1
|
Pang H, Liu Y, Qiang Z, He X, Sun Q, Wang H, Wu L, Shu K, Chang P. Activated effect of chondroitin sulfate on α-glucosidase: An in vitro and in silico approach. Int J Biol Macromol 2025; 308:142664. [PMID: 40164266 DOI: 10.1016/j.ijbiomac.2025.142664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/08/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
Chondroitin sulfate (CS), a glycosaminoglycan (GAG), plays a pivotal role in various physiological functions and is extensively utilized in medical and clinical applications. This study aimed to explore the enhancing effects and underlying mechanisms of three commonly encountered sulfated glycosaminoglycans CS-A, CS-C and CS-D on α-glucosidase activity. In vitro enzyme kinetic studies demonstrated that all three types of CS promoted α-glucosidase activity, with CS-D exhibiting the most pronounced effect, reaching 124.7 %. Fluorescence and circular dichroism (CD) spectroscopy, along with molecular docking experiments, revealed that CSs spontaneously interacted with the enzyme's active site, forming hydrogen bonds with Arg600 and His674. Additionally, hydrophobic interactions with Trp376 and Trp481 further strengthened these hydrogen bonds. These interactions increased the flexibility of the α-glucosidase polypeptide backbone, leading to greater solvent exposure of Trp residues and alterations in the enzyme's secondary structure composition. Furthermore, trajectory analysis from kinetic simulations indicated that activation of the α-glucosidase active site induced an inward folding and contraction of the region, thereby enlarging the internal cavity and enhancing its hydrophobic nature. This structural reconfiguration not only provided additional space for substrate hydrolysis but also minimized interference from water molecules, collectively contributing to an overall enhancement of α-glucosidase hydrolytic activity. In conclusion, this study identifies CS as an α-glucosidase activator and elucidates its interaction mechanisms through both in vitro and in silico approaches, highlighting its potential applications in the food industry.
Collapse
Affiliation(s)
- Huimin Pang
- Chongqing Key Laboratory of Big Data for Bio-Intelligence, School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
| | - Yuhang Liu
- Chongqing Key Laboratory of Big Data for Bio-Intelligence, School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Zhe Qiang
- Department of Pharmacology and Toxicology, Sichuan-Chongqing Joint Key Laboratory of New Chinese Medicine Creation Laboratory, Chongqing Academy of Chinese Materia Medica, Chongqing 400061, China
| | - Xiaohong He
- Chongqing Key Laboratory of Big Data for Bio-Intelligence, School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Quan Sun
- Chongqing Key Laboratory of Big Data for Bio-Intelligence, School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Haonan Wang
- Chongqing Key Laboratory of Big Data for Bio-Intelligence, School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Linfeng Wu
- Chongqing Key Laboratory of Big Data for Bio-Intelligence, School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Kunxian Shu
- Chongqing Key Laboratory of Big Data for Bio-Intelligence, School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
| | - Pingan Chang
- Chongqing Key Laboratory of Big Data for Bio-Intelligence, School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
| |
Collapse
|
2
|
Cao X, Li S, Pu C, Deng W, Wang P, An Y. Highly selective peptide-based fluorescent probe with aggregation induced emission (AIE) for detection of chondroitin sulfate and its application in living cells and zebrafish imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 336:126034. [PMID: 40086139 DOI: 10.1016/j.saa.2025.126034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/15/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Chondroitin sulfate (CS), as a kind of acid mucosaccharide with natural activity, has shown various physiological activities in human body due to its advantages of high biocompatibility, good degradability and little side effects. Herein, a novel and simple peptide probe (TPE-ASRH) based on tetraphenylethene (TPE) and tetrapeptide (Ala-Ser-Arg-His-NH2) was designed and synthesized. TPE-ASRH displayed remarkable aggregation induced emission (AIE) characteristic in DMSO/water binary mixture. Based on electrostatic attraction, TPE-ASRH displayed highly selective and sensitive detection to chondroitin sulfate with large Stokes shift (156 nm), and the limit of detection (LOD) for chondroitin sulfate was calculated to be 0.11 nM based on 3σ/k. In addition, the colour change of TPE-ASRH was observed significantly from midnightblue to steelblue after adding chondroitin sulfate using naked eyes under 365 nm UV irradiation. Meanwhile, TPE-ASRH was able to achieve a rapid response to chondroitin sulfate (less than 30 s) with a pH response range of 3-12, which indicated that TPE-ASRH can detect chondroitin sulfate rapidly under physiological conditions. The response mechanism of TPE-ASRH to chondroitin sulfate was demonstrated using Zeta particle size and potential, UV-vis titration spectroscopy, FTIR spectra and CD spectroscopy. Most importantly, TPE-ASRH revealed the considerably low cytotoxic effects and good biological permeability, and was successfully applied to image chondroitin sulfate in living cells and zebrafish.
Collapse
Affiliation(s)
- Xinlin Cao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Shiyang Li
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Chunmei Pu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Weiliang Deng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Peng Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China; Sichuan Engineering Research Center for Molecular Targeted Diagnostic & Therapeutic Drugs, Department of Chemistry, Xihua University, Chengdu 610039, PR China.
| | - Yong An
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730030, PR China.
| |
Collapse
|
3
|
Liu Y, Zhou S, Qiang Z, Wu S, Zhang C, Sun Q, He X, Chang P, Pang H. The enhancement mechanisms of chondroitin sulfate on α-amylase activity: Exploring the interaction using in vitro and in silico studies. Food Chem 2025; 466:142230. [PMID: 39612851 DOI: 10.1016/j.foodchem.2024.142230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/15/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024]
Abstract
Glycosaminoglycans (GAG) are bioactive polysaccharide rich in -SO3- and -COO- groups, also known as acidic mucopolysaccharides. In this study, the feasibility of three structurally distinct forms of chondroitin sulfate (CS-A, CS-C, and CS-D) from the GAG family was explored as a potential strategy to enhance industrial α-amylase activity. All three CSs were found to increase α-amylase activity to varying degrees, with CS-D showing the most significant increase, exceeding 78 %. Furthermore, fluorescence quenching experiments indicated that the interaction between CS and α-amylase is primarily driven by hydrophobic interactions. In silico, molecular docking revealed that the sulfate groups of all three CSs form hydrogen bonds with α-amylase, with CS-D exhibiting the lowest binding energy due to its two sulfate groups. Kinetic simulations further suggested that binding to CS increases the flexibility of key active site residues (Asp197, Glu233, and Asp300), modifies the secondary structure, and enlarges the substrate-binding pocket, thereby promoting α-amylase's hydrolytic activity. Thus, this work revealed CS as an α-amylase activator and further elucidated its interaction mechanism using in vitro and in silico studies, which may be beneficial to apply CS in pharmaceutical or food industry.
Collapse
Affiliation(s)
- Yuhang Liu
- Chongqing Key Laboratory of Big Data for Bio-Intelligence, School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Shuangyan Zhou
- Chongqing Key Laboratory of Big Data for Bio-Intelligence, School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Zhe Qiang
- Department of Pharmacology and Toxicology, Sichuan-Chongqing Joint Key Laboratory of New Chinese Medicine Creation Laboratory, Chongqing Academy of Chinese Materia Medica, Chongqing 400061, China
| | - Shuyi Wu
- Department of Pharmacology and Toxicology, Sichuan-Chongqing Joint Key Laboratory of New Chinese Medicine Creation Laboratory, Chongqing Academy of Chinese Materia Medica, Chongqing 400061, China
| | - Chunyan Zhang
- Chongqing Key Laboratory of Big Data for Bio-Intelligence, School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Quan Sun
- Chongqing Key Laboratory of Big Data for Bio-Intelligence, School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Xiaohong He
- Chongqing Key Laboratory of Big Data for Bio-Intelligence, School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Pingan Chang
- Chongqing Key Laboratory of Big Data for Bio-Intelligence, School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
| | - Huimin Pang
- Chongqing Key Laboratory of Big Data for Bio-Intelligence, School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
| |
Collapse
|
4
|
Loiodice M, Drula E, McIver Z, Antonyuk S, Baslé A, Lima M, Yates EA, Byrne DP, Coughlan J, Leech A, Mesdaghi S, Rigden DJ, Drouillard S, Helbert W, Henrissat B, Terrapon N, Wright GSA, Couturier M, Cartmell A. Bacterial polysaccharide lyase family 33: Specificity from an evolutionarily conserved binding tunnel. Proc Natl Acad Sci U S A 2025; 122:e2421623122. [PMID: 39932998 PMCID: PMC11848413 DOI: 10.1073/pnas.2421623122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/29/2024] [Indexed: 02/13/2025] Open
Abstract
Acidic glycans are essential for the biology of multicellular eukaryotes. To utilize them, microbial life including symbionts and pathogens has evolved polysaccharide lyases (PL) that cleave their 1,4 glycosidic linkages via a β-elimination mechanism. PL family 33 (PL33) enzymes have the unusual ability to target a diverse range of glycosaminoglycans (GAGs), as well as the bacterial polymer, gellan gum. In order to gain more detailed insight into PL33 activities we recombinantly expressed 10 PL33 members derived from all major environments and further elucidated the detailed biochemical and biophysical properties of five, showing that their substrate specificity is conferred by variations in tunnel length and topography. The key amino acids involved in catalysis and substrate interactions were identified, and employing a combination of complementary biochemical, structural, and modeling approaches, we show that the tunnel topography is induced by substrate binding to the glycan. Structural and bioinformatic analyses revealed that these features are conserved across several lyase families as well as in mammalian GAG epimerases.
Collapse
Affiliation(s)
- Mélanie Loiodice
- Université Grenoble Alpes, CNRS, Centre de Recherche sur les Macromolécules Végétales, Grenoble38000, France
| | - Elodie Drula
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Univ, CNRS, Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement, Marseille13288, France
- Biotechnologie et Biodiversité Fongiques, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Marseille13288, France
| | - Zak McIver
- Department of Biology, University of York, Heslington, YorkYO10 5DD, United Kingdom
| | - Svetlana Antonyuk
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, LiverpoolL69 7ZB, United Kingdom
| | - Arnaud Baslé
- Newcastle University Biosciences Institute, Medical School, Newcastle University, Newcastle upon TyneNE2 4HH, United Kingdom
| | - Marcelo Lima
- School of Life Sciences, Keele University, Keele, StaffordshireST5 5BG, United Kingdom
| | - Edwin A. Yates
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, LiverpoolL69 7ZB, United Kingdom
| | - Dominic P. Byrne
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, LiverpoolL69 7ZB, United Kingdom
| | - Jamie Coughlan
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, LiverpoolL69 7ZB, United Kingdom
| | - Andrew Leech
- Department of Biology, Technology Facility, University of York, Heslington, YorkYO10 5DD, United Kingdom
| | - Shahram Mesdaghi
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, LiverpoolL69 7ZB, United Kingdom
- Computational Biology Facility, MerseyBio, University of Liverpool, LiverpoolL69 7ZB, United Kingdom
| | - Daniel J. Rigden
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, LiverpoolL69 7ZB, United Kingdom
| | - Sophie Drouillard
- Université Grenoble Alpes, CNRS, Centre de Recherche sur les Macromolécules Végétales, Grenoble38000, France
| | - William Helbert
- Université Grenoble Alpes, CNRS, Centre de Recherche sur les Macromolécules Végétales, Grenoble38000, France
| | - Bernard Henrissat
- Department of Biological Sciences, King Abdulaziz University, Jeddah23218, Saudi Arabia
- Department of Biotechnology and Biomedicine (DTU Bioengineering), Technical University of Denmark, Kgs. LyngbyDK-2800, Denmark
| | - Nicolas Terrapon
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Univ, CNRS, Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement, Marseille13288, France
| | - Gareth S. A. Wright
- School of Life Sciences, University of Essex, ColchesterCO4 3SQ, United Kingdom
| | - Marie Couturier
- Université Grenoble Alpes, CNRS, Centre de Recherche sur les Macromolécules Végétales, Grenoble38000, France
| | - Alan Cartmell
- Department of Biology, University of York, Heslington, YorkYO10 5DD, United Kingdom
- York Structural Biology Laboratory, University of York, YorkYO10 5DD, United Kingdom
- York Biomedical Research Institute, University of York, YorkYO10 5DD, United Kingdom
| |
Collapse
|
5
|
Ahmed MC, Kakunuri T, Peris L, Meffre D, Yilmaz EN, Grewing L, Guerrero González R, Manfroi B, Gout E, Vivès RR, Fitzgerald U, Schneider P, Jafarian-Tehrani M, Kuhlmann T, Huard B. The inflammatory APRIL (a proliferation-inducing ligand) antagonizes chondroitin sulphate proteoglycans to promote axonal growth and myelination. Brain Commun 2025; 7:fcae473. [PMID: 39926615 PMCID: PMC11803424 DOI: 10.1093/braincomms/fcae473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/19/2024] [Accepted: 02/03/2025] [Indexed: 02/11/2025] Open
Abstract
Lesions in the CNS are frequently associated to a detrimental inflammatory reaction. In autoimmune neurodegenerative diseases, a proliferation-inducing ligand (APRIL) produced by CNS-infiltrating inflammatory cells binds to chondroitin sulphate proteoglycans (CSPGs). The latter are well-established obstacles to neural regeneration and remyelination in the CNS by interacting with receptor protein tyrosine phosphatase (RPTP) and Nogo receptor (NgR) families. Here, we are showing that APRIL blocks the interactions of RPTP and NgR with all types of chondroitin sulphate (CS). Functionally, APRIL neutralized the inhibitory effects of CS on mouse and human neuronal process growth. APRIL also blocked the inhibition of CS on mouse and human oligodendrocyte differentiation. Finally, APRIL increased myelination in an ex vivo organotypic model of demyelination in the presence of endogenous CSPG upregulation. Our data demonstrate the potential value for a recombinant form of soluble APRIL to achieve repair in the CNS.
