1
|
Yang D, Chiang CH, Wititsuwannakul T, Brooks CL, Zimmerman PM, Narayan ARH. Engineering the Reaction Pathway of a Non-heme Iron Oxygenase Using Ancestral Sequence Reconstruction. J Am Chem Soc 2024; 146:34352-34363. [PMID: 39642058 DOI: 10.1021/jacs.4c08420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
Non-heme iron (FeII), α-ketoglutarate (α-KG)-dependent oxygenases are a family of enzymes that catalyze an array of transformations that cascade forward after the formation of radical intermediates. Achieving control over the reaction pathway is highly valuable and a necessary step toward broadening the applications of these biocatalysts. Numerous approaches have been used to engineer the reaction pathway of FeII/α-KG-dependent enzymes, including site-directed mutagenesis, DNA shuffling, and site-saturation mutagenesis, among others. Herein, we showcase a novel ancestral sequence reconstruction (ASR)-guided strategy in which evolutionary information is used to pinpoint the residues critical for controlling different reaction pathways. Following this, a combinatorial site-directed mutagenesis approach was used to quickly evaluate the importance of each residue. These results were validated using a DNA shuffling strategy and through quantum mechanical/molecular mechanical (QM/MM) simulations. Using this approach, we identified a set of active site residues together with a key hydrogen bond between the substrate and an active site residue, which are crucial for dictating the dominant reaction pathway. Ultimately, we successfully converted both extant and ancestral enzymes that perform benzylic hydroxylation into variants that can catalyze an oxidative ring-expansion reaction, showcasing the potential of utilizing ASR to accelerate the reaction pathway engineering within enzyme families that share common structural and mechanistic features.
Collapse
Affiliation(s)
- Di Yang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Life Science Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Chang-Hwa Chiang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Life Science Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Charles L Brooks
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Life Science Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Enhanced Program in Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Paul M Zimmerman
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Alison R H Narayan
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Life Science Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
2
|
Hagiwara Y, Mihara Y, Motoyama T, Ito S, Nakano S. Design of ancestral mammalian alkaline phosphatase bearing high stability and productivity. Appl Environ Microbiol 2024; 90:e0183124. [PMID: 39545738 DOI: 10.1128/aem.01831-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/13/2024] [Indexed: 11/17/2024] Open
Abstract
Mammalian alkaline phosphatase (AP) is widely used in diagnostics and molecular biology but its widespread use is impaired because it is difficult to express in Escherichia coli and has low thermostability. To overcome these challenges, we employed sequence-based protein redesign methods, specifically full consensus design (FCD) and ancestral sequence reconstruction (ASR), to create APs with enhanced properties. Biochemical analyses revealed that these newly designed APs exhibited improved levels of expression in their active form and increased thermostability compared to bovine intestinal AP isozyme II (bIAPII), without impeding enzymatic activity. Notably, the activity in culture broth of the designed APs was an order of magnitude higher than that of bIAPII, and their thermal stability increased by 13°C-17°C (measured as T50). We also assessed 28 single-point mutants of bIAPII to identify regions influencing thermostability and expression level; these mutations were common in the engineered APs but not in bIAPII. Specific mutations, such as T413E and G402S, enhanced thermostability, whereas increasing the expression level required multiple mutations. This suggests that a synergistic effect is required to enhance the expression level. Mutations enhancing thermostability were located in the crown domain, while those improving expression were close to the dimer interface, indicating distinct mechanisms underpinning these enhancements. IMPORTANCE Sequence-based protein redesign methods, such as full consensus design (FCD) and ancestral sequence reconstruction (ASR), have the potential to construct new enzymes utilizing protein sequence data registered in a rapidly expanding sequence database. The high thermostability of these enzymes would expand their application in diagnostics and molecular biology. These enzymes have also demonstrated a high level of active expression by Escherichia coli. These characteristics make these APs attractive candidates for industrial application. In addition, different amino acid residues are primarily responsible for thermal stability and active expression, suggesting important implications for strategies for designing enzymes by FCD and ASR.
Collapse
Affiliation(s)
- Yusuke Hagiwara
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Japan
| | - Yasuhiro Mihara
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Japan
| | - Tomoharu Motoyama
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Sohei Ito
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Shogo Nakano
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
- PREST, Japan Science and Technology Agency, Shizuoka, Japan
| |
Collapse
|
3
|
Wu J, Wang Z, Zeng M, He Z, Chen Q, Chen J. Comprehensive Understanding of Laboratory Evolution for Food Enzymes: From Design to Screening Innovations. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24928-24943. [PMID: 39495102 DOI: 10.1021/acs.jafc.4c08453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
In the field of food processing, enzymes play a pivotal role in improving product quality and flavor, and extending shelf life. However, the exposure of traditional food enzymes to high temperatures during processing often leads to a decrease in activity or even inactivation, limiting the effectiveness of their application under high-temperature conditions. Therefore, the modification of thermostability and activity of enzymes to adapt to extreme conditions through protein engineering has become a key way to improve the efficiency and economic benefits of industrial production. Directed evolution and semirational design strategies in the laboratory have proven to be broadly applicable frameworks for biochemical researchers in the food field, including those who are beginners. In this review, we systematically summarize semirational design strategies and high-throughput screening strategies, and introduce some intuitive computer simulation software to improve the thermostability and enzyme activity of food enzymes. The application of these strategies and techniques provides a comprehensive guide for the optimization of food enzymes. In addition, the latest hot topics of genetically engineered food enzymes in the field of application are discussed.
Collapse
Affiliation(s)
- Junhao Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Zhiyong He
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Jie Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
4
|
Ochiai Y, Clifton B, Le Coz M, Terenzio M, Laurino P. SUPREM: an engineered non-site-specific m6A RNA methyltransferase with highly improved efficiency. Nucleic Acids Res 2024; 52:12158-12172. [PMID: 39417589 PMCID: PMC11551740 DOI: 10.1093/nar/gkae887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
N 6-Methyladenine (m6A) RNA methylation plays a key role in RNA processing and translational regulation, influencing both normal physiological and pathological processes. Yet, current techniques for studying RNA methylation struggle to isolate the effects of individual m6A modifications. Engineering of RNA methyltransferases (RNA MTases) could enable development of improved synthetic biology tools to manipulate RNA methylation, but it is challenging due to limited understanding of structure-function relationships in RNA MTases. Herein, using ancestral sequence reconstruction, we explore the sequence space of the bacterial DNA methyltransferase EcoGII (M.EcoGII), a promising target for protein engineering due to its lack of sequence specificity and its residual activity on RNA. We thereby created an efficient non-specific RNA MTase termed SUPer RNA EcoGII Methyltransferase (SUPREM), which exhibits 8-fold higher expression levels, 7°C higher thermostability and 12-fold greater m6A RNA methylation activity compared with M.EcoGII. Immunofluorescent staining and quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis confirmed SUPREM's higher RNA methylation activity compared with M.EcoGII in mammalian cells. Additionally, Nanopore direct RNA sequencing highlighted that SUPREM is capable of methylating a larger number of RNA methylation sites than M.EcoGII. Through phylogenetic and mutational analysis, we identified a critical residue for the enhanced RNA methylation activity of SUPREM. Collectively, our findings indicate that SUPREM holds promise as a versatile tool for in vivo RNA methylation and labeling.
Collapse
Affiliation(s)
- Yoshiki Ochiai
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna, Kunigami District, Okinawa 904-0495, Japan
| | - Ben E Clifton
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna, Kunigami District, Okinawa 904-0495, Japan
| | - Madeleine Le Coz
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna, Kunigami District, Okinawa 904-0495, Japan
| | - Marco Terenzio
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna, Kunigami District, Okinawa 904-0495, Japan
| | - Paola Laurino
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna, Kunigami District, Okinawa 904-0495, Japan
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| |
Collapse
|
5
|
Redelings BD, Holmes I, Lunter G, Pupko T, Anisimova M. Insertions and Deletions: Computational Methods, Evolutionary Dynamics, and Biological Applications. Mol Biol Evol 2024; 41:msae177. [PMID: 39172750 PMCID: PMC11385596 DOI: 10.1093/molbev/msae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 08/24/2024] Open
Abstract
Insertions and deletions constitute the second most important source of natural genomic variation. Insertions and deletions make up to 25% of genomic variants in humans and are involved in complex evolutionary processes including genomic rearrangements, adaptation, and speciation. Recent advances in long-read sequencing technologies allow detailed inference of insertions and deletion variation in species and populations. Yet, despite their importance, evolutionary studies have traditionally ignored or mishandled insertions and deletions due to a lack of comprehensive methodologies and statistical models of insertions and deletion dynamics. Here, we discuss methods for describing insertions and deletion variation and modeling insertions and deletions over evolutionary time. We provide practical advice for tackling insertions and deletions in genomic sequences and illustrate our discussion with examples of insertions and deletion-induced effects in human and other natural populations and their contribution to evolutionary processes. We outline promising directions for future developments in statistical methodologies that would allow researchers to analyze insertions and deletion variation and their effects in large genomic data sets and to incorporate insertions and deletions in evolutionary inference.
Collapse
Affiliation(s)
| | - Ian Holmes
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
- Calico Life Sciences LLC, South San Francisco, CA 94080, USA
| | - Gerton Lunter
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen 9713 GZ, The Netherlands
| | - Tal Pupko
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Maria Anisimova
- Institute of Computational Life Sciences, Zurich University of Applied Sciences, Wädenswil, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
6
|
Wang Z, Shen Y, Cao L, Li H, Li H, Song L, Ma X, Dong C. Enhancing the Catalytic Activity of Geranylgeranyl Diphosphate Synthase through Ancestral Sequence Reconstruction and Semirational Design. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19187-19196. [PMID: 39137390 DOI: 10.1021/acs.jafc.4c05029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Geranylgeranyl diphosphate synthase (GGPPS) is the crucial bottleneck in carotenoid biosynthesis. However, low activity limits the broad application of GGPPS. In this study, OsGGPPS1 in rice was engineered based on ancestral sequence reconstruction (ASR) and semirational design to improve the catalytic performances of existing GGPPS. The better mutant of A22R/A26P with improved enzyme activity was generated based on ASR. Additionally, the improved enzyme activity of mutants as V162A/M218S/F227Y was designed using a semirational design. The combinatorial assembly of the d-OsGGPPS1 mutant (A22R/A26P/V162A/M218S/F227Y) exhibited higher conversion of IPP and each cosubstrate of DMAPP for 9.8-fold in GPP production, GPP for 6.4-fold in FPP production, and FPP for 1.4-fold in GGPP production relative to wild-type OsGGPPS1 at 25 °C, which showed higher conversion than wild-type OsGGPPS1 at temperatures as high as 50 °C. The successful design of OsGGPPS1 was representative of protein engineering, which will shed new light on GGPPS engineering and active plant pigment resource utilization.
