1
|
Li X, Wang M, Hou M, Su G, Sun B, Hua Y, Pang J, Meng J, Shi B, Li Q. Current status and strategies for controlling hexachlorobutadiene from multiple perspectives of emission, occurrence, and disposal. ENVIRONMENTAL RESEARCH 2025; 268:120760. [PMID: 39756780 DOI: 10.1016/j.envres.2025.120760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/05/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Hexachlorobutadiene (HCBD), as an emerging persistent organic pollutant, poses a pressing global environmental issue concerning its reduction and control. However, the lack of systematic studies on the sources and occurrence of HCBD hinders the development of effective disposal technologies. This study addresses HCBD prevention and treatment from multiple perspectives, including source emissions, environmental contamination distribution, and control technologies. The dominant source of HCBD emissions varied by country, mainly industrial production processes of trichloroethylene, perchloroethylene, and carbon tetrachloride in China and magnesium production in Europe. Further research on the relevant generation mechanisms is necessary to develop targeted source control strategies. HCBD has been detected in various environmental media and biological organisms worldwide. Compared to sludge and soil, the concentration of HCBD in the atmosphere and water were relatively higher, particularly in China and Nigeria, with the concentration reaching up to 179 μg/m3 and 2629 μg/L, respectively. Attention should be focused on the water treatment processes to reduce HCBD levels in sludge and ensure the safety of drinking water. Additionally, studies of HCBD exposure levels in organisms should also focus on diet to further assess health risks to humans. Currently, available disposal technologies primarily focus on the treatment of contaminated environmental media, including physical thermal desorption, chemical reduction dechlorination and oxidative degradation, and biodegradation, while the development and application of source control methods remain insufficient. However, these technologies may not completely degrade HCBD, potentially causing secondary pollution. Future efforts should prioritize the development of green, efficient, and thoroughly destructive thermal catalytic technologies, with an emphasis on the integration of multiple techniques. This work provides critical insights for the development and implementation of comprehensive control strategies for HCBD regarding its source, occurrence, and pollution disposal.
Collapse
Affiliation(s)
- Xin Li
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China; Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Mujie Wang
- Foreign Environmental Cooperation Center, Ministry of Ecology and Environment, Beijing, 100035, China
| | - Meifang Hou
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China.
| | - Guijin Su
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bohua Sun
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - YuKang Hua
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaxin Pang
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Meng
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Shi
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qianqian Li
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Meng Y, Li P, Elumalai V. Factors affecting distribution and ecological risk assessment of volatile organic compounds (VOCs) in groundwater of the Huazhou district in northwestern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125243. [PMID: 39505099 DOI: 10.1016/j.envpol.2024.125243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/27/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
Volatile organic compounds (VOCs) pollution in groundwater is a significant global concern. In this study, 26 groundwater samples were collected from the unconfined aquifers in Huazhou District, northwestern China, to assess their distribution characteristics, influencing factors, and ecological risks across various geomorphological settings. The findings revealed 35 VOCs in collected groundwater samples, with aromatic hydrocarbons having the highest detection rate (100%), and the VOCs distribution exhibited significant spatial variations, with the highest VOCs concentration near a chemical plant on the inclined pluvial plain. The lithology and groundwater flow influenced the vertical and lateral transport of VOCs, with concentrations decreasing as the aquifer permeability decreases along the groundwater flow from the inclined pluvial plain to the river. The Mantel test was used to analyze the correlation between VOCs and environmental factors, geochemical analyses indicated that nitrate (NO3-) and sulfate (SO42-) served as electron acceptors in the anaerobic biodegradation of organic pollutants, with bicarbonate (HCO3-) levels increasing as a result of this biodegradation. Additionally, the curved streamline searchlight shaped model (CS-SLM) was applied to identify the primary land use types affecting VOCs content, construction land and cropland were primary land use types affecting VOCs distribution. Finally, the ecological risk assessment indicated the highest risk quotient (RQ) for styrene (0.21), suggesting a manageable risk level. The study emphasizes the complexity of VOCs contamination in groundwater, providing a foundation for targeted mitigation strategies.
Collapse
Affiliation(s)
- Yueyue Meng
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China
| | - Peiyue Li
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China.
| | - Vetrimurugan Elumalai
- Department of Hydrology, University of Zululand, Kwa-Dlangezwa, Richards Bay, 3886, Durban, South Africa
| |
Collapse
|
3
|
Muambo KE, Kim MG, Kim DH, Park S, Oh JE. Pharmaceuticals in raw and treated water from drinking water treatment plants nationwide: Insights into their sources and exposure risk assessment. WATER RESEARCH X 2024; 24:100256. [PMID: 39291270 PMCID: PMC11406100 DOI: 10.1016/j.wroa.2024.100256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/06/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
Due to the large amounts of pharmaceuticals and personal care products (PPCPs) currently being consumed and released into the environment, this study provides a comprehensive analysis of pharmaceutical pollution in both raw and treated water from full-scale drinking water treatment plants nationwide. Our investigation revealed that 30 out of 37 PPCPs were present in raw water with mean concentrations ranging from 0.01-131 ng/L. The raw water sources, surface water (ND - 147 ng/L), subsurface water (ND - 123 ng/L) and reservoir sources (ND - 135 ng/L) exhibited higher mean concentration levels of pharmaceutical residues compared to groundwater sources (ND - 1.89 ng/L). Meanwhile, in treated water, 17 of the 37 analyzed PPCPs were present with carbamazepine, clarithromycin, fluconazole, telmisartan, valsartan, and cotinine being the most common (detection frequency > 40 %), and having mean concentrations of 1.22, 0.12, 3.48, 40.1, 6.36, and 3.73 ng/L, respectively. These findings highlight that, while water treatment processes are effective, there are some persistent compounds that prove challenging to fully eliminate. Using Monte Carlo simulations, risk assessment indicated that most of these compounds are likely to have negligible impact on human health, except for the antihypertensives. Telmisartan was identified as posing the highest ecological risk (RQ > 1), warranting further investigation, and monitoring. The study concludes by prioritizing specific 14 pharmaceuticals, including telmisartan, clarithromycin, lamotrigine, cotinine, lidocaine, tramadol, and others, for future monitoring to safeguard both ecological and human health.
Collapse
Affiliation(s)
- Kimberly Etombi Muambo
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Min-Gyeong Kim
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Da-Hye Kim
- Institute for Environment and Energy, Pusan National University Busan 46241, Republic of Korea
| | - Sangmin Park
- Department of Environmental Infrastructure Research, National Institute of Environmental Research, Ministry of Environment, Incheon 22689, South Korea
| | - Jeong-Eun Oh
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
- Institute for Environment and Energy, Pusan National University Busan 46241, Republic of Korea
| |
Collapse
|
4
|
Wm-Bekele D, GirmaTilahun, Dadebo E, Haileslassie A, Gebremariam Z. Organochlorine, organophosphorus, and carbamate pesticide residues in an Ethiopian Rift Valley Lake Hawassa: occurrences and possible ecological risks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:27749-27769. [PMID: 38517634 DOI: 10.1007/s11356-024-32848-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/06/2024] [Indexed: 03/24/2024]
Abstract
Currently, pesticide production and use are on the rise globally. This trend is certain to continue in the coming decades with residues posing risks to the environment and human health even at low levels. Although various aspects of pesticides and their possible implications have widely been studied, such studies have mostly been carried out in developed countries leaving the rest of the world with little scientific information. We present here the results of a study on the occurrences, concentrations, and ecological risks of 30 pesticide residues (PRs) in water and sediment samples from a tropical freshwater Lake Hawassa in the Ethiopian Rift Valley. A total of 54 composite samples of water and sediment were collected from three sampling sites on three occasions. The samples were prepared by quick, easy, cheap, effective, rugged, and safe (QuEChERS) technique, and analyzed using GC-MS at Bless Agri Food Laboratory Service located in Addis Ababa, Ethiopia. The study applied the risk quotient (RQ) method to scrutinize the risks posed to aquatic biota by the detected PRs. The results showed occurrences of 18 and 20 PRs in the water and sediment samples, respectively. The majority, 78 and 75% of the detected PRs in water and sediment samples, respectively represent the organochlorine chemical class. Concentrations of heptachlor epoxide were significantly (p ≤ 0.001) higher than those of the remaining pesticides in both matrices. Of the pesticides detected, 77% were present in water and 83% in sediment samples and pose a serious risk (RQ ≥ 1) to the Lake Hawassa biota. This calls for further research to investigate the risks to human health posed by the PRs. The findings of this study can contribute to the development of global protocols, as they support the concerns raised about the ecological and public health impacts of PRs on a global level.
Collapse
Affiliation(s)
- Daniel Wm-Bekele
- Biology Department, Environmental Toxicology Program, Hawassa University, Hawassa City, Ethiopia.
- Hawassa College of Teachers Education, Hawassa City, Ethiopia.
| | - GirmaTilahun
- Department of Aquatic Sciences, Fisheries & Aquaculture, Hawassa University, Hawassa City, Ethiopia
| | - Elias Dadebo
- Department of Aquatic Sciences, Fisheries & Aquaculture, Hawassa University, Hawassa City, Ethiopia
| | - Amare Haileslassie
- International Water Management Institute (IWMI)-Ethiopia, Addis Ababa, Ethiopia
| | - Zinabu Gebremariam
- Department of Aquatic Sciences, Fisheries & Aquaculture, Hawassa University, Hawassa City, Ethiopia
| |
Collapse
|
5
|
Ngin P, Haglund P, Proum S, Fick J. Pesticide screening of surface water and soil along the Mekong River in Cambodia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169312. [PMID: 38104830 DOI: 10.1016/j.scitotenv.2023.169312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Widespread use of pesticides globally has led to serious concerns about environmental contamination, particularly with regard to aquatic and soil ecosystems. This work involved investigating concentrations of 64 pesticides in surface-water and soil samples collected in four provinces along the Mekong River in Cambodia during the dry and rainy seasons (276 samples in total), and conducting semi-structured interviews with local farmers about pesticide use. Furthermore, an ecological risk assessment of the detected pesticides was performed. In total, 56 pesticides were detected in surface water and 43 in soil, with individual pesticides reaching maximum concentrations of 1300 ng/L in the surface-water samples (tebufenozide) and 1100 ng/g dry weight in the soil samples (bromophos-ethyl). The semi-structured interviews made it quite evident that the instructions that farmers are provided regarding the use of pesticides are rudimentary, and that overuse is common. The perceived effect of pesticides was seen as an end-point, and there was a limited process of optimally matching pesticides to pests and crops. Several pesticides were used regularly on the same crop, and the period between application and harvest varied. Risk analysis showed that bromophos-ethyl, dichlorvos, and iprobenfos presented a very high risk to aquatic organisms in both the dry and rainy seasons, with risk quotient values of 850 for both seasons, and of 67 in the dry season and 78 in the rainy season for bromophos-ethyl, and 49 in the dry season and 16 in the rainy season for dichlorvos. Overall, this work highlights the occurrence of pesticide residues in surface water and soil along the Mekong River in Cambodia, and emphasizes the urgent need for monitoring and improving pesticide practices and regulations in the region.