Collapse
Affiliation(s)
- Mashal Claude Ahmed
- Institute for Advanced Biosciences, University Grenoble-Alpes/INSERM U1209/CNRS UMR5209, La Tronche 38700, France
| | - Tejaswini Kakunuri
- T-RAIG, TIMC, University Grenoble-Alpes/CNRS UMR5525, La Tronche 38700, France
| | - Leticia Peris
- Institut des Neurosciences, Université Grenoble Alpes, La Tronche 38700, France
| | - Delphine Meffre
- UMR-S 1124, University Paris-Cité and INSERM, Paris 75006, France
| | - Elif Nur Yilmaz
- Institute of Neuropathology, University Hospital Muenster, Muenster 8149, Germany
| | - Laureen Grewing
- Institute of Neuropathology, University Hospital Muenster, Muenster 8149, Germany
| | | | - Benoit Manfroi
- Institute for Advanced Biosciences, University Grenoble-Alpes/INSERM U1209/CNRS UMR5209, La Tronche 38700, France
| | - Evelyne Gout
- CNRS, CEA, IBS, University of Grenoble Alpes, Grenoble 38000, France
| | - Romain R Vivès
- CNRS, CEA, IBS, University of Grenoble Alpes, Grenoble 38000, France
| | - Una Fitzgerald
- Galway Neuroscience Centre, School of Natural Sciences, National University of Ireland, Galway H91 W2TY, Ireland
| | - Pascal Schneider
- Department of Immunobiology, University of Lausanne, Epalinges 1066, Switzerland
| | | | - Tanja Kuhlmann
- Institute of Neuropathology, University Hospital Muenster, Muenster 8149, Germany
| | - Bertrand Huard
- T-RAIG, TIMC, University Grenoble-Alpes/CNRS UMR5525, La Tronche 38700, France
| |
Collapse
|
6
|
Yang Y, Zhou X, Wang W, Dai H. Glycobiology of psoriasis: A review. J Autoimmun 2025; 151:103361. [PMID: 39808852 DOI: 10.1016/j.jaut.2025.103361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
Psoriasis is a chronic inflammatory skin disease with etiologies related to genetics, immunity, and the environment. It is characterized by excessive proliferation of keratinocytes and infiltration of inflammatory immune cells. Glycosylation is a post-translational modification of proteins that plays important roles in cell adhesion, signal transduction, and immune cell activation. Abnormal glycosylation is associated with inflammation, tumors, autoimmunity, and several diseases. Glycan profiles and glycosylation-related enzymes are altered in patients with psoriasis. Specific glycan structures, such as glycosaminoglycans and gangliosides, inhibit the development of psoriasis through various pathways. Lectins are glycan-binding proteins that are widely involved in the pathogenesis of psoriasis. The differential serum, epidermal, and dermal expression of galectins in patients with psoriasis distinguishes psoriasis from other nonspecific psoriasis-like dermatitis. This article summarizes relevant literature on psoriasis-related glycans to help clarify the potential molecular mechanisms of psoriasis and identify novel biomarkers and targets for the treatment of psoriasis.
Collapse
Affiliation(s)
- Yinuo Yang
- Department of Dermatology, Peking University Third Hospital, No.49, Huayuan North Road, Haidian, Beijing, 100191, China; Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, No.38, Xueyuan Road, Haidian, Beijing, 100191, China
| | - Xin Zhou
- Department of Dermatology, Peking University Third Hospital, No.49, Huayuan North Road, Haidian, Beijing, 100191, China; Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, No.38, Xueyuan Road, Haidian, Beijing, 100191, China
| | - Wenhui Wang
- Department of Dermatology, Peking University Third Hospital, No.49, Huayuan North Road, Haidian, Beijing, 100191, China.
| | - Hui Dai
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, No.38, Xueyuan Road, Haidian, Beijing, 100191, China.
| |
Collapse
|
7
|
Boyraz B, Tauber R, Dernedde J. Identification of an Immunoglobulin Paratope Binding to Keratan Sulfate and Expression of a Single-Chain Derivative for Imaging. Biomolecules 2025; 15:178. [PMID: 40001481 PMCID: PMC11852928 DOI: 10.3390/biom15020178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/06/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Keratan sulfate (KS) is a negatively charged carbohydrate linked to proteins. Several KS-bearing structural glycosaminoglycans participate to maintain the homeostasis of a functional extracellular matrix. Dysfunction of its biochemical composition and structure might therefore lead to pathological situations. For this reason, imaging of KS in tissues is an important diagnostic tool. Here, we describe the identification of the KS paratope derived from the ancestral anti-KS IgG mAb MZ15, as well as the engineering, functional recombinant expression in E. coli, and purification of an anti-KS single-chain variable fragment (ScFv). The ScFv enabled in vitro imaging of KS in cryosections of rat cornea by immunofluorescence microscopy comparable to the ancestral IgG MZ15.
Collapse
Affiliation(s)
- Burak Boyraz
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany;
- Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Rudolf Tauber
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany;
| | - Jens Dernedde
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany;
| |
Collapse
|
8
|
Zou R, Xu X, Li F. Classification and characteristics of bacterial glycosaminoglycan lyases, and their therapeutic and experimental applications. J Cell Sci 2025; 138:JCS263489. [PMID: 39846151 DOI: 10.1242/jcs.263489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025] Open
Abstract
Glycosaminoglycans (GAGs), as animal polysaccharides, are linked to proteins to form various types of proteoglycans. Bacterial GAG lyases are not only essential enzymes that spoilage bacteria use for the degradation of GAGs, but also valuable tools for investigating the biological function and potential therapeutic applications of GAGs. The ongoing discovery and characterization of novel GAG lyases has identified an increasing number of lyases suitable for functional studies and other applications involving GAGs, which include oligosaccharide sequencing, detection and removal of specific glycan chains, clinical drug development and the design of novel biomaterials and sensors, some of which have not yet been comprehensively summarized. GAG lyases can be classified into hyaluronate lyases, chondroitinases and heparinases based on their substrate spectra, and their functional applications are mainly determined by their substrates, with different lyases exhibiting differing substrate selectivity and preferences. It is thus necessary to understand the properties of the available enzymes to determine strategies for their functional application. Building on previous studies and reviews, this Review highlights small yet crucial differences among or within the various GAG lyases to aid in optimizing their use in future studies. To clarify ideas and strategies for further research, we also discuss several traditional and novel applications of GAG lyases.
Collapse
Affiliation(s)
- Ruyi Zou
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao, 266237, People's Republic of China
| | - Xiangyu Xu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao, 266237, People's Republic of China
| | - Fuchuan Li
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao, 266237, People's Republic of China
| |
Collapse
|
9
|
Nozaki Y, Suwa F, Furuya K, Komeno M, Hoshino S, Mizunoe Y, Higashi K, Kobayashi M, Higami Y. The effects of WWP1 overexpression on the golgi apparatus stress response and proteoglycan production in adipocytes. Sci Rep 2024; 14:29004. [PMID: 39578509 PMCID: PMC11584891 DOI: 10.1038/s41598-024-79114-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 11/06/2024] [Indexed: 11/24/2024] Open
Abstract
White adipocytes are a major component of white adipose tissue (WAT) and help to maintain systemic metabolic homeostasis by storing energy and secreting adipokines. In mice deficient in the protein WWP1 (WW domain-containing E3 ubiquitin protein ligase 1), oxidative stress in adipocytes increases but insulin resistance induced by obesity improves. However, the specific roles of WWP1 in adipocytes remain unclear. Here, we show that in 3T3L1 adipocytes, WWP1 localized in the Golgi apparatus via its C2 domain, where it protected the Golgi apparatus from monensin-induced disruption. By contrast, WWP1 knockdown by short hairpin RNA failed to protect the Golgi apparatus and enhanced Golgi apparatus disruption by monensin. The Golgi apparatus acts as a central organelle to establish accurate protein glycosylation of proteoglycans containing glycosaminoglycans, including chondroitin sulfate and heparan sulfate (HS). WWP1 overexpression increased chondroitin sulfate and HS levels, whereas WWP1 knockdown decreased them. Furthermore, obesity-related increases in HS were prevented by WWP1 knockout in adipose tissue. In summary, our results demonstrate a novel role for WWP1 in maintaining Golgi apparatus morphology and proteoglycan synthesis in adipocytes.
Collapse
Affiliation(s)
- Yuka Nozaki
- Faculty of Pharmaceutical Science, Tokyo University of Science, Chiba, 278-8510, Japan
| | - Fumika Suwa
- Faculty of Pharmaceutical Science, Tokyo University of Science, Chiba, 278-8510, Japan
| | - Kazuhiro Furuya
- Faculty of Pharmaceutical Science, Tokyo University of Science, Chiba, 278-8510, Japan
| | - Masahiro Komeno
- Faculty of Pharmaceutical Science, Tokyo University of Science, Chiba, 278-8510, Japan
| | - Shunsuke Hoshino
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, 173-0015, Japan
| | - Yuhei Mizunoe
- Faculty of Pharmaceutical Science, Tokyo University of Science, Chiba, 278-8510, Japan
| | - Kyohei Higashi
- Faculty of Pharmaceutical Science, Tokyo University of Science, Chiba, 278-8510, Japan
| | - Masaki Kobayashi
- Department of Nutrition and Food Science, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, 112-8610, Japan.
- Institute for Human Life Innovation, Ochanomizu University, Tokyo, 112-8610, Japan.
| | - Yoshikazu Higami
- Faculty of Pharmaceutical Science, Tokyo University of Science, Chiba, 278-8510, Japan.
- Division of Cell Fate Regulation, Research Institute for Biomedical Science, Tokyo University of Science, Chiba, 278-8501, Japan.
| |
Collapse
|
10
|
Bojarski KK, David A, Lecaille F, Samsonov SA. In silico approaches for better understanding cysteine cathepsin-glycosaminoglycan interactions. Carbohydr Res 2024; 543:109201. [PMID: 39013335 DOI: 10.1016/j.carres.2024.109201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/18/2024]
Abstract
Cysteine cathepsins constitute the largest cathepsin family, with 11 proteases in human that are present primarily within acidic endosomal and lysosomal compartments. They are involved in the turnover of intracellular and extracellular proteins. They are synthesized as inactive procathepsins that are converted to mature active forms. Cathepsins play important roles in physiological and pathological processes and, therefore, receive increasing attention as potential therapeutic targets. Their maturation and activity can be regulated by glycosaminoglycans (GAGs), long linear negatively charged polysaccharides composed of recurring dimeric units. In this review, we summarize recent computational progress in the field of (pro)cathepsin-GAG complexes analyses.
