1
|
Zhang L, Graham N, Li G, Zhu Y, Yu W. Excessive Ozonation Stress Triggers Severe Membrane Biofilm Accumulation and Fouling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5899-5910. [PMID: 38502922 DOI: 10.1021/acs.est.3c10429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The established benefits of ozone on microbial pathogen inactivation, natural organic matter degradation, and inorganic/organic contaminant oxidation have favored its application in drinking water treatment. However, viable bacteria are still present after the ozonation of raw water, bringing a potential risk to membrane filtration systems in terms of biofilm accumulation and fouling. In this study, we shed light on the role of the specific ozone dose (0.5 mg-O3/mg-C) in biofilm accumulation during long-term membrane ultrafiltration. Results demonstrated that ozonation transformed the molecular structure of influent dissolved organic matter (DOM), producing fractions that were highly bioavailable at a specific ozone dose of 0.5, which was inferred to be a turning point. With the increase of the specific ozone dose, the biofilm microbial consortium was substantially shifted, demonstrating a decrease in richness and diversity. Unexpectedly, the opportunistic pathogen Legionella was stimulated and occurred in approximately 40% relative abundance at the higher specific ozone dose of 1. Accordingly, the membrane filtration system with a specific ozone dose of 0.5 presented a lower biofilm thickness, a weaker fluorescence intensity, smaller concentrations of polysaccharides and proteins, and a lower Raman activity, leading to a lower hydraulic resistance, compared to that with a specific ozone dose of 1. Our findings highlight the interaction mechanism between molecular-level DOM composition, biofilm microbial consortium, and membrane filtration performance, which provides an in-depth understanding of the impact of ozonation on biofilm accumulation.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Nigel Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yongguan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wenzheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
2
|
Yang Y, Wang R, Zhou J, Qiao S. Removal of ofloxacin using a porous carbon microfiltration membrane based on in-situ generated •OH. ENVIRONMENTAL RESEARCH 2024; 244:117837. [PMID: 38065381 DOI: 10.1016/j.envres.2023.117837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023]
Abstract
This study investigated the removal performance of ofloxacin (OFL) by a novel electro-Fenton enhanced microfiltration membrane. The membranes used in this study consisted of metal-organic framework derived porous carbon, carbon nanotubes and Fe2+, which were able to produce hydroxyl radicals (•OH) in-situ via reducing O2 to hydrogen peroxide. Herein, membrane filtration with bias not only concentrated the pollutants to the level that could be efficiently treated by electro-Fenton but also confined/retained the toxic intermediates within the membrane to ensure a prolonged contact time with the oxidants. After validated by experiments, the applied bias of -1.0 V, pH of 3 and electrolyte concentration of 0.1 M were the relatively optimum conditions for OFL degradation. Under these conditions, the average OFL removal rate could be reach 75% with merely 5% membrane flux loss after 4 cycles operation by filtrating 1 mg/L OFL. Via decarboxylation reaction, piperazinyl ring opening, dealkylation and ipso substitution reaction, etc., OFL could be gradually and efficiently degraded to intermediate products and even to CO2 by •OH. Moreover, the oxidation reaction was preferred to following first-order reaction kinetics. This research verified a possibility for antibiotic removal by electro-enhanced microfiltration membrane.
Collapse
Affiliation(s)
- Yue Yang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China; Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Ruiyu Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Sen Qiao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
3
|
Chirico N, McLachlan MS, Li Z, Papa E. In silico approaches for the prediction of the breakthrough of organic contaminants in wastewater treatment plants. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:400-410. [PMID: 38205846 DOI: 10.1039/d3em00267e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
The removal efficiency (RE) of organic contaminants in wastewater treatment plants (WWTPs) is a major determinant of the environmental impact of chemicals which are discharged to wastewater. In a recent study, non-target screening analysis was applied to quantify the percentage removal efficiency (RE%) of more than 300 polar contaminants, by analyzing influent and effluent samples from a Swedish WWTP with direct injection UHPLC-Orbitrap-MS/MS. Based on subsets extracted from these data, we developed quantitative structure-property relationships (QSPRs) for the prediction of WWTP breakthrough (BT) to the effluent water. QSPRs were developed by means of multiple linear regression (MLR) and were selected after checking for overfitting and chance relationships by means of bootstrap and randomization procedures. A first model provided good fitting performance, showing that the proposed approach for the development of QSPRs for the prediction of BT is reasonable. By further populating the dataset with similar chemicals using a Tanimoto index approach based on substructure count fingerprints, a second QSPR indicated that the prediction of BT is also applicable to new chemicals sufficiently similar to the training set. Finally, a class-specific QSPR for PEGs and PPGs showed BT prediction trends consistent with known degradation pathways.
Collapse
Affiliation(s)
- Nicola Chirico
- QSAR Research Unit in Environmental Chemistry and Ecotoxicology, Department of Theoretical and Applied Sciences, University of Insubria, via J. H. Dunant 3, 21100, Varese, Italy.
| | - Michael S McLachlan
- Department of Environmental Science (ACES), Stockholm University, 106 91 Stockholm, Sweden
| | - Zhe Li
- Department of Environmental Science (ACES), Stockholm University, 106 91 Stockholm, Sweden
| | - Ester Papa
- QSAR Research Unit in Environmental Chemistry and Ecotoxicology, Department of Theoretical and Applied Sciences, University of Insubria, via J. H. Dunant 3, 21100, Varese, Italy.
| |
Collapse
|
4
|
Rocha MF, Vieira Magalhães-Ghiotto GA, Bergamasco R, Gomes RG. Cyanobacteria and cyanotoxins in the environment and water intakes: Reports, diversity of congeners, detection by mass spectrometry and their impact on health. Toxicon 2024; 238:107589. [PMID: 38160739 DOI: 10.1016/j.toxicon.2023.107589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/13/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Cyanobacteria are aquatic microorganisms of high interest for research due to the production of secondary metabolites, among which the most popular are cyanotoxins, responsible for causing severe poisoning in humans and animals through ingestion or contact with contaminated water bodies. Monitoring the number of cyanobacteria in water and concentrations of secreted cyanotoxins with the aid of sensitive and reliable methods is considered the primary action for evaluating potentially toxic blooms. There is a great diversity of methods to detect and identify these types of micro contaminants in water, differing by the degree of sophistication and information provided. Mass Spectrometry stands out for its accuracy and sensitivity in identifying toxins, making it possible to identify and characterize toxins produced by individual species of cyanobacteria, in low quantities. In this review, we seek to update some information about cyanobacterial peptides, their effects on biological systems, and the importance of the main Mass Spectrometry methods used for detection, extraction, identification and monitoring of cyanotoxins.
Collapse
Affiliation(s)
- Mariana Fernandes Rocha
- Department of Biotechnology, Genetics and Cell Biology, Biological Sciences Center, State University of Maringá, Maringá, Paraná, 87020-900, Brazil.
| | - Grace Anne Vieira Magalhães-Ghiotto
- Department of Biotechnology, Genetics and Cell Biology, Biological Sciences Center, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Rosângela Bergamasco
- Department of Chemical Engineering, Technology Center, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Raquel Guttierres Gomes
- Department of Food Engineering, Technology Center, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| |
Collapse
|
5
|
Zhao D, Lu H, Cheng Q, Huang Q, Ai J, Zhang Z, Liu H, He Z, Li Q. Research Progress on Inactivation of Bacteriophages by Visible-Light Photocatalytic Composite Materials: A Mini Review. MATERIALS (BASEL, SWITZERLAND) 2023; 17:44. [PMID: 38203898 PMCID: PMC10779577 DOI: 10.3390/ma17010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
Infectious diseases caused by waterborne viruses have attracted researchers' great attention. To ensure a safe water environment, it is important to advance water treatment and disinfection technology. Photocatalytic technology offers an efficient and practical approach for achieving this goal. This paper reviews the latest studies on visible-light composite catalysts for bacteriophage inactivation, with a main focus on three distinct categories: modified UV materials, direct visible-light materials and carbon-based materials. This review gives an insight into the progress in photocatalytic material development and offers a promising solution for bacteriophage inactivation.
Collapse
Affiliation(s)
- Deqiang Zhao
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China; (H.L.); (Q.H.); (H.L.); (Q.L.)
- National Engineering Research Center for Inland Waterway Regulation, Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing 400074, China
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden; (J.A.); (Z.Z.)
| | - Heng Lu
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China; (H.L.); (Q.H.); (H.L.); (Q.L.)
- National Engineering Research Center for Inland Waterway Regulation, Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing 400074, China
| | - Qingkong Cheng
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China; (H.L.); (Q.H.); (H.L.); (Q.L.)
- National Engineering Research Center for Inland Waterway Regulation, Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing 400074, China
- Joint Graduate Training Base for Resources and Environment between Chongqing Jiaotong University and Chongqing Gangli Environmental Protection Co., Ltd., Chongqing Jiaotong University, Chongqing 400074, China
| | - Qi Huang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China; (H.L.); (Q.H.); (H.L.); (Q.L.)
- National Engineering Research Center for Inland Waterway Regulation, Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing 400074, China
| | - Jing Ai
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden; (J.A.); (Z.Z.)
| | - Zhibo Zhang
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden; (J.A.); (Z.Z.)
| | - Hainan Liu
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China; (H.L.); (Q.H.); (H.L.); (Q.L.)
- National Engineering Research Center for Inland Waterway Regulation, Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing 400074, China
| | - Zongfei He
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;
| | - Qiuhong Li
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China; (H.L.); (Q.H.); (H.L.); (Q.L.)
