheat leaf powder can give flour products higher nutritional value. To comprehensively realize the high-value utilization of tartary buckwheat and its by-products, electric stone mill powder (EMP), ultra-fine mill powder (UMP), steel mill powder (SMP), and grain mill powder (GMP) from tartary buckwheat leaves were used in the preparation of wheat dough, and this was used to explore their effects on dough properties and protein microstructure. With an increase in tartary buckwheat leaf powder, the hydration characteristics, protein weakening rate, and starch gelatinization characteristics of the dough changed, and the water holding capacity and swelling capacity decreased. The retrogradation value increased, which could prolong the shelf life of related products. The water solubility of the dough showed an upward trend and was the lowest at 10% UMP. The addition of UMP produced a more uniform dough stability time and the lowest degree of protein weakening, which made the dough more resistant to kneading. An increasing amount of tartary buckwheat leaf powder augmented the free sulfhydryl content of the dough and decreased the disulfide bond content. The disulfide bond content of the dough containing UMP was higher than that of the other doughs, and the stability of the dough was better. The peaks of the infrared spectrum of the dough changed after adding 10% UMP and 20% EMP. The content of α-helical structures was the highest at 10% UMP, and the content of ordered structures was enhanced. The polymerization of low molecular weight proteins to form macromolecular polymers led to a reduction in surface hydrophobic regions and the aggregation of hydrophobic groups. The SEM results also demonstrated that at 10% tartary buckwheat leaf powder, the addition of UMP was significantly different from that of the other three leaf powders, and at 20%, the addition of EMP substantially altered the structure of the dough proteins. Considering the effects of different milling methods and different added amounts of tartary buckwheat leaf powder on various characteristics of dough, 10% UMP is the most suitable amount to add to the dough.
Collapse
Affiliation(s)
| | | | - Yunlong Li
- Institute of Functional Food of Shanxi, Shanxi Agricultural University, Taiyuan 030031, China; (Y.F.); (J.Z.); (Z.C.)
| | | |
Collapse
|
27
|
Varga V, Smeller L, Várdai R, Kocsis B, Zsoldos I, Cruciani S, Pala R, Hornyák I. Water-Insoluble, Thermostable, Crosslinked Gelatin Matrix for Soft Tissue Implant Development. Int J Mol Sci 2024; 25:4336. [PMID: 38673921 PMCID: PMC11050114 DOI: 10.3390/ijms25084336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
In this present study, the material science background of crosslinked gelatin (GEL) was investigated. The aim was to assess the optimal reaction parameters for the production of a water-insoluble crosslinked gelatin matrix suitable for heat sterilization. Matrices were subjected to enzymatic degradation assessments, and their ability to withstand heat sterilization was evaluated. The impact of different crosslinkers on matrix properties was analyzed. It was found that matrices crosslinked with butanediol diglycidyl ether (BDDE) and poly(ethylene glycol) diglycidyl ether (PEGDE) were resistant to enzymatic degradation and heat sterilization. Additionally, at 1 v/v % crosslinker concentration, the crosslinked weight was lower than the starting weight, suggesting simultaneous degradation and crosslinking. The crosslinked weight and swelling ratio were optimal in the case of the matrices that were crosslinked with 3% and 5% v/v BDDE and PEGDE. FTIR analysis confirmed crosslinking, and the reduction of free primary amino groups indicated effective crosslinking even at a 1% v/v crosslinker concentration. Moreover, stress-strain and compression characteristics of the 5% v/v BDDE crosslinked matrix were comparable to native gelatin. Based on material science measurements, the crosslinked matrices may be promising candidates for scaffold development, including properties such as resistance to enzymatic degradation and heat sterilization.
Collapse
Affiliation(s)
- Viktória Varga
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary;
- Department of Materials Science and Technology, University of Győr, 9026 Győr, Hungary; (B.K.); (I.Z.)
| | - László Smeller
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary;
| | - Róbert Várdai
- Laboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, 1111 Budapest, Hungary;
- Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, 1111 Budapest, Hungary
| | - Bence Kocsis
- Department of Materials Science and Technology, University of Győr, 9026 Győr, Hungary; (B.K.); (I.Z.)
| | - Ibolya Zsoldos
- Department of Materials Science and Technology, University of Győr, 9026 Győr, Hungary; (B.K.); (I.Z.)
| | - Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (S.C.); (R.P.)
| | - Renzo Pala
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (S.C.); (R.P.)
| | - István Hornyák
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary;
- Department of Materials Science and Technology, University of Győr, 9026 Győr, Hungary; (B.K.); (I.Z.)
| |
Collapse
|
28
|
Pongsetkul J, Saengsuk N, Siriwong S, Thumanu K, Yongsawatdigul J, Benjakul S. A comprehensive study of sous-vide cooked Korat chicken breast processed by various conditions: texture, compositional/structural changes, and consumer acceptance. Poult Sci 2024; 103:103495. [PMID: 38354473 PMCID: PMC10875293 DOI: 10.1016/j.psj.2024.103495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/16/2024] Open
Abstract
Korat chicken (KC) is a slow-growing crossbreed renowned for its excellent growth and firm texture. This study investigated the effect of various sous-vide (SV) conditions (60 and 70°C, 1-3 h) on their texture, protein structure and degradation, as well as consumer acceptability, with the traditional boiling served as control. Texture showed significant improvement under all SV conditions compared to the control, as demonstrated by increased water holding capacity (WHC), cooking loss, and decreased shear force, hardness, and chewiness (P < 0.05). These changes corresponded to the higher sensory scores (P < 0.05). Among the SV samples, increased temperatures and longer cooking times led to higher degradation of myofibrils and connective tissue, as evidenced by a decrease in water-, salt-soluble proteins, and soluble collagen (P < 0.05). These findings aligned with the scanning electron microscopy (SEM) results, which showed a looser muscle structure in the meat under more intense cooking conditions. Based on synchrotron radiation-based Fourier transform infrared (SR-FTIR) results, a gradual increase in antiparallel forms within the amide I bands (1,700-1,600 cm-1) of the total spectra with higher temperature and longer cooking times was observed (P < 0.05), while the fluctuations were observed in the changes of α-helix, β-sheet, and β-turn structures. This suggested that the antiparallel structure represented a looser configuration developing during intense SV cooking. Combined with the principal component analysis (PCA) results, the findings indicated that the suitable SV condition for KC breast meat was 70°C for varying durations (1-3 h), as it showed the strongest correlation with sensory scores, particularly in terms of tenderness. In summary, these findings provided a better understanding of molecular changes and discovered SV conditions to enhance the texture quality of the KC meat.