Collapse
Affiliation(s)
- Putheary Ngin
- Department of Chemistry, Umeå University, Umeå, Sweden; Department of Chemistry, Royal University of Phnom Penh, Phnom Penh, Cambodia.
| | - Peter Haglund
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Sorya Proum
- Department of Chemistry, Royal University of Phnom Penh, Phnom Penh, Cambodia
| | - Jerker Fick
- Department of Chemistry, Umeå University, Umeå, Sweden
| |
Collapse
|
6
|
Saravanakumar K, Park S, Vijayasarathy S, Swaminathan A, Sivasantosh S, Kim Y, Yoo G, Madhumitha H, MubarakAli D, Cho N. Cellular metabolism and health impacts of dichlorvos: Occurrence, detection, prevention, and remedial strategies-A review. ENVIRONMENTAL RESEARCH 2024; 242:117600. [PMID: 37939806 DOI: 10.1016/j.envres.2023.117600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/28/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Dichlorvos (2,2-Dichlorovinyl dimethyl phosphate, [DDVP]) belongs to the class of organophosphates and is widely used as an insecticide in agriculture farming and post-harvest storage units. Extensive research has been conducted to assess the factors responsible for the presence of DDVP in terrestrial and aquatic ecosystems, as well as the entire food chain. Numerous studies have demonstrated the presence of DDVP metabolites in the food chain and their toxicity to mammals. These studies emphasize that both immediate and chronic exposure to DDVP can disrupt the host's homeostasis, leading to multi-organ damage. Furthermore, as a potent carcinogen, DDVP can harm aquatic systems. Therefore, understanding the contamination of DDVP and its toxicological effects on both plants and mammals is vital for minimizing potential risks and enhancing safety in the future. This review aimed to comprehensively consolidate information about the distribution, ecological effects, and health impacts of DDVP, as well as its metabolism, detection, prevention, and remediation strategies. In summary, this study observes the distribution of DDVP contaminations in vegetables and fruits, resulting in significant toxicity to humans. Although several detection and bioremediation strategies are emerging, the improper application of DDVP and the alarming level of DDVP contamination in foods lead to human toxicity that requires attention.
Collapse
Affiliation(s)
- Kandasamy Saravanakumar
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - SeonJu Park
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon, 24341, Republic of Korea.
| | - Sampathkumar Vijayasarathy
- The Interfaculty Institute of Cell Biology, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany.
| | - Akila Swaminathan
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| | | | - Yebon Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Guijae Yoo
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-Gun, Jeollabuk-do, Republic of Korea.
| | - Hariharamohan Madhumitha
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu, 600048, India.
| | - Davoodbasha MubarakAli
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu, 600048, India.
| | - Namki Cho
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
7
|
Gordillo L, Quiroga L, Ray M, Sanabria E. Changes in thermal sensitivity of Rhinella arenarum tadpoles (Anura: Bufonidae) exposed to sublethal concentrations of different pesticide fractions (Lorsban® 75WG). J Therm Biol 2024; 120:103816. [PMID: 38428105 DOI: 10.1016/j.jtherbio.2024.103816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 03/03/2024]
Abstract
The intensive use of agrochemicals and the rapid increase of global temperatures have modified the thermal conditions of aquatic environments, thus increasing amphibians' vulnerability to global warming and positioning them at great risk. Commercial formulations of chlorpyrifos (COM) are the pesticides most widely used in agricultural activities, with a high toxic potential on amphibians. However, little is known about the separate effects of the active ingredient (CPF) and adjuvants (AD). We studied the thermal sensitivity at different concentrations and pesticide fractions in Rhinella arenarum tadpoles, on thermal tolerance limits (CTmax = Critical thermal maximum and CTmin = Critical thermal minimum), swimming speed (Ss), Optimum temperature (Top), and Thermal breadth 50 (B50). Our results demonstrate that the pesticide active ingredient, the adjuvants, and the commercial formulation of chlorpyrifos differentially impair the thermal sensitivity of R. arenarum tadpoles. The pesticide fractions affected the heat and the cold tolerance (CTmax and CTmin), depending on the concentrations they were exposed to. The locomotor performance (Ss, Top, and B50) of tadpoles also varied among fractions, treatments, and environmental temperatures. In the context of climate change, the outcomes presented are particularly relevant, as mean temperatures are increasing at unprecedented rates, which suggests that tadpoles inhabiting warming and polluted ponds are currently experiencing deleterious conditions. Considering that larval stages of amphibians are the most susceptible to changing environmental conditions and the alarming predictions about environmental temperatures in the future, it is likely that the synergism between high temperatures and pesticide exposure raise the threat of population deletions in the coming years.
Collapse
Affiliation(s)
- Luciana Gordillo
- Instituto de Ciencias Básicas, Facultad de Filosofía Humanidades y Artes, Universidad Nacional de San Juan. Av. Ignacio de la Roza 230 (Oeste), (5400), San Juan, Argentina; CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.
| | - Lorena Quiroga
- Instituto de Ciencias Básicas, Facultad de Filosofía Humanidades y Artes, Universidad Nacional de San Juan. Av. Ignacio de la Roza 230 (Oeste), (5400), San Juan, Argentina; CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.
| | - Maribel Ray
- Instituto de Ciencias Básicas, Facultad de Filosofía Humanidades y Artes, Universidad Nacional de San Juan. Av. Ignacio de la Roza 230 (Oeste), (5400), San Juan, Argentina.
| | - Eduardo Sanabria
- Instituto de Ciencias Básicas, Facultad de Filosofía Humanidades y Artes, Universidad Nacional de San Juan. Av. Ignacio de la Roza 230 (Oeste), (5400), San Juan, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo. Padre Jorge Contreras 1300. (M5502JMA), Mendoza, Argentina; CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.
| |
Collapse
|
8
|
Lee S, Choi Y, Kang D, Jeon J. Proposal for priority emerging pollutants in the Nakdong river, Korea: Application of EU watch list mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122838. [PMID: 37918771 DOI: 10.1016/j.envpol.2023.122838] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/14/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023]
Abstract
The Nakdong River, the longest in Korea, has received numerous pollutants from heavily industrialized and densely populated areas while being used as a drinking water source. A number of research have reported occurrences of emerging pollutants (EPs) in the river. The results requested efficient monitoring and systematic management strategies such as EU watch list under Water Framework Directive. The aim of this study is to propose a watch list through preliminary monitoring of the river and risk-based prioritization approach. As candidates for monitoring target, 632 substances were selected based on literature and database searches. Among them, 175 substances were subjected to target screening method whereas 457 were evaluated via suspect screening. A risk-based prioritization was applied to substances quantified through target screening based on concentrations, and a scoring-based prioritization was applied to substances tentatively identified through suspect screening. Sampling campaigns (n = 12) were conducted from October 2020 to September 2021, at 8 sampling sites along the river. As a result, 130 target substances were quantified above the LOQ. Among the 21 substances whose priority score was assigned through risk-based prioritization, telmisartan and iprobenfos were identified with very high environmental risk while candesartan, TBEP, imidacloprid, azithromycin and clotrimazole were classified with high or intermediate risk. As result of the scoring system for 39 tentatively identified substances, 6 substances (benzophenone, caprolactam, metolachlor oxanilic acid, heptaethylene glycol, octaethylene glycol and pentaethylene glycol), which were then confirmed with reference standards, showed a potential environmental risk. Those substances prioritized through target and suspect screening followed by scoring systems can be a subset for the watch list and potential targets for nationwide water quality monitoring program in the future.
Collapse
Affiliation(s)
- Sangyoon Lee
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo, 51140, South Korea
| | - Younghun Choi
- Graduate School of FEED of Eco-Friendly Offshore Structure, Changwon National University, Changwon, Gyeongsangnamdo, 51140, South Korea; Water Environmental Safety Management Dept., Korea Water Resources Corporation (K-water), 200 Sintanjin-ro, Daedeok-gu, Daejeon, 34350, South Korea
| | - Daeho Kang
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo, 51140, South Korea
| | - Junho Jeon
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo, 51140, South Korea; School of Smart and Green Engineering, Changwon National University, Changwon, Gyeongsangnamdo, 51140, South Korea.
| |
Collapse
|
9
|
Zhao J, Shang C, Yin R. Developing a hybrid model for predicting the reaction kinetics between chlorine and micropollutants in water. WATER RESEARCH 2023; 247:120794. [PMID: 37918199 DOI: 10.1016/j.watres.2023.120794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 10/03/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023]
Abstract
Understanding the reactivities of chlorine towards micropollutants is crucial for assessing the fate of micropollutants in water chlorination. In this study, we integrated machine learning with kinetic modeling to predict the reaction kinetics between micropollutants and chlorine in deionized water and real surface water. We first established a framework to predict the apparent second-order rate constants for micropollutants with chlorine by combining Morgan molecular fingerprints with machine learning algorithms. The framework was tuned using Bayesian optimization and showed high prediction accuracy. It was validated through experiments and used to predict the unreported apparent second-order rate constants for 103 emerging micropollutants with chlorine. The framework also improved the understanding of the structure-dependence of micropollutants' reactivity with chlorine. We incorporated the predicted apparent second-order rate constants into the Kintecus software to establish a hybrid model to profile the time-dependent changes of micropollutant concentrations by chlorination. The hybrid model was validated by experiments conducted in real surface water in the presence of natural organic matter. The hybrid model could predict how much micropollutants were degraded by chlorination with varied chlorine contact times and/or initial chlorine dosages. This study advances fundamental understanding of the reaction kinetics between chlorine and emerging micropollutants, and also offers a valuable tool to assess the fate of micropollutants during chlorination of drinking water.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Chii Shang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Ran Yin
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
10
|
Chen M, Hong Y, Jin X, Guo C, Zhao X, Liu N, Lu H, Liu Y, Xu J. Ranking the risks of eighty pharmaceuticals in surface water of a megacity: A multilevel optimization strategy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163184. [PMID: 37001676 DOI: 10.1016/j.scitotenv.2023.163184] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/01/2023] [Accepted: 03/27/2023] [Indexed: 05/13/2023]
Abstract
Pharmaceuticals in freshwater posed ecological risks to aquatic ecosystem, however, most risk assessments of pharmaceuticals were conducted at screening level, which were limited by the availability of the toxicity data. In this study, risks of 80 pharmaceuticals including 35 antibiotics, 13 antiviral drugs, 13 illicit drugs, and 19 antidepressants in surface water of Beijing were assessed with a proposed multilevel environmental risk optimization strategy. Target pharmaceuticals were detected in surface water samples with the detection frequency from 1.7 % to 100 % and the total concentrations from 31.1 ng/L to 2708 ng/L. Antiviral drugs were the dominant pharmaceuticals. Preliminary screening-level risk assessment indicated that 20 pharmaceuticals posed low to high risks with risk quotient from 0.14 (chloroquine diphosphate) to 27.8 (clarithromycin). Thirteen pharmaceuticals were recognized with low to high risks by an optimized risk assessment method. Of them, the refined probabilistic risk assessment of joint probability curves coupling with a quantitative structure activity relationship-interspecies correlation estimation (QSAR-ICE) model was applied. Clarithromycin, erythromycin and ofloxacin were identified to pose low risks with maximum risk products (RP) of 1.23 %, 0.41 % and 0.35 %, respectively, while 10 pharmaceuticals posed de minimis risks. Structural equation modeling disclosed that human land use and climate conditions influenced the risks of pharmaceuticals by indirectly influencing the concentrations of pharmaceuticals. The results indicated that the multilevel strategy coupling with QSAR-ICE model was appropriate and effective for screening priority pollutants, and the strategy can be used to prioritize pharmaceuticals and other emerging contaminants in the aquatic environment.