Collapse
Affiliation(s)
- Krzysztof K Bojarski
- Department of Physical Chemistry, Gdansk University of Technology, Narutowicza 11/12, Gdansk, 80-233, Poland.
| | - Alexis David
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team "Mécanismes Protéolytiques dans l'Inflammation, Tours, France
| | - Fabien Lecaille
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team "Mécanismes Protéolytiques dans l'Inflammation, Tours, France
| | - Sergey A Samsonov
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk, 80-308, Poland
| |
Collapse
|
11
|
Iwakura Y, Kobayashi Y, Namba H, Nawa H, Takei N. Epidermal Growth Factor Suppresses the Development of GABAergic Neurons Via the Modulation of Perineuronal Net Formation in the Neocortex of Developing Rodent Brains. Neurochem Res 2024; 49:1347-1358. [PMID: 38353896 DOI: 10.1007/s11064-024-04122-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 04/04/2024]
Abstract
Previously, we reported that epidermal growth factor (EGF) suppresses GABAergic neuronal development in the rodent cortex. Parvalbumin-positive GABAergic neurons (PV neurons) have a unique extracellular structure, perineuronal nets (PNNs). PNNs are formed during the development of PV neurons and are mainly formed from chondroitin sulfate (CS) proteoglycans (CSPGs). We examined the effect of EGF on CSPG production and PNN formation as a potential molecular mechanism for the inhibition of inhibiting GABAergic neuronal development by EGF. In EGF-overexpressing transgenic (EGF-Tg) mice, the number of PNN-positive PV neurons was decreased in the cortex compared with that in wild-type mice, as in our previous report. The amount of CS and neurocan was also lower in the cortex of EGF-Tg mice, with a similar decrease observed in EGF-treated cultured cortical neurons. PD153035, an EGF receptor (ErbB1) kinase inhibitor, prevented those mentioned above excess EGF-induced reduction in PNN. We explored the molecular mechanism underlying the effect of EGF on PNNs using fluorescent substrates for matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinases (ADAMs). EGF increased the enzyme activity of MMPs and ADAMs in cultured neurons. These enzyme activities were also increased in the EGF-Tg mice cortex. GM6001, a broad inhibitor of MMPs and ADAMs, also blocked EGF-induced PNN reductions. Therefore, EGF/EGF receptor signals may regulate PNN formation in the developing cortex.
Collapse
Affiliation(s)
- Yuriko Iwakura
- Department of Brain Tumor Biology, Brain Research Institute, Niigata University, Niigata, 951-8122, Japan.
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8122, Japan.
| | - Yutaro Kobayashi
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8122, Japan
- Department of Biochemistry, Graduate School of Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Hisaaki Namba
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8122, Japan
- Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, 640-8156, Japan
| | - Hiroyuki Nawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8122, Japan
- Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, 640-8156, Japan
| | - Nobuyuki Takei
- Department of Brain Tumor Biology, Brain Research Institute, Niigata University, Niigata, 951-8122, Japan
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8122, Japan
| |
Collapse
|
12
|
Li Z, Wu N, Wang J, Yue Y, Geng L, Zhang Q. Low molecular weight fucoidan restores diabetic endothelial glycocalyx by targeting neuraminidase2: A new therapy target in glycocalyx shedding. Br J Pharmacol 2024; 181:1404-1420. [PMID: 37994102 DOI: 10.1111/bph.16288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/16/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND AND PURPOSE Diabetic vascular complication is a leading cause of disability and mortality in diabetes patients. Low molecular weight fucoidan (LMWF) is a promising drug candidate for vascular complications. Glycocalyx injury predates the occurrence of diabetes vascular complications. Protecting glycocalyx from degradation relieves diabetic vascular complications. LMWF has the potential to protect the diabetes endothelial glycocalyx from shedding. EXPERIMENTAL APPROACH The protective effect of LMWF on diabetic glycocalyx damage was investigated in db/db mice and Human Umbilical Vein Endothelial Cells (HUVEC) through transmission electron microscopy and WGA labelling. The effect of LMWF on glycocalyx degrading enzymes expression was investigated. Neuraminidase2 (NEU2) overexpression/knockdown was performed in HUVECs to verify the important role of NEU2 in glycocalyx homeostasis. The interaction between NEU2 and LMWF was detected by ELISA and surface plasmon resonance analysis (SPR). KEY RESULTS LMWF normalizes blood indexes including insulin, triglyceride, uric acid and reduces diabetes complications adverse events. LMWF alleviates diabetic endothelial glycocalyx damage in db/db mice kidney/aorta and high concentration glucose treated HUVECs. NEU2 is up-regulated in db/db mice and HUVECs with high concentration glucose. Overexpression/knockdown NEU2 results in glycocalyx shedding in HUVEC. Down-regulation and interaction of LMWF with NEU2 is a new therapy target in glycocalyx homeostasis. NEU2 was positively correlated with phosphorylated IR-β. CONCLUSION AND IMPLICATIONS NEU2 is an effective target for glycocalyx homeostasis and LMWF is a promising drug to alleviate vascular complications in diabetes by protecting endothelial glycocalyx.
Collapse
Affiliation(s)
- Zhi Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- Laboratory for Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Ning Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Yang Yue
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Lihua Geng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Quanbin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- Laboratory for Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
13
|
Wang Z, Wang W, Gong H, Jiang Y, Liu R, Yu G, Li G, Cai C. Structural Elucidation of Glycosaminoglycans in the Tissue of Flounder and Isolation of Chondroitin Sulfate C. Mar Drugs 2024; 22:198. [PMID: 38786589 PMCID: PMC11123320 DOI: 10.3390/md22050198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Glycosaminoglycans (GAGs) are valuable bioactive polysaccharides with promising biomedical and pharmaceutical applications. In this study, we analyzed GAGs using HPLC-MS/MS from the bone (B), muscle (M), skin (S), and viscera (V) of Scophthalmus maximus (SM), Paralichthysi (P), Limanda ferruginea (LF), Cleisthenes herzensteini (G), Platichthys bicoloratus (PB), Pleuronichthys cornutus (PC), and Cleisthenes herzensteini (CH). Unsaturated disaccharide products were obtained by enzymatic hydrolysis of the GAGs and subjected to compositional analysis of chondroitin sulfate (CS), heparin sulfate (HS), and hyaluronic acid (HA), including the sulfation degree of CS and HS, as well as the content of each GAG. The contents of GAGs in the tissues and the sulfation degree differed significantly among the fish. The bone of S. maximus contained more than 12 μg of CS per mg of dry tissue. Although the fish typically contained high levels of CSA (CS-4S), some fish bone tissue exhibited elevated levels of CSC (CS-6S). The HS content was found to range from 10-150 ug/g, primarily distributed in viscera, with a predominant non-sulfated structure (HS-0S). The structure of HA is well-defined without sulfation modification. These analytical results are independent of biological classification. We provide a high-throughput rapid detection method for tissue samples using HPLC-MS/MS to rapidly screen ideal sources of GAG. On this basis, four kinds of CS were prepared and purified from flounder bone, and their molecular weight was determined to be 23-28 kDa by HPGPC-MALLS, and the disaccharide component unit was dominated by CS-6S, which is a potential substitute for CSC derived from shark cartilage.
Collapse
Affiliation(s)
- Zhe Wang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Z.W.); (W.W.); (H.G.); (Y.J.); (R.L.)
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Weiwen Wang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Z.W.); (W.W.); (H.G.); (Y.J.); (R.L.)
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Hao Gong
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Z.W.); (W.W.); (H.G.); (Y.J.); (R.L.)
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yudi Jiang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Z.W.); (W.W.); (H.G.); (Y.J.); (R.L.)
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Renjie Liu
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Z.W.); (W.W.); (H.G.); (Y.J.); (R.L.)
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Guangli Yu
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Z.W.); (W.W.); (H.G.); (Y.J.); (R.L.)
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Guoyun Li
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Z.W.); (W.W.); (H.G.); (Y.J.); (R.L.)
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Chao Cai
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Z.W.); (W.W.); (H.G.); (Y.J.); (R.L.)
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
14
|
Jafri M, Li L, Liang B, Luo M. The Effect of Heparin and Other Exogenous Glycosaminoglycans (GAGs) in Reducing IL-1β-Induced Pro-Inflammatory Cytokine IL-8 and IL-6 mRNA Expression and the Potential Role for Reducing Inflammation. Pharmaceuticals (Basel) 2024; 17:371. [PMID: 38543157 PMCID: PMC10976005 DOI: 10.3390/ph17030371] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 11/12/2024] Open
Abstract
Glycosaminoglycans (GAGs) are long linear polysaccharides found in every mammalian tissue. Previously thought only to be involved in cellular structure or hydration, GAGs are now known to be involved in cell signaling and protein modulation in cellular adhesion, growth, proliferation, and anti-coagulation. In this study, we showed that GAGs have an inhibitory effect on the IL-1β-stimulated mRNA expression of IL-6 and IL-8. Exogenous heparin (p < 0.0001), heparan (p < 0.0001), chondroitin (p < 0.049), dermatan (p < 0.0027), and hyaluronan (p < 0.0005) significantly reduced the IL-1β-induced IL-8 mRNA expression in HeLa cells. Exogenous heparin (p < 0.0001), heparan (p < 0.0001), and dermatan (p < 0.0027) also significantly reduced IL-1β-induced IL-6 mRNA expression in HeLa cells, but exogenous chondroitin and hyaluronan had no significant effect. The exogenous GAGs may reduce the transcription of these inflammatory cytokines through binding to TILRR, a co-receptor of IL-1R1, and block/reduce the interactions of TILRR with IL-1R1.
Collapse
Affiliation(s)
- Murtaza Jafri
- Faculty of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Lin Li
- National Microbiology Laboratory, Winnipeg, MB R3E 3R2, Canada; (L.L.); (B.L.)
| | - Binhua Liang
- National Microbiology Laboratory, Winnipeg, MB R3E 3R2, Canada; (L.L.); (B.L.)
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ma Luo
- National Microbiology Laboratory, Winnipeg, MB R3E 3R2, Canada; (L.L.); (B.L.)
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
15
|
Yun ZY, Wu D, Wang X, Huang P, Li N. MiR-214-3p overexpression-triggered chondroitin polymerizing factor (CHPF) inhibition modulates the ferroptosis and metabolism in colon cancer. Kaohsiung J Med Sci 2024; 40:244-254. [PMID: 38190270 DOI: 10.1002/kjm2.12802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/25/2023] [Accepted: 12/07/2023] [Indexed: 01/10/2024] Open
Abstract
Colon cancer is a common cancer with high mortality globally. The role of chondroitin polymerizing factor (CHPF) has been elucidated in various cancers. However, its role and mechanism remain unknown in colon cancer. CHPF expression was examined by GEPIA database, reverse transcription-quantitative polymerase chain reaction and western blot. The relationship between CHPF expression and the clinicopathologic characteristics as well as miR-214-3p level was determined in colon cancer patients. The role and mechanism of CHPF in the growth, ferroptosis, and glycolysis of colon cancer cells were evaluated by cell counting kit-8, biochemical detections, luciferase, and western blot experiments. Additionally, the role of CHPF was explored in xenografted mice. CHPF expression was increased and was related to advanced TNM stage, poor differentiation and shorter overall survival in patients with colon cancer. Knockdown of CHPF inhibited colon cancer cell growth, and downregulated the expression of proteins involving in ferroptosis and glycolysis both in vitro and in vivo. Besides, CHPF silencing increased the levels of ferrous iron and ROS, but decreased glucose uptake, lactate product, and ATP level in vitro. Mechanically, miR-214-3p directly targeted CHPF and negatively regulated its expression. Upregulation of miR-214-3p reduced cell viability, glucose uptake, lactate product, and ATP level, but increased the levels of ferrous iron and ROS, which were reversed by the overexpression of CHPF. Upregulation of CHPF predicted poor prognosis, and miR-214-3p/CHPF axis inhibited growth, downregulated the levels of glycolysis-related indexes, and promoted ferroptosis in colon cancer cells.