Collapse
Affiliation(s)
- Zhiwen Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Yunpeng Shen
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Longyun Cao
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Hao Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Haifeng Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Linjie Song
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Xintian Ma
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Chen Dong
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| |
Collapse
|
7
|
Jiang Z, Huang YH, Kaas Q, Craik DJ, Wang CK. Structure and Activity of Reconstructed Pseudo-Ancestral Cyclotides. ChemMedChem 2024; 19:e202400124. [PMID: 38632079 DOI: 10.1002/cmdc.202400124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/19/2024]
Abstract
Cyclotides are cyclic peptides that are promising scaffolds for the design of drug candidates and chemical tools. However, despite there being hundreds of reported cyclotides, drug design studies have commonly focussed on a select few prototypic examples. Here, we explored whether ancestral sequence reconstruction could be used to generate new cyclotides for further optimization. We show that the reconstructed 'pseudo-ancestral' sequences, named Ancy-m (for the ancestral cyclotide of the Möbius sub-family) and Ancy-b (for the bracelet sub-family), have well-defined structures like their extant members, comprising the core structural feature of a cyclic cystine knot. This motif underpins efforts to re-engineer cyclotides for agrochemical and therapeutic applications. We further show that the reconstructed sequences are resistant to temperatures approaching boiling, bind to phosphatidyl-ethanolamine lipid bilayers at micromolar affinity, and inhibit the growth of insect cells at inhibitory concentrations in the micromolar range. Interestingly, the Ancy-b cyclotide had a higher oxidative folding yield than its comparator cyclotide cyO2, which belongs to the bracelet cyclotide subfamily known to be notoriously difficult to fold. Overall, this study provides new cyclotide sequences not yet found naturally that could be valuable starting points for the understanding of cyclotide evolution and for further optimization as drug leads.
Collapse
Affiliation(s)
- Zhihao Jiang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Yen-Hua Huang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Conan K Wang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld, 4072, Australia
| |
Collapse
|
8
|
Kantroo P, Wagner GP, Machta BB. Pseudo-perplexity in One Fell Swoop for Protein Fitness Estimation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602754. [PMID: 39026871 PMCID: PMC11257618 DOI: 10.1101/2024.07.09.602754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Protein language models trained on the masked language modeling objective learn to predict the identity of hidden amino acid residues within a sequence using the remaining observable sequence as context. They do so by embedding the residues into a high dimensional space that encapsulates the relevant contextual cues. These embedding vectors serve as an informative context-sensitive representation that not only aids with the defined training objective, but can also be used for other tasks by downstream models. We propose a scheme to use the embeddings of an unmasked sequence to estimate the corresponding masked probability vectors for all the positions in a single forward pass through the language model. This One Fell Swoop (OFS) approach allows us to efficiently estimate the pseudo-perplexity of the sequence, a measure of the model's uncertainty in its predictions, that can also serve as a fitness estimate. We find that ESM2 OFS pseudo-perplexity performs nearly as well as the true pseudo-perplexity at fitness estimation, and more notably it defines a new state of the art on the ProteinGym Indels benchmark. The strong performance of the fitness measure prompted us to investigate if it could be used to detect the elevated stability reported in reconstructed ancestral sequences. We find that this measure ranks ancestral reconstructions as more fit than extant sequences. Finally, we show that the computational efficiency of the technique allows for the use of Monte Carlo methods that can rapidly explore functional sequence space.
Collapse
Affiliation(s)
- Pranav Kantroo
- Computational Biology and Bioinformatics Program, Yale University, New Haven, CT-06520, USA
- Quantitative Biology Institute, Yale University, New Haven, CT-06520, USA
| | - Günter P. Wagner
- Emeritus, Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT-06520, USA
- Department of Evolutionary Biology, University of Vienna, Djerassi Platz 1, A-1030 Vienna, Austria
- Hagler Institute for Advanced Studies, Texas A&M, College Station, TX-77843, USA
| | - Benjamin B. Machta
- Department of Physics, Yale University, New Haven, CT-06520, USA
- Quantitative Biology Institute, Yale University, New Haven, CT-06520, USA
| |
Collapse
|
9
|
Li Z, Lou M, Sun C, Li Z. Engineering a Robust UDP-Glucose Pyrophosphorylase for Enhanced Biocatalytic Synthesis via ProteinMPNN and Ancestral Sequence Reconstruction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15284-15292. [PMID: 38918953 DOI: 10.1021/acs.jafc.4c03126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
UDP-glucose is a key metabolite in carbohydrate metabolism and plays a vital role in glycosyl transfer reactions. Its significance spans across the food and agricultural industries. This study focuses on UDP-glucose synthesis via multienzyme catalysis using dextrin, incorporating UTP production and ATP regeneration modules to reduce costs. To address thermal stability limitations of the key UDP-glucose pyrophosphorylase (UGP), a deep learning-based protein sequence design approach and ancestral sequence reconstruction are employed to engineer a thermally stable UGP variant. The engineered UGP variant is significantly 500-fold more thermally stable at 60 °C and has a half-life of 49.8 h compared to the wild-type enzyme. MD simulations and umbrella sampling calculations provide insights into the mechanism behind the enhanced thermal stability. Experimental validation demonstrates that the engineered UGP variant can produce 52.6 mM UDP-glucose within 6 h in an in vitro cascade reaction. This study offers practical insights for efficient UDP-glucose synthesis methods.
Collapse
Affiliation(s)
- Zonglin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Miaozi Lou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chuanqi Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhimin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
10
|
Guan A, He Z, Wang X, Jia ZJ, Qin J. Engineering the next-generation synthetic cell factory driven by protein engineering. Biotechnol Adv 2024; 73:108366. [PMID: 38663492 DOI: 10.1016/j.biotechadv.2024.108366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/21/2024] [Accepted: 04/22/2024] [Indexed: 05/09/2024]
Abstract
Synthetic cell factory offers substantial advantages in economically efficient production of biofuels, chemicals, and pharmaceutical compounds. However, to create a high-performance synthetic cell factory, precise regulation of cellular material and energy flux is essential. In this context, protein components including enzymes, transcription factor-based biosensors and transporters play pivotal roles. Protein engineering aims to create novel protein variants with desired properties by modifying or designing protein sequences. This review focuses on summarizing the latest advancements of protein engineering in optimizing various aspects of synthetic cell factory, including: enhancing enzyme activity to eliminate production bottlenecks, altering enzyme selectivity to steer metabolic pathways towards desired products, modifying enzyme promiscuity to explore innovative routes, and improving the efficiency of transporters. Furthermore, the utilization of protein engineering to modify protein-based biosensors accelerates evolutionary process and optimizes the regulation of metabolic pathways. The remaining challenges and future opportunities in this field are also discussed.
Collapse
Affiliation(s)
- Ailin Guan
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Zixi He
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xin Wang
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhi-Jun Jia
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jiufu Qin
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
11
|
Zhou L, Tao C, Shen X, Sun X, Wang J, Yuan Q. Unlocking the potential of enzyme engineering via rational computational design strategies. Biotechnol Adv 2024; 73:108376. [PMID: 38740355 DOI: 10.1016/j.biotechadv.2024.108376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/27/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Enzymes play a pivotal role in various industries by enabling efficient, eco-friendly, and sustainable chemical processes. However, the low turnover rates and poor substrate selectivity of enzymes limit their large-scale applications. Rational computational enzyme design, facilitated by computational algorithms, offers a more targeted and less labor-intensive approach. There has been notable advancement in employing rational computational protein engineering strategies to overcome these issues, it has not been comprehensively reviewed so far. This article reviews recent developments in rational computational enzyme design, categorizing them into three types: structure-based, sequence-based, and data-driven machine learning computational design. Case studies are presented to demonstrate successful enhancements in catalytic activity, stability, and substrate selectivity. Lastly, the article provides a thorough analysis of these approaches, highlights existing challenges and potential solutions, and offers insights into future development directions.
Collapse
Affiliation(s)
- Lei Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chunmeng Tao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaolin Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jia Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
12
|
Carrera-Pacheco SE, Mueller A, Puente-Pineda JA, Zúñiga-Miranda J, Guamán LP. Designing cytochrome P450 enzymes for use in cancer gene therapy. Front Bioeng Biotechnol 2024; 12:1405466. [PMID: 38860140 PMCID: PMC11164052 DOI: 10.3389/fbioe.2024.1405466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/30/2024] [Indexed: 06/12/2024] Open
Abstract
Cancer is a significant global socioeconomic burden, as millions of new cases and deaths occur annually. In 2020, almost 10 million cancer deaths were recorded worldwide. Advancements in cancer gene therapy have revolutionized the landscape of cancer treatment. An approach with promising potential for cancer gene therapy is introducing genes to cancer cells that encode for chemotherapy prodrug metabolizing enzymes, such as Cytochrome P450 (CYP) enzymes, which can contribute to the effective elimination of cancer cells. This can be achieved through gene-directed enzyme prodrug therapy (GDEPT). CYP enzymes can be genetically engineered to improve anticancer prodrug conversion to its active metabolites and to minimize chemotherapy side effects by reducing the prodrug dosage. Rational design, directed evolution, and phylogenetic methods are some approaches to developing tailored CYP enzymes for cancer therapy. Here, we provide a compilation of genetic modifications performed on CYP enzymes aiming to build highly efficient therapeutic genes capable of bio-activating different chemotherapeutic prodrugs. Additionally, this review summarizes promising preclinical and clinical trials highlighting engineered CYP enzymes' potential in GDEPT. Finally, the challenges, limitations, and future directions of using CYP enzymes for GDEPT in cancer gene therapy are discussed.
Collapse
Affiliation(s)
- Saskya E. Carrera-Pacheco
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | | | | | | | | |
Collapse
|
13
|
Joho Y, Royan S, Caputo AT, Newton S, Peat TS, Newman J, Jackson C, Ardevol A. Enhancing PET Degrading Enzymes: A Combinatory Approach. Chembiochem 2024; 25:e202400084. [PMID: 38584134 DOI: 10.1002/cbic.202400084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Plastic waste has become a substantial environmental issue. A potential strategy to mitigate this problem is to use enzymatic hydrolysis of plastics to depolymerize post-consumer waste and allow it to be reused. Over the last few decades, the use of enzymatic PET-degrading enzymes has shown promise as a great solution for creating a circular plastic waste economy. PsPETase from Piscinibacter sakaiensis has been identified as an enzyme with tremendous potential for such applications. But to improve its efficiency, enzyme engineering has been applied aiming at enhancing its thermal stability, enzymatic activity, and ease of production. Here, we combine different strategies such as structure-based rational design, ancestral sequence reconstruction and machine learning to engineer a more highly active Combi-PETase variant with a melting temperature of 70 °C and optimal performance at 60 °C. Furthermore, this study demonstrates that these approaches, commonly used in other works of enzyme engineering, are most effective when utilized in combination, enabling the improvement of enzymes for industrial applications.
Collapse
Affiliation(s)
- Yvonne Joho
- Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, Victoria, 3168, Australia
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- CSIRO Advanced Engineering Biology Future Science Platform, GPO Box 1700, Canberra, ACT 2601, Australia
| | - Santana Royan
- Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, Victoria, 3168, Australia
| | - Alessandro T Caputo
- Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, Victoria, 3168, Australia
| | - Sophia Newton
- Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, Victoria, 3168, Australia
| | - Thomas S Peat
- School of Biotechnology & Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Janet Newman
- School of Biotechnology & Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Colin Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- ARC Centre of Excellence for Innovations in Synthetic Biology, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Albert Ardevol
- Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, Victoria, 3168, Australia
- CSIRO Advanced Engineering Biology Future Science Platform, GPO Box 1700, Canberra, ACT 2601, Australia
| |
Collapse
|
14
|
Syrén PO. Ancestral terpene cyclases: From fundamental science to applications in biosynthesis. Methods Enzymol 2024; 699:311-341. [PMID: 38942509 DOI: 10.1016/bs.mie.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Terpenes constitute one of the largest family of natural products with potent applications as renewable platform chemicals and medicines. The low activity, selectivity and stability displayed by terpene biosynthetic machineries can constitute an obstacle towards achieving expedient biosynthesis of terpenoids in processes that adhere to the 12 principles of green chemistry. Accordingly, engineering of terpene synthase enzymes is a prerequisite for industrial biotechnology applications, but obstructed by their complex catalysis that depend on reactive carbocationic intermediates that are prone to undergo bifurcation mechanisms. Rational redesign of terpene synthases can be tedious and requires high-resolution structural information, which is not always available. Furthermore, it has proven difficult to link sequence space of terpene synthase enzymes to specific product profiles. Herein, the author shows how ancestral sequence reconstruction (ASR) can favorably be used as a protein engineering tool in the redesign of terpene synthases without the need of a structure, and without excessive screening. A detailed workflow of ASR is presented along with associated limitations, with a focus on applying this methodology on terpene synthases. From selected examples of both class I and II enzymes, the author advocates that ancestral terpene cyclases constitute valuable assets to shed light on terpene-synthase catalysis and in enabling accelerated biosynthesis.