Collapse
Affiliation(s)
- Miao Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yajun Hong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing 100012, China.
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xu Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; China National Environmental Monitoring Centre, Beijing 100012, China
| | - Na Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Haijian Lu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yang Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
11
|
Kim JY, Jeon J, Kim SD. Prioritization of pharmaceuticals and personal care products in the surface waters of Korea: Application of an optimized risk-based methods. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115024. [PMID: 37201424 DOI: 10.1016/j.ecoenv.2023.115024] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/20/2023]
Abstract
The occurrence of PPCPs in aquatic environments and their potential adverse effects on aquatic organisms have raised worldwide concerns. To address this issue, a study was conducted to analyze 137 selected PPCPs in Korean surface waters, and an optimized risk-based prioritization was performed. The results revealed that 120 PPCPs were detected, with 98 quantified at concentrations ranging from few ng/L to 42,733 ng/L for metformin. The 95% upper confidence limit (UCL95) of the mean value of the measured environmental concentration (MEC) for Metformin was about eight times higher than the second highest compound, dimethyl phthalate, indicating that antidiabetic groups had the highest concentration among the therapeutic groups. An optimized risk-based prioritization was then assessed based on the multiplication of two indicators, the Frequency of Exceedance and the Extent of Exceedance of Predicted No-Effect Concentrations (PNECs), which can be calculated using the traditional risk quotient (RQ) approach. The study found that clotrimazole had the highest risk quotient value of 17.4, indicating a high risk to aquatic organisms, with seven and 13 compounds showing RQ values above 1 and 0.1, respectively. After considering the frequency of exceedance, clotrimazole still had the highest novel risk quotient (RQf) value of 17.4, with 99.6% of its MECs exceeding PNECs. However, the number of compounds with RQf values above 1 decreased from seven to five, with cetirizine and flubendazole being excluded. Furthermore, only 10 compounds exhibited RQf values above 0.1. The study also observed significant differences in the results between risk-based and exposure-based prioritization methods, with only five compounds, cetirizine, olmesartan, climbazole, sulfapyridine, and imidacloprid, identified in both methods. This finding highlights the importance of considering multiple methods for prioritizing chemicals, as different approaches may yield different results.
Collapse
Affiliation(s)
- Jun Yub Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-Gwagiro, Gwangju 61005, Republic of Korea
| | - Junho Jeon
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea; School of Smart and Green Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea
| | - Sang Don Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-Gwagiro, Gwangju 61005, Republic of Korea.
| |
Collapse
|
12
|
Ates N, Uzal N, Yetis U, Dilek FB. Removal of pesticides from secondary treated urban wastewater by reverse osmosis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:8732-8745. [PMID: 35404035 DOI: 10.1007/s11356-022-20077-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
The residues of pesticides that reach water resources from agricultural activities in several ways contaminate drinking water resources and threaten aquatic life. This study aimed to investigate the performance of three reverse osmosis (RO) membranes (BW30-LE, SW30-XLE, and GE-AD) in rejecting four different pesticides (tributyl phosphate, flutriafol, dicofol, and irgarol) from secondary treated urban wastewater and also to elucidate the mechanisms underlying the rejection of these pesticides. RO experiments were conducted using pesticide-spiked wastewater samples under 10 and 20 bar transmembrane pressures (TMP) and membrane performances were evaluated. Overall, all the membranes tested exhibited over 95% rejection performances for all pesticides at both TMPs. The highest rejections for tributyl phosphate (99.0%) and irgarol (98.3%) were obtained with the BW30-LE membrane, while for flutriafol (99.9%) and dicofol (99.1%) with the GE-AD membrane. The increase in TMP from 10 to 20 bar did not significantly affect the rejections of all pesticides. The rejection performances of RO membranes were found to be governed by projection area as well as molecular weight and hydrophobicity/hydrophilicity of pesticides. Among the membranes tested, the SW30-XLE membrane was the most prone to fouling due to the higher roughness.
Collapse
Affiliation(s)
- Nuray Ates
- Department of Environmental Engineering, Erciyes University, Kayseri, Turkey.
| | - Nigmet Uzal
- Department of Civil Engineering, Abdullah Gul University, Kayseri, Turkey
| | - Ulku Yetis
- Department of Environmental Engineering, Middle East Technical University, Ankara, Turkey
| | - Filiz B Dilek
- Department of Environmental Engineering, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
13
|
Chen M, Jin X, Liu Y, Guo L, Ma Y, Guo C, Wang F, Xu J. Human activities induce potential aquatic threats of micropollutants in Danjiangkou Reservoir, the largest artificial freshwater lake in Asia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157843. [PMID: 35934027 DOI: 10.1016/j.scitotenv.2022.157843] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Freshwater biodiversity and ecosystem services may decline because of toxicant input, and other environmental variables often co-occur with contaminants to jeopardize the freshwater ecosystem. In this study, Danjiangkou Reservoir (DJKR) in central China was selected as the target research area to investigate the impact of multiple categories of micropollutants coupled with other stressors on the reservoir ecosystem. A total of 140 samples were collected from 28 sites in DJKR, and 124 micropollutants, including pesticides, organophosphate esters (OPEs), psychoactive substances, antiviral drugs, and pharmaceutical and personal care products, were quantified. A total of 108 micropollutants were detected in the water samples, with sum concentrations ranging from 82.35 ng·L-1 to 1436.57 ng·L-1, and 71 of them had a detection frequency above 50 %, indicating the prevailing micropollutant contamination in the reservoir. The most severe pollution and risks were observed in the tributaries of DJKR. Pesticides (neonicotinoid and triazine) and OPEs were the major contributors to the ecological risk in the reservoir. Insecticides, herbicides, and OPEs accounted for the majority of the risks to fish, algae, and invertebrates, respectively. The determined priority pollutants should be paid increased attention. Environmental variables and human activities, such as human land use, induced the potential aquatic threats of micropollutants in DJKR. Results demonstrated that micropollutant pollution was one of the dominant pressures faced by aquatic organisms and human beings, and human activities played important roles as well.
Collapse
Affiliation(s)
- Miao Chen
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing 100012, China.
| | - Yang Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Li Guo
- Hubei Ecological Environment Monitoring Center Station, Wuhan 430072, China
| | - Yu Ma
- China National Environmental Monitoring Centre, Beijing 100012, China
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fan Wang
- Hubei Ecological Environment Monitoring Center Station, Wuhan 430072, China
| | - Jian Xu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
14
|
Sim W, Choi S, Lee HJ, Kim K, Park K, Oh JE. Evaluation of sample preparation methods for suspect and non-target screening in water, sediment, and biota samples using gas chromatography coupled to high-resolution mass spectrometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157835. [PMID: 35934023 DOI: 10.1016/j.scitotenv.2022.157835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
In this study, the sample preparation methods were proposed for the suspect and non-target screening (SNTS) using gas chromatography coupled to high-resolution mass spectrometry in the aquatic environment. The pretreatment methods were evaluated based on detection rates, recoveries, and screening detection limits (SDLs) for 316 substances spiked into surface water, sediment, and biota samples. The detection rates of the spiked compounds were 92.1 % and 98.7 % by the sample preparation methods for water (solid-phase extraction using HLB cartridge) and sediment (ultrasonic extraction (USE) with HLB cartridge clean-up), respectively. Similarly, USE with HLB cartridge clean-up gave the highest detection rate (87.9 %) for biota samples; however, additional pretreatment method using deactivated silica gel clean-up was necessary for the detection of persistent organic pollutants (POPs). The SDL ranges of spiked compounds by the suggested pretreatment methods were 0.01-23.5 ng/L for surface water, 0.02-37.5 ng/g dry weight for sediment, and 0.01-12.2 ng/g wet weight for biota. Although some pollutants, such as POPs had SDLs that were higher than the levels normally detected in the aquatic environment as reported in previous studies, the analytical methods suggested in the present study were satisfactory for the SNTS of most pollutants originated from anthropogenic sources.
