1
|
Das N, Pal S, Ray H, Acharya S, Mandal S. Unveiling the impact of anthropogenic wastes on greenhouse gas emissions from the enigmatic mangroves of Indian Sundarban. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 965:178647. [PMID: 39899972 DOI: 10.1016/j.scitotenv.2025.178647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 02/05/2025]
Abstract
The greenhouse gas (GHG) emissions from the mangrove ecosystem due to climate change have been an emerging environmental issue in the present scenario. However, the GHGs, emitted through anthropogenic causes in these vulnerable regions are often neglected. The level of soil pollution has increased due to the uncontrolled disposal of wastes from ports, ferry services, plastics, and metals, emitting huge amounts of GHGs. Here, a novel dynamic model on GHG emission was proposed for the simulation of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) emissions using R programming language, where, anthropogenic and environmental drivers were considered. The CO2 emission was sensitive to HMeff2 (impact rate of heavy metals on microbial respiration process) and MPeff3 (impact rate of microplastics on microbial respiration process). The CH4 dynamics was sensitive to HMeff1 (impact rate of heavy metal on methanogenesis process) and MPeff1 (impact rate of microplastics on methanogenesis process) and the N2O pool was sensitive to N2O dif rt. (N2O diffusion rate). Fish waste, heavy metals, and microplastics are the prime emitters of GHG in the Sundarbans. Control and monitoring of plastics, fish wastes, and heavy metals, and strategic implementation of no-plastic or no-waste zones in line with the Sustainable Development Goals (SDGs) would ensure solutions to the present problem.
Collapse
Affiliation(s)
- Nilanjan Das
- Ecology and Environmental Modelling Laboratory, Department of Environmental Science, The University of Burdwan, Burdwan 713104, India
| | - Soumyadip Pal
- Ecology and Environmental Modelling Laboratory, Department of Environmental Science, The University of Burdwan, Burdwan 713104, India
| | - Harisankar Ray
- Ecology and Environmental Modelling Laboratory, Department of Environmental Science, The University of Burdwan, Burdwan 713104, India
| | - Suman Acharya
- Ecology and Environmental Modelling Laboratory, Department of Environmental Science, The University of Burdwan, Burdwan 713104, India
| | - Sudipto Mandal
- Ecology and Environmental Modelling Laboratory, Department of Environmental Science, The University of Burdwan, Burdwan 713104, India.
| |
Collapse
|
2
|
Rivas A, Singh R, Horne D, Roygard J, Matthews A, Hedley M. Quantification of denitrification rate in shallow groundwater using the single-well, push-pull test technique. JOURNAL OF CONTAMINANT HYDROLOGY 2025; 269:104500. [PMID: 39842221 DOI: 10.1016/j.jconhyd.2025.104500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 01/04/2025] [Accepted: 01/06/2025] [Indexed: 01/24/2025]
Abstract
Denitrification has been identified as a significant nitrate attenuation process in groundwater systems. Hence, accurate quantification of denitrification rates is consequently important for the better understanding and assessment of nitrate contamination of groundwater systems. There are, however, few studies that have investigated quantification of shallow groundwater denitrification rates using different analytical approaches or assuming different kinetic reaction models. In this study, we assessed different analytical approaches (reactant versus product) and kinetic reaction (zero-order and first-order) models analysing observations from a single-well, push-pull tests to quantify denitrification rates in shallow groundwater at two sites in the Manawatū River catchment, Lower North Island of New Zealand. Shallow groundwater denitrification rates analysed using the measurements of denitrification reactant (nitrate reduction) and zero-order kinetic models were quantified at 0.42-1.07 mg N L-1 h-1 and 0.05-0.12 mg N L-1 h-1 at the Palmerston North (PNR) and Woodville (WDV) sites, respectively. However, using first-order kinetic models, the denitrification rates were quantified at 0.03-0.09 h-1 and 0.002-0.012 h-1 at the PNR and WDV sites, respectively. These denitrification rates based on the measurements of denitrification reactant (nitrate reduction) were quantified significantly higher (6 to 60 times) than the rates estimated using the measurements of denitrification product (nitrous oxide production). However, the denitrification rate quantified based on the nitrate reduction may provide representative value of denitrification characteristics of shallow groundwater systems. This is more so when lacking practical methods to quantify all nitrogen species (i.e., total N, organic N, nitrite, nitrate, ammoniacal N, nitrous oxide, nitric oxide, and nitrogen gas) in a push-pull test. While estimates of denitrification rates also differed depending on the kinetic model used, both a zero-order and a first-order model appear to be valid to analyse and estimate denitrification rate from push-pull tests. However, a discrepancy in estimates of denitrification rates using either reactant or product and using zero- or first-order kinetics models may have implications in assessment of nitrate transport and transformation in groundwater systems. This necessitates further research and analysis for appropriate measurements and representation of spatial and temporal variability in denitrification characteristics of the shallow groundwater system.
Collapse
Affiliation(s)
- Aldrin Rivas
- Environmental Science, School of Agriculture and Environment, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand; Currently with WSP New Zealand, 168-170 Tristram Street, Hamilton 3204, New Zealand
| | - Ranvir Singh
- Environmental Science, School of Agriculture and Environment, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand.
| | - David Horne
- Environmental Science, School of Agriculture and Environment, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Jonathan Roygard
- Horizons Regional Council, Private Bag 11 025, Palmerston North 4442, New Zealand
| | - Abby Matthews
- Horizons Regional Council, Private Bag 11 025, Palmerston North 4442, New Zealand; Currently with Taranaki Regional Council, Private Bag 713, Stratford 4352, New Zealand
| | - Michael Hedley
- Environmental Science, School of Agriculture and Environment, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| |
Collapse
|
3
|
Amaral Júnior FP, Souza de Sousa CE, Rafael de Almeida Moreira B, Rodrigues Alves BJ, Longhini VZ, da Silva Cardoso A, Ruggieri AC. How does the chemical composition of dung affect nitrous oxide and methane emissions in pasture soils? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123630. [PMID: 39657474 DOI: 10.1016/j.jenvman.2024.123630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/03/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024]
Abstract
There is an important gap in how variations in herbivore dung composition affect GHG emissions on pastures, especially due to differences in dry matter (DM) and nitrogen contents. Oversimplifications can compromise the accuracy of mitigation strategies. This study aims to address this gap by investigating how the chemical composition of dung from different species influences GHG emissions in pasture systems. The results showed that drier dung led to higher cumulative N₂O emissions. The highest emissions were observed from goat at 9.47 mg N-N₂O g⁻1 dry soil, followed by sheep at 5.95 mg N-N₂O g⁻1 dry soil, beef cattle at 5.44 mg N₂O g⁻1 dry soil, dairy cattle at 2.67 mg N₂O g⁻1 dry soil, and horse at 0.83 mg N₂O g⁻1 dry soil. It was observed that higher dung moisture content generally corresponded to increased CH₄ emissions, except for horse dung. The highest cumulative CH₄ emission was for dairy cattle dung (8.29 mg C-CH₄ g⁻1 dry soil), followed by beef cattle (3.89 mg C-CH₄ g⁻1 dry soil), sheep (2.32 mg C-CH₄ g⁻1 dry soil), goats (1.89 mg C-CH₄ g⁻1 dry soil), and horses (1.66 mg C-CH₄ g⁻1 dry soil). Principal Component Analysis illustrated that PC1, named as diet quality, explained 61.9% of the variance, was positively correlated with N₂O and negatively correlated with fiber content and C/N ratio, while PC2, named as acetrophic and hydrogenotrophic methanogenesis, explained 19.6% of the variance, linking VS to reduced CH₄ emissions. This study establishes relationships between manure chemical composition and GHG emissions, filling a fundamental knowledge gap and supporting the development of cause-and-effect models.
Collapse
Affiliation(s)
- Francisco Paulo Amaral Júnior
- Department of Animal Science, School of Agricultural and Veterinary Sciences, Sao Paulo State University (UNESP), SP, Brazil.
| | - Camila Eduarda Souza de Sousa
- Department of Animal Science, School of Agricultural and Veterinary Sciences, Sao Paulo State University (UNESP), SP, Brazil
| | - Bruno Rafael de Almeida Moreira
- Centre for Crop Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, QLD, Australia
| | | | | | | | - Ana Cláudia Ruggieri
- Department of Animal Science, School of Agricultural and Veterinary Sciences, Sao Paulo State University (UNESP), SP, Brazil
| |
Collapse
|
4
|
Zhao S, Liu Y, Xu L, Ye J, Zhang X, Xu X, Meng H, Xie W, He H, Wang G, Zhang L. nosZ II/nosZ I ratio regulates the N 2O reduction rates in the eutrophic lake sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175852. [PMID: 39214369 DOI: 10.1016/j.scitotenv.2024.175852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Nitrous oxide (N2O) is a more potent greenhouse gas with an atmospheric lifetime of 121 years, contributing significantly to climate change and stratospheric ozone depletion. Lakes are hotspots for N2O release due to the imbalance between N2O sources and sinks. N2O-reducing bacteria are the only biological means to mitigate N2O emission, yet their roles in lakes are not well studied. This study investigated the potential for N2O reduction, keystones of typical and atypical N2O-reducing bacterial communities, and their correlations with environmental factors in the sediments of Lake Taihu through microcosm experiments, high-throughput sequencing of the nosZ gene, and statistical modeling. The results showed that potential N2O reduction rates in sediments ranged from 13.71 to 76.95 μg N2O g-1 d-1, with lower rates in December compared to March and July. Correlation analysis indicated that the nosZ II/nosZ I ratio and the trophic lake index (TLI) were the primary factors influencing N2O reduction rates and N2O-reducing bacterial community structures. The genera Pseudogulbenkiania and Ardenticatena were identified as the most abundant typical and atypical N2O-reducing bacteria, respectively, and were also recognized as the keystone taxa. Quantitative real-time PCR (qPCR) results revealed that nosZ II was more abundant than nosZ I in the sediments. Partial least squares path modeling (PLS-PM) further demonstrated that atypical N2O-reducing bacteria had significant positive effects on N2O reduction process in the sediments (p < 0.05). Overall, this study highlights the crucial ecological roles of atypical N2O-reducing bacteria in the sediments of the eutrophic lake of Taihu, underscoring their potential in mitigating N2O emissions.
Collapse
Affiliation(s)
- Sichuan Zhao
- School of Environment, Nanjing Normal University, Nanjing 210023, PR China
| | - Yihong Liu
- School of Environment, Nanjing Normal University, Nanjing 210023, PR China
| | - Lu Xu
- School of Environment, Nanjing Normal University, Nanjing 210023, PR China
| | - Jinliu Ye
- School of Environment, Nanjing Normal University, Nanjing 210023, PR China
| | - Xiaofeng Zhang
- School of Environment, Nanjing Normal University, Nanjing 210023, PR China
| | - Xiaoguang Xu
- School of Environment, Nanjing Normal University, Nanjing 210023, PR China
| | - Han Meng
- School of Environment, Nanjing Normal University, Nanjing 210023, PR China; School of Environment, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, PR China.
| | - Wenming Xie
- School of Environment, Nanjing Normal University, Nanjing 210023, PR China
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing 210023, PR China
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, Nanjing 210023, PR China
| | - Limin Zhang
- School of Environment, Nanjing Normal University, Nanjing 210023, PR China; Green Economy Development Institute, Nanjing University of Finance and Economics, Nanjing 210023, PR China
| |
Collapse
|
5
|
Li Y, Zhang M, Liu X, Zhang L, Chen F. Trophic homogeneity due to seasonal variation in nitrogen in shallow subtropical lakes. WATER RESEARCH 2024; 266:122321. [PMID: 39217645 DOI: 10.1016/j.watres.2024.122321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/22/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Lakes play a crucial role in the nitrogen (N) cycle, and eutrophication disrupts the balance of the nitrogen cycle within lakes, including both the N removal process and the N supplement process. However, the mechanisms by which different nutrient levels affect seasonal nitrogen variations in the water columns are not clear, especially for long-term and large- scale studies. In this study, we used 206 independent spatial samples from a total of 108 subtropical shallow lakes from four surveys in the middle and lower reaches of the Yangtze River, as well as time-case study data from Lake Taihu and Lake Donghu of up to 23 and 14 years, respectively, to analyze the changes in summer TN compared to spring (delta TN). Delta TN was significantly negatively correlated with initial spring TN concentrations, with similar trends observed in both space and time. Furthermore, the slopes of spring TN vs. delta TN varied little across lakes in both time and space, suggesting a consistent relationship between initial spring TN and summer TN changes. When initial TN or TN: TP ratio was low, N fixation by algae played a significant role in compensating for summer N removal, thus mitigating summer N reductions; when TN was high or TN: TP ratio was high, ammonia stress reduced the compensatory effect of algae and denitrification played a significant role in summer N removal, thus increasing summer N reductions. Our study suggested that no matter what the initial conditions are, lakes tend to evolve towards a common nutrient status through biological regulation.
Collapse
Affiliation(s)
- Yun Li
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Min Zhang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Xia Liu
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Lu Zhang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Feizhou Chen
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
6
|
Wang JL, Liu XY, Jiang PK, Yu QR, Xu QF. Half substitution of mineral N with fish protein hydrolysate enhancing microbial residue C and N storage and climate benefits under high straw residue return. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122488. [PMID: 39270338 DOI: 10.1016/j.jenvman.2024.122488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
The widespread utilization of straw return was a popular practice straw disposal for highly intensive agriculture in China, which has brought about some negative impacts such as less time for straw complete biodegradation, aggravation of greenhouse gas evolution, and lower efficient of carbon accumulation. It was urgent to find an eco-friendly N-rich organic fertilizer instead of mineral N as activator to solve the above problems and lead a carbon accumulation in long tern management. Besides, microbial necromass was considered as a crucial contributor to persistent soil carbon (C) and nitrogen (N) pool. How organic fertilizer activators influence microbial residue under different amount of crop residues input remained unclear. Thus, soils incorporating moderate and high rate of rice straw residue with additions of half and full of organic activators (fish protein hydrolysates vs. manure) were incubated for measuring carbon dioxide (CO2) and nitrous oxide (N2O) emission, microbial community and necromass. It was found that soil CO2 emission was rapidest during the first 13 days of straw decomposition but remained lowest in the treatments of 50% mineral N substituted by fish protein hydrolysate. There were that 81%-89% of total CO2 release and 59%-65% of total N2O emission occurred within 60 days of incubation period, and bacterial community and nitrate positively affected soil CO2 and N2O release respectively. Straw incorporation amount and organic activator application interactively influenced soil CO2 emission but not affected soil N2O emission. After 360 days of incubation, the difference of bacterial necromass was noticeable but fungal necromass remained almost unaltered across all treatments. All treatments showed generally comparable contribution of microbial necromass N to the total N pool. The treatment of 50% mineral N substituted by fish protein hydrolysate under high rate of straw input (HSF50) promoted the highest proportion of microbial necromass C in soil organic C because of alleviating N limitation for microorganisms. Finally, HSF50 was recommended as an eco-friendly strategy for enhancing microbial necromass C and N storage and climate benefits in agroecosystems.