- National Engineering Research Center for Inland Waterway Regulation, Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing 400074, China
| |
Collapse
|
6
|
Possibility of using ionizing radiation treated sludge from drinking water treatment plant as fertilizer in agriculture: Effects of aging. Appl Radiat Isot 2023; 192:110602. [PMID: 36508956 DOI: 10.1016/j.apradiso.2022.110602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/08/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
Using ionizing radiation in treating waste sludge from a drinking water treatment plant is a well-known technique. Sludge treated with ionizing radiation can be used as fertilizer in agriculture. In this paper, the effects of aging on the physicochemical characteristics, the content of microorganisms, molds, acrylamide, heavy metal concentration, and total nutrient content in waste sludge treated with e-beam and gamma irradiation were investigated. The possibility of using treated sludge as a fertilizer in agriculture was evaluated. It has been shown that the content of acrylamide in treated sludge after 15 months of storage does not exceed the limits for sludge to be used as fertilizer. If the sludge is stored in closed bags in a dark place, aging does not increase total microorganisms and molds. The research also showed that the sludge's physicochemical characteristics treated in this way do not decrease under the influence of aging. Finally, it has been shown that aging does not change the concentration of heavy metals and total nutrients in sludge treated by ionizing irradiation.
Collapse
|
7
|
Chaves RS, Rodrigues JE, Santos MM, Benoliel MJ, Cardoso VV. Development of multi-residue gas chromatography coupled with mass spectrometry methodologies for the measurement of 15 chemically different disinfection by-products (DBPs) of emerging concern in drinking water from two different Portuguese water treatment plants. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4967-4976. [PMID: 36441195 DOI: 10.1039/d2ay01401g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In water treatment plants (WTPs), chemical agents, such as chlorine and ozone, might react with organic matter and anthropogenic contaminants, forming a high diversity of disinfection by-products (DBPs). Due to the potential toxicological effects, the identification of unregulated DBPs (UR-DBPs) is critical to help water managers in the selection of effective water treatment processes, contributing to improving water safety plans. Given the limited validated analytical methods to detect UR-DBPs, here we developed new multi-residue gas chromatography coupled with mass spectrometry methodologies for the detection and quantification of 15 UR-DBPs, including aldehydes, haloketones (HKs), nitrosamines and alcohols, in drinking water matrices. Solid-phase extraction (SPE), for the nitrosamine group, and solid-phase micro extraction (SPME), for the remaining DBPs, were used as sample preparation methods. The developed methodologies allowed the quantification of target UR-DBPs at trace concentration levels (ng L-1), with method quantification limits (MQLs) ranging from 14.4 ng L-1 to 26.0 ng L-1 (SPE-GC-MS) and 2.3 ng L-1 and 1596 ng L-1 (SPME-GC-MS). The methods were applied to different drinking water matrices, considering distinct delivery points of EPAL - Empresa Portuguesa das Águas Livres WTPs. Overall, the aldehyde group, represented by decanal, nonanal and 2-ethylheaxanal, showed the highest occurrence, followed by HKs and nitrosamines. The results of this study suggested that the formation of these UR-DBPs should be further monitored in WTPs.
Collapse
Affiliation(s)
- Raquel S Chaves
- Institute of Environmental Health, Faculty of Medicine, University of Lisbon, Portugal
- Empresa Portuguesa das Águas Livres, S. A., Direção Laboratórios e de Controlo da Qualidade da Água, Lisbon, Portugal
- CIIMAR, LA-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal.
| | - Joao E Rodrigues
- Empresa Portuguesa das Águas Livres, S. A., Direção Laboratórios e de Controlo da Qualidade da Água, Lisbon, Portugal
| | - Miguel M Santos
- CIIMAR, LA-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal.
- FCUP-Department of Biology, Faculty of Sciences, University of Porto, Portugal
| | - Maria J Benoliel
- Empresa Portuguesa das Águas Livres, S. A., Direção Laboratórios e de Controlo da Qualidade da Água, Lisbon, Portugal
| | - Vitor V Cardoso
- Empresa Portuguesa das Águas Livres, S. A., Direção Laboratórios e de Controlo da Qualidade da Água, Lisbon, Portugal
| |
Collapse
|
8
|
Li X, Zhang C, Zhao X, Li Y, He Z, Liu P, Liu C, Liu J, Zhang Y, Mu Y. Abiotic degradation of field wheat straw as a notable source of atmospheric carbonyls in the North China Plain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:151366. [PMID: 34740656 DOI: 10.1016/j.scitotenv.2021.151366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Carbonyl compounds (carbonyls) play a crucial role in atmospheric chemistry, but their atmospheric sources are not fully identified. Here we show unexpectedly high carbonyl emissions from extensive field returning wheat straw over the North China Plain (NCP). The emission rates of carbonyls exhibit distinct diurnal variations with the noontime peak value of total carbonyls greater than 135 μg∙kg-1 (dry straw weight) ∙h-1. The carbonyl emission is mainly attributed to biomass abiotic degradation processes that are affected by air temperature and sunlight intensity. Given that the photolysis of carbonyls is the major primary source of ROx radicals in the troposphere, carbonyl emissions would lead to increasing atmospheric oxidants. The mean daytime O3 concentration over the NCP increases by 12.3% when coupling carbonyl emissions from wheat straw with the current emission inventory through the model simulation. It might be one of the important reasons for the occurrence of the most serious O3 pollution in June when winter wheat is intensively harvested in the region. Further studies are warranted to explore the influence of field returning wheat straw on regional air quality.
Collapse
Affiliation(s)
- Xuran Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenglong Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xiaoxi Zhao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Urban Meteorology, Chinese Meteorological Administration, Beijing 100089, China; Key Laboratory of Atmospheric Chemistry, China Meteorological Administration, Beijing 100081, China
| | - Yuanzhao Li
- Wuxi CAS Photonics Co., Ltd., Wuxi 214000, China
| | - Zhouming He
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengfei Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Chengtang Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Junfeng Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yuanyuan Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yujing Mu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
9
|
Synthesis of bimetallic NbCo-piperazine catalyst and study on its advanced redox treatment of pharmaceuticals and personal care products by activation of permonosulfate. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120345] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Jennings E, Kremser A, Han L, Reemtsma T, Lechtenfeld OJ. Discovery of Polar Ozonation Byproducts via Direct Injection of Effluent Organic Matter with Online LC-FT-ICR-MS. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1894-1904. [PMID: 35007417 DOI: 10.1021/acs.est.1c04310] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Effluent organic matter (EfOM), a major ozone consumer during wastewater ozonation, is a complex mixture of natural and anthropogenic organic molecules. Ozonation of EfOM adds to molecular complexity by introducing polar and potentially mobile ozonation byproducts (OBPs). Currently, nontargeted direct infusion (DI) ultrahigh resolution mass spectrometry (e.g. FT-ICR-MS) is used to study OBPs but requires sample extraction, limiting the accessible polarity range of OBPs. To better understand the impact of ozonation on EfOM and the formation of polar OBPs, nonextracted effluent was analyzed by direct injection onto a reversed-phase liquid chromatography system (RP-LC) online hyphenated with an FT-ICR-MS. Over four times more OBPs were detected in nonextracted EfOM compared to effluent extracted with solid phase extraction and measured with DI-FT-ICR-MS (13817 vs 3075). Over 1500 highly oxygenated OBPs were detected exclusively in early eluting fractions of nonextracted EfOM, indicating polar OBPs. Oxygenation of these newly discovered OBPs is higher than previously found, with an average molecular DBE-O value of -3.3 and O/C ratio of 0.84 in the earliest eluting OBP fractions. These polar OBPs are consistently lost during extraction but may play an important role in understanding the environmental impact of ozonated EfOM. Moreover, 316 molecular formulas classified as nonreactive to ozone in DI-FT-ICR-MS can be identified with LC-FT-ICR-MS as isomers with varying degrees of reactivity, providing for the first time experimental evidence of differential reactivity of complex organic matter isomers with ozone.
Collapse
Affiliation(s)
- Elaine Jennings
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Arina Kremser
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Limei Han
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Thorsten Reemtsma
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
- Institute of Analytical Chemistry, University of Leipzig, 04103, Leipzig, Germany
| | - Oliver J Lechtenfeld
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
- ProVIS-Centre for Chemical Microscopy, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| |
Collapse
|
11
|
Chaves RS, Salvador D, Nogueira P, Santos MM, Aprisco P, Neto C, Cardoso V, Benoliel MJ, Rodrigues JE, Carneiro RN. Assessment of Water Quality Parameters and their Seasonal Behaviour in a Portuguese Water Supply System: a 6-year Monitoring Study. ENVIRONMENTAL MANAGEMENT 2022; 69:111-127. [PMID: 34859264 DOI: 10.1007/s00267-021-01572-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Water quality monitoring is a fundamental tool in the management of freshwater resources. The purpose of monitoring is to provide meaningful quality data for local action planning and catchment-wide decision making. The assessment of water quality is crucial to guarantee the efficient operation of the Water Treatment Plants (WTPs), promoting health conditions and contributing for a more sustainable urban water cycle. In accordance, the objective of this study was to evaluate key target chemical and microbiological water quality parameters, some of them already monitored within Portuguese/EU legal framework and others still not regulated, but with environmental and human heath relevance. A local monitoring database model, using a 6-year period (from 2014 to 2019) of water quality data, regarding water samples collected on representative sampling locations covering the freshwater abstraction sites, conventional WTPs and distribution network was assessed. This work provides new knowledge regarding occurrence and seasonal behaviour for both microbiological and chemical water quality parameters, essential to understand/manage the water supply system. Additionally, relationships between the target variables were also assessed. Particularly, strong correlations were identified between TOC and THMs formation at distribution network (r = 0.69; p ≤ 0.001); nitrates were the water quality parameter that revealed the best correlation between surface water source and treated water (r = 0.81; p ≤ 0.001), suggesting that treatment yield/performance is dependent on surface water load. The local and continuous monitoring of water systems are crucial to implement new approaches to guarantee the best quality of drinking water throughout the supply system.
Collapse
Affiliation(s)
- Raquel S Chaves
- Instituto de Saúde Ambiental, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal.
- Direção de Laboratórios e Controlo da Qualidade da Água (LAB) da Empresa Portuguesa das Águas Livres (EPAL), Lisboa, Portugal.