Collapse
Affiliation(s)
- Wonjin Sim
- Institute for Environment and Energy, Pusan National University, Busan 46241, Republic of Korea.
| | - Sol Choi
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Heon-Jun Lee
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Kyungtae Kim
- National Institute of Environmental Research, Incheon 22689, Republic of Korea.
| | - Kyunghwa Park
- National Institute of Environmental Research, Incheon 22689, Republic of Korea.
| | - Jeong-Eun Oh
- Institute for Environment and Energy, Pusan National University, Busan 46241, Republic of Korea; Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
15
|
Dolatabadi M, Naidu H, Ahmadzadeh S. Adsorption characteristics in the removal of chlorpyrifos from groundwater using magnetic graphene oxide and carboxy methyl cellulose composite. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
16
|
Chormare R, Kumar MA. Environmental health and risk assessment metrics with special mention to biotransfer, bioaccumulation and biomagnification of environmental pollutants. CHEMOSPHERE 2022; 302:134836. [PMID: 35525441 DOI: 10.1016/j.chemosphere.2022.134836] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/13/2022] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
The environment pollutants, which are landed up in environment because of human activities like urbanization, mining and industrializations, affects human health, plants and animals. The living organisms present in environment are constantly affected by the toxic pollutants through direct contact or bioaccumulation of chemicals from the environment. The toxic and hazardous pollutants are easily transferred to different environmental matrices like land, air and water bodies such as surface and ground waters. This comprehensive review deeply discusses the routes and causes of different environmental pollutants along with their toxicity, impact, occurrences and fate in the environment. Environment health and risk assessment tools that are used to evaluate the harmfulness, exposure of living organisms to pollutants and the amount of pollutant accumulated are explained with help of bio-kinetic models. Biotransfer, toxicity factor, biomagnification and bioaccumulation of different pollutants in the air, water and marine ecosystems are critically addressed. Thus, the presented survey would be collection of correlations those addresses the factors involved in assessing the environmental health and risk impacts of distinct environmental pollutants.
Collapse
Affiliation(s)
- Rishikesh Chormare
- Process Design and Engineering Cell, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India
| | - Madhava Anil Kumar
- Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India; Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India.
| |
Collapse
|
17
|
Homem V, Llompart M, Vila M, Ribeiro ARL, Garcia-Jares C, Ratola N, Celeiro M. Gone with the flow - Assessment of personal care products in Portuguese rivers. CHEMOSPHERE 2022; 293:133552. [PMID: 35007608 DOI: 10.1016/j.chemosphere.2022.133552] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 05/08/2023]
Abstract
Although there are several works in the literature that study the presence of pharmaceuticals and personal care products (PPCPs) in surface waters, the vast majority focus their attention on pharmaceuticals and little information is found about personal care products (PCPs). Therefore, this study focused, for the first time, on the monitoring of five classes of PCPs - fragrance allergens, synthetic musks, phthalates, antioxidants, and ultraviolet-filters - in the surface water of four small-size typically pollution-impacted Portuguese rivers (Ave, Leça, Antuã and Cértima). A solid-phase microextraction (SPME) followed by gas chromatography - tandem mass spectrometry (GC-MS/MS) protocol was employed to analyse surface water samples collected in two seasonal campaigns - summer and winter (34 samples per season). A total of 22 out of 37 target PCPs were detected concomitantly at least once in one sampling point, being the most frequently detected α-isomethyl ionone, galaxolide, tonalide and cashmeran. The highest concentrations were confirmed for diethylhexyl phthalate (610.6 ng L-1), galaxolide (379.2 ng L-1), geraniol (290.9 ng L-1), linalool (271.2 ng L-1), benzophenone-3 (254.1 ng L-1) and citronellol (200.2 ng L-1). Leça River, traversing the more densely urban and industrialized area, had the highest levels of contaminants, which were also found in the sampling points located downstream of wastewater treatment plants discharge points. In general, higher levels were detected in summer, when the river flows are lower. Hazard quotients were determined and octocrylene, tonalide, and geraniol presented values above 1 in some sampling sites, which may indicate an ecotoxicological risk to the aquatic environment. The results presented suggest that these three PCPs should be included as priority pollutants in environmental monitoring schemes in surface waters, due to their high detection, persistence, and potential adverse effects.
Collapse
Affiliation(s)
- Vera Homem
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| | - Maria Llompart
- CRETUS, Department of Analytical Chemistry, Nutrition and Food Science, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| | - Marlene Vila
- CRETUS, Department of Analytical Chemistry, Nutrition and Food Science, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| | - Ana R L Ribeiro
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal
| | - Carmen Garcia-Jares
- CRETUS, Department of Analytical Chemistry, Nutrition and Food Science, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| | - Nuno Ratola
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Maria Celeiro
- CRETUS, Department of Analytical Chemistry, Nutrition and Food Science, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| |
Collapse
|
18
|
Priority Pollutants Monitoring and Water Quality Assessment in the Siret River Basin, Romania. WATER 2022. [DOI: 10.3390/w14010129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Integrated Water Resources Management regulations aim to ensure a good status of surface water quality and its sustainable use. Water quality monitoring of various water users supports the identification of pollution sources and their environmental impacts. The priority pollutants generated by wastewater discharges from municipal, industrial wastewater treatment plants or agricultural areas are of great interest due to their eco-toxicological effects and bio-accumulative properties. The aim of this study was to monitor the priority organic and inorganic pollutants from the Siret River basin, in Romania, with the purpose of assessing the surface water quality status and evaluating it by the Water Quality Index (WAWQI) method. The monitoring of inorganic priority pollutants (e.g., As, Cd, Hg, Ni, Pb) and organic priority pollutants (e.g., Naphthalene, Anthracene, Phenanthrene, Fluoranthene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Benzo(ghi)perylene, Indeno(1,2,3-cd)pyrene, α, β, and γ-Hexachlorocyclohexane, and Di-2-ethyl-hexyl-phthalate) was conducted within the Siret River basin, during the period 2015–2020. With this purpose, 21 sampling points (18 river sections and 3 lakes) were considered to assess the water quality. The results of this study proved that the water quality within the Siret River basin is generally classified in the 2nd or 3rd class. The spatial distribution of the water quality index values, using ARCGIS, also highlighted the fact that the water quality is mostly unsuitable for drinking water supplies, being influenced by the quality of its main tributaries, as well as by the effluent of wastewater treatment plants.
Collapse
|
19
|
Yang Y, Zhang X, Jiang J, Han J, Li W, Li X, Yee Leung KM, Snyder SA, Alvarez PJJ. Which Micropollutants in Water Environments Deserve More Attention Globally? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13-29. [PMID: 34932308 DOI: 10.1021/acs.est.1c04250] [Citation(s) in RCA: 172] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Increasing chemical pollution of aquatic environments is a growing concern with global relevance. A large number of organic chemicals are termed as "micropollutants" due to their low concentrations, and long-term exposure to micropollutants may pose considerable risks to aquatic organisms and human health. In recent decades, numerous treatment methods and technologies have been proposed to remove micropollutants in water, and typically several micropollutants were chosen as target pollutants to evaluate removal efficiencies. However, it is often unclear whether their toxicity and occurrence levels and frequencies enable them to contribute significantly to the overall chemical pollution in global aquatic environments. This review intends to answer an important lingering question: Which micropollutants or class of micropollutants deserve more attention globally and should be removed with higher priority? Different risk-based prioritization approaches were used to address this question. The risk quotient (RQ) method was found to be a feasible approach to prioritize micropollutants in a large scale due to its relatively simple assessment procedure and extensive use. A total of 83 prioritization case studies using the RQ method in the past decade were compiled, and 473 compounds that were selected by screening 3466 compounds of three broad classes (pharmaceuticals and personal care products (PPCPs), pesticides, and industrial chemicals) were found to have risks (RQ > 0.01). To determine the micropollutants of global importance, we propose an overall risk surrogate, that is, the weighted average risk quotient (WARQ). The WARQ integrates the risk intensity and frequency of micropollutants in global aquatic environments to achieve a more comprehensive priority determination. Through metadata analysis, we recommend a ranked list of 53 micropollutants, including 36 PPCPs (e.g., sulfamethoxazole and ibuprofen), seven pesticides (e.g., heptachlor and diazinon), and 10 industrial chemicals (e.g., perfluorooctanesulfonic acid and 4-nonylphenol) for risk management and remediation efforts. One caveat is that the ranked list of global importance does not consider transformation products of micropollutants (including disinfection byproducts) and new forms of pollutants (including antibiotic resistance genes and microplastics), and this list of global importance may not be directly applicable to a specific region or country. Also, it needs mentioning that there might be no best answer toward this question, and hopefully this review can act as a small step toward a better answer.
Collapse
Affiliation(s)
- Yun Yang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Xiangru Zhang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Jingyi Jiang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Jiarui Han
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Wanxin Li
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Xiaoyan Li
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Kenneth Mei Yee Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong China
| | - Shane A Snyder
- Nanyang Technological University, Nanyang Environment & Water Research Institute, 1 Cleantech Loop, CleanTech One, #06-08, 637141, Singapore
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
20
|
Zhang K, Chang S, Fu Q, Sun X, Fan Y, Zhang M, Tu X, Qadeer A. Occurrence and risk assessment of volatile organic compounds in multiple drinking water sources in the Yangtze River Delta region, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112741. [PMID: 34481355 DOI: 10.1016/j.ecoenv.2021.112741] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Volatile organic compounds (VOCs) are widely present in water environment, which can threaten ecological sustainability and human health. The concentrations of VOCs and their ecological risks in drinking water are of great concern to human beings. Therefore, 54 kinds of VOCs were investigated from 58 locations of the Yangtze River Delta Region (Yangtze River, Qiantang River, Huangpu River, Taihu Lake and Jiaxing Urban River). Out of 54 target compounds, only 31 VOCs were detected, with total concentrations ranging from 0.570 to 46.820 μg/L from 58 locations of all drinking water sources. Among all detected VOCs compounds, only toluene and styrene can cause high-level ecological risk at location TH-2 of Taihu Lake. According to the carcinogenic and non-carcinogenic risk index, compounds such as 1,2-dichloroethane, bromodichloromethane and 1,1,2-trichloroethane posed a higher carcinogenic risk, and 1,2-dichloroethane, trichloroethylene and toluene posed a higher non-carcinogenic risk. Olfactory risks of water bodies in the Yangtze River Delta region are negligible. Although the concentrations of VOCs in the Yangtze River Delta region did not exceed national standards in China and guidelines of the World Health Organization (WHO) for drinking water, the presence of some ecological and health risks indicated that future monitoring studies and control practices are important to ensure ecological safety of drinking water sources.