Collapse
Affiliation(s)
- Jia Lin Wang
- College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, Hangzhou, 311300, China; The State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Xin Yu Liu
- College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, Hangzhou, 311300, China; The State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Pei Kun Jiang
- College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, Hangzhou, 311300, China; The State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Qiu Ran Yu
- College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, Hangzhou, 311300, China; The State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Qiu Fang Xu
- College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, Hangzhou, 311300, China; The State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
7
|
Ren W, Li X, Liu T, Chen N, Xin M, Liu B, Liu Y, Qi Q. Evaluating nitrogen dynamic and utilization under controlled-release fertilizer application for sunflowers in an arid region: Experimental and modeling approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122456. [PMID: 39265493 DOI: 10.1016/j.jenvman.2024.122456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/24/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024]
Abstract
Traditional nitrogen fertilizers (TNF), such as urea, percolate easily in arid fields, posing low nitrogen use efficiency (NUE) and a high non-point pollution risk. Controlled-release fertilizers (CRF) exhibit significantly lower deep seepage, rendering it a favorable choice in arid fields due to its ability to enhance NUE through slow-release mechanisms. However, current models do not fully account for the soil nitrogen dynamics and crop interactions under controlled-release conditions, and lack quantification. This study improved the APSIM model by adjustment the urea hydrolysis rate to assess the impact of CRF and TNF applications on soil health, crop growth, and water quality. Calibration and validation were conducted through experiments in the Hetao Irrigation District of China from 2019 to 2020, with different nitrogen application rates (135, 225, and 315 kg/ha). The model accurately simulated soil NO3-N concentration (SNC), cumulative NO3-N leaching (CNL), nitrogen uptake (NU), and sunflower yield. During the validation process, R2 and Nash-Sutcliffe efficiency (NSE) values were both above 0.75. Results indicated that the average SNC, NU, and yield under CRF application were significantly higher than those under TNF application, with increases of 38.62%, 44.92%, and 18.38%, respectively. Notably, the proportion of soil nitrogen available (PSNA), a novel metric proposed in this study, was 159.50% higher in the 0-40 cm soil layer with CRF compared to TNF. Additionally, CNL and NO3-N leaching loss rate (NLLR) decreased by 25.76% and 25.77%, respectively. Scenario simulations indicated that the optimal fertilization strategy for this region is to use 180-193.5 kg/ha of CRF with a release period of 80-85.5 d to balance agricultural productivity and ecological protection. This study confirms the significant advantages of CRF in enhancing yield, improving nitrogen management, and promoting environmental sustainability, providing a scientific basis for CRF management strategies and supporting the shift towards more efficient and environmentally friendly agricultural practices.
Collapse
Affiliation(s)
- Wenhao Ren
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Huhhot, 010018, China
| | - Xianyue Li
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Huhhot, 010018, China; Collaborative Innovation Center for Integrated Management of Water Resources and Water Environment in the Inner Mongolia Reaches of the Yellow River, Hohhot, 010018, China; Research and Development of Efficient Water-saving Technology and Equipment and Research Engineering Center of Soil and Water Environment Effect in Arid Area of Inner Mongolia Autonomous Region, Hohhot, 010018, China.
| | - Tingxi Liu
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Huhhot, 010018, China; Collaborative Innovation Center for Integrated Management of Water Resources and Water Environment in the Inner Mongolia Reaches of the Yellow River, Hohhot, 010018, China
| | - Ning Chen
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Huhhot, 010018, China
| | - Maoxin Xin
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Huhhot, 010018, China
| | - Bin Liu
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Huhhot, 010018, China
| | - Yahui Liu
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Huhhot, 010018, China
| | - Qian Qi
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Huhhot, 010018, China
| |
Collapse
|
8
|
Zeng X, Liu Y, Wang Q, Ma H, Li X, Wang Q, Yang Q. Tanning wastewater restructured nitrogen-transforming bacteria communities and promoted N 2O emissions in receiving river riparian sediments. ENVIRONMENTAL RESEARCH 2024; 260:119580. [PMID: 38992757 DOI: 10.1016/j.envres.2024.119580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/02/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
Physicochemical and toxicological characterization of leather tanning wastewater has been widely documented. However, few reports have examined the response of denitrification N2 and N2O emissions in riparian sediments of tannery wastewater-receiving rivers. In this study, 15N-nitrate labeling was used to reveal the effects of tanning wastewater on denitrification N2 and N2O emission in a wastewater-receiving river (the old Mang River, OMR). OMR riparian sediments were highly polluted with total organic carbon (93.39 mg/kg), total nitrogen (5.00 g/kg) and heavy metals; specifically, Cr, Zn, Cd, and Pb were found at concentrations 47.3, 5.8, 1.6, 4.3, and 2.8 times that in a nearby parallel river without tanning wastewater input (the new Mang River, NMR), respectively. The denitrification N2 emission rates (0.0015 nmol N · g-1 h-1) of OMR riparian sediments were significantly reduced by 2.5 times compared with those from the NMR (p < 0.05), but the N2O emission rates (0.31 nmol N · g-1 h-1) were significantly increased (4.1 times, p < 0.05). Although the dominant nitrogen-transforming bacteria phylum was Proteobacteria in the riparian sediments of both rivers, 11 nitrogen-transforming bacteria genera in the OMR were found to be significantly enriched; five of these were related to pollutant degradation based on linear discriminant analysis (LDA >3). The average activity of the electron transport system in the OMR was 6.3 times lower than that of the NMR (p < 0.05). Among pollution factors, heavy metal complex pollution was the dominant factor driving variations in N2O emissions, microbial community structure, and electron transport system activity. These results provide a new understanding and reference for the treatment of tanning wastewater-receiving rivers.
Collapse
Affiliation(s)
- Xiangpeng Zeng
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Yanyan Liu
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Qingqing Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Haitao Ma
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Xinlei Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Qiang Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang 453007, China
| | - Qingxiang Yang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
9
|
Tang Q, Moeskjær S, Cotton A, Dai W, Wang X, Yan X, Daniell TJ. Organic fertilization reduces nitrous oxide emission by altering nitrogen cycling microbial guilds favouring complete denitrification at soil aggregate scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174178. [PMID: 38917905 DOI: 10.1016/j.scitotenv.2024.174178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
Agricultural management practices can induce changes in soil aggregation structure that alter the microbial nitrous oxide (N2O) production and reduction processes occurring at the microscale, leading to large-scale consequences for N2O emissions. However, the mechanistic understanding of how organic fertilization affects these context-dependent small-scale N2O emissions and associated key nitrogen (N) cycling microbial communities is lacking. Here, denitrification gas (N2O, N2) and potential denitrification capacity N2O/(N2O + N2) were assessed by automated gas chromatography in different soil aggregates (>2 mm, 2-0.25 and <0.25 mm), while associated microbial communities were assessed by sequencing and qPCR of N2O-producing (nirK and nirS) and reducing (nosZ clade I and II) genes. The results indicated that organic fertilization reduced N2O emissions by enhancing the conversion of N2O to N2 in all aggregate sizes. Moreover, potential N2O production and reduction hotspots occurred in smaller soil aggregates, with the degree depending on organic fertilizer type and application rate. Further, significantly higher abundance and diversity of nosZ clades relative to nirK and nirS revealed complete denitrification promoted through selection of denitrifying communities at microscales favouring N2O reduction. Communities associated with high and low emission treatments form modules with specific sequence types which may be diagnostic of emission levels. Taken together, these findings suggest that organic fertilizers reduced N2O emissions through influencing soil factors and patterns of niche partitioning between N2O-producing and reducing communities within soil aggregates, and selection for communities that overall are more likely to consume than emit N2O. These findings are helpful in strengthening the ability to predict N2O emissions from agricultural soils under organic fertilization as well as contributing to the development of net-zero carbon strategies for sustainable agriculture.
Collapse
Affiliation(s)
- Quan Tang
- Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
| | - Sara Moeskjær
- Microbiology to Molecular Microbiology: Biochemistry to Disease, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Anne Cotton
- Microbiology to Molecular Microbiology: Biochemistry to Disease, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK; Department of Earth and Environmental Sciences, The University of Manchester, Williamson Building, Manchester M13 9PY, UK; Manchester Institute of Biotechnology, The University of Manchester, John Garside Building, 131 Princess Street, Manchester M1 7DN, UK
| | - Wenxia Dai
- Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
| | - Xiaozhi Wang
- Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyuan Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Tim J Daniell
- Microbiology to Molecular Microbiology: Biochemistry to Disease, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK.
| |
Collapse
|
10
|
Clagnan E, Petrini S, Pioli S, Piergiacomo F, Chowdhury AA, Brusetti L, Foladori P. Conventional activated sludge vs. photo-sequencing batch reactor for enhanced nitrogen removal in municipal wastewater: Microalgal-bacterial consortium and pathogenic load insights. BIORESOURCE TECHNOLOGY 2024; 401:130735. [PMID: 38670293 DOI: 10.1016/j.biortech.2024.130735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/02/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Municipal wastewater treatment plants are mostly based on traditional activated sludge (AS) processes. These systems are characterised by major drawbacks: high energy consumption, large amount of excess sludge and high greenhouse gases emissions. Treatment through microalgal-bacterial consortia (MBC) is an alternative and promising solution thanks to lower energy consumption and emissions, biomass production and water sanitation. Here, microbial difference between a traditional anaerobic sludge (AS) and a consortium-based system (photo-sequencing batch reactor (PSBR)) with the same wastewater inlet were characterised through shotgun metagenomics. Stable nitrification was achieved in the PSBR ensuring ammonium removal > 95 % and significant total nitrogen removal thanks to larger flocs enhancing denitrification. The new system showed enhanced pathogen removal, a higher abundance of photosynthetic and denitrifying microorganisms with a reduced emissions potential identifying this novel PSBR as an effective alternative to AS.
Collapse
Affiliation(s)
- Elisa Clagnan
- Free University of Bolzano, Faculty of Science and Technology, Piazza Università 1, 39100 Bolzano, Italy; Department for Sustainability, Biotechnologies and Agroindustry Division, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Via Anguillarese 301 00123 Rome, Italy; Gruppo Ricicla Labs, Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università Degli Studi di Milano, Via Celoria 2 20133 Milano, Italy
| | - Serena Petrini
- University of Trento, Department of Civil, Environmental and Mechanical Engineering, Via Mesiano 77 38123, Trento, Italy
| | - Silvia Pioli
- Free University of Bolzano, Faculty of Science and Technology, Piazza Università 1, 39100 Bolzano, Italy; Institute of Research on Terrestrial Ecosystems (IRET), National Research Council (CNR), Monterotondo Scalo RM, Italy
| | - Federica Piergiacomo
- Free University of Bolzano, Faculty of Science and Technology, Piazza Università 1, 39100 Bolzano, Italy
| | - Atif Aziz Chowdhury
- Free University of Bolzano, Faculty of Science and Technology, Piazza Università 1, 39100 Bolzano, Italy
| | - Lorenzo Brusetti
- Free University of Bolzano, Faculty of Science and Technology, Piazza Università 1, 39100 Bolzano, Italy.
| | - Paola Foladori
- University of Trento, Department of Civil, Environmental and Mechanical Engineering, Via Mesiano 77 38123, Trento, Italy
| |
Collapse
|
11
|
Xian Z, Guo F, Chen M, Wang Y, Zhang Z, Wu H, Dai J, Zhang X, Chen Y. Plant-microbe involvement: How manganese achieves harmonious nitrogen-removal and carbon-reduction in constructed wetlands. BIORESOURCE TECHNOLOGY 2024; 402:130794. [PMID: 38703966 DOI: 10.1016/j.biortech.2024.130794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/17/2024] [Accepted: 05/02/2024] [Indexed: 05/06/2024]
Abstract
Carbon deficits in inflow frequently lead to inefficient nitrogen removal in constructed wetlands (CWs) treating tailwater. Solid carbon sources, commonly employed to enhance denitrification in CWs, increase carbon emissions. In this study, MnO2 was incorporated into polycaprolactone substrates within CWs, significantly enhancing NH4+-N and NO3--N removal efficiencies by 48.26-59.78 % and 96.84-137.23 %, respectively. These improvements were attributed to enriched nitrogen-removal-related enzymes and increased plant absorption. Under high nitrogen loads (9.55 ± 0.34 g/m3/d), emissions of greenhouse gases (CO2, CH4, and N2O) decreased by 147.23-202.51 %, 14.53-86.76 %, and 63.36-87.36 %, respectively. N2O emissions were reduced through bolstered microbial nitrogen removal pathways by polycaprolactone and MnO2. CH4 accumulation was mitigated by the increased methanotrophs and dampened methanogenesis, modulated by manganese. Additionally, manganese-induced increases in photosynthetic pigment contents (21.28-64.65 %) fostered CO2 sequestration through plant photosynthesis. This research provides innovative perspectives on enhancing nitrogen removal and reducing greenhouse gas emissions in constructed wetlands with polymeric substrates.
Collapse
Affiliation(s)
- Zhihao Xian
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Fucheng Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China; Chongqing Water & Environment Holdings Group Ltd., Chongqing 400042, PR China
| | - Mengli Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Yichu Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Zihang Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Hao Wu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Jingyi Dai
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Xin Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Yi Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
12
|
Aralappanavar VK, Mukhopadhyay R, Yu Y, Liu J, Bhatnagar A, Praveena SM, Li Y, Paller M, Adyel TM, Rinklebe J, Bolan NS, Sarkar B. Effects of microplastics on soil microorganisms and microbial functions in nutrients and carbon cycling - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171435. [PMID: 38438042 DOI: 10.1016/j.scitotenv.2024.171435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
The harmful effects of microplastics (MPs) pollution in the soil ecosystem have drawn global attention in recent years. This paper critically reviews the effects of MPs on soil microbial diversity and functions in relation to nutrients and carbon cycling. Reports suggested that both plastisphere (MP-microbe consortium) and MP-contaminated soils had distinct and lower microbial diversity than that of non-contaminated soils. Alteration in soil physicochemical properties and microbial interactions within the plastisphere facilitated the enrichment of plastic-degrading microorganisms, including those involved in carbon (C) and nutrient cycling. MPs conferred a significant increase in the relative abundance of soil nitrogen (N)-fixing and phosphorus (P)-solubilizing bacteria, while decreased the abundance of soil nitrifiers and ammonia oxidisers. Depending on soil types, MPs increased bioavailable N and P contents and nitrous oxide emission in some instances. Furthermore, MPs regulated soil microbial functional activities owing to the combined toxicity of organic and inorganic contaminants derived from MPs and contaminants frequently encountered in the soil environment. However, a thorough understanding of the interactions among soil microorganisms, MPs and other contaminants still needs to develop. Since currently available reports are mostly based on short-term laboratory experiments, field investigations are needed to assess the long-term impact of MPs (at environmentally relevant concentration) on soil microorganisms and their functions under different soil types and agro-climatic conditions.
Collapse
Affiliation(s)
| | - Raj Mukhopadhyay
- Department of Chemistry, Mellon College of Science, Carnegie Mellon University, Pittsburgh 15213, United States
| | - Yongxiang Yu
- Research Center for Environmental Ecology and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jingnan Liu
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland
| | - Sarva Mangala Praveena
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Yang Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Mike Paller
- Aquatic Biology Consultants, Inc., 35 Bungalow Ct., Aiken, SC 29803, USA
| | - Tanveer M Adyel
- STEM, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Nanthi S Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6001, Australia
| | - Binoy Sarkar
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia.
| |
Collapse
|
13
|
Chen SN, Hou Y, Yue FJ, Yan Z, Liu XL, Li SL. Elucidation of the dominant factors influencing N 2O emission in water-level fluctuation zones in a karst canyon reservoir, southwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171417. [PMID: 38447725 DOI: 10.1016/j.scitotenv.2024.171417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
The water-level fluctuations zones (WLFZs) are crucial transitional interfaces within river-reservoir systems, serving as hotspots for N2O emission. However, the comprehension of response patterns and mechanisms governing N2O emission under hydrological fluctuation remains limited, especially in karstic canyon reservoirs, which introduces significant uncertainty to N2O flux assessments. Soil samples were collected from the WLFZs of the Hongjiadu (HJD) Reservoir along the water flow direction from transition zone (T1 and T2) to lacustrine zone (T3, T4 and T5) at three elevations for each site. These soil columns were used to conduct simulation experiments under various water-filled pore space gradients (WFPSs) to investigate the potential N2O flux pattern and elucidate the underlying mechanism. Our results showed that nutrient distribution and N2O flux pattern differed significantly between two zones, with the highest N2O fluxes in the transition zone sites and lacustrine zone sites were found at 75 % and 95 % WFPS, respectively. Soil nutrient loss in lower elevation areas is influenced by prolonged impoundment durations. The higher N2O fluxes in the lacustrine zone can be attributed to increased nutrient levels resulting from anthropogenic activities. Furthermore, correlation analysis revealed that soil bulk density significantly impacted N2O fluxes across all sites, while NO3-and SOC facilitated N2O emissions in T1-T2 and T4-T5, respectively. It was evident that N2O production primarily contributed to nitrification in the transition zone and was constrained by the mineralization process, whereas denitrification dominated in the lacustrine zone. Notably, the annual N2O efflux from WLFZs accounted for 27 % of that from the water-air interface in HJD Reservoir, indicating a considerably lower contribution than anticipated. Nevertheless, this study highlights the significance of WLFZs as a vital potential source of N2O emission, particularly under the influence of anthropogenic activities and high WFPS gradient.
