1
|
Pauletto M, De Liguoro M. A Review on Fluoroquinolones' Toxicity to Freshwater Organisms and a Risk Assessment. J Xenobiot 2024; 14:717-752. [PMID: 38921651 PMCID: PMC11205205 DOI: 10.3390/jox14020042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Fluoroquinolones (FQs) have achieved significant success in both human and veterinary medicine. However, regulatory authorities have recommended limiting their use, firstly because they can have disabling side effects; secondly, because of the need to limit the spread of antibiotic resistance. This review addresses another concerning consequence of the excessive use of FQs: the freshwater environments contamination and the impact on non-target organisms. Here, an overview of the highest concentrations found in Europe, Asia, and the USA is provided, the sensitivity of various taxa is presented through a comparison of the lowest EC50s from about a hundred acute toxicity tests, and primary mechanisms of FQ toxicity are described. A risk assessment is conducted based on the estimation of the Predicted No Effect Concentration (PNEC). This is calculated traditionally and, in a more contemporary manner, by constructing a normalized Species Sensitivity Distribution curve. The lowest individual HC5 (6.52 µg L-1) was obtained for levofloxacin, followed by ciprofloxacin (7.51 µg L-1), sarafloxacin and clinafloxacin (12.23 µg L-1), and ofloxacin (17.12 µg L-1). By comparing the calculated PNEC with detected concentrations, it is evident that the risk cannot be denied: the potential impact of FQs on freshwater ecosystems is a further reason to minimize their use.
Collapse
Affiliation(s)
| | - Marco De Liguoro
- Department of Comparative Biomedicine & Food Science (BCA), University of Padova, Viale dell’Università 16, I-35020 Legnaro, Padova, Italy;
| |
Collapse
|
2
|
Das S, Helmus R, Dong Y, Beijer S, Praetorius A, Parsons JR, Jansen B. Organic contaminants in bio-based fertilizer treated soil: Target and suspect screening approaches. CHEMOSPHERE 2023; 337:139261. [PMID: 37379984 DOI: 10.1016/j.chemosphere.2023.139261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/11/2023] [Accepted: 06/16/2023] [Indexed: 06/30/2023]
Abstract
Using bio-based fertilizer (BBF) in agricultural soil can reduce the dependency on chemical fertilizer and increase sustainability by recycling nutrient-rich side-streams. However, organic contaminants in BBFs may lead to residues in the treated soil. This study assessed the presence of organic contaminants in BBF treated soils, which is essential for evaluating sustainability/risks of BBF use. Soil samples from two field studies amended with 15 BBFs from various sources (agricultural, poultry, veterinary, and sludge) were analyzed. A combination of QuEChERS-based extraction, liquid chromatography quadrupole time of flight mass spectrometry-based (LC-QTOF-MS) quantitative analysis, and an advanced, automated data interpretation workflow was optimized to extract and analyze organic contaminants in BBF-treated agricultural soil. The comprehensive screening of organic contaminants was performed using target analysis and suspect screening. Of the 35 target contaminants, only three contaminants were detected in the BBF-treated soil with concentrations ranging from 0.4 ng g-1 to 28.7 ng g-1; out of these three detected contaminants, two were also present in the control soil sample. Suspect screening using patRoon (an R-based open-source software platform) workflows and the NORMAN Priority List resulted in tentative identification of 20 compounds (at level 2 and level 3 confidence level), primarily pharmaceuticals and industrial chemicals, with only one overlapping compound in two experimental sites. The contamination profiles of the soil treated with BBFs sourced from veterinary and sludge were similar, with common pharmaceutical features identified. The suspect screening results suggest that the contaminants found in BBF-treated soil might come from alternative sources other than BBFs.
Collapse
Affiliation(s)
- Supta Das
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands.
| | - Rick Helmus
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Yan Dong
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Steven Beijer
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Antonia Praetorius
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - John R Parsons
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Boris Jansen
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
3
|
Muñoz-Vega E, Schulz S, Rodriguez-Escales P, Behle V, Spada L, Vogel AL, Sanchez-Vila X, Schüth C. Role of Soil Biofilms in Clogging and Fate of Pharmaceuticals: A Laboratory-Scale Column Experiment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12398-12410. [PMID: 37558209 PMCID: PMC10448752 DOI: 10.1021/acs.est.3c02034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/11/2023]
Abstract
Contamination of groundwater with pharmaceutical active compounds (PhACs) increased over the last decades. Potential pathways of PhACs to groundwater include techniques such as irrigation, managed aquifer recharge, or bank filtration as well as natural processes such as losing streams of PhACs-loaded source waters. Usually, these systems are characterized by redox-active zones, where microorganisms grow and become immobilized by the formation of biofilms, structures that colonize the pore space and decrease the infiltration capacities, a phenomenon known as bioclogging. The goal of this work is to gain a deeper understanding of the influence of soil biofilms on hydraulic conductivity reduction and the fate of PhACs in the subsurface. For this purpose, we selected three PhACs with different physicochemical properties (carbamazepine, diclofenac, and metoprolol) and performed batch and column experiments using a natural soil, as it is and with the organic matter removed, under different biological conditions. We observed enhanced sorption and biodegradation for all PhACs in the system with higher biological activity. Bioclogging was more prevalent in the absence of organic matter. Our results differ from works using artificial porous media and thus reveal the importance of utilizing natural soils with organic matter in studies designed to assess the role of soil biofilms in bioclogging and the fate of PhACs in soils.
Collapse
Affiliation(s)
- Edinsson Muñoz-Vega
- Institute
of Applied Geosciences, Technische Universität
Darmstadt, Darmstadt 64287, Germany
| | - Stephan Schulz
- Institute
of Applied Geosciences, Technische Universität
Darmstadt, Darmstadt 64287, Germany
| | - Paula Rodriguez-Escales
- Department
of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, Barcelona 08034, Spain
- Hydrogeology
Group (UPC−CSIC), Barcelona 08034, Spain
| | - Vera Behle
- Department
of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, Barcelona 08034, Spain
| | - Lucas Spada
- Institute
for Atmospheric and Environmental Sciences, Goethe-University Frankfurt, Frankfurt
am Main 60438, Germany
| | - Alexander L. Vogel
- Institute
for Atmospheric and Environmental Sciences, Goethe-University Frankfurt, Frankfurt
am Main 60438, Germany
| | - Xavier Sanchez-Vila
- Department
of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, Barcelona 08034, Spain
- Hydrogeology
Group (UPC−CSIC), Barcelona 08034, Spain
| | - Christoph Schüth
- Institute
of Applied Geosciences, Technische Universität
Darmstadt, Darmstadt 64287, Germany
- Water
Resources Management Division, IWW Water
Centre, Mülheim
an der Ruhr 45476, Germany
| |
Collapse
|
4
|
Bediako JK, El Ouardi Y, Massima Mouele ES, Mensah B, Repo E. Polyelectrolyte and polyelectrolyte complex-incorporated adsorbents in water and wastewater remediation - A review of recent advances. CHEMOSPHERE 2023; 325:138418. [PMID: 36925007 DOI: 10.1016/j.chemosphere.2023.138418] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
In recent years, polyelectrolyte-incorporated functional materials have emerged as novel adsorbents for effective remediation of pollutants in water and wastewater. Polyelectrolytes (PEs) are a special class of polymers with long chains of repeating charged moieties. Polyelectrolyte complexes (PECs) are obtained by mixing aqueous solutions of oppositely charged PEs. Herewith, this review discusses recent advances with respect to water and wastewater remediation using PE- and PEC-incorporated adsorbents. The review begins by highlighting some water resources, their pollution sources and available treatment techniques. Next, an overview of PEs and PECs is discussed, highlighting the evolving progress in their processing. Consequently, application of these materials in different facets of water and wastewater remediation, including heavy metal removal, precious metal and rare earth element recovery, desalination, dye and emerging micropollutant removal, are critically reviewed. For water and wastewater remediation, PEs and PECs are mostly applied either in their original forms, as composites or as morphologically-tunable complexes. PECs are deemed superior to other materials owing to their tunability for both cationic and anionic pollutants. Generally, natural and semi-synthetic PEs have been largely applied owing to their low cost, ready availability and eco-friendliness. Except dye removal and desalination of saline water, application of synthetic PEs and PECs is scanty, and hence requires more focus in future research.
Collapse
Affiliation(s)
- John Kwame Bediako
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology (LUT), FI-53850 Lappeenranta, Finland; Department of Food Process Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, P. O. Box LG 77, Legon, Accra, Ghana.
| | - Youssef El Ouardi
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology (LUT), FI-53850 Lappeenranta, Finland
| | - Emile Salomon Massima Mouele
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology (LUT), FI-53850 Lappeenranta, Finland
| | - Bismark Mensah
- Department of Materials Science and Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, P. O. Box LG 77, Legon, Accra, Ghana
| | - Eveliina Repo
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology (LUT), FI-53850 Lappeenranta, Finland
| |
Collapse
|
5
|
Kim JY, Jeon J, Kim SD. Prioritization of pharmaceuticals and personal care products in the surface waters of Korea: Application of an optimized risk-based methods. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115024. [PMID: 37201424 DOI: 10.1016/j.ecoenv.2023.115024] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/20/2023]
Abstract
The occurrence of PPCPs in aquatic environments and their potential adverse effects on aquatic organisms have raised worldwide concerns. To address this issue, a study was conducted to analyze 137 selected PPCPs in Korean surface waters, and an optimized risk-based prioritization was performed. The results revealed that 120 PPCPs were detected, with 98 quantified at concentrations ranging from few ng/L to 42,733 ng/L for metformin. The 95% upper confidence limit (UCL95) of the mean value of the measured environmental concentration (MEC) for Metformin was about eight times higher than the second highest compound, dimethyl phthalate, indicating that antidiabetic groups had the highest concentration among the therapeutic groups. An optimized risk-based prioritization was then assessed based on the multiplication of two indicators, the Frequency of Exceedance and the Extent of Exceedance of Predicted No-Effect Concentrations (PNECs), which can be calculated using the traditional risk quotient (RQ) approach. The study found that clotrimazole had the highest risk quotient value of 17.4, indicating a high risk to aquatic organisms, with seven and 13 compounds showing RQ values above 1 and 0.1, respectively. After considering the frequency of exceedance, clotrimazole still had the highest novel risk quotient (RQf) value of 17.4, with 99.6% of its MECs exceeding PNECs. However, the number of compounds with RQf values above 1 decreased from seven to five, with cetirizine and flubendazole being excluded. Furthermore, only 10 compounds exhibited RQf values above 0.1. The study also observed significant differences in the results between risk-based and exposure-based prioritization methods, with only five compounds, cetirizine, olmesartan, climbazole, sulfapyridine, and imidacloprid, identified in both methods. This finding highlights the importance of considering multiple methods for prioritizing chemicals, as different approaches may yield different results.
Collapse
Affiliation(s)
- Jun Yub Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-Gwagiro, Gwangju 61005, Republic of Korea
| | - Junho Jeon
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea; School of Smart and Green Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea
| | - Sang Don Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-Gwagiro, Gwangju 61005, Republic of Korea.
| |
Collapse
|
6
|
Ibuprofen: Toxicology and Biodegradation of an Emerging Contaminant. Molecules 2023; 28:molecules28052097. [PMID: 36903343 PMCID: PMC10004696 DOI: 10.3390/molecules28052097] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/12/2023] [Accepted: 02/19/2023] [Indexed: 02/26/2023] Open
Abstract
The anti-inflammatory drug ibuprofen is considered to be an emerging contaminant because of its presence in different environments (from water bodies to soils) at concentrations with adverse effects on aquatic organisms due to cytotoxic and genotoxic damage, high oxidative cell stress, and detrimental effects on growth, reproduction, and behavior. Because of its high human consumption rate and low environmental degradation rate, ibuprofen represents an emerging environmental problem. Ibuprofen enters the environment from different sources and accumulates in natural environmental matrices. The problem of drugs, particularly ibuprofen, as contaminants is complicated because few strategies consider them or apply successful technologies to remove them in a controlled and efficient manner. In several countries, ibuprofen's entry into the environment is an unattended contamination problem. It is a concern for our environmental health system that requires more attention. Due to its physicochemical characteristics, ibuprofen degradation is difficult in the environment or by microorganisms. There are experimental studies that are currently focused on the problem of drugs as potential environmental contaminants. However, these studies are insufficient to address this ecological issue worldwide. This review focuses on deepening and updating the information concerning ibuprofen as a potential emerging environmental contaminant and the potential for using bacteria for its biodegradation as an alternative technology.