Collapse
Affiliation(s)
- Kunfeng Zhang
- State Environmental Protection Key Laboratory of Drinking Water Source Protection, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; College of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Sheng Chang
- State Environmental Protection Key Laboratory of Drinking Water Source Protection, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Qing Fu
- State Environmental Protection Key Laboratory of Drinking Water Source Protection, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Xingbin Sun
- College of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Yueting Fan
- State Environmental Protection Key Laboratory of Drinking Water Source Protection, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Moli Zhang
- State Environmental Protection Key Laboratory of Drinking Water Source Protection, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Xiang Tu
- State Environmental Protection Key Laboratory of Drinking Water Source Protection, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Abdul Qadeer
- State Environmental Protection Key Laboratory of Drinking Water Source Protection, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| |
Collapse
|
21
|
Lei R, Sun Y, Zhu S, Jia T, He Y, Deng J, Liu W. Investigation on Distribution and Risk Assessment of Volatile Organic Compounds in Surface Water, Sediment, and Soil in a Chemical Industrial Park and Adjacent Area. Molecules 2021; 26:molecules26195988. [PMID: 34641531 PMCID: PMC8512396 DOI: 10.3390/molecules26195988] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
The occurrences, distributions, and risks of 55 target volatile organic compounds (VOCs) in water, sediment, sludge, and soil samples taken from a chemical industrial park and the adjacent area were investigated in this study. The Σ55-VOCs concentrations in the water, sediment, sludge, and soil samples were 1.22–5449.21 μg L−1, ND–52.20 ng g−1, 21.53 ng g−1, and ND–11.58 ng g−1, respectively. The main products in this park are medicines, pesticides, and novel materials. As for the species of VOCs, aromatic hydrocarbons were the dominant VOCs in the soil samples, whereas halogenated aliphatic hydrocarbons were the dominant VOCs in the water samples. The VOCs concentrations in water samples collected at different locations varied by 1–3 orders of magnitude, and the average concentration in river water inside the park was obviously higher than that in river water outside the park. However, the risk quotients for most of the VOCs indicated a low risk to the relevant, sensitive aquatic organisms in the river water. The average VOCs concentration in soil from the park was slightly higher than that from the adjacent area. This result showed that the chemical industrial park had a limited impact on the surrounding soil, while the use of pesticides, incomplete combustion of coal and biomass, and automobile exhaust emissions are all potential sources of the VOCs in the environmental soil. The results of this study could be used to evaluate the effects of VOCs emitted from chemical production and transportation in the park on the surrounding environment.
Collapse
Affiliation(s)
- Rongrong Lei
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (R.L.); (T.J.); (Y.H.); (J.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yamei Sun
- Chinese Academy of Environmental Planning, Beijing 100012, China
- Correspondence: (Y.S.); (W.L.); Tel.: +86-10-62849356 (W.L.); Fax: +86-10-62923563 (Y.S.)
| | - Shuai Zhu
- National Research Center for Geoanalysis, Beijing 100037, China;
| | - Tianqi Jia
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (R.L.); (T.J.); (Y.H.); (J.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunchen He
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (R.L.); (T.J.); (Y.H.); (J.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinglin Deng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (R.L.); (T.J.); (Y.H.); (J.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenbin Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (R.L.); (T.J.); (Y.H.); (J.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- Correspondence: (Y.S.); (W.L.); Tel.: +86-10-62849356 (W.L.); Fax: +86-10-62923563 (Y.S.)
| |
Collapse
|
22
|
Kucuk E, Pilevneli T, Onder Erguven G, Aslan S, Olgun EÖ, Canlı O, Unlu K, Dilek FB, Ipek U, Avaz G, Yetis U. Occurrence of micropollutants in the Yesilirmak River Basin, Turkey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:24830-24846. [PMID: 33651287 DOI: 10.1007/s11356-021-13013-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
The European Water Framework Directive (WFD) (2000/60/EC) is the most visionary piece of European environmental legislation that aims to achieve good water status of both surface water and groundwater bodies. The Directive provides a fundamental basis for surface water monitoring activities in the European Member States. The objective of this study is to investigate the occurrence of micropollutants in the Yesilirmak River and to develop a cost-effective monitoring strategy based on spatiotemporal data. A 2-year seasonal monitoring program was conducted between 2016 and 2018, and the water samples were analyzed for 45 priority substances as defined by the WFD and 250 national river basin-specific pollutants. In the basin, 166 pollutants were quantified in at least one of the samples with individual concentrations ranging from 6 × 10-6μg/L to 100 mg/L. Fifty-four pollutants with a frequency of occurrence greater than 5% were selected for further evaluation. Based on statistical evaluation of the data, 20 pollutants were identified as the pollutants of primary concern. These 20 pollutants were grouped under three categories (metals, biocides, and industrial organic compounds) and their spatiotemporal distributions in the basin were assessed to establish a monitoring strategy specific to each pollutant category. The results of the study revealed that the common season for the monitoring of all pollutant categories was the spring. This study provides a generic methodology for the development of a cost-effective water quality monitoring strategy, which can be applicable for use in different basins and pollutant datasets.
Collapse
Affiliation(s)
- Elif Kucuk
- Department of Environmental Engineering, Middle East Technical University, 06800, Ankara, Turkey
| | - Tolga Pilevneli
- Department of Environmental Engineering, Middle East Technical University, 06800, Ankara, Turkey
- Water Management Institute, Ankara University, 06135, Ankara, Turkey
| | - Gokhan Onder Erguven
- Department of Chemistry and Chemical Processes, Tunceli Vocation School, Munzur University, 62000, Tunceli, Turkey
| | - Sibel Aslan
- Department of Environmental Engineering, Fırat University, 23200, Elazig, Turkey
| | - Elmas Ö Olgun
- Environment and Cleaner Production Institute, TUBITAK Marmara Research Center, 41470, Gebze, Kocaeli, Turkey
| | - Oltan Canlı
- Environment and Cleaner Production Institute, TUBITAK Marmara Research Center, 41470, Gebze, Kocaeli, Turkey
| | - Kahraman Unlu
- Department of Environmental Engineering, Middle East Technical University, 06800, Ankara, Turkey
| | - Filiz B Dilek
- Department of Environmental Engineering, Middle East Technical University, 06800, Ankara, Turkey
| | - Ubeyde Ipek
- Department of Environmental Engineering, Fırat University, 23200, Elazig, Turkey
| | - Gulsen Avaz
- Environment and Cleaner Production Institute, TUBITAK Marmara Research Center, 41470, Gebze, Kocaeli, Turkey
| | - Ulku Yetis
- Department of Environmental Engineering, Middle East Technical University, 06800, Ankara, Turkey.
| |
Collapse
|
23
|
Occurrence, Potential Sources, and Risk Assessment of Volatile Organic Compounds in the Han River Basin, South Korea. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18073727. [PMID: 33918372 PMCID: PMC8038302 DOI: 10.3390/ijerph18073727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 12/07/2022]
Abstract
Increasing public awareness about the aesthetics and safety of water sources has shifted researchers’ attention to the adverse effects of volatile organic compounds (VOCs) on humans and aquatic organisms. A total of 17 VOCs, including 10 volatile halogenated hydrocarbons and seven volatile non-halogenated hydrocarbons, were investigated at 36 sites of the Han River Basin, which is the largest and most important drinking water source for residents of the Seoul metropolitan area and Gyeonggi province in South Korea. The VOC concentrations ranged from below detection limits to 1.813 µg L−1. The most frequently detected VOC was 1,2-dichloropropane, with a detection frequency of 80.56%, as it is used as a soil fumigant, chemical intermediate, and industrial solvent. In terms of geographical trends, the sampling sites that were under the influence of sewage and industrial wastewater treatment plants were more polluted with VOCs than other areas. This observation was also supported by the results of the principal component analysis. In the present study, the detected concentrations of VOCs were much lower than that of the predicted no-effect concentrations, suggesting low ecological risk in the Han River. However, a lack of available ecotoxicity data and limited comparable studies warrants further studies on these compounds.
Collapse
|
24
|
WANG Y, ZHANG H, SHI J, JIANG G. [Research progress on analytical methods for the determination of hexachlorobutadiene]. Se Pu 2021; 39:46-56. [PMID: 34227358 PMCID: PMC9274838 DOI: 10.3724/sp.j.1123.2020.05019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Indexed: 11/25/2022] Open
Abstract
Hexachlorobutadiene (HCBD) is one of persistent organic pollutants (POPs) listed in Annex A and Annex C of the Stockholm Convention in 2015 and 2017, respectively. Research on the sources, environmental occurrences, and biological effects of HCBD has a great significance in controlling this newly added POPs. Sensitive and credible methods for the determination of HCBD are preconditions and form the basis for related research work. In recent years, many researchers have included HCBD as one of the analytes in monitoring or methodological studies. Based on the results of these studies, this paper reviews the research progress on analytical methods for the determination of HCBD and focuses on sample pretreatment methods for the analysis of HCBD in various matrices such as air, water, soil, sewage sludge, and biological tissues. The advantages and disadvantages of the methods are also compared to provide reference for further research in this field.For air samples, HCBD was usually collected by passing air through sorbent cartridges. Materials such as Tenax-TA, Carbosieve, Carbopack, Carboxen 1000, or their mixtures were used as the sorbent. HCBD was thermally desorbed and re-concentrated in a trap and finally transferred for instrumental analysis. Limits of detection (LODs) for HCBD in these methods were at the ng/m3 scale. Compared to sampling using pumps, passive air samplers (PAS) such as polyurethane foam PAS (PUF-PAS) do not require external power supply and are more convenient for sampling POPs in air at a large scale. The LOD of the sorbent-impregnated PUF PAS (SIP-PAS) method was much lower (0.03 pg/m3) than that of the PUF-PAS method (20 pg/m3). However, the sampling volumes in the SIP-PAS and PUF-PAS methods (-6 m3) calculated from the log KOA value of HCBD have significant uncertainty, and this must be confirmed in the future.For water samples, HCl or copper sulfate was added to the sample immediately after sampling to prevent any biological activities. HCBD can be extracted from water using methods such as the purge and trap method, liquid-liquid extraction (LLE) method, and solid phase extraction (SPE) method. Among these methods, SPE enabled the simultaneous extraction, purification, and concentration of trace HCBD in a single step. Recoveries of HCBD on Strata-X and Envi-Carb SPE cartridges (63%-64%) were higher than those on Envi-disk, Oasis HLB, and Strata-C18 cartridges (31%-46%). Drying is another key step for obtaining high recoveries of HCBD. Disk SPE involving the combination of a high-vacuum pump and a low-humidity atmosphere is an effective way to eliminate the residual water. In addition, a micro SPE method using functionalized polysulfone membranes as sorbents and employing ultrasonic desorption was developed for extracting HCBD from drinking water. The recovery of HCBD reached 102%, with a relative standard deviation (RSD) of 3.5%.For solid samples such as dust, soil, sediment, sewage sludge, fly ash, and biota tissue, multiple pretreatment methods were used in combination, owing to the more complex matrix. Freeze or air drying, grinding, and sieving of samples were commonly carried out before the extraction. Soxhlet extraction is a typical extraction method for HCBD; however, it requires many organic reagents and is time consuming. The accelerated solvent extraction (ASE) method requires a small amount of organic reagent, and the extraction can be performed rapidly. It was recently applied for the extraction of HCBD from solid samples under 10.34 MPa and at 100 ℃. Purification could be achieved simultaneously by mixing florisil materials with samples in the ASE pool. Nevertheless, employing the ASE methods widely is difficult because of their high costs. Ultrasonic-assisted extraction (UAE) has the same extraction efficiency for HCBD, with much lower costs compared to ASE, and is therefore adopted by most researchers. The type of extraction solvent, solid-to-liquid ratio, ultrasonic temperature, and power affect the extraction efficiency. Ultrasonic extraction at 30 ℃ and 200 W using 30 mL dichloromethane as the extraction solvent resulted in acceptable recoveries (64.0%-69.4%) of HCBD in 2 g fly ash. After extraction, a clean-up step is necessary for the extracts of solid samples. Column chromatography is frequently used for purification. The combined use of several columns or a multilayer column filled with florisil, silica gel, acid silica gel, or alumina can improve the elimination efficiency of interfering substances.Instrumental analysis for HCBD is mainly performed with a gas chromatograph equipped with a mass spectrometer operating in selected ion monitoring mode. DB-5MS, HP-5MS, HP-1, ZB-5MS, and BP-5 can be used as the chromatographic columns. Qualification ions and quantification ions include m/z 225, 223, 260, 227, 190, and 188. GC-MS using an electron ionization (EI) source was more sensitive to HCBD than GC-MS using a positive chemical ionization source (PCI) and atmospheric pressure chemical ionization source (APCI). Gas chromatography-tandem mass spectrometry (GC-MS/MS), gas chromatography-high-resolution mass spectrometry (GC-HRMS), and high-resolution gas chromatography-high-resolution mass spectrometry (HRGC-HRMS) have recently been used for the separation and determination of HCBD and various other organic pollutants. Instrumental detection limits for HCBD in GC-MS/MS, GC-HRMS, and HRGC-HRMS were more than ten times lower than that in GC-MS, indicating the remarkable application potential of these high-performance instruments in HCBD analysis.