Collapse
Affiliation(s)
- Jaksuma Pongsetkul
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| | - Nachomkamon Saengsuk
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; School of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Supatcharee Siriwong
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, 30000, Thailand
| | - Kanjana Thumanu
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, 30000, Thailand
| | - Jirawat Yongsawatdigul
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110 Thailand
| |
Collapse
|
29
|
Bronner-Shtrauchler O, Nativ-Roth E, Sanchez DS, Zaiden M, Vidavsky N. Multimodal characterization of the collagen hydrogel structure and properties in response to physiologically relevant pH fluctuations. Acta Biomater 2024; 178:170-180. [PMID: 38417647 DOI: 10.1016/j.actbio.2024.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 03/01/2024]
Abstract
pH fluctuations within the extracellular matrix (ECM) and its principal constituent collagen, particularly in solid tumors and chronic wounds, may influence its structure and function. Whereas previous research examined the impact of pH on collagen fibrillogenesis, this study focuses on determining how pH fluctuations affect collagen hydrogels that mimic the physiological ECM. Utilizing a type I collagen hydrogel, we examined the influence of pH fluctuations on its structure, properties, and function while keeping the collagen hydrated. We show that collagen's secondary structure remains unaltered during pathologically relevant microenvironmental pH changes. By employing cryo scanning electron microscopy and artificial intelligence-assisted image analysis, we show that at physiological pH, collagen hydrogel presents densely packed, aligned, and elongated fibrils, which upon a decrease to pH 6.5, are transformed into shorter, sparser, and disoriented fibrils. The collagen possesses a higher storage modulus yet a lower permeability at pH 7 and 7.8 compared with pH 6.5 and 7.4. Exposing acidified collagen to a basic buffer reinstates its native structure and viscoelastic properties. Our study offers an innovative approach to analyze and characterize perturbations in hydrated collagen-based systems with potential implications for better understanding and combating disease progression. STATEMENT OF SIGNIFICANCE: As the main component of the extracellular matrix, collagen undergoes conformational changes associated with pH changes during disease. We analyze the impact of pH on pre-formed collagen fibers mimicking healthy tissues subjected to disease, and do not focus on the more studied fibrillogenesis process. Using cryogenic SEM, which allowed imaging close to the native state, we show that even minor fluctuations in the pH affect the collagen thickness, length, fiber alignment, and rheological properties. Following exposure to acidic pH, the collagen had short fibers, lacked orientation, and had low mechanical strength. This acidic collagen restored its original properties after returning to a neutral pH. These findings can help determine how pH changes can be modulated to restore healthy collagen properties.
Collapse
Affiliation(s)
| | - Einat Nativ-Roth
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Daniel Sevilla Sanchez
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Michal Zaiden
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Netta Vidavsky
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel; Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| |
Collapse
|
30
|
Salinas-Fernandez S, Garcia O, Kelly DJ, Buckley CT. The influence of pH and salt concentration on the microstructure and mechanical properties of meniscus extracellular matrix-derived implants. J Biomed Mater Res A 2024; 112:359-372. [PMID: 37921203 DOI: 10.1002/jbm.a.37634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023]
Abstract
Meniscus-related injuries are a common orthopedic challenge with an increasing incidence in the population. While the preservation of viable meniscal tissue is the preferred approach in repair strategies, complex or total traumatic lesions may require alternative therapeutic approaches such as meniscal reconstruction using allografts or engineered equivalents. Although clinical studies suggest promising outcomes with the use of acellular implants, further development is needed to improve their biological and mechanical requirements. Decellularized extracellular matrix (dECM) derived from menisci is a promising biomaterial for meniscus tissue engineering due to its recapitulation of the native tissue environment and the maintenance of tissue-specific cues. However, the associated mechanical limitations of dECM-derived scaffolds frequently impedes their adoption, requiring additional reinforcement or combining with stiffer biomaterials to increase their load-bearing properties. In this study, decellularized extracellular matrix was extracted and its fibrillation was controlled by adjusting both pH and salt concentrations to fabricate mechanically functional meniscal tissue equivalents. The effect of collagen fibrillation on the mechanical properties of the dECM constructs was assessed, and porcine-derived fibrochondrocytes were used to evaluate in vitro biocompatibility. It was also possible to fabricate meniscus-shaped implants by casting of the dECM and to render the implants suitable for off-the-shelf use by adopting a freeze-drying preservation method. Suture pull-out tests were also performed to assess the feasibility of using existing surgical methods to fix such implants within a damaged meniscus. This study highlights the potential of utilizing ECM-derived materials for meniscal tissue substitutes that closely mimic the mechanical and biological properties of native tissue.
Collapse
Affiliation(s)
- Soraya Salinas-Fernandez
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin, Ireland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, The University of Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland & Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Orquidea Garcia
- Johnson & Johnson 3D Printing Innovation & Customer Solutions, Johnson & Johnson Services, Inc., Irvine, California, USA
| | - Daniel J Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin, Ireland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, The University of Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland & Trinity College Dublin, The University of Dublin, Dublin, Ireland
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Conor T Buckley
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin, Ireland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, The University of Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland & Trinity College Dublin, The University of Dublin, Dublin, Ireland
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| |
Collapse
|
31
|
He X, Bian C, Wang H, Zhang Y, Ding X, Li H, Wang Q, Li J. Extrapolation study for determining the time since injury in a rat subcutaneous hematoma model utilizing ATR-FTIR spectroscopy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1272-1280. [PMID: 38323628 DOI: 10.1039/d3ay01898a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
The determination of the time of an injury has been a major problem in forensic science due to the lack of objective, reliable and portable methods. In this study, a subcutaneous hemorrhage model in rats was established over six days, and attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy coupled with chemometrics was used to determine the time since injury. Initial principal component analysis (PCA) showed variance among hematoma sites. Subsequently, spectral data were acquired to establish a dependable partial least square (PLS) regression model with predictive abilities. The root mean square error of cross-validation (RMSECV) and the root mean square error of prediction (RMSEP) values produced by a genetic algorithm (GA) were 0.64 d (R2 = 0.88) and 0.57 d (R2 = 0.90), respectively. Few variables were involved in the model, and significantly better results were obtained in comparison to the conventional full-spectrum PLS model. In combination with the results of variable importance in projection (VIP) scores, all components, including proteins, nucleic acids and phospholipids, provided inferences regarding the samples at different time points; additionally, amide I and II bands represented the secondary structure of proteins and provided the largest contribution. Based on our preliminary study, the combination of swift and nondamaging ATR-FTIR spectroscopy with chemometrics could prove to be an advantageous approach for gauging the age of an injury in the forensic field.
Collapse
Affiliation(s)
- Xin He
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
| | - Cunhao Bian
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
| | - Hanting Wang
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
| | - Yongtai Zhang
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
| | - Xuan Ding
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
| | - Hongwei Li
- Technical Department of Interpol Corps of the Chongqing Public Bureau, Chongqing, China
| | - Qi Wang
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
| | - Jianbo Li
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
32
|
Xu C, Xiao X, Hu W, Zhu L, Kou H, Zhang J, Wei B, Wang H. Ultrahigh pressure field: A friendly pathway for regulating the cellular adhesion and migration capacity of collagen. Int J Biol Macromol 2024; 257:127864. [PMID: 37939762 DOI: 10.1016/j.ijbiomac.2023.127864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
Customized control of the biological response between the material matrix and cells is a crucial aspect in the development of the next generation of collagen materials. This study aims to investigate the effects of ultrahigh pressure treatment on the interaction between collagen and cells by subjecting bovine tendon collagen to different intensities of ultrahigh pressure field. The results indicate that ultrahigh pressure treatment alters the spatial folding of collagen, causing distortion of its triple helical conformation and exposing more free amino groups and hydrophobic regions. As a result, collagen's cell adhesion capability and ability to promote cell migration are significantly enhanced. Optimal cell adhesion and migration capabilities are observed in collagen samples treated at 500 MPa for 15 min. However, further increasing the intensity of the ultrahigh pressure treatment leads to severe damage to the triple-helical structure of collagen, along with re-aggregation of free amino groups and hydrophobic moieties, thereby reducing collagen's cell adhesion capability and ability to promote cell migration. Therefore, ultrahigh pressure treatment offers a promising method to effectively regulate collagen-cell adhesion and promote cell migration without the need for external components. This provides a potential means for the customized enhancement of collagen-based material interfaces.