Collapse
Affiliation(s)
- Zhi-Yuan Yun
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Di Wu
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xin Wang
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Peng Huang
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Na Li
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
16
|
Yuan Q, Shi X, Ma H, Yao Y, Zhang B, Zhao L. Recent progress in marine chondroitin sulfate, dermatan sulfate, and chondroitin sulfate/dermatan sulfate hybrid chains as potential functional foods and therapeutic agents. Int J Biol Macromol 2024; 262:129969. [PMID: 38325688 DOI: 10.1016/j.ijbiomac.2024.129969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Chondroitin sulfate (CS), dermatan sulfate (DS), and CS/DS hybrid chains are natural complex glycosaminoglycans with high structural diversity and widely distributed in marine organisms, such as fish, shrimp, starfish, and sea cucumber. Numerous CS, DS, and CS/DS hybrid chains with various structures and activities have been obtained from marine animals and have received extensive attention. However, only a few of these hybrid chains have been well-characterized and commercially developed. This review presents information on the extraction, purification, structural characterization, biological activities, potential action mechanisms, and structure-activity relationships of marine CS, DS, and CS/DS hybrid chains. We also discuss the challenges and perspectives in the research of CS, DS, and CS/DS hybrid chains. This review may provide a useful reference for the further investigation, development, and application of CS, DS, and CS/DS hybrid chains in the fields of functional foods and therapeutic agents.
Collapse
Affiliation(s)
- Qingxia Yuan
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China; Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China.
| | - Xiang Shi
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China; College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China
| | - Haiqiong Ma
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China
| | - Yue Yao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China
| | - Baoshun Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China
| | - Longyan Zhao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China; Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China.
| |
Collapse
|
17
|
Antia IU, Hills FA, Shah AJ. Disaccharide compositional analysis of chondroitin sulphate using WAX HILIC-MS with pre-column procainamide labelling; application to the placenta in pre-eclampsia. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:566-575. [PMID: 38189556 DOI: 10.1039/d3ay01578e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Chondroitin sulphate (CS) and dermatan sulphate are negatively charged linear heteropolysaccharides. These glycosaminoglycans (GAG) are involved in cellular signalling via binding to growth factors. CS is expressed in a range of tissue and biological fluids and is highly expressed in the placenta. There is evidence that decorin; a CS proteoglycan is significantly decreased in pre-eclampsia and fetal growth restriction. It is considered that GAG chain composition may influence cellular processes that are altered in pre-eclampsia. The goal of the present study was to develop an LC-MS method with precolumn procainamide labelling for the disaccharide compositional analysis of CS. The method was used to investigate whether the disaccharide composition of placenta-extracted CS is altered in pre-eclampsia. The study revealed differential disaccharide compositions of placental chondroitin sulphate between pre-eclampsia and other pregnancy conditions. This suggests that the method may have diagnostic potential for pregnancy disorders. Furthermore, the findings suggest that CS sulphation might play a significant role in maternal labour.
Collapse
Affiliation(s)
- Imeobong U Antia
- Glycan Research Group, Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, London, UK.
| | - Frank A Hills
- Glycan Research Group, Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, London, UK.
| | - Ajit J Shah
- Glycan Research Group, Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, London, UK.
| |
Collapse
|
18
|
Atanassova MR, Kolden Midtbo L, Mildenberger J, Friðjónsson ÓH. Novel biomaterials and biotechnological applications derived from North Atlantic sea cucumbers: A systematic review. THE WORLD OF SEA CUCUMBERS 2024:585-609. [DOI: 10.1016/b978-0-323-95377-1.00046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
19
|
Iwase H, Yamamoto Y, Yamada A, Kawai K, Oiki S, Watanabe D, Mikami B, Takase R, Hashimoto W. Crystal Structures of Lacticaseibacillus 4-Deoxy-L- threo-5-hexosulose-uronate Ketol-isomerase KduI in Complex with Substrate Analogs. J Appl Glycosci (1999) 2023; 70:99-107. [PMID: 38239764 PMCID: PMC10792219 DOI: 10.5458/jag.jag.jag-2023_0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/26/2023] [Indexed: 01/22/2024] Open
Abstract
Some probiotics including lactobacilli, colonize host animal cells by targeting glycosaminoglycans (GAGs), such as heparin, located in the extracellular matrix. Recent studies have shown that several lactic acid bacteria degrade GAGs. Here we show the structure/function relationship of Lacticaseibacillus rhamnosus 4-deoxy-L-threo-5-hexosulose-uronate ketol-isomerase (KduI) crucial for metabolism of unsaturated glucuronic acid produced through degradation of GAGs. Crystal structures of ligand-free and bound KduIs were determined by X-ray crystallography and the enzyme was found to consist of six identical subunits and adopt a β-helix as a basic scaffold. Ligands structurally similar to the substrate were bound to the cleft of each enzyme subunit. Several residues located in the cleft interacted with ligands through hydrogen bonds and/or C-C contacts. In addition to substrate analogs, a metal ion coordinated to four residues, His198, His200, Glu205, and His248, in the cleft, and the enzyme activity was significantly inhibited by a chelator, ethylenediaminetetraacetic acid. Site-directed mutants in Arg163, Ile165, Thr184, Thr194, His200, Arg203, Tyr207, Met262, and Tyr269 in the cleft exhibited little enzyme activity, indicating that these residues and the metal ion constituted an active site in the cleft. This is the first report on the active site structure of KduI based on the ligand-bound complex.
Collapse
Affiliation(s)
- Hisamu Iwase
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
| | - Yuta Yamamoto
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
| | - Akifumi Yamada
- Laboratory of Basic and Applied Molecular Biotechnology, Department of Food Science and Biotechnology, Faculty of Agriculture, Kyoto University
| | - Keigo Kawai
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
| | - Sayoko Oiki
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
- Laboratory of Basic and Applied Molecular Biotechnology, Department of Food Science and Biotechnology, Faculty of Agriculture, Kyoto University
| | - Daisuke Watanabe
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
- Laboratory of Basic and Applied Molecular Biotechnology, Department of Food Science and Biotechnology, Faculty of Agriculture, Kyoto University
| | - Bunzo Mikami
- Laboratory of Metabolic Sciences of Forest Plants and Microorganisms, Research Institute for Sustainable Humanosphere, Kyoto University
| | - Ryuichi Takase
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
- Laboratory of Basic and Applied Molecular Biotechnology, Department of Food Science and Biotechnology, Faculty of Agriculture, Kyoto University
| | - Wataru Hashimoto
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
- Laboratory of Basic and Applied Molecular Biotechnology, Department of Food Science and Biotechnology, Faculty of Agriculture, Kyoto University
| |
Collapse
|
20
|
Shen Q, Guo Y, Wang K, Zhang C, Ma Y. A Review of Chondroitin Sulfate's Preparation, Properties, Functions, and Applications. Molecules 2023; 28:7093. [PMID: 37894574 PMCID: PMC10609508 DOI: 10.3390/molecules28207093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Chondroitin sulfate (CS) is a natural macromolecule polysaccharide that is extensively distributed in a wide variety of organisms. CS is of great interest to researchers due to its many in vitro and in vivo functions. CS production derives from a diverse number of sources, including but not limited to extraction from various animals or fish, bio-synthesis, and fermentation, and its purity and homogeneity can vary greatly. The structural diversity of CS with respect to sulfation and saccharide content endows this molecule with distinct complexity, allowing for functional modification. These multiple functions contribute to the application of CS in medicines, biomaterials, and functional foods. In this article, we discuss the preparation of CS from different sources, the structure of various forms of CS, and its binding to other relevant molecules. Moreover, for the creation of this article, the functions and applications of CS were reviewed, with an emphasis on drug discovery, hydrogel formation, delivery systems, and food supplements. We conclude that analyzing some perspectives on structural modifications and preparation methods could potentially influence future applications of CS in medical and biomaterial research.
Collapse
Affiliation(s)
- Qingshan Shen
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Changjiang Road 80, Nanyang 473004, China
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yujie Guo
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kangyu Wang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanli Ma
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Changjiang Road 80, Nanyang 473004, China
| |
Collapse
|
21
|
Kumar A, Sood A, Agrawal G, Thakur S, Thakur VK, Tanaka M, Mishra YK, Christie G, Mostafavi E, Boukherroub R, Hutmacher DW, Han SS. Polysaccharides, proteins, and synthetic polymers based multimodal hydrogels for various biomedical applications: A review. Int J Biol Macromol 2023; 247:125606. [PMID: 37406894 DOI: 10.1016/j.ijbiomac.2023.125606] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/14/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Nature-derived or biologically encouraged hydrogels have attracted considerable interest in numerous biomedical applications owing to their multidimensional utility and effectiveness. The internal architecture of a hydrogel network, the chemistry of the raw materials involved, interaction across the interface of counter ions, and the ability to mimic the extracellular matrix (ECM) govern the clinical efficacy of the designed hydrogels. This review focuses on the mechanistic viewpoint of different biologically driven/inspired biomacromolecules that encourages the architectural development of hydrogel networks. In addition, the advantage of hydrogels by mimicking the ECM and the significance of the raw material selection as an indicator of bioinertness is deeply elaborated in the review. Furthermore, the article reviews and describes the application of polysaccharides, proteins, and synthetic polymer-based multimodal hydrogels inspired by or derived from nature in different biomedical areas. The review discusses the challenges and opportunities in biomaterials along with future prospects in terms of their applications in biodevices or functional components for human health issues. This review provides information on the strategy and inspiration from nature that can be used to develop a link between multimodal hydrogels as the main frame and its utility in biomedical applications as the primary target.
Collapse
Affiliation(s)
- Anuj Kumar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea; School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India.
| | - Ankur Sood
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea
| | - Garima Agrawal
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, H.P. 175075, India
| | - Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Barony Campus, Parkgate, Dumfries DG1 3NE, United Kingdom; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India.
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Yogendra Kumar Mishra
- Smart Materials, Mads Clausen Institute, University of Southern Denmark, Alsion 2, Sønderborg 6400, Denmark
| | - Graham Christie
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France.
| | - Dietmar W Hutmacher
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD 4000, Australia; Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, QLD 4000, Australia; Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea.
| |
Collapse
|
22
|
Duan C, Jimenez JM, Goergen C, Cox A, Sivasankar PM, Calve S. Hydration State and Hyaluronidase Treatment Significantly Affect Porcine Vocal Fold Biomechanics. J Voice 2023; 37:348-354. [PMID: 33541766 PMCID: PMC8325720 DOI: 10.1016/j.jvoice.2021.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/30/2020] [Accepted: 01/07/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVES The understanding of vocal fold hydration state, including dehydrated, euhydrated, rehydrated tissue, and how hydration affects vocal fold biomechanical properties is still evolving. Although clinical observations support the benefits of increasing vocal fold hydration after dehydrating events, more mechanistic information on the effects of vocal fold dehydration and the beneficial effects of rehydration are needed. Alterations to hyaluronic acid (HA), an important component of the vocal fold extracellular matrix, are likely to influence the biomechanical properties of vocal folds. In this study, we investigated the influence of hydration state and HA on vocal fold tissue stiffness via biomechanical testing. STUDY DESIGN Prospective, ex vivo study design. METHODS Fresh porcine vocal folds (N = 18) were examined following sequential immersion in hypertonic (dehydration) and isotonic solutions (rehydration). In a separate experiment, vocal folds were incubated in hyaluronidase (Hyal) to remove HA. Control tissues were not exposed to any challenges. A custom micromechanical system with a microforce sensing probe was used to measure the force-displacement response. Optical strain was calculated, and ultrasound imaging was used to measure tissue cross-sectional area to obtain stress-strain curves. RESULTS Significant increases (P ≤ 0.05) were found in tangent moduli between dehydrated and rehydrated vocal folds at strains of ε = 0.15. The tangent moduli of Hyal-digested tissues significantly increased at both ε = 0.15 and 0.3 (P ≤ 0.05). CONCLUSION Vocal fold dehydration increased tissue stiffness and rehydration reduced the stiffness. Loss of HA increased vocal fold stiffness, suggesting a potential mechanical role for HA in euhydrated vocal folds.