Collapse
|
25
|
Baek SS, Choi Y, Jeon J, Pyo J, Park J, Cho KH. Replacing the internal standard to estimate micropollutants using deep and machine learning. WATER RESEARCH 2021; 188:116535. [PMID: 33147564 DOI: 10.1016/j.watres.2020.116535] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 09/29/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
Similar to the worldwide proliferation of urbanization, micropollutants have been involved in aquatic and ecological environmental systems. These pollutants have the propensity to wreak havoc on human health and the ecological system; hence, it is important to persistently monitor micropollutants in the environment. Micropollutants are commonly quantified via target analysis using high resolution mass spectrometry and the stable isotope labeled (SIL) standard. However, the cost-intensiveness of this standard presents a major obstacle in measuring micropollutants. This study resolved this problem by developing data-driven models, including deep learning (DL) and machine learning (ML), to estimate the concentration of micropollutants without resorting to the SIL standard. Our study hypothesized that natural organic matter (NOM) could replace internal standards if there was a specific mass spectrum (MS) subset, including NOM information, which correlated with an SIL standard peak. Therefore, we analyzed the MS to find the specific MS subsets for replacing the SIL standard peak. Thirty-five alternative MS subsets were determined for applying DL and ML as input data. Thereafter, we trained four different DL models, namely, ResNet101, GoogLeNet, VGG16, and Inception v3, as well as three different ML models, i.e., random forest (RF), support vector machine (SVM), and artificial neural network (ANN). A total of 680 MS data were used for the model training to estimate five different micropollutants, namely Sulpiride, Metformin, and Benzotriazole. Among the DL models, ResNet 101 exhibited the highest model performance, showing that the average validation R2 and MSE were 0.84 and 0.26 ng/L, respectively, while RF was the best in the ML models, manifesting R2 and MSE values of 0.69 and 0.58 ng/L. The trained models showed accurate training and validation results for the estimation of the five micropollutant concentrations. Therefore, this study demonstrates that the suggested analysis has a potential for alternative micropollutant measurement that has rapid and economic vantages.
Collapse
Affiliation(s)
- Sang-Soo Baek
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Younghun Choi
- Graduate School of FEED of Eco-Friendly Offshore Structure, Changwon National University, Changwon, Gyeongsangnamdo, 51140, Republic of Korea
| | - Junho Jeon
- School of Civil, Environmental and Chemical Engineering, Changwon National University, Changwon, Gyeongsangnamdo, 51140, Korea
| | - JongCheol Pyo
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Jongkwan Park
- School of Civil, Environmental and Chemical Engineering, Changwon National University, Changwon, Gyeongsangnamdo, 51140, Korea.
| | - Kyung Hwa Cho
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
26
|
Kamata M, Matsui Y, Asami M. National trends in pesticides in drinking water and water sources in Japan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140930. [PMID: 32711323 DOI: 10.1016/j.scitotenv.2020.140930] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/04/2020] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
Although agricultural activities-especially paddy rice cultivation-are prominent in watersheds in Asian countries, few comprehensive studies have examined pesticide concentrations in water in these areas. Here, we report the concentrations of 162 pesticides in treated drinking water and source water (14,076 samples) in Japan, where rice cultivation is common, along with trends in sales of herbicides, fungicides, and insecticides from 1963 to 2016. Herbicides and fungicides-especially those used in rice farming were frequently detected in drinking water sources. The herbicide bromobutide, which is not listed in drinking water quality standards or guidelines except in Japan, as well as the widely used-and-detected bentazone, were frequently detected in source water (bromobutide and bentazone were detected at concentrations >0.1 μg/L in 31.1% and 33.8% of samples, respectively). Dymron and tefuryltrione were also detected in over 10% of samples at concentrations >0.1 μg/L. The highest observed concentration of bromobutide was 10 μg/L, and 7.5% of samples had concentrations >1 μg/L. High concentrations were also observed for halosulfuron methyl (7.9 μg/L), pyroquilon (7.0), molinate (6.8), and metominostrobin (4.6). Some of the pesticides frequently detected in source water were not detected at all in drinking water, but the main cause of the non-detection appeared to be degradation by chlorine. From the 1970s onward, sales of herbicides and fungicides with higher acceptable daily intakes (ADIs; i.e., with lower toxicity) have increased. However, the percentage of herbicides with very low ADIs (<10-2.5 mg kg-1 d-1) being shipped has also increased. Tefuryltrione, which was detected at normalized concentrations >0.1 in 8% of samples, is an example of this type of herbicide. The average log-Kow of herbicides has decreased from the 1970s to the present, due to the strong trend towards the application of hydrophilic herbicides, such glyphosate. The need for increased monitoring of pesticides used in rice paddy farming is highlighted.
Collapse
Affiliation(s)
- Motoyuki Kamata
- College of Engineering, Kanto Gakuin University, Mutsuurahigashi 1-50-1, Kanazawa-ku, Yokohama 236-8501, Japan
| | - Yoshihiko Matsui
- Faculty of Engineering, Hokkaido University, N13W8, Sapporo 060-8628, Japan.
| | - Mari Asami
- Department of Environmental Health, National Institute of Public Health, 2-3-6 Minami, Wako, Saitama 351-0197, Japan
| |
Collapse
|
27
|
Xie L, Nakajima F, Kasuga I, Kurisu F. Simultaneous screening for chemically diverse micropollutants in public water bodies in Japan by high-performance liquid chromatography-Orbitrap mass spectrometry. CHEMOSPHERE 2020; 273:128524. [PMID: 34756377 DOI: 10.1016/j.chemosphere.2020.128524] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 09/01/2020] [Accepted: 10/01/2020] [Indexed: 06/13/2023]
Abstract
An improved assessment of environmental risks to public water bodies requires screening a large number of micropollutants. This study reports the development of a novel target screening method based on solid-phase extraction (SPE), HPLC, and high-resolution Orbitrap MS for the analysis of micropollutants with diverse chemical properties. First, target compounds were screened for their detectability by Orbitrap MS. An optimized SPE cartridge and HPLC column maximized recovery and separated most target compounds. The sensitivity and repeatability of the method was validated by determining the detection limits and relative standard deviation (RSD). Eighty-four compounds with highly diverse properties were simultaneously detected with detection limits of 0.1-100 ng/L. Of these compounds, 52 were quantitated, with R2 ≥ 0.99 by linearity analysis and SPE recovery ratios of ≥50%. The remaining 32 compounds were qualitatively detected, with R2 < 0.99 or SPE recovery ratio of <50%. Satisfactory repeatability was obtained (RSD < 13.5%). This method was applied to the surveillance of the Arakawa River in Japan in 2019. Thirty-two compounds, including pesticides, surfactants, plasticizers, adhesives, and industrial solvents, were detected in the river. The measured concentrations of 13 compounds were compared with their predicted no effect concentrations (PNECs). Decanoic acid showed a higher concentration than the corresponding PNEC value, suggesting that its risk to the Arakawa water environment required further evaluation. The concentrations of dicyclohexylamine, 1,3-diphenylguanidine, and 2,4-dichlorophenoxyacetic acid were higher than their corresponding PNEC/10 values, demonstrating that these compounds were of higher priority than other compounds.
Collapse
Affiliation(s)
- Li Xie
- Research Center for Water Environment Technology, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8656, Japan
| | - Fumiyuki Nakajima
- Environmental Science Center, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan
| | - Ikuro Kasuga
- Department of Urban Engineering, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8656, Japan
| | - Futoshi Kurisu
- Research Center for Water Environment Technology, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8656, Japan.
| |
Collapse
|
28
|
Adeyeye AO, Laub BG. Quantification of estrogen concentration in a creek receiving wastewater treatment plant effluent. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:426. [PMID: 32533378 DOI: 10.1007/s10661-020-08394-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Estrogen in streams threatens aquatic animals, especially where wastewater treatment plant (WWTP) effluent contributes to baseflow. We investigated total estrogen (E1+E2+E3) as estradiol equivalent (E2) and ethynylestradiol (EE2) concentration in Cibolo Creek (Cibolo), a groundwater-fed stream near San Antonio, TX, receiving effluent via two WWTP. We collected water samples bi-monthly from late spring to early fall 2018 in Cibolo and WWTP effluent, and used ELISA analysis and discharge measurements to determine concentrations and loads of estrogens. We measured several environmental variables to investigate what factors influenced estrogen concentrations in Cibolo downstream from WWTP inputs. Mean concentrations of WWTP effluent (E2, 41.43 ± 15.48; EE2, 11.40 ± 2.07 ng L-1) were higher compared with concentrations in Cibolo, both downstream (E2, 30.09 ± 25.85; EE2, 6.33 ± 1.92 ng L-1) and upstream (E2, 12.91 ± 11.12; EE2, 4.5 ± 1.38 ng L-1) of WWTP inputs. Both E2 and EE2 concentrations decreased downstream from WWTP inputs, a section of stream without large quantities of fine sediments for sorption, indicating potential dilution or chemical and biological degradation. Effluent into Cibolo via the first, and older, WWTP contributed the most estrogen load in Cibolo. Median concentrations of E2 and EE2 were 19 and 5 ng L-1, respectively, downstream of WWTP inputs, concentrations known to affect reproductive processes of aquatic biota and impair human health. Results suggest estrogens may pose a risk to aquatic ecosystems wherever WWTP effluent comprises a majority of baseflow, though further studies are required in this stream to verify biological impacts.