Collapse
Affiliation(s)
- Sai-Nan Chen
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Yongmei Hou
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Fu-Jun Yue
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China.
| | - Zhifeng Yan
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China
| | - Xiao-Long Liu
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin 300387, China
| | - Si-Liang Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China
| |
Collapse
|
14
|
Obi-Njoku O, Boh MY, Smith W, Grant B, Flemming C, Price GW, Hernandez-Ramirez G, Burton D, Whalen JK, Clark OG. A comparison of Tier 1, 2, and 3 methods for quantifying nitrous oxide emissions from soils amended with biosolids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169639. [PMID: 38181952 DOI: 10.1016/j.scitotenv.2023.169639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 01/07/2024]
Abstract
Municipal biosolids are a nitrogen (N)-rich agricultural fertilizer which may emit nitrous oxide (N2O) after rainfall events. Due to sparse empirical data, there is a lack of biosolids-specific N2O emission factors to determine how land-applied biosolids contribute to the national greenhouse gas inventory. This study estimated N2O emissions from biosolids-amended land in Canada using Tier 1, Tier 2 (Canadian), and Tier 3 (Denitrification and Decomposition model [DNDC]) methodologies recommended by the Intergovernmental Panel on Climate Change (IPCC). Field data was from replicated plots at 8 site-years between 2017 and 2019 in the provinces of Quebec, Nova Scotia and Alberta, Canada, representing three distinct ecozones. Municipal biosolids were the major N source for the crop, applied as mesophilic anaerobically digested biosolids, composted biosolids, or alkaline-stabilized biosolids alone or combined with an equal amount of urea-N fertilizer to meet the crop N requirements. Fluxes of N2O were measured during the growing season with manual chambers and compared to N2O emissions estimated using the IPCC methods. In all site-years, the mean emission of N2O in the growing season was greater with digested biosolids than other biosolids sources or urea fertilizer alone. The emissions of N2O in the growing season were similar with composted or alkaline-stabilized biosolids, and no greater than the unfertilized control. The best estimates of N2O emissions, relative to measured values, were with the Tier 3 > adapted Tier 2 with biosolids-specific correction factors > standard Tier 2 = Tier 1 methods of the IPCC, according to the root mean square error statistic. The Tier 3 IPCC method was the best estimator of N2O emissions in the Canadian ecozones evaluated in this study. These results will be used to improve methods for estimating N2O emissions from agricultural soils amended with biosolids and to generate more accurate GHG inventories.
Collapse
Affiliation(s)
- Okenna Obi-Njoku
- Department of Bioresource Engineering, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Michael Yongha Boh
- Department of Bioresource Engineering, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Ward Smith
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada
| | - Brian Grant
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada
| | - Corey Flemming
- Pollutant Inventories and Reporting Division, Environment and Climate Change Canada, 351 St-Joseph Blvd, Gatineau, QC, K1A 0H3, Canada
| | - G W Price
- Department of Engineering, Faculty of Agriculture, Dalhousie University, PO Box 550, Truro, NS, B2N 5E3, Canada
| | - Guillermo Hernandez-Ramirez
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, AB, T6G 2E3, Canada
| | - David Burton
- Department of Engineering, Faculty of Agriculture, Dalhousie University, PO Box 550, Truro, NS, B2N 5E3, Canada
| | - Joann K Whalen
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - O Grant Clark
- Department of Bioresource Engineering, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| |
Collapse
|
15
|
Tan Y, Chen Z, Liu W, Yang M, Du Z, Wang Y, Bol R, Wu D. Grazing exclusion alters denitrification N 2O/(N 2O + N 2) ratio in alpine meadow of Qinghai-Tibet Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169358. [PMID: 38135064 DOI: 10.1016/j.scitotenv.2023.169358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/06/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Grazing exclusion has been implemented worldwide as a nature-based solution for restoring degraded grassland ecosystems that arise from overgrazing. However, the effect of grazing exclusion on soil nitrogen cycle processes, subsequent greenhouse gas emissions and underlying mechanisms remain unclear. Here, we investigated the effect of four-year grazing exclusion on plant communities, soil properties, and soil nitrogen cycle-related functional gene abundance in an alpine meadow on the Qinghai-Tibet Plateau. Using an automated continuous-flow incubation system, we performed an incubation experiment and measured soil-borne N2O, N2, and CO2 fluxes to three successive "hot moment" events (precipitation, N deposition, and oxic-to-anoxic transition) between grazing-excluded and grazing soil. Higher soil N contents (total nitrogen, NH4+, NO3-) and extracellular enzyme activities (β-1,4-glucosidase, β-1,4-N-acetyl-glucosaminidase, cellobiohydrolase) are observed under grazing exclusion. The aboveground and litter biomass of plant community was significantly increased by grazing exclusion, but grazing exclusion decreased the average number of plant species and microbial diversity. The N2O + N2 fluxes observed under grazing exclusion were higher than those observed under free grazing. The N2 emissions and N2O/(N2O + N2) ratios observed under grazing exclusion were higher than those observed under free grazing in oxic conditions. Instead, higher N2O fluxes and lower denitrification functional gene abundances (nirS, nirK, nosZ, and nirK + nirS) under anoxia were found under grazing exclusion than under free grazing. The N2O site-preference value indicates that under grazing exclusion, bacterial denitrification contributes more to higher N2O production compared with under free grazing (81.6 % vs. 59.9 %). We conclude that grazing exclusion could improve soil fertility and plant biomass, nevertheless it may lower plant and microbial diversity and increase potential N2O emission risk via the alteration of the denitrification end-product ratio. This indicates that not all grassland management options result in a mutually beneficial situation among wider environmental goals such as greenhouse gas mitigation, biodiversity, and social welfare.
Collapse
Affiliation(s)
- Yuechen Tan
- Beijing Key Laboratory of Wetland Services and Restoration, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China
| | - Zhu Chen
- College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Weiwei Liu
- Beijing Key Laboratory of Wetland Services and Restoration, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China
| | - Mengying Yang
- Guangzhou Research Institute of Environment Protection Co., Ltd., Guangzhou 510620, China
| | - Zhangliu Du
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yifei Wang
- Beijing Key Laboratory of Wetland Services and Restoration, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China.
| | - Roland Bol
- Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; School of Natural Sciences, Environment Centre Wales, Bangor University, Bangor LL57 2UW, UK
| | - Di Wu
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
16
|
Zhang H, Adalibieke W, Ba W, Butterbach-Bahl K, Yu L, Cai A, Fu J, Yu H, Zhang W, Huang W, Jian Y, Jiang W, Zhao Z, Luo J, Deng J, Zhou F. Modeling denitrification nitrogen losses in China's rice fields based on multiscale field-experiment constraints. GLOBAL CHANGE BIOLOGY 2024; 30:e17199. [PMID: 38385944 DOI: 10.1111/gcb.17199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/23/2024]
Abstract
Denitrification plays a critical role in soil nitrogen (N) cycling, affecting N availability in agroecosystems. However, the challenges in direct measurement of denitrification products (NO, N2 O, and N2 ) hinder our understanding of denitrification N losses patterns across the spatial scale. To address this gap, we constructed a data-model fusion method to map the county-scale denitrification N losses from China's rice fields over the past decade. The estimated denitrification N losses as a percentage of N application from 2009 to 2018 were 11.8 ± 4.0% for single rice, 12.4 ± 3.7% for early rice, and 11.6 ± 3.1% for late rice. The model results showed that the spatial heterogeneity of denitrification N losses is primarily driven by edaphic and climatic factors rather than by management practices. In particular, diffusion and production rates emerged as key contributors to the variation of denitrification N losses. These findings humanize a 38.9 ± 4.8 kg N ha-1 N loss by denitrification and challenge the common hypothesis that substrate availability drives the pattern of N losses by denitrification in rice fields.
Collapse
Affiliation(s)
- Huayan Zhang
- Institute of Carbon Neutrality, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Wulahati Adalibieke
- Institute of Carbon Neutrality, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Wenxin Ba
- Institute of Carbon Neutrality, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | | | - Longfei Yu
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Andong Cai
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jin Fu
- College of Geography and Remote Sensing, Hohai University, Nanjing, China
| | - Haoming Yu
- Institute of Carbon Neutrality, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Wantong Zhang
- Institute of Carbon Neutrality, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Weichen Huang
- Institute of Carbon Neutrality, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yiwei Jian
- Institute of Carbon Neutrality, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Wenjun Jiang
- Institute of Carbon Neutrality, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Zheng Zhao
- Institute of Ecological Environment Protection Research, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jiafa Luo
- AgResearch Ruakura, Hamilton, New Zealand
| | - Jia Deng
- Earth Systems Research Center, Institute for the Study of Earth, Oceans and Space, University of New Hampshire, Durham, New Hampshire, USA
| | - Feng Zhou
- Institute of Carbon Neutrality, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
- College of Geography and Remote Sensing, Hohai University, Nanjing, China
| |
Collapse
|
17
|
Ahn Y, Park S, Kim HH, Basak B, Yun ST, Jeon BH, Choi J. Field evaluation of carbon injection method for in-situ biological denitrification in groundwater using geochemical and metataxonomic analyses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122719. [PMID: 37866751 DOI: 10.1016/j.envpol.2023.122719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/27/2023] [Accepted: 10/08/2023] [Indexed: 10/24/2023]
Abstract
This study focuses on the bioremediation of nitrate-contaminated groundwater, which has become a significant environmental problem due to the increasing usage of fertilizers and sewage disposal. The nitrate reduction efficiencies of biological denitrification by injection of carbon source in a pilot-scale treatment system setup were investigated at a groundwater contamination site. The field test was conducted using acetate as a carbon source for 22 days to assess the nitrate reduction efficiencies of in-situ treatment. Geochemical parameters and microbial community analysis using next-generation sequencing were performed before and after carbon source injection. After 12 h of reaction time, nitrate concentration decreased from 31.6 to 4.2 mg-N/L at PC-2, and then remained stable at 3.9 mg-N/L. The nitrate reduction rate when acetate was injected was 29.0 mg-N/L/day. Aquabacterium commune, pseudomonas brassicacearum, dechloromonas denitrificans, and Massilia FAOS were dominant species after acetate injection. Predictive metabolic pathway analysis indicated that nitrate reduction metabolisms during injection of acetate were denitrification and assimilatory nitrate reduction to ammonium. The evaluated hazard quotient of nitrate-contaminated groundwater significantly decreased after acetate injection (non-carcinogenic risk decreased from 1.176 to 0.134 for children). This research could provide fundamental information for decision-makers in nitrate-contaminated groundwater quality protection and management.
Collapse
Affiliation(s)
- Yongtae Ahn
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, Republic of Korea; Department of Earth Resources & Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology, Hwarang-ro 14, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Sanghyun Park
- Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology, Hwarang-ro 14, Seongbuk-gu, Seoul 02792, Republic of Korea; Green School, Korea University, Seoul, 02841, Republic of Korea
| | - Hoo Hugo Kim
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, Republic of Korea; Center for Water Cycle Research, Korea Institute of Science and Technology, Hwarang-ro 14, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Bikram Basak
- Center for Creative Convergence Education, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; Petroleum and Mineral Research Institute, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Seong-Taek Yun
- Green School, Korea University, Seoul, 02841, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Jaeyoung Choi
- Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology, Hwarang-ro 14, Seongbuk-gu, Seoul 02792, Republic of Korea.
| |
Collapse
|
18
|
Shi B, Hou K, Cheng C, Bai Y, Liu C, Du Z, Wang J, Wang J, Li B, Zhu L. Effects of the polyhalogenated carbazoles 3-bromocarbazole and 1,3,6,8-tetrabromocarbazole on soil microbial communities. ENVIRONMENTAL RESEARCH 2023; 239:117379. [PMID: 37832772 DOI: 10.1016/j.envres.2023.117379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/26/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Soil ecosystems are being more contaminated with polyhalogenated carbazoles (PHCZs), which raising much attention about their impact on soil microorganisms. 3-Bromocarbazole (3-BCZ) and 1,3,6,8-tetrabromocarbazole (1,3,6,8-TBCZ) are two typical PHCZs with high detection rates in the soil environment. However, ecological risk research on these two PHCZs in soil is still lacking. In the present study, after 80 days of exposure, the ecological influence of 3-BCZ and 1,3,6,8-TBCZ was investigated based on 16S rDNA sequencing, ITS sequencing, gene (16S rDNA, ITS, amoA, nifH, narG and cbbL) abundance and soil enzyme activity. The results showed that the bacterial 16S rDNA gene abundance significantly decreased under 3-BCZ and 1,3,6,8-TBCZ exposure after 80 days of incubation. The fungal ITS gene abundance significantly decreased under 1,3,6,8-TBCZ (10 mg/kg) exposure. PHCZs contributed to the alteration of bacteria and fungi community abundance. Bacteria Sphingomonas, RB41 and fungus Mortierella, Cercophora were identified as the most dominant genera. The two PHCZs consistently decreased the relative abundance of Sphingomonas, Lysobacter, Dokdonella, Mortierella and Cercophora etc at 80th day. These keystone taxa are related to the degradation of organic compounds, carbon metabolism, and nitrogen metabolism and may thus have influence on soil ecological functions. Bacterial and fungal functions were estimated using functional annotation of prokaryotic taxa (FAPROTAX) and fungi functional guild (FUNGuild), respectively. The nitrogen and carbon metabolism pathway were affected by 3-BCZ and 1,3,6,8-TBCZ. The soil nitrogen-related functions of aerobic ammonia oxidation were decreased but the soil carbon-related functions of methanol oxidation, fermentation, and hydrocarbon degradation were increased at 80th day. The effects of 3-BCZ and 1,3,6,8-TBCZ on the abundances of the amoA, nifH, narG, and cbbL genes showed a negative trend. These results elucidate the ecological effects of PHCZs and extend our knowledge on the structure and function of soil microorganisms in PHCZ-contaminated ecosystems.
Collapse
Affiliation(s)
- Baihui Shi
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, PR China.
| | - Kaixuan Hou
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, PR China; College of Biological and Environmental Engineering, Binzhou University, Binzhou, 256603, PR China.
| | - Chao Cheng
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, PR China.
| | - Yao Bai
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, PR China.
| | - Changrui Liu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, PR China.
| | - Zhongkun Du
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, PR China.
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, PR China.