Collapse
Affiliation(s)
- Per-Olof Syrén
- School of Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden; School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
15
|
Jones BS, Ross CM, Foley G, Pozhydaieva N, Sharratt JW, Kress N, Seibt LS, Thomson RES, Gumulya Y, Hayes MA, Gillam EMJ, Flitsch SL. Engineering Biocatalysts for the C-H Activation of Fatty Acids by Ancestral Sequence Reconstruction. Angew Chem Int Ed Engl 2024; 63:e202314869. [PMID: 38163289 DOI: 10.1002/anie.202314869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
Selective, one-step C-H activation of fatty acids from biomass is an attractive concept in sustainable chemistry. Biocatalysis has shown promise for generating high-value hydroxy acids, but to date enzyme discovery has relied on laborious screening and produced limited hits, which predominantly oxidise the subterminal positions of fatty acids. Herein we show that ancestral sequence reconstruction (ASR) is an effective tool to explore the sequence-activity landscape of a family of multidomain, self-sufficient P450 monooxygenases. We resurrected 11 catalytically active CYP116B ancestors, each with a unique regioselectivity fingerprint that varied from subterminal in the older ancestors to mid-chain in the lineage leading to the extant, P450-TT. In lineages leading to extant enzymes in thermophiles, thermostability increased from ancestral to extant forms, as expected if thermophily had arisen de novo. Our studies show that ASR can be applied to multidomain enzymes to develop active, self-sufficient monooxygenases as regioselective biocatalysts for fatty acid hydroxylation.
Collapse
Affiliation(s)
- Bethan S Jones
- School of Chemistry, The University of Manchester, Manchester Institute of Biotechnology (MIB), 131 Princess Street, Manchester, M1 7DN, UK
| | - Connie M Ross
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, 4072, Australia
| | - Gabriel Foley
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, 4072, Australia
| | - Nadiia Pozhydaieva
- School of Chemistry, The University of Manchester, Manchester Institute of Biotechnology (MIB), 131 Princess Street, Manchester, M1 7DN, UK
| | - Joseph W Sharratt
- School of Chemistry, The University of Manchester, Manchester Institute of Biotechnology (MIB), 131 Princess Street, Manchester, M1 7DN, UK
| | - Nico Kress
- School of Chemistry, The University of Manchester, Manchester Institute of Biotechnology (MIB), 131 Princess Street, Manchester, M1 7DN, UK
| | - Lisa S Seibt
- School of Chemistry, The University of Manchester, Manchester Institute of Biotechnology (MIB), 131 Princess Street, Manchester, M1 7DN, UK
| | - Raine E S Thomson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, 4072, Australia
| | - Yosephine Gumulya
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, 4072, Australia
| | - Martin A Hayes
- Compound Synthesis and Management, Discovery Sciences, R&D, AstraZeneca, Gothenburg, SE
| | - Elizabeth M J Gillam
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, 4072, Australia
| | - Sabine L Flitsch
- School of Chemistry, The University of Manchester, Manchester Institute of Biotechnology (MIB), 131 Princess Street, Manchester, M1 7DN, UK
| |
Collapse
|
16
|
Johnson SR, Fu X, Viknander S, Goldin C, Monaco S, Zelezniak A, Yang KK. Computational scoring and experimental evaluation of enzymes generated by neural networks. Nat Biotechnol 2024:10.1038/s41587-024-02214-2. [PMID: 38653796 DOI: 10.1038/s41587-024-02214-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/20/2024] [Indexed: 04/25/2024]
Abstract
In recent years, generative protein sequence models have been developed to sample novel sequences. However, predicting whether generated proteins will fold and function remains challenging. We evaluate a set of 20 diverse computational metrics to assess the quality of enzyme sequences produced by three contrasting generative models: ancestral sequence reconstruction, a generative adversarial network and a protein language model. Focusing on two enzyme families, we expressed and purified over 500 natural and generated sequences with 70-90% identity to the most similar natural sequences to benchmark computational metrics for predicting in vitro enzyme activity. Over three rounds of experiments, we developed a computational filter that improved the rate of experimental success by 50-150%. The proposed metrics and models will drive protein engineering research by serving as a benchmark for generative protein sequence models and helping to select active variants for experimental testing.
Collapse
Affiliation(s)
| | - Xiaozhi Fu
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Sandra Viknander
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Clara Goldin
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | | | - Aleksej Zelezniak
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden.
- Institute of Biotechnology, Life Sciences Centre, Vilnius University, Vilnius, Lithuania.
- Randall Centre for Cell & Molecular Biophysics, King's College London, Guy's Campus, London, UK.
| | | |
Collapse
|
17
|
Hu G, Hong X, Zhu M, Lei L, Han Z, Meng Y, Yang J. Improving the Quality of Wheat Flour Bread by a Thermophilic Xylanase with Ultra Activity and Stability Reconstructed by Ancestral Sequence and Computational-Aided Analysis. Molecules 2024; 29:1895. [PMID: 38675714 PMCID: PMC11054572 DOI: 10.3390/molecules29081895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Xylanase is an essential component used to hydrolyze the xylan in wheat flour to enhance the quality of bread. Presently, cold-activated xylanase is popularly utilized to aid in the development of dough. In this study, ancestral sequence reconstruction and molecular docking of xylanase and wheat xylan were used to enhance the activity and stability of a thermophilic xylanase. The results indicated that the ancestral enzyme TmxN3 exhibited significantly improved activity and thermal stability. The Vmax increased by 2.7 times, and the catalytic efficiency (Kcat/Km) increased by 1.7 times in comparison to TmxB. After being incubated at 100 °C for 120 min, it still retained 87.3% of its activity, and the half-life in 100 °C was 330 min, while the wild type xylanase was only 55 min. This resulted in an improved shelf life of bread, while adding TmxN3 considerably enhanced its quality with excellent volume and reduced hardness, chewiness, and gumminess. The results showed that the hardness was reduced by 55.2%, the chewiness was reduced by 40.11%, and the gumminess was reduced by 53.52%. To facilitate its industrial application, we further optimized the production conditions in a 5L bioreactor, and the xylanase activity reached 1.52 × 106 U/mL culture.
Collapse
Affiliation(s)
- Guoshuai Hu
- Pilot Base of Food Microbial Resources Utilization of Hubei Province, College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (G.H.); (M.Z.)
| | - Xizhi Hong
- Pilot Base of Food Microbial Resources Utilization of Hubei Province, College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (G.H.); (M.Z.)
| | - Meixin Zhu
- Pilot Base of Food Microbial Resources Utilization of Hubei Province, College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (G.H.); (M.Z.)
| | - Lei Lei
- Pilot Base of Food Microbial Resources Utilization of Hubei Province, College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (G.H.); (M.Z.)
| | - Zhenggang Han
- Pilot Base of Food Microbial Resources Utilization of Hubei Province, College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (G.H.); (M.Z.)
| | - Yong Meng
- Mianyang Habio Bioengineering Co., Ltd., Mianyang 621000, China;
| | - Jiangke Yang
- Pilot Base of Food Microbial Resources Utilization of Hubei Province, College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (G.H.); (M.Z.)
| |
Collapse
|
18
|
Meger AT, Spence MA, Sandhu M, Matthews D, Chen J, Jackson CJ, Raman S. Rugged fitness landscapes minimize promiscuity in the evolution of transcriptional repressors. Cell Syst 2024; 15:374-387.e6. [PMID: 38537640 PMCID: PMC11299162 DOI: 10.1016/j.cels.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 09/08/2023] [Accepted: 03/05/2024] [Indexed: 04/20/2024]
Abstract
How a protein's function influences the shape of its fitness landscape, smooth or rugged, is a fundamental question in evolutionary biochemistry. Smooth landscapes arise when incremental mutational steps lead to a progressive change in function, as commonly seen in enzymes and binding proteins. On the other hand, rugged landscapes are poorly understood because of the inherent unpredictability of how sequence changes affect function. Here, we experimentally characterize the entire sequence phylogeny, comprising 1,158 extant and ancestral sequences, of the DNA-binding domain (DBD) of the LacI/GalR transcriptional repressor family. Our analysis revealed an extremely rugged landscape with rapid switching of specificity, even between adjacent nodes. Further, the ruggedness arises due to the necessity of the repressor to simultaneously evolve specificity for asymmetric operators and disfavors potentially adverse regulatory crosstalk. Our study provides fundamental insight into evolutionary, molecular, and biophysical rules of genetic regulation through the lens of fitness landscapes.
Collapse
Affiliation(s)
- Anthony T Meger
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Matthew A Spence
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Mahakaran Sandhu
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Dana Matthews
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Jackie Chen
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia; ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia; ARC Centre of Excellence for Innovations in Synthetic Biology, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| | - Srivatsan Raman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
19
|
Sennett MA, Theobald DL. Extant Sequence Reconstruction: The Accuracy of Ancestral Sequence Reconstructions Evaluated by Extant Sequence Cross-Validation. J Mol Evol 2024; 92:181-206. [PMID: 38502220 PMCID: PMC10978691 DOI: 10.1007/s00239-024-10162-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/20/2024] [Indexed: 03/21/2024]
Abstract
Ancestral sequence reconstruction (ASR) is a phylogenetic method widely used to analyze the properties of ancient biomolecules and to elucidate mechanisms of molecular evolution. Despite its increasingly widespread application, the accuracy of ASR is currently unknown, as it is generally impossible to compare resurrected proteins to the true ancestors. Which evolutionary models are best for ASR? How accurate are the resulting inferences? Here we answer these questions using a cross-validation method to reconstruct each extant sequence in an alignment with ASR methodology, a method we term "extant sequence reconstruction" (ESR). We thus can evaluate the accuracy of ASR methodology by comparing ESR reconstructions to the corresponding known true sequences. We find that a common measure of the quality of a reconstructed sequence, the average probability, is indeed a good estimate of the fraction of correct amino acids when the evolutionary model is accurate or overparameterized. However, the average probability is a poor measure for comparing reconstructions from different models, because, surprisingly, a more accurate phylogenetic model often results in reconstructions with lower probability. While better (more predictive) models may produce reconstructions with lower sequence identity to the true sequences, better models nevertheless produce reconstructions that are more biophysically similar to true ancestors. In addition, we find that a large fraction of sequences sampled from the reconstruction distribution may have fewer errors than the single most probable (SMP) sequence reconstruction, despite the fact that the SMP has the lowest expected error of all possible sequences. Our results emphasize the importance of model selection for ASR and the usefulness of sampling sequence reconstructions for analyzing ancestral protein properties. ESR is a powerful method for validating the evolutionary models used for ASR and can be applied in practice to any phylogenetic analysis of real biological sequences. Most significantly, ESR uses ASR methodology to provide a general method by which the biophysical properties of resurrected proteins can be compared to the properties of the true protein.