Collapse
|
7
|
Köppe T, Jewell KS, Ehlig B, Wick A, Koschorreck J, Ternes TA. Identification and trend analysis of organic cationic contaminants via non-target screening in suspended particulate matter of the German rivers Rhine and Saar. WATER RESEARCH 2023; 229:119304. [PMID: 36459896 DOI: 10.1016/j.watres.2022.119304] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/14/2022] [Accepted: 10/26/2022] [Indexed: 06/17/2023]
Abstract
Non-target screening of suspended particulate matter (SPM), collected from the German rivers Rhine and Saar, was conducted with the goal of identifying organic, permanent cationic contaminants and of estimating their temporal trends over an extended period. Therefore, annual composite samples of SPM, provided by the German Environmental Specimen Bank, were extracted and analyzed with high resolution LC-QToF-MS/MS. To facilitate the identification of substances belonging to the class "permanent cations", prioritization methods were applied utilizing the physicochemical properties of these compounds. These methods include both interactions of the analyte molecules with cation exchange resins and analyzing mass deviations when changing from non-deuterated to deuterated mobile phase solvents during LC-MS analysis. By applying both methods in a combined approach, 123 of the initially detected 2695 features were prioritized, corresponding to a 95% data reduction. This led to the identification of 22 permanent cationic species. The organic dyes Basic Yellow 28 and Fluorescent Brightener 363 as well as two quaternary ammonium compounds (QACs) were detected in environmental samples for the first time to best of or knowledge. The other compounds include additional QACs, as well as quaternary tri-phenylphosphonium compounds (QPC/TPP). In addition to identification, we determined temporal trends of all compounds over a period of 13 years and assessed their ecotoxicological relevance based on estimated concentrations. The two QACs oleyltrimethylammonium and eicosyltrimethylammonium show significant increasing trends in the Rhine SPM and maximum concentrations in the Saar SPM of about 900 and 1400 µg/kg, respectively. In the case of the dyes, constant trends have been observed at the end of the studied period, but also maximum concentrations of 400 µg/kg for Basic Yellow 28 in 2006 and 1000 µg/kg for Fluorescent Brightener 363 in 2015, potentially indicating a strong ecotoxicological risk.
Collapse
Affiliation(s)
- Toni Köppe
- Federal Institute of Hydrology, Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Kevin S Jewell
- Federal Institute of Hydrology, Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Björn Ehlig
- Federal Institute of Hydrology, Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Arne Wick
- Federal Institute of Hydrology, Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Jan Koschorreck
- Federal Environment Agency (Umweltbundesamt), Colditzstraße 34, 14193, Berlin, Germany
| | - Thomas A Ternes
- Federal Institute of Hydrology, Am Mainzer Tor 1, 56068 Koblenz, Germany.
| |
Collapse
|
8
|
Roveri V, Guimarães LL, Toma W, Correia AT. Occurrence, ecological risk assessment and prioritization of pharmaceuticals and abuse drugs in estuarine waters along the São Paulo coast, Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:89712-89726. [PMID: 35857165 PMCID: PMC9297060 DOI: 10.1007/s11356-022-21945-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
The pollution of the surface waters by pharmaceuticals and personal care products (PPCPs) has attracted worldwide attention, but data regarding their occurrence and potential risks for the aquatic biota on tropical coastal rivers of South America are still scarce. In this context, the occurrence and the preliminary ecological risk assessment of eleven pharmaceuticals of various therapeutic classes (including cocaine and its primary metabolite, benzoylecgonine) were investigated, for the first time, in five rivers of São Paulo, southeast Brazil, covering a coastline of about 140 km, namely Perequê River, Itinga River, Mongaguá River, Itanhaém River and Guaraú River. Although these five rivers are born in well-preserved areas of the Atlantic rainforest biome, on its way to sea and when they cross the urban perimeter, they receive untreated sewage discharges containing a complex mixture of contaminants. In addition, a "persistence, bioaccumulation and toxicity" (PBT) approach allowed to pre-select the priority PPCPs to be monitored in this coastline. Identification of several PPCPs in the samples was done using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Ten PPCPs were successfully quantified in all five rivers, namely caffeine (9.00-560.00 ng/L), acetaminophen (
Collapse
Affiliation(s)
- Vinicius Roveri
- Universidade Metropolitana de Santos (UNIMES), Avenida Conselheiro Nébias, 536 - Encruzilhada, 11045-002, Santos, São Paulo, Brazil
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Luciana Lopes Guimarães
- Laboratório de Pesquisa em Produtos Naturais, Universidade Santa Cecília, Rua Cesário Mota 8, F83A, 11045-040 Santos, São Paulo, Brazil
| | - Walber Toma
- Laboratório de Pesquisa em Produtos Naturais, Universidade Santa Cecília, Rua Cesário Mota 8, F83A, 11045-040 Santos, São Paulo, Brazil
| | - Alberto Teodorico Correia
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal.
- Faculdade de Ciências da Saúde da Universidade Fernando Pessoa (FCS-UFP), Rua Carlos da Maia 296, 4200-150, Porto, Portugal.
- Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| |
Collapse
|
9
|
Electrically enhanced activity of cationic surfactant for the bubble surface modification of solvent sublation to remove acetaminophen from water. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Roveri V, Guimarães LL, Toma W, Correia AT. Occurrence of pharmaceuticals and cocaine in the urban drainage channels located on the outskirts of the São Vicente Island (São Paulo, Brazil) and related ecological risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:57931-57945. [PMID: 35359205 PMCID: PMC8970415 DOI: 10.1007/s11356-022-19736-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/11/2022] [Indexed: 05/03/2023]
Abstract
"Wealth by the sea and poverty away from the sea breeze" is a metaphor that mirrors what happens along the Brazilian coastal zone, namely in São Vicente Island, São Paulo, Brazil. Due to the high cost of the properties on this shore, the impoverished population started to migrate to the northern outskirts of the island (away from the tourist beaches), potentiating the emergence of poor housing conditions, namely stilt-house slums. Consequently, the urban drainage channels across these outskirts neighbourhoods are potentially contaminated by human wastes. In this context, the occurrence and preliminary ecological risk assessment of eleven pharmaceuticals of various therapeutic classes (including cocaine and its primary metabolite, benzoylecgonine) were investigated, for the first time, in five urban drainage channels whose diffuse loads flow continuously to the estuarine waters of São Vicente Island. The results showed the widespread presence of these environmental stressors in all urban channels analysed, namely losartan (7.3-2680.0 ng/L), caffeine (314.0-726.0 ng/L), acetaminophen (7.0-78.2 ng/L), atenolol (6.2-23.6 ng/L), benzoylecgonine (10.2-17.2 ng/L), furosemide (1.0-7.2 ng/L), cocaine (2.3-6.7 ng/L), carbamazepine (0.2-2.6 ng/L), diclofenac (1.1-2.5 ng/L), orphenadrine (0.2-1.1 ng/L) and chlortalidone (0.5-1.0 ng/L). The overall total estimated load of pharmaceuticals and personal care products flowing to the estuarine waters of São Vicente Island is on the order of 41.1 g/day. The ecological risk assessment revealed a great environmental concern for São Vicente Island, ranging between low (e.g. carbamazepine and cocaine) and moderate to high (e.g. caffeine, acetaminophen and losartan) threats for the aquatic biota. Therefore, initiatives promoting basic sanitation, land-use regularisation and population awareness are highly recommended.
Collapse
Affiliation(s)
- Vinicius Roveri
- Universidade Metropolitana de Santos (UNIMES), Avenida Conselheiro Nébias, 536 - Encruzilhada, Santos, São Paulo, 11045-002, Brazil
- Centro Interdisciplinar de Investigação Marinha E Ambiental (CIIMAR/CIMAR), Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Luciana Lopes Guimarães
- Laboratório de Pesquisa Em Produtos Naturais, Universidade Santa Cecília (UNISANTA), Rua Cesário Mota 8, Santos, São Paulo, F83A, 11045-040, Brazil
| | - Walber Toma
- Laboratório de Pesquisa Em Produtos Naturais, Universidade Santa Cecília (UNISANTA), Rua Cesário Mota 8, Santos, São Paulo, F83A, 11045-040, Brazil
| | - Alberto Teodorico Correia
- Centro Interdisciplinar de Investigação Marinha E Ambiental (CIIMAR/CIMAR), Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal.
- Faculdade de Ciências da Saúde da, Universidade Fernando Pessoa (FCS-UFP), Rua Carlos da Maia 296, 4200-150, Porto, Portugal.
- Instituto de Ciências Biomédicas Abel Salazar da Universidade Do Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| |
Collapse
|
11
|
Kucharski D, Nałęcz-Jawecki G, Drzewicz P, Skowronek A, Mianowicz K, Strzelecka A, Giebułtowicz J. The assessment of environmental risk related to the occurrence of pharmaceuticals in bottom sediments of the Odra River estuary (SW Baltic Sea). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154446. [PMID: 35283119 DOI: 10.1016/j.scitotenv.2022.154446] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
The occurrence of 130 pharmaceutically active compounds (PhACs) in sediments collected from 70 sampling sites in the Odra River estuary (SW Baltic Sea) was investigated. The highest concentration levels of the compounds were found in the vicinity of effluent discharge from two main Szczecin wastewater treatment plants: "Pomorzany" and "Zdroje", and nearby the seaport and shipyard. The highest environmental risks (RQ > 1) were observed for pseudoephedrine (RQ = 14.0), clindamycin (RQ = 7.3), nalidixic acid (RQ = 3.8), carbamazepine (RQ = 1.8), fexofenadine (RQ = 1.4), propranolol (RQ = 1.1), and thiabendazole (RQ = 1.1). RQ for each compound varied depending on the sampling sites. High environmental risk was observed in 30 sampling sites for clindamycin, 22 sampling sites for pseudoephedrine, 19 sampling sites for nalidixic acid, 4 sampling sites for carbamazepine, and 3 sampling sites for fexofenadine. The medium environmental risk (0.1 < RQ < 1) was observed for 16 compounds: amisulpride, amitriptyline, amlodipine, atropine, bisoprolol, chlorpromazine, lincomycin, metoprolol, mirtazapine, moclobemide, ofloxacin, oxazepam, tiapride, tolperisone, verapamil, and xylometazoline. Due to the scarcity of toxicological data related to benthic organisms, only an approximate assessment of the environmental risk of PhACs is possible. Nevertheless, the compounds with medium and high risk should be considered as pollutants of high environmental concern whose occurrence in the environment should remain under close scrutiny.
Collapse
Affiliation(s)
- Dawid Kucharski
- Faculty of Pharmacy, Medical University of Warsaw, Department of Bioanalysis and Drugs Analysis, Banacha 1, 02-097 Warsaw, Poland
| | - Grzegorz Nałęcz-Jawecki
- Faculty of Pharmacy, Medical University of Warsaw, Department of Environmental Health Sciences, Banacha 1, 02-097 Warsaw, Poland
| | - Przemysław Drzewicz
- Polish Geological Institute-National Research Institute, Rakowiecka 4, 00-975 Warsaw, Poland
| | - Artur Skowronek
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, 70-383 Szczecin, Poland
| | - Kamila Mianowicz
- Interoceanmetal Joint Organization, Cyryla i Metodego 9, 71-541 Szczecin, Poland
| | - Agnieszka Strzelecka
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, 70-383 Szczecin, Poland
| | - Joanna Giebułtowicz
- Faculty of Pharmacy, Medical University of Warsaw, Department of Bioanalysis and Drugs Analysis, Banacha 1, 02-097 Warsaw, Poland.
| |
Collapse
|
12
|
Le Gaudu M, Thiebault T, Quénéa K, Alliot F, Guigon E, Le Callonnec L. Trace organic contaminants within solid matrices along an anthropized watercourse: Organo-mineral controls on their spatial distribution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153601. [PMID: 35114246 DOI: 10.1016/j.scitotenv.2022.153601] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/17/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Although numerous studies have determined significant contamination in terms of trace organic contaminant (TrOC) diversity and concentration, the occurrence of TrOCs within solid matrices as suspended solids and sediments flies under the radar. In this study, the occurrence of 35 TrOCs of various classes (i.e. pharmaceutical products and pesticides) was investigated in three compartments, namely dissolved phase, suspended particulate matter (SPM) and sediments, within an anthropized river in France. The sampling was performed to assess the spatial contamination dynamics and the impact of a major wastewater treatment plant (WWTP), under two contrasted hydrological conditions, i.e. base level and flood conditions. Solid samples were finely characterized (XRD, grainsize, TOC) in order to assess the impact of organic and mineral composition on the sorption extent of TrOCs. The study reveals that the clear spatial pattern of contamination in water samples, mostly generated by the effluent discharge of WWTPs, is less clear in solid matrices as the variability of the organo-mineral composition of such samples strongly impacts their favourability for sorption. Moreover, the flood event strongly impacted the sedimentary compartment, remobilizing fine and TrOC contaminated particles that were further found in suspended particulate matter. Lastly, the representativeness of contaminant diversity and concentration within the solid matrices displayed more favourable insights for SPM.