- FCUP - Department of Biology, Faculty of Sciences, University of Porto and CIMAR/CIIMAR, LA- Interdisciplinary Centre of Marine and Environmental Research, Group of Endocrine Disruptors and Emerging Pollutants, Porto, Portugal.
| | - Daniel Salvador
- Instituto de Saúde Ambiental, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
- Direção de Laboratórios e Controlo da Qualidade da Água (LAB) da Empresa Portuguesa das Águas Livres (EPAL), Lisboa, Portugal
- Centro de Estudos do Ambiente e do Mar (CESAM), Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Paulo Nogueira
- Instituto de Saúde Ambiental, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Miguel M Santos
- FCUP - Department of Biology, Faculty of Sciences, University of Porto and CIMAR/CIIMAR, LA- Interdisciplinary Centre of Marine and Environmental Research, Group of Endocrine Disruptors and Emerging Pollutants, Porto, Portugal
| | - Paula Aprisco
- Direção de Laboratórios e Controlo da Qualidade da Água (LAB) da Empresa Portuguesa das Águas Livres (EPAL), Lisboa, Portugal
| | - Célia Neto
- Direção de Laboratórios e Controlo da Qualidade da Água (LAB) da Empresa Portuguesa das Águas Livres (EPAL), Lisboa, Portugal
| | - Vítor Cardoso
- Direção de Laboratórios e Controlo da Qualidade da Água (LAB) da Empresa Portuguesa das Águas Livres (EPAL), Lisboa, Portugal
| | - Maria J Benoliel
- Direção de Laboratórios e Controlo da Qualidade da Água (LAB) da Empresa Portuguesa das Águas Livres (EPAL), Lisboa, Portugal
| | - João E Rodrigues
- Direção de Laboratórios e Controlo da Qualidade da Água (LAB) da Empresa Portuguesa das Águas Livres (EPAL), Lisboa, Portugal.
| | - Rui N Carneiro
- Direção de Laboratórios e Controlo da Qualidade da Água (LAB) da Empresa Portuguesa das Águas Livres (EPAL), Lisboa, Portugal
| |
Collapse
|
12
|
Pivokonsky M, Kopecka I, Cermakova L, Fialova K, Novotna K, Cajthaml T, Henderson RK, Pivokonska L. Current knowledge in the field of algal organic matter adsorption onto activated carbon in drinking water treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149455. [PMID: 34364285 DOI: 10.1016/j.scitotenv.2021.149455] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
The increasing occurrence of algal and cyanobacterial blooms and the related formation of algal organic matter (AOM) is a worldwide issue that endangers the quality of freshwater sources and affects water treatment processes. The associated problems involve the production of toxins or taste and odor compounds, increasing coagulant demand, inhibition of removal of other polluting compounds, and in many cases, AOM acts as a precursor of disinfection by-products. Previous research has shown that for sufficient AOM removal, the conventional drinking water treatment based on coagulation/flocculation must be often accompanied by additional polishing technologies such as adsorption onto activated carbon (AC). This state-of-the-art review is intended to serve as a summary of the most current research on the adsorption of AOM onto AC concerning drinking water treatment. It summarizes emerging trends in this field with an emphasis on the type of AOM compounds removed and on the adsorption mechanisms and influencing factors involved. Additionally, also the principles of competitive adsorption of AOM and other organic pollutants are elaborated. Further, this paper also synthesizes previous knowledge on combining AC adsorption with other treatment techniques for enhanced AOM removal in order to provide a practical resource for researchers, water treatment plant operators and engineers. Finally, research gaps regarding the AOM adsorption onto AC are identified, including, e.g., adsorption of AOM residuals recalcitrant to coagulation/flocculation, suitability of pre-oxidation of AOM prior to the AC adsorption, relationships between the solution properties and AOM adsorption behaviour, or AOM as a cause of competitive adsorption. Also, focus should be laid on continuous flow column experiments using water with multi-component composition, because these would greatly contribute to transferring the theoretical knowledge to practice.
Collapse
Affiliation(s)
- Martin Pivokonsky
- Institute of Hydrodynamics of the Czech Academy of Sciences, Pod Patankou 30/5, 166 12 Prague 6, Czech Republic.
| | - Ivana Kopecka
- Institute of Hydrodynamics of the Czech Academy of Sciences, Pod Patankou 30/5, 166 12 Prague 6, Czech Republic
| | - Lenka Cermakova
- Institute of Hydrodynamics of the Czech Academy of Sciences, Pod Patankou 30/5, 166 12 Prague 6, Czech Republic
| | - Katerina Fialova
- Institute of Hydrodynamics of the Czech Academy of Sciences, Pod Patankou 30/5, 166 12 Prague 6, Czech Republic
| | - Katerina Novotna
- Institute of Hydrodynamics of the Czech Academy of Sciences, Pod Patankou 30/5, 166 12 Prague 6, Czech Republic
| | - Tomas Cajthaml
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Rita K Henderson
- School of Chemical Engineering, The University of New South Wales, Sydney 2052, Australia
| | - Lenka Pivokonska
- Institute of Hydrodynamics of the Czech Academy of Sciences, Pod Patankou 30/5, 166 12 Prague 6, Czech Republic
| |
Collapse
|
13
|
Abstract
Cities are producers of high quantities of secondary liquid and solid streams that are still poorly utilized within urban systems. In order to tackle this issue, there has been an ever-growing push for more efficient resource management and waste prevention in urban areas, following the concept of a circular economy. This review paper provides a characterization of urban solid and liquid resource flows (including water, nutrients, metals, potential energy, and organics), which pass through selected nature-based solutions (NBS) and supporting units (SU), expanding on that characterization through the study of existing cases. In particular, this paper presents the currently implemented NBS units for resource recovery, the applicable solid and liquid urban waste streams and the SU dedicated to increasing the quality and minimizing hazards of specific streams at the source level (e.g., concentrated fertilizers, disinfected recovered products). The recovery efficiency of systems, where NBS and SU are combined, operated at a micro- or meso-scale and applied at technology readiness levels higher than 5, is reviewed. The importance of collection and transport infrastructure, treatment and recovery technology, and (urban) agricultural or urban green reuse on the quantity and quality of input and output materials are discussed, also regarding the current main circularity and application challenges.
Collapse
|
14
|
He J, Liu J, Liu Y, Liyin Z, Wu X, Song G, Hou Y, Wang R, Zhao W, Sun H. Trace carbonyl analysis in water samples by integrating magnetic molecular imprinting and capillary electrophoresis. RSC Adv 2021; 11:32841-32851. [PMID: 35493566 PMCID: PMC9042219 DOI: 10.1039/d1ra05084b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/21/2021] [Indexed: 12/28/2022] Open
Abstract
In order to obtain high derivatization efficiency, the overuse of derivative agent 2,4-dinitrophenylhydrazine (2,4-DNPH) is necessary for carbonyl detection. But, the 2,4-DNPH residue will cause background interferences and limit the pre-concentration factor of the target analytes. In order to overcome the bottleneck problems, the magnetic molecularly imprinted polymer based solid-phase extraction (MMIPs-SPE) method was developed with 2,4-dinitroaniline (2,4-DNAN) as the dummy template. The characteristics and selectivity of the MMIPs were investigated. Under the optimized conditions, the enrichment of carbonyls-DNPH derivatives with simultaneous removal of the surplus 2,4-DNPH was achieved. By coupling with capillary electrophoresis (CE), a satisfactory analytical performance was obtained with the detection limit ranging from 1.2 to 8.7 μg L−1 for 8 carbonyls. The MMIPs-SPE-CE method was applied successfully for the carbonyl assessment in stream water, tap water and bottled water. In addition, the migration of carbonyls in bottled drinking water was investigated under UV irradiation and heating. By integrating MMIPs-SPE method and CE, the enrichment of carbonyls-DNPH derivatives with simultaneous removal of the surplus derivative agent 2,4-DNPH can be achieved.![]()
Collapse
Affiliation(s)
- Jiahua He
- College of Environmental Science and Engineering, Guangzhou University Guangzhou 510006 Guangdong China
| | - Jiawei Liu
- College of Environmental Science and Engineering, Guangzhou University Guangzhou 510006 Guangdong China
| | - Yangyang Liu
- College of Environmental Science and Engineering, Guangzhou University Guangzhou 510006 Guangdong China
| | - Zhengxi Liyin
- College of Environmental Science and Engineering, Guangzhou University Guangzhou 510006 Guangdong China
| | - Xiaoyi Wu
- College of Environmental Science and Engineering, Guangzhou University Guangzhou 510006 Guangdong China
| | - Gang Song
- College of Environmental Science and Engineering, Guangzhou University Guangzhou 510006 Guangdong China
| | - Yeyang Hou
- College of Environmental Science and Engineering, Guangzhou University Guangzhou 510006 Guangdong China
| | - Ruixi Wang
- College of Environmental Science and Engineering, Guangzhou University Guangzhou 510006 Guangdong China
| | - Wenfeng Zhao
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University Xuzhou 221116 P. R. China
| | - Hui Sun
- College of Environmental Science and Engineering, Guangzhou University Guangzhou 510006 Guangdong China .,Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources Guangzhou 510006 Guangdong China
| |
Collapse
|
15
|
Moreira NFF, Ribeirinho-Soares S, Viana AT, Graça CAL, Ribeiro ARL, Castelhano N, Egas C, Pereira MFR, Silva AMT, Nunes OC. Rethinking water treatment targets: Bacteria regrowth under unprovable conditions. WATER RESEARCH 2021; 201:117374. [PMID: 34214892 DOI: 10.1016/j.watres.2021.117374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/08/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Ozonation is among the currently used technologies to remove chemical and biological contaminants from secondary treated urban wastewater (UWW). Despite its effectiveness on the abatement of organic micropollutants (OMPs) and disinfection, previous studies have shown that regrow of bacteria may occur upon storage of the ozonated UWW. This reactivation has been attributed to the high content of assimilable organic carbon after treatment. In order to investigate if ozonation by-products are the main biological regrowth drivers in stored ozonated UWW, the ozonation surviving cells were resuspended in sterile bottled mineral water (MW), simulating a pristine oligotrophic environment. After 7 days storage, organisms such as Acinetobacter, Methylobacterium, Cupriavidus, Massilia, Acidovorax and Pseudomonas were dominant in both ozonated UWW and pristine MW, demonstrating that bacterial regrowth is not strictly related to the eventual presence of ozonation by-products, but instead with the ability of the surviving cells to cope with nutrient-poor environments. The resistome of UWW before and after ozonation was analysed by metagenomic techniques. Draft metagenome assembled genomes (dMAGs), recovered from both ozonated UWW and after cell resuspension in MW, harboured genes conferring resistance to diverse antibiotics classes. Some of these antibiotic resistance genes (ARGs) were located in the vicinity of mobile genetic elements, suggesting their potential to be mobilized. Among these, dMAGs affiliated to taxa with high relative abundance in stored water, such as P. aeruginosa and Acinetobacter spp., harboured ARGs conferring resistance to 12 and 4 families of antibiotics, respectively, including those encoding carbapenem hydrolysing oxacillinases. The results herein obtained point out that the design and development of new wastewater treatment technologies should include measures to attenuate the imbalance of the bacterial communities promoted by storage of the final treated wastewater, even when applying processes with high mineralization rates.