Collapse
Affiliation(s)
- Chengzhi Xu
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Xiao Xiao
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Wenjing Hu
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Lian Zhu
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Huizhi Kou
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Juntao Zhang
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Benmei Wei
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Haibo Wang
- College of Life Science and Technology, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan, Hubei, China.
| |
Collapse
|
33
|
Kim H, Lee J, Jeong S, Lee S, Hong GP. Effect of high pressure pretreatment on the inhibition of ice nucleation and biochemical changes in pork loins during supercooling preservation. Meat Sci 2024; 208:109393. [PMID: 37979345 DOI: 10.1016/j.meatsci.2023.109393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023]
Abstract
In this study, the effect of high pressure (HP) pretreatment on the stability of pork loins during supercooling (SC) preservation was investigated, and the freshness and postmortem metabolism of pork loins preserved by SC was evaluated. Based on the differential scanning calorimetry (DSC), the peak enthalpies of 200 MPa treatment were lower than those of 50 MPa treatment (P < 0.05). For the nuclear magnetic resonance (NMR) relaxometry, extramyofibrillar water in pork loins was decreased with increasing intermyofibrillar water at >100 MPa (P < 0.05). Compared to unpressurized control all HP treatment had less α-helix structure while random coil was dominated from the Fourier transform infrared (FTIR) spectroscopy (P < 0.05). A 200 MPa was selected to estimate the relationship between HP pretreatment and stability of SC preservation of pork loins. The HP-treated pork loins showed high stability during SC preservation under the relatively low temperature algorithm. Compared to fresh control, HP pretreatment caused physicochemical changes of pork loins which did not recover even after 2 weeks of preservation. Nevertheless, HP followed by SC preservation was able to reduce property changes better than pork loins preserved by normal refrigeration. According to the analyses of transmission electron microscopy (TEM), the HP pretreatment influenced the postmortem biochemical metabolism of pork loins, however, it did not affect the freshness and quality parameters of pork loins due to the subsequently applied low preservation temperature of SC. Therefore, this study demonstrated that moderate HP pretreatment was a potential pretreatment for SC preservation of pork loins.
Collapse
Affiliation(s)
- Honggyun Kim
- Department of Food Science & Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, South Korea
| | - Jiseon Lee
- Department of Food Science & Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, South Korea
| | - Sungmin Jeong
- Department of Food Science & Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, South Korea
| | - Suyong Lee
- Department of Food Science & Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, South Korea
| | - Geun-Pyo Hong
- Department of Food Science & Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, South Korea.
| |
Collapse
|
34
|
Belloni A, Argentieri G, Orilisi G, Notarstefano V, Giorgini E, D'Addazio G, Orsini G, Caputi S, Sinjari B. New insights on collagen structural organization and spatial distribution around dental implants: a comparison between machined and laser-treated surfaces. J Transl Med 2024; 22:120. [PMID: 38297308 PMCID: PMC10829267 DOI: 10.1186/s12967-024-04906-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 01/18/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND One of the main factors for the osseointegration of dental implants is the development of an adequate soft tissue barrier, mainly composed by collagen, which protects the implant from bacterial development. The structural features of the peri-implant collagen are influenced by the implant components and, in particular, by the type of the surface. In the clinical practice, healing abutments are characterized by smooth surfaces, named machined. Recently, a new laser technique, Synthegra, has been developed to obtain a topography-controlled surface with micrometric regular pores that seems reducing the risk of peri-implantitis. Based on this background, this study aims investigating the structural organization and spatial distribution of collagen surrounding healing abutments characterized by laser-treated and machined surfaces. METHODS Gingiva portions surrounding custom-made healing abutments (HA), characterized by alternated laser-treated and machined surfaces, were collected and analyzed by combining Fourier Transform InfraRed Imaging (FTIRI) spectroscopy, a non-invasive and high-resolution bidimensional analytical technique, with histological and multivariate analyses. RESULTS Masson's trichrome staining, specific for collagen, highlighted a massive presence of collagen in all the analyzed samples, evidencing a surface-related spatial distribution. The nature of collagen, investigated by the FTIRI spectroscopy, appeared more abundant close to the laser-treated surface, with a perpendicular disposition of the bundles respect to the HA; conversely, a parallel distribution was observed around the machined surface. A different secondary structure was also found, with a higher amount of triple helices and a lower quantity of random coils in collagen close to the laser treated surfaces. CONCLUSIONS FTIRI spectroscopy demonstrates that the use of a laser treated transmucosal surface can improve the morphological organization of the peri-implant collagen, which presents a distribution more similar to that of natural teeth. TRIAL REGISTRATION This trial is registered with ClinicalTrials.gov Identifier: (Registration Number: NCT05754970). Registered 06/03/2023, retrospectively registered, https://clinicaltrials.gov/show/NCT05754970 .
Collapse
Affiliation(s)
- Alessia Belloni
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Giulio Argentieri
- Electron Microscopy Laboratory, Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Giulia Orilisi
- Department of Clinical Sciences and Stomatology, Polytechnic University of Marche, Ancona, Italy
| | - Valentina Notarstefano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Elisabetta Giorgini
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Gianmaria D'Addazio
- Electron Microscopy Laboratory, Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Giovanna Orsini
- Department of Clinical Sciences and Stomatology, Polytechnic University of Marche, Ancona, Italy.
| | - Sergio Caputi
- Electron Microscopy Laboratory, Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Bruna Sinjari
- Electron Microscopy Laboratory, Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| |
Collapse
|
35
|
Li P, Luo C, Chen X, Huang C. A novel "off-on" ratiometric fluorescent aptasensor for adenosine detection based on FRET between quantum dots and graphene oxide. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123557. [PMID: 37866265 DOI: 10.1016/j.saa.2023.123557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/30/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
A novel "off-on" ratiometric fluorescent aptasensor was established for adenosine detection based on fluorescence resonance energy transfer (FRET) between CdS QDs, DNA QDs as donor and graphene oxide (GO) as acceptor. Amino-riched DNA QDs covalently bonded to the carboxyl group on the edge of the GO, and with the absorption of the TGA-modified CdS QDs with aptamer (CdS QDs-apt) onto the GO surface via the π-π stacking interaction. The fluorescence of both CdS QDs and DNA QDs were efficiently quenched due to FRET (turn off). When adenosine was present, the specific binding of the aptamer to the target preferentially that released the CdS QDs-apt from GO. The process would inhibit the FRET which contribute to the fluorescence of CdS QDs-apt recovery again (turn on), while the fluorescence intensity of DNA QDs only slightly altered and acted as the reference signal. Thus, a novel "off-on" ratiometric fluorescent aptasensor for adenosine detection was constructed accordingly. There was a good linearity relationship between the ratio of the FL intensity (F595 nm/F464 nm) and the concentration of adenosine in the range of 20.00-180.0 nmol/L with a detection limit of 1.3 nmol/L (S/N = 3, n = 9). Importantly, the feasibility of the developed aptasensor for selective detection of adenosine in serum and urine samples with satisfactory results. The recoveries were observed to be 97.04-100.2 %.