Collapse
Affiliation(s)
- Maëlla Le Gaudu
- METIS, Sorbonne Université, CNRS, EPHE, PSL University, UMR 7619, F-75005 Paris, France
| | - Thomas Thiebault
- METIS, Sorbonne Université, CNRS, EPHE, PSL University, UMR 7619, F-75005 Paris, France.
| | - Katell Quénéa
- METIS, Sorbonne Université, CNRS, EPHE, PSL University, UMR 7619, F-75005 Paris, France
| | - Fabrice Alliot
- METIS, Sorbonne Université, CNRS, EPHE, PSL University, UMR 7619, F-75005 Paris, France
| | - Elodie Guigon
- METIS, Sorbonne Université, CNRS, EPHE, PSL University, UMR 7619, F-75005 Paris, France
| | | |
Collapse
|
13
|
Ma N, Tong L, Li Y, Yang C, Tan Q, He J. Distribution of antibiotics in lake water-groundwater - Sediment system in Chenhu Lake area. ENVIRONMENTAL RESEARCH 2022; 204:112343. [PMID: 34748778 DOI: 10.1016/j.envres.2021.112343] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/01/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Antibiotics pollution in lakes has been widely reported worldwide, however rare studies were concerned about antibiotics distribution in lake water - groundwater - sediment system. Here, a total of 22 antibiotics and 4 sulfonamides metabolites were detected in lake water, sediments, and different depth of groundwater surrounding Chenhu Lake during the wet and dry seasons. N4-acetylsulfonamides (Ac-SAs), fluoroquinolones (FQs), and tetracyclines (TCs) were the main groups of antibiotics in the study area. In the whole lake environment, there were more types of antibiotics in the aquatic environments than in the sediments, and the antibiotics distribution was closely related to geographical location. Specifically, the average concentration of antibiotics in groundwater decreased with an increase in sampling site distance from the lake. All antibiotics, except oxytetracycline (OTC), showed a significant decline during the dry season that could be due to the implementation of lake conservation policies, which significantly helped reducing lake pollution. There were obvious differences in the distribution of antibiotics in distinct sedimentary environments. In the surface sediments, the antibiotics content in the reclamation and the perennially flooded areas was higher than in the lakeshore area. The hydraulic interactions in the perennial flooded area facilitated the deep migration of antibiotics into lake sediments. Correlation analysis revealed a good relevance between the distribution of antibiotics in lake water and groundwater. Redundancy analysis shows that dissolved oxygen and temperature were the main factors affecting the distribution of antibiotics.
Collapse
Affiliation(s)
- Naijin Ma
- School of Environmental Studies, China University of Geosciences, 430074, Wuhan, PR China
| | - Lei Tong
- School of Environmental Studies, China University of Geosciences, 430074, Wuhan, PR China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, PR China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, PR China.
| | - Yuqiong Li
- School of Environmental Studies, China University of Geosciences, 430074, Wuhan, PR China
| | - Cong Yang
- School of Environmental Studies, China University of Geosciences, 430074, Wuhan, PR China
| | - Qin Tan
- School of Environmental Studies, China University of Geosciences, 430074, Wuhan, PR China
| | - Jun He
- Wuhan Geological Survey Center, China Geological Survey, Wuhan, PR China
| |
Collapse
|
14
|
Kondor AC, Molnár É, Jakab G, Vancsik A, Filep T, Szeberényi J, Szabó L, Maász G, Pirger Z, Weiperth A, Ferincz Á, Staszny Á, Dobosy P, Horváthné Kiss K, Hatvani IG, Szalai Z. Pharmaceuticals in water and sediment of small streams under the pressure of urbanization: Concentrations, interactions, and risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152160. [PMID: 34864023 DOI: 10.1016/j.scitotenv.2021.152160] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 06/13/2023]
Abstract
Small streams are crucial but vulnerable elements of ecological networks. To better understand the occurrence of pharmaceutically active compounds (PhACs) in streams, this study focused on the occurrence, distribution, and environmental risk of 111 PhACs and 7 trace elements based on a total of 141 water and sediment samples from small streams located in the urbanizing region of Budapest, Hungary. Eighty-one PhACs were detected in the aqueous phase, whereas sixty-two compounds were detected in the sediment. Carbamazepine (CBZ) was the most frequently identified PhAC in water, and was found in 91.5% of all samples. However, the highest concentrations were measured for lamotrigine (344.8 μg·L-1) and caffeine (221.4 μg·L-1). Lidocaine was the most frequently occurring PhAC in sediment (73.8%), but the maximum concentrations were detected for CBZ (395.9 ng·g-1) and tiapride (187.7 ng·g-1). In both water and sediment, more PhACs were found downstream of the wastewater treatment plants (WWTPs) than in the samples not affected by treated wastewater, even though no relationship was observed between the total amount of treated wastewater and the number of detected PhACs. The PhAC concentrations were also independent of the distance from the WWTP effluents. PhAC-polluted samples were detected upstream of the WWTPs, thereby suggesting the relevance of diffuse emissions in addition to WWTP outlets. The most frequently detected PhACs in the sediment were usually also present in the water samples collected at the same place and time. The varying concentrations of PhACs and the fluctuating water-sediment properties resulted in a lack of correlation between the general chemical properties and the concentrations of PhACs, which makes it difficult to predict PhAC contamination and risks in urbanized small streams. The environmental risk assessment indicated that diclofenac had the highest risk in the sampling area.
Collapse
Affiliation(s)
- Attila Csaba Kondor
- Geographical Institute, Research Centre for Astronomy and Earth Sciences, MTA Centre for Excellence, Budaörsi út 45, Budapest H-1112, Hungary
| | - Éva Molnár
- Balaton Limnological Research Institute, Eötvös Loránd Research Network, Klebelsberg Kuno u. 3, Tihany H-8237, Hungary
| | - Gergely Jakab
- Geographical Institute, Research Centre for Astronomy and Earth Sciences, MTA Centre for Excellence, Budaörsi út 45, Budapest H-1112, Hungary; Department of Environmental and Landscape Geography, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest H-1117, Hungary; Institute of Geography and Geoinformatics, University of Miskolc, Egyetemváros, Miskolc H-3515, Hungary.
| | - Anna Vancsik
- Geographical Institute, Research Centre for Astronomy and Earth Sciences, MTA Centre for Excellence, Budaörsi út 45, Budapest H-1112, Hungary
| | - Tibor Filep
- Geographical Institute, Research Centre for Astronomy and Earth Sciences, MTA Centre for Excellence, Budaörsi út 45, Budapest H-1112, Hungary
| | - József Szeberényi
- Geographical Institute, Research Centre for Astronomy and Earth Sciences, MTA Centre for Excellence, Budaörsi út 45, Budapest H-1112, Hungary
| | - Lili Szabó
- Geographical Institute, Research Centre for Astronomy and Earth Sciences, MTA Centre for Excellence, Budaörsi út 45, Budapest H-1112, Hungary; Department of Environmental and Landscape Geography, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest H-1117, Hungary
| | - Gábor Maász
- Balaton Limnological Research Institute, Eötvös Loránd Research Network, Klebelsberg Kuno u. 3, Tihany H-8237, Hungary; Soós Ernő Research and Development Center, University of Pannonia, Zrínyi Miklós Str. 18, Nagykanizsa H-8800, Hungary
| | - Zsolt Pirger
- Balaton Limnological Research Institute, Eötvös Loránd Research Network, Klebelsberg Kuno u. 3, Tihany H-8237, Hungary
| | - András Weiperth
- Department of Freshwater Fish Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter K. u. 1, Gödöllő H-2100, Hungary
| | - Árpád Ferincz
- Department of Freshwater Fish Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter K. u. 1, Gödöllő H-2100, Hungary
| | - Ádám Staszny
- Department of Freshwater Fish Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter K. u. 1, Gödöllő H-2100, Hungary
| | - Péter Dobosy
- Institute of Aquatic Ecology, Centre for Ecological Research, Karolina út 29, Budapest H-1113, Hungary
| | | | - István Gábor Hatvani
- Institute for Geological and Geochemical Research, Research Centre for Astronomy and Earth Sciences, MTA Centre for Excellence, Budaörsi út 45, Budapest H-1112, Hungary
| | - Zoltán Szalai
- Geographical Institute, Research Centre for Astronomy and Earth Sciences, MTA Centre for Excellence, Budaörsi út 45, Budapest H-1112, Hungary; Department of Environmental and Landscape Geography, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest H-1117, Hungary
| |
Collapse
|
15
|
Adeleye AS, Xue J, Zhao Y, Taylor AA, Zenobio JE, Sun Y, Han Z, Salawu OA, Zhu Y. Abundance, fate, and effects of pharmaceuticals and personal care products in aquatic environments. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127284. [PMID: 34655870 DOI: 10.1016/j.jhazmat.2021.127284] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 09/06/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) are found in wastewater, and thus, the environment. In this study, current knowledge about the occurrence and fate of PPCPs in aquatic systems-including wastewater treatment plants (WWTPs) and natural waters around the world-is critically reviewed to inform the state of the science and highlight existing knowledge gaps. Excretion by humans is the primary route of PPCPs entry into municipal wastewater systems, but significant contributions also occur through emissions from hospitals, PPCPs manufacturers, and agriculture. Abundance of PPCPs in raw wastewater is influenced by several factors, including the population density and demography served by WWTPs, presence of hospitals and drugs manufacturers in the sewershed, disease burden of the population served, local regulations, and climatic conditions. Based on the data obtained from WWTPs, analgesics, antibiotics, and stimulants (e.g., caffeine) are the most abundant PPCPs in raw wastewater. In conventional WWTPs, most removal of PPCPs occurs during secondary treatment, and overall removal exceeds 90% for treatable PPCPs. Regardless, the total PPCP mass discharged with effluent by an average WWTP into receiving waters (7.35-20,160 g/day) is still considerable, because potential adverse effects of some PPCPs (such as ibuprofen) on aquatic organisms occur within measured concentrations found in surface waters.
Collapse
Affiliation(s)
- Adeyemi S Adeleye
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA.
| | - Jie Xue
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA
| | - Yixin Zhao
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA
| | - Alicia A Taylor
- Ecological and Biological Sciences Practice, Exponent, Inc., Oakland, CA 94612, USA
| | - Jenny E Zenobio
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA
| | - Yian Sun
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA; Water-Energy Nexus Center, University of California, Irvine, CA 92697-2175, USA
| | - Ziwei Han
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA
| | - Omobayo A Salawu
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA
| | - Yurong Zhu
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697-2580, USA
| |
Collapse
|
16
|
Zhou Q, Liu G, Arif M, Shi X, Wang S. Occurrence and risk assessment of antibiotics in the surface water of Chaohu Lake and its tributaries in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151040. [PMID: 34673055 DOI: 10.1016/j.scitotenv.2021.151040] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
The extensive use of antibiotics for treating humans, animals, and plants has resulted in the contamination of aquatic environments, posing a potential threat to public health and aquatic life; hence, this topic is of great concern worldwide. Lakes are considered to be antibiotic-rich reservoirs because many of the antibiotics discharged from rivers enter lakes. Chaohu Lake is one of the top five freshwater lakes in China. This study aims to provide a current evaluation of the antibiotics present in the surface water of the Chaohu Lake basin. To this end, the occurrences of 18 antibiotics categorized into 5 different groups were investigated in the study area, and the impact of inflowing rivers on their distribution was assessed. The results showed that the concentrations of 14 antibiotics in water samples ranged from 0 to 892 ng/L, and that antibiotics were detected at most sampling sites. Among them, the Nanfeihe and Shiwulihe rivers, which are close to the city, contributed the most to antibiotic pollution, indicating the widespread occurrence of antibiotics in the study area. A risk assessment based on the risk quotient method indicated that ofloxacin, ciprofloxacin, sulfamethoxazole, erythromycin, and norfloxacin in the lake water posed a high ecological risk to algae, while sulfamethazine posed a high risk to plants (RQ >1).
Collapse
Affiliation(s)
- Qiqi Zhou
- CAS Key Laboratory of Crust-Mantle Materials and the Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guijian Liu
- CAS Key Laboratory of Crust-Mantle Materials and the Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Muhammad Arif
- CAS Key Laboratory of Crust-Mantle Materials and the Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaodan Shi
- CAS Key Laboratory of Crust-Mantle Materials and the Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Sizhuang Wang
- CAS Key Laboratory of Crust-Mantle Materials and the Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
17
|
Otoo BA, Amoabeng IA, Darko G, Borquaye LS. Antibiotic and analgesic residues in the environment – Occurrence and ecological risk study from the Sunyani municipality, Ghana. Toxicol Rep 2022; 9:1491-1500. [DOI: 10.1016/j.toxrep.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022] Open
|
18
|
Abstract
Pharmaceuticals, among the emerging contaminants, are pseudopersistent and recently of serious concern due to universal use, toxicity, and resistance development at low concentrations. This study was aimed at assessing the prevalence and risk of eight pharmaceuticals in surface water used for vegetable irrigation in Ghana’s Kumasi and Sunyani metropolises, which are influenced by hospitals, sewage treatment facilities, and market effluents. Samples were concentrated via solid-phase extraction (SPE) while liquid chromatography was used to identify and quantify the analytes. Ibuprofen, acetaminophen, and diclofenac were the detected analgesics in this study, with concentrations stretching from below detection limit (not detected) to 319.0 ng/L, while amoxicillin, trimethoprim, and cefuroxime were the detected antibiotics with a concentration range of no detection to 840.0 ng/L. Based on the available long-term data, an environmental risk assessment was conducted. Because of the presence of ibuprofen, the lowest trophic level and fish were shown to be at risk. The estimated risk quotient values for antibiotics resistance were above 1 for all the antibiotics investigated in surface water impacted by the wastewater of hospitals and pharmaceutical companies’ except surface water impacted by sewage treatment plants (STPs) and market wastewater. The existence of these pharmaceuticals in surface water does not only point to a general concern for the environment but also a potential health risk on humans and other lives as a result of their impact on drinking water and vegetable production in Ghana.