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, PR China.
| | - Bing Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, PR China.
| | - Lusheng Zhu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, PR China.
| |
Collapse
|
19
|
Liang K, Qi J, Zhang X, Emmett B, Johnson JMF, Malone RW, Moglen GE, Venterea RT. Simulated nitrous oxide emissions from multiple agroecosystems in the U.S. Corn Belt using the modified SWAT-C model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122537. [PMID: 37709120 DOI: 10.1016/j.envpol.2023.122537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/19/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023]
Abstract
Agriculture is a major source of nitrous oxide (N2O) emissions into the atmosphere. However, assessing the impacts of agricultural conservation practices, land use change, and climate adaptation measures on N2O emissions at a large scale is a challenge for process-based model applications. Here, we integrated six N2O emission algorithms for the nitrification processes and seven N2O emission algorithms for the denitrification process into the Soil and Water Assessment Tool-Carbon (SWAT-C). We evaluated the different combinations of methods in simulating N2O emissions under corn (Zea mays L.) production systems with various conservation practices, including fertilization, tillage, and crop rotation (represented by 14 experimental treatments and 83 treatment-years) at five experimental sites across the U.S. Midwest. The SWAT-C model exhibited wide variability in simulating daily average N2O emissions across treatment-years with different method configurations, as indicated by the ranges of R2, NSE, and BIAS (0.04-0.68, -1.78-0.60, and -0.94-0.001, respectively). Our results indicate that the denitrification process has a stronger impact on N2O emissions than the nitrification process. The best performing N2O emission algorithms are those rooted in the CENTURY model, which considers soil pH and respiration effects that were overlooked by other algorithms. The optimal N2O emission algorithm explained about 63% of the variability of annual average N2O emissions, with NSE and BIAS of 0.60 and -0.033, respectively. The model can reasonably represent the impacts of agricultural conservation practices on N2O emissions. We anticipate that the improved SWAT-C model, with its flexible configurations and robust modeling and assessment capabilities, will provide a valuable tool for studying and managing N2O emissions from agroecosystems.
Collapse
Affiliation(s)
- Kang Liang
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, 20740, USA
| | - Junyu Qi
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, 20740, USA
| | - Xuesong Zhang
- USDA-ARS Hydrology and Remote Sensing Laboratory, Beltsville, MD, 20705, USA.
| | - Bryan Emmett
- USDA-ARS National Laboratory for Agriculture and the Environment, Ames, IA, 50011, USA
| | - Jane M F Johnson
- USDA-ARS North Central Soil Conservation Research Laboratory, Morris, MN, 56267, USA
| | - Robert W Malone
- USDA-ARS National Laboratory for Agriculture and the Environment, Ames, IA, 50011, USA
| | - Glenn E Moglen
- USDA-ARS Hydrology and Remote Sensing Laboratory, Beltsville, MD, 20705, USA
| | - Rodney T Venterea
- USDA-ARS, Soil and Water Management Unit, St. Paul, MN, 55108, USA; Department of Soil, Water and Climate, University of Minnesota-Twin Cities, St. Paul, MN, 55108, USA
| |
Collapse
|
20
|
Zhang W, Tao X, Hu Z, Kang E, Yan Z, Zhang X, Wang J. The driving effects of nitrogen deposition on nitrous oxide and associated gene abundances at two water table levels in an alpine peatland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165525. [PMID: 37451456 DOI: 10.1016/j.scitotenv.2023.165525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Alpine peatlands are recognized as a weak or negligible source of nitrous oxide (N2O). Anthropogenic activities and climate change resulted in the altered water table (WT) levels and increased nitrogen (N) deposition, which could potentially transition this habitat into a N2O emission hotspot. However, the underlying mechanism related with the effects is still uncertain. Hence, we conducted a mesocosm experiment to address the response of growing-season N2O emissions and the gene abundances of nitrification (bacterial amoA) and denitrification (narG, nirS, norB and nosZ) to the increased N deposition (20 kg N ha-1 yr-1) at two WT levels (WT-30, 30 cm below soil surface; WT10, 10 cm above soil surface) in the Zoige alpine peatland, Qinghai-Tibetan Plateau. The results showed that the WT did not affect N2O emissions, and this was attributed with the limitation of soil NO3-. The higher WT level increased denitrification (narG and nirS gene abundance) resulting in the depletion of soil NO3-, but the consequent NO3- deficiency further limited denitrification, while the WT did not affect nitrification (bacterial amoA gene abundance). Meanwhile, the N deposition increased N2O emissions, regardless of WT levels. This was associated with the N-deposition induced increase in denitrification-related gene abundances of narG, nirS, norB and nosZ at WT-30 and narG at WT10. Additionally, the N2O emission factor assigned to N deposition was 1.3 % at WT-30 and 0.9 % at WT10, respectively. Our study provided comprehensive understanding of the mechanisms referring N2O emissions in response to the interactions between climate change and human disturbance from this high-altitude peatland.
Collapse
Affiliation(s)
- Wantong Zhang
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Insititute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610218, China; Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuping Tao
- Insititute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610218, China
| | - Zhengyi Hu
- Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Enze Kang
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China
| | - Zhongqing Yan
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba 624500, China
| | - Xiaodong Zhang
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba 624500, China
| | - Jinzhi Wang
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba 624500, China.
| |
Collapse
|
21
|
Hao DC, Su XY, Xie HT, Bao XL, Zhang XD, Wang LF. Effects of tillage patterns and stover mulching on N 2O production, nitrogen cycling genes and microbial dynamics in black soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118458. [PMID: 37385196 DOI: 10.1016/j.jenvman.2023.118458] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 06/11/2023] [Accepted: 06/16/2023] [Indexed: 07/01/2023]
Abstract
Stover-covered no-tillage (NT) is of great significance to the rational utilization of stover resources and improvement of cultivated land quality, and also has a profound impact on ensuring groundwater, food and ecosystem security. However, the effects of tillage patterns and stover mulching on soil nitrogen turnover remain elusive. Based on the long-term conservation tillage field experiment in the mollisol area of Northeast China since 2007, the shotgun metagenomic sequencing of soils and microcosm incubation were combined with physical and chemical analyses, alkyne inhibition analysis to elucidate the regulatory mechanisms of NT and stover mulching on the farmland soil nitrogen emissions and microbial nitrogen cycling genes. Compared with conventional tillage (CT), NT stover mulching significantly reduced the emission of N2O instead of CO2, especially when 33% mulching was adopted, and correspondingly the nitrate nitrogen of NT33 was higher than that of other mulching amounts. The stover mulching was associated with higher total nitrogen, soil organic carbon and pH. The abundance of AOB (ammonia-oxidizing bacteria)-amoA (ammonia monooxygenase subunit A) was substantially increased by stover mulching, while the abundance of denitrification genes was reduced in most cases. Under alkyne inhibition, the tillage mode, treatment time, gas condition and interactions between them noticeably influenced the N2O emission and nitrogen transformation. In CT, NT0 (no mulching) and NT100 (full mulching), the relative contribution of AOB to N2O production was markedly higher than that of ammonia oxidizing archaea. Different tillage modes were associated with distinct microbial community composition, albeit NT100 was closer to CT than to NT0. Compared with CT, the co-occurrence network of microbial communities was more complex in NT0 and NT100. Our findings suggest that maintaining a low-quantity stover mulching could regulate soil nitrogen turnover toward proficiently enhancing soil health and regenerative agriculture, and coping with global climate change.
Collapse
Affiliation(s)
- Da-Cheng Hao
- Liaoning Provincial Universities Key Laboratory of Environmental Science and Technology, School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian, 116028, China; Institute of Molecular Plant Science, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Xing-Yuan Su
- Liaoning Provincial Universities Key Laboratory of Environmental Science and Technology, School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian, 116028, China
| | - Hong-Tu Xie
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Xue-Lian Bao
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Xu-Dong Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Lian-Feng Wang
- Liaoning Provincial Universities Key Laboratory of Environmental Science and Technology, School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian, 116028, China.
| |
Collapse
|
22
|
Cheng G, Zhang X, Zhu M, Zhang Z, Jing L, Wang L, Li Q, Zhang X, Wang H, Wang W. Tree diversity, growth status, and spatial distribution affected soil N availability and N 2O efflux: Interaction with soil physiochemical properties. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118375. [PMID: 37356331 DOI: 10.1016/j.jenvman.2023.118375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 06/04/2023] [Accepted: 06/10/2023] [Indexed: 06/27/2023]
Abstract
Soil nitrogen (N) is an essential nutrient for tree growth, and excessive N is a source of pollution. This paper aims to define the effects of plant diversity and forest structure on various aspects of soil N cycling. Herein, we collected soils from 720 plots to measure total N content (TN), alkali-hydrolyzed N (AN), nitrate N (NO3--N), ammonium N (NH4+-N) in a 7.2 ha experimental forest in northeast China. Four plant diversity indices, seven structural metrics, four soil properties, and in situ N2O efflux were also measured. We found that: 1) high tree diversity had 1.3-1.4-fold NO3--N, 1.1-fold NH4+-N, and 1.5-1.8-fold N2O efflux (p < 0.05). 2) Tree growth decreased soil TN, AN, and NO3--N by more than 13%, and tree mixing and un-uniform distribution increased TN, AN, and NH4+-N by 11-22%. 3) Soil organic carbon (SOC) explained 34.3% of the N variations, followed by soil water content (1.5%), tree diameter (1.5%) and pH (1%), and soil bulk density (0.5%). SOC had the most robust linear relations to TN (R2 = 0.59) and AN (R2 = 0.5). 4) The partial least squares path model revealed that the tree diversity directly increased NO3--N, NH4+-N, and N2O efflux, and they were strengthened indirectly from soil properties by 1%-4%. The effects of tree size-density (-0.24) and spatial structure (0.16) were mainly achieved via their soil interaction and thus indirectly decreased NH4+-N, AN, and TN. Overall, high tree diversity forests improved soil N availability and N2O efflux, and un-uniform spatial tree assemblages could partially balance the soil N consumed by tree growth. Our data support soil N management in high northern hemisphere temperate forests from tree diversity and forest structural regulations.
Collapse
Affiliation(s)
- Guanchao Cheng
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Xu Zhang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Meina Zhu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Zhonghua Zhang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Lixin Jing
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Lei Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Qi Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Xiting Zhang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Huimei Wang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| | - Wenjie Wang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, CAS, Changchun, 130102, China.
| |
Collapse
|
23
|
Peltokangas K, Kalu S, Huusko K, Havisalmi J, Heinonsalo J, Karhu K, Kulmala L, Liski J, Pihlatie M. Ligneous amendments increase soil organic carbon content in fine-textured boreal soils and modulate N2O emissions. PLoS One 2023; 18:e0284092. [PMID: 37561746 PMCID: PMC10414678 DOI: 10.1371/journal.pone.0284092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/22/2023] [Indexed: 08/12/2023] Open
Abstract
Organic soil amendments are used to improve soil quality and mitigate climate change. However, their effects on soil structure, nutrient and water retention as well as greenhouse gas (GHG) emissions are still poorly understood. The purpose of this study was to determine the residual effects of a single field application of four ligneous soil amendments on soil structure and GHG emissions. We conducted a laboratory incubation experiment using soil samples collected from an ongoing soil-amendment field experiment at Qvidja Farm in south-west Finland, two years after a single application of four ligneous biomasses. Specifically, two biochars (willow and spruce) produced via slow pyrolysis, and two mixed pulp sludges from paper industry side-streams were applied at a rate of 9-22 Mg ha-1 mixed in the top 0.1 m soil layer. An unamended fertilized soil was used as a control. The laboratory incubation lasted for 33 days, during which the samples were kept at room temperature (21°C) and at 20%, 40%, 70% or 100% water holding capacity. Carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) fluxes were measured periodically after 1, 5, 12, 20 and 33 days of incubation. The application of ligneous soil amendments increased the pH of the sampled soils by 0.4-0.8 units, whereas the effects on soil organic carbon content and soil structure varied between treatments. The GHG exchange was dominated by CO2 emissions, which were mainly unaffected by the soil amendment treatments. The contribution of soil CH4 exchange was negligible (nearly no emissions) compared to soil CO2 and N2O emissions. The soil N2O emissions exhibited a positive exponential relationship with soil moisture. Overall, the soil amendments reduced N2O emissions on average by 13%, 64%, 28%, and 37%, at the four soil moisture levels, respectively. Furthermore, the variation in N2O emissions between the amendments correlated positively with their liming effect. More specifically, the potential for the pulp sludge treatments to modulate N2O emissions was evident only in response to high water contents. This tendency to modulate N2O emissions was attributed to their capacity to increase soil pH and influence soil processes by persisting in the soil long after their application.
Collapse
Affiliation(s)
- Kenneth Peltokangas
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
- Finnish Meteorological Institute, Helsinki, Finland
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, Finland
| | - Subin Kalu
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Karoliina Huusko
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Jimi Havisalmi
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Jussi Heinonsalo
- Finnish Meteorological Institute, Helsinki, Finland
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, Finland
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
- Department of Microbiology, University of Helsinki, Helsinki, Finland
- Department of Agricultural Sciences, Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland
| | - Kristiina Karhu
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Liisa Kulmala
- Finnish Meteorological Institute, Helsinki, Finland
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, Finland
| | - Jari Liski
- Finnish Meteorological Institute, Helsinki, Finland
| | - Mari Pihlatie
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, Finland
- Department of Agricultural Sciences, Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland
| |
Collapse
|
24
|
Garnier J, Billen G, Aguilera E, Lassaletta L, Einarsson R, Serra J, Cameira MDR, Marques-Dos-Santos C, Sanz-Cobena A. How much can changes in the agro-food system reduce agricultural nitrogen losses to the environment? Example of a temperate-Mediterranean gradient. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 337:117732. [PMID: 36944291 DOI: 10.1016/j.jenvman.2023.117732] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Ammonia (NH3) volatilization, nitrous oxide (N2O) emissions, and nitrate (NO3-) leaching from agriculture cause severe environmental hazards. Research studies and mitigation strategies have mostly focused on one of these nitrogen (N) losses at a time, often without an integrated view of the agro-food system. Yet, at the regional scale, N2O, NH3, and NO3- loss patterns reflect the structure of the whole agro-food system. Here, we analyzed at the resolution of NUTS2 administrative European Union (EU) regions, N fluxes through the agro-food systems of a Temperate-Mediterranean gradient (France, Spain, and Portugal) experiencing contrasting climate and soil conditions. We assessed the atmospheric and hydrological N emissions from soils and livestock systems. Expressed per ha agricultural land, NH3 volatilization varied in the range 6.2-44.4 kg N ha-1 yr-1, N2O emission and NO3 leaching 0.3-4.9 kg N ha-1 yr-1 and 5.4-154 kg N ha-1 yr-1 respectively. Overall, lowest N2O emission was found in the Mediterranean regions, where NO3- leaching was greater. NH3 volatilization in both temperate and Mediterranean regions roughly follows the distribution of livestock density. We showed that these losses are also closely correlated with the level of fertilization intensity and agriculture system specialization into either stockless crop farming or intensive livestock farming in each region. Moreover, we explored two possible future scenarios at the 2050 horizon: (1) a scenario based on the prescriptions of the EU-Farm-to-Fork (F2F) strategy, with 25% of organic farming, 10% of land set aside for biodiversity, 20% reduction in N fertilizers, and no diet change; and (2) a hypothetical agro-ecological (AE) scenario with generalized organic farming, reconnection of crop and livestock farming, and a healthier human diet with an increase in the share of vegetal protein to 65% (i.e., the Mediterranean diet). Results showed that the AE scenario, owing to its profound reconfiguration of the entire agro-food system would have the potential for much greater reductions in NH3, N2O, and NO3- emissions, namely, 60-81% reduction, while the F2F scenario would only reach 24-35% reduction of N losses.