Collapse
Affiliation(s)
- Michael A Sennett
- Department of Biochemistry, Brandeis University, Waltham, MA, 02453, USA
| | - Douglas L Theobald
- Department of Biochemistry, Brandeis University, Waltham, MA, 02453, USA.
| |
Collapse
|
20
|
Myrtollari K, Calderini E, Kracher D, Schöngaßner T, Galušić S, Slavica A, Taden A, Mokos D, Schrüfer A, Wirnsberger G, Gruber K, Daniel B, Kourist R. Stability Increase of Phenolic Acid Decarboxylase by a Combination of Protein and Solvent Engineering Unlocks Applications at Elevated Temperatures. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:3575-3584. [PMID: 38456190 PMCID: PMC10915792 DOI: 10.1021/acssuschemeng.3c06513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/16/2023] [Accepted: 01/25/2024] [Indexed: 03/09/2024]
Abstract
Enzymatic decarboxylation of biobased hydroxycinnamic acids gives access to phenolic styrenes for adhesive production. Phenolic acid decarboxylases are proficient enzymes that have been applied in aqueous systems, organic solvents, biphasic systems, and deep eutectic solvents, which makes stability a key feature. Stabilization of the enzyme would increase the total turnover number and thus reduce the energy consumption and waste accumulation associated with biocatalyst production. In this study, we used ancestral sequence reconstruction to generate thermostable decarboxylases. Investigation of a set of 16 ancestors resulted in the identification of a variant with an unfolding temperature of 78.1 °C and a half-life time of 45 h at 60 °C. Crystal structures were determined for three selected ancestors. Structural attributes were calculated to fit different regression models for predicting the thermal stability of variants that have not yet been experimentally explored. The models rely on hydrophobic clusters, salt bridges, hydrogen bonds, and surface properties and can identify more stable proteins out of a pool of candidates. Further stabilization was achieved by the application of mixtures of natural deep eutectic solvents and buffers. Our approach is a straightforward option for enhancing the industrial application of the decarboxylation process.
Collapse
Affiliation(s)
- Kamela Myrtollari
- Institute
of Molecular Biotechnology, Graz University
of Technology, Petersgasse
14, 8010 Graz, Austria
- Austrian
Centre of Industrial Biotechnology, ACIB GmbH, Petersgasse 14/1, 8010 Graz, Austria
- Adhesive
Technologies, Henkel AG & Co. KGaA, Henkelstr. 67, 40191 Düsseldorf, Germany
| | - Elia Calderini
- Institute
of Molecular Biotechnology, Graz University
of Technology, Petersgasse
14, 8010 Graz, Austria
| | - Daniel Kracher
- Institute
of Molecular Biotechnology, Graz University
of Technology, Petersgasse
14, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse
12/II, 8010 Graz, Austria
| | - Tobias Schöngaßner
- Institute
of Molecular Biotechnology, Graz University
of Technology, Petersgasse
14, 8010 Graz, Austria
| | - Stela Galušić
- Institute
of Molecular Biotechnology, Graz University
of Technology, Petersgasse
14, 8010 Graz, Austria
| | - Anita Slavica
- Faculty
of Food Technology and Biotechnology, Department of Biochemical Engineering, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia
| | - Andreas Taden
- Adhesive
Technologies, Henkel AG & Co. KGaA, Henkelstr. 67, 40191 Düsseldorf, Germany
| | - Daniel Mokos
- Institute
of Molecular Biosciences, University of
Graz, NAWI Graz, Humboldtstraße
50/3, 8010 Graz, Austria
| | - Anna Schrüfer
- Institute
of Molecular Biosciences, University of
Graz, NAWI Graz, Humboldtstraße
50/3, 8010 Graz, Austria
| | - Gregor Wirnsberger
- Institute
of Molecular Biosciences, University of
Graz, NAWI Graz, Humboldtstraße
50/3, 8010 Graz, Austria
| | - Karl Gruber
- BioTechMed-Graz, Mozartgasse
12/II, 8010 Graz, Austria
- Institute
of Molecular Biosciences, University of
Graz, NAWI Graz, Humboldtstraße
50/3, 8010 Graz, Austria
| | - Bastian Daniel
- BioTechMed-Graz, Mozartgasse
12/II, 8010 Graz, Austria
- Institute
of Molecular Biosciences, University of
Graz, NAWI Graz, Humboldtstraße
50/3, 8010 Graz, Austria
| | - Robert Kourist
- Institute
of Molecular Biotechnology, Graz University
of Technology, Petersgasse
14, 8010 Graz, Austria
- Austrian
Centre of Industrial Biotechnology, ACIB GmbH, Petersgasse 14/1, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse
12/II, 8010 Graz, Austria
| |
Collapse
|
21
|
Li ZL, Sun CQ, Qing ZL, Li ZM, Liu HL. Engineering the thermal stability of a polyphosphate kinase by ancestral sequence reconstruction to expand the temperature boundary for an industrially applicable ATP regeneration system. Appl Environ Microbiol 2024; 90:e0157423. [PMID: 38236018 PMCID: PMC10880597 DOI: 10.1128/aem.01574-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/06/2023] [Indexed: 01/19/2024] Open
Abstract
ATP-dependent energy-consuming enzymatic reactions are widely used in cell-free biocatalysis. However, the direct addition of large amounts of expensive ATP can greatly increase cost, and enzymatic production is often difficult to achieve as a result. Although a polyphosphate kinase (PPK)-polyphosphate-based ATP regeneration system has the potential to solve this challenge, the generally poor thermal stability of PPKs limits the widespread use of this method. In this paper, we evaluated the thermal stability of a PPK from Sulfurovum lithotrophicum (SlPPK2). After directed evolution and computation-supported design, we found that SlPPK2 is very recalcitrant and cannot acquire beneficial mutations. Inspired by the usually outstanding stability of ancestral enzymes, we reconstructed the ancestral sequence of the PPK family and used it as a guide to construct three heat-stable variants of SlPPK2, of which the L35F/T144S variant has a half-life of more than 14 h at 60°C. Molecular dynamics simulations were performed on all enzymes to analyze the reasons for the increased thermal stability. The results showed that mutations at these two positions act synergistically from the interior and surface of the protein, leading to a more compact structure. Finally, the robustness of the L35F/T144S variant was verified in the synthesis of nucleotides at high temperature. In practice, the use of this high-temperature ATP regeneration system can effectively avoid byproduct accumulation. Our work extends the temperature boundary of ATP regeneration and has great potential for industrial applications.IMPORTANCEATP regeneration is an important basic applied study in the field of cell-free biocatalysis. Polyphosphate kinase (PPK) is an enzyme tool widely used for energy regeneration during enzymatic reactions. However, the thermal stability of the PPKs reported to date that can efficiently regenerate ATP is usually poor, which greatly limits their application. In this study, the thermal stability of a difficult-to-engineer PPK from Sulfurovum lithotrophicum was improved, guided by an ancestral sequence reconstruction strategy. The optimal variant has a 4.5-fold longer half-life at 60°C than the wild-type enzyme, thus enabling the extension of the temperature boundary for ATP regeneration. The ability of this variant to regenerate ATP was well demonstrated during high-temperature enzymatic production of nucleotides.
Collapse
Affiliation(s)
- Zong-Lin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Chuan-Qi Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhou-Lei Qing
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhi-Min Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Shanghai, China
| | - Hong-Lai Liu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
22
|
Zhang C, Gao W, Song Z, Dong M, Lin H, Zhu G, Lian M, Xiao Y, Lu F, Wang F, Liu Y. Computation-Aided Phylogeny-Oriented Engineering of β-Xylosidase: Modification of "Blades" to Enhance Stability and Activity for the Bioconversion of Hemicellulose to Produce Xylose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2678-2688. [PMID: 38273455 DOI: 10.1021/acs.jafc.3c08518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Hemicellulose is a highly abundant, ubiquitous, and renewable natural polysaccharide, widely present in agricultural and forestry residues. The enzymatic hydrolysis of hemicellulose has generally been accomplished using β-xylosidases, but concomitantly increasing the stability and activity of these enzymes remains challenging. Here, we rationally engineered a β-xylosidase from Bacillus clausii to enhance its stability by computation-aided design combining ancestral sequence reconstruction and structural analysis. The resulting combinatorial mutant rXYLOM25I/S51L/S79E exhibited highly improved robustness, with a 6.9-fold increase of the half-life at 60 °C, while also exhibiting improved pH stability, catalytic efficiency, and hydrolytic activity. Structural analysis demonstrated that additional interactions among the propeller blades in the catalytic module resulted in a much more compact protein structure and induced the rearrangement of the opposing catalytic pocket to mediate the observed improvement of activity. Our work provides a robust biocatalyst for the hydrolysis of agricultural waste to produce various high-value-added chemicals and biofuels.
Collapse
Affiliation(s)
- Chenchen Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Wenjing Gao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Zhaolin Song
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Mengjun Dong
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Huixin Lin
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Gang Zhu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Mengka Lian
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Yunjie Xiao
- School of Life Sciences, Tianjin University, Tianjin 300072, P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Fenghua Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| |
Collapse
|
23
|
Joho Y, Vongsouthi V, Gomez C, Larsen JS, Ardevol A, Jackson CJ. Improving plastic degrading enzymes via directed evolution. Protein Eng Des Sel 2024; 37:gzae009. [PMID: 38713696 PMCID: PMC11091475 DOI: 10.1093/protein/gzae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/30/2024] [Accepted: 05/05/2024] [Indexed: 05/09/2024] Open
Abstract
Plastic degrading enzymes have immense potential for use in industrial applications. Protein engineering efforts over the last decade have resulted in considerable enhancement of many properties of these enzymes. Directed evolution, a protein engineering approach that mimics the natural process of evolution in a laboratory, has been particularly useful in overcoming some of the challenges of structure-based protein engineering. For example, directed evolution has been used to improve the catalytic activity and thermostability of polyethylene terephthalate (PET)-degrading enzymes, although its use for the improvement of other desirable properties, such as solvent tolerance, has been less studied. In this review, we aim to identify some of the knowledge gaps and current challenges, and highlight recent studies related to the directed evolution of plastic-degrading enzymes.