Collapse
|
19
|
Roveri V, Guimarães LL, Toma W, Correia AT. Occurrence and ecological risk assessment of pharmaceuticals and cocaine in the urban drainage channels of Santos beaches (São Paulo, Brazil): a neglected, but sensitive issue. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:65595-65609. [PMID: 34322794 DOI: 10.1007/s11356-021-15249-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/28/2021] [Indexed: 05/20/2023]
Abstract
In some Brazilian coastal cities, it is common to observe 'black tongues' in beaches, i.e. a mixture of urban runoff and untreated domestic sewage containing pollutants of emerging concern, namely pharmaceutical and personal care products (PPCPs), flowing into the South Atlantic Ocean. Such diffuse loads of pollutants might expose nontarget aquatic organisms to harmful compounds. In this work, the occurrence and preliminary ecological risk of 27 PPCPs of various therapeutic classes (including cocaine and its primary metabolite, benzoylecgonine) were investigated, for the first time, in seven urban drainage channels whose diffuse loads flow continuously to the beaches of Santos Bay, São Paulo, Brazil. Of these, 21 compounds were detected using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS), and nine of them were consistently quantified in all urban channels of Santos, suggesting that those pollutants are ubiquitous in this region: caffeine (143.4-516.0 ng/L), losartan (4.2-21.8 ng/L), atenolol (1.1-18.2 ng/L), acetaminophen (1.5-13.8 ng/L), benzoylecgonine (1.0-4.8 ng/L), carbamazepine (1.1-4.0 ng/L), diclofenac (1.9-3.5 ng/L), cocaine (0.5-1.7 ng/L), and orphenadrine (0.1-0.8 ng/L). Moreover, twelve compounds were found below the limit of quantification ( <LOQ): citalopram, propranolol, diazepam, rosuvastatin, atorvastatin, midazolam, ranitidine, chlortalidone, clopidogrel, chlorpheniramine, enalapril and valsartan. According to our knowledge, this is the first report on the occurrence of midazolam, ranitidine and chlorpheniramine in surface waters in Latin America and, therefore, these compounds should be considered environmental warning signs. A preliminary ecological risk assessment revealed that caffeine, acetaminophen and losartan presented a moderate risk, and carbamazepine a low risk to sensitive aquatic organisms at maximum measured concentrations. This study provides valuable information to reinforce the importance of a continuous monitoring of the diffuse loads (containing PPCPs and illicit drugs) flowing to the coastal zones in developing countries.
Collapse
Affiliation(s)
- Vinicius Roveri
- Faculdade de Ciência e Tecnologia da Universidade Fernando Pessoa (FCT-UFP), Praça 9 de Abril 349, 4249-004, Porto, Portugal
- Universidade Metropolitana de Santos (UNIMES), Avenida Conselheiro Nébias, 536 - Encruzilhada, 11045-002, Santos, São Paulo, Brasil
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Luciana Lopes Guimarães
- Laboratório de Pesquisa em Produtos Naturais, Universidade Santa Cecília, Rua Cesário Mota 8, F83A, 11045-040 Santos, São Paulo, Brasil
| | - Walber Toma
- Laboratório de Pesquisa em Produtos Naturais, Universidade Santa Cecília, Rua Cesário Mota 8, F83A, 11045-040 Santos, São Paulo, Brasil
| | - Alberto Teodorico Correia
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal.
- Faculdade de Ciências da Saúde da Universidade Fernando Pessoa (FCS-UFP), Rua Carlos da Maia 296, 4200-150, Porto, Portugal.
- Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| |
Collapse
|
20
|
Eluk D, Nagel O, Gagneten A, Reno U, Althaus R. Toxicity of fluoroquinolones on the cladoceran Daphnia magna. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:2914-2930. [PMID: 34431154 DOI: 10.1002/wer.1631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/13/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
This study evaluates the acute and chronic toxicological effects of six fluoroquinolones on the mortality and growth of Daphnia magna. The NOECs calculated with the multivariate Probit regression model for the chronic study were 56 μg/L ciprofloxacin, 63 μg/L enrofloxacin, 78 μg/L levofloxacin, 85 μg/L marbofloxacin, 69 μg/L norfloxacin, and 141 μg/L ofloxacin. The risk quotients were determined using the measure environmental concentrations reported in water sources from different countries. The risks were low and moderate in water samples from rivers and lakes, although concentrations of ciprofloxacin, norfloxacin, and ofloxacin reported in some countries can cause toxicological damage to D. magna. In addition, urban wastewater and hospital wastewater samples constitute a threat to D. magna (high and moderate risks), requiring the treatment of these wastewater. PRACTITIONER POINTS: The NOECs calculated with the multivariate Probit model for the six fluoroquinolonas are between 56 μg/L ciprofloxacin and 141 μg/L ofloxacin. The levels of ciprofloxacin, norfloxacin, and ofloxacin in urban wastewater and hospital wastewater produce moderate and high risks for D. magna. Water and river samples from some countries containing ciprofloxacin, norlfoxacin, and ofloxacin present high risks for D. magna.
Collapse
Affiliation(s)
- Dafna Eluk
- Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Orlando Nagel
- Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Ana Gagneten
- Facultad de Humanidades y Ciencias, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Ulises Reno
- Facultad de Humanidades y Ciencias, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Rafael Althaus
- Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
21
|
Kazakova J, Villar-Navarro M, Ramos-Payán M, Aranda-Merino N, Román-Hidalgo C, Bello-López MÁ, Fernández-Torres R. Monitoring of pharmaceuticals in aquatic biota (Procambarus clarkii) of the Doñana National Park (Spain). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113314. [PMID: 34298344 DOI: 10.1016/j.jenvman.2021.113314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/29/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
In this work the presence of different pharmaceuticals at Doñana National Park (Spain) and their main entry sources (input source or entry points) have been stated over the 2011-2016 years period. Twenty-three selected pharmaceuticals (corresponding to eight therapeutic families) were evaluated in crayfish and water samples from Doñana National Park (Spain) (six sampling points selected in order to cover different possible pollution sources into and surrounding the Park). The multiresidue determination was carried out using enzymatic-microwave assisted extraction prior to high performance liquid chromatography mass spectrometry detection. Sulphonamides (sulfadiazine, sulfamerazine, sulfamethazine, and sulfamethoxazole); trimethoprim, an antibiotic that is frequently co-administered with sulfamethoxazole; amphenicols (chloramphenicol, florfenicol and thiamphenicol); fluoroquinolones (ciprofloxacin, enrofloxacin, flumequine, danofloxacin, gatifloxacin, norfloxacin, marbofloxacin and grepafloxacin); penicillins (amoxicillin); tetracyclines (chlortetracycline and oxytetracycline); non-steroidal anti-inflammatory drugs (salicylic acid and ibuprofen); beta-blocker drugs (atenolol); and antiepileptics (carbamazepine) were analysed. Ciprofloxacin, ibuprofen, salicylic acid, flumequine, and carbamazepine were detected and/or quantified at some of the selected sampling points. A clear ecotoxicological risk to the ecosystem was demonstrated from the occurrence of ciprofloxacin in samples obtained after the punctual and massive presence of people inside the Park. Furthermore, flumequine and carbamazepine have been detected in Procambarus clarkii specimens in concentrations around 30 ng g-1 and 14 ng g-1, respectively, and their occurrence in the specimens could indicate the persistence of the discharge sources. The main source of pharmaceuticals into the Park might be the livestock farming activities, and the influence of urban wastewaters from surrounding villages does not seem to be very important.
Collapse
Affiliation(s)
- Julia Kazakova
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad de Sevilla, c/Prof. García González, s/n., 41012, Seville, Spain
| | - Mercedes Villar-Navarro
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad de Sevilla, c/Prof. García González, s/n., 41012, Seville, Spain
| | - María Ramos-Payán
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad de Sevilla, c/Prof. García González, s/n., 41012, Seville, Spain
| | - Noemí Aranda-Merino
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad de Sevilla, c/Prof. García González, s/n., 41012, Seville, Spain
| | - Cristina Román-Hidalgo
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad de Sevilla, c/Prof. García González, s/n., 41012, Seville, Spain
| | - Miguel Ángel Bello-López
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad de Sevilla, c/Prof. García González, s/n., 41012, Seville, Spain.
| | - Rut Fernández-Torres
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad de Sevilla, c/Prof. García González, s/n., 41012, Seville, Spain.
| |
Collapse
|
22
|
Pharmaceutical Compounds in Aquatic Environments-Occurrence, Fate and Bioremediation Prospective. TOXICS 2021; 9:toxics9100257. [PMID: 34678953 PMCID: PMC8537644 DOI: 10.3390/toxics9100257] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022]
Abstract
Various contaminants of emerging concern (CECs) have been detected in different ecosystems, posing a threat to living organisms and the environment. Pharmaceuticals are among the many CECs that enter the environment through different pathways, with wastewater treatment plants being the main input of these pollutants. Several technologies for the removal of these pollutants have been developed through the years, but there is still a lack of sustainable technologies suitable for being applied in natural environments. In this regard, solutions based on natural biological processes are attractive for the recovery of contaminated environments. Bioremediation is one of these natural-based solutions and takes advantage of the capacity of microorganisms to degrade different organic pollutants. Degradation of pollutants by native microorganisms is already known to be an important detoxification mechanism that is involved in natural attenuation processes that occur in the environment. Thus, bioremediation technologies based on the selection of natural degrading bacteria seem to be a promising clean-up technology suitable for application in natural environments. In this review, an overview of the occurrence and fate of pharmaceuticals is carried out, in which bioremediation tools are explored for the removal of these pollutants from impacted environments.
Collapse
|
23
|
Ledieu L, Simonneau A, Thiebault T, Fougere L, Destandau E, Cerdan O, Laggoun F. Spatial distribution of pharmaceuticals within the particulate phases of a peri-urban stream. CHEMOSPHERE 2021; 279:130385. [PMID: 33848931 DOI: 10.1016/j.chemosphere.2021.130385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/03/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Pharmaceutical products (PPs) are consumed worldwide and are continuously released into hydrological environments, but are not efficiently removed by sewage treatment plants. Their occurrence within the dissolved phase has been extensively studied, but only a few articles concern solid matrices. The mechanisms and extent of sorption depend on the properties of both the molecules (degradability, charge, hydrophobicity) and the matrices (clay content, organic matter content), making the spatio-temporal distribution of PPs in natural environments complex and poorly elucidated. To improve our understanding of PP distribution at a catchment scale, this study investigated different groups of molecules with varying solubility and charges, in water, suspended particulate matter, bed-load and pond sediments. The Egoutier stream, which collects the sewage effluents from two health institutions sewage effluents, is a good candidate for this investigation. Results indicate that PP occurrences in the different particulate compartments were mainly regulated by their wastewater occurrences and charges. Particulate phases all along the Egoutier stream were characterized by a limited clay content (i.e. less than 1%) and significant organic carbon content (i.e. between 0.3% and 18.0%) favouring non-specific adsorption. Therefore, neutral PPs, exhibiting higher discharge rates, persistence and hydrophobicities in comparison with cationic and anionic molecules, were the most abundant PPs in the particulate phases of this catchment. In bed-load sediments, global PP spatial distributions reflected discharge sites and sedimentary accumulation zones, mostly that of organic matter. Spatial distributions of the more hydrophobic and persistent PP in the particulate phases thus followed the stream sedimentary dynamic.
Collapse
Affiliation(s)
- L Ledieu
- Univ. Orléans, CNRS, BRGM, ISTO, UMR 7327, F-45071, Orléans, France.
| | - A Simonneau
- Univ. Orléans, CNRS, BRGM, ISTO, UMR 7327, F-45071, Orléans, France.
| | - T Thiebault
- EPHE, PSL University, UMR 7619 METIS (SU, CNRS, EPHE), 4 Place Jussieu, F-75005, Paris, France
| | - L Fougere
- Univ Orleans, CNRS, ICOA, UMR 7311, 45067, Orleans, France
| | - E Destandau
- Univ Orleans, CNRS, ICOA, UMR 7311, 45067, Orleans, France
| | - O Cerdan
- BRGM, 3 Avenue Claude Guillemin, 45060, Orléans, France
| | - F Laggoun
- Univ. Orléans, CNRS, BRGM, ISTO, UMR 7327, F-45071, Orléans, France
| |
Collapse
|
24
|
Emerging Contaminants in Seafront Zones. Environmental Impact and Analytical Approaches. SEPARATIONS 2021. [DOI: 10.3390/separations8070095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Some chemical substances have the potential to enter the coastal and marine environment and cause adverse effects on ecosystems, biodiversity and human health. For a large majority of them, their fate and effects are poorly understood as well as their use still unregulated. Finding effective and sustainable strategies for the identification of these emerging and/or anthropogenic contaminants that might cause polluting effects in marine environments to mitigate their adverse effects, is of utmost importance and a great challenge for managers, regulators and researchers. In this review we will evaluate the impact of emerging contaminants (ECs) on marine coastal zones namely in their ecosystems and biodiversity, highlighting the potential risks of organic pollutants, pharmaceuticals and personal care products. Emerging microextraction techniques and high-resolution analytical platforms used in isolation, identification and quantification of ECs will be also reviewed.