Collapse
Affiliation(s)
- Josette Garnier
- SU CNRS EPHE, Umr Metis 7619, 4 Place Jussieu, 75005, Paris, France.
| | - Gilles Billen
- SU CNRS EPHE, Umr Metis 7619, 4 Place Jussieu, 75005, Paris, France
| | - Eduardo Aguilera
- ETSI Agronomica, Alimentaria y de Biosistemas, CEIGRAM Universidad Politécnica de Madrid, Spain
| | - Luis Lassaletta
- ETSI Agronomica, Alimentaria y de Biosistemas, CEIGRAM Universidad Politécnica de Madrid, Spain
| | - Rasmus Einarsson
- ETSI Agronomica, Alimentaria y de Biosistemas, CEIGRAM Universidad Politécnica de Madrid, Spain; Department of Energy and Technology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - João Serra
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Maria do Rosário Cameira
- LEAF-Linking Landscape, Environment, Agriculture and Food-Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | | | - Alberto Sanz-Cobena
- ETSI Agronomica, Alimentaria y de Biosistemas, CEIGRAM Universidad Politécnica de Madrid, Spain
| |
Collapse
|
25
|
Li L, Chen M, Liu S, Bao H, Yang D, Qu H, Chen Y. Does the aging behavior of microplastics affect the process of denitrification by the difference of copper ion adsorption? JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131276. [PMID: 36989773 DOI: 10.1016/j.jhazmat.2023.131276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/09/2023] [Accepted: 03/21/2023] [Indexed: 05/03/2023]
Abstract
Riparian sediment is a hot zone for denitrification that can withhold copper and microplastics (MPs) from outside. It has been proven that MPs affect denitrification and the existing forms of copper in the environment. However, the impact of copper on sediment denitrification under exposure to MPs remains unclear. This study revealed the response of sediment denitrification to copper availability under the adsorption of MPs and the complexation of MP-derived dissolved organic matter (DOM). These results showed that MP accumulation inhibited denitrification. However, aged MPs increased the activity of nitrite reductase (12.64%), nitrogen dioxide reductase (37.68%), and electron transport (28.93%) compared with pristine MPs. The aging behavior of MPs alleviated 28.18% nitrite accumulation and 16.41-118.35% nitrous oxide emissions. Thus, the aging behavior of MPs alleviated the inhibition of denitrification. Notably, we resolved the copper ion adsorption and complexation by MPs, MP-derived DOM contributed to the denitrification process, and we found that the key nitrogen removal factors were affected by KL, KM, and K2. These results fill a gap in our understanding of biochemical synthesis of MPs during denitrification. Furthermore, it can be used to build a predictive understanding of the long-term effects of MPs on the sediment nitrogen cycle.
Collapse
Affiliation(s)
- Lanxi Li
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of education, Chongqing University, Chongqing 400045, China
| | - Mengli Chen
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of education, Chongqing University, Chongqing 400045, China
| | - Shushan Liu
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of education, Chongqing University, Chongqing 400045, China
| | - Huanyu Bao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, China
| | - Dongxu Yang
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of education, Chongqing University, Chongqing 400045, China
| | - Han Qu
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of education, Chongqing University, Chongqing 400045, China
| | - Yi Chen
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of education, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
26
|
Lúcio DSG, Dias MES, Ribeiro R, Tommaso G. Evaluating the potential of a new reactor configuration to enhance simultaneous organic matter and nitrogen removal in dairy wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:57490-57502. [PMID: 36966249 DOI: 10.1007/s11356-023-26341-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 03/04/2023] [Indexed: 05/10/2023]
Abstract
The dairy industry is a very productive sector worldwide and known for producing great volumes of wastewater that is rich in organic matter and nutrients. Apart from fat, the organic matter in such effluents is easily degradable, demanding an external carbon source for conventional denitrification. In this manner, new configurations of reactors promoting a suitable environment for more sustainable nitrogen removal are beyond required-they are paramount. Therefore, the performance of a structured-bed hybrid baffled reactor (SBHBR) with anaerobic and oxic/anoxic chambers was designed and assessed for treating different dairy wastewaters. A combination of baffled and biofilm-structured systems under intermittent aeration was the solution proposed to obtain a new method for nitrogen removal under low COD/TN ratios. The COD/TN ratios tested were 2.1 ± 0.6, 0.84 ± 0.5, and 0.35 ± 0.1 in the inlet of the O/A chambers for operational stages I, II, and III, respectively. The SBHBR provided COD removal efficiencies above 90% in all experimental stages. During stage III, the process had nitrification and denitrification efficiencies of 85.9 ± 17% and 85.2 ± 9%, respectively, resulting in a TN removal efficiency of 74.6 ± 14.7%. Stoichiometric calculations were used to corroborate the activity of bacteria that could perform the anammox pathways as their main mechanisms.
Collapse
Affiliation(s)
- Danilo S G Lúcio
- Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga, SP, Brazil
| | - Maria Eduarda S Dias
- Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga, SP, Brazil
| | - Rogers Ribeiro
- Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga, SP, Brazil
| | - Giovana Tommaso
- Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga, SP, Brazil.
| |
Collapse
|
27
|
Ju Y, Koh DC, Kim DH, Mayer B, Kwon HI. Evaluating the sources and fate of nitrate in riparian aquifers under agricultural land using in situ-measured noble gases, stable isotopes, and metabolic genes. WATER RESEARCH 2023; 231:119601. [PMID: 36645943 DOI: 10.1016/j.watres.2023.119601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/21/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Riparian zones with their buffering ability and abundant water supply are often subjected to intensive agricultural activities. We investigated a riparian aquifer located near a stream in South Korea that recently experienced sharply decreasing groundwater levels and elevated nitrate (NO3-) concentrations, which were attributed to local agricultural activities. Our goal was to identify the predominant nitrogen sources and NO3- removal processes. Multiple approaches including geochemical and isotopic tracers, land-use analysis, metabolic gene quantification, and inert gas tracers were used to elucidate groundwater and nutrient dynamics in stream-side granitic aquifers. The dual isotopic composition of NO3- identified manure and sewage as the major sources of NO3- contamination. Denitrification was the dominant NO3- removal process in the aquifer, as demonstrated by the negative relationship between δ15N and δ18O values in NO3-and NO3-/Cl-. Denitrification and anammox genes were also observed in microbial communities of the aquifer throughout the study site, suggesting that these processes support effective natural NO3- attenuation in groundwater. A mixing model constructed using a catchment-scale dataset including SiO2 concentrations and δ18O-H2O suggested that mixing with paddy soil water was the major driver of denitrification in the aquifer at the study site, where impervious layers provided anaerobic conditions for natural NO3- attenuation. Denitrification reduced the NO3- flux into the nearby stream by up to 114.4 NO3- kg/ha/y (26 kg N/ha/y). The N2 generated by denitrification did not accumulate in the groundwater, but mostly escaped from groundwater to the atmosphere, as demonstrated by the degassed signature of dissolved inert gases below the air saturated water level. This study identified the predominant NO3- sources and conceptualized N cycling in the heavily developed agricultural riparian aquifer using multiple tracers, demonstrating that NO3- is partially removed through denitrification and possibly anammox while N2 mostly escapes into the atmosphere.
Collapse
Affiliation(s)
- YeoJin Ju
- Korea Atomic Energy Research Institute, Daejeon 34057, Republic of Korea
| | - Dong-Chan Koh
- Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Republic of Korea; University of Science and Technology, Daejeon 34113, Republic of Korea.
| | - Dong-Hun Kim
- Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Republic of Korea
| | - Bernhard Mayer
- Department of Geoscience, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
| | - Hong-Il Kwon
- Korea Radioactive Waste Agency, Gyeongju, Gyeongsangbukdo 38062, Republic of Korea
| |
Collapse
|
28
|
Xu C, Wong VNL, Tuovinen A, Simojoki A. Effects of liming on oxic and anoxic N 2O and CO 2 production in different horizons of boreal acid sulfate soil and non-acid soil under controlled conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159505. [PMID: 36257417 DOI: 10.1016/j.scitotenv.2022.159505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
In acid sulfate (AS) soils, organic rich topsoil and subsoil horizons with highly variable acidity and moisture conditions and interconnected reactions of sulfur and nitrogen make them potential sources of greenhouse gases (GHGs). Subsoil liming can reduce the acidification of sulfidic subsoils in the field. However, the mitigation of GHG production in AS subsoils by liming, and the mechanisms involved, are still poorly known. We limed samples from different horizons of AS and non-AS soils to study the effects of liming on the N2O and CO2 production during a 56-day oxic and subsequent 72-h anoxic incubation. Liming to pH ≥ 7 decreased oxic N2O production by 97-98 % in the Ap1 horizon, 38-50 % in the Bg1 horizon, and 34-36 % in the BC horizon, but increased it by 136-208 % in the C horizon, respectively. Liming decreased anoxic N2O production by 86-94 % and 78-91 % in Ap1 and Bg1 horizons, but increased it by 100-500 % and 50-162 % in BC and C horizons, respectively. Liming decreased N2O/(N2O + N2) in anoxic denitrification in most horizons of both AS and non-AS soils. Liming significantly increased the cumulative oxic and anoxic CO2 production in AS soil, but less so in non-AS soil due to the initial high soil pH. Higher carbon and nitrogen contents in AS soil compared to non-AS soil agreed with the respectively higher cumulative oxic N2O production in all horizons, and the higher CO2 production in the subsoil horizons of all lime treatments. Overall, liming reduced the proportion of N2O in the GHGs produced in most soil horizons under oxic and anoxic conditions but reduced the total GHG production (as CO2 equivalents) only in the Ap1 horizon of both soils. The results suggest that liming of subsoils may not always effectively mitigate GHG emissions due to concurrently increased CO2 production and denitrification.
Collapse
Affiliation(s)
- Chang Xu
- School of Earth, Atmosphere and Environment, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Vanessa N L Wong
- School of Earth, Atmosphere and Environment, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Anna Tuovinen
- Department of Agricultural Sciences, University of Helsinki, P. O. Box 56 (Biocenter 1, Viikinkaari 9), FI-00014, Finland
| | - Asko Simojoki
- Department of Agricultural Sciences, University of Helsinki, P. O. Box 56 (Biocenter 1, Viikinkaari 9), FI-00014, Finland.
| |
Collapse
|
29
|
Lin W, Li Q, Zhou W, Yang R, Zhang D, Wang H, Li Y, Qi Z, Li Y. Insights into production and consumption processes of nitrous oxide emitted from soilless culture systems by dual isotopocule plot and functional genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159046. [PMID: 36181829 DOI: 10.1016/j.scitotenv.2022.159046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/01/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Soilless culture systems (SCS) play an increasing role in greenhouse vegetable production. In the SCS, soilless substrates serve as the major substitute for soil, supplying nutrients to plants but releasing greenhouse gases into the atmosphere. Remarkably, there is a serious problem of N2O emission due to excessive input of N fertilizer. However, the microbial processes of N2O production and consumption in soilless substrates have been rarely studied resulting in difficultly interpreting for its global warming potential. Therefore, these pathways from two classic soilless substrates under two irrigation patterns were investigated by stable isotope technology combined with qPCR analysis in present study. The results according to the dual isotopocule plot of δ15NSP vs. δ18O showed that the mean contribution of denitrification and the mean extent of N2O reduction of case i (Reduction-Mixing) were 26.2 and 81.2 % for the treatment of peat based substrate under drip irrigation (PD), 47.7 and 70.3 % for the treatment of coir substrate under drip irrigation (CD), 29.0 and 80.8 % for the treatment of peat based substrate under tidal irrigation (PT), and 50.8 and 47.4 % for the treatment of coir substrate under tidal irrigation (CT). These results were also further confirmed by the abundance of major functional genes including AOA amoA, nirK and nosZ. Altogether, N2O emission and its microbial processes are determined by substrate types instead of irrigation patterns. For detail, denitrification dominated in the peat based substrate and nitrification dominated in the coir substrate. Compared to the coir substrate, the peat based substrate had higher abundance of functional genes and stronger denitrification and thus generated more N2O. For the two soilless substrates, moreover, the microbiome replaced the mineral N content as the limiting factor for N2O emission. In the SCS, in summary, the two soilless substrates play an important role in tomato growth, but might suffer from inorganic nutrient surplus and microbial shortage. More importantly, the combined analysis of N2O isotopocule deltas and functional genes is a robust tool and provides reliable conclusions for clarifying the microbial processes of N2O production and consumption, thus it is also recommended for use in environments other than soilless substrates.
Collapse
Affiliation(s)
- Wei Lin
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China; Environmental Stable Isotope Lab., Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - QiaoZhen Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Environmental Stable Isotope Lab., Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wanlai Zhou
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Rui Yang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Dongdong Zhang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Hong Wang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Yujia Li
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China; Environmental Stable Isotope Lab., Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhiyong Qi
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China.
| | - Yuzhong Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Environmental Stable Isotope Lab., Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
30
|
Fan D, He W, Jiang R, Song D, Zou G, Chen Y, Cao B, Wang J, Wang X. Enhanced-Efficiency Fertilizers Impact on Nitrogen Use Efficiency and Nitrous Oxide Emissions from an Open-Field Vegetable System in North China. PLANTS (BASEL, SWITZERLAND) 2022; 12:81. [PMID: 36616210 PMCID: PMC9823836 DOI: 10.3390/plants12010081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 05/25/2023]
Abstract
Open vegetable fields in China are a major anthropogenic source of nitrous oxide (N2O) emissions due to excessive nitrogen (N) fertilization. A 4 yr lettuce experiment was conducted to determine the impacts of controlled-release fertilizers (CRFs) and nitrification inhibitors (NIs) on lettuce yield, N2O emissions and net economic benefits. Five treatments included (i) no N fertilizer (CK), (ii) conventional urea at 255 kg N ha-1 based on farmers' practice (FP), (iii) conventional urea at 204 kg N ha-1 (OPT), (iv) CRF at 204 kg N ha-1 (CU) and (v) CRF (204 kg N ha-1) added with NI (CUNI). No significant differences were found in the lettuce yields among different N fertilization treatments. Compared with FP, the cumulative N2O emissions were significantly decreased by 8.1%, 38.0% and 42.6% under OPT, CU and CUNI, respectively. Meanwhile, the net benefits of OPT, CU and CUNI were improved by USD 281, USD 871 and USD 1024 ha-1 compared to CN, respectively. This study recommends the combined application of CRF and NI at a reduced N rate as the optimal N fertilizer management for the sustainable production of vegetables in China with the lowest environmental risks and the greatest economic benefits.
Collapse
Affiliation(s)
| | - Wentian He
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | | | | | | | | | | | | | - Xuexia Wang
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
31
|
Yang L, Muhammad I, Chi YX, Liu YX, Wang GY, Wang Y, Zhou XB. Straw return and nitrogen fertilization regulate soil greenhouse gas emissions and global warming potential in dual maize cropping system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158370. [PMID: 36044952 DOI: 10.1016/j.scitotenv.2022.158370] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Abundant nitrogen (N) fertilization is needed for maize (Zea mays L.) production in China because of its huge residual biomass return. However, excessive N fertilization has a negative impact on the soil ecosystem and environment, which contributes to climate change. Soil incorporation of maize residues is a well-known practice for reducing chemical N fertilization without compromising maize yield and soil fertility. Thus, residues incorporation has the capacity to minimize N fertilization uses and hence mitigate soil greenhouse gas emissions by improving plant N uptake and use efficiency. There is still a research gap regarding the effects of maize residues incorporation on maize yield, soil fertility, greenhouse gas emissions, and plant N and carbon (C) contents. Therefore, we conducted a field experiment during spring and autumn involving four different N fertilization rates (N0, N200, N250, and N300 kg N ha-1), with and without maize residues incorporation, to evaluate grain yield, soil fertility, plant N and C contents, and greenhouse gas emissions (GHGs). Compared to N0, N fertilizer application at 300 kg N ha-1 with residues incorporation significantly increased area-scaled global warming potential (GWP) compared to other N fertilization rates in both spring and autumn seasons, but soil nutrient contents and plant N and C contents were not statistically different from the N250 treatment. In contrast, the N recovery use efficiency (NRUE), physiological N use efficiency (PNUE), and agronomic N use efficiency (ANUE) were significantly lower in the N300 treatment than in the lower N treatment groups. Nitrous oxide (N2O) and carbon dioxide (CO2) fluxes, area-scaled GWP, and greenhouse gas intensity (GHGI) were significantly lower in the N200 treatment with straw incorporation than the N250 and N300 treatments of the traditional planting system. Thus, we concluded that N200 treatment with residues incorporation is optimal for improving grain yield, soil fertility, plant N uptake, and mitigating greenhouse gas emissions.