Collapse
Affiliation(s)
- Nuno F F Moreira
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Sara Ribeirinho-Soares
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Ana Teresa Viana
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Cátia A L Graça
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Ana Rita L Ribeiro
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Nadine Castelhano
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Conceição Egas
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Next Generation Sequencing Unit, Biocant, BiocantPark, Núcleo 04, Lote 8, 3060-197 Cantanhede, Portugal
| | - M Fernando R Pereira
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Adrián M T Silva
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Olga C Nunes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
16
|
Jiang W, Dong S, Xu F, Chen J, Gong C, Wang A, Hu Z. Mechanisms of thermal treatment on two dominant copepod species in O 3/BAC processing of drinking water. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:945-953. [PMID: 33791896 PMCID: PMC8154755 DOI: 10.1007/s10646-021-02392-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Phyllodiaptomus tunguidus and Heliodiaptomus falxus are dominant copepods species in drinking water processing plants in southern China. With a potential penetration risk, the breeding and leakage of copepods are drawing more and more attention in recent years. The current study provided a thermal treatment method to control copepods and their eggs. Results showed that: (1) the immediate death rates of P. tunguidus and H. falxus after heated to 34-40 °C for 5 min are positively correlated to the treatment temperatures (P < 0.01), and all individuals of the both species were eliminated after heated at 40 °C for 5 min; (2) overall hatching rates of P. tunguidus eggs were negatively correlated with treatment temperatures (P < 0.01) between 39-45 °C, with zero percent hatched after treatment at 45 °C for 5 min; (3) hatching rates of H. falxus were negatively correlated with treatment temperatures (P < 0.01) between 37-41 °C, with no nauplii hatched when treated at 41 °C for 5 min; (4) paraffin section histological examination indicated that thermal treatment caused severe damage to internal organs and egg structure. Finally, based on the experimental data, the application of the thermal treatment method was discussed in ozonation combined with biological activated carbon (O3/BAC) processing of drink water treatment.
Collapse
Affiliation(s)
- Wei Jiang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, P. R. China
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Sheng Dong
- Guangdong Technology Research Center for Marine Algal Bioengineering, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, P. R. China
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Fangfang Xu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, P. R. China
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jing Chen
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Chen Gong
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Antai Wang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, P. R. China.
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, P. R. China.
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Shenzhen University, Shenzhen, 518060, P. R. China.
| |
Collapse
|
17
|
Yan P, Chen Z, Wang S, Zhou Y, Li L, Yuan L, Shen J, Jin Q, Zhang X, Kang J. Catalytic ozonation of iohexol with α-Fe 0.9Mn 0.1OOH in water: Efficiency, degradation mechanism and toxicity evaluation. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123574. [PMID: 32759003 DOI: 10.1016/j.jhazmat.2020.123574] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/10/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Iohexol, a widely used iodinated X-ray contrast media, is difficult to completely degrade with the traditional water treatment process. Catalytic ozonation with synthesized α-Fe0.9Mn0.1OOH as the catalyst can significantly promote the degradation of iohexol relative to that with ozonation alone. Hydroxyl radicals play a predominant role during the degradation of iohexol. The effect of various factors, including catalyst dose, ozone dose, iohexol concentration and water matrix factors, on the catalytic performance were investigated. The presence of α-Fe0.9Mn0.1OOH in the catalytic system can significantly promote the removal of iohexol and mineralization of the dissolved organic carbon in real water samples. The intermediate products were determined by high-resolution liquid chromatography, and the reaction site was predicted by frontier electron density (FED) calculations. The degradation mechanism of iohexol followed the processes of H-abstraction, amide hydrolysis, amide oxidation, and ·OH substitution. Higher exposure concentrations of iohexol had a negative effect on the survival and hatching rates in the development of zebrafish embryos. The autonomic movement process and heartbeat rate of the zebrafish larvae showed significant differences as the exposure concentration of iohexol increased. The catalytic ozonation process with α-Fe0.9Mn0.1OOH can decrease the toxicity of iohexol containing water.
Collapse
Affiliation(s)
- Pengwei Yan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Zhonglin Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Shuyu Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Yanchi Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Li Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, PR China
| | - Lei Yuan
- National and Provincial Joint Engineering Laboratory of Wetland Ecological Conservation, Heilongjiang Academy of Science, Harbin, 150040, PR China
| | - Jimin Shen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| | - Qianqian Jin
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Xiaoxiao Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Jing Kang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| |
Collapse
|
18
|
Laflamme O, Sérodes JB, Simard S, Legay C, Dorea C, Rodriguez MJ. Occurrence and fate of ozonation disinfection by-products in two Canadian drinking water systems. CHEMOSPHERE 2020; 260:127660. [PMID: 32758783 DOI: 10.1016/j.chemosphere.2020.127660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
The occurrence and the fate of 18 ozonation by-products (OBPs) (17 different aldehydes and bromate) were studied over one year in two Canadian drinking water systems. This is the first and only study reporting the occurrence of all these non-halogenated aldehydes (NON-HALs) and haloacetaldehydes (HALs) simultaneously, based on the multi-point monitoring of water in full-scale conditions from source to distribution network. In general, the application of both post-ozonation and liquid chlorine contributed to the formation of OBPs (aldehydes and bromate). NON-HALs were present in higher concentrations than HALs. Formaldehyde, acetaldehyde, glyoxal and methylglyoxal were the most common forms of NON-HALs in the two water systems that were studied. Chloral hydrate (CH), the hydrated form of trichloroacetaldehyde, was the most dominant HAL observed. The nature of the organic matter and the water temperature proved to be important parameters for explaining the variability of aldehydes. Summer and autumn (warm seasons) were more favorable for the formation of chloral hydrate and bromate. The highest concentrations of NON-HALs were observed in spring.
Collapse
Affiliation(s)
- Olivier Laflamme
- Department of Civil and Water Engineering, Université Laval, Quebec City, QUE, Canada.
| | - Jean-B Sérodes
- Department of Urban and Landuse Planning, Université Laval, Quebec City, QUE, Canada
| | - Sabrina Simard
- Department of Urban and Landuse Planning, Université Laval, Quebec City, QUE, Canada
| | - Christelle Legay
- Department of Urban and Landuse Planning, Université Laval, Quebec City, QUE, Canada
| | - Caetano Dorea
- Department of Civil Engineering, University of Victoria, Victoria, BC, Canada
| | - Manuel J Rodriguez
- Department of Urban and Landuse Planning, Université Laval, Quebec City, QUE, Canada.
| |
Collapse
|
19
|
Penabad-Peña L, Herrera-Morales J, Betancourt M, Nicolau E. Cellulose Acetate/P4VP- b-PEO Membranes for the Adsorption of Electron-Deficient Pharmaceutical Compounds. ACS OMEGA 2019; 4:22456-22463. [PMID: 31909328 PMCID: PMC6941198 DOI: 10.1021/acsomega.9b03098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/04/2019] [Indexed: 05/28/2023]
Abstract
The prevalence of pharmaceutical compounds in surface and groundwater presents a rising threat to human health. As such, the search for novel materials that serve to avoid their release into the environment or for the remediation once in the water effluent is of utmost importance. The present work describes the fabrication of a cellulose acetate membrane modified with the block copolymer poly(4-vinylpyridine-b-ethylene oxide) (P4VP-b-PEO) crafted for the specific targeting and adsorption of electron-deficient pharmaceuticals (EDPs). The EDPs under study were sulfamethoxazole, sulfadiazine, and omeprazole. The results as part of this work present a thorough characterization of the prepared membranes by FTIR, contact angle measurement, and SEM images. Moreover, results show that the adsorptive character of the membrane correlates with the relative electron deficiency and spatial orientation of the contaminant. Interestingly, the addition of nominal 1% P4VP-b-PEO to the cellulose matrix helps to increase the adsorption efficiency of the membranes by at least 2-fold in most cases. For the compounds studied, the prepared membrane has a higher efficiency toward omeprazole followed by sulfamethoxazole and sulfadiazine. This work may serve to inspire the design and fabrication of selective soft materials for the adsorption and remediation of contaminants of emerging concern.