Collapse
Affiliation(s)
- Adebayo O Adeyeye
- Department of Environmental Science & Ecology, College of Sciences, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Brian G Laub
- Department of Environmental Science & Ecology, College of Sciences, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA.
| |
Collapse
|
29
|
Partition and Fate of Phthalate Acid Esters (PAEs) in a Full-Scale Horizontal Subsurface Flow Constructed Wetland Treating Polluted River Water. WATER 2020. [DOI: 10.3390/w12030865] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
When used as highly produced chemicals and widely used plasticizers, Phthalate acid esters (PAEs) have potential risks to human life and the environment. In this study, to assess the distribution and fate of PAEs, specifically inside a full-scale horizontal subsurface flow constructed wetland, four PAEs including dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), and bis (2-ethylhexyl) phthalate (DEHP) were investigated. In effluent, PAEs concentration decreased 19.32% (DMP), 19.18% (DEP), 19.40% (DBP), and 48.56% (DEHP), respectively. Within the wetland, PAEs partitioned in water (0.18–1.12 μg/L, 35.38–64.92%), soil (0.44–5.08 μg/g, 1.02–31.33%), plant (0.68–48.6 μg/g, 0.85–36.54%), air and biological transformation (2.72–33.21%). The results indicated that soil and plant adsorption contributed to the majority of PAE removal, digesting DMP (19.32%), DEP (19.18%), DBP (19.40%), and DEHP (48.56%) in constructed wetlands. Moreover, the adsorption was affected by both octanol/water partition coefficient (Kow) and transpiration stream concentration factors (TSCF). This work, for the first time, revealed the partition and fate of PAEs in constructed wetlands to the best of our knowledge.
Collapse
|
30
|
Paluselli A, Kim SK. Horizontal and vertical distribution of phthalates acid ester (PAEs) in seawater and sediment of East China Sea and Korean South Sea: Traces of plastic debris? MARINE POLLUTION BULLETIN 2020; 151:110831. [PMID: 32056624 DOI: 10.1016/j.marpolbul.2019.110831] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 06/10/2023]
Abstract
Phthalate acid esters (PAEs) are commonly used as plasticizers in numerous plastic applications. Owing to their high leachability, the occurrence of PAEs can be used to trace plastic pollution. The northwest Pacific marginal seas, including the East China Sea, are suspected not only to be the area that receives the most plastic waste globally but also transit the waste to the ocean worldwide. To identify the potential sources of PAEs in this area, seawater at different water depths and sediment were investigated. The highest level of di(2-ethylhexyl) phthalate (DEHP), which is primarily used in plastic polymers, was observed in the accumulation zone of plastic debris. Moreover, DEHP exhibited not only the highest levels in the bottom layer of water column but also a significant correlation between bottom water layer and bed sediment, which strongly suggests a continuous flow of PAEs from the seafloor to the seawater column in this area.
Collapse
Affiliation(s)
- Andrea Paluselli
- Research Institute of Basic Sciences, Incheon National University, 119 Academy-ro, Yeounsu-gu, Incheon 22012, Republic of Korea
| | - Seung-Kyu Kim
- Research Institute of Basic Sciences, Incheon National University, 119 Academy-ro, Yeounsu-gu, Incheon 22012, Republic of Korea; Department of Marine Science, College of Natural Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea.
| |
Collapse
|
31
|
Vilela P, Jácome G, Kim SY, Nam K, Yoo C. Population response modeling and habitat suitability of Cobitis choii fish species in South Korea for climate change adaptation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:109949. [PMID: 31757512 DOI: 10.1016/j.ecoenv.2019.109949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 08/06/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Endangered species ecosystems require appropriate monitoring for assessing population growth related to the emerging pollutants in their habitat conditions. The response of population growth of Cobitis choii, an endangered fish species, under the exposure to emerging pollutants present in the Geum River Basin of South Korea was studied. Toxicity models of concentration addition (CA), independent action (IA), and concentration addition-independent action (CAIA) were implemented utilizing the concentration of a set of 25 chemicals recorded in the study area. Thus, a population-level response analysis was developed based on the abundance of Cobitis choii for period 2011-2015. The results were compared showing that the CA and IA models were the most conservative approaches for the prediction of growth rate. Further, a standard abnormality index (SAI) and habitat suitability (HS) indicators based on the climate, habitat, and abundance data were presented to completely analyze the population growth of the species. Suitability of the species growth was most probable for year 2015 for the variables of air temperature and land surface temperature. A spatial analysis was complementarily presented to visualize the correlation of variables for the best suitability of the species growth. This study presents a methodology for the analysis of the ecosystem's suitability for Cobitis choii growth and its assessment of the chemicals present in Geum River stream.
Collapse
Affiliation(s)
- Paulina Vilela
- Dept. of Environmental Science and Engineering, College of Engineering, Center for Environmental Studies, Kyung Hee University, Seocheon-dong 1, Giheung-gu, Yongin-Si, Gyeonggi-Do, 446-701, Republic of Korea
| | - Gabriel Jácome
- Escuela de Recursos Naturales Renovables, Facultad de Ingeniería en Ciencias Agropecuarias y Ambientales, Universidad Técnica del Norte (UTN), Avenida 17 de Julio 5-21, y Gral José María Cordova, EC100150, Ibarra, Imbabura, Ecuador
| | - Sang Youn Kim
- Dept. of Environmental Science and Engineering, College of Engineering, Center for Environmental Studies, Kyung Hee University, Seocheon-dong 1, Giheung-gu, Yongin-Si, Gyeonggi-Do, 446-701, Republic of Korea
| | - KiJeon Nam
- Dept. of Environmental Science and Engineering, College of Engineering, Center for Environmental Studies, Kyung Hee University, Seocheon-dong 1, Giheung-gu, Yongin-Si, Gyeonggi-Do, 446-701, Republic of Korea
| | - ChangKyoo Yoo
- Dept. of Environmental Science and Engineering, College of Engineering, Center for Environmental Studies, Kyung Hee University, Seocheon-dong 1, Giheung-gu, Yongin-Si, Gyeonggi-Do, 446-701, Republic of Korea.
| |
Collapse
|
32
|
Aqueous Reactions of Sulfate Radical-Anions with Nitrophenols in Atmospheric Context. ATMOSPHERE 2019. [DOI: 10.3390/atmos10120795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Nitrophenols, hazardous environmental pollutants, react promptly with atmospheric oxidants such as hydroxyl or nitrate radicals. This work aimed to estimate how fast nitrophenols are removed from the atmosphere by the aqueous-phase reactions with sulfate radical-anions. The reversed-rates method was applied to determine the relative rate constants for reactions of 2-nitrophenol, 3-nitrophenol, 4-nitrophenol, 2,4-dinitrophenol, and 2,4,6-trinitrophenol with sulfate radical-anions generated by the autoxidation of sodium sulfite catalyzed by iron(III) cations at ~298 K. The constants determined were: 9.08 × 108, 1.72 × 109, 6.60 × 108, 2.86 × 108, and 7.10 × 107 M−1 s−1, respectively. These values correlated linearly with the sums of Brown substituent coefficients and with the relative strength of the O–H bond of the respective nitrophenols. Rough estimation showed that the gas-phase reactions of 2-nitrophenol with hydroxyl or nitrate radicals dominated over the aqueous-phase reaction with sulfate radical-anions in deliquescent aerosol and haze water. In clouds, rains, and haze water, the aqueous-phase reaction of 2-nitrophenol with sulfate radical-anions dominated, provided the concentration of the radical-anions was not smaller than that of the hydroxyl or nitrate radicals. The results presented may be also interesting for designers of advanced oxidation processes for the removal of nitrophenol.
Collapse
|
33
|
Lee YS, Lee S, Lim JE, Moon HB. Occurrence and emission of phthalates and non-phthalate plasticizers in sludge from wastewater treatment plants in Korea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:354-360. [PMID: 31351279 DOI: 10.1016/j.scitotenv.2019.07.301] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
Phthalates are endocrine-disrupting chemicals that cause adverse health effects in wildlife and humans. Due to domestic and global regulations of phthalates in commercial products, non-phthalate plasticizers (NPPs) have been introduced into industrial markets. Few studies have been conducted on the occurrence of phthalates and NPPs in sludge from wastewater treatment plants (WWTPs). In this study, sludge samples were collected from 40 WWTPs in Korea to investigate the occurrence, compositional profiles, and emission flux of phthalates and NPPs. Total concentrations of phthalates and NPPs in sludge ranged from 4.7 to 1400 (mean: 110) μg/g dry weight and from 0.17 to 780 (mean: 28.0) μg/g dry weight, respectively. Di(2-ethylhexyl)phthalate (DEHP) was a predominant compound, suggesting widespread consumption in Korea. Di(2-ethylhexyl)terephthalate (DEHT) was dominant in industrial sludge samples, whereas di-isononyl cyclohexane-1,2-dicarboxylate (DINCH) and trioctyl trimellitate (TOTM) were dominant in domestic sludge. This implies different consumption patterns of phthalate alternatives by industry and domestic activities. Concentrations of NPPs were significantly correlated with those of high-molecular-weight (HMW) phthalates, indicating that HMW phthalates were preferentially replaced by NPPs. The emission fluxes of phthalates via domestic WWTP activities were higher than those measured for industrial WWTPs, while the emission fluxes of NPPs via industrial WWTPs were higher than those found for domestic and industrial WWTPs. This indicates that phthalate emissions are associated with household activities, while NPP emissions are associated with industrial activities.