Collapse
Affiliation(s)
- Pu Li
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Chen Luo
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Xiaoxiao Chen
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Chaobiao Huang
- Xingzhi College, Zhejiang Normal University, Lanxi 321100, China; College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
36
|
Scaggion C, Marinato M, Dal Sasso G, Nodari L, Saupe T, Aneli S, Pagani L, Scheib CL, Rigo M, Artioli G. A fresh perspective on infrared spectroscopy as a prescreening method for molecular and stable isotopes analyses on ancient human bones. Sci Rep 2024; 14:1028. [PMID: 38200208 PMCID: PMC10781948 DOI: 10.1038/s41598-024-51518-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024] Open
Abstract
Following the development of modern genome sequencing technologies, the investigation of museum osteological finds is increasingly informative and popular. Viable protocols to help preserve these collections from exceedingly invasive analyses, would allow greater access to the specimens for scientific research. The main aim of this work is to survey skeletal tissues, specifically petrous bones and roots of teeth, using infrared spectroscopy as a prescreening method to assess the bone quality for molecular analyses. This approach could overcome the major problem of identifying useful genetic material in archaeological bone collections without resorting to demanding, time consuming and expensive laboratory studies. A minimally invasive sampling of archaeological bones was developed and bone structural and compositional changes were examined, linking isotopic and genetic data to infrared spectra. The predictive model based on Infrared parameters is effective in determining the occurrence of ancient DNA (aDNA); however, the quality/quantity of aDNA cannot be determined because of the influence of environmental and local factors experienced by the examined bones during the burial period.
Collapse
Affiliation(s)
- Cinzia Scaggion
- Department of Geosciences, University of Padova, 35131, Padova, Italy.
- INSTM, National Interuniversity Consortium of Materials Science and Technology, 50121, Firenze, Italy.
| | - Maurizio Marinato
- Department of Cultural Heritage: Archaeology and History of Art, Cinema and Music, University of Padova, 35139, Padova, Italy
| | - Gregorio Dal Sasso
- Institute of Geosciences and Earth Resources, Italian National Research Council-CNR, 35131, Padova, Italy
| | - Luca Nodari
- Institute of Condensed Matter Chemistry and Technologies for Energy, Italian National Research Council-CNR, 35127, Padova, Italy
| | - Tina Saupe
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
| | - Serena Aneli
- Department of Biology, University of Padova, 35122, Padova, Italy
- Department of Public Health Sciences and Pediatrics, University of Torino, 10126, Torino, Italy
| | - Luca Pagani
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
- Department of Biology, University of Padova, 35122, Padova, Italy
| | - Christiana L Scheib
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
| | - Manuel Rigo
- Department of Geosciences, University of Padova, 35131, Padova, Italy
- Institute of Geosciences and Earth Resources, Italian National Research Council-CNR, 35131, Padova, Italy
| | - Gilberto Artioli
- Department of Geosciences, University of Padova, 35131, Padova, Italy
- INSTM, National Interuniversity Consortium of Materials Science and Technology, 50121, Firenze, Italy
| |
Collapse
|
37
|
Davantès A, Nigen M, Sanchez C, Renard D. In Situ ATR Spectroscopy Study of the Interaction of Acacia senegal Gum with Gold Nanoparticles Films at the Solid-Liquid Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:529-540. [PMID: 38105537 DOI: 10.1021/acs.langmuir.3c02769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The adsorption process of Acacia gum (A. senegal), a complex heteropolysaccharide, was followed by using a spectroscopic method to unravel the relative contribution of the protein moieties and the carbohydrate blocks on the adsorption process. In situ ATR-FTIR was used to investigate the kinetics and conformational changes associated with the adsorption of A. senegal gum on gold nanoparticle films (Au-NPs) at different pHs. The results of this thorough study highlighted the adsorption of A. senegal gum through its protein moieties, in particular, AGPs of low molecular weight and high protein content, close to the Au-NPs surface. Isotherm experiments, by gradually increasing the concentration, showed that the gum adsorption was heterogeneous and followed the Freundlich model for the amide part, while the polysaccharide part followed the Langmuir model. In addition, the hydration and structural organization of the gum layer depended on the gum concentration. A. senegal gum adsorbed irreversibly on Au-NPs whatever the pHs, but the adsorbed layer presented a different behavior depending on pH. A more aggregated and less hydrated structure was observed at acidic pH, while a very hydrated and continuous layer was detected at higher pH. The secondary structure analysis through amide III band revealed a change in the gum secondary structure at high pH with the increase in β-turn while random coil decreased.
Collapse
Affiliation(s)
- Athénaïs Davantès
- UR BIA, INRAE Pays de la Loire, 3 impasse Yvette Cauchois, La Géraudière, CS 71627, Nantes Cedex 3 F-44316, France
| | - Michaël Nigen
- UMR IATE, UM-INRAE-CIRAD-Montpellier Supagro, 2 Place Viala, Montpellier Cedex F-34060, France
| | - Christian Sanchez
- UMR IATE, UM-INRAE-CIRAD-Montpellier Supagro, 2 Place Viala, Montpellier Cedex F-34060, France
| | - Denis Renard
- UR BIA, INRAE Pays de la Loire, 3 impasse Yvette Cauchois, La Géraudière, CS 71627, Nantes Cedex 3 F-44316, France
| |
Collapse
|
38
|
Kang JH, Kim J, Lee JY, Kang D, Kim HJ, Kim K, Jeong WJ. Self-Assembled Skin-Penetrating Peptides with Controlled Supramolecular Properties for Enhanced Transdermal Delivery. Biomacromolecules 2024; 25:436-443. [PMID: 38146913 DOI: 10.1021/acs.biomac.3c01065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The use of nanocarriers decorated with penetration-enhancing agents (PEAs) is considered to be a promising approach for efficient transdermal delivery. In this study, we developed short amphiphilic skin-penetrating peptides (17 amino acids) that functioned not only as PEAs but also as building blocks of nanocarriers without the incorporation of additional macromolecules for self-assembly and guest molecule encapsulation. Interestingly, varying only two amino acids in the hydrophobic moiety of the peptides resulted in significantly different self-assembly behavior, thermal stability, protease resistance, and skin-penetration efficiency in a human skin model. The analysis of the peptide secondary structure revealed that such characteristic changes arose due to the sequence variation-mediated conformational change in the hydrophobic block. These findings hold significant promise for the development of simple and effective delivery systems exhibiting controllable supramolecular properties.
Collapse
Affiliation(s)
- Jeon Hyeong Kang
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Jieun Kim
- Department of Chemical and Biochemical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul 22012, Republic of Korea
| | - Jae Yun Lee
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - DongHyun Kang
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Hyun Jin Kim
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Kyobum Kim
- Department of Chemical and Biochemical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul 22012, Republic of Korea
| | - Woo-Jin Jeong
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
39
|
Guo L, Wang X, Ren Y, Zhang X, Li Q, Zhang C, Qian JY. Outcomes of structure, function and flavor of pea protein isolate treated by AC, DC and pulsed electric fields. Food Res Int 2024; 176:113817. [PMID: 38163685 DOI: 10.1016/j.foodres.2023.113817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/26/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
Based on the standpoint of low carbon footprint processing and less denaturation of plant protein ingredient, the effects of pulsed electric field (PEF), direct current electric field (DCEF), and alternating current electric field (ACEF) treatments on the structure, functional properties and volatile compounds of pea protein isolate were investigated. The results showed that the electric fields (EFs) caused both blueshifts (max. ∼8 cm-1) and redshifts (max. ∼7 cm-1) in the IR spectra and blueshifts (max. ∼5 nm) in the UV spectra. PEF caused an increase of emulsifying activity index and a decrease of emulsion stability index to DCEF and ACEF. A total of 27 volatile compounds were identified and the EFs could cause emerging of new volatiles and disappearing of inherent volatiles potentially to modify the flavor of products. Alterations were significantly observed among the types of EF, but seldomly among the operating parameter levels in the same EF.