Collapse
Affiliation(s)
- Yvonne Joho
- Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Research Way, Clayton, Victoria 3168, Australia
- Research School of Chemistry, Australian National University, Sullivans Creek Rd, Canberra, ACT 2601, Australia
- CSIRO Advanced Engineering Biology Future Science Platform, GPO Box 1700, Canberra, ACT 2601, Australia
| | - Vanessa Vongsouthi
- Research School of Chemistry, Australian National University, Sullivans Creek Rd, Canberra, ACT 2601, Australia
| | - Chloe Gomez
- Research School of Chemistry, Australian National University, Sullivans Creek Rd, Canberra, ACT 2601, Australia
| | - Joachim S Larsen
- Research School of Chemistry, Australian National University, Sullivans Creek Rd, Canberra, ACT 2601, Australia
- ARC Centre of Excellence for Synthetic Biology, Research School of Chemistry, Australian National University, Sullivans Creek Rd, Canberra, ACT 2601, Australia
| | - Albert Ardevol
- Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Research Way, Clayton, Victoria 3168, Australia
- CSIRO Advanced Engineering Biology Future Science Platform, GPO Box 1700, Canberra, ACT 2601, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Sullivans Creek Rd, Canberra, ACT 2601, Australia
- ARC Centre of Excellence for Synthetic Biology, Research School of Chemistry, Australian National University, Sullivans Creek Rd, Canberra, ACT 2601, Australia
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Sullivans Creek Rd, Canberra, ACT 2601, Australia
| |
Collapse
|
24
|
Kostelac A, Taborda A, Martins LO, Haltrich D. Evolution and separation of actinobacterial pyranose and C-glycoside-3-oxidases. Appl Environ Microbiol 2024; 90:e0167623. [PMID: 38179968 PMCID: PMC10807413 DOI: 10.1128/aem.01676-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/21/2023] [Indexed: 01/06/2024] Open
Abstract
FAD-dependent pyranose oxidase (POx) and C-glycoside-3-oxidase (CGOx) are both members of the glucose-methanol-choline superfamily of oxidoreductases and belong to the same sequence space. Pyranose oxidases had been studied for their oxidation of monosaccharides such as D-glucose, but recently, a bacterial C-glycoside-3-oxidase that is phylogenetically related to POx and that reacts with C-glycosides such as carminic acid, mangiferin or puerarin has been described. Since these actinobacterial CGOx enzymes belong to the same sequence space as bacterial POx, they must have evolved from the same ancestor. Here, we performed a phylogenetic analysis of actinobacterial sequences and resurrected seven ancestral enzymes of the POx/CGOx sequence space to study the evolutionary trajectory of substrate preferences for monosaccharides and C-glycosides. Clade I, with its dimeric member POx from Kitasatospora aureofaciens, shows strict preference for monosaccharides (D-glucose and D-xylose) and does not react with any of the glycosides tested. No extant member of clade II has been studied to date. The two extant members of clades III and IV, monomeric POx/CGOx from Pseudoarthrobacter siccitolerans and Streptomyces canus, oxidized both monosaccharides as well as various C-glycosides (homoorientin, isovitexin, mangiferin, and puerarin). Steady-state kinetic parameters of several clades III and IV ancestral enzymes indicate that the generalist ancestor N35 slowly evolved to present-day enzymes with a much higher preference for C-glycosides than monosaccharides. Based on structural predictions of ancestors, we hypothesize that the strict specificity of bacterial clade I POx (and also fungal POx) is the result of oligomerization, which in turn results from the evolution of protein segments that were shown to be important for oligomerization, the arm, and the head domain.IMPORTANCEC-Glycosides often form active compounds in various plants. Breakage of the C-C bond in these glycosides to release the aglycone is challenging and proceeds via a two-step reaction, the oxidation of the sugar and subsequent cleavage of the C-C bond. Recently, an enzyme from a soil bacterium, FAD-dependent C-glycoside-3-oxidase (CGOx), was shown to catalyze the initial oxidation reaction. Here, we show that CGOx belongs to the same sequence space as pyranose oxidase (POx), and that an actinobacterial ancestor of the POx/CGOx family evolved into four clades, two of which show a high preference for C-glycosides.
Collapse
Affiliation(s)
- Anja Kostelac
- Department of Food Science and Technology, BOKU—University of Natural Resources and Life Sciences, Vienna, Austria
- Doctoral Programme BioToP—Biomolecular Technology of Proteins, BOKU—University of Natural Resources and Life Sciences, Vienna, Austria
| | - André Taborda
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Lígia O. Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Dietmar Haltrich
- Department of Food Science and Technology, BOKU—University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
25
|
Xu SY, Zhou L, Xu Y, Hong HY, Dai C, Wang YJ, Zheng YG. Recent advances in structure-based enzyme engineering for functional reconstruction. Biotechnol Bioeng 2023; 120:3427-3445. [PMID: 37638646 DOI: 10.1002/bit.28540] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/27/2023] [Accepted: 08/15/2023] [Indexed: 08/29/2023]
Abstract
Structural information can help engineer enzymes. Usually, specific amino acids in particular regions are targeted for functional reconstruction to enhance the catalytic performance, including activity, stereoselectivity, and thermostability. Appropriate selection of target sites is the key to structure-based design, which requires elucidation of the structure-function relationships. Here, we summarize the mutations of residues in different specific regions, including active center, access tunnels, and flexible loops, on fine-tuning the catalytic performance of enzymes, and discuss the effects of altering the local structural environment on the functions. In addition, we keep up with the recent progress of structure-based approaches for enzyme engineering, aiming to provide some guidance on how to take advantage of the structural information.
Collapse
Affiliation(s)
- Shen-Yuan Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
| | - Lei Zhou
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
| | - Ying Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
| | - Han-Yue Hong
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
| | - Chen Dai
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
| | - Ya-Jun Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
26
|
Nicoll CR, Massari M, Fraaije MW, Mascotti ML, Mattevi A. Impact of ancestral sequence reconstruction on mechanistic and structural enzymology. Curr Opin Struct Biol 2023; 82:102669. [PMID: 37544113 DOI: 10.1016/j.sbi.2023.102669] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/19/2023] [Accepted: 07/10/2023] [Indexed: 08/08/2023]
Abstract
Ancestral sequence reconstruction (ASR) provides insight into the changes within a protein sequence across evolution. More specifically, it can illustrate how specific amino acid changes give rise to different phenotypes within a protein family. Over the last few decades it has established itself as a powerful technique for revealing molecular common denominators that govern enzyme function. Here, we describe the strength of ASR in unveiling catalytic mechanisms and emerging phenotypes for a range of different proteins, also highlighting biotechnological applications the methodology can provide.
Collapse
Affiliation(s)
- Callum R Nicoll
- Department of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Marta Massari
- Department of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Marco W Fraaije
- Molecular Enzymology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747, AG Groningen, the Netherlands. https://twitter.com/fraaije1
| | - Maria Laura Mascotti
- Molecular Enzymology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747, AG Groningen, the Netherlands; IMIBIO-SL CONICET, Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de los Andes 950, D5700HHW, San Luis, Argentina
| | - Andrea Mattevi
- Department of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy.
| |
Collapse
|
27
|
D'Amico RN, Boehr DD. Allostery, engineering and inhibition of tryptophan synthase. Curr Opin Struct Biol 2023; 82:102657. [PMID: 37467527 DOI: 10.1016/j.sbi.2023.102657] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/21/2023]
Abstract
The final two steps of tryptophan biosynthesis are catalyzed by the enzyme tryptophan synthase (TS), composed of alpha (αTS) and beta (βTS) subunits. Recently, experimental and computational methods have mapped "allosteric networks" that connect the αTS and βTS active sites. In αTS, allosteric networks change across the catalytic cycle, which might help drive the conformational changes associated with its function. Directed evolution studies to increase catalytic function and expand the substrate profile of stand-alone βTS have also revealed the importance of αTS in modulating the conformational changes in βTS. These studies also serve as a foundation for the development of TS inhibitors, which can find utility against Mycobacterium tuberculosis and other bacterial pathogens.
Collapse
Affiliation(s)
- Rebecca N D'Amico
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA, 16802
| | - David D Boehr
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA, 16802.
| |
Collapse
|
28
|
Kawamura Y, Ishida C, Miyata R, Miyata A, Hayashi S, Fujinami D, Ito S, Nakano S. Structural and functional analysis of hyper-thermostable ancestral L-amino acid oxidase that can convert Trp derivatives to D-forms by chemoenzymatic reaction. Commun Chem 2023; 6:200. [PMID: 37737277 PMCID: PMC10517122 DOI: 10.1038/s42004-023-01005-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
Production of D-amino acids (D-AAs) on a large-scale enables to provide precursors of peptide therapeutics. In this study, we designed a novel L-amino acid oxidase, HTAncLAAO2, by ancestral sequence reconstruction, exhibiting high thermostability and long-term stability. The crystal structure of HTAncLAAO2 was determined at 2.2 Å by X-ray crystallography, revealing that the enzyme has an octameric form like a "ninja-star" feature. Enzymatic property analysis demonstrated that HTAncLAAO2 exhibits three-order larger kcat/Km values towards four L-AAs (L-Phe, L-Leu, L-Met, and L-Ile) than that of L-Trp. Through screening the variants, we obtained the HTAncLAAO2(W220A) variant, which shows a > 6-fold increase in kcat value toward L-Trp compared to the original enzyme. This variant applies to synthesizing enantio-pure D-Trp derivatives from L- or rac-forms at a preparative scale. Given its excellent properties, HTAncLAAO2 would be a starting point for designing novel oxidases with high activity toward various amines and AAs.
Collapse
Affiliation(s)
- Yui Kawamura
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Chiharu Ishida
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Ryo Miyata
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology, 2217-14 Hayashi-cho, Takamatsu, Kagawa, 761-0395, Japan
| | - Azusa Miyata
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Seiichiro Hayashi
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Daisuke Fujinami
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Sohei Ito
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Shogo Nakano
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
- PREST, Japan Science and Technology Agency, Saitama, Japan.
| |
Collapse
|
29
|
Iritani Y, Ishikawa H, Mizuno M, Mizutani Y. Heme Pocket Structure and Its Functional Implications in an Ancestral Globin Protein. Biochemistry 2023; 62:2727-2737. [PMID: 37647623 DOI: 10.1021/acs.biochem.3c00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Proteins have undergone evolutionary processes to achieve optimal stability, increased functionality, and novel functions. Comparative analysis of existent and ancestral proteins provides insights into the factors that influence protein stability and function. Ancestral sequence reconstruction allows us to deduce the amino acid sequences of ancestral proteins. Here, we present the structural and functional characteristics of an ancestral protein, AncMH, reconstructed to be the last common ancestor of hemoglobins and myoglobins. Our findings reveal that AncMH harbors heme and that the heme binds oxygen. Furthermore, we demonstrate that the ferrous heme in AncMH is pentacoordinated, similar to that of human adult hemoglobin and horse myoglobin. A detailed comparison of the heme pocket structure indicates that the heme pocket in AncMH is more similar to that of hemoglobin than that of myoglobin. However, the autoxidation of AncMH is faster than that of both hemoglobin and myoglobin. Collectively, our results suggest that ancestral proteins of hemoglobins and myoglobins evolved in steps, including the hexa- to pentacoordination transition, followed by stabilization of the oxygen-bound form.
Collapse
Affiliation(s)
- Yu Iritani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Haruto Ishikawa
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Misao Mizuno
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
30
|
Buda K, Miton CM, Fan XC, Tokuriki N. Molecular determinants of protein evolvability. Trends Biochem Sci 2023; 48:751-760. [PMID: 37330341 DOI: 10.1016/j.tibs.2023.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/19/2023]
Abstract
The plethora of biological functions that sustain life is rooted in the remarkable evolvability of proteins. An emerging view highlights the importance of a protein's initial state in dictating evolutionary success. A deeper comprehension of the mechanisms that govern the evolvability of these initial states can provide invaluable insights into protein evolution. In this review, we describe several molecular determinants of protein evolvability, unveiled by experimental evolution and ancestral sequence reconstruction studies. We further discuss how genetic variation and epistasis can promote or constrain functional innovation and suggest putative underlying mechanisms. By establishing a clear framework for these determinants, we provide potential indicators enabling the forecast of suitable evolutionary starting points and delineate molecular mechanisms in need of deeper exploration.