Collapse
|
25
|
Cardoso-Vera JD, Elizalde-Velázquez GA, Islas-Flores H, Mejía-García A, Ortega-Olvera JM, Gómez-Oliván LM. A review of antiepileptic drugs: Part 1 occurrence, fate in aquatic environments and removal during different treatment technologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:145487. [PMID: 33736324 DOI: 10.1016/j.scitotenv.2021.145487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Antiepileptic drugs (AEDs) are the main treatment for people with epilepsy. However, in recent years, more and more people are using them for other indications such as: migraine, chronic neuropathic pain, and mood disorders. Consequently, the prescriptions and consumption of these drugs are increasing worldwide. In WWTPs, AEDs can resist degradation processes, such as photodegradation, chemical degradation and/or biodegradation. Until now, only constructed wetlands and photocatalysis have shown good removal rates of AEDs from wastewater. However, their effectiveness depends on the specific conditions used during the treatment. Since the consumption of AEDs has increased in the last decade and their degradation in WWTPs is poor, these drugs have been largely introduced into the environment through the discharge of municipal and/or hospital effluents. Once in the environment, AEDs are distributed in the water phase, as suspended particles or in the sediments, suggesting that these drugs have a high potential for groundwater contamination. In this first part of the AEDs review is designed to fill out the current knowledge gap about the occurrence, fate and removal of these drugs in the aquatic environment. This is a review that emphasizes the characteristics of AEDs as emerging contaminants.
Collapse
Affiliation(s)
- Jesús Daniel Cardoso-Vera
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Alejandro Mejía-García
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - José Mario Ortega-Olvera
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico.
| |
Collapse
|
26
|
Muhammad N, Zia-ul-Haq M, Ali A, Naeem S, Intisar A, Han D, Cui H, Zhu Y, Zhong JL, Rahman A, Wei B. Ion chromatography coupled with fluorescence/UV detector: A comprehensive review of its applications in pesticides and pharmaceutical drug analysis. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2020.102972] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
27
|
López-García E, Mastroianni N, Ponsà-Borau N, Barceló D, Postigo C, López de Alda M. Drugs of abuse and their metabolites in river sediments: Analysis, occurrence in four Spanish river basins and environmental risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123312. [PMID: 32653784 DOI: 10.1016/j.jhazmat.2020.123312] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
The environmental impact produced by the presence of drugs of abuse in sediments has been scarcely studied to date, even though many of them may adsorb onto particulate matter due to their physical-chemical properties. This study presents an analytical method for the determination of 20 drugs of abuse and metabolites in sediments. The validated method was satisfactory in terms of linearity (r2 >0.99), recovery (90-135 %), repeatability (relative standard deviations <15 %), sensitivity (limits of quantification <2.1 ng/g d.w, except for cannabinoids), and matrix effects (ionization suppression <40 %). The method was applied to the analysis of 144 sediments collected in four Spanish river basins. Cocaine, methadone, and its metabolite 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) were the most ubiquitous compounds (detection frequencies>36 %), whereas cannabinol, Δ9-tetrahydrocannabinol (THC), and methadone were the most abundant compounds (up to 44, 37, and 33 ng/g d.w, respectively). The presence of EDDP, THC, and methadone in the sediments of 28 locations may pose a risk to sediment-dwelling organisms. To the author`s knowledge, this is the most extensive study conducted so far on the occurrence of drugs of abuse in sediments, and the first time that sediment-water distribution coefficients for EDDP, methadone, MDMA, and diazepam are reported from field observations.
Collapse
Affiliation(s)
- Ester López-García
- Water, Environmental, and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Nicola Mastroianni
- Water, Environmental, and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | | | - Damià Barceló
- Water, Environmental, and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain; Catalan Institute for Water Research, H2O Buiding, Scientific and Technological Park of the University of Grona, Emili Grahit 101, 17003, Girona, Spain
| | - Cristina Postigo
- Water, Environmental, and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain.
| | - Miren López de Alda
- Water, Environmental, and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain.
| |
Collapse
|
28
|
Grabicová K, Grabic R, Fedorova G, Vojs Staňová A, Bláha M, Randák T, Brooks BW, Žlábek V. Water reuse and aquaculture: Pharmaceutical bioaccumulation by fish during tertiary treatment in a wastewater stabilization pond. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115593. [PMID: 33254619 DOI: 10.1016/j.envpol.2020.115593] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 06/12/2023]
Abstract
With increasing demand for aquaculture products, water reuse is likely to increase for aquaculture operations around the world. Herein, wastewater stabilization ponds (WSP) represents low cost and sustainable treatment technologies to reduce nutrients and various contaminants of emerging concern from effluent. In the present study, we examined bioaccumulation of selected pharmaceuticals from several therapeutic classes by two important fish species in aquaculture with different feeding preferences (Cyprinus carpio and Sander lucioperca) and their common prey to test whether species specific accumulation occurs. Forty and nineteen from 66 selected pharmaceuticals and their metabolites were positively found in water and sediment samples, respectively from the representative WSP. After a six-month study, which corresponds to aquaculture operations, fourteen pharmaceuticals and their metabolites were detected (at a frequency of higher than 50% of samples) in at least one fish tissue collected from the WSP. We observed striking differences for species and organ specific BAFs among study compounds. Though muscle tissues consistently accumulated lower levels of the target analytes, several substances were elevated in brain, liver and kidney tissues (e.g., sertraline) of both species. Low residual concentrations of these target analytes in aquaculture products (fish fillets) suggest WSPs are promising to support the water-food nexus in aquaculture.
Collapse
Affiliation(s)
- Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic.
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Ganna Fedorova
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Andrea Vojs Staňová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic; Comenius University in Bratislava, Faculty of Natural Sciences, Department of Analytical Chemistry, Ilkovičova 6, SK-842 15, Bratislava, Slovak Republic
| | - Martin Bláha
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Tomáš Randák
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Bryan W Brooks
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic; Department of Environmental Science, Institute of Biomedical Studies, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, 76798, USA
| | - Vladimír Žlábek
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| |
Collapse
|
29
|
Izadi P, Izadi P, Salem R, Papry SA, Magdouli S, Pulicharla R, Brar SK. Non-steroidal anti-inflammatory drugs in the environment: Where were we and how far we have come? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115370. [PMID: 33254637 DOI: 10.1016/j.envpol.2020.115370] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/27/2020] [Accepted: 08/02/2020] [Indexed: 06/12/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most well-known pharmaceuticals with a broad scope of properties that are widely used in human and veterinary medicine. Because of their extensive utilization, NSAIDs are commonly identified in the environment as trace emerging contaminants. Regardless of vast experience with these drugs, NSAIDs are full of contradictions that trigger major concerns for environmental researchers. A limited understanding on NSAID's occurrence, distribution and eco-toxicological effects have led to an escalated dilemma in the last decade. Thus, a broad-spectrum study covering all aspects of occurrence, detection and removal is required to meet the fundamental levels of knowledge on the effects of NSAIDs in all exposed environmental aspects. Therefore, this paper focuses on classifying the sources and entry points of residual NSAIDs. Further, detecting and regulating their concentrations in both input streams and receiving environments, along with the removal processes of this specific class of emerging compounds, in the direction of developing a management policy is comprehensively reviewed.
Collapse
Affiliation(s)
- Parnian Izadi
- Lassonde School of Engineering, Civil Engineering, York University, 4700 Keele Street, Toronto, M3J 1P3, ON, Canada.
| | - Parin Izadi
- Lassonde School of Engineering, Civil Engineering, York University, 4700 Keele Street, Toronto, M3J 1P3, ON, Canada.
| | - Rana Salem
- Lassonde School of Engineering, Civil Engineering, York University, 4700 Keele Street, Toronto, M3J 1P3, ON, Canada.
| | - Sifat Azad Papry
- Lassonde School of Engineering, Civil Engineering, York University, 4700 Keele Street, Toronto, M3J 1P3, ON, Canada.
| | - Sara Magdouli
- Lassonde School of Engineering, Civil Engineering, York University, 4700 Keele Street, Toronto, M3J 1P3, ON, Canada.
| | - Rama Pulicharla
- École Supérieure D'aménagement Du Territoire et de Développement Régional, Pavillon Félix-Antoine-Savard, Bureau 1616, 2325, Rue des Bibliothèques, Université Laval, Québec, QC, G1V 0A6, Canada.
| | - Satinder Kaur Brar
- Lassonde School of Engineering, Civil Engineering, York University, 4700 Keele Street, Toronto, M3J 1P3, ON, Canada.
| |
Collapse
|
30
|
Feo ML, Bagnati R, Passoni A, Riva F, Salvagio Manta D, Sprovieri M, Traina A, Zuccato E, Castiglioni S. Pharmaceuticals and other contaminants in waters and sediments from Augusta Bay (southern Italy). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139827. [PMID: 32544676 DOI: 10.1016/j.scitotenv.2020.139827] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
The contamination by pharmaceuticals products (PPs) in the marine environment is particularly relevant where wastewater treatment of urban areas on land is lacking. However, the number of studies focused on description of sources and fate of PP molecules in the marine environment remains still limited. In this study, the occurrence of 46 PPs was investigated in the marine and coastal-marine system (waters and sediments) of Augusta Bay (central Mediterranean Sea). This area is highly affected by industrial pollution and urban discharges (without wastewater treatment) and thus represents a 'natural laboratory' for exploring dynamics of multi-mixture contaminants in the marine environment. The study area is also part of the sub-region 'Central Mediterranean Sea' of the Marine Strategy Framework Directive and therefore offers an important reference site for exploring the distribution modes of PPs in the central Mediterranean Sea. In this work, samples of seawater, sediment, untreated wastewater, and marine receiving water were analysed using mass spectrometry with a target analysis for PPs and a suspect screening analysis for the presence of other contaminants. PPs concentration ranges were: 2426-67,155 ng/L for untreated wastewaters, 550-27,889 ng/L for marine receiving waters and 12-281 ng/L for seawaters. The highest concentrations were measured for the antibiotics, anti-inflammatories, cardiovascular and antihypertensive therapeutic classes. Likewise, sediments collected from untreated wastewater sewers resulted more contaminated. Ionic, non-ionic surfactants and personal care products were the most abundant compounds found in waters and sediments by suspect screening analysis. The risk associated with PPs contamination for aquatic organisms was relatively high in samples of marine receiving waters of the bay (with a risk quotient value up to 33,599). The levels of PPs in seawater and sediment compartments were generally not hazardous (RQ < 0.01), except for estrone with a calculated RQ = 2775.
Collapse
Affiliation(s)
- Maria Luisa Feo
- Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino (IAS-CNR), Via del Mare, 3, 91021 Torretta Granitola (Campobello di Mazara), TP, Italy.
| | - Renzo Bagnati
- Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Alice Passoni
- Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Francesco Riva
- Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Daniela Salvagio Manta
- Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino (IAS-CNR), Via del Mare, 3, 91021 Torretta Granitola (Campobello di Mazara), TP, Italy
| | - Mario Sprovieri
- Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino (IAS-CNR), Via del Mare, 3, 91021 Torretta Granitola (Campobello di Mazara), TP, Italy
| | - Anna Traina
- Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino (IAS-CNR), Via del Mare, 3, 91021 Torretta Granitola (Campobello di Mazara), TP, Italy
| | - Ettore Zuccato
- Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Sara Castiglioni
- Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| |
Collapse
|
31
|
Esperón F, Albero B, Ugarte-Ruíz M, Domínguez L, Carballo M, Tadeo JL, Del Mar Delgado M, Moreno MÁ, de la Torre A. Assessing the benefits of composting poultry manure in reducing antimicrobial residues, pathogenic bacteria, and antimicrobial resistance genes: a field-scale study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:27738-27749. [PMID: 32399873 DOI: 10.1007/s11356-020-09097-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
The poultry industry in the European Union produces 13 million tons of manure annually, which represents a major health and environmental challenge. Composting is an environmental-friendly technique for the management of manure, but there are few studies about antibiotic residues and antimicrobial resistances at a field scale. The goal of this study was to determine if the composting of poultry manure at a field scale would result in the reduction of antibiotic residues, pathogenic bacteria, and antibiotic resistance genes (ARGs) in the final fertilizer product. A 10-week composting of poultry manure spiked with enrofloxacin, doxycycline, and ciprofloxacin was performed. The determination of antibiotics residues and 22 selected ARGs was carried out together with the identification of bacteria by metagenomics. In the case of ciprofloxacin and doxycycline, a 90% decrease was observed after composting for 3 weeks. Sixteen ARGs were detected at the beginning of the experiment; 12 of them decreased from week 0 to week 10 (reduction of 73.7-99.99%). The presence of potentially pathogenic bacteria, such as, Campylobacter coli or commensal bacteria such as Escherichia coli decreases along the composting process. In conclusion, 10-week composting of poultry manure promotes the reduction of antibiotic residues and most of the ARGs and pathogenic bacteria.