Collapse
Affiliation(s)
- Lunan Guo
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, China
| | - Xijing Wang
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, China
| | - Yiping Ren
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, China
| | - Xiunan Zhang
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, China
| | - Qian Li
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, China
| | - Chen Zhang
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, China
| | - Jian-Ya Qian
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, China.
| |
Collapse
|
40
|
İnan-Çınkır N, Ağçam E, Altay F, Akyıldız A. Emulsion electrospinning of zein nanofibers with carotenoid microemulsion: Optimization, characterization and fortification. Food Chem 2024; 430:137005. [PMID: 37527575 DOI: 10.1016/j.foodchem.2023.137005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/13/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023]
Abstract
In this study, carotenoid microemulsion was encapsulated in zein nanofibers via emulsion electrospinning. Optimization study was applied to determine optimum parameters by response surface methodology. The voltage, flow rate and distance as optimum conditions were determined as 23 kV, 1.7 mL/h and 12.75 cm, respectively. Lycopene, β-carotene, encapsulation efficiency, encapsulation yield and zeta potential of zein nanofibers in optimum conditions were estimated as 4.054 mg/kg, 0.649 mg/kg, 77.78%, 41.76% and -29.73 mV, respectively. The addition of microemulsion affected nanofibers diameter and morphologies. Diffusion coefficient of zein nanofibers decreased with addition of microemulsion under optimum conditions. The electrospinning improved thermal stability of microemulsion. The carotenoid microemulsion could be entrapped into the zein fibers according to ATR-FTIR spectrum. Model foods were fortificated with zein nanofibers. The addition of nanofibers changed color of the foods during the storage. Carotenoid compounds were more stable in nanofibers followed by olive oil, milk and water.
Collapse
Affiliation(s)
- Nuray İnan-Çınkır
- Department of Food Technology, Faculty of Kadirli Applied Science, Osmaniye Korkut Ata University, Osmaniye, Turkey.
| | - Erdal Ağçam
- Department of Food Engineering, Faculty of Agriculture, Cukurova University, Adana, Turkey
| | - Filiz Altay
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Asiye Akyıldız
- Department of Food Engineering, Faculty of Agriculture, Cukurova University, Adana, Turkey
| |
Collapse
|
41
|
Morlotti M, Forlani F, Saccani I, Sansonetti A. Evaluation of Enzyme Agarose Gels for Cleaning Complex Substrates in Cultural Heritage. Gels 2023; 10:14. [PMID: 38247737 PMCID: PMC10815848 DOI: 10.3390/gels10010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
This study starts from the need to remove a mix of proteins, oils and natural resin, called beverone in the Italian literature, from the back of canvas paintings. The aim of this study is to develop and evaluate the effectiveness of two different agarose/enzyme gels containing, respectively, a trypsin derived from porcine pancreas and a lipase from Candida rugosa, both in an aqueous solution of deoxycholic acid-triethanolamine soap. Enzymes were selected because of their action on peptide and ester bonds, effectiveness at maintaining a weak alkaline pH and low cost. Several series of model samples, resulting from a combination of rabbit skin glue, linseed oil and colophony, were prepared to test the enzyme gels with two different values for each of the following variables: agarose concentration, application modes and time of application. Measurements of weight loss after the gel application and Fourier transform infrared analysis were conducted to underline the hydrolysis occurring due to the enzyme gels and their effectiveness. Results confirmed what has been found in the literature and improved our knowledge about the action of agarose enzyme gels on complex substrates (hydrophilic/hydrophobic). The gels applied fluidly, with a longer contact time and a lower agarose concentration, are more effective. Furthermore, trypsin gels provided better results on substrates with oil and glue, while lipase gels turned out to be more effective on substrates made of a mix of oil, glue and colophony.
Collapse
Affiliation(s)
- Mattia Morlotti
- Brera Academy of Fine Arts/Freelance Conservator of Cultural Heritage, 20100 Milan, Italy;
| | - Fabio Forlani
- Department of Food Environmental and Nutritional Science (DeFENS), University of Milan, 20133 Milan, Italy;
| | - Ilaria Saccani
- CESMAR7—Centro per lo Studio dei Materiali per il Restauro, 42121 Reggio Emilia, Italy;
| | - Antonio Sansonetti
- Institute for Heritage Science, National Research Council, ISPC—CNR Milan Unit, 20154 Milan, Italy
| |
Collapse
|
42
|
Liang HF, Zou YP, Hu AN, Wang B, Li J, Huang L, Chen WS, Su DH, Xiao L, Xiao Y, Ma YQ, Li XL, Jiang LB, Dong J. Biomimetic Structural Protein Based Magnetic Responsive Scaffold for Enhancing Bone Regeneration by Physical Stimulation on Intracellular Calcium Homeostasis. Adv Healthc Mater 2023; 12:e2301724. [PMID: 37767893 DOI: 10.1002/adhm.202301724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/22/2023] [Indexed: 09/29/2023]
Abstract
The bone matrix has distinct architecture and biochemistry which present a barrier to synthesizing bone-mimetic regenerative scaffolds. To mimic the natural structures and components of bone, biomimetic structural decellularized extracellular matrix (ECM)/regenerated silk fibroin (RSF) scaffolds incorporated with magnetic nanoparticles (MNP) are prepared using a facile synthetic methodology. The ECM/RSF/MNP scaffold is a hierarchically organized and interconnected porous structure with silk fibroin twined on the collagen nanofibers. The scaffold demonstrates saturation magnetization due to the presence of MNP, along with good cytocompatibility. Moreover, the β-sheet crystalline domain of RSF and the chelated MNP could mimic the deposition of hydroxyapatite and enhance compressive modulus of the scaffold by ≈20%. The results indicate that an external static magnetic field (SMF) with a magnetic responsive scaffold effectively promotes cell migration, osteogenic differentiation, neogenesis of endotheliocytes in vitro, and new bone formation in a critical-size femur defect rat model. RNA sequencing reveals that the molecular mechanisms underlying this osteogenic effect involve calsequestrin-2-mediated Ca2+ release from the endoplasmic reticulum to activate Ca2+ /calmodulin/calmodulin-dependent kinase II signaling axis. Collectively, bionic magnetic scaffolds with SMF stimulation provide a potent strategy for bone regeneration through internal structural cues, biochemical composition, and external physical stimulation on intracellular Ca2+ homeostasis.