Collapse
Affiliation(s)
- Karol Buda
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - Charlotte M Miton
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - Xingyu Cara Fan
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - Nobuhiko Tokuriki
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
31
|
Abstract
A survey of protein databases indicates that the majority of enzymes exist in oligomeric forms, with about half of those found in the UniProt database being homodimeric. Understanding why many enzymes are in their dimeric form is imperative. Recent developments in experimental and computational techniques have allowed for a deeper comprehension of the cooperative interactions between the subunits of dimeric enzymes. This review aims to succinctly summarize these recent advancements by providing an overview of experimental and theoretical methods, as well as an understanding of cooperativity in substrate binding and the molecular mechanisms of cooperative catalysis within homodimeric enzymes. Focus is set upon the beneficial effects of dimerization and cooperative catalysis. These advancements not only provide essential case studies and theoretical support for comprehending dimeric enzyme catalysis but also serve as a foundation for designing highly efficient catalysts, such as dimeric organic catalysts. Moreover, these developments have significant implications for drug design, as exemplified by Paxlovid, which was designed for the homodimeric main protease of SARS-CoV-2.
Collapse
Affiliation(s)
- Ke-Wei Chen
- Lab of Computional Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Tian-Yu Sun
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yun-Dong Wu
- Lab of Computional Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
32
|
Cheng W, Nian B. Computer-Aided Lipase Engineering for Improving Their Stability and Activity in the Food Industry: State of the Art. Molecules 2023; 28:5848. [PMID: 37570817 PMCID: PMC10421223 DOI: 10.3390/molecules28155848] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
As some of the most widely used biocatalysts, lipases have exhibited extreme advantages in many processes, such as esterification, amidation, and transesterification reactions, which causes them to be widely used in food industrial production. However, natural lipases have drawbacks in terms of organic solvent resistance, thermostability, selectivity, etc., which limits some of their applications in the field of foods. In this systematic review, the application of lipases in various food processes was summarized. Moreover, the general structure of lipases is discussed in-depth, and the engineering strategies that can be used in lipase engineering are also summarized. The protocols of some classical methods are compared and discussed, which can provide some information about how to choose methods of lipase engineering. Thermostability engineering and solvent tolerance engineering are highlighted in this review, and the basic principles for improving thermostability and solvent tolerance are summarized. In the future, comput er-aided technology should be more emphasized in the investigation of the mechanisms of reactions catalyzed by lipases and guide the engineering of lipases. The engineering of lipase tunnels to improve the diffusion of substrates is also a promising prospect for further enhanced lipase activity and selectivity.
Collapse
Affiliation(s)
| | - Binbin Nian
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, China;
| |
Collapse
|
33
|
Lei L, Zhao L, Hou Y, Yue C, Liu P, Zheng Y, Peng W, Yang J. An Inferred Ancestral CotA Laccase with Improved Expression and Kinetic Efficiency. Int J Mol Sci 2023; 24:10901. [PMID: 37446078 DOI: 10.3390/ijms241310901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/17/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Laccases are widely used in industrial production due to their broad substrate availability and environmentally friendly nature. However, the pursuit of laccases with superior stability and increased heterogeneous expression to meet industry demands appears to be an ongoing challenge. To address this challenge, we resurrected five ancestral sequences of laccase BsCotA and their homologues. All five variants were successfully expressed in soluble and functional forms with improved expression levels in Escherichia coli. Among the five variants, three exhibited higher catalytic rates, thermal stabilities, and acidic stabilities. Notably, AncCotA2, the best-performing variant, displayed a kcat/KM of 7.5 × 105 M-1·s-1, 5.2-fold higher than that of the wild-type BsCotA, an improved thermo- and acidic stability, and better dye decolorization ability. This study provides a laccase variant with high application potential and presents a new starting point for future enzyme engineering.
Collapse
Affiliation(s)
- Lei Lei
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lijun Zhao
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yiqia Hou
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chen Yue
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Pulin Liu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yanli Zheng
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wenfang Peng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Science, Hubei University, Wuhan 430062, China
| | - Jiangke Yang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
34
|
Nandel V, Scadden J, Baker MAB. Ion-Powered Rotary Motors: Where Did They Come from and Where They Are Going? Int J Mol Sci 2023; 24:10601. [PMID: 37445779 PMCID: PMC10341847 DOI: 10.3390/ijms241310601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Molecular motors are found in many living organisms. One such molecular machine, the ion-powered rotary motor (IRM), requires the movement of ions across a membrane against a concentration gradient to drive rotational movement. The bacterial flagellar motor (BFM) is an example of an IRM which relies on ion movement through the stator proteins to generate the rotation of the flagella. There are many ions which can be used by the BFM stators to power motility and different ions can be used by a single bacterium expressing multiple stator variants. The use of ancestral sequence reconstruction (ASR) and functional analysis of reconstructed stators shows promise for understanding how these proteins evolved and when the divergence in ion use may have occurred. In this review, we discuss extant BFM stators and the ions that power them as well as recent examples of the use of ASR to study ion-channel selectivity and how this might be applied to further study of the BFM stator complex.
Collapse
Affiliation(s)
| | | | - Matthew A. B. Baker
- School of Biotechnology and Biomolecular Sciences (BABS), University of New South Wales, Sydney, NSW 2033, Australia; (V.N.); (J.S.)
| |
Collapse
|
35
|
Orlandi KN, Phillips SR, Sailer ZR, Harman JL, Harms MJ. Topiary: Pruning the manual labor from ancestral sequence reconstruction. Protein Sci 2023; 32:e4551. [PMID: 36565302 PMCID: PMC9847077 DOI: 10.1002/pro.4551] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 12/25/2022]
Abstract
Ancestral sequence reconstruction (ASR) is a powerful tool to study the evolution of proteins and thus gain deep insight into the relationships among protein sequence, structure, and function. A major barrier to its broad use is the complexity of the task: it requires multiple software packages, complex file manipulations, and expert phylogenetic knowledge. Here we introduce topiary, a software pipeline that aims to overcome this barrier. To use topiary, users prepare a spreadsheet with a handful of sequences. Topiary then: (1) Infers the taxonomic scope for the ASR study and finds relevant sequences by BLAST; (2) Does taxonomically informed sequence quality control and redundancy reduction; (3) Constructs a multiple sequence alignment; (4) Generates a maximum-likelihood gene tree; (5) Reconciles the gene tree to the species tree; (6) Reconstructs ancestral amino acid sequences; and (7) Determines branch supports. The pipeline returns annotated evolutionary trees, spreadsheets with sequences, and graphical summaries of ancestor quality. This is achieved by integrating modern phylogenetics software (Muscle5, RAxML-NG, GeneRax, and PastML) with online databases (NCBI and the Open Tree of Life). In this paper, we introduce non-expert readers to the steps required for ASR, describe the specific design choices made in topiary, provide a detailed protocol for users, and then validate the pipeline using datasets from a broad collection of protein families. Topiary is freely available for download: https://github.com/harmslab/topiary.
Collapse
Affiliation(s)
- Kona N. Orlandi
- Institute of Molecular BiologyUniversity of OregonEugeneOregonUSA
- Department of BiologyUniversity of OregonEugeneOregonUSA
| | - Sophia R. Phillips
- Institute of Molecular BiologyUniversity of OregonEugeneOregonUSA
- Department of Chemistry and BiochemistryUniversity of OregonEugeneOregonUSA
| | - Zachary R. Sailer
- Institute of Molecular BiologyUniversity of OregonEugeneOregonUSA
- Department of Chemistry and BiochemistryUniversity of OregonEugeneOregonUSA
| | - Joseph L. Harman
- Institute of Molecular BiologyUniversity of OregonEugeneOregonUSA
- Department of Chemistry and BiochemistryUniversity of OregonEugeneOregonUSA
| | - Michael J. Harms
- Institute of Molecular BiologyUniversity of OregonEugeneOregonUSA
- Department of Chemistry and BiochemistryUniversity of OregonEugeneOregonUSA
| |
Collapse
|
36
|
Clifton BE, Kozome D, Laurino P. Efficient Exploration of Sequence Space by Sequence-Guided Protein Engineering and Design. Biochemistry 2023; 62:210-220. [PMID: 35245020 DOI: 10.1021/acs.biochem.1c00757] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The rapid growth of sequence databases over the past two decades means that protein engineers faced with optimizing a protein for any given task will often have immediate access to a vast number of related protein sequences. These sequences encode information about the evolutionary history of the protein and the underlying sequence requirements to produce folded, stable, and functional protein variants. Methods that can take advantage of this information are an increasingly important part of the protein engineering tool kit. In this Perspective, we discuss the utility of sequence data in protein engineering and design, focusing on recent advances in three main areas: the use of ancestral sequence reconstruction as an engineering tool to generate thermostable and multifunctional proteins, the use of sequence data to guide engineering of multipoint mutants by structure-based computational protein design, and the use of unlabeled sequence data for unsupervised and semisupervised machine learning, allowing the generation of diverse and functional protein sequences in unexplored regions of sequence space. Altogether, these methods enable the rapid exploration of sequence space within regions enriched with functional proteins and therefore have great potential for accelerating the engineering of stable, functional, and diverse proteins for industrial and biomedical applications.
Collapse
Affiliation(s)
- Ben E Clifton
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| | - Dan Kozome
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| | - Paola Laurino
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| |
Collapse
|
37
|
Joho Y, Vongsouthi V, Spence MA, Ton J, Gomez C, Tan LL, Kaczmarski JA, Caputo AT, Royan S, Jackson CJ, Ardevol A. Ancestral Sequence Reconstruction Identifies Structural Changes Underlying the Evolution of Ideonella sakaiensis PETase and Variants with Improved Stability and Activity. Biochemistry 2023; 62:437-450. [PMID: 35951410 DOI: 10.1021/acs.biochem.2c00323] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The improved production, recycling, and removal of plastic waste, such as polyethylene terephthalate (PET), are pressing environmental and economic issues for society. Biocatalytic (enzymatic) PET depolymerization is potentially a sustainable, low-energy solution to PET recycling, especially when compared with current disposal methods such as landfills, incineration, or gasification. IsPETase has been extensively studied for its use in PET depolymerization; however, its evolution from cutinases is not fully understood, and most engineering studies have neglected the majority of the available sequence space remote from the active site. In this study, ancestral protein reconstruction (ASR) has been used to trace the evolutionary trajectory from ancient serine hydrolases to IsPETase, while ASR and the related design approach, protein repair one-stop shop, were used to identify enzyme variants with improved activity and stability. Kinetic and structural characterization of these variants reveals new insights into the evolution of PETase activity and the role of second-shell mutations around the active site. Among the designed and reconstructed variants, we identified several with melting points 20 °C higher than that of IsPETase and two variants with significantly higher catalytic activity.
Collapse
Affiliation(s)
- Yvonne Joho
- Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, Victoria 3168, Australia.,Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Vanessa Vongsouthi
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Matthew A Spence
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Jennifer Ton
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Chloe Gomez
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Li Lynn Tan
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Joe A Kaczmarski
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.,ARC Centre of Excellence for Innovations in Synthetic Biology, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Alessandro T Caputo
- Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, Victoria 3168, Australia
| | - Santana Royan
- Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, Victoria 3168, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.,ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.,ARC Centre of Excellence for Innovations in Synthetic Biology, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Albert Ardevol
- Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, Victoria 3168, Australia.,CSIRO Synthetic Biology Future Science Platform, GPO Box 1700, Canberra, ACT 2601, Australia
| |
Collapse
|
38
|
Ó'Fágáin C. Protein Stability: Enhancement and Measurement. Methods Mol Biol 2023; 2699:369-419. [PMID: 37647007 DOI: 10.1007/978-1-0716-3362-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
This chapter defines protein stability, emphasizes its importance, and surveys the field of protein stabilization, with summary reference to a selection of 2014-2021 publications. One can enhance stability, particularly by protein engineering strategies but also by chemical modification and by other means. General protocols are set out on how to measure a given protein's (i) kinetic thermal stability and (ii) oxidative stability and (iii) how to undertake chemical modification of a protein in solution.