Collapse
Affiliation(s)
- Chenwei Duan
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana; Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana
| | - Julian M Jimenez
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana; Department of Mechanical Engineering, University of Colorado-Boulder, Boulder, Colorado
| | - Craig Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Abigail Cox
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana
| | - Preeti M Sivasankar
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana; Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana
| | - Sarah Calve
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana; Department of Mechanical Engineering, University of Colorado-Boulder, Boulder, Colorado.
| |
Collapse
|
23
|
Du M, Wei L, Yuan M, Zou R, Xu Y, Wang X, Wang W, Li F. Enzymatic comparison of two homologous enzymes reveals N-terminal domain of chondroitinase ABC I regulates substrate selection and product generation. J Biol Chem 2023; 299:104692. [PMID: 37031818 DOI: 10.1016/j.jbc.2023.104692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/19/2023] [Accepted: 04/05/2023] [Indexed: 04/11/2023] Open
Abstract
Chondroitinase ABC-type I (CSase ABC I), which can digest both chondroitin sulfate (CS) and dermatan sulfate (DS) in an endolytic manner, is an essential tool in structural and functional studies of CS/DS. Although a few CSase ABC I have been identified from bacteria, the substrate-degrading pattern and regulatory mechanisms of them have rarely been investigated. Herein, two CSase ABC I, IM3796 and IM1634, were identified from the intestinal metagenome of CS-fed mice. They show high sequence homology (query coverage: 88.00%, percent identity: 90.10%) except for an extra peptide (Met1-His109) at the N-terminus in IM1634, but their enzymatic properties are very different. IM3796 prefers to degrade 6-O-sulfated GalNAc residue-enriched CS into tetra- and disaccharides. In contrast, IM1634 exhibits nearly a thousand times more activity than IM3796, and can completely digest CS/DS with various sulfation patterns to produce disaccharides, unlike most CSase ABC I. Structure modeling showed that IM3796 did not contain an N-terminal domain composed of two β-sheets, which is found in IM1634 and other CSase ABC I. Furthermore, deletion of the N-terminal domain (Met1-His109) from IM1634 caused the enzymatic properties of the variant IM1634-T109 to be similar to those of IM3796, and conversely, grafting this domain to IM3796 increased the similarity of the variant IM3796-A109 to IM1634. In conclusion, the comparative study of the new CSase ABC I provides two unique tools for CS/DS-related studies and applications and, more importantly, reveals the critical role of the N-terminal domain in regulating the substrate binding and degradation of these enzymes.
Collapse
Affiliation(s)
- Min Du
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Lin Wei
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Min Yuan
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Ruyi Zou
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Yingying Xu
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Xu Wang
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Wenshuang Wang
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China.
| | - Fuchuan Li
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China; College of Marine Life Sciences, Ocean University of China, Qingdao, China.
| |
Collapse
|
24
|
Li Z, Zhang Q, Sun YY, Wu N. Effects of different dehydration methods on the preservation of aortic and renal glycocalyx structures in mice. Heliyon 2023; 9:e15197. [PMID: 37095921 PMCID: PMC10121396 DOI: 10.1016/j.heliyon.2023.e15197] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
Glycocalyx is located outside the vascular endothelial cells playing an important role in vascular homeostasis. However, lacking efficient detection methods is one of the biggest obstacles to study the glycocalyx. In this study, three dehydration methods were used to compare the preservation of HUVEC, aorta and kidney glycocalyx by transmission electron microscope. The chemical pre-fixation was performed by lanthanum nitrate staining, and the mice aorta and renal glycocalyx were prepared by different dehydration methods such as ethanol gradient, acetone gradient and low temperature dehydration. HUVEC glycocalyx was prepared by acetone gradient and low temperature dehydration. Low temperature dehydration method preserves HUVEC and mice aortic glycocalyx completely, which had a certain thickness and presented a needle-like structure. But for mice kidney, the acetone gradient dehydration preparation method could better preserve the glycocalyx integrity than other two methods. In conclusion, low temperature dehydration method is suitable for HUVEC and aortic glycocalyx preservation, acetone gradient dehydration method is more suitable for kidney glycocalyx preservation.
Collapse
Affiliation(s)
- Zhi Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Department of Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Quanbin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Department of Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yuan-yuan Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Corresponding author.
| | - Ning Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Department of Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Nantong Zhongke Marine Science and Technology Research and Development Center, Nantong, China
- Corresponding author. Institute of Oceanology Chinese Academy of Sciences, China,
| |
Collapse
|
25
|
Wei L, Xu Y, Du M, Fan Y, Zou R, Xu X, Zhang Q, Zhang YZ, Wang W, Li F. A novel 4-O-endosulfatase with high potential for the structure-function studies of chondroitin sulfate/dermatan sulfate. Carbohydr Polym 2023; 305:120508. [PMID: 36737182 DOI: 10.1016/j.carbpol.2022.120508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/15/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022]
Abstract
The sulfation patterns of chondroitin sulfate (CS)/dermatan sulfate (DS), which encode unique biological information, play critical roles in the various biological functions of CS/DS chains. CS/DS sulfatases, which can specifically hydrolyze sulfate groups, could potentially be essential tools for deciphering and changing the biological information encoded by these sulfation patterns. However, endosulfatase with high activity to efficiently hydrolyze the sulfate groups inside CS/DS polysaccharides have rarely been identified, which hinders the practical applications of CS/DS sulfatases. Herein, a novel CS/DS 4-O-endosulfatase (endoBI4SF) with a strong ability to completely remove 4-O-sulfated groups inside various CS/DS polysaccharides was identified and successfully used to investigate the biological roles of 4-O-sulfated CS/DS in vitro and in vivo. This study provides a much-needed tool to tailor the sulfation patterns and explore the related functions of 4-O-sulfated CS/DS chains in vitro and in vivo.
Collapse
Affiliation(s)
- Lin Wei
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, People's Republic of China
| | - Yingying Xu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, People's Republic of China
| | - Min Du
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, People's Republic of China
| | - Ying Fan
- Qingdao Special Servicemen Recuperation Center of PLA Navy, Qingdao 266071, People's Republic of China
| | - Ruyi Zou
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, People's Republic of China
| | - Xiangyu Xu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, People's Republic of China
| | - Qingdong Zhang
- School of Life Science and Technology, Weifang Medical University, 7166 Baotong West Street, Weifang 261053, People's Republic of China
| | - Yu-Zhong Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, People's Republic of China
| | - Wenshuang Wang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, People's Republic of China.
| | - Fuchuan Li
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, People's Republic of China; College of Marine Life Sciences, Ocean University of China, Qingdao, People's Republic of China.
| |
Collapse
|
26
|
Koh WS, Knudsen C, Izumikawa T, Nakato E, Grandt K, Kinoshita-Toyoda A, Toyoda H, Nakato H. Regulation of morphogen pathways by a Drosophila chondroitin sulfate proteoglycan Windpipe. J Cell Sci 2023; 136:jcs260525. [PMID: 36897575 PMCID: PMC10113886 DOI: 10.1242/jcs.260525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Morphogens provide quantitative and robust signaling systems to achieve stereotypic patterning and morphogenesis. Heparan sulfate (HS) proteoglycans (HSPGs) are key components of such regulatory feedback networks. In Drosophila, HSPGs serve as co-receptors for a number of morphogens, including Hedgehog (Hh), Wingless (Wg), Decapentaplegic (Dpp) and Unpaired (Upd, or Upd1). Recently, Windpipe (Wdp), a chondroitin sulfate (CS) proteoglycan (CSPG), was found to negatively regulate Upd and Hh signaling. However, the roles of Wdp, and CSPGs in general, in morphogen signaling networks are poorly understood. We found that Wdp is a major CSPG with 4-O-sulfated CS in Drosophila. Overexpression of wdp modulates Dpp and Wg signaling, showing that it is a general regulator of HS-dependent pathways. Although wdp mutant phenotypes are mild in the presence of morphogen signaling buffering systems, this mutant in the absence of Sulf1 or Dally, molecular hubs of the feedback networks, produces high levels of synthetic lethality and various severe morphological phenotypes. Our study indicates a close functional relationship between HS and CS, and identifies the CSPG Wdp as a novel component in morphogen feedback pathways.
Collapse
Affiliation(s)
- Woo Seuk Koh
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Collin Knudsen
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tomomi Izumikawa
- Faculty of Pharmaceutical Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Eriko Nakato
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kristin Grandt
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Hidenao Toyoda
- Faculty of Pharmaceutical Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Hiroshi Nakato
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
27
|
Silva MB, Pinto LDLDS, Medeiros LH, Souza AA, Chavante SF, Filgueira LGA, Camara RBG, Sassaki GL, Rocha HAO, Andrade GPV. Chondroitin Sulfate from Oreochromis niloticus Waste Reduces Leukocyte Influx in an Acute Peritonitis Model. Molecules 2023; 28:molecules28073082. [PMID: 37049845 PMCID: PMC10096408 DOI: 10.3390/molecules28073082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Oreochromis niloticus (tilapia) is one of the most cultivated fish species worldwide. Tilapia farming generates organic waste from fish removal processes in nurseries. Visceral waste can damage natural ecosystems. Therefore, the use of this material as a source of biomolecules helps reduce environmental impacts and improve pharmacological studies. Tilapia viscera were subjected to proteolysis and complexation with an ion-exchange resin. The obtained glycosaminoglycans were purified using ion exchange chromatography (DEAE-Sephacel). The electrophoretic profile and analysis of 1H/13C nuclear magnetic resonance (NMR) spectra allowed for the characterization of the compound as chondroitin sulfate and its sulfation position. This chondroitin was named CST. We tested the ability of CST to reduce leukocyte influx in acute peritonitis models induced by sodium thioglycolate and found a significant reduction in leukocyte migration to the peritoneal cavity, similar to the polymorphonuclear population of the three tested doses of CST. This study shows, for the first time, the potential of CST obtained from O. niloticus waste as an anti-inflammatory drug, thereby contributing to the expansion of the study of molecules with pharmacological functions.
Collapse
Affiliation(s)
- Marianna Barros Silva
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Lívia de Lourdes de Sousa Pinto
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Luiz Henrique Medeiros
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Airton Araújo Souza
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte, Campus de Parnamirim, Parnamirim 59143-455, RN, Brazil
| | - Suely Ferreira Chavante
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Luciana Guimarães Alves Filgueira
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Rafael Barros Gomes Camara
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Guilherme Lanzi Sassaki
- Departamento de Bioquímica e Biologia Molecular, Setor de Ciências Biológicas, Universidade Federal do Parana (UFPR), Curitiba 81531-980, PR, Brazil
| | - Hugo Alexandre Oliveira Rocha
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Giulianna Paiva Viana Andrade
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| |
Collapse
|
28
|
Nystrom GS, Ellsworth SA, Rokyta DR. The remarkably enzyme-rich venom of the Big Bend Scorpion (Diplocentrus whitei). Toxicon 2023; 226:107080. [PMID: 36907567 DOI: 10.1016/j.toxicon.2023.107080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
Scorpion venoms have long been studied for their peptide discovery potential, with modern high-throughput venom-characterization techniques paving the way for the discovery of thousands of novel putative toxins. Research into these toxins has provided insight into the pathology and treatment of human diseases, even resulting in the development of one compound with Food and Drug Administration (FDA) approval. Although most of this research has focused on the toxins of scorpion species considered medically significant to humans, the venom of harmless scorpion species possess toxins that are homologous to those from medically significant species, indicating that harmless scorpion venoms may also serve as valuable sources of novel peptide variants. Furthermore, as harmless scorpions represent a vast majority of scorpion species diversity, and therefore venom toxin diversity, venoms from these species likely contain entirely new toxin classes. We sequenced the venom-gland transcriptome and venom proteome of two male Big Bend scorpions (Diplocentrus whitei), providing the first high-throughput venom characterization for a member of this genus. We identified a total of 82 toxins in the venom of D. whitei, 25 of which were identified in both the transcriptome and proteome, and 57 of which were only identified in the transcriptome. Furthermore, we identified a unique, enzyme-rich venom dominated by serine proteases and the first arylsulfatase B toxins identified in scorpions.