Collapse
Affiliation(s)
- Hai-Feng Liang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Orthopaedic Surgery, Shanghai Geriatric Medical Center, Shanghai, 201104, China
| | - Yan-Pei Zou
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - An-Nan Hu
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ben Wang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Juan Li
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lei Huang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wei-Sin Chen
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Di-Han Su
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lan Xiao
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, 4059, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, 4059, Australia
| | - Yin Xiao
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, 4059, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, 4059, Australia
- School of Medicine and Dentistry & Menzies Health Institute Queensland, Griffith University, Gold Coast, 4222, Australia
| | - Yi-Qun Ma
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xi-Lei Li
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Li-Bo Jiang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jian Dong
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Orthopaedic Surgery, Shanghai Geriatric Medical Center, Shanghai, 201104, China
- Department of Orthopaedic Surgery, Zhongshan Hospital Wusong Branch, Fudan University, Shanghai, 200940, China
| |
Collapse
|
43
|
Seredin P, Goloshchapov D, Kashkarov V, Lukin A, Peshkov Y, Ippolitov I, Ippolitov Y, Litvinova T, Vongsvivut J, Chae B, Freitas RO. Changes in Dental Biofilm Proteins' Secondary Structure in Groups of People with Different Cariogenic Situations in the Oral Cavity and Using Medications by Means of Synchrotron FTIR-Microspectroscopy. Int J Mol Sci 2023; 24:15324. [PMID: 37895003 PMCID: PMC10607285 DOI: 10.3390/ijms242015324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
This work unveils the idea that the cariogenic status of the oral cavity (the presence of active caries lesions) can be predicted via a lineshape analysis of the infrared spectral signatures of the secondary structure of proteins in dental biofilms. These spectral signatures that work as natural markers also show strong sensitivity to the application in patients of a so-called modulator-a medicinal agent (a pelleted mineral complex with calcium glycerophosphate). For the first time, according to our knowledge, in terms of deconvolution of the complete spectral profile of the amide I and amide II bands, significant intra- and intergroup differences were determined in the secondary structure of proteins in the dental biofilm of patients with a healthy oral cavity and with a carious pathology. This allowed to conduct a mathematical assessment of the spectral shifts in proteins' secondary structure in connection with the cariogenic situation in the oral cavity and with an external modulation. It was shown that only for the component parallel β-strands in the amide profile of the biofilm, a statistically significant (p < 0.05) change in its percentage weight (composition) was registered in a cariogenic situation (presence of active caries lesions). Note that no significant differences were detected in a normal situation (control) and in the presence of a carious pathology before and after the application of the modulator. The change in the frequency and percentage weight of parallel β-strands in the spectra of dental biofilms proved to be the result of the presence of cariogenic mutans streptococci in the film as well as of the products of their metabolism-glucan polymers. We foresee that the results presented here can inherently provide the basis for the infrared spectral diagnosis of changes (shifts) in the oral microbiome driven by the development of the carious process in the oral cavity as well as for the choice of optimal therapeutic treatments of caries based on microbiome-directed prevention measures.
Collapse
Affiliation(s)
- Pavel Seredin
- Department of Solid-State Physics and Nanostructures, Voronezh State University, 394018 Voronezh, Russia
| | - Dmitry Goloshchapov
- Department of Solid-State Physics and Nanostructures, Voronezh State University, 394018 Voronezh, Russia
| | - Vladimir Kashkarov
- Department of Solid-State Physics and Nanostructures, Voronezh State University, 394018 Voronezh, Russia
| | - Anatoly Lukin
- Department of Solid-State Physics and Nanostructures, Voronezh State University, 394018 Voronezh, Russia
| | - Yaroslav Peshkov
- Department of Solid-State Physics and Nanostructures, Voronezh State University, 394018 Voronezh, Russia
| | - Ivan Ippolitov
- Department of Pediatric Dentistry with Orthodontia, Voronezh State Medical University, 394006 Voronezh, Russia
| | - Yuri Ippolitov
- Department of Pediatric Dentistry with Orthodontia, Voronezh State Medical University, 394006 Voronezh, Russia
| | - Tatiana Litvinova
- Computational Semasiology Laboratory, Voronezh State Pedagogical University, 394043 Voronezh, Russia
| | - Jitraporn Vongsvivut
- Australian Synchrotron (Synchrotron Light Source Australia Pty LTD), Clayton, VIC 3168, Australia;
| | - Boknam Chae
- Pohang Accelerator Laboratory, Beamline Research Division, Pohang 37673, Republic of Korea
| | - Raul O. Freitas
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, Brazil
| |
Collapse
|
44
|
Pei Y, Li W, Wang L, Cui J, Li L, Ling S, Tang K, Tian H. Mesostructured Fibrils Exfoliated in Deep Eutectic Solvent as Building Blocks of Collagen Membranes. Polymers (Basel) 2023; 15:4008. [PMID: 37836057 PMCID: PMC10574992 DOI: 10.3390/polym15194008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
The mesoscale components of collagen (nanofibrils, fibrils, and fiber bundles) are well organized in native tissues, resulting in superior properties and diverse functions. In this paper, we present a simple and controlled liquid exfoliation method to directly extract medium-sized collagen fibers ranging from 102 to 159 nm in diameter from bovine Achilles tendon using urea/hydrochloric acid and a deep eutectic solvent (DES). In situ observations under polarized light microscopy (POM) and molecular dynamics simulations revealed the effects of urea and GuHCl on tendon collagen. FTIR study results confirmed that these fibrils retained the typical structural characteristics of type I collagen. These shed collagen fibrils were then used as building blocks to create independent collagen membranes with good and stable mechanical properties, excellent barrier properties, and cell compatibility. A new method for collagen processing is provided in this work by using DES-assisted liquid exfoliation for constructing robust collagen membranes with mesoscale collagen fibrils as building blocks.
Collapse
Affiliation(s)
- Ying Pei
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi’an 710021, China;
- Key Laboratory of Processing and Quality Evaluation Technology of Green Plastics of China National Light Industry Council, Beijing Technology and Business University, Beijing 100048, China
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (W.L.); (L.W.); (K.T.)
| | - Wei Li
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (W.L.); (L.W.); (K.T.)
| | - Lu Wang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (W.L.); (L.W.); (K.T.)
| | - Jing Cui
- School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, China;
| | - Lu Li
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi’an 710021, China;
| | - Shengjie Ling
- School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, China;
| | - Keyong Tang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (W.L.); (L.W.); (K.T.)
| | - Huafeng Tian
- Key Laboratory of Processing and Quality Evaluation Technology of Green Plastics of China National Light Industry Council, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
45
|
Leskovar T, Inkret J, Zupanič Pajnič I, Jerman I. Comparison of DNA preservation and ATR-FTIR spectroscopy indices of cortical and trabecular bone of metacarpals and metatarsals. Sci Rep 2023; 13:15498. [PMID: 37726341 PMCID: PMC10509243 DOI: 10.1038/s41598-023-41259-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023] Open
Abstract
Shape, size, composition, and function of the bones in the human body vary on the macro, micro and nanoscale. This can influence changes caused by taphonomy and post-mortem preservation, including DNA. Highly mineralised compact bone is less susceptible to taphonomic factors than porous trabecular bone. Some studies imply that DNA can be better preserved in trabecular bone, due to remnants of the soft tissue or bacteria better digesting organic matter while not digesting DNA. The aim of this study was to understand the differences between compact (diaphyses) and trabecular (epiphyses) bone on a molecular level and thus the reasons for the better preservation of the DNA in the trabecular bone. The powder obtained from epiphyses and diaphyses of metacarpals and metatarsals was analysed using ATR-FTIR spectroscopy and compared. Samples with poorest DNA preservation originated from diaphyses, predominantly of metatarsals. They were characterised by higher concentrations of phosphates and crystallinity, while lower collagen quality in comparison to samples with the best DNA preservation. Epiphyses presented higher concentrations of better-preserved collagen while diaphyses had higher concentrations of carbonates and phosphates and higher crystallinity. Due to better-preserved collagen in the epiphyses, the soft tissue remnants hypothesis seems more likely than the bacteria hypothesis.