Collapse
Affiliation(s)
- Laura Penabad-Peña
- Department
of Chemistry, University of Puerto Rico,
Río Piedras Campus, P.O. 23346, San Juan, Puerto Rico 00931-3346, United States
- Molecular
Sciences Research Center, University of
Puerto Rico, 1390 Ponce
De Leon Avenue, Suite 2, San Juan, Puerto Rico 00931-3346, United States
| | - Jairo Herrera-Morales
- Department
of Chemistry, University of Puerto Rico,
Río Piedras Campus, P.O. 23346, San Juan, Puerto Rico 00931-3346, United States
- Molecular
Sciences Research Center, University of
Puerto Rico, 1390 Ponce
De Leon Avenue, Suite 2, San Juan, Puerto Rico 00931-3346, United States
| | - Miguel Betancourt
- Department
of Chemistry, University of Puerto Rico,
Río Piedras Campus, P.O. 23346, San Juan, Puerto Rico 00931-3346, United States
- Molecular
Sciences Research Center, University of
Puerto Rico, 1390 Ponce
De Leon Avenue, Suite 2, San Juan, Puerto Rico 00931-3346, United States
| | - Eduardo Nicolau
- Department
of Chemistry, University of Puerto Rico,
Río Piedras Campus, P.O. 23346, San Juan, Puerto Rico 00931-3346, United States
- Molecular
Sciences Research Center, University of
Puerto Rico, 1390 Ponce
De Leon Avenue, Suite 2, San Juan, Puerto Rico 00931-3346, United States
| |
Collapse
|
20
|
Zhang Y, An Y, Liu C, Wang Y, Song Z, Li Y, Meng W, Qi F, Xu B, Croue JP, Yuan D, Ikhlaq A. Catalytic ozonation of emerging pollutant and reduction of toxic by-products in secondary effluent matrix and effluent organic matter reaction activity. WATER RESEARCH 2019; 166:115026. [PMID: 31514100 DOI: 10.1016/j.watres.2019.115026] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 08/13/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
In this study, the performance of LaCoO3 (LCO) catalytic ozonation was evaluated comprehensively, including the degradation efficiency of benzotriazole (BZA) as a typical emerging pollutant, toxic bromate reduction and the disinfection by-products (DBPs) precursors removal ability in effluent organic matter (EfOM), as well as EfOM reactive activity in catalytic ozonation. Additionally, the reduction of toxic halogenated by-products in (catalytic) ozonation was reported, which was not focused on previous researches before. Results showed that LCO catalytic ozonation improved the removal efficiency of BZA, UV254 and SUVA via enhanced HO· formation. Interestingly, LCO catalytic ozonation showed the ability on the reduction of aldehydes and toxic halogenated organic by-products. Moreover, the formed [trichloromethane (TCM)], [bromochloroacetonitrile (BCAN)] and [dichloroacetamide (DCAcAm)] decreased significantly in catalytic ozonation. Catalytic ozonation was also able to remove DBPs precursors to decline the formation of DBPs, such as TCM, bromodichloromethane (BDCM), trichloroacetonitrile (TCAN) and trichloronitromethane (TCNM). This process was involved in the transformation of EfOM in catalytic ozonation, which was confirmed by multi-spectrum methods, two-dimensional correlation spectroscopy (2D-COS) and hetero-spectral 2D-COS. In summary, LCO was shown to be an effective catalyst to improve the performance of the sole ozonation on the removal of emerging contaminants and DBPs precursors, as well as toxic by-products reduction. Additionally, the strategy of toxic by-products reduction in catalytic ozonation was proposed. Results indicated this technology was an important contribution on removal of refractory organics and formation of toxic by-products in water supply and wastewater treatment industry.
Collapse
Affiliation(s)
- Yuting Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, PR China
| | - Yechen An
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, PR China
| | - Chao Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, PR China
| | - Yiping Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, PR China
| | - Zilong Song
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, PR China
| | - Yanning Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, PR China
| | - Weidong Meng
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, PR China
| | - Fei Qi
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, PR China.
| | - Bingbing Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - Jean-Philippe Croue
- Curtin Water Quality Research Centre, Department of Chemistry, Curtin University, Perth, WA, 6845, Australia
| | - Donghai Yuan
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, PR China.
| | - Amir Ikhlaq
- Institute of Environmental Engineering and Research, University of Engineering and Technology, Punjab, 54890, Pakistan
| |
Collapse
|
21
|
Yan P, Shen J, Yuan L, Kang J, Wang B, Zhao S, Chen Z. Catalytic ozonation by Si-doped α-Fe2O3 for the removal of nitrobenzene in aqueous solution. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.115766] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
de Godoi LAG, Camiloti PR, Bernardes AN, Sanchez BLS, Torres APR, da Conceição Gomes A, Botta LS. Seasonal variation of the organic and inorganic composition of sugarcane vinasse: main implications for its environmental uses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:29267-29282. [PMID: 31396875 DOI: 10.1007/s11356-019-06019-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Sugarcane vinasse is the main waste stream of the Brazilian agroindustry. The typical composition of sugarcane vinasse gives it a high polluting potential that implies the necessity to define sustainable strategies for managing this waste. Knowledge of the inorganic and organic composition of vinasse and its seasonal variation is extremely important to conduct scientific research to define alternative managements for vinasse disposal other than fertigation. This study evaluated the variability of vinasse composition throughout the same harvesting season and among three harvesting seasons of one Brazilian annexed biorefinery (2015-2017). The contents of chemical oxygen demand (COD), biochemical oxygen demand (BOD5), total solids (TS), suspended solids (SS), salinity (K+, Na+, Ca2+, Mg2+, Cl-, F-), nutrients (N, P, S), trace metals (Al3+, As2+, Ba2+, Cd2+, Cr3+, Co2+, Cu2+, Fe2+, Pb2+, Mn2+, Hg2+, Mo2+, Ni2+, Se2+, Zn2+), and specific soluble organic compounds (sugars, alcohols, and organic acids), as well as pH and conductivity, were monitored in 13 samples. The results indicated that sugarcane vinasse is a suitable feedstock for biological treatments, such as anaerobic digestion processes for energy recovery, as well as substrate for biomass (e.g., microalgae, energy crops, lignocellulosic biomass) growth. The application of a previous treatment makes vinasse a more environmentally friendly natural fertilizer for land fertigation.
Collapse
Affiliation(s)
| | - Priscila Rosseto Camiloti
- Ergostech Renewable Energy Solutions, Estrada da Rhodia km 16, Vila Holândia, Campinas, SP, 13084-970, Brazil
| | - Alan Nascimento Bernardes
- Ergostech Renewable Energy Solutions, Estrada da Rhodia km 16, Vila Holândia, Campinas, SP, 13084-970, Brazil
| | - Bruna Larissa Sandy Sanchez
- Ergostech Renewable Energy Solutions, Estrada da Rhodia km 16, Vila Holândia, Campinas, SP, 13084-970, Brazil
| | - Ana Paula Rodrigues Torres
- Management of Biotechnology, Petrobras Research and Development Center (CENPES), Av. Horácio Macedo, 950, Cidade Universitária, Ilha do Fundao, Rio de Janeiro, 21941-915, Brazil
| | - Absai da Conceição Gomes
- Management of Biotechnology, Petrobras Research and Development Center (CENPES), Av. Horácio Macedo, 950, Cidade Universitária, Ilha do Fundao, Rio de Janeiro, 21941-915, Brazil
| | - Lívia Silva Botta
- Ergostech Renewable Energy Solutions, Estrada da Rhodia km 16, Vila Holândia, Campinas, SP, 13084-970, Brazil.
| |
Collapse
|
23
|
Dong L, Liu W, Yu Y, Hou L, Gu P, Chen G. Preparation, characterization, and application of macroporous activated carbon (MAC) suitable for the BAC water treatment process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 647:1359-1367. [PMID: 30180343 DOI: 10.1016/j.scitotenv.2018.07.280] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 05/24/2023]
Abstract
To address the sharp decrease in efficiency of the biological activated carbon (BAC) process at low temperatures, a new type of activated carbon (AC), macroporous activated carbon (MAC), was developed from bamboo waste scraps via a special compression, carbonation and activation process without the introduction of chemicals. MAC contains not only the micron-level macropores (Vmaco > 0.71 ml/g) sufficient for bacteria to access and multiply, but ensures the developed smaller pores (particularly micropores, Vmicro > 0.41 ml/g) and a higher hardness (>90%). In addition, the desired volume of macropores with an adiabatic function, which will provide livable space environment for bacteria, can be obtained by adjusting the compression ratio (1:5-1:10). Because of the maximum macropore volume (Vmaco = 0.805 ml/g) and the most abundant macropore distribution (particularly diameters>10,000 nm), MAC (1:6) was selected for the parallel experiment in the laboratory, taking three representative commercial ACs (PICABIOL® 2, raw coal AC-1 and briquetting AC-2) as controls, in which the filtration effluent of a water treatment plant was used as the influent and glucose was added to accelerate bacterial growth. The results showed that MAC (1:6) exhibited the highest DOC removal and biological activity at room/low temperatures (4 °C), indicating that the abundant macropores distribution with adiabatic function in MAC (1:6) is conducive to the growth and breeding of microorganisms. It is equivalent to artificially increasing the surface suitable for bacteria attachment. This is coupled with the higher adsorption capacity for pollutants supplied by the developed micropores in MAC, which provided the substrate for bacteria growth, thus forming a benign circle for water treatment by the BAC process. The results provide significant technical support for BAC's application, particularly at cold temperatures.
Collapse
Affiliation(s)
- Lihua Dong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; School of Environment, Tsinghua University, Beijing 100084, China.
| | - Wenjun Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yi Yu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Li'an Hou
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Xi'an High-tech Institute, Xi'an 710025, China
| | - Ping Gu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Guanyi Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
24
|
Mian HR, Hu G, Hewage K, Rodriguez MJ, Sadiq R. Prioritization of unregulated disinfection by-products in drinking water distribution systems for human health risk mitigation: A critical review. WATER RESEARCH 2018; 147:112-131. [PMID: 30308371 DOI: 10.1016/j.watres.2018.09.054] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/24/2018] [Accepted: 09/27/2018] [Indexed: 06/08/2023]
Abstract
Water disinfection involves the use of different types of disinfectants, which are oxidizing agents that react with natural organic matter (NOM) to form disinfection by-products (DBPs). The United States Environmental Protection Agency (USEPA) has established threshold limits on some DBPs, which are known as regulated DBPs (R-DBPs). The human health risks associated with R-DBPs in drinking water distribution systems (DWDSs) and application of stricter regulations have led water utilities to switch from conventional disinfectant (i.e., chlorination) to alternative disinfectants. However, the use of alternative disinfectants causes formation of a new suit of DBPs known as unregulated DBPs (UR-DBPs), which in many cases can be more toxic. There is a growing concern of UR-DBPs formation in drinking water. This review prioritizes some commonly occurring UR-DBP groups and species in DWDSs based on their concentration level, reported frequency, and toxicity using an indexing method. There are nine UR-DBPs group and 36 species that have been identified based on recent published peer-reviewed articles. Haloacetonitriles (HANs) and haloacetaldehydes (HALs) are identified as important UR-DBP groups. Dichloroacetonitrile (DCAN) and trichloroacetaldehye (TCAL) are identified as critical UR-DBPs species. The outcomes of this review can help water regulators to identify the most critical UR-DBPs species in the context of drinking water safety and provide them with useful information to develop guidelines or threshold limits for UR-DBPs. The outcomes can also help water utilities in selecting water treatment processes for the mitigation of human health risk posed by UR-DBPs through drinking water.