Collapse
Affiliation(s)
- Li Yang
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Agricultural College, Guangxi University, Nanning 530004, China
| | - Ihsan Muhammad
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Agricultural College, Guangxi University, Nanning 530004, China
| | - Yu Xin Chi
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Agricultural College, Guangxi University, Nanning 530004, China; Heilongjiang Bayi Agricultural University/Key Laboratory of Crop Germplasm Improvement and Cultivation in Cold Regions of Education Department, Daqing, China
| | - Yong Xin Liu
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Agricultural College, Guangxi University, Nanning 530004, China
| | - Guo Yun Wang
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Agricultural College, Guangxi University, Nanning 530004, China
| | - Yong Wang
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Agricultural College, Guangxi University, Nanning 530004, China
| | - Xun Bo Zhou
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Agricultural College, Guangxi University, Nanning 530004, China.
| |
Collapse
|
32
|
Temperature-Related N2O Emission and Emission Potential of Freshwater Sediment. Processes (Basel) 2022. [DOI: 10.3390/pr10122728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Nitrous oxide (N2O) is a major radiative forcing and stratospheric ozone-depleting gas. Among natural sources, freshwater ecosystems are significant contributors to N2O. Although temperature is a key factor determining the N2O emissions, the respective effects of temperature on emitted and dissolved N2O in the water column of freshwater ecosystems remain unclear. In this study, 48 h incubation experiments were performed at three different temperatures; 15 °C, 25 °C, and 35 °C. For each sample, N2O emission, dissolved N2O in the overlying water and denitrification rates were measured, and N2O-related functional genes were quantified at regular intervals. The highest N2O emission was observed at an incubation of 35 °C, which was 1.5 to 2.1 factors higher than samples incubated at 25 °C and 15 °C. However, the highest level of dissolved N2O and estimated exchange flux of N2O were both observed at 25 °C and were both approximately 2 factors higher than those at 35 °C and 15 °C. The denitrification rates increased significantly during the incubation period, and samples at 25 °C and 35 °C exhibited much greater rates than those at 15 °C, which is in agreement with the N2O emission of the three incubation temperatures. The NO3− decreased in relation to the increase of N2O emissions, which confirms the dominant role of denitrification in N2O generation. Indeed, the nirK type denitrifier, which constitutes part of the denitrification process, dominated the nirS type involved in N2O generation, and the nosZ II type N2O reducer was more abundant than the nosZ I type. The results of the current study indicate that higher temperatures (35 °C) result in higher N2O emissions, but incubation at moderate temperatures (25 °C) causes higher levels of dissolved N2O, which represent a potential source of N2O emissions from freshwater ecosystems.
Collapse
|
33
|
Li C, Wei Z, Yang P, Shan J, Yan X. Conversion from rice fields to vegetable fields alters product stoichiometry of denitrification and increases N 2O emission. ENVIRONMENTAL RESEARCH 2022; 215:114279. [PMID: 36126691 DOI: 10.1016/j.envres.2022.114279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Information about effects of conversion from rice fields to vegetable fields on denitrification process is still limited. In this study, denitrification rate and product ratio (i.e., N2O/(N2O + N2) ratio) were investigated by soil-core incubation based N2/Ar technique in one rice paddy field (RP) and two vegetable fields (VF4 and VF7, 4 and 7 years vegetable cultivating after conversion from rice fields, respectively). Genes related to denitrification and bacterial community composition were quantified to investigate the microbial mechanisms behind the effects of land-use conversion. The results showed that conversion of rice fields to vegetable fields did not significantly change denitrification rate although the abundance of denitrification related genes was significantly reduced by 79.22%-99.84% in the vegetable soils. Whereas, compared with the RP soil, N2O emission rate was significantly (P < 0.05) increased by 53.5 and 1.6 times in the VF4 and VF7 soils, respectively. Correspondingly, the N2O/(N2O + N2) ratio increased from 0.18% (RP soil) to 5.65% and 0.65% in the VF4 and VF7 soils, respectively. These changes were mainly attributed to the lower pH, higher nitrate content, and the altered bacterial community composition in the vegetable soils. Overall, our results showed that conversion of rice fields to vegetable fields increased the N2O emission rate and altered the product ratio of denitrification. This may increase the contribution of land-use conversion to global warming and stratospheric ozone depletion.
Collapse
Affiliation(s)
- Chenglin Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhijun Wei
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Pinpin Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jun Shan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Xiaoyuan Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
34
|
Sun Z, Li J, Fan Y, Meng J. A quantified nitrogen metabolic network by reaction kinetics and mathematical model in a single-stage microaerobic system treating low COD/TN wastewater. WATER RESEARCH 2022; 225:119112. [PMID: 36166999 DOI: 10.1016/j.watres.2022.119112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/04/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
A single-stage intermittent aeration microaerobic reactor (IAMR) has been developed for the cost-effective nitrogen removal from piggery wastewater with a low ratio of chemical oxygen demand (COD) to total nitrogen (TN). In this study, a quantified nitrogen metabolic network was constructed based on the metagenomics, reaction kinetics and mathematical model to provide a revealing insight into the nitrogen removal mechanism in the IAMR. Metagenomics revealed that a complex nitrogen metabolic network, including aerobic ammonia and nitrite oxidation, anammox, denitrification via nitrate and nitrite, and nitrate respiration, existed in the IAMR. A novel method for solving kinetic parameters with high stability was developed based on a genetic algorithm. Use this method to calculate the kinetics of various reactions involved in nitrogen metabolism. Kinetics revealed that simultaneous partial nitritation-anammox (PN/A) and partial denitrification-anammox (PDN/A) were the dominant approaches to nitrogen removal in the IAMR. Finally, a kinetics-based model was proposed for quantitatively describing the nitrogen metabolic network under the limitation of COD. 58% ∼ 67% of nitrogen was removed via the anammox-based processes (PN/A and PDN/A), but only 7% ∼ 12% and 1% ∼ 2% of nitrogen were removed via heterotrophic denitrification of nitrite and nitrate, respectively. The half-inhibition constant of dissolved oxygen (DO) on anammox was simulated as 0.37 ∼ 0.60 mg L-1, filling the gap in quantifying DO inhibition on anammox. High-frequency intermittent aeration was identified as the crucial measure to suppress nitrite-oxidizing bacteria, although it has a high affinity for DO and NO2--N. In continuous aeration mode, the simulated NO3--N in the IAMR would rise by 39.6%. The research provides a novel insight into the nitrogen removal mechanism in single-stage microaerobic systems and provides a reliable approach to practicing PN/A and PDN/A for cost-effective nitrogen removal.
Collapse
Affiliation(s)
- Zhenju Sun
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Yiyang Fan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China.
| |
Collapse
|
35
|
Lin S, Liu Z, Wang Y, Li J, Wang G, Ye J, Wang H, He H. Soil metagenomic analysis on changes of functional genes and microorganisms involved in nitrogen-cycle processes of acidified tea soils. FRONTIERS IN PLANT SCIENCE 2022; 13:998178. [PMID: 36311106 PMCID: PMC9614370 DOI: 10.3389/fpls.2022.998178] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/26/2022] [Indexed: 06/01/2023]
Abstract
Nitrogen (N) is the first essential nutrient for tea growth. However, the effect of soil acidification on soil N cycle and N forms in tea plantation are unclear. In this study, the nitrogen contents, soil enzyme activity and N mineralization rate in acidified soil of tea plantation were measured. Moreover, the effects of soil acidification on N cycling functional genes and functional microorganisms were explored by soil metagenomics. The results showed that the NH4 +-N, available N and net N mineralization rate in the acidified tea soil decreased significantly, while the NO3 --N content increased significantly. The activities of sucrase, protease, catalase and polyphenol oxidase in the acidified tea soil decreased significantly. The abundance of genes related to ammonification, dissimilatory N reduction, nitrification and denitrification pathway in the acidified tea soil increased significantly, but the abundance of functional genes related to glutamate synthesis and assimilatory N reduction pathway were opposite. In addition, the abundance of Proteobacteria, Actinobacteria, Chloroflexi, Nitrospirae, Actinomadura, Nitrospira etc. microorganisms related to nitrification, denitrification and pathogenic effect increased significantly in the acidified tea soil. The correlation results showed that soil pH and N forms were correlated with soil enzyme activity, N cycling function genes and microbial changes. In conclusion, soil acidification results in significant changes in enzyme activity, gene abundance and microorganism involved in various N cycle processes in acidified tea soil, which leads to imbalance of soil N form ratio and is not conducive to N transformation and absorption of tea trees.
Collapse
Affiliation(s)
- Shunxian Lin
- Key Laboratory of Agroecological Processing and Safety Monitoring of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhijun Liu
- Key Laboratory of Agroecological Processing and Safety Monitoring of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuchao Wang
- Key Laboratory of Agroecological Processing and Safety Monitoring of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiayu Li
- Key Laboratory of Agroecological Processing and Safety Monitoring of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Gege Wang
- Key Laboratory of Agroecological Processing and Safety Monitoring of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jianghua Ye
- Key Laboratory of Agroecological Processing and Safety Monitoring of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Tea and Food Science, Wuyi University, Wuyishan, China
| | - Haibin Wang
- Key Laboratory of Agroecological Processing and Safety Monitoring of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Longyan University, Longyan, China
| | - Haibin He
- Key Laboratory of Agroecological Processing and Safety Monitoring of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
36
|
Wang F, Liang X, Ding F, Ren L, Liang M, An T, Li S, Wang J, Liu L. The active functional microbes contribute differently to soil nitrification and denitrification potential under long-term fertilizer regimes in North-East China. Front Microbiol 2022; 13:1021080. [PMID: 36262325 PMCID: PMC9576102 DOI: 10.3389/fmicb.2022.1021080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Nitrogen (N) cycling microorganisms mediate soil nitrogen transformation processes, thereby affecting agricultural production and environment quality. However, it is not fully understood how active N-cycling microbial community in soil respond to long-term fertilization, as well as which microorganisms regulate soil nitrogen cycling in agricultural ecosystem. Here, we collected the soils from different depths and seasons at a 29-year fertilization experimental field (organic/chemical fertilizer), and investigated the transcriptions of N-cycling functional genes and their contribution to potential nitrification and denitrification. We found that long-term fertilization exerted significant impacts on the transcript abundances of nitrifiers (AOA amoA, AOB amoA and hao) and denitrifiers (narG and nosZ), which was also notably influenced by season variation. The transcriptions of AOA amoA, hao, and narG genes were lowest in autumn, and AOB amoA and nosZ transcript abundances were highest in autumn. Compared to no fertilization, soil potential nitrification rate (PNR) was reduced in fertilization treatments, while soil potential denitrification rate (PDR) was significantly enhanced in organic combined chemical fertilizer treatment. Both PNR and PDR were highest in 0–20 cm among the tested soil depths. Path model indicated active nitrifiers and denitrifiers had significant impact on soil PNR and PDR, respectively. The transcriptions of AOA amoA and nxr genes were significantly correlated with soil PNR (Pearson correlation, r > 0.174, p < 0.05). Significant correlation of napA and nosZ transcriptions with soil PDR (Pearson correlation, r > 0.234, p < 0.05) was also revealed. Random forest analysis showed that SOC content and soil pH were the important factors explaining the total variance of active nitrifers and denitrifiers, respectively. Taken together, long-term fertilization regimes reduced soil PNR and enhanced PDR, which could be attributed to the different responses of active N-cycling microorganisms to soil environment variations. This work provides new insight into the nitrogen cycle, particularly microbial indicators in nitrification and denitrification of long-term fertilized agricultural ecosystems.
Collapse
Affiliation(s)
- Feng Wang
- Key Laboratory of Arable Conservation in Northeast China, Ministry of Agriculture and Rural Affairs, College of Land and Environment, Shenyang Agricultural University, Shenyang, China
| | - Xiaolong Liang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Fan Ding
- Key Laboratory of Arable Conservation in Northeast China, Ministry of Agriculture and Rural Affairs, College of Land and Environment, Shenyang Agricultural University, Shenyang, China
| | - Lingling Ren
- Key Laboratory of Arable Conservation in Northeast China, Ministry of Agriculture and Rural Affairs, College of Land and Environment, Shenyang Agricultural University, Shenyang, China
| | - Minjie Liang
- Key Laboratory of Arable Conservation in Northeast China, Ministry of Agriculture and Rural Affairs, College of Land and Environment, Shenyang Agricultural University, Shenyang, China
| | - Tingting An
- Key Laboratory of Arable Conservation in Northeast China, Ministry of Agriculture and Rural Affairs, College of Land and Environment, Shenyang Agricultural University, Shenyang, China
| | - Shuangyi Li
- Key Laboratory of Arable Conservation in Northeast China, Ministry of Agriculture and Rural Affairs, College of Land and Environment, Shenyang Agricultural University, Shenyang, China
| | - Jingkuan Wang
- Key Laboratory of Arable Conservation in Northeast China, Ministry of Agriculture and Rural Affairs, College of Land and Environment, Shenyang Agricultural University, Shenyang, China
| | - Lingzhi Liu
- Key Laboratory of Arable Conservation in Northeast China, Ministry of Agriculture and Rural Affairs, College of Land and Environment, Shenyang Agricultural University, Shenyang, China
- *Correspondence: Lingzhi Liu,
| |
Collapse
|
37
|
Modelling direct field nitrogen emissions using a semi-mechanistic leaching model newly implemented in Indigo-N v3. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2022.110109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Fan D, Wang X, Song D, Shi Y, Chen Y, Wang J, Cao B, Zou G, He W. Optimizing nitrogen management to mitigate gaseous losses and improve net benefits of an open-field Chinese cabbage system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115583. [PMID: 35753128 DOI: 10.1016/j.jenvman.2022.115583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
The excessive and inappropriate application of nitrogen (N) fertilizer in open vegetable fields is a major anthropogenic source of gaseous N losses including nitrous oxide (N2O) and ammonia (NH3) emissions in China. A 2-yr Chinese cabbage (Brassica pekinensis L.) experiment was carried out to explore the impacts of optimized N management (reduced N application rate, controlled-release urea [CRF] and nitrification inhibitor [NI]) on cabbage yield, soil inorganic N, and N2O and NH3 emissions, and to assess their economic benefits by a cost-benefit analysis. Six treatments including i) no N fertilizer (CK), ii) conventional urea fertilizer at 400 kg N ha-1 based on farmers' practices (CN), iii) conventional urea at 320 kg N ha-1 (RN), iv) conventional urea (320 kg N ha-1) with the addition of NI (RN + NI), v) CRF at 320 kg N ha-1 (CR) and vi) CRF (320 kg N ha-1) with the addition of NI (CR + NI) were implemented in an open Chinese cabbage field. No significant differences were found in the cabbage yields and soil NH4+-N contents under different N fertilization treatments. Only CR + NI treatment had significantly lower soil NO3--N contents than CN by 17.6%-34.6% at the early growing stages of cabbage in both years. Compared with CN, the N2O emissions were significantly decreased by 8.61%, 34.4%, 37.8% and 46.6% under RN, RN + NI, CR and CR + NI, respectively, indicating that CR + NI favors N2O abatement especially when NH3 has been suppressed by other 4 R practices. Meanwhile, the NH3 volatilization was 20.6% higher under RN + NI and 30.8% and 17.3% lower under CR and CR + NI compared to CN, respectively, which implied that CR was the most effective treatment in reducing the NH3 volatilization and total gaseous N loss in high NH3-N loss scenarios. Moreover, the net benefit of RN decreased by $945 USD ha-1 and those of RN + NI, CR and CR + NI treatments increased by $855, $930 and $1004 USD ha-1 compared to CN, respectively. This study recommends CR + NI as the optimal N fertilizer management for the sustainable production of vegetables with the lowest environmental risks and the greatest economic benefits.