Collapse
Affiliation(s)
- Tamara Leskovar
- Centre for Interdisciplinary Research in Archaeology, Department of Archaeology, Faculty of Arts, University of Ljubljana, Zavetiška 5, 1000, Ljubljana, Slovenia
| | - Jezerka Inkret
- Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia
| | - Irena Zupanič Pajnič
- Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia.
| | - Ivan Jerman
- National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| |
Collapse
|
46
|
Zingaro F, Gianoncelli A, Ceccone G, Birarda G, Cassano D, La Spina R, Agostinis C, Bonanni V, Ricci G, Pascolo L. Morphological and lipid metabolism alterations in macrophages exposed to model environmental nanoplastics traced by high-resolution synchrotron techniques. Front Immunol 2023; 14:1247747. [PMID: 37744340 PMCID: PMC10515218 DOI: 10.3389/fimmu.2023.1247747] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
The release of nanoplastics (NPs) in the environment is a significant health concern for long-term exposed humans. Although their usage has certainly revolutionized several application fields, at nanometer size, NPs can easily interact at the cellular level, resulting in potential harmful effects. Micro/Nanoplastics (M/NPs) have a demonstrated impact on mammalian endocrine components, such as the thyroid, adrenal gland, testes, and ovaries, while more investigations on prenatal and postnatal exposure are urgently required. The number of literature studies on the NPs' presence in biological samples is increasing. However, only a few offer a close study on the model environmental NP-immune system interaction exploited by advanced microscopy techniques. The present study highlights substantial morphological and lipid metabolism alterations in human M1 macrophages exposed to labeled polypropylene and polyvinyl chloride nanoparticles (PP and PVC NPs) (20 μg/ml). The results are interpreted by advanced microscopy techniques combined with standard laboratory tests and fluorescence microscopy. We report the accurate detection of polymeric nanoparticles doped with cadmium selenide quantum dots (CdSe-QDs NPs) by following the Se (L line) X-ray fluorescence emission peak at higher sub-cellular resolution, compared to the supportive light fluorescence microscopy. In addition, scanning transmission X-ray microscopy (STXM) imaging successfully revealed morphological changes in NP-exposed macrophages, providing input for Fourier transform infrared (FTIR) spectroscopy analyses, which underlined the chemical modifications in macromolecular components, specifically in lipid response. The present evidence was confirmed by quantifying the lipid droplet (LD) contents in PP and PVC NPs-exposed macrophages (0-100 μg/ml) by Oil Red O staining. Hence, even at experimental NPs' concentrations and incubation time, they do not significantly affect cell viability; they cause an evident lipid metabolism impairment, a hallmark of phagocytosis and oxidative stress.
Collapse
Affiliation(s)
| | | | - Giacomo Ceccone
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | | | - Rita La Spina
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Chiara Agostinis
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | | | - Giuseppe Ricci
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Lorella Pascolo
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| |
Collapse
|
47
|
Nisar S, Hass V, Wang R, Walker MP, Wang Y. Effect of Different Crosslinkers on Denatured Dentin Collagen's Biostability, MMP Inhibition and Mechanical Properties. Polymers (Basel) 2023; 15:3683. [PMID: 37765538 PMCID: PMC10537969 DOI: 10.3390/polym15183683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
OBJECTIVE Sound, natural dentin collagen can be stabilized against enzymatic degradation through exogenous crosslinking treatment for durable bonding; however, the effect on denatured dentin (DD) collagen is unknown. Hence, the ability of different crosslinkers to enhance/restore the properties of DD collagen was assessed. METHODS Demineralized natural and DD collagen films (7 mm × 7 mm × 7 µm) and beams (0.8 mm × 0.8 mm × 7 mm) were prepared. DD collagen was experimentally produced by heat or acid exposure, which was then assessed by various techniques. All specimens were then treated with 1 wt% of chemical crosslinker 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/n-hydroxysuccinimide (EDC/NHS) and two structurally different flavonoids-theaflavins (TF) from black tea and type-A proanthocyanidins from cranberry juice (CR) for either 30 s or 1 h. The controls were untreated. Dentin films were assessed for chemical interaction and cross-linking effect by FTIR, biostability against exogenous collagenase by weight loss (WL) and hydroxyproline release (HYP), and endogenous matrix metalloproteinases (MMPs) activity by confocal laser microscopy. Dentin beams were evaluated for tensile properties. Data were analyzed using ANOVA and Tukey's test (α = 0.05). RESULTS Compared with natural collagen, DD collagen showed pronounced structural changes, altered biostability and decreased mechanical properties, which were then improved to various degrees that were dependent on the crosslinkers used, with EDC/NHS being the least effective. Surprisingly, the well-known MMP inhibitor EDC/NHS showed negligible effect on or even increased MMP activity in DD collagen. As compared with control, cross-linking induced by TF and CR significantly increased collagen biostability (reduced WL and HYP release, p < 0.05), MMP inhibition (p < 0.001) and mechanical properties (p < 0.05), regardless of denaturation. CONCLUSIONS DD collagen cannot or can only minimally be stabilized via EDC/NHS crosslinking; however, the challenging substrate of DD collagen can be enhanced or restored using the promising flavonoids TF and CR.
Collapse
Affiliation(s)
| | | | | | | | - Yong Wang
- School of Dentistry, University of Missouri—Kansas City, 650 E 25th St., Kansas City, MO 64108, USA
| |
Collapse
|
48
|
Synytsya A, Janstová D, Šmidová M, Synytsya A, Petrtýl J. Evaluation of IR and Raman spectroscopic markers of human collagens: Insides for indicating colorectal carcinogenesis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 296:122664. [PMID: 36996519 DOI: 10.1016/j.saa.2023.122664] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/26/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Vibrational spectroscopic methods are widely used in the molecular diagnostics of carcinogenesis. Collagen, a component of connective tissue, plays a special role as a biochemical marker of pathological changes in tissues. The vibrational bands of collagens are very promising to distinguish between normal colon tissue, benign and malignant colon polyps. Differences in these bands indicate changes in the amount, structure, conformation and the ratio between the individual structural forms (subtypes) of this protein. The screening of specific collagen markers of colorectal carcinogenesis was carried out based on the FTIR and Raman (λex 785 nm) spectra of colon tissue samples and purified human collagens. It was found that individual types of human collagens showed significant differences in their vibrational spectra, and specific spectral markers were found for them. These collagen bands were assigned to specific vibrations in the polypeptide backbone, amino acid side chains and carbohydrate moieties. The corresponding spectral regions for colon tissues and colon polyps were investigated for the contribution of collagen vibrations. Mentioned spectral differences in collagen spectroscopic markers could be of interest for early ex vivo diagnosis of colorectal carcinoma if combine vibrational spectroscopy and colonoscopy.