Collapse
Affiliation(s)
- Haroon R Mian
- School of Engineering, The University of British Columbia, Okanagan 3333 University Way, Kelowna, BC, V1V 1V7, Canada
| | - Guangji Hu
- School of Engineering, The University of British Columbia, Okanagan 3333 University Way, Kelowna, BC, V1V 1V7, Canada
| | - Kasun Hewage
- School of Engineering, The University of British Columbia, Okanagan 3333 University Way, Kelowna, BC, V1V 1V7, Canada
| | - Manuel J Rodriguez
- École Supérieure D'aménagement du Territoire et Développement Régional (ESAD), 2325, allée des Bibliothèque Université Laval, Québec City, QC, G1V 0A6, Canada
| | - Rehan Sadiq
- School of Engineering, The University of British Columbia, Okanagan 3333 University Way, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
25
|
Treatment of Eutrophic Water and Wastewater from Valsequillo Reservoir, Puebla, Mexico by Means of Ozonation: A Multiparameter Approach. WATER 2018. [DOI: 10.3390/w10121790] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present work aims to elucidate the possibility of injecting ozone into surface waters combined with urban wastewaters in order to improve the water quality of the High Atoyac Sub-basin (HAS) in Central Mexico. For this purpose, twenty physicochemical parameters, eight heavy metals, seven organic compounds, and one biological indicator were assessed in water from different sites of the studied area (the Alseseca River, the Atoyac River and the Valsequillo Reservoir). Results demonstrated that O3 injection led to the decrease of the aromatic fraction of organic molecules since the Spectral Absorption Coefficient at 254 nanometers (SAC254) reduction was found to be 31.7% in the Valsequillo Reservoir water samples. Maximum Chemical Oxygen Demand (COD) removal was observed to be 60.2% from the Alseseca River with a 0.26 mg O3/mg initial COD dose. Among all the phthalates studied in the present work, Di(2-ethylhexyl) phthalate (DEHP) exhibited the highest concentration (5.8 μg/L in the Atoyac River). Treatment with O3 was not effective in eliminating fecal coliforms (FC) in waters that host high organic matter (OM) loads as opposed to waters with low OM. After the injection of 4.7 mg O3/mg COD in the VO3-AT water sample, a 90% removal of Iron (Fe) and Aluminum (Al) was registered; while Manganese (Mn), Nickel (Ni), Zinc (Zn), and Cooper (Cu) showed a 73%, 67%, 81%, and 80% removal, respectively; Chromium (Cr) registered the highest removal (~100%). The present work demonstrated that while finding a suitable O3 dose to improve the quality of water in the HAS, the 5-days Biochemical Oxygen Demand (BOD5)/COD ratio (i.e., biodegradability) is more important than the overall OM removal percentage proving that O3 injection is a feasible process for the treatment of eutrophic waters from HAS.
Collapse
|
26
|
Pantelaki I, Voutsa D. Formation of iodinated THMs during chlorination of water and wastewater in the presence of different iodine sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 613-614:389-397. [PMID: 28917177 DOI: 10.1016/j.scitotenv.2017.09.072] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/07/2017] [Accepted: 09/07/2017] [Indexed: 05/04/2023]
Abstract
The formation potential of iodinated trihalomethanes (I-THMs) during chlorination of different organic precursors in the presence of various iodine sources was studied. Organic precursors included humic acid, natural organic matter from river water and wastewater effluent organic matter. Inorganic iodide and two iodinated X-ray contrast media compounds (iopamidol and diatrizoate) were used as iodine sources. The formation potential of I-THMs under different experimental conditions (chlorination contact time, iodide and bromide concentrations) was investigated. The formation of I-THM species upon chlorination of river water and humic acids rapidly increased up to 24h and then a decreasing trend was observed. Wastewater, showed a rapid formation of I-THMs within the first 6h, followed by a lower rate with extended time. Formation of I-THMs in the presence of iopamidol was more favorable regarding the other two iodine sources. CHBrClI was the dominant specie followed by CHCl2I and CHBr2I. Increasing iodide concentrations result in higher I-THMs formation. The presence of bromide enhanced the I-THMs yields and shifted towards bromine-containing species (CHBrClI and CHBr2I).
Collapse
Affiliation(s)
- Ioanna Pantelaki
- Environmental Pollution Control Laboratory, Chemistry Department, Aristotle University of Thessaloniki, 54 124 Thessaloniki, Greece
| | - Dimitra Voutsa
- Environmental Pollution Control Laboratory, Chemistry Department, Aristotle University of Thessaloniki, 54 124 Thessaloniki, Greece.
| |
Collapse
|
27
|
Li C, Wang D, Xu X, Xu M, Wang Z. Spatial variations in the occurrence of potentially genotoxic disinfection by-products in drinking water distribution systems in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:1463-1468. [PMID: 28911795 DOI: 10.1016/j.envpol.2017.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/15/2017] [Accepted: 09/04/2017] [Indexed: 06/07/2023]
Abstract
We investigated the occurrence of disinfection by-products (DBPs) with genotoxic potential in plant effluent and distribution water samples from four drinking water treatment plants in two Chinese cities using comprehensive two-dimensional gas chromatography-quadrupole mass spectrometry. We tested the samples for 37 DBPs with genotoxic potential, which we had previously identified and prioritized in water under controlled laboratory conditions. Thirty of these DBPs were found in the water samples at detection frequencies of between 10% and 100%, and at concentrations between 3.90 and 1.77 × 103 ng/L. Of the DBPs detected, the concentrations of 1,1,1-trichloropropan-2-one were highest, and ranged from 299 to 1.77 × 103 ng/L with an average of 796 ng/L. The concentrations of 6-chloro-2-N-propan-2-yl-1,3,5-triazine-2,4-diamine and 2,6-ditert-butylcyclohexa-2,5-diene-1,4-dione were also much higher, and ranged from 107 to 721 ng/L, and from 152 to 504 ng/L, respectively. Concentrations of 1,1,1-trichloropropan-2-one, 2-chloro-1-phenylethanone, 2,2-dichloro-1-phenylethanone and 6-chloro-2-N-propan-2-yl-1,3,5-triazine-2,4-diamine were highest at or near the treatment plants and decreased with increasing distance from the plants. Patterns in the concentrations of benzaldehyde, 2-phenylpropan-2-ol, and 1-methylnaphthalene differed between plants. The levels of DBPs such as 4-ethylbenzaldehyde, (E)-non-2-enal, and 1-phenylethanone were relatively constant within the distribution systems, even at the furthest sampling points (20 km < d < 30 km). A risk assessment showed that there was no risk to human health. It is, however, important to note that, because of limited availability of toxicity data, only five DBPs were evaluated in this study. The risks to health associated with exposure to the target potentially genotoxic DBPs should not be ignored because of their prolonged existence in drinking water.
Collapse
Affiliation(s)
- Chunmei Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Donghong Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
| | - Xiong Xu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Meijia Xu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zijian Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
28
|
Herrera-Morales J, Morales K, Ramos D, Ortiz-Quiles EO, López-Encarnación JM, Nicolau E. Examining the Use of Nanocellulose Composites for the Sorption of Contaminants of Emerging Concern: An Experimental and Computational Study. ACS OMEGA 2017; 2:7714-7722. [PMID: 31457328 PMCID: PMC6645408 DOI: 10.1021/acsomega.7b01053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/30/2017] [Indexed: 06/10/2023]
Abstract
The occurrence of contaminants of emerging concern (CECs) in water is an environmental issue that must be addressed to avoid damage to ecosystems and human health. Inspired by this current issue, in this work, we fabricated nanocellulose (NC) particles grafted with the block copolymer Jeffamine ED 600 (NC-Jeffamine) capable of adsorbing acetaminophen, sulfamethoxazole, and N,N-diethyl-meta-toluamide (DEET) from aqueous solution by electrostatic interactions. NC-Jeffamine composites were prepared by carboxylation of the NC surface via 2,2,6,6-tetramethyl-1-piperidinyloxy oxidation followed by the covalent attachment of Jeffamine using the N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide/N-hydroxysulfosuccinimide sodium salt reaction. The reaction was followed and confirmed by Fourier transform infrared and conductometric titration. The physical characterization was performed by thermogravimetric analysis, Brunauer-Emmett-Teller analysis, scanning electron microscopy, dynamic light scattering, and Z-potential analysis. This material was used to study the adsorption profile of three CECs in deionized water, namely, acetaminophen, sulfamethoxazole, and DEET. The adsorption isotherms were obtained at pH 3, 7, and 9, where the best adsorption results corresponded to pH 9 because of the uniform dispersion of the adsorbate in solution. A computational study based on the density functional theory determined that the possible interactions of the CECs with the adsorbent material were related to hydrogen bonds and/or van der Waals forces. The calculated binding energies were used as a descriptor to characterize the optimum adsorption site of CECs onto NC-Jeffamine.