Collapse
Affiliation(s)
- Gunnar S Nystrom
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Schyler A Ellsworth
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Darin R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|
29
|
Green biopolysaccharides and its utilisation as biodegradable material in diverse fields: a review. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04738-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
30
|
Xu J, Yuan A, Su R, Yang Q, Fan X, Zhang J. Trophoblast-specific knockdown of CSPG4 expression causes pregnancy complications with poor placentation in mice. Reprod Biol 2023; 23:100731. [PMID: 36634519 DOI: 10.1016/j.repbio.2023.100731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/14/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
The multifunctional molecule chondroitin sulfate proteoglycan 4 (CSPG4/NG2) plays key roles in organogenesis and tumorigenesis. However, its roles in placentation remain unclear. In this study, CSPG4 expression in human and mouse placentas was investigated through immunohistochemistry (IHC), qPCR and western blotting. The theoretical structure and function of CSPG4 were assessed using bioinformatic tools, and the functions of CSPG4 in fetal and placental development were investigated using a mouse model established by trophoblast-specific CSPG4 knockdown and a trophoblast cell line with CSPG4 knockout by lentivirus infection. The results showed that CSPG4 was mainly located in trophoblasts in both human placentas and mouse placentas, with a higher level in preeclampsia (PE) placentas than in healthy control placentas. Furthermore, there was a trend of increasing expression in mouse placentas during pregnancy. The 3D structure of CSPG4 was visualized using an M model composed of two chains, and the structure implied that CSPG4 was a multifunctional molecule containing multiple pockets with multiligand binding sites and enzyme active sites. Trophoblast-specific CSPG4 knockdown caused frequent fetal loss, and viable fetal development was restricted by poor placentation, with mice placentas having reduced weight and width. The proliferation and invasion of CSPG4-knockout trophoblasts were significantly inhibited, and as such, the molecular signaling of AKT and ERK phosphorylation was inhibited, and the expression of MMP2 and MMP9 was reduced. In summary, CSPG4 deficiency inhibited trophoblast proliferation and invasion, which was associated with AKT, ERK and MMP signaling. CSPG4 deficiency also caused pregnancy complications with poor placentation in mice.
Collapse
Affiliation(s)
- Junfei Xu
- College of Biological and Food Engineering, Huaihua University, Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Huaihua 418000, China
| | - Anwen Yuan
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Rui Su
- Research Center for Reproduction and Health Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, China; College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Qing Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Xiujun Fan
- Research Center for Reproduction and Health Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, China.
| | - Juzuo Zhang
- College of Biological and Food Engineering, Huaihua University, Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Huaihua 418000, China; Research Center for Reproduction and Health Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, China.
| |
Collapse
|
31
|
Mizumoto S, Yamada S. Histories of Dermatan Sulfate Epimerase and Dermatan 4- O-Sulfotransferase from Discovery of Their Enzymes and Genes to Musculocontractural Ehlers-Danlos Syndrome. Genes (Basel) 2023; 14:509. [PMID: 36833436 PMCID: PMC9957132 DOI: 10.3390/genes14020509] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Dermatan sulfate (DS) and its proteoglycans are essential for the assembly of the extracellular matrix and cell signaling. Various transporters and biosynthetic enzymes for nucleotide sugars, glycosyltransferases, epimerase, and sulfotransferases, are involved in the biosynthesis of DS. Among these enzymes, dermatan sulfate epimerase (DSE) and dermatan 4-O-sulfotranserase (D4ST) are rate-limiting factors of DS biosynthesis. Pathogenic variants in human genes encoding DSE and D4ST cause the musculocontractural type of Ehlers-Danlos syndrome, characterized by tissue fragility, joint hypermobility, and skin hyperextensibility. DS-deficient mice exhibit perinatal lethality, myopathy-related phenotypes, thoracic kyphosis, vascular abnormalities, and skin fragility. These findings indicate that DS is essential for tissue development as well as homeostasis. This review focuses on the histories of DSE as well as D4ST, and their knockout mice as well as human congenital disorders.
Collapse
Affiliation(s)
- Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | | |
Collapse
|
32
|
Yang J, Wang S. Polysaccharide-Based Multifunctional Hydrogel Bio-Adhesives for Wound Healing: A Review. Gels 2023; 9:138. [PMID: 36826308 PMCID: PMC9957293 DOI: 10.3390/gels9020138] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Wound healing is a long-term and complex biological process that involves multiple hemostasis, inflammation, proliferation, and remodeling stages. In order to realize comprehensive and systematic wound management, appropriate wound treatment bio-adhesives are urgently needed. Hydrogel bio-adhesives have excellent properties and show unique and remarkable advantages in the field of wound management. This review begins with a detailed description of the design criteria and functionalities of ideal hydrogel bio-adhesives for wound healing. Then, recent advances in polysaccharide-based multifunctional hydrogel bio-adhesives, which involve chitosan, hyaluronic acid, alginate, cellulose, dextran, konjac glucomannan, chondroitin sulfate, and other polysaccharides, are comprehensively discussed. Finally, the current challenges and future research directions of polysaccharide-based hydrogel bio-adhesives for wound healing are proposed to stimulate further exploration by researchers.
Collapse
Affiliation(s)
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| |
Collapse
|
33
|
Paul D, Mague JT, Sathyamoorthi S. Sulfamate-Tethered Aza-Wacker Cyclization Strategy for the Syntheses of 2-Amino-2-deoxyhexoses: Preparation of Orthogonally Protected d-Galactosamines. J Org Chem 2023; 88:1445-1456. [PMID: 36649480 PMCID: PMC10019460 DOI: 10.1021/acs.joc.2c02346] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We present a new strategy for the assembly of protected d-galactosamine synthons. Our route uses a sulfamate-tethered aza-Wacker cyclization as a key step and commences from d-erythrono-1,4-lactone. This stands in contrast to most literature syntheses of 2-amino-2-deoxyhexose derivatives, as these generally employ glycals or hexoses as starting materials. This strategy may serve as a template for the assembly of many other 2-amino-2-deoxyhexoses with protection patterns difficult to access by conventional methods.
Collapse
Affiliation(s)
- Debobrata Paul
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Joel T Mague
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Shyam Sathyamoorthi
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| |
Collapse
|
34
|
Pągielska M, Samsonov SA. Molecular Dynamics-Based Comparative Analysis of Chondroitin and Dermatan Sulfates. Biomolecules 2023; 13:biom13020247. [PMID: 36830616 PMCID: PMC9953526 DOI: 10.3390/biom13020247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Glycosaminoglycans (GAGs) are a class of linear anionic periodic polysaccharides containing disaccharide repetitive units. These molecules interact with a variety of proteins in the extracellular matrix and so participate in biochemically crucial processes such as cell signalling affecting tissue regeneration as well as the onset of cancer, Alzheimer's or Parkinson's diseases. Due to their flexibility, periodicity and chemical heterogeneity, often termed "sulfation code", GAGs are challenging molecules both for experiments and computation. One of the key questions in the GAG research is the specificity of their intermolecular interactions. In this study, we make a step forward to deciphering the "sulfation code" of chondroitin sulfates-4,6 (CS4, CS6, where the numbers correspond to the position of sulfation in NAcGal residue) and dermatan sulfate (DS), which is different from CSs by the presence of IdoA acid instead of GlcA. We rigorously investigate two sets of these GAGs in dimeric, tetrameric and hexameric forms with molecular dynamics-based descriptors. Our data clearly suggest that CS4, CS6 and DS are substantially different in terms of their structural, conformational and dynamic properties, which contributes to the understanding of how these molecules can be different when they bind proteins, which could have practical implications for the GAG-based drug design strategies in the regenerative medicine.
Collapse
|
35
|
Bhat AA, Gupta G, Alharbi KS, Afzal O, Altamimi ASA, Almalki WH, Kazmi I, Al-Abbasi FA, Alzarea SI, Chellappan DK, Singh SK, MacLoughlin R, Oliver BG, Dua K. Polysaccharide-Based Nanomedicines Targeting Lung Cancer. Pharmaceutics 2022; 14:pharmaceutics14122788. [PMID: 36559281 PMCID: PMC9782996 DOI: 10.3390/pharmaceutics14122788] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
A primary illness that accounts for a significant portion of fatalities worldwide is cancer. Among the main malignancies, lung cancer is recognised as the most chronic kind of cancer around the globe. Radiation treatment, surgery, and chemotherapy are some medical procedures used in the traditional care of lung cancer. However, these methods lack selectivity and damage nearby healthy cells. Several polysaccharide-based nanomaterials have been created to transport chemotherapeutics to reduce harmful and adverse side effects and improve response during anti-tumour reactions. To address these drawbacks, a class of naturally occurring polymers called polysaccharides have special physical, chemical, and biological characteristics. They can interact with the immune system to induce a better immunological response. Furthermore, because of the flexibility of their structures, it is possible to create multifunctional nanocomposites with excellent stability and bioavailability for the delivery of medicines to tumour tissues. This study seeks to present new views on the use of polysaccharide-based chemotherapeutics and to highlight current developments in polysaccharide-based nanomedicines for lung cancer.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- School and of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur 302017, India
| | - Gaurav Gupta
- School and of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur 302017, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
- Correspondence:
| | - Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Abdulmalik S. A. Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ronan MacLoughlin
- Research and Development, Science and Emerging Technologies, Aerogen, IDA Business Park, Dangan, H91 HE94 Galway, Ireland
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, D02 PN40 Dublin, Ireland
| | - Brian G Oliver
- School of Life Sciences, Faculty of Science, University of Technology, Sydney, NSW 2007, Australia
- Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW 2000, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
36
|
Zhao M, Qin Y, Fan Y, Wang X, Yi H, Cui X, Li F, Wang W. Structural Characterization and Glycosaminoglycan Impurities Analysis of Chondroitin Sulfate from Chinese Sturgeon. Polymers (Basel) 2022; 14:polym14235311. [PMID: 36501703 PMCID: PMC9736423 DOI: 10.3390/polym14235311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Chinese sturgeon was an endangered cartilaginous fish. The success of artificial breeding has promoted it to a food fish and it is now beginning to provide a new source of cartilage for the extraction of chondroitin sulfate (CS). However, the structural characteristics of sturgeon CS from different tissues remain to be determined in more detail. In this study, CSs from the head, backbone, and fin cartilage of Chinese sturgeon were individually purified and characterized for the first time. The molecular weights, disaccharide compositions, and oligosaccharide sulfation patterns of these CSs are significantly different. Fin CS (SFCS), rich in GlcUAα1-3GalNAc(4S), has the biggest molecular weight (26.5 kDa). In contrast, head CS (SHCS) has a molecular weight of 21.0 kDa and is rich in GlcUAα1-3GalNAc(6S). Most features of backbone CS (SBCS) are between the former two. Other glycosaminoglycan impurities in these three sturgeon-derived CSs were lower than those in other common commercial CSs. All three CSs have no effect on the activity of thrombin or Factor Xa in the presence of antithrombin III. Hence, Chinese sturgeon cartilage is a potential source for the preparation of CSs with different features for food and pharmaceutical applications.
Collapse
Affiliation(s)
- Mei Zhao
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, China
| | - Yong Qin
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, China
| | - Ying Fan
- Qingdao Special Servicemen Recuperation Center of PLA Navy, Qingdao 266071, China
| | - Xu Wang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, China
| | - Haixin Yi
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, China
| | - Xiaoyu Cui
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, China
| | - Fuchuan Li
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, China
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
- Correspondence: (F.L.); (W.W.); Tel.: +86-532-58631406 (F.L. & W.W.); Fax: +86-532-58631405 (F.L. & W.W.)
| | - Wenshuang Wang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, China
- Correspondence: (F.L.); (W.W.); Tel.: +86-532-58631406 (F.L. & W.W.); Fax: +86-532-58631405 (F.L. & W.W.)
| |
Collapse
|
37
|
Syx D, Delbaere S, Bui C, De Clercq A, Larson G, Mizumoto S, Kosho T, Fournel-Gigleux S, Malfait F. Alterations in glycosaminoglycan biosynthesis associated with the Ehlers-Danlos syndromes. Am J Physiol Cell Physiol 2022; 323:C1843-C1859. [PMID: 35993517 DOI: 10.1152/ajpcell.00127.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Proteoglycans consist of a core protein substituted with one or more glycosaminoglycan (GAG) chains and execute versatile functions during many physiological and pathological processes. The biosynthesis of GAG chains is a complex process that depends on the concerted action of a variety of enzymes. Central to the biosynthesis of heparan sulfate (HS) and chondroitin sulfate/dermatan sulfate (CS/DS) GAG chains is the formation of a tetrasaccharide linker region followed by biosynthesis of HS or CS/DS-specific repeating disaccharide units, which then undergo modifications and epimerization. The importance of these biosynthetic enzymes is illustrated by several severe pleiotropic disorders that arise upon their deficiency. The Ehlers-Danlos syndromes (EDS) constitute a special group among these disorders. Although most EDS types are caused by defects in fibrillar types I, III, or V collagen, or their modifying enzymes, a few rare EDS types have recently been linked to defects in GAG biosynthesis. Spondylodysplastic EDS (spEDS) is caused by defective formation of the tetrasaccharide linker region, either due to β4GalT7 or β3GalT6 deficiency, whereas musculocontractural EDS (mcEDS) results from deficiency of D4ST1 or DS-epi1, impairing DS formation. This narrative review highlights the consequences of GAG deficiency in these specific EDS types, summarizes the associated phenotypic features and the molecular spectrum of reported pathogenic variants, and defines the current knowledge on the underlying pathophysiological mechanisms based on studies in patient-derived material, in vitro analyses, and animal models.