Collapse
Affiliation(s)
- Alla Synytsya
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Daniela Janstová
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Miroslava Šmidová
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Andriy Synytsya
- Department of Carbohydrates and Cereals, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Jaromír Petrtýl
- 4th Internal Clinic-Gastroenterology and Hepatology, 1(st) Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, U Nemocnice 2, 128 00 Prague 2, Czech Republic
| |
Collapse
|
49
|
Castellano M, Dodero A, Scarfi S, Mirata S, Pozzolini M, Tassara E, Sionkowska A, Adamiak K, Alloisio M, Vicini S. Chitosan-Collagen Electrospun Nanofibers Loaded with Curcumin as Wound-Healing Patches. Polymers (Basel) 2023; 15:2931. [PMID: 37447576 DOI: 10.3390/polym15132931] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Composite chitosan-collagen nanofibrous mats embedded with curcumin were prepared via a single-step electrospinning procedure and explored as wound-healing patches with superior biological activity. A mild crosslinking protocol consisting of a short exposure to ammonia vapor and UV radiation was developed to ensure proper stability in physiological-like conditions without affecting the intrinsic biocompatibility of chitosan and collagen. The fabricated composite patches displayed a highly porous, homogeneous nanostructure consisting of fibers with an average diameter of 200 nm, thermal stability up to 200 °C, mechanical features able to ensure protection and support to the new tissues, and water-related properties in the ideal range to allow exudate removal and gas exchange. The release kinetic studies carried out in a simulated physiological environment demonstrated that curcumin release was sustained for 72 h when the mats are crosslinked hence providing prolonged bioactivity reflected by the displayed antioxidant properties. Remarkably, combining chitosan and collagen not only ensures prolonged stability and optimal physical-chemical properties but also allows for better-promoting cell adhesion and proliferation and enhanced anti-bacteriostatic capabilities with the addition of curcumin, owing to its beneficial anti-inflammatory effect, ameliorating the attachment and survival/proliferation rates of keratinocytes and fibroblasts to the fabricated patches.
Collapse
Affiliation(s)
- Maila Castellano
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy
| | - Andrea Dodero
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Sonia Scarfi
- Department of Earth, Environmental and Life Sciences, University of Genova, 16132 Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| | - Serena Mirata
- Department of Earth, Environmental and Life Sciences, University of Genova, 16132 Genoa, Italy
| | - Marina Pozzolini
- Department of Earth, Environmental and Life Sciences, University of Genova, 16132 Genoa, Italy
| | - Eleonora Tassara
- Department of Earth, Environmental and Life Sciences, University of Genova, 16132 Genoa, Italy
| | - Alina Sionkowska
- Department of Chemistry of Biomaterials and Cosmetics, Nicolaus Copernicus University, 87100 Toruń, Poland
| | - Katarzyna Adamiak
- Department of Chemistry of Biomaterials and Cosmetics, Nicolaus Copernicus University, 87100 Toruń, Poland
| | - Marina Alloisio
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy
| | - Silvia Vicini
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy
| |
Collapse
|
50
|
Zhang Y, Huang M, Shao X, Zhang F, Li Z, Bai Y, Xu X, Wang P, Zhao T. Insights into Intramuscular Connective Tissue Associated with Wooden Breast Myopathy in Fast-Growing Broiler Chickens. Foods 2023; 12:2375. [PMID: 37372588 DOI: 10.3390/foods12122375] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Wooden breast myopathy (WBM) is a meat abnormality affecting pectoralis majors (PMs) of fast-growing broiler chickens. WBM-affected PMs exhibited varied meat qualities with increasing WBM severity. Normal PMs (NOR), mild WBM-affected PMs (MIL), moderate WBM-affected PMs (MOD), and severe WBM-affected PMs (SEV) were selected as raw materials. The structure and organization of connective tissue and fibrillar collagen were investigated through immersing with sodium hydroxide solution, Masson trichrome staining, and using an electron microscope. The mechanical strength of intramuscular connective tissue was analyzed via the shear force of samples treated with sodium hydroxide solution. The thermal property and secondary structure of connective tissue were analyzed by differential scanning calorimetry and Fourier transform infrared spectroscopy. The obtained connective tissue was dissolved in a sodium hydroxide solution for the evaluation of the physicochemical properties of proteins, including particle size, molecular weight, surface hydrophobicity, and intrinsic fluorescence. In particular, the particle size was measured using a zeta potential instrument. The molecular weight was analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The surface hydrophobicity and intrinsic fluorescence were measured by spectroscopy technology. Histologically, macrophage infiltration, myodegeneration and necrosis, regeneration, fibrous connective tissue, and thickened perimysial connective tissue were observed in WBM-affected PMs, especially SEV with fibrosis, including blood vessels. Compared with NOR, WBM led to increased average diameter of the collagen fibrils in perimysial (36.61 nm of NOR to 69.73 nm of SEV) and endomysial (34.19 nm of NOR to 56.93 nm of SEV) layers. A significant increase (p < 0.05) was observed in the mechanical strength (2.05 N to 5.55 N) of fresh PMs and the thermal transition temperature (onset temperature (TO), 61.53 °C to 67.50 °C; maximum transition temperature (TM), 66.46 °C to 70.18 °C; termination temperature (TE), 77.20 °C to 80.88 °C) of connective tissue from NOR to SEV. Cooking decreased the mechanical strength, and MOD samples showed the highest mechanical strength (1.24 N, p < 0.05), followed by SEV (0.96 N), MIL (0.93 N), and NOR (0.72 N). For proteins in connective tissue, random coil (19.64% to 29.61%, p < 0.0001), particle size (p < 0.05), and surface hydrophobicity (p < 0.05) increased with the decrease in the α-helix (14.61% to 11.54%, p < 0.0001), β-sheet (45.71% to 32.80%, p < 0.0001), and intrinsic fluorescence of proteins from NOR to SEV. The molecular weights of intramuscular connective tissue proteins were in the ranges of >270 kDa, 180-270 kDa, 110-180 kDa, 95-100 kDa, and <15 kDa. Taken together, WBM resulted in thickened organization, tightly packed collagen fibrils, increased mechanical strength and thermal temperature, and increased particle size, surface hydrophobicity, and intrinsic fluorescence of proteins in connective tissue, as the WBM severity increased.
Collapse
Affiliation(s)
- Yulong Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Synergetic Innovation Center of Meat Production and Processing, Nanjing 210095, China
- National Center of Meat Quality and Safety Control, Nanjing 210095, China
| | - Mingyuan Huang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Synergetic Innovation Center of Meat Production and Processing, Nanjing 210095, China
- National Center of Meat Quality and Safety Control, Nanjing 210095, China
| | - Xuefei Shao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Synergetic Innovation Center of Meat Production and Processing, Nanjing 210095, China
- National Center of Meat Quality and Safety Control, Nanjing 210095, China
| | - Feiyu Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Synergetic Innovation Center of Meat Production and Processing, Nanjing 210095, China
- National Center of Meat Quality and Safety Control, Nanjing 210095, China
| | - Zhen Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Synergetic Innovation Center of Meat Production and Processing, Nanjing 210095, China
- National Center of Meat Quality and Safety Control, Nanjing 210095, China
| | - Yun Bai
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Synergetic Innovation Center of Meat Production and Processing, Nanjing 210095, China
- National Center of Meat Quality and Safety Control, Nanjing 210095, China
| | - Xinglian Xu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Synergetic Innovation Center of Meat Production and Processing, Nanjing 210095, China
- National Center of Meat Quality and Safety Control, Nanjing 210095, China
| | - Peng Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Synergetic Innovation Center of Meat Production and Processing, Nanjing 210095, China
- National Center of Meat Quality and Safety Control, Nanjing 210095, China
| | - Tinghui Zhao
- Ninglang Animal Husbandry Work Instructing Station, Lijiang 674301, China
| |
Collapse
|