Collapse
Affiliation(s)
- Jairo Herrera-Morales
- Department
of Chemistry, University of Puerto Rico, Rio Piedras Campus, P.O. Box 23346, San Juan, Puerto Rico 00931-3346, United States
- Molecular
Sciences Research Center, University of
Puerto Rico, 1390 Ponce
De Leon Avenue, Suite 2, San Juan, Puerto Rico 00931-3346, United States
| | - Kathleen Morales
- Molecular
Sciences Research Center, University of
Puerto Rico, 1390 Ponce
De Leon Avenue, Suite 2, San Juan, Puerto Rico 00931-3346, United States
| | - Damarys Ramos
- Department
of Chemistry, University of Puerto Rico, Rio Piedras Campus, P.O. Box 23346, San Juan, Puerto Rico 00931-3346, United States
- Molecular
Sciences Research Center, University of
Puerto Rico, 1390 Ponce
De Leon Avenue, Suite 2, San Juan, Puerto Rico 00931-3346, United States
| | - Edwin O. Ortiz-Quiles
- Department
of Chemistry, University of Puerto Rico, Rio Piedras Campus, P.O. Box 23346, San Juan, Puerto Rico 00931-3346, United States
- Molecular
Sciences Research Center, University of
Puerto Rico, 1390 Ponce
De Leon Avenue, Suite 2, San Juan, Puerto Rico 00931-3346, United States
| | - Juan M. López-Encarnación
- Department
of Mathematics-Physics, University of Puerto
Rico, Cayey Campus, Cayey, Puerto Rico 00736, United States
| | - Eduardo Nicolau
- Department
of Chemistry, University of Puerto Rico, Rio Piedras Campus, P.O. Box 23346, San Juan, Puerto Rico 00931-3346, United States
- Molecular
Sciences Research Center, University of
Puerto Rico, 1390 Ponce
De Leon Avenue, Suite 2, San Juan, Puerto Rico 00931-3346, United States
| |
Collapse
|
29
|
Yang Y, Ok YS, Kim KH, Kwon EE, Tsang YF. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 596-597:303-320. [PMID: 28437649 DOI: 10.1016/j.scitotenv.2017.04.102] [Citation(s) in RCA: 657] [Impact Index Per Article: 93.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/05/2017] [Accepted: 04/13/2017] [Indexed: 05/17/2023]
Abstract
In recent years, many of micropollutants have been widely detected because of continuous input of pharmaceuticals and personal care products (PPCPs) into the environment and newly developed state-of-the-art analytical methods. PPCP residues are frequently detected in drinking water sources, sewage treatment plants (STPs), and water treatment plants (WTPs) due to their universal consumption, low human metabolic capability, and improper disposal. When partially metabolized PPCPs are transferred into STPs, they elicit negative effects on biological treatment processes; therefore, conventional STPs are insufficient when it comes to PPCP removal. Furthermore, the excreted metabolites may become secondary pollutants and can be further modified in receiving water bodies. Several advanced treatment systems, including membrane filtration, granular activated carbon, and advanced oxidation processes, have been used for the effective removal of individual PPCPs. This review covers the occurrence patterns of PPCPs in water environments and the techniques adopted for their treatment in STP/WTP unit processes operating in various countries. The aim of this review is to provide a comprehensive summary of the removal and fate of PPCPs in different treatment facilities as well as the optimum methods for their elimination in STP and WTP systems.
Collapse
Affiliation(s)
- Yi Yang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, Hong Kong
| | - Yong Sik Ok
- O-Jeong Eco-Resilience Institute (OJERI), Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Eilhann E Kwon
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, Hong Kong.
| |
Collapse
|
30
|
Zhong X, Cui C, Yu S. Seasonal evaluation of disinfection by-products throughout two full-scale drinking water treatment plants. CHEMOSPHERE 2017; 179:290-297. [PMID: 28371712 DOI: 10.1016/j.chemosphere.2017.03.103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 03/21/2017] [Accepted: 03/25/2017] [Indexed: 06/07/2023]
Abstract
Carbonyl compounds can occur alpha-hydrogens or beta-diketones substitution reactions with disinfectants contributed to halogenated by-products formation. The objective of this research was to study the occurrence and fate of carbonyl compounds as ozonation by-products at two full-scale drinking water treatment plants (DWTPs) using different disinfectants for one year. The quality of the raw water used in both plants was varied according to the season. The higher carbonyl compounds concentrations were found in raw water in spring. Up to 15 (as the sum of both DWTPs) of the 24 carbonyl compounds selected for this work were found after disinfection. The dominant carbonyl compounds were formaldehyde, glyoxal, methyl-glyoxal, fumaric, benzoic, protocatechuic and 3-hydroxybenzoic acid at both DWTPs. In the following steps in each treatment plant, the concentration patterns of these carbonyl compounds differed depending on the type of disinfectant applied. Benzaldehyde was the only aromatic aldehyde detected after oxidation with ozone in spring. As compared with DWTP 1, five new carbonyl compounds were formed (crotonaldehyde, benzaldehyde, formic, oxalic and malonic acid) disinfection by ozone, and the levels of the carbonyl compounds increased. In addition, pre-ozonation (PO) and main ozonation (OZ) increased the levels of carbonyl compounds, however coagulation/flocculation (CF), sand filtration (SF) and granular activated carbon filtration (GAC) decreased the levels of carbonyl compounds.
Collapse
Affiliation(s)
- Xin Zhong
- School of Municipal & Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China.
| | - Chongwei Cui
- School of Municipal & Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China.
| | - Shuili Yu
- School of Environmental Science and Engineering, Tongji University, Shanghai, 200433, China
| |
Collapse
|
31
|
Wang C, Li C, Li H, Lee H, Yang Z. The removal efficiency and degradation pathway of IPMP and IBMP in aqueous solution during ozonization. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.01.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
32
|
Zhong X, Cui C, Yu S. The determination and fate of disinfection by-products from ozonation-chlorination of fulvic acid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:6472-6480. [PMID: 28074362 DOI: 10.1007/s11356-016-8350-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/28/2016] [Indexed: 06/06/2023]
Abstract
Ozonation of fulvic acid (FA) can result in diverse intermediate oxidation by-products, significantly affecting disinfection by-product (DBP) formation following chlorination. The objective of this study was to provide insight into ozone reaction intermediates and reveal the possible formation pathway of DBPs from ozonation of FA due to the formation of intermediate oxidation by-products. Aldehydes, aromatic acids, short-chain acids, chloroform, and dichloroacetic acid were detected at various ozone dosage additions. Aromatic acids were studied by using solid-phase extraction-ultra high-performance liquid chromatography (SPE-UPLC). This new analytical approach enables the extraction and analysis of highly polar carboxylic acids that are difficult to measure using conventional methods. The results showed that formaldehyde, acetaldehyde, glyoxal, methyl-glyoxal, fumaric, malonic protocatechuic, 3-hydroxybenzoic, and benzoic acid were predominant oxidation by-products. The yields of the four aldehydes increased steadily with ozone dosage. When ozone dosage was 2∼2.5 mg/l, the amount of carboxylic acids was largest, and the total amount of the carboxylic acids was about 5∼10 times higher than that of the aldehydes. Besides, hydroxybenzoic acids are the major precursor, although they have low content in ozone reaction solution, they have a great contribution to the DBP formation. This study provides a new perspective on ozonation natural organic matter, which contributes to understand the other sources of DBPs and thus broadens the knowledge of drinking water treatment.
Collapse
Affiliation(s)
- Xin Zhong
- School of Municipal & Environmental Engineering, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin, Heilongjiang Province, China
| | - Chongwei Cui
- School of Municipal & Environmental Engineering, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin, Heilongjiang Province, China.
| | - Shuili Yu
- School of Environmental Science and Engineering, Tongji University, Shanghai, 200433, China
| |
Collapse
|
33
|
Papageorgiou A, Stylianou SK, Kaffes P, Zouboulis AI, Voutsa D. Effects of ozonation pretreatment on natural organic matter and wastewater derived organic matter - Possible implications on the formation of ozonation by-products. CHEMOSPHERE 2017; 170:33-40. [PMID: 27974269 DOI: 10.1016/j.chemosphere.2016.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/30/2016] [Accepted: 12/02/2016] [Indexed: 06/06/2023]
Abstract
The aim of this study was to investigate possible implications of natural and wastewater derived organic matter in river water that is subsequently used following treatment for drinking purposes. River water was subjected to lab-scale ozonation experiments under different ozone doses (0.1, 0.4, 0.8, 1.0 and 2.0 mgO3/mgC) and contact times (1, 3, 5, 8 and 10 min). Mixtures of river water with humic acids or wastewaters (sewage wastewater and secondary effluents) at different proportions were also ozonated. Dissolved organic carbon and biodegradable dissolved organic carbon concentrations as well as spectroscopic characteristics (UV absorbance and fluorescence intensities) of different types of dissolved organic matter and possible changes due to the ozonation treatment are presented. River water, humic substances and wastewater exhibited distinct spectroscopic characteristics that could serve for pollution source tracing. Wastewater impacted surface water results in higher formation of carbonyl compounds. However, the formation yield (μg/mgC) of wastewaters was lower than that of surface water possibly due to different composition of wastewater derived organic matter and the presence of scavengers, which may limit the oxidative efficiency of ozone.
Collapse
Affiliation(s)
- Alexandros Papageorgiou
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University, 54 124 Thessaloniki, Greece.
| | - Stylianos K Stylianou
- Division of Chemical Technology, Department of Chemistry, Aristotle University, 54 124 Thessaloniki, Greece
| | - Pavlos Kaffes
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University, 54 124 Thessaloniki, Greece
| | - Anastasios I Zouboulis
- Division of Chemical Technology, Department of Chemistry, Aristotle University, 54 124 Thessaloniki, Greece
| | - Dimitra Voutsa
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University, 54 124 Thessaloniki, Greece
| |
Collapse
|
34
|
Zhong X, Cui C, Yu S. Exploring the pathways of aromatic carboxylic acids in ozone solutions. RSC Adv 2017. [DOI: 10.1039/c7ra03039h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The reaction between ozone and natural organic matter (NOM) generates a certain amount of aromatic carboxylic acids (ACAs).