Collapse
Affiliation(s)
- Ciarán Ó'Fágáin
- School of Biotechnology, Dublin City University, Dublin, Ireland.
| |
Collapse
|
39
|
Kajimoto S, Ohashi M, Hagiwara Y, Takahashi D, Mihara Y, Motoyama T, Ito S, Nakano S. Enzymatic Conjugation of Modified RNA Fragments by Ancestral RNA Ligase AncT4_2. Appl Environ Microbiol 2022; 88:e0167922. [PMID: 36416557 PMCID: PMC9746290 DOI: 10.1128/aem.01679-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/04/2022] [Indexed: 11/24/2022] Open
Abstract
Oligonucleotide therapeutics have great potential as a next-generation approach to treating intractable diseases. Large quantities of modified DNA/RNA containing xenobiotic nucleic acids (XNAs) must be synthesized before clinical application. In this study, the ancestral RNA ligase AncT4_2 was designed by ancestral sequence reconstruction (ASR) to perform the conjugation reaction of modified RNA fragments. AncT4_2 had superior properties to native RNA ligase 2 from T4 phage (T4Rnl2), including high productivity, a >2.5-fold-higher turnover number, and >10°C higher thermostability. One remarkable point is the broad substrate selectivity of AncT4_2; the activity of AncT4_2 toward 17 of the modified RNA fragments was higher than that of T4Rnl2. The activity was estimated by measuring the conjugation reaction of two RNA strands, 3'-OH (12 bp) and 5'-PO4 (12 bp), in which the terminal and penultimate positions of the 3'-OH fragment and the first and second positions of the 5'-PO4 fragment were substituted by 2'-fluoro, 2'-O-methyl, 2'-O-methoxyethyl, and 2'-H, respectively. The enzymatic properties of AncT4_2 allowed the enzyme to conjugate large quantities of double-stranded RNA coding for patisiran (>400 μM level), which was formed by four RNA fragments containing 2'-OMe-substituted nucleic acids. Structural analysis of modeled AncT4_2 suggested that protein dynamics were changed by mutation to Gly or indel during ASR and that this may positively impact the conjugation of modified RNA fragments with the enzyme. AncT4_2 is expected to be a key biocatalyst in synthesizing RNA therapeutics by an enzymatic reaction. IMPORTANCE RNA therapeutics is one of the next-generation medicines for treating various diseases. Our designed ancestral RNA ligase AncT4_2 exhibited excellent enzymatic properties, such as high thermal stability, productivity, specific activity, and broad substrate selectivity compared to native enzymes. These advantages create the potential for AncT4_2 to be applied in conjugating the modified RNA fragments containing various xenobiotic nucleic acids. In addition, patisiran, a known polyneuropathy therapeutic, could be synthesized from four fragmented oligonucleotides at a preparative scale. Taken together, these findings indicate AncT4_2 could open the door to synthesizing RNA therapeutics by enzymatic reaction at large-scale production.
Collapse
Affiliation(s)
- Shohei Kajimoto
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Kanagawa, Japan
| | - Miwa Ohashi
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Kanagawa, Japan
| | - Yusuke Hagiwara
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Kanagawa, Japan
| | - Daisuke Takahashi
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Kanagawa, Japan
| | - Yasuhiro Mihara
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Kanagawa, Japan
| | - Tomoharu Motoyama
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Shizuoka, Japan
| | - Sohei Ito
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Shizuoka, Japan
| | - Shogo Nakano
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Shizuoka, Japan
- PREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| |
Collapse
|
40
|
Chen X, Dou Z, Luo T, Sun Z, Ma H, Xu G, Ni Y. Directed reconstruction of a novel ancestral alcohol dehydrogenase featuring shifted pH-profile, enhanced thermostability and expanded substrate spectrum. BIORESOURCE TECHNOLOGY 2022; 363:127886. [PMID: 36067899 DOI: 10.1016/j.biortech.2022.127886] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Ancestral enzymes are promising for industrial biotechnology due to high stability and catalytic promiscuity. An effective protocol was developed for the directed resurrection of ancestral enzymes. Employing genome mining with diaryl alcohol dehydrogenase KpADH as the probe, descendant enzymes D10 and D11 were firstly identified. Then through ancestral sequence reconstruction, A64 was resurrected with a specific activity of 4.3 U·mg-1. The optimum pH of A64 was 7.5, distinct from 5.5 of D10. The T15 50 and Tm values of A64 were 57.5 °C and 61.7 °C, significantly higher than those of the descendant counterpart. Substrate spectrum of A64 was quantitively characterized with a Shannon-Wiener index of 2.38, more expanded than D10, especially, towards bulky ketones in Group A and B. A64 also exhibited higher enantioselectivity. This study provides an effective protocol for constructing of ancestral enzymes and an efficient ancestral enzyme of industrial relevance for asymmetric synthesis of chiral alcohols.
Collapse
Affiliation(s)
- Xiaoyu Chen
- Key laboratory of industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Zhe Dou
- Key laboratory of industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Tianwei Luo
- Key laboratory of industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Zewen Sun
- Key laboratory of industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Hongmin Ma
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China
| | - Guochao Xu
- Key laboratory of industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Ye Ni
- Key laboratory of industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| |
Collapse
|
41
|
Sharwood RE. Reconstructing CO 2 fixation from the past. Science 2022; 378:137-138. [PMID: 36227972 DOI: 10.1126/science.ade6522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Analysis of Rubisco evolution could inform how to engineer a better enzyme.
Collapse
Affiliation(s)
- Robert E Sharwood
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| |
Collapse
|
42
|
Ayuso-Fernández I, Molpeceres G, Camarero S, Ruiz-Dueñas FJ, Martínez AT. Ancestral sequence reconstruction as a tool to study the evolution of wood decaying fungi. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:1003489. [PMID: 37746217 PMCID: PMC10512382 DOI: 10.3389/ffunb.2022.1003489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/22/2022] [Indexed: 09/26/2023]
Abstract
The study of evolution is limited by the techniques available to do so. Aside from the use of the fossil record, molecular phylogenetics can provide a detailed characterization of evolutionary histories using genes, genomes and proteins. However, these tools provide scarce biochemical information of the organisms and systems of interest and are therefore very limited when they come to explain protein evolution. In the past decade, this limitation has been overcome by the development of ancestral sequence reconstruction (ASR) methods. ASR allows the subsequent resurrection in the laboratory of inferred proteins from now extinct organisms, becoming an outstanding tool to study enzyme evolution. Here we review the recent advances in ASR methods and their application to study fungal evolution, with special focus on wood-decay fungi as essential organisms in the global carbon cycling.
Collapse
Affiliation(s)
- Iván Ayuso-Fernández
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Gonzalo Molpeceres
- Centro de Investigaciones Biológicas “Margarita Salas” (CIB), CSIC, Madrid, Spain
| | - Susana Camarero
- Centro de Investigaciones Biológicas “Margarita Salas” (CIB), CSIC, Madrid, Spain
| | | | - Angel T. Martínez
- Centro de Investigaciones Biológicas “Margarita Salas” (CIB), CSIC, Madrid, Spain
| |
Collapse
|
43
|
Preparation and Characterization of an Ancient Aminopeptidase Obtained from Ancestral Sequence Reconstruction for L-Carnosine Synthesis. Molecules 2022; 27:molecules27196620. [PMID: 36235157 PMCID: PMC9570944 DOI: 10.3390/molecules27196620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 11/25/2022] Open
Abstract
As a biologically active peptide, L-carnosine has been widely used in the pharmaceutical, cosmetic and health care industries due to its various physiological properties. However, relatively little research is available regarding L-carnosine's enzymatic synthesis function. In this study, a potential enzyme sequence with the function of carnosine synthesizing was screened out using the ancestral sequence reconstruction (ASR) technique. Identified with L-carnosine synthesis activity, this enzyme was further confirmed using autoproteolytic phenomenon via Western blot and N-terminal sequencing. After purification, the enzymatic properties of LUCA-DmpA were characterized. The melting temperature (Tm) and denaturation enthalpy (ΔH) of LUCA-DmpA were 60.27 ± 1.24 °C and 1306.00 ± 26.73 kJ·mol-1, respectively. Circular dichroism (CD) spectroscopy results showed that this ancestral enzyme was composed of α-helix (35.23 ± 0.06%), β-sheet (11.06 ± 0.06%), β-turn (23.67 ± 0.06%) and random coil (32.03 ± 0.06%). The enzyme was characterized with the optimal temperature and pH of 45 °C and 9.0, respectively. Notably, LUCA-DmpA was also characterized with remarkable pH tolerance based on the observation of more than 85% remaining enzymatic activity after incubation at different pH buffers (pH = 6-11) for 12 h. Additionally, rather than being improved or inhibited by metal ions, its enzymatic activity was found to be promoted by introducing organic solvent with a larger log P value. Based on these homology modeling results, the screened LUCA-DmpA is suggested to have further optimization potential, and thereafter to be offered as a promising candidate for real industrial applications.
Collapse
|
44
|
Thomson RES, Carrera-Pacheco SE, Gillam EMJ. Engineering functional thermostable proteins using ancestral sequence reconstruction. J Biol Chem 2022; 298:102435. [PMID: 36041629 PMCID: PMC9525910 DOI: 10.1016/j.jbc.2022.102435] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/20/2022] Open
Abstract
Natural proteins are often only slightly more stable in the native state than the denatured state, and an increase in environmental temperature can easily shift the balance toward unfolding. Therefore, the engineering of proteins to improve protein stability is an area of intensive research. Thermostable proteins are required to withstand industrial process conditions, for increased shelf-life of protein therapeutics, for developing robust 'biobricks' for synthetic biology applications, and for research purposes (e.g., structure determination). In addition, thermostability buffers the often destabilizing effects of mutations introduced to improve other properties. Rational design approaches to engineering thermostability require structural information, but even with advanced computational methods, it is challenging to predict or parameterize all the relevant structural factors with sufficient precision to anticipate the results of a given mutation. Directed evolution is an alternative when structures are unavailable but requires extensive screening of mutant libraries. Recently, however, bioinspired approaches based on phylogenetic analyses have shown great promise. Leveraging the rapid expansion in sequence data and bioinformatic tools, ancestral sequence reconstruction can generate highly stable folds for novel applications in industrial chemistry, medicine, and synthetic biology. This review provides an overview of the factors important for successful inference of thermostable proteins by ancestral sequence reconstruction and what it can reveal about the determinants of stability in proteins.