Collapse
Affiliation(s)
- Fernando Esperón
- Animal Health Research Center (INIA-CISA), Ctra Algete a El Casar s/n, 28130, Valdeolmos, Madrid, Spain.
| | - Beatriz Albero
- Department of Environment and Agronomy (INIA), Ctra La Coruña Km. 7.5, 28040, Madrid, Spain
| | - María Ugarte-Ruíz
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Avda. Puerta de Hierro, s/n, 28040, Madrid, Spain
| | - Lucas Domínguez
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Avda. Puerta de Hierro, s/n, 28040, Madrid, Spain
- Department of Animal Health, Veterinary Faculty, Complutense University of Madrid, Ada. Puerta de Hierro, s/n, Madrid, Spain
| | - Matilde Carballo
- Animal Health Research Center (INIA-CISA), Ctra Algete a El Casar s/n, 28130, Valdeolmos, Madrid, Spain
| | - José Luis Tadeo
- Department of Environment and Agronomy (INIA), Ctra La Coruña Km. 7.5, 28040, Madrid, Spain
| | - María Del Mar Delgado
- Department of Environment and Agronomy (INIA), Ctra La Coruña Km. 7.5, 28040, Madrid, Spain
| | - Miguel Ángel Moreno
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Avda. Puerta de Hierro, s/n, 28040, Madrid, Spain
- Department of Animal Health, Veterinary Faculty, Complutense University of Madrid, Ada. Puerta de Hierro, s/n, Madrid, Spain
| | - Ana de la Torre
- Animal Health Research Center (INIA-CISA), Ctra Algete a El Casar s/n, 28130, Valdeolmos, Madrid, Spain
| |
Collapse
|
32
|
Method Validation and Investigation of the Levels of Pharmaceuticals and Personal Care Products in Sludge of Wastewater Treatment Plants and Soils of Irrigated Golf Course. Molecules 2020; 25:molecules25143114. [PMID: 32650439 PMCID: PMC7397199 DOI: 10.3390/molecules25143114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/25/2020] [Accepted: 07/01/2020] [Indexed: 02/02/2023] Open
Abstract
The validation of a sensitive and reliable analytical procedure for the determination of pharmaceutical and personal care products (PPCPs) in solid environmental samples is reported in this study. Initially, two types of derivatization were used for the identification of the 13 target PPCP standards (acylation and silylation), but silylation proved to be better in sensitivity as it detected all of the analytes under investigation. Samples were extracted using an ultrasonicator, concentrated and re-dissolved in 100 mL water, then cleaned-up using C18 cartridges before silylation that preceded the Gas chromatography-mass Spectrometry detector (GC–MS) analyses. The optimized method provided a linear response over the range of 10–400 ng·g−1 with r2 > 0.992 and satisfactory recoveries (>45.6%) for the 13 compounds of interest. In this study, the variation of the sonication temperature, type of organic solvent for extraction, and types of cartridge were used to optimize the extraction procedure. A good repeatability (within day) and reproducibility (between days) with a relative standard deviation (RSD) that was equal or less than 13% for all the PPCPs were achieved with the developed extraction procedures for the irrigated soil and sewage sludge samples. The limits of detection (LODs) of the tested compounds varied from 0.1 ng·g−1 (aspirin) to 1.4 ng·g−1 (doxycycline) and from 0.1 ng·g−1 (codiene) to 1.7 ng·g−1 (doxycycline) for soils and sewage sludge samples, respectively. The method was successfully applied to the sludge of wastewater treatment plants and soils of an irrigated golf course. Among the tested emerging pollutants, paracetamol showed the highest concentration value of 98.9 ng·g−1 in the sludge, and for the irrigated soil (0 to 10 cm), the concentration ranged from 1.16 ng·g−1 (aspirin) to 8.57 ng·g−1 (ibuprofen).
Collapse
|
33
|
Chopra S, Kumar D. Ibuprofen as an emerging organic contaminant in environment, distribution and remediation. Heliyon 2020; 6:e04087. [PMID: 32510000 PMCID: PMC7265064 DOI: 10.1016/j.heliyon.2020.e04087] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/08/2020] [Accepted: 05/26/2020] [Indexed: 12/25/2022] Open
Abstract
Pharmaceutical and personal care products (PPCPs) are the one of sub-class under emerging organic contaminants (EOCs). Ibuprofen is the world's third most consumable drug. This drug enters into our water system through human pharmaceutical use. It attracts the attention of environmentalist on the basis of risk associated, presence and transformation in the environment. The detection and removal are the two key area where we need to focus. The concentration of such compounds in waterbodies detected through conventional and also by the advanced methods. This review we described the available technologies including chemical, physical and biological methods, etc used the for removal of Ibuprofen. The pure culture based method, mixed culture approach and activated sludge culture approach focused and pathway of degradation of ibuprofen was deciphered by using the various methods of structure determination. The various degradation methods used for Ibuprofen are discussed. The advanced methods coupled with physical, chemical, biological, chemical methods like ozonolysis, oxidation and adsorption, nanotechnology based methods, nanocatalysis and use of nonosensors to detect the presence of small amount in waterbodies can enhance the future degradation of this drug. It is necessary to develop the new detection methods to enhance the detection of such pollutants. With the developments in new detection methods based on GC-MS//MS, HPLC, LC/MS and nanotechnology based sensors makes easier detection of these compounds which can detect even very minute amount with great sensitivity and in less time. Also, the isolation and characterization of more potent microbial strains and nano-photocatalysis will significantly increase the future degradation of such harmful compounds from the environment.
Collapse
Affiliation(s)
- Sunil Chopra
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039 Sonepat, Haryana, India
| | - Dharmender Kumar
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039 Sonepat, Haryana, India
| |
Collapse
|
34
|
Pereira A, Silva L, Laranjeiro C, Lino C, Pena A. Selected Pharmaceuticals in Different Aquatic Compartments: Part II-Toxicity and Environmental Risk Assessment. Molecules 2020; 25:molecules25081796. [PMID: 32295269 PMCID: PMC7221825 DOI: 10.3390/molecules25081796] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/03/2020] [Accepted: 04/08/2020] [Indexed: 12/11/2022] Open
Abstract
Potential risks associated with releases of human pharmaceuticals into the environment have become an increasingly important issue in environmental health. This concern has been driven by the widespread detection of pharmaceuticals in all aquatic compartments. Therefore, 22 pharmaceuticals, 6 metabolites and transformation products, belonging to 7 therapeutic groups, were selected to perform a review on their toxicity and environmental risk assessment (ERA) in different aquatic compartments, important issues to tackle the water framework directive (WFD). The toxicity data collected reported, with the exception of anxiolytics, at least one toxicity value for concentrations below 1 µg L−1. The results obtained for the ERA revealed risk quotients (RQs) higher than 1 in all the aquatic bodies and for the three trophic levels, algae, invertebrates and fish, posing ecotoxicological pressure in all of these compartments. The therapeutic groups with higher RQs were hormones, antiepileptics, anti-inflammatories and antibiotics. Unsurprisingly, RQs values were highest in wastewaters, however, less contaminated water bodies such as groundwaters still presented maximum values up to 91,150 regarding 17α-ethinylestradiol in fish. Overall, these results present an important input for setting prioritizing measures and sustainable strategies, minimizing their impact in the aquatic environment.
Collapse
|
35
|
Su D, Ben W, Strobel BW, Qiang Z. Occurrence, source estimation and risk assessment of pharmaceuticals in the Chaobai River characterized by adjacent land use. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:134525. [PMID: 31822417 DOI: 10.1016/j.scitotenv.2019.134525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/27/2019] [Accepted: 09/16/2019] [Indexed: 05/27/2023]
Abstract
This study investigated the occurrence of 27 pharmaceuticals with diverse physicochemical properties in a year-long monitoring campaign in the Chaobai River, China. The correlation between the distribution of pharmaceuticals in the river and the adjacent sources was elucidated. The results indicate that the agriculture area was the most polluted area with a median summed pharmaceutical concentration of 225.3 ng L-1, followed by the urban area and the mountain area with the corresponding values of 136.9 and 29.9 ng L-1, respectively. In terms of individual compounds, 22 out of 27 compounds were detected with concentrations ranging from <1 to 1972 ng L-1. Caffeine, carbamazepine, azithromycin, bezafibrate, metoprolol, sulfadiazine, sulfamethoxazole, clarithromycin, erythromycin, roxithromycin, and trimethoprim were pharmaceuticals with relatively high levels, with median concentrations ranging from 3.3 to 25.6 ng L-1 and detection frequencies ranging from 40% to 97%. Higher concentrations were mainly observed during cold seasons, with mean concentrations 1 to 52 times as high as those during warm seasons. Spatial analysis reveals that the pharmaceutical concentrations in different areas were impacted by different sources. A wastewater treatment plant was an important source in the urban area, while the agriculture area was impacted by various treated and untreated wastewater sources. The species sensitivity distribution model and risk quotient (RQ) method were combined in the ecological risk assessment. The results indicate that the multi-substance potentially affected fraction (msPAF) values of the sampling sites were below 0.04%, whereas nearly half of RQ values were higher than 1. Caffeine was proposed as a priority compound due to its high contribution rate (i.e., 79%) to the cumulative msPAF value, which implies that increased control and management of untreated wastewater sources along the Chaobai River is necessary.
Collapse
Affiliation(s)
- Du Su
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China; Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark; Sino-Danish Center for Education and Research (SDC), Beijing 100190, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Weiwei Ben
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China.
| | - Bjarne W Strobel
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China; Sino-Danish Center for Education and Research (SDC), Beijing 100190, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
36
|
Pharmaceuticals removal and nutrient recovery from wastewaters by Chlamydomonas acidophila. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107517] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
37
|
Palma P, Fialho S, Lima A, Novais MH, Costa MJ, Montemurro N, Pérez S, de Alda ML. Pharmaceuticals in a Mediterranean Basin: The influence of temporal and hydrological patterns in environmental risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:136205. [PMID: 31905561 DOI: 10.1016/j.scitotenv.2019.136205] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 05/23/2023]
Abstract
Occurrence of pharmaceuticals in the aquatic environment is nowadays a well-established issue that has become a matter of both scientific and public concern. Tons of different classes of pharmaceuticals find their way to the environment at variable degrees, after their use and excretion through wastewater and sewage treatment systems. The main goal of this study was to correlate the dynamics and the environmental risk of pharmaceuticals with different temporal and hydrological patterns, at the Guadiana Basin (South of Portugal). Water samples were collected bimonthly during 2017 (classified as a drought year) and 2018 (post-drought year) in: Zebro, Álamos and Amieira (intermittent hydrological streams), and Lucefécit (perennial hydrological stream). The pharmaceuticals quantified in higher concentrations, out of 27 investigated, were diclofenac (up to 4806 ng L-1), ibuprofen (3161 ng L-1), hydrochlorothiazide (2726 ng L-1) and carbamazepine (3223 ng L-1). Zebro and Álamos presented the highest contamination by this group of environmental hazardous substances, which may be correlated with the presence of wastewater treatment plants upstream the sampling point of each stream. Furthermore, the highest concentrations occurred mainly during the dry period (2017), when the flow was nearly inexistent in Zebro, and in Álamos after the first heavy rainfalls. In specific periods, the high concentrations of pharmaceuticals detected may induce risk for the organisms of lowest trophic levels, damaging the balance of the ecosystems at these streams. The risk quotient optimised approach (RQf) integrating exposure, toxicity and persistence factors, ranks the pharmaceuticals investigated in terms of risk for the aquatic ecosystems as follows: diclofenac, ibuprofen and carbamazepine (high risk), clarithromycin (moderate risk), acetaminophen, ofloxacin and bezafibrate (endurable risk), and hydrochlorothiazide (negligible risk).