Collapse
Affiliation(s)
- Xin Zhong
- School of Municipal & Environmental Engineering
- Harbin Institute of Technology
- Harbin 150090
- China
| | - Chongwei Cui
- School of Municipal & Environmental Engineering
- Harbin Institute of Technology
- Harbin 150090
- China
| | - Shuili Yu
- School of Environmental Science and Engineering
- Tongji University
- Shanghai 200433
- China
| |
Collapse
|
35
|
Liu H, Sun P, He Q, Feng M, Liu H, Yang S, Wang L, Wang Z. Ozonation of the UV filter benzophenone-4 in aquatic environments: Intermediates and pathways. CHEMOSPHERE 2016; 149:76-83. [PMID: 26855209 DOI: 10.1016/j.chemosphere.2016.01.097] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 01/23/2016] [Accepted: 01/23/2016] [Indexed: 06/05/2023]
Abstract
The occurrence of benzophenone-4 (BP-4) in water environments may pose a serious public health hazard due to its potential endocrine disrupting effects. In this work, the intermediates, probable degradation pathways and toxicity changes during ozonation of BP-4 in aqueous solution were systematically investigated. Results revealed that alkaline conditions favored the oxidation of BP-4. However, inorganic anions (Cl(-), NO3(-), SO4(2-)), cations (K(+), Ca(2+), Mg(2+)) and humic acid had no remarkable effect on BP-4 removal within the tested concentrations. Ozonation was also effective for the fast removal of BP-4 in real waters. The TOC suggested a low mineralization rate, even after the complete BP-4 removal. Meanwhile, the treated mixtures exhibited an obvious inhibition to the bioluminescent bacteria Photobacterium phosphoreum, indicating the formation of transformation products with higher toxicities. Furthermore, fourteen products were identified by means of liquid chromatography-mass spectrometry. Notably, seven of them have not been reported previously. The quenching test indicated that the degradation processes probably were dominated by OH. Next, possible degradation pathways were proposed and further justified by theoretical calculations of frontier electron densities. This investigation will contribute to the systematic elucidation of the ozonation process of UV filters in aquatic environments.
Collapse
Affiliation(s)
- Hui Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China; College of Biological and Chemical Engineering, Jiaxing University, Zhejiang, Jiaxing 314001, PR China
| | - Ping Sun
- College of Biological and Chemical Engineering, Jiaxing University, Zhejiang, Jiaxing 314001, PR China
| | - Qun He
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China
| | - Mingbao Feng
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China
| | - Hongxia Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China; College of Biological and Chemical Engineering, Jiaxing University, Zhejiang, Jiaxing 314001, PR China
| | - Shaogui Yang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China
| | - Liansheng Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China.
| |
Collapse
|
36
|
Papageorgiou A, Papadakis N, Voutsa D. Fate of natural organic matter at a full-scale Drinking Water Treatment Plant in Greece. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:1841-1851. [PMID: 26400244 DOI: 10.1007/s11356-015-5433-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/14/2015] [Indexed: 06/05/2023]
Abstract
The aim of this study was to investigate the fate of natural organic matter (NOM) and subsequent changes during the various treatment processes at a full-scale Drinking Water Treatment Plant (DWTP). Monthly sampling campaigns were conducted for 1 year at six sites along DWTP of Thessaloniki, Northern Greece including raw water from the Aliakmonas River that supplies DWTP and samples from various treatment processes (pre-ozonation, coagulation, sand filtration, ozonation, and granular activated carbon (GAC) filtration). The concentration of NOM and its characteristics as well as the removal efficiency of various treatment processes on the basis of dissolved organic carbon, UV absorbance, specific ultra-violet absorbance, fluorescence intensity, hydrophobicity, biodegradable dissolved organic carbon, and formation potential of chlorination by-products trihalomethanes (THMs) and haloacetic acids (HAAs) were studied. The concentration of dissolved organic carbon (DOC) in reservoir of the Aliakmonas River ranged from 1.46 to 1.84 mg/L, exhibiting variations regarding UV, fluorescence, and hydrophobic character through the year. Along DWTP, a significant reduction of aromatic, fluorophoric, and hydrophobic character of NOM was observed resulting in significant elimination of THM (63%) and HAAs (75%) precursors.
Collapse
Affiliation(s)
- A Papageorgiou
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, 511 24, Thessaloniki, Greece
| | - N Papadakis
- Medical School, Aristotle University of Thessaloniki, 511 24, Thessaloniki, Greece
| | - D Voutsa
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, 511 24, Thessaloniki, Greece.
| |
Collapse
|
37
|
Agbaba J, Jazić JM, Tubić A, Watson M, Maletić S, Isakovski MK, Dalmacija B. Oxidation of natural organic matter with processes involving O3, H2O2and UV light: formation of oxidation and disinfection by-products. RSC Adv 2016. [DOI: 10.1039/c6ra18072h] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study investigates the effects of UV photolysis, ozonation and different advanced oxidation processes (O3/UV, H2O2/UV and O3/H2O2/UV) on the oxidation of groundwater natural organic matter (NOM) and by-product formation.
Collapse
Affiliation(s)
- Jasmina Agbaba
- University of Novi Sad
- Faculty of Sciences
- Department of Chemistry
- Biochemistry and Environmental Protection
- Republic of Serbia
| | - Jelena Molnar Jazić
- University of Novi Sad
- Faculty of Sciences
- Department of Chemistry
- Biochemistry and Environmental Protection
- Republic of Serbia
| | - Aleksandra Tubić
- University of Novi Sad
- Faculty of Sciences
- Department of Chemistry
- Biochemistry and Environmental Protection
- Republic of Serbia
| | - Malcolm Watson
- University of Novi Sad
- Faculty of Sciences
- Department of Chemistry
- Biochemistry and Environmental Protection
- Republic of Serbia
| | - Snežana Maletić
- University of Novi Sad
- Faculty of Sciences
- Department of Chemistry
- Biochemistry and Environmental Protection
- Republic of Serbia
| | - Marijana Kragulj Isakovski
- University of Novi Sad
- Faculty of Sciences
- Department of Chemistry
- Biochemistry and Environmental Protection
- Republic of Serbia
| | - Božo Dalmacija
- University of Novi Sad
- Faculty of Sciences
- Department of Chemistry
- Biochemistry and Environmental Protection
- Republic of Serbia
| |
Collapse
|
38
|
Chen X, Luo Q, Wang D, Gao J, Wei Z, Wang Z, Zhou H, Mazumder A. Simultaneous assessments of occurrence, ecological, human health, and organoleptic hazards for 77 VOCs in typical drinking water sources from 5 major river basins, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 206:64-72. [PMID: 26142752 DOI: 10.1016/j.envpol.2015.06.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/18/2015] [Accepted: 06/21/2015] [Indexed: 06/04/2023]
Abstract
Owing to the growing public awareness on the safety and aesthetics in water sources, more attention has been given to the adverse effects of volatile organic compounds (VOCs) on aquatic organisms and human beings. In this study, 77 target VOCs (including 54 common VOCs, 13 carbonyl compounds, and 10 taste and odor compounds) were detected in typical drinking water sources from 5 major river basins (the Yangtze, the Huaihe, the Yellow, the Haihe and the Liaohe River basins) and their occurrences were characterized. The ecological, human health, and olfactory assessments were performed to assess the major hazards in source water. The investigation showed that there existed potential ecological risks (1.30 × 10 ≤ RQtotals ≤ 8.99 × 10) but little human health risks (6.84 × 10(-7) ≤ RQtotals ≤ 4.24 × 10(-4)) by VOCs, while that odor problems occurred extensively. The priority contaminants in drinking water sources of China were also listed based on the present assessment criteria.
Collapse
Affiliation(s)
- Xichao Chen
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qian Luo
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Donghong Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jijun Gao
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Zi Wei
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zijian Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Huaidong Zhou
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Asit Mazumder
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
39
|
Serrano M, Montesinos I, Cardador MJ, Silva M, Gallego M. Seasonal evaluation of the presence of 46 disinfection by-products throughout a drinking water treatment plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 517:246-58. [PMID: 25771439 DOI: 10.1016/j.scitotenv.2015.02.070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/19/2015] [Accepted: 02/19/2015] [Indexed: 05/03/2023]
Abstract
In this work, we studied a total of 46 regulated and non-regulated disinfection by-products (DBPs) including 10 trihalomethanes (THMs), 13 haloacetic acids (HAAs), 6 halonitromethanes (HNMs), 6 haloacetonitriles (HANs) and 11 aldehydes at different points in a drinking water treatment plant (DWTP) and its distribution network. Determining an increased number of compounds and using accurate, sensitive analytical methodologies for new DBPs can be useful to overcome some challenges encountered in the comprehensive assessment of the quality and safety of drinking water. This paper provides a detailed picture of the spatial and seasonal variability of DBP concentrations from raw water to distribution network. Samples were collected on a monthly basis at seven different points in the four seasons of a year to acquire robust data for DBPs and supplementary quality-related water parameters. Only 5 aldehydes and 2 HAAs were found in raw water. Chlorine dioxide caused the formation of 3 new aldehydes (benzaldehyde included), 5 HAAs and chloroform. The concentrations of DBPs present in raw water were up to 6 times higher in the warmer seasons (spring and summer). The sedimentation process further increased their concentrations and caused the formation of three new ones. Sand filtration substantially removed aldehydes and HAAs (15-50%), but increased the levels of THMs, HNMs and HANs by up to 70%. Chloramination raised the levels of 8 aldehydes and 7 HAAs; also, it caused the formation of monoiodoacetic acid, dibromochloromethane, dichloroiodomethane and bromochloroacetonitrile. Therefore, this treatment increases the levels of existing DBPs and leads to the formation of new ones to a greater extent than does chlorine dioxide. Except for 5 aldehydes, the 23 DBPs encountered at the DWTP exit were found at increased concentrations in the warmer seasons (HAAs by about 50% and THMs by 350%).
Collapse
Affiliation(s)
- Maria Serrano
- Department of Analytical Chemistry, Campus of Rabanales, University of Córdoba, E-14071 Córdoba, Spain
| | - Isabel Montesinos
- Department of Analytical Chemistry, Campus of Rabanales, University of Córdoba, E-14071 Córdoba, Spain
| | - M J Cardador
- Department of Analytical Chemistry, Campus of Rabanales, University of Córdoba, E-14071 Córdoba, Spain
| | - Manuel Silva
- Department of Analytical Chemistry, Campus of Rabanales, University of Córdoba, E-14071 Córdoba, Spain
| | - Mercedes Gallego
- Department of Analytical Chemistry, Campus of Rabanales, University of Córdoba, E-14071 Córdoba, Spain.
| |
Collapse
|