Collapse
Affiliation(s)
- Delfien Syx
- Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Sarah Delbaere
- Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University, Ghent, Belgium
| | | | - Adelbert De Clercq
- Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University, Ghent, Belgium.,Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Ostend, Belgium
| | - Göran Larson
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Laboratory of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Tomoki Kosho
- Center for Medical Genetics, Shinshu University Hospital, Matsumoto, Japan.,Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto, Japan
| | | | - Fransiska Malfait
- Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University, Ghent, Belgium
| |
Collapse
|
38
|
Wang Q, Chi L. The Alterations and Roles of Glycosaminoglycans in Human Diseases. Polymers (Basel) 2022; 14:polym14225014. [PMID: 36433141 PMCID: PMC9694910 DOI: 10.3390/polym14225014] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Glycosaminoglycans (GAGs) are a heterogeneous family of linear polysaccharides which are composed of a repeating disaccharide unit. They are also linked to core proteins to form proteoglycans (PGs). GAGs/PGs are major components of the cell surface and the extracellular matrix (ECM), and they display critical roles in development, normal function, and damage response in the body. Some properties (such as expression quantity, molecular weight, and sulfation pattern) of GAGs may be altered under pathological conditions. Due to the close connection between these properties and the function of GAGs/PGs, the alterations are often associated with enormous changes in the physiological/pathological status of cells and organs. Therefore, these GAGs/PGs may serve as marker molecules of disease. This review aimed to investigate the structural alterations and roles of GAGs/PGs in a range of diseases, such as atherosclerosis, cancer, diabetes, neurodegenerative disease, and virus infection. It is hoped to provide a reference for disease diagnosis, monitoring, prognosis, and drug development.
Collapse
|
39
|
Wang W, Mao H, Li S, Zhang L, Yang L, Yin R, Zhao J. Branched Chondroitin Sulfate Oligosaccharides Derived from the Sea Cucumber Acaudina molpadioides Stimulate Neurite Outgrowth. Mar Drugs 2022; 20:md20100653. [PMID: 36286476 PMCID: PMC9605008 DOI: 10.3390/md20100653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Fucosylated chondroitin sulfate (FCS) from the sea cucumber Acaudina molpadioides (FCSAm) is the first one that was reported to be branched by disaccharide GalNAc-(α1,2)-Fuc3S4S (15%) and sulfated Fuc (85%). Here, four size-homogenous fractions, and seven oligosaccharides, were separated from its β-eliminative depolymerized products. Detailed NMR spectroscopic and MS analyses revealed the oligomers as hexa-, hepta-, octa-, and nonasaccharide, which further confirmed the precise structure of native FCSAm: it was composed of the CS-E-like backbone with a full content of sulfation at O-4 and O-6 of GalNAc in the disaccharide repeating unit, and the branches consisting of sulfated fucose (Fuc4S and Fuc2S4S) and heterodisaccharide [GalNAc-(α1,2)-Fuc3S4S]. Pharmacologically, FCSAm and its depolymerized derivatives, including fractions and oligosaccharides, showed potent neurite outgrowth-promoting activity in a chain length-dependent manner. A comparison of analyses among oligosaccharides revealed that the sulfate pattern of the Fuc branches, instead of the heterodisaccharide, could affect the promotion intensity. Fuc2S4S and the saccharide length endowed the neurite outgrowth stimulation activity most.
Collapse
Affiliation(s)
- Weili Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Mao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sujuan Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longlong Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Lian Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Ronghua Yin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
- Correspondence: (R.Y.); (J.Z.)
| | - Jinhua Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
- Correspondence: (R.Y.); (J.Z.)
| |
Collapse
|
40
|
Urbi Z, Azmi NS, Ming LC, Hossain MS. A Concise Review of Extraction and Characterization of Chondroitin Sulphate from Fish and Fish Wastes for Pharmacological Application. Curr Issues Mol Biol 2022; 44:3905-3922. [PMID: 36135180 PMCID: PMC9497668 DOI: 10.3390/cimb44090268] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/20/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Chondroitin sulphate (CS) is one of the most predominant glycosaminoglycans (GAGs) available in the extracellular matrix of tissues. It has many health benefits, including relief from osteoarthritis, antiviral properties, tissue engineering applications, and use in skin care, which have increased its commercial demand in recent years. The quest for CS sources exponentially increased due to several shortcomings of porcine, bovine, and other animal sources. Fish and fish wastes (i.e., fins, scales, skeleton, bone, and cartilage) are suitable sources of CS as they are low cost, easy to handle, and readily available. However, the lack of a standard isolation and characterization technique makes CS production challenging, particularly concerning the yield of pure GAGs. Many studies imply that enzyme-based extraction is more effective than chemical extraction. Critical evaluation of the existing extraction, isolation, and characterization techniques is crucial for establishing an optimized protocol of CS production from fish sources. The current techniques depend on tissue hydrolysis, protein removal, and purification. Therefore, this study critically evaluated and discussed the extraction, isolation, and characterization methods of CS from fish or fish wastes. Biosynthesis and pharmacological applications of CS were also critically reviewed and discussed. Our assessment suggests that CS could be a potential drug candidate; however, clinical studies should be conducted to warrant its effectiveness.
Collapse
Affiliation(s)
- Zannat Urbi
- Department of Industrial Biotechnology, Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Kuantan 26300, Malaysia
| | - Nina Suhaity Azmi
- Department of Industrial Biotechnology, Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Kuantan 26300, Malaysia
- Correspondence: (N.S.A.); (M.S.H.); Tel.: +60-12798-0497 (N.S.A.); +60-116960-9649 (M.S.H.)
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
| | - Md. Sanower Hossain
- Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan 25200, Malaysia
- Faculty of Science, Sristy College of Tangail, Tangail 1900, Bangladesh
- Correspondence: (N.S.A.); (M.S.H.); Tel.: +60-12798-0497 (N.S.A.); +60-116960-9649 (M.S.H.)
| |
Collapse
|
41
|
Chang WM, Li LJ, Chiu IA, Lai TC, Chang YC, Tsai HF, Yang CJ, Huang MS, Su CY, Lai TL, Jan YH, Hsiao M. The aberrant cancer metabolic gene carbohydrate sulfotransferase 11 promotes non-small cell lung cancer cell metastasis via dysregulation of ceruloplasmin and intracellular iron balance. Transl Oncol 2022; 25:101508. [PMID: 35985204 PMCID: PMC9418604 DOI: 10.1016/j.tranon.2022.101508] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022] Open
Abstract
Glycosaminoglycan biosynthesis pathway and CHST11, a key chondroitin sulfate biosynthetic enzyme, were up-regulated in NSCLC metastasis. The enzymatic activity of CHST11 confers NSCLC metastasis in vitro and in vivo. CHST11 and its downstream effector, CP facilities NSCLC metastasis in vitro and in vivo. CHST11 promotes NSCLC metastasis via CP-iron metabolism. The CHST11-CP-iron axis may serve as a new therapeutic target against NSCLC metastasis.
Aberrant metabolism has been proposed as one of the emerging hallmarks of cancer. However, the interplay between metabolic disorders and cancer metastasis remains to be defined. To explore the sophisticated metabolic processes during metastatic progression, we analyzed differentially expressed metabolic genes during the epithelial-mesenchymal transition (EMT) of lung cancer cells and defined the EMT-associated metabolic gene signature in lung adenocarcinoma patients. We found that the glycosaminoglycan (GAG)-chondroitin sulfate (CS) biosynthesis pathway was upregulated in the mesenchymal state of lung cancer and associated with poor prognosis. Notably, carbohydrate sulfotransferase 11 (CHST11), a crucial CS biosynthetic enzyme, was confirmed as a poor prognosis marker in non-small cell lung cancer (NSCLC) by immunohistochemical analysis. Moreover, forced CHST11 expression promoted invasion and metastasis, which was abolished by depleting the final product of CS biosynthesis by chondroitinase ABC treatment or active-domain negative CHST11. In vivo metastasis mouse models showed that CHST11 increased lung colonies number and sulfated mucosubstance expression. Furthermore, microarray analysis revealed ceruloplasmin (CP), which facilitated iron metabolism, was the downstream effector of CHST11. CP was upregulated by CHST11 through interferon-γ signaling pathway stimulation and related to unfavorable prognosis. Both forced CP expression and long-term iron treatment increased invasion and lung colony formation. Furthermore, we found 3-AP, an iron chelator, hampered the CHST11-induced metastasis. Our findings implicate that the novel CHST11-CP-iron axis enhances EMT and may serve as a new therapeutic target to treat NSCLC patients.
Collapse
Affiliation(s)
- Wei-Min Chang
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Li-Jie Li
- PhD. Program in School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan; Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - I-An Chiu
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tsung-Ching Lai
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | | | - Chih-Jen Yang
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Shyan Huang
- Department of Internal Medicine, E-Da Cancer Hospital, Kaohsiung, Taiwan
| | - Chia-Yi Su
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | - Yi-Hua Jan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan; Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan; PhD. Program of Translational Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
42
|
Xu C, Xing R, Liu S, Qin Y, Li K, Yu H, Li P. The synthesis, characterization and immunological activity of mucopolysaccharide-quaternized chitosan nanoparticles. Int J Biol Macromol 2022; 220:258-266. [PMID: 35981674 DOI: 10.1016/j.ijbiomac.2022.08.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022]
Abstract
In this study, nanoparticles were prepared by using positively charged quaternized chitosan and negatively charged mucopolysaccharide such as chondroitin sulfate, heparin and hyaluronic acid. The nanoparticles have a stable nanostructure with particle size in 336.2-424.5 nm, potential in 18.5-31.1 mV and polydispersity index PDI of 0.172-0.335. Moreover, their encapsulation efficiency was 68.77 % and 64.89 %, and they have low endotoxin and good stability. It can significantly promote the expression of IL-6, TNF-α, and IL-1β of DCS cells. Moreover, the in vivo immune activity of heparin-quaternized chitosan-OVA nanoparticles against BALB/C mice was showed that, the nanoparticles could significantly promote the secretion of immunoglobulins in mice including IgG1 and IgG2. And nanoparticle also can promote the production of immune factors. Meanwhile, the expression of immune factor genes was also elevated. Furthermore, the results of tissue section experiments showed that the nanoparticles are safety of the body.
Collapse
Affiliation(s)
- Chaojie Xu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China.
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Yukun Qin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Kecheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Huahua Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China.
| |
Collapse
|
43
|
Anti-Tumor Effect of Parasitic Protozoans. Bioengineering (Basel) 2022; 9:bioengineering9080395. [PMID: 36004920 PMCID: PMC9405343 DOI: 10.3390/bioengineering9080395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 11/22/2022] Open
Abstract
The immune system may aberrantly silence when against “altered self”, which consequently may develop into malignancies. With the development of tumor immunology and molecular biology, the deepened understanding of the relationship between parasites and tumors shifts the attitude towards parasitic pathogens from elimination to utilization. In recent years, the antitumor impact implemented by protozoan parasites and the derived products has been confirmed. The immune system is activated and enhanced by some protozoan parasites, thereby inhibiting tumor growth, angiogenesis, and metastasis in many animal models. In this work, we reviewed the available information on the antitumor effect of parasitic infection or induced by parasitic antigen, as well as the involved immune mechanisms that modulate cancer progression. Despite the fact that clinical trials of the protozoan parasites against tumors are limited and the specific mechanisms of the effect on tumors are not totally clear, the use of genetically modified protozoan parasites and derived molecules combined with chemotherapy could be an important element for promoting antitumor treatment in the future.