Collapse
Affiliation(s)
- Patrícia Palma
- Escola Superior Agrária, Instituto Politécnico de Beja, 7800-295 Beja, Portugal; Instituto de Ciências da Terra (ICT), Universidade de Évora, Évora, Portugal.
| | - Sofia Fialho
- Escola Superior Agrária, Instituto Politécnico de Beja, 7800-295 Beja, Portugal
| | - Ana Lima
- Escola Superior Agrária, Instituto Politécnico de Beja, 7800-295 Beja, Portugal
| | - Maria Helena Novais
- Instituto de Ciências da Terra (ICT), Universidade de Évora, Évora, Portugal
| | - Maria João Costa
- Instituto de Ciências da Terra (ICT), Universidade de Évora, Évora, Portugal; Science and Technology School, University of Évora, Évora, Portugal
| | - Nicola Montemurro
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Sandra Pérez
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Miren Lopez de Alda
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| |
Collapse
|
38
|
Boulard L, Dierkes G, Schlüsener MP, Wick A, Koschorreck J, Ternes TA. Spatial distribution and temporal trends of pharmaceuticals sorbed to suspended particulate matter of German rivers. WATER RESEARCH 2020; 171:115366. [PMID: 31865123 DOI: 10.1016/j.watres.2019.115366] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/05/2019] [Accepted: 12/01/2019] [Indexed: 06/10/2023]
Abstract
Although several studies confirmed a wide distribution of pharmaceuticals in rivers and streams, a limited knowledge is available about the partitioning of pharmaceuticals between the water phase and suspended particulate matter (SPM). To close this gap of knowledge, we developed and validated a sensitive and high throughput analytical method for the analysis of 57 pharmaceuticals, 42 metabolites and transformation products (TP) as well as the artificial sweetener acesulfame sorbed to SPM. The method was based on pressurized liquid extraction (PLE) followed by a clean-up via solvent exchange and detection via direct injection-reversed phase LC-MS/MS and freeze-drying-HILIC-MS/MS. Freundlich isotherms were determined for 90 analytes. All showed a linear sorption behavior. Distribution coefficients (Kd) ranged from 0.64 L/kg to 9300 L/kg. For 18 pharmaceuticals, Kd values were found to be above 100 L/kg. SPM of annual composite samples were analyzed to determine the pharmaceutical concentrations between 2005 and 2015 at four sites of the river Rhine: Weil, Iffezheim, Koblenz and Bimmen as well as between 2006 and 2015 at one site of the river Saar, at Rehlingen. In these SPM samples, up to 61 of the 100 analytes were detected with concentrations up to 190 ng/g d.w. (dry weight) for guanylurea, a transformation product of the antidiabetic metformin. For most analytes, increasing concentrations were found along the length of the Rhine and higher concentrations were measured in Rehlingen/Saar. Normalization of the data with the antiepileptic drug carbamazepine as an intrinsic tracer for municipal wastewater indicated possible industrial discharges for four analytes. For most pharmaceuticals, the annual concentrations exhibited a good correlation with the consumption volumes in Germany.
Collapse
Affiliation(s)
- Lise Boulard
- Federal Institute of Hydrology, Am Mainzer Tor 1, 56068, Koblenz, Germany
| | - Georg Dierkes
- Federal Institute of Hydrology, Am Mainzer Tor 1, 56068, Koblenz, Germany
| | | | - Arne Wick
- Federal Institute of Hydrology, Am Mainzer Tor 1, 56068, Koblenz, Germany
| | - Jan Koschorreck
- Federal Environmental Agency (Umweltbundesamt), Bismarckplatz 1, 10643, Berlin, Germany
| | - Thomas A Ternes
- Federal Institute of Hydrology, Am Mainzer Tor 1, 56068, Koblenz, Germany.
| |
Collapse
|
39
|
Liu N, Jin X, Feng C, Wang Z, Wu F, Johnson AC, Xiao H, Hollert H, Giesy JP. Ecological risk assessment of fifty pharmaceuticals and personal care products (PPCPs) in Chinese surface waters: A proposed multiple-level system. ENVIRONMENT INTERNATIONAL 2020; 136:105454. [PMID: 32032889 DOI: 10.1016/j.envint.2019.105454] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/26/2019] [Accepted: 12/26/2019] [Indexed: 05/17/2023]
Abstract
Interest in the risks posed by trace concentrations of pharmaceuticals and personal care products (PPCPs) in surface waters is increasing, particularly with regard to potential effects of long-term, low-dose exposures of aquatic organisms. In most cases, the actual studies on PPCPs were risk assessments at screening-level, and accurate estimates were scarce. In this study, exposure and ecotoxicity data of 50 PPCPs were collected based on our previous studies, and a multiple-level environmental risk assessment was performed. The 50 selected PPCPs are likely to be frequently detected in surface waters of China, with concentrations ranging from the ng L-1 to the low-g L-1, and the risk quotients based on median concentrations ranged from 2046 for nonylphenol to 0 for phantolide. A semi-probabilistic approach screened 33 PPCPs that posed potential risks to aquatic organisms, among which 15 chemicals (nonylphenol, sulfamethoxazole, di (2-ethylhexyl) phthalate, 17β-ethynyl estradiol, caffeine, tetracycline, 17β-estradiol, estrone, dibutyl phthalate, ibuprofen, carbamazepine, tonalide, galaxolide, triclosan, and bisphenol A) were categorized as priority compounds according to an optimized risk assessment, and then the refined probabilistic risk assessment indicated 12 of them posed low to high risk to aquatic ecosystem, with the maximum risk products ranged from 1.54% to 17.38%. Based on these results, we propose that the optimized risk assessment was appropriate for screening priority contaminants at national scale, and when a more accurate estimation is required, the refined probability risk assessment is useful. The methodology and process might provide reference for other research of chemical evaluation and management for rivers, lakes, and sea waters.
Collapse
Affiliation(s)
- Na Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaowei Jin
- China National Environmental Monitoring Center, Beijing 100012, China.
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zijian Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Andrew C Johnson
- Centre for Ecology and Hydrology, Wallingford, Oxfordshire OX10 8BB, UK
| | - Hongxia Xiao
- Institute for Environmental Research, RWTH Aachen University, Aachen 52074, Germany
| | - Henner Hollert
- Institute for Environmental Research, RWTH Aachen University, Aachen 52074, Germany
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
40
|
Liu K, Zhang D, Xiao X, Cui L, Zhang H. Occurrence of quinotone antibiotics and their impacts on aquatic environment in typical river-estuary system of Jiaozhou Bay, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:109993. [PMID: 31869715 DOI: 10.1016/j.ecoenv.2019.109993] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 11/17/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
There is a data gap on occurrence and transport of antibiotics in river-estuary system, with limited understanding of their impact on aquatic environment. To gain insight into the antibiotic pollution in river-estuary system, 22 surface sediments and 5 wetland plants from Yang River and its estuary in Jiaozhou Bay were selected to explore the occurrence and transport of eight quinotone antibiotics (QNs), and their impacts on aquatic environment. Our results indicated that QNs were widely present in the sediments from Yang River and its estuary, with a range of 1.34-8.69 ng/g (average 4.46 ng/g) in Yang River and 0.99-10.86 ng/g (average 3.92 ng/g) in its estuary, respectively. No obvious correlations were observed between QNs values and TOC contents in sediments from our study area, due to low detective concentrations and frequencies of QNs. The mass loading of individual antibiotic from Yang River to its estuary was from 11.73 to 391.59 g/year, far below those from the other estuarine regions all over the world. QNs were observed in all five wetland plants, demonstrating that QNs contaminants could be taken up by wetland plants and providing the evidence that phytoremediation could be a feasible way to remove contaminants. Negative partial coefficients between individual antibiotic and brassicasterol biomarker suggested the presence of QNs inhibited the phytoplankton growth. Evaluation of ecological risk based on the values of risk quotients (RQs) showed that OFL in Yang River displayed medium risk for algae, and CIP and OFL in its estuary also displayed medium risk value for plant and algae. The results could provide powerful basis on controlling river antibiotics pollution to enhance rivers-estuary security in similar regions.
Collapse
Affiliation(s)
- Ke Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education /Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266100, China; Qingdao Institute of Marine Geology, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Daolai Zhang
- Qingdao Institute of Marine Geology, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Xiaotong Xiao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education /Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Lijuan Cui
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing, 100091, China
| | - Hailong Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education /Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
41
|
Soil Sorption and Degradation Studies of Pharmaceutical Compounds Present in Recycled Wastewaters Based on Enantiomeric Fractionation. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2020. [DOI: 10.1007/698_2020_638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
42
|
Introduction to wastewater microbiology: special emphasis on hospital wastewater. CURRENT DEVELOPMENTS IN BIOTECHNOLOGY AND BIOENGINEERING 2020. [PMCID: PMC7252249 DOI: 10.1016/b978-0-12-819722-6.00001-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The important role of proper sanitation in maintaining good public health has been confirmed in the past years. Wastewater treatment plants (WWTPs) serve as efficient processes in removing pathogens, organic pollutants, nutrients, and pharmaceuticals from wastewaters. However, the advance systems of treatment that we use today are the result of a series of inventions that have been performed since 19th century. This chapter explains the evolution of the wastewater origin and the treatment processes along with the developments in microbiology and pathology that led to the present-day scenario of research and advance facilities. Pharmaceuticals can easily enter the environment due to their incomplete degradation in the treatment processes and because of their adverse effects on organisms and environment they are becoming a matter of great concern. A brief discussion on the presence of pharmaceutical compounds in different environment sectors such as wastewater, WWTPs, and the natural aquatic environment has been provided.
Collapse
|
43
|
Mohd Nasir FA, Praveena SM, Aris AZ. Public awareness level and occurrence of pharmaceutical residues in drinking water with potential health risk: A study from Kajang (Malaysia). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 185:109681. [PMID: 31561079 DOI: 10.1016/j.ecoenv.2019.109681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
Studies on the occurrence of pharmaceutical residues in drinking water were conducted especially in developed countries. However, limited studies reported the occurrence of pharmaceutical residues in developing countries. Thus, this study is conducted to fill the knowledge gap of pharmaceutical residue occurrences in developing countries, particularly in Malaysia, along with public awareness level and its potential human health risk. This study investigates public awareness level of drinking water quality and pharmaceutical handling, the occurrence of nine pharmaceutical residues (amoxicillin, caffeine, chloramphenicol, ciprofloxacin, dexamethasone, diclofenac, nitrofurazone, sulfamethoxazole, and triclosan) and potential human health risks in drinking water from Kajang (Malaysia) using commercially competitive enzyme-linked immunosorbent assay kits. In general, the public awareness level of Kajang population showed poor knowledge (82.02%), and less positive attitude (98.88%) with a good practice score (57.3%). Ciprofloxacin was detected at the highest concentration (0.667 ng/L) while amoxicillin was at the lowest concentration (0.001 ng/L) in drinking water from Kajang (Malaysia). Nevertheless, all the reported occurrences were lower than previous studies conducted elsewhere. There was no appreciable potential human health risk for all the pharmaceutical residues as the risk quotient (RQ) values were less than 1 (RQ < 1). The results of this study will provide authorities with quantitative knowledge and resources to improve drinking water risk management and regulation in Malaysia.
Collapse
Affiliation(s)
- Fauzan Adzima Mohd Nasir
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor Darul Ehsan, Malaysia
| | - Sarva Mangala Praveena
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor Darul Ehsan, Malaysia.
| | - Ahmad Zaharin Aris
- Department of Environmental Sciences, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
44
|
Phong Vo HN, Le GK, Hong Nguyen TM, Bui XT, Nguyen KH, Rene ER, Vo TDH, Thanh Cao ND, Mohan R. Acetaminophen micropollutant: Historical and current occurrences, toxicity, removal strategies and transformation pathways in different environments. CHEMOSPHERE 2019; 236:124391. [PMID: 31545194 DOI: 10.1016/j.chemosphere.2019.124391] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/05/2019] [Accepted: 07/16/2019] [Indexed: 05/07/2023]
Abstract
Acetaminophen (ACT) is commonly used as a counter painkiller and nowadays, it is increasingly present in the natural water environment. Although its concentrations are usually at the ppt to ppm levels, ACT can transform into various intermediates depending on the environmental conditions. Due to the complexity of the ACT degradation products and the intermediates, it poses a major challenge for monitoring, detection and to propose adequate treatment technologies. The main objectives of this review study were to assess (i) the occurrences and toxicities, (2) the removal technologies and (3) the transformation pathways and intermediates of ACT in four environmental compartments namely wastewater, surface water, ground water, and soil/sediments. Based on the review, it was observed that the ACT concentrations in wastewater can reach up to several hundreds of ppb. Amongst the different countries, China and the USA showed the highest ACT concentration in wastewater (≤300 μg/L), with a very high detection frequency (81-100%). Concerning surface water, the ACT concentrations were found to be at the ppt level. Some regions in France, Spain, Germany, Korea, USA, and UK comply with the recommended ACT concentration for drinking water (71 ng/L). Notably, ACT can transform and degrade into various metabolites such as aromatic derivatives or organic acids. Some of them (e.g., hydroquinone and benzoquinone) are toxic to human and other life forms. Thus, in water and wastewater treatment plants, tertiary treatment systems such as advanced oxidation, membrane separation, and hybrid processes should be used to remove the toxic metabolites of ACT.