Collapse
Affiliation(s)
- Daijia Fan
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xuexia Wang
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Daping Song
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yaoyao Shi
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yanhua Chen
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jiachen Wang
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Bing Cao
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Guoyuan Zou
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Wentian He
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
39
|
Barneze AS, Whitaker J, McNamara NP, Ostle NJ. Interactions between climate warming and land management regulate greenhouse gas fluxes in a temperate grassland ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155212. [PMID: 35421502 DOI: 10.1016/j.scitotenv.2022.155212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 05/29/2023]
Abstract
Greenhouse gas (GHG) fluxes from grasslands are affected by climate warming and agricultural management practices including nitrogen (N) fertiliser application and grazing. However, the interactive effects of these factors are poorly resolved in field studies. We used a factorial in situ experiment - combining warming, N-fertiliser and above-ground cutting treatments - to explore their individual and interactive effects on plant-soil properties and GHG fluxes in a temperate UK grassland over two years. Our results showed no interactive treatment effects on plant productivity despite individual effects of N-fertiliser and warming on above- and below-ground biomass. There were, however, interactive treatment effects on GHG fluxes that varied across the two years. In year 1, warming and N-fertiliser increased CO2 and reduced N2O fluxes. N-fertilised also interacted with above-ground biomass (AGB) removal increasing N2O fluxes in year one and reducing CO2 fluxes in year two. The grassland was consistently a sink of CH4; N-fertilised increased the sink by 45% (year 1), AGB removal and warming reduced CH4 consumption by 44% and 43%, respectively (year 2). The majority of the variance in CO2 fluxes was explained by above-ground metrics (grassland productivity and leaf dry matter content), with microclimate (air and soil temperature and soil moisture) and below-ground (root N content) metrics also significant. Soil chemistry (soil mineral N and net mineralisation rate), below-ground (specific root length) and microclimate (soil moisture) metrics explained 49% and 24% of the variance in N2O and CH4 fluxes, respectively. Overall, our work demonstrates the importance of interactions between climate and management as determinants of short-term grassland GHG fluxes. These results show that reduced cutting combined with lower inorganic N-fertilisers would constrain grassland C and N cycling and GHG fluxes in warmer climatic conditions. This has implications for strategic grassland management decisions to mitigate GHG fluxes in a warming world.
Collapse
Affiliation(s)
- Arlete S Barneze
- Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Lancaster LA1 4AP, UK; Lancaster University, Lancaster Environment Centre, Library Avenue, Lancaster LA1 4YQ, UK; Wageningen University & Research, Soil Biology Group, PO Box 47, 6700 AA Wageningen, The Netherlands.
| | - Jeanette Whitaker
- Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Lancaster LA1 4AP, UK
| | - Niall P McNamara
- Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Lancaster LA1 4AP, UK
| | - Nicholas J Ostle
- Lancaster University, Lancaster Environment Centre, Library Avenue, Lancaster LA1 4YQ, UK
| |
Collapse
|
40
|
Wang S, Xia G, Zheng J, Wang Y, Chen T, Chi D, Bolan NS, Chang SX, Wang T, Ok YS. Mulched drip irrigation and biochar application reduce gaseous nitrogen emissions, but increase nitrogen uptake and peanut yield. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154753. [PMID: 35339555 DOI: 10.1016/j.scitotenv.2022.154753] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/08/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Nitrous oxide and ammonia emissions from farmland need to be abated as they directly or indirectly affect climate warming and crop yield. We conducted a two-year field experiment to investigate the effect of biochar applied at two rates (no biochar application vs. biochar applied at 10 t ha-1) on gaseous nitrogen (N) losses (N2O emissions and NH3 volatilization), plant N uptake, residual soil mineral N, and peanut (Arachis hypogaea L.) yield under three irrigation regimes: furrow irrigation (FI), drip irrigation (DI), and mulched drip irrigation (MDI). We found that MDI reduced residual (post-harvest) soil mineral N, cumulative N2O emissions, and yield-scaled N2O emissions as compared to FI. Biochar application increased residual soil NO3--N and decreased yield-scaled N2O emissions as compared with the control without biochar application. Under the three irrigation regimes, biochar application decreased cumulative NH3 volatilization and increased plant N uptake and yield compared with the control. Biochar application improved the sustainability of peanut production and could be used to alleviate the environmental damage associated with gaseous N emissions. Where possible, biochar application under MDI in peanut fields is recommended as a management strategy to minimize gaseous N losses.
Collapse
Affiliation(s)
- Shujun Wang
- College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, China; Korea Biochar Research Centre, APRU Sustainable Waste Management Program,Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Guimin Xia
- College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, China
| | - Junlin Zheng
- College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, China
| | - Yujia Wang
- College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, China
| | - Taotao Chen
- College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, China
| | - Daocai Chi
- College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, China
| | - Nanthi S Bolan
- School of Agriculture and Environment, The UWA Institute of Agriculture, The University of Western Australia, Perth 6009, Australia
| | - Scott X Chang
- Department of Renewable Resources, University of Alberta, Edmonton T6G 2E3, Canada
| | - Tieliang Wang
- College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, China.
| | - Yong Sik Ok
- Korea Biochar Research Centre, APRU Sustainable Waste Management Program,Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
41
|
Yang J, Jia X, Ma H, Chen X, Liu J, Shangguan Z, Yan W. Effects of warming and precipitation changes on soil GHG fluxes: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154351. [PMID: 35259374 DOI: 10.1016/j.scitotenv.2022.154351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/10/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Increased atmospheric greenhouse gas (GHG) concentrations resulting from human activities lead to climate change, including global warming and changes of precipitation patterns worldwide, which in turn would have profound effects on soil GHG emissions. Nonetheless, the impact of the combination of warming and precipitation changes on all three major biogenic GHGs (CO2, CH4 and N2O) has not been synthesized, to build a global synthesis. In this study, we conducted a global meta-analysis concerning the effects of warming and precipitation changes and their interactions on soil GHG fluxes and explored the potential factors by synthesizing 39 published studies worldwide. Across all studies, combination of warming and increased precipitation showed more significant effect on CO2 emissions (24.0%) than the individual effect of warming (8.6%) and increased precipitation (20.8%). Additionally, warming increased N2O emissions (28.3%), and decreased precipitation reduced CO2 (-8.5%) and N2O (-7.1%) emissions, while the combination of warming and decreased precipitation also showed negative effects on CO2 (-7.6%) and N2O (-14.6%) emissions. The interactive effects of warming and precipitation changes on CO2 emissions were usually additive, whereas CO2 and N2O emissions were dominated by synergistic effects under warming and decreased precipitation. Moreover, climate, biome, duration, and season of manipulations also affected soil GHG fluxes as well. Furthermore, we also found the threshold effects of changes in soil temperature and moisture on CO2 and N2O emissions under warming and precipitation changes. The findings indicate that both warming and precipitation changes substantially affect GHG emissions and highlight the urgent need to study the effect of the combination of warming and precipitation changes on C and N cycling under ongoing climate change.
Collapse
Affiliation(s)
- Jingyi Yang
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xiaoyu Jia
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Hongze Ma
- Institute of Soil and Water Conservation, Chinese Academy of Sciences, Yangling, Shaanxi 712100, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xi Chen
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jin Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zhouping Shangguan
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, PR China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Institute of Soil and Water Conservation, Chinese Academy of Sciences, Yangling, Shaanxi 712100, PR China
| | - Weiming Yan
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, PR China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Institute of Soil and Water Conservation, Chinese Academy of Sciences, Yangling, Shaanxi 712100, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
42
|
Hyperspectral UAV Images at Different Altitudes for Monitoring the Leaf Nitrogen Content in Cotton Crops. REMOTE SENSING 2022. [DOI: 10.3390/rs14112576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The accurate assessment of cotton nitrogen (N) content over a large area using an unmanned aerial vehicle (UAV) and a hyperspectral meter has practical significance for the precise management of cotton N fertilizer. In this study, we tested the feasibility of the use of a UAV equipped with a hyperspectral spectrometer for monitoring cotton leaf nitrogen content (LNC) by analyzing spectral reflectance (SR) data collected by the UAV flying at altitudes of 60, 80, and 100 m. The experiments performed included two cotton varieties and six N treatments, with applications ranging from 0 to 480 kg ha−1. The results showed the following: (i) With the increase in UAV flight altitude, SR at 500–550 nm increases. In the near-infrared range, SR decreases with the increase in UAV flight altitude. The unique characteristics of vegetation comprise a decrease in the “green peak”, a “red valley” increase, and a redshift appearing in the “red edge” position. (ii) We completed the unsupervised classification of images and found that after classification, the SR was significantly correlated to the cotton LNC in both the visible and near-infrared regions. Before classification, the relationship between spectral data and LNC was not significant. (iii) Fusion modeling showed improved performance when UAV data were collected at three different heights. The model established by multiple linear regression (MLR) had the best performance of those tested in this study, where the model-adjusted the coefficient of determination (R2), root-mean-square error (RMSE), and mean absolute error (MAE) reached 0.96, 1.12, and 1.57, respectively. This was followed by support vector regression (SVR), for which the adjusted_R2, RMSE, and MAE reached 0.71, 1.48, and 1.08, respectively. The worst performance was found for principal component regression (PCR), for which the adjusted_R2, RMSE, and MAE reached 0.59, 1.74, and 1.36, respectively. Therefore, we can conclude that taking UAV hyperspectral images at multiple heights results in a more comprehensive reflection of canopy information and, thus, has greater potential for monitoring cotton LNC.
Collapse
|
43
|
Liu H, Zheng X, Li Y, Yu J, Ding H, Sveen TR, Zhang Y. Soil moisture determines nitrous oxide emission and uptake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153566. [PMID: 35104523 DOI: 10.1016/j.scitotenv.2022.153566] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Soils are major sources and sinks of nitrous oxide (N2O). The main pathway of N2O emission is performed through soil denitrification; however, the uptake phenomenon in denitrification is overlooked, leading to an underestimation of N2O production. Soil moisture strongly influences denitrification rates, but exact quantifications coupled with nosZ, nirK, and nirS gene analysis remain inadequately unaccounted for. In this study, a 15N-N2O pool dilution (15N2OPD) method was used to measure N2O production rates under different soil moisture levels. Therefore, 20%, 40%, 60%, 80% and 100% soil water holding capacity (WHC) were used. The results revealed that N2O uptake rates increased proportionally with soil moisture content and peaked at 80% WHC with 4.17 ± 2.74 μg N kg-1 soil h-1. The N2O production and net emission rates similarly peaked at 80% WHC, reading at 32.50 ± 4.86 and 27.63 ± 3.09 μg N kg-1 soil h-1 during the incubation period (18 days). Soil moisture content increased the gene copy number of the nosZ, NH4+ content, and denitrification potential in soil. N2O uptake at WHC 80-100% was significantly greater than that at WHC 20-60%. It was attributed to a decrease in O2 and the high NO3- concentration inhibition (> 50 mg N kg-1 of soil NO3--N content). Principal components analysis (PCA) indicated that the number of nosZ genes was the major driver of N2O uptake, especially nosZ clade II. Thus, the results of this study deepen our understanding of the mechanisms underpinning N2O sources and sinks in soils and provide a useful gene-based indicator to estimate N2O uptake.
Collapse
Affiliation(s)
- Hongshan Liu
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Plant Nutrition and Fertilizer, Fuzhou 350013, PR China; College of Earth Sciences, Jilin University, Changchun 130061, PR China
| | - Xiangzhou Zheng
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Plant Nutrition and Fertilizer, Fuzhou 350013, PR China
| | - Yuefen Li
- College of Earth Sciences, Jilin University, Changchun 130061, PR China
| | - Juhua Yu
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Plant Nutrition and Fertilizer, Fuzhou 350013, PR China
| | - Hong Ding
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Plant Nutrition and Fertilizer, Fuzhou 350013, PR China
| | - Tord Ranheim Sveen
- Swedish University of Agricultural Sciences (SLU), Uppsala SE-756 51, Sweden
| | - Yushu Zhang
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Plant Nutrition and Fertilizer, Fuzhou 350013, PR China.
| |
Collapse
|
44
|
Liu H, Li Y, Pan B, Zheng X, Yu J, Ding H, Zhang Y. Pathways of soil N 2O uptake, consumption, and its driving factors: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:30850-30864. [PMID: 35092587 DOI: 10.1007/s11356-022-18619-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Nitrous oxide (N2O) is an important greenhouse gas that plays a significant role in atmospheric photochemical reactions and contributes to stratospheric ozone depletion. Soils are the main sources of N2O emissions. In recent years, it has been demonstrated that soil is not only a source but also a sink of N2O uptake and consumption. N2O emissions at the soil surface are the result of gross N2O production, uptake, and consumption, which are co-occurring processes. Soil N2O uptake and consumption are complex biological processes, and their mechanisms are still worth an in-depth systematic study. This paper aimed to systematically address the current research progress on soil N2O uptake and consumption. Based on a bibliometric perspective, this study has highlighted the pathways of soil N2O uptake and consumption and their driving factors and measurement techniques. This systematic review of N2O uptake and consumption will help to further understand N transformations and soil N2O emissions.
Collapse
Affiliation(s)
- Hongshan Liu
- College of Earth Sciences, Jilin University, Chao'yang, Changchun, 130061, Jilin, People's Republic of China
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Plant Nutrition and Fertilizer, Jin'an, Fuzhou, 350013, Fujian, People's Republic of China
| | - Yuefen Li
- College of Earth Sciences, Jilin University, Chao'yang, Changchun, 130061, Jilin, People's Republic of China.
| | - Baobao Pan
- School of Agriculture and Food, The University of Melbourne, Parkville, 3010, VIC, Australia
| | - Xiangzhou Zheng
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Plant Nutrition and Fertilizer, Jin'an, Fuzhou, 350013, Fujian, People's Republic of China
| | - Juhua Yu
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Plant Nutrition and Fertilizer, Jin'an, Fuzhou, 350013, Fujian, People's Republic of China
| | - Hong Ding
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Plant Nutrition and Fertilizer, Jin'an, Fuzhou, 350013, Fujian, People's Republic of China
| | - Yushu Zhang
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Plant Nutrition and Fertilizer, Jin'an, Fuzhou, 350013, Fujian, People's Republic of China.
| |
Collapse
|
45
|
Zhang Y, Zhang F, Abalos D, Luo Y, Hui D, Hungate BA, García-Palacios P, Kuzyakov Y, Olesen JE, Jørgensen U, Chen J. Stimulation of ammonia oxidizer and denitrifier abundances by nitrogen loading: Poor predictability for increased soil N 2 O emission. GLOBAL CHANGE BIOLOGY 2022. [PMID: 34923712 DOI: 10.6084/m9.figshare.14370896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Unprecedented nitrogen (N) inputs into terrestrial ecosystems have profoundly altered soil N cycling. Ammonia oxidizers and denitrifiers are the main producers of nitrous oxide (N2 O), but it remains unclear how ammonia oxidizer and denitrifier abundances will respond to N loading and whether their responses can predict N-induced changes in soil N2 O emission. By synthesizing 101 field studies worldwide, we showed that N loading significantly increased ammonia oxidizer abundance by 107% and denitrifier abundance by 45%. The increases in both ammonia oxidizer and denitrifier abundances were primarily explained by N loading form, and more specifically, organic N loading had stronger effects on their abundances than mineral N loading. Nitrogen loading increased soil N2 O emission by 261%, whereas there was no clear relationship between changes in soil N2 O emission and shifts in ammonia oxidizer and denitrifier abundances. Our field-based results challenge the laboratory-based hypothesis that increased ammonia oxidizer and denitrifier abundances by N loading would directly cause higher soil N2 O emission. Instead, key abiotic factors (mean annual precipitation, soil pH, soil C:N ratio, and ecosystem type) explained N-induced changes in soil N2 O emission. Altogether, these findings highlight the need for considering the roles of key abiotic factors in regulating soil N transformations under N loading to better understand the microbially mediated soil N2 O emission.