Collapse
Affiliation(s)
- Raine E S Thomson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Saskya E Carrera-Pacheco
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Elizabeth M J Gillam
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
45
|
Yang Z, Leero DD, Yin C, Yang L, Zhu L, Zhu Z, Jiang L. Clostridium as microbial cell factory to enable the sustainable utilization of three generations of feedstocks. BIORESOURCE TECHNOLOGY 2022; 361:127656. [PMID: 35872277 DOI: 10.1016/j.biortech.2022.127656] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
The sustainable production of chemicals and biofuels from non-fossil carbon sources is considered key to reducing greenhouse gas (GHG) emissions. Clostridium sp. can convert various substrates, including the 1st-generation (biomass crops), the 2nd-generation (lignocellulosic biomass), and the 3rd-generation (C1 gases) feedstocks, into high-value products, which makes Clostridia attractive for biorefinery applications. However, the complexity of lignocellulosic catabolism and C1 gas utilization make it difficult to construct efficient production routes. Accordingly, this review highlights the advances in the development of three generations of feedstocks with Clostridia as cell factories. At the same time, more attention was given to using agro-industrial wastes (lignocelluloses and C1 gases) as the feedstocks, for which metabolic and process engineering efforts were comprehensively analyzed. In addition, the challenges of using agro-industrial wastes are also discussed. Lastly, several new synthetic biology tools and regulatory strategies are emphasized as promising technologies to be developed to address the aforementioned challenges in Clostridia and realize the efficient utilization of agro-industrial wastes.
Collapse
Affiliation(s)
- Zhihan Yang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Donald Delano Leero
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Chengtai Yin
- College of Overseas Education, Nanjing Tech University, Nanjing 211816, China
| | - Lei Yang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Liying Zhu
- College of Chemical and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhengming Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
46
|
Foley G, Mora A, Ross CM, Bottoms S, Sützl L, Lamprecht ML, Zaugg J, Essebier A, Balderson B, Newell R, Thomson RES, Kobe B, Barnard RT, Guddat L, Schenk G, Carsten J, Gumulya Y, Rost B, Haltrich D, Sieber V, Gillam EMJ, Bodén M. Engineering indel and substitution variants of diverse and ancient enzymes using Graphical Representation of Ancestral Sequence Predictions (GRASP). PLoS Comput Biol 2022; 18:e1010633. [PMID: 36279274 PMCID: PMC9632902 DOI: 10.1371/journal.pcbi.1010633] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 11/03/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Ancestral sequence reconstruction is a technique that is gaining widespread use in molecular evolution studies and protein engineering. Accurate reconstruction requires the ability to handle appropriately large numbers of sequences, as well as insertion and deletion (indel) events, but available approaches exhibit limitations. To address these limitations, we developed Graphical Representation of Ancestral Sequence Predictions (GRASP), which efficiently implements maximum likelihood methods to enable the inference of ancestors of families with more than 10,000 members. GRASP implements partial order graphs (POGs) to represent and infer insertion and deletion events across ancestors, enabling the identification of building blocks for protein engineering. To validate the capacity to engineer novel proteins from realistic data, we predicted ancestor sequences across three distinct enzyme families: glucose-methanol-choline (GMC) oxidoreductases, cytochromes P450, and dihydroxy/sugar acid dehydratases (DHAD). All tested ancestors demonstrated enzymatic activity. Our study demonstrates the ability of GRASP (1) to support large data sets over 10,000 sequences and (2) to employ insertions and deletions to identify building blocks for engineering biologically active ancestors, by exploring variation over evolutionary time.
Collapse
Affiliation(s)
- Gabriel Foley
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Ariane Mora
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Connie M. Ross
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Scott Bottoms
- Campus Straubing for Biotechnology and Sustainability, Technische Universität München, Straubing, Germany
| | - Leander Sützl
- Institut für Lebensmitteltechnologie, Universität für Bodenkultur Wien, Vienna, Austria
| | - Marnie L. Lamprecht
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Julian Zaugg
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Alexandra Essebier
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Brad Balderson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Rhys Newell
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Raine E. S. Thomson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
- Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
| | - Ross T. Barnard
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Luke Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
- Sustainable Minerals Institute, The University of Queensland, Brisbane, Australia
| | - Jörg Carsten
- Zentralinstitut für Katalyseforschung, Technische Universität München, Munich, Germany
| | - Yosephine Gumulya
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Burkhard Rost
- Fakultät für Informatik, Technische Universität München, Munich, Germany
| | - Dietmar Haltrich
- Institut für Lebensmitteltechnologie, Universität für Bodenkultur Wien, Vienna, Austria
| | - Volker Sieber
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
- Campus Straubing for Biotechnology and Sustainability, Technische Universität München, Straubing, Germany
- Zentralinstitut für Katalyseforschung, Technische Universität München, Munich, Germany
| | - Elizabeth M. J. Gillam
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
- * E-mail: (MB); (EMJG)
| | - Mikael Bodén
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
- * E-mail: (MB); (EMJG)
| |
Collapse
|
47
|
Lv JX, Ding YQ, Huang CM, Guo LL, Fang JL, Jia X, Zhang WH, You S, Qin B. Enzyme- and Chemo-enzyme-Catalyzed Stereodivergent Synthesis. PHARMACEUTICAL FRONTS 2022. [DOI: 10.1055/s-0042-1755556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
Multiple stereoisomers can be found when a substance contains chiral carbons in its chemical structure. To obtain the desired stereoisomers, asymmetric synthesis was proposed in the 1970s and developed rapidly at the beginning of this century. Stereodivergent synthesis, an extension of asymmetric synthesis in organic synthesis with the hope to produce all stereoisomers of chiral substances in high conversion and selectivity, enriches the variety of available products and serves as a reference suggestion for the synthesis of their derivatives and other compounds. Since biocatalysis has outstanding advantages of economy, environmental friendliness, high efficiency, and reaction at mild conditions, the biocatalytic reaction is regarded as an efficient strategy to perform stereodivergent synthesis. Thus, in this review, we summarize the stereodivergent synthesis catalyzed by enzymes or chemo-enzymes in cases where a compound contains two or three chiral carbons, i.e., at most four or eight stereoisomers are present. The types of reactions, including reduction of substituent ketones, cyclization reactions, olefin addition, and nonredox transesterification reactions, are also discussed for the understanding of the progress and application of biocatalysis in stereodivergent synthesis.
Collapse
Affiliation(s)
- Jia-Xiang Lv
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Ya-Qi Ding
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Chen-Ming Huang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Ling-Ling Guo
- Microbial Research Institute of Liaoning Province, Liaoyang, People's Republic of China
| | - Jia-Li Fang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Xian Jia
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Wen-He Zhang
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Song You
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Bin Qin
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| |
Collapse
|
48
|
Hunt for α-amylase from metagenome and strategies to improve its thermostability: a systematic review. World J Microbiol Biotechnol 2022; 38:203. [PMID: 35999473 DOI: 10.1007/s11274-022-03396-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/18/2022] [Indexed: 10/15/2022]
Abstract
With the advent of green chemistry, the use of enzymes in industrial processes serves as an alternative to the conventional chemical catalysts. A high demand for sustainable processes for catalysis has brought a significant attention to hunt for novel enzymes. Among various hydrolases, the α-amylase has a gamut of biotechnological applications owing to its pivotal role in starch-hydrolysis. Industrial demand requires enzymes with thermostability and to ameliorate this crucial property, various methods such as protein engineering, directed evolution and enzyme immobilisation strategies are devised. Besides the traditional culture-dependent approach, metagenome from uncultured bacteria serves as a bountiful resource for novel genes/biocatalysts. Exploring the extreme-niches metagenome, advancements in protein engineering and biotechnology tools encourage the mining of novel α-amylase and its stable variants to tap its robust biotechnological and industrial potential. This review outlines α-amylase and its genetics, its catalytic domain architecture and mechanism of action, and various molecular methods to ameliorate its production. It aims to impart understanding on mechanisms involved in thermostability of α-amylase, cover strategies to screen novel genes from futile habitats and some molecular methods to ameliorate its properties.
Collapse
|
49
|
Thomson RES, D'Cunha SA, Hayes MA, Gillam EMJ. Use of engineered cytochromes P450 for accelerating drug discovery and development. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 95:195-252. [PMID: 35953156 DOI: 10.1016/bs.apha.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Numerous steps in drug development, including the generation of authentic metabolites and late-stage functionalization of candidates, necessitate the modification of often complex molecules, such as natural products. While it can be challenging to make the required regio- and stereoselective alterations to a molecule using purely chemical catalysis, enzymes can introduce changes to complex molecules with a high degree of stereo- and regioselectivity. Cytochrome P450 enzymes are biocatalysts of unequalled versatility, capable of regio- and stereoselective functionalization of unactivated CH bonds by monooxygenation. Collectively they catalyze over 60 different biotransformations on structurally and functionally diverse organic molecules, including natural products, drugs, steroids, organic acids and other lipophilic molecules. This catalytic versatility and substrate range makes them likely candidates for application as potential biocatalysts for industrial chemistry. However, several aspects of the P450 catalytic cycle and other characteristics have limited their implementation to date in industry, including: their lability at elevated temperature, in the presence of solvents, and over lengthy incubation times; the typically low efficiency with which they metabolize non-natural substrates; and their lack of specificity for a single metabolic pathway. Protein engineering by rational design or directed evolution provides a way to engineer P450s for industrial use. Here we review the progress made to date toward engineering the properties of P450s, especially eukaryotic forms, for industrial application, and including the recent expansion of their catalytic repertoire to include non-natural reactions.
Collapse
Affiliation(s)
- Raine E S Thomson
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Stephlina A D'Cunha
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Martin A Hayes
- Compound Synthesis and Management, Discovery Sciences, BioPharmaceuticals R&D AstraZeneca, Mölndal, Sweden
| | - Elizabeth M J Gillam
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
50
|
Gutierrez-Rus LI, Alcalde M, Risso VA, Sanchez-Ruiz JM. Efficient Base-Catalyzed Kemp Elimination in an Engineered Ancestral Enzyme. Int J Mol Sci 2022; 23:8934. [PMID: 36012203 PMCID: PMC9408544 DOI: 10.3390/ijms23168934] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/25/2022] Open
Abstract
The routine generation of enzymes with completely new active sites is a major unsolved problem in protein engineering. Advances in this field have thus far been modest, perhaps due, at least in part, to the widespread use of modern natural proteins as scaffolds for de novo engineering. Most modern proteins are highly evolved and specialized and, consequently, difficult to repurpose for completely new functionalities. Conceivably, resurrected ancestral proteins with the biophysical properties that promote evolvability, such as high stability and conformational diversity, could provide better scaffolds for de novo enzyme generation. Kemp elimination, a non-natural reaction that provides a simple model of proton abstraction from carbon, has been extensively used as a benchmark in de novo enzyme engineering. Here, we present an engineered ancestral β-lactamase with a new active site that is capable of efficiently catalyzing Kemp elimination. The engineering of our Kemp eliminase involved minimalist design based on a single function-generating mutation, inclusion of an extra polypeptide segment at a position close to the de novo active site, and sharply focused, low-throughput library screening. Nevertheless, its catalytic parameters (kcat/KM~2·105 M-1 s-1, kcat~635 s-1) compare favorably with the average modern natural enzyme and match the best proton-abstraction de novo Kemp eliminases that are reported in the literature. The general implications of our results for de novo enzyme engineering are discussed.
Collapse
Affiliation(s)
- Luis I. Gutierrez-Rus
- Departamento de Quimica Fisica, Facultad de Ciencias, Unidad de Excelencia de Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071 Granada, Spain
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry, CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Valeria A. Risso
- Departamento de Quimica Fisica, Facultad de Ciencias, Unidad de Excelencia de Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071 Granada, Spain
| | - Jose M. Sanchez-Ruiz
- Departamento de Quimica Fisica, Facultad de Ciencias, Unidad de Excelencia de Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|