Collapse
Affiliation(s)
- Hoang Nhat Phong Vo
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - Gia Ky Le
- Environmental Engineering and Management Program, Asian Institute of Technology (AIT), P.O. Box 4, Klong Luang, Pathumthani, 12120, Thailand
| | - Thi Minh Hong Nguyen
- Environmental Engineering and Management Program, Asian Institute of Technology (AIT), P.O. Box 4, Klong Luang, Pathumthani, 12120, Thailand
| | - Xuan-Thanh Bui
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology, VNU-HCM, Viet Nam.
| | - Khanh Hoang Nguyen
- National Food Institute, Denmark Technical University, 2800, Kgs. Lyngby, Denmark
| | - Eldon R Rene
- Department of Environmental Engineering and Water Technology, IHE - Delft, Institute of Water Education 2601 DA, Delft, the Netherlands
| | - Thi Dieu Hien Vo
- NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.
| | - Ngoc-Dan Thanh Cao
- NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - Raj Mohan
- National Institute of Technology Karnataka, Surathkal, Karnataka, Dakshina Kannada, 575025, India
| |
Collapse
|
45
|
Paíga P, Ramos S, Jorge S, Silva JG, Delerue-Matos C. Monitoring survey of caffeine in surface waters (Lis River) and wastewaters located at Leiria Town in Portugal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:33440-33450. [PMID: 31522398 DOI: 10.1007/s11356-019-06168-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
Investigation during 11-month period was performed to study the presence of caffeine in the Lis River in Leiria Town in Portugal, and a monitoring during 9-month period was realized to check the contribution of the human pollution of two wastewater treatment plants (WWTPs) that discharge their effluents to the studied river. The samples were collected in five sampling points along the river and in two influents and two effluents of the studied WWTPs. Caffeine was detected in all ninety-one collected samples. The caffeine concentration ranged from 25.3 to 321 ng/L in the river samples, from 112 to 1927 ng/L in the WWTP effluents, and from 9478 to 83,901 ng/L in the WWTP influents. The highest concentration in the river was detected in the two sampling points located after the effluent discharge points and reached 315 and 321 ng/L. Risk assessment was performed for three trophic levels using the risk quotient calculation and revealed that caffeine do not cause toxic effect on Daphnia magna and on fish but could be possibly toxic to algae. The results proved that caffeine can be an effective indicator of human-born pollution.
Collapse
Affiliation(s)
- Paula Paíga
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072, Porto, Portugal
| | - Sandra Ramos
- CEAUL, Universidade de Lisboa, Portugal and LEMA, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072, Porto, Portugal
| | - Sandra Jorge
- Águas do Centro Litoral, SA, Grupo Águas de Portugal, ETA da Boavista, Avenida Dr. Luís Albuquerque, 3030-410, Coimbra, Portugal
| | - Jaime Gabriel Silva
- Águas de Santo André, Cerca da Água, Rua dos Cravos, 7500-130, Vila Nova de Santo André, Portugal
- Departamento de Engenharia Civil, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072, Porto, Portugal.
| |
Collapse
|
46
|
Praveena SM, Mohd Rashid MZ, Mohd Nasir FA, Sze Yee W, Aris AZ. Occurrence and potential human health risk of pharmaceutical residues in drinking water from Putrajaya (Malaysia). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:549-556. [PMID: 31128553 DOI: 10.1016/j.ecoenv.2019.05.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/09/2019] [Accepted: 05/15/2019] [Indexed: 05/22/2023]
Abstract
Occurrence of pharmaceutical residues in drinking water has been widely reported in countries that have registered steady economic growth. This can exert concerns among the general consumers, prompting them to explore the potential human health risks associated with continuous exposure to pharmaceuticals. However, such an occurrence is rarely reported in developing or under-developed countries. To give more contexts, this study looked at the presence of nine pharmaceutical residues in drinking water (amoxicillin, caffeine, chloramphenicol, ciprofloxacin, dexamethasone, diclofenac, nitrofurazone, sulfamethoxazole, and triclosan) at Putrajaya residential area in Malaysia. Additionally, the potential health risks associated with contaminated drinking water were investigated. This study has found the presence of pharmaceutical residue concentrations up to 0.38 ng/L, with the highest concentration of caffeine (0.38 ng/L) and the lowest concentration of diclofenac (0.14 ng/L). In comparison, all the nine pharmaceutical residues were substantially lower than previously reported studies. In general, Hazard Quotient (HQ) values indicated that low potential health hazards were present for all age groups. Nevertheless, quantitative occurrences of pharmaceutical residues in drinking water will help guide future toxicological studies to examine other chronic effects, while canvassing for proper framework to look into the water risk management and regulation in Malaysia.
Collapse
Affiliation(s)
- Sarva Mangala Praveena
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Science, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia.
| | - Maizatul Zahirah Mohd Rashid
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Science, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia
| | - Fauzan Adzima Mohd Nasir
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Science, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia
| | - Wee Sze Yee
- Department of Environmental Sciences, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Ahmad Zaharin Aris
- Department of Environmental Sciences, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
47
|
Rede D, Santos LHMLM, Ramos S, Oliva-Teles F, Antão C, Sousa SR, Delerue-Matos C. Individual and mixture toxicity evaluation of three pharmaceuticals to the germination and growth of Lactuca sativa seeds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 673:102-109. [PMID: 30986672 DOI: 10.1016/j.scitotenv.2019.03.432] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/22/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
This work aims to assess, individually and in mixtures, possible phytotoxic effects of three pharmaceuticals (paracetamol, ibuprofen and amoxicillin) on germination and early growth of Lactuca sativa seeds. Pharmaceuticals are an important group of emerging contaminants, whose presence has been described in several environmental compartments, including soils. However, knowledge on their possible impact in terrestrial organisms is still sparse and even more when mixtures are considered. Germination tests are important to evaluate the quality of soil and the toxic effects that contaminants can pose to plants. The acute effects of individual pharmaceuticals as well as binary and ternary mixtures were assessed using different endpoints, namely: percentage of seed germination, root elongation, shoot and leaf length, after an exposure time of five days. Overall, in the exposure of L. sativa seeds to individual pharmaceuticals there are indications of acute toxicity in the early plant growth. However, this inhibitory effect tends to be cancelled in the acute exposure to mixtures. This study shows the importance of evaluating the toxicity of mixtures of pharmaceuticals, since they might have distinct toxic effects when compared to the single compounds, and also because, probably, it is the closest scenario to the reality that can be found in the environment.
Collapse
Affiliation(s)
- Diana Rede
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| | - Lúcia H M L M Santos
- ICRA - Catalan Institute for Water Research, Carrer Emili Grahit 101, 17003 Girona, Spain
| | - Sandra Ramos
- ISEP - Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal; CEAUL - Centro de Estatística e Aplicações da Universidade de Lisboa, Faculdade de Ciências, Universidade de Lisboa, Bloco C6 - Piso 4, Campo Grande, 1749-016 Lisboa, Portugal; LEMA, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| | - Filipe Oliva-Teles
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169 - 007 Porto, Portugal; CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos, 4450-208 Matosinhos, Portugal
| | - Cristina Antão
- Equilibrium, Laboratório de Controlo de Qualidade e de Processo, Lda., Praceta João Villaret, n.° 183, 4460-337 Senhora da Hora, Portugal
| | - Susana R Sousa
- ISEP - Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, U. Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica (INEB), Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal; ISEP - Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| |
Collapse
|
48
|
Zhou S, Di Paolo C, Wu X, Shao Y, Seiler TB, Hollert H. Optimization of screening-level risk assessment and priority selection of emerging pollutants - The case of pharmaceuticals in European surface waters. ENVIRONMENT INTERNATIONAL 2019; 128:1-10. [PMID: 31029973 DOI: 10.1016/j.envint.2019.04.034] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 04/14/2019] [Accepted: 04/14/2019] [Indexed: 05/23/2023]
Abstract
Pharmaceuticals in surface waters have raised significant concern in recent years for their potential environmental effects. This study identified that at present a total of 477 substances (including 66 metabolites and transformation products) have been analyzed in European surface waters. Around 60% (284) of these compounds belonging to 16 different therapeutic groups were positively detected in one or more of 33 European countries. To conveniently and effectively prioritize potential high-risk compounds, an optimized method that considers the frequency of concentrations above predicted no effects levels was developed on the basis of the traditional method, and it was then used to identify and screen candidate priority pollutants in European surface waters. The results proved the feasibility and advantages of the optimized method. Pharmaceuticals detected in European surface waters were classified into 5 categories (high, moderate, endurable, negligible and safe) depending on their potential environmental effects and the distribution of pharmaceuticals. Circa 9% (45 out of 477) analyzed compounds showed a potential environmental risk to aquatic ecosystems. Among these 45 compounds, 12 compounds were indicated to have high environmental risk in aquatic environments, while 17 and 7 compounds showed moderate and small-scale environmental risks, respectively.
Collapse
Affiliation(s)
- Shangbo Zhou
- Department of Ecosystem Analysis, ABBt - Aachen Biology and Biotechnology, Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Carolina Di Paolo
- Department of Ecosystem Analysis, ABBt - Aachen Biology and Biotechnology, Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany; Shell Health, Shell International B.V., Carel van Bylandtlaan 23, 2596 HP The Hague, the Netherlands
| | - Xinda Wu
- EcoLab (le laboratoire écologie fonctionnelle et environnement), Université Toulouse III - Paul Sabatier, Castanet-Tolosan 31326, France
| | - Ying Shao
- Department of Ecosystem Analysis, ABBt - Aachen Biology and Biotechnology, Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Thomas-Benjamin Seiler
- Department of Ecosystem Analysis, ABBt - Aachen Biology and Biotechnology, Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Henner Hollert
- Department of Ecosystem Analysis, ABBt - Aachen Biology and Biotechnology, Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany; College of Resources and Environmental Science, Chongqing University, Chongqing 400044, China; College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, China.
| |
Collapse
|
49
|
Ozone-Based Advanced Oxidation Processes for Primidone Removal in Water using Simulated Solar Radiation and TiO 2 or WO 3 as Photocatalyst. Molecules 2019; 24:molecules24091728. [PMID: 31058864 PMCID: PMC6539243 DOI: 10.3390/molecules24091728] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/29/2019] [Accepted: 05/02/2019] [Indexed: 11/18/2022] Open
Abstract
In this work, primidone, a high persistent pharmacological drug typically found in urban wastewaters, was degraded by different ozone combined AOPs using TiO2 P25 and commercial WO3 as photocatalyst. The comparison of processes, kinetics, nature of transformation products, and ecotoxicity of treated water samples, as well as the influence of the water matrix (ultrapure water or a secondary effluent), is presented and discussed. In presence of ozone, primidone is rapidly eliminated, with hydroxyl radicals being the main species involved. TiO2 was the most active catalyst regardless of the water matrix and the type of solar (global or visible) radiation applied. The synergy between ozone and photocatalysis (photocatalytic ozonation) for TOC removal was more evident at low O3 doses. In spite of having a lower band gap than TiO2 P25, WO3 did not bring any beneficial effects compared to TiO2 P25 regarding PRM and TOC removal. Based on the transformation products identified during ozonation and photocatalytic ozonation of primidone (hydroxyprimidone, phenyl-ethyl-malonamide, and 5-ethyldihydropirimidine-4,6(1H,5H)-dione), a degradation pathway is proposed. The application of the different processes resulted in an environmentally safe effluent for Daphnia magna.
Collapse
|
50
|
Jurado A, Walther M, Díaz-Cruz MS. Occurrence, fate and environmental risk assessment of the organic microcontaminants included in the Watch Lists set by EU Decisions 2015/495 and 2018/840 in the groundwater of Spain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 663:285-296. [PMID: 30711595 DOI: 10.1016/j.scitotenv.2019.01.270] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/06/2019] [Accepted: 01/20/2019] [Indexed: 05/22/2023]
Abstract
This paper aims to review the existing occurrence data in Spanish groundwater (GW) for the emerging organic contaminants (EOCs) defined in the surface water Watch Lists of Decisions 2015/495/EU and 2018/840/EU since these contaminants are likely to reach GW bodies because surface waters show close interaction with GW. These two lists include 20 substances: 9 pesticides (5 neonicotinoids, 2 carbamates, 1 oxadiazole and 1 semicarbazone), 6 pharmaceuticals (diclofenac and 5 antibiotics), 3 estrogens, 1 UV filter (2-ethylhexyl-4-methoxycinnamate, EHMC) and 1 antioxidant (2,6-di-tert-butyl-4-methylphenol, BHT). Most of these substances are usually detected at low ng/L concentration range or not detected in the GW bodies of Spain. However, eventually they are reported at concentrations>100ng/L (e.g., imidacloprid, methiocarb, diclofenac, macrolide antibiotics, ciprofloxacin, EHMC and BHT). Consequently, it is required to set up drinking water standards, and/or GW threshold quality values because GW is a valuable water resource worldwide. Overall, GW is less contaminated than other water bodies, such as rivers, suggesting that aquifers possess a natural attenuation capacity and/or are less vulnerable than rivers to contamination. Nevertheless, the natural hydrogeochemical processes that control the fate and transformation of these substances during infiltration and in the aquifer have been barely investigated so far. The concentrations of the target EOCs are used to calculate hazard quotients (HQs) in the Spanish GW bodies as an estimation of their ecotoxicity and in order to compare somehow their chemical quality with respect to those of surface water. Due to the limited ecotoxicity data for most EOCs, HQs can only be calculated for few substances. The results pointed out the risk posed by the anti-inflammatory diclofenac towards Ceriodaphnia dubia (HQ=21) and the medium risk associated to the antibiotic erythromycin for Brachionus calyciflorus (HQ=0.46).
Collapse
Affiliation(s)
- Anna Jurado
- Institute for Groundwater Management, Technische Universität Dresden, Dresden, Germany.
| | - Marc Walther
- Institute for Groundwater Management, Technische Universität Dresden, Dresden, Germany; Department of Environmental Informatics, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - M Silvia Díaz-Cruz
- Department of Environmental Chemistry, Institute of Environmental Assessment & Water Research (IDAEA), CSIC, Barcelona, Spain
| |
Collapse
|