Collapse
Affiliation(s)
- Yong Zhang
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
| | - Feng Zhang
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
| | - Diego Abalos
- Department of Agroecology, Aarhus University, Tjele, Denmark
| | - Yiqi Luo
- Center for Ecosystem Science and Society and Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Dafeng Hui
- Department of Biological Sciences, Tennessee State University, Nashville, Tennessee, USA
| | - Bruce A Hungate
- Center for Ecosystem Science and Society and Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Pablo García-Palacios
- Departamento de Biología y Geología, Física y Química Inorgánica y Analítica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Móstoles, Spain
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, University of Göttingen, Göttingen, Germany
- Agro-Technological Institute, RUDN University, Moscow, Russia
- Institute of Environmental Sciences, Kazan Federal University, Kazan, Russia
| | - Jørgen Eivind Olesen
- Department of Agroecology, Aarhus University, Tjele, Denmark
- iCLIMATE Interdisciplinary Centre for Climate Change, Aarhus University, Roskilde, Denmark
- Aarhus University Centre for Circular Bioeconomy, Aarhus University, Tjele, Denmark
| | - Uffe Jørgensen
- Department of Agroecology, Aarhus University, Tjele, Denmark
- Aarhus University Centre for Circular Bioeconomy, Aarhus University, Tjele, Denmark
| | - Ji Chen
- Department of Agroecology, Aarhus University, Tjele, Denmark
- iCLIMATE Interdisciplinary Centre for Climate Change, Aarhus University, Roskilde, Denmark
- Aarhus University Centre for Circular Bioeconomy, Aarhus University, Tjele, Denmark
| |
Collapse
|
46
|
Li Z, Tang Z, Song Z, Chen W, Tian D, Tang S, Wang X, Wang J, Liu W, Wang Y, Li J, Jiang L, Luo Y, Niu S. Variations and controlling factors of soil denitrification rate. GLOBAL CHANGE BIOLOGY 2022; 28:2133-2145. [PMID: 34964218 DOI: 10.1111/gcb.16066] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/28/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
The denitrification process profoundly affects soil nitrogen (N) availability and generates its byproduct, nitrous oxide, as a potent greenhouse gas. There are large uncertainties in predicting global denitrification because its controlling factors remain elusive. In this study, we compiled 4301 observations of denitrification rates across a variety of terrestrial ecosystems from 214 papers published in the literature. The averaged denitrification rate was 3516.3 ± 91.1 µg N kg-1 soil day-1 . The highest denitrification rate was 4242.3 ± 152.3 µg N kg-1 soil day-1 under humid subtropical climates, and the lowest was 965.8 ± 150.4 µg N kg-1 under dry climates. The denitrification rate increased with temperature, precipitation, soil carbon and N contents, as well as microbial biomass carbon and N, but decreased with soil clay contents. The variables related to soil N contents (e.g., nitrate, ammonium, and total N) explained the variation of denitrification more than climatic and edaphic variables (e.g., mean annual temperature (MAT), soil moisture, soil pH, and clay content) according to structural equation models. Soil microbial biomass carbon, which was influenced by soil nitrate, ammonium, and total N, also strongly influenced denitrification at a global scale. Collectively, soil N contents, microbial biomass, pH, texture, moisture, and MAT accounted for 60% of the variation in global denitrification rates. The findings suggest that soil N contents and microbial biomass are strong predictors of denitrification at the global scale.
Collapse
Affiliation(s)
- Zhaolei Li
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- College of Resources and Environment, Shandong Agricultural University, Taian, China
| | - Ze Tang
- Chinese Academy for Environmental Planning, Beijing, China
| | - Zhaopeng Song
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Processes, and Sino-French Institute for Earth System Science, Peking University, Beijing, China
| | - Weinan Chen
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Dashuan Tian
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Shiming Tang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Xiaoyue Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Jinsong Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Wenjie Liu
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- College of Ecology and Environment, Hainan University, Haikou, China
| | - Yi Wang
- School of Life Sciences and School of Ecology, State Key Lab of Biological Control, Sun Yat-sen University, Guangzhou, China
| | - Jie Li
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
| | - Lifen Jiang
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
| | - Yiqi Luo
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
| | - Shuli Niu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
47
|
Zhang Y, Zhang F, Abalos D, Luo Y, Hui D, Hungate BA, García‐Palacios P, Kuzyakov Y, Olesen JE, Jørgensen U, Chen J. Stimulation of ammonia oxidizer and denitrifier abundances by nitrogen loading: Poor predictability for increased soil N 2 O emission. GLOBAL CHANGE BIOLOGY 2022; 28:2158-2168. [PMID: 34923712 PMCID: PMC9303726 DOI: 10.1111/gcb.16042] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/10/2021] [Indexed: 05/15/2023]
Abstract
Unprecedented nitrogen (N) inputs into terrestrial ecosystems have profoundly altered soil N cycling. Ammonia oxidizers and denitrifiers are the main producers of nitrous oxide (N2 O), but it remains unclear how ammonia oxidizer and denitrifier abundances will respond to N loading and whether their responses can predict N-induced changes in soil N2 O emission. By synthesizing 101 field studies worldwide, we showed that N loading significantly increased ammonia oxidizer abundance by 107% and denitrifier abundance by 45%. The increases in both ammonia oxidizer and denitrifier abundances were primarily explained by N loading form, and more specifically, organic N loading had stronger effects on their abundances than mineral N loading. Nitrogen loading increased soil N2 O emission by 261%, whereas there was no clear relationship between changes in soil N2 O emission and shifts in ammonia oxidizer and denitrifier abundances. Our field-based results challenge the laboratory-based hypothesis that increased ammonia oxidizer and denitrifier abundances by N loading would directly cause higher soil N2 O emission. Instead, key abiotic factors (mean annual precipitation, soil pH, soil C:N ratio, and ecosystem type) explained N-induced changes in soil N2 O emission. Altogether, these findings highlight the need for considering the roles of key abiotic factors in regulating soil N transformations under N loading to better understand the microbially mediated soil N2 O emission.
Collapse
Affiliation(s)
- Yong Zhang
- School of Resources and Environmental EngineeringAnhui UniversityHefeiChina
| | - Feng Zhang
- School of Resources and Environmental EngineeringAnhui UniversityHefeiChina
| | - Diego Abalos
- Department of AgroecologyAarhus UniversityTjeleDenmark
| | - Yiqi Luo
- Center for Ecosystem Science and Society and Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Dafeng Hui
- Department of Biological SciencesTennessee State UniversityNashvilleTennesseeUSA
| | - Bruce A. Hungate
- Center for Ecosystem Science and Society and Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Pablo García‐Palacios
- Departamento de Biología y GeologíaFísica y Química Inorgánica y AnalíticaEscuela Superior de Ciencias Experimentales y TecnologíaUniversidad Rey Juan CarlosMóstolesSpain
- Instituto de Ciencias AgrariasConsejo Superior de Investigaciones CientíficasMadridSpain
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate EcosystemsUniversity of GöttingenGöttingenGermany
- Agro‐Technological InstituteRUDN UniversityMoscowRussia
- Institute of Environmental SciencesKazan Federal UniversityKazanRussia
| | - Jørgen Eivind Olesen
- Department of AgroecologyAarhus UniversityTjeleDenmark
- iCLIMATE Interdisciplinary Centre for Climate ChangeAarhus UniversityRoskildeDenmark
- Aarhus University Centre for Circular BioeconomyAarhus UniversityTjeleDenmark
| | - Uffe Jørgensen
- Department of AgroecologyAarhus UniversityTjeleDenmark
- Aarhus University Centre for Circular BioeconomyAarhus UniversityTjeleDenmark
| | - Ji Chen
- Department of AgroecologyAarhus UniversityTjeleDenmark
- iCLIMATE Interdisciplinary Centre for Climate ChangeAarhus UniversityRoskildeDenmark
- Aarhus University Centre for Circular BioeconomyAarhus UniversityTjeleDenmark
| |
Collapse
|
48
|
Huérfano X, Estavillo JM, Torralbo F, Vega-Mas I, González-Murua C, Fuertes-Mendizábal T. Dimethylpyrazole-based nitrification inhibitors have a dual role in N 2O emissions mitigation in forage systems under Atlantic climate conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150670. [PMID: 34610408 DOI: 10.1016/j.scitotenv.2021.150670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/13/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Nitrogen fertilization is the most important factor increasing nitrous oxide (N2O) emissions from agriculture, which is a powerful greenhouse gas. These emissions are mainly produced by the soil microbial processes of nitrification and denitrification, and the application of nitrification inhibitors (NIs) together with an ammonium-based fertilizer has been proved as an efficient way to decrease them. In this work the NIs dimethylpyrazole phosphate (DMPP) and dimethylpyrazole succinic acid (DMPSA) were evaluated in a temperate grassland under environmental changing field conditions in terms of their efficiency reducing N2O emissions and their effect on the amount of nitrifying and denitrifying bacterial populations responsible of these emissions. The stimulation of nitrifying bacteria induced by the application of ammonium sulphate as fertilizer was efficiently avoided by the application of both DMPP and DMPSA whatever the soil water content. The denitrifying bacteria population capable of reducing N2O up to N2 was also enhanced by both NIs provided that sufficiently high soil water conditions and low nitrate content were occurring. Therefore, both NIs showed the capacity to promote the denitrification process up to N2 as a mechanism to mitigate N2O emissions. DMPSA proved to be a promising NI, since it showed a more significant effect than DMPP in decreasing N2O emissions and increasing ryegrass yield.
Collapse
Affiliation(s)
- Ximena Huérfano
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080 Bilbao, Spain
| | - José M Estavillo
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080 Bilbao, Spain
| | - Fernando Torralbo
- Division of Plant Science, University of Missouri, Columbia, MO 65201, USA
| | - Izargi Vega-Mas
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080 Bilbao, Spain
| | - Carmen González-Murua
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080 Bilbao, Spain
| | - Teresa Fuertes-Mendizábal
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080 Bilbao, Spain.
| |
Collapse
|
49
|
Zhang M, Li D, Wang X, Abulaiz M, Yu P, Li J, Zhu X, Jia H. Conversion of alpine pastureland to artificial grassland altered CO 2 and N 2O emissions by decreasing C and N in different soil aggregates. PeerJ 2022; 9:e11807. [PMID: 35070515 PMCID: PMC8759380 DOI: 10.7717/peerj.11807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/27/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The impacts of land use on greenhouse gases (GHGs) emissions have been extensively studied. However, the underlying mechanisms on how soil aggregate structure, soil organic carbon (SOC) and total N (TN) distributions in different soil aggregate sizes influencing carbon dioxide (CO2), and nitrous oxide (N2O) emissions from alpine grassland ecosystems remain largely unexplored. METHODS A microcosm experiment was conducted to investigate the effect of land use change on CO2and N2O emissions from different soil aggregate fractions. Soil samples were collected from three land use types, i.e., non-grazing natural grassland (CK), grazing grassland (GG), and artificial grassland (GC) in the Bayinbuluk alpine pastureland. Soil aggregate fractionation was performed using a wet-sieving method. The variations of soil aggregate structure, SOC, and TN in different soil aggregates were measured. The fluxes of CO2 and N2O were measured by a gas chromatograph. RESULTS Compared to CK and GG, GC treatment significantly decreased SOC (by 24.9-45.2%) and TN (by 20.6-41.6%) across all soil aggregate sizes, and altered their distributions among soil aggregate fractions. The cumulative emissions of CO2 and N2O in soil aggregate fractions in the treatments of CK and GG were 39.5-76.1% and 92.7-96.7% higher than in the GC treatment, respectively. Moreover, cumulative CO2emissions from different soil aggregate sizes in the treatments of CK and GG followed the order of small macroaggregates (2-0.25 mm) > large macroaggregates (> 2 mm) > micro aggregates (0.25-0.053 mm) > clay +silt (< 0.053 mm), whereas it decreased with aggregate sizes decreasing in the GC treatment. Additionally, soil CO2 emissions were positively correlated with SOC and TN contents. The highest cumulative N2O emission occurred in micro aggregates under the treatments of CK and GG, and N2O emissions among different aggregate sizes almost no significant difference under the GC treatment. CONCLUSIONS Conversion of natural grassland to artificial grassland changed the pattern of CO2 emissions from different soil aggregate fractions by deteriorating soil aggregate structure and altering soil SOC and TN distributions. Our findings will be helpful to develop a pragmatic management strategy for mitigating GHGs emissions from alpine grassland.
Collapse
Affiliation(s)
- Mei Zhang
- College of Grassland and Environment Sciences, Xinjiang Agricultural University, Urumqi, China
| | - Dianpeng Li
- College of Grassland and Environment Sciences, Xinjiang Agricultural University, Urumqi, China
| | - Xuyang Wang
- College of Grassland and Environment Sciences, Xinjiang Agricultural University, Urumqi, China
| | - Maidinuer Abulaiz
- College of Grassland and Environment Sciences, Xinjiang Agricultural University, Urumqi, China
| | - Pujia Yu
- School of Geographical Sciences, Southwest University, Chongqing, China
| | - Jun Li
- Akesu National Station of Observation and Research for Oasis Agro-ecosystem, Akesu, China
| | - Xinping Zhu
- College of Grassland and Environment Sciences, Xinjiang Agricultural University, Urumqi, China.,Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Urumqi, China
| | - Hongtao Jia
- College of Grassland and Environment Sciences, Xinjiang Agricultural University, Urumqi, China.,Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Urumqi, China
| |
Collapse
|
50
|
Mancia A, Chadwick DR, Waters SM, Krol DJ. Uncertainties in direct N 2O emissions from grazing ruminant excreta (EF 3PRP) in national greenhouse gas inventories. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149935. [PMID: 34487900 DOI: 10.1016/j.scitotenv.2021.149935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
Excreta deposition onto pasture, range and paddocks (PRP) by grazing ruminant constitute a source of nitrous oxide (N2O), a potent greenhouse gas (GHG). These emissions must be reported in national GHG inventories, and their estimation is based on the application of an emission factor, EF3PRP (proportion of nitrogen (N) deposited to the soil through ruminant excreta, which is emitted as N2O). Depending on local data available, countries use various EF3PRPs and approaches to estimate N2O emissions from grazing ruminant excreta. Based on ten case study countries, this review aims to highlight the uncertainties around the methods used to account for these emissions in their national GHG inventories, and to discuss the efforts undertaken for considering factors of variation in the calculation of emissions. Without any local experimental data, 2006 the IPCC default (Tier 1) EF3PRPs are still widely applied although the default values were revised in 2019. Some countries have developed country-specific (Tier 2) EF3PRP based on local field studies. The accuracy of estimation can be improved through the disaggregation of EF3PRP or the application of models; two approaches including factors of variation. While a disaggregation of EF3PRP by excreta type is already well adopted, a disaggregation by other factors such as season of excreta deposition is more difficult to implement. Empirical models are a potential method of considering factors of variation in the establishment of EF3PRP. Disaggregation and modelling requires availability of sufficient experimental and activity data, hence why only few countries have currently adopted such approaches. Replication of field studies under various conditions, combined with meta-analysis of experimental data, can help in the exploration of influencing factors, as long as appropriate metadata is recorded. Overall, despite standard IPCC methodologies for calculating GHG emissions, large uncertainties and differences between individual countries' accounting remain to be addressed.
Collapse
Affiliation(s)
- Aude Mancia
- Teagasc, Environment, Soils and Land Use Department, Johnstown Castle, Co. Wexford, Ireland; School of Natural Sciences, Bangor University, Bangor, Wales, UK; Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Athenry, Co. Galway, Ireland
| | - David R Chadwick
- School of Natural Sciences, Bangor University, Bangor, Wales, UK
| | - Sinéad M Waters
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Athenry, Co. Galway, Ireland
| | - Dominika J Krol
- Teagasc, Environment, Soils and Land Use Department, Johnstown Castle, Co. Wexford, Ireland.
| |
Collapse
|