Collapse
|
44
|
Di Muzio L, Paolicelli P, Trilli J, Petralito S, Carriero VC, Brandelli C, Spano M, Sobolev AP, Mannina L, Casadei MA. Insights into the reaction of chondroitin sulfate with glycidyl methacrylate: 1D and 2D NMR investigation. Carbohydr Polym 2022; 296:119916. [DOI: 10.1016/j.carbpol.2022.119916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/04/2022] [Accepted: 07/21/2022] [Indexed: 11/02/2022]
|
45
|
De Masi R, Orlando S. GANAB and N-Glycans Substrates Are Relevant in Human Physiology, Polycystic Pathology and Multiple Sclerosis: A Review. Int J Mol Sci 2022; 23:7373. [PMID: 35806376 PMCID: PMC9266668 DOI: 10.3390/ijms23137373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022] Open
Abstract
Glycans are one of the four fundamental macromolecular components of living matter, and they are highly regulated in the cell. Their functions are metabolic, structural and modulatory. In particular, ER resident N-glycans participate with the Glc3Man9GlcNAc2 highly conserved sequence, in protein folding process, where the physiological balance between glycosylation/deglycosylation on the innermost glucose residue takes place, according GANAB/UGGT concentration ratio. However, under abnormal conditions, the cell adapts to the glucose availability by adopting an aerobic or anaerobic regimen of glycolysis, or to external stimuli through internal or external recognition patterns, so it responds to pathogenic noxa with unfolded protein response (UPR). UPR can affect Multiple Sclerosis (MS) and several neurological and metabolic diseases via the BiP stress sensor, resulting in ATF6, PERK and IRE1 activation. Furthermore, the abnormal GANAB expression has been observed in MS, systemic lupus erythematous, male germinal epithelium and predisposed highly replicating cells of the kidney tubules and bile ducts. The latter is the case of Polycystic Liver Disease (PCLD) and Polycystic Kidney Disease (PCKD), where genetically induced GANAB loss affects polycystin-1 (PC1) and polycystin-2 (PC2), resulting in altered protein quality control and cyst formation phenomenon. Our topics resume the role of glycans in cell physiology, highlighting the N-glycans one, as a substrate of GANAB, which is an emerging key molecule in MS and other human pathologies.
Collapse
Affiliation(s)
- Roberto De Masi
- Complex Operative Unit of Neurology, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy;
- Laboratory of Neuroproteomics, Multiple Sclerosis Centre, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy
| | - Stefania Orlando
- Laboratory of Neuroproteomics, Multiple Sclerosis Centre, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy
| |
Collapse
|
46
|
Mubuchi A, Katsumoto S, Tsuboi M, Ishikawa H, Nomura Y, Higashi K, Miyata S. Isolation and structural characterization of bioactive glycosaminoglycans from the green-lipped mussel Perna canaliculus. Biochem Biophys Res Commun 2022; 612:50-56. [DOI: 10.1016/j.bbrc.2022.04.095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 04/21/2022] [Indexed: 11/29/2022]
|
47
|
Baidoe-Ansah D, Sakib S, Jia S, Mirzapourdelavar H, Strackeljan L, Fischer A, Aleshin S, Kaushik R, Dityatev A. Aging-Associated Changes in Cognition, Expression and Epigenetic Regulation of Chondroitin 6-Sulfotransferase Chst3. Cells 2022; 11:2033. [PMID: 35805117 PMCID: PMC9266018 DOI: 10.3390/cells11132033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 11/20/2022] Open
Abstract
Understanding changes in the expression of genes involved in regulating various components of the neural extracellular matrix (ECM) during aging can provide an insight into aging-associated decline in synaptic and cognitive functions. Hence, in this study, we compared the expression levels of ECM-related genes in the hippocampus of young, aged and very aged mice. ECM gene expression was downregulated, despite the accumulation of ECM proteoglycans during aging. The most robustly downregulated gene was carbohydrate sulfotransferase 3 (Chst3), the enzyme responsible for the chondroitin 6-sulfation (C6S) of proteoglycans. Further analysis of epigenetic mechanisms revealed a decrease in H3K4me3, three methyl groups at the lysine 4 on the histone H3 proteins, associated with the promoter region of the Chst3 gene, resulting in the downregulation of Chst3 expression in non-neuronal cells. Cluster analysis revealed that the expression of lecticans-substrates of CHST3-is tightly co-regulated with this enzyme. These changes in ECM-related genes were accompanied by an age-confounded decline in cognitive performance. Despite the co-directional impairment in cognitive function and average Chst3 expression in the studied age groups, at the individual level we found a negative correlation between mRNA levels of Chst3 and cognitive performance within the very aged group. An analysis of correlations between the expression of ECM-related genes and cognitive performance in novel object versus novel location recognition tasks revealed an apparent trade-off in the positive gene effects in one task at the expense of another. Further analysis revealed that, despite the reduction in the Chst3 mRNA, the expression of CHST3 protein is increased in glial cells but not in neurons, which, however, does not lead to changes in the absolute level of C6S and even results in the decrease in C6S in perineuronal, perisynaptic and periaxonal ECM relative to the elevated expression of its protein carrier versican.
Collapse
Affiliation(s)
- David Baidoe-Ansah
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany; (D.B.-A.); (S.J.); (H.M.); (L.S.); (A.D.)
| | - Sadman Sakib
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, 37075 Goettingen, Germany; (S.S.); (A.F.)
| | - Shaobo Jia
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany; (D.B.-A.); (S.J.); (H.M.); (L.S.); (A.D.)
| | - Hadi Mirzapourdelavar
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany; (D.B.-A.); (S.J.); (H.M.); (L.S.); (A.D.)
| | - Luisa Strackeljan
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany; (D.B.-A.); (S.J.); (H.M.); (L.S.); (A.D.)
| | - Andre Fischer
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, 37075 Goettingen, Germany; (S.S.); (A.F.)
- Clinic for Psychiatry and Psychotherapy, University Medical Center Goettingen (UMG), 37075 Goettingen, Germany
- Cluster of Excellence MBExC, University of Göttingen, 37075 Goettingen, Germany
| | - Stepan Aleshin
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany; (D.B.-A.); (S.J.); (H.M.); (L.S.); (A.D.)
| | - Rahul Kaushik
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany; (D.B.-A.); (S.J.); (H.M.); (L.S.); (A.D.)
- Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany
| | - Alexander Dityatev
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany; (D.B.-A.); (S.J.); (H.M.); (L.S.); (A.D.)
- Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany
- Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
| |
Collapse
|
48
|
Fawcett JW, Kwok JCF. Proteoglycan Sulphation in the Function of the Mature Central Nervous System. Front Integr Neurosci 2022; 16:895493. [PMID: 35712345 PMCID: PMC9195417 DOI: 10.3389/fnint.2022.895493] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Chondroitin sulphate and heparan sulphate proteoglycans (CSPGS and HSPGs) are found throughout the central nervous system (CNS). CSPGs are ubiquitous in the diffuse extracellular matrix (ECM) between cells and are a major component of perineuronal nets (PNNs), the condensed ECM present around some neurons. HSPGs are more associated with the surface of neurons and glia, with synapses and in the PNNs. Both CSPGs and HSPGs consist of a protein core to which are attached repeating disaccharide chains modified by sulphation at various positions. The sequence of sulphation gives the chains a unique structure and local charge density. These sulphation codes govern the binding properties and biological effects of the proteoglycans. CSPGs are sulphated along their length, the main forms being 6- and 4-sulphated. In general, the chondroitin 4-sulphates are inhibitory to cell attachment and migration, while chondroitin 6-sulphates are more permissive. HSPGs tend to be sulphated in isolated motifs with un-sulphated regions in between. The sulphation patterns of HS motifs and of CS glycan chains govern their binding to the PTPsigma receptor and binding of many effector molecules to the proteoglycans, such as growth factors, morphogens, and molecules involved in neurodegenerative disease. Sulphation patterns change as a result of injury, inflammation and ageing. For CSPGs, attention has focussed on PNNs and their role in the control of plasticity and memory, and on the soluble CSPGs upregulated in glial scar tissue that can inhibit axon regeneration. HSPGs have key roles in development, regulating cell migration and axon growth. In the adult CNS, they have been associated with tau aggregation and amyloid-beta processing, synaptogenesis, growth factor signalling and as a component of the stem cell niche. These functions of CSPGs and HSPGs are strongly influenced by the pattern of sulphation of the glycan chains, the sulphation code. This review focuses on these sulphation patterns and their effects on the function of the mature CNS.
Collapse
Affiliation(s)
- James W. Fawcett
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom
- Centre for Reconstructive Neuroscience, Institute for Experimental Medicine Czech Academy of Science (CAS), Prague, Czechia
| | - Jessica C. F. Kwok
- Centre for Reconstructive Neuroscience, Institute for Experimental Medicine Czech Academy of Science (CAS), Prague, Czechia
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
49
|
Basu A, Patel NG, Nicholson ED, Weiss RJ. Spatiotemporal diversity and regulation of glycosaminoglycans in cell homeostasis and human disease. Am J Physiol Cell Physiol 2022; 322:C849-C864. [PMID: 35294848 PMCID: PMC9037703 DOI: 10.1152/ajpcell.00085.2022] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Glycosaminoglycans (GAGs) are long, linear polysaccharides that are ubiquitously expressed on the cell surface and in the extracellular matrix of all animal cells. These complex carbohydrates play important roles in many cellular processes and have been implicated in many disease states, including cancer, inflammation, and genetic disorders. GAGs are among the most complex molecules in biology with enormous information content and extensive structural and functional heterogeneity. GAG biosynthesis is a nontemplate-driven process facilitated by a large group of biosynthetic enzymes that have been extensively characterized over the past few decades. Interestingly, the expression of the enzymes and the consequent structure and function of the polysaccharide chains can vary temporally and spatially during development and under certain pathophysiological conditions, suggesting their assembly is tightly regulated in cells. Due to their many key roles in cell homeostasis and disease, there is much interest in targeting the assembly and function of GAGs as a therapeutic approach. Recent advances in genomics and GAG analytical techniques have pushed the field and generated new perspectives on the regulation of mammalian glycosylation. This review highlights the spatiotemporal diversity of GAGs and the mechanisms guiding their assembly and function in human biology and disease.
Collapse
Affiliation(s)
- Amrita Basu
- 1Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia
| | - Neil G. Patel
- 1Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia,2Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia
| | - Elijah D. Nicholson
- 2Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia
| | - Ryan J. Weiss
- 1Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia,2Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia
| |
Collapse
|
50
|
Grabarics M, Lettow M, Kirschbaum C, Greis K, Manz C, Pagel K. Mass Spectrometry-Based Techniques to Elucidate the Sugar Code. Chem Rev 2022; 122:7840-7908. [PMID: 34491038 PMCID: PMC9052437 DOI: 10.1021/acs.chemrev.1c00380] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Indexed: 12/22/2022]
Abstract
Cells encode information in the sequence of biopolymers, such as nucleic acids, proteins, and glycans. Although glycans are essential to all living organisms, surprisingly little is known about the "sugar code" and the biological roles of these molecules. The reason glycobiology lags behind its counterparts dealing with nucleic acids and proteins lies in the complexity of carbohydrate structures, which renders their analysis extremely challenging. Building blocks that may differ only in the configuration of a single stereocenter, combined with the vast possibilities to connect monosaccharide units, lead to an immense variety of isomers, which poses a formidable challenge to conventional mass spectrometry. In recent years, however, a combination of innovative ion activation methods, commercialization of ion mobility-mass spectrometry, progress in gas-phase ion spectroscopy, and advances in computational chemistry have led to a revolution in mass spectrometry-based glycan analysis. The present review focuses on the above techniques that expanded the traditional glycomics toolkit and provided spectacular insight into the structure of these fascinating biomolecules. To emphasize the specific challenges associated with them, major classes of mammalian glycans are discussed in separate sections. By doing so, we aim to put the spotlight on the most important element of glycobiology: the glycans themselves.
Collapse
Affiliation(s)
- Márkó Grabarics
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Maike Lettow
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Carla Kirschbaum
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Kim Greis
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Christian Manz
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Kevin Pagel
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| |
Collapse
|