Collapse
Affiliation(s)
- Young-Sun Lee
- Department of Marine Sciences and Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Sunggyu Lee
- Department of Marine Sciences and Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Jae-Eun Lim
- Department of Marine Sciences and Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Sciences and Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea.
| |
Collapse
|
34
|
Kang YM, Kim MK, Kim T, Kim TK, Zoh KD. Occurrence and Fate of Micropollutants in Private Wastewater Treatment Facility (WTF) and Their Impact on Receiving Water. ENVIRONMENTAL MANAGEMENT 2019; 64:650-660. [PMID: 31606773 DOI: 10.1007/s00267-019-01211-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
This study investigated the occurrence and removals of micropollutants in the sewage treatment tank (STT) which is a typical private wastewater treatment facility used in the rural communities in Korea, and their impact on receiving water. STTs were selected in eight provinces to examine the regional difference in the composition of micropollutant occurrence. We measured ten selected micropollutants in influents and effluents of STTs, as well as upstream and downstream of its receiving surface water. The dominant micropollutants in the influent of the STTs were caffeine (13,346 ng/L), acetaminophen (11,331 ng/L), ibuprofen (1440 ng/L), and naproxen (1313 ng/L), in agreement with the amounts produced annually in Korea. In the effluent, caffeine (1912 ng/L), acetaminophen (1586 ng/L), naproxen (475 ng/L), and ibuprofen (389 ng/L) were detected in relatively high concentrations. The composition of micropollutants in STT influents showed little regional variation by provinces, suggesting that the consumption pattern of these micropollutants did not show regional variation. The removal efficiencies of the selected micropollutants at the STTs ranged from 12% (carbamazepine) to 88% (acetaminophen), lower than typical removal by sewage treatment plants (STPs). This result is probably due to the automatic operation systems and simple treatment processes in STTs compared with STPs. The concentrations of selected micropollutants upstream of the receiving water were generally lower compared with those observed downstream, indicating that effluent from STTs was the main source. The per capita discharge loads of STTs and annual emissions rates (kg/year) from private wastewater treatment facilities were estimated for the selected micropollutants.
Collapse
Affiliation(s)
- Young-Min Kang
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, 08826, Korea
| | - Moon-Kyung Kim
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, 08826, Korea
- Institute of Health and Environment, Seoul National University, Seoul, 08826, Korea
| | - Taeyeon Kim
- Institute of Health and Environment, Seoul National University, Seoul, 08826, Korea
| | - Tae-Kyoung Kim
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, 08826, Korea
| | - Kyung-Duk Zoh
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
35
|
Zhang H, Shen Y, Liu W, He Z, Fu J, Cai Z, Jiang G. A review of sources, environmental occurrences and human exposure risks of hexachlorobutadiene and its association with some other chlorinated organics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 253:831-840. [PMID: 31344544 DOI: 10.1016/j.envpol.2019.07.090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
Research on hexachlorobutadiene (HCBD) has increased since its listing in the Stockholm Convention on Persistent Organic Pollutants in 2011. However, thorough reports on recent data regarding this topic are lacking. Moreover, potential associations between HCBD and some chlorinated organics have usually been ignored in previous research. In this review, possible formation pathways and sources, current environmental occurrences and human exposure risks of HCBD are discussed, as well as the association with several organochlorine compounds. The results reveal that unintentional production and emission from industrial activities and waste treatments are the main sources of HCBD. Similar precursors are found for HCBD and chlorobenzenes, indicating the presence of common sources. Although recent data indicates that levels of HCBD in the environment are generally low, risks from human exposure to HCBD, together with other pollutants, may be high. More attention in the future needs to be paid to the mixed contamination of HCBD and other pollutants from common sources.
Collapse
Affiliation(s)
- Haiyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Yanting Shen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wencong Liu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhiqiao He
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
36
|
Triassi M, Nardone A, Giovinetti MC, De Rosa E, Canzanella S, Sarnacchiaro P, Montuori P. Ecological risk and estimates of organophosphate pesticides loads into the Central Mediterranean Sea from Volturno River, the river of the "Land of Fires" area, southern Italy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 678:741-754. [PMID: 31082780 DOI: 10.1016/j.scitotenv.2019.04.202] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 06/09/2023]
Abstract
The organophosphate pesticides pollution in the Volturno River and its environmental impact on the Tyrrhenian Sea (Central Mediterranean Sea) were estimated. Eight selected organophosphate pesticides (diazinon, dimethoate, malathion, chlorpyrifos, pirimiphos-methyl, fenitrothion, methidathion and tolclofos-methyl) were determined in the water dissolved phase, suspended particulate matter and sediment samples collected from 10 sites in different seasons. Total organophosphate pesticides concentrations ranged from 0.12 to 65.09 ng L-1 in water (as the sum of the water dissolved phase and suspended particulate matter) and from 1.19 to 23.17 ng g-1 in sediment samples. It has been calculated that the discharge of pollutants from the Volturno river into the Tyrrhenian Sea was about 71.815, 31 g year-1; for this reason the river is to be considered one of the main mouths of organophosphate pesticides in the Tyrrhenian Sea. In relation to environmental risk assessment, the concentrations of most OPPs in water and sediments from the Volturno River and its estuary were lower than guideline values, but the mean concentration of chlorpyrifos (5.41 ng L-1) in the Volturno River and Estuary has been shown that the ecological integrity of the river watercourse is possibly at risk.
Collapse
Affiliation(s)
- Maria Triassi
- Department of Public Health, University "Federico II", Via Sergio Pansini n° 5, 80131 Naples, Italy
| | - Antonio Nardone
- Department of Public Health, University "Federico II", Via Sergio Pansini n° 5, 80131 Naples, Italy
| | | | - Elvira De Rosa
- Department of Public Health, University "Federico II", Via Sergio Pansini n° 5, 80131 Naples, Italy
| | - Silvia Canzanella
- Department of Public Health, University "Federico II", Via Sergio Pansini n° 5, 80131 Naples, Italy
| | - Pasquale Sarnacchiaro
- Department of Economics, University Unitelma Sapienza, Viale Regina Elena 295, Rome, Italy
| | - Paolo Montuori
- Department of Public Health, University "Federico II", Via Sergio Pansini n° 5, 80131 Naples, Italy.
| |
Collapse
|
37
|
Xu M, Huang H, Li N, Li F, Wang D, Luo Q. Occurrence and ecological risk of pharmaceuticals and personal care products (PPCPs) and pesticides in typical surface watersheds, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 175:289-298. [PMID: 30898333 DOI: 10.1016/j.ecoenv.2019.01.131] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/24/2018] [Accepted: 01/17/2019] [Indexed: 05/08/2023]
Abstract
To evaluate the occurrence and ecological risk of organic contaminants in aquatic environment in China, a method for simultaneously detecting 130 pharmaceuticals and personal care products (PPCPs) and 35 pesticides has been established using solid phase extraction-ultra performance liquid chromatography-tandem mass spectrometry (SPE-UPLC-MS/MS) method. In the present survey, a total of 122 target compounds (103 PPCPs and 19 pesticides) were detected in seven major watersheds in China, with average concentrations ranged from 0.02 ng/L (sulfamerazine) to 332.75 ng/L (bisphenol A), revealing that PPCPs and pesticides were widely distributed in surface water of China. Antibiotics and organophosphorus were the most ubiquitously PPCPs and pesticides, respectively; quinolones were the predominant antibiotics, most of which were detected in more than 96% sampling sites, with average concentrations ranged from 2.14 to 309.67 ng/L; six pesticides including isoprocarb, fenobucarb, acetamiprid, imidacloprid, acetochlor and bentazone were detected in more than 80% sampling sites, with average concentrations ranged from 5.62 to 225.93 ng/L; more than half of the non-antibiotic pharmaceuticals were hormones; and diethyltoluamide (DEET) was predominant personal care products; The risk assessment showed that each watershed was at potential medium ecological risk based on their mean concentration (RQTotal > 1), and pesticides were the main compounds arising risks.
Collapse
Affiliation(s)
- Meijia Xu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Huiting Huang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Na Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Fang Li
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Donghong Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
| | - Qian Luo
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
38
|
Lee YM, Lee JE, Choe W, Kim T, Lee JY, Kho Y, Choi K, Zoh KD. Distribution of phthalate esters in air, water, sediments, and fish in the Asan Lake of Korea. ENVIRONMENT INTERNATIONAL 2019; 126:635-643. [PMID: 30856451 DOI: 10.1016/j.envint.2019.02.059] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/31/2019] [Accepted: 02/22/2019] [Indexed: 05/25/2023]
Abstract
Phthalate esters (PEs) are the most commonly used plasticizers and one of the endocrine disrupting chemicals (EDCs) which are extensively present in various environment. Therefore, it is important to examine the levels and distribution of phthalates in multimedia environment. This study investigated the seasonal and spatial variation of 14 PEs in air, water, sediments, and fish in the Asan Lake. Asan Lake is one of the largest artificial lakes in Korea, and is surrounded by industrial complex and farmlands. The PEs were found to be present throughout the study area. The mean concentration of total PEs (∑14 PEs) was 3.92-33.09 ng/m3 in air, not detected (n.d.)-2.29 μg/L in water, 3.6-8973 μg/kg dry weight (dw) in sediment, and n.d.-1081 μg/kg dw in fish, respectively. The most frequently detected phthalate in the samples was di(2-ethylhexyl) phthalate (DEHP), and followed by di-n-butyl phthalate (DBP). The concentrations of PEs in water and sediment samples tended to decrease moving downstream of Asan Lake. Bioaccumulation of PEs showed that benthic feeding fish such as crucian carp or skygager contained higher levels of DEHP. Partitioning of DEHP and DBP between water and sediment was calculated using paired sediment/water samples and fugacity fraction (ff). High ff value (ff = 0.89 ± 0.1) of DBP and low ff value of DEHP (ff = 0.24 ± 0.1) confirmed that DEHP is the most abundant PEs in the sediment, and DBP is the second most abundant PEs except DEHP in water. Our results can provide important information of the distribution and behavior of PEs in the lake environment.
Collapse
Affiliation(s)
- Young-Min Lee
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Jung-Eun Lee
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Wooseok Choe
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Taeyeon Kim
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Ji-Young Lee
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Younglim Kho
- Department of Health, Environmental and Safety, School of Human and Environmental Sciences, Eulji University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Kyungho Choi
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Kyung-Duk Zoh
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
39
|
Pandey LK, Park J, Son DH, Kim W, Islam MS, Choi S, Lee H, Han T. Assessment of metal contamination in water and sediments from major rivers in South Korea from 2008 to 2015. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:323-333. [PMID: 30240916 DOI: 10.1016/j.scitotenv.2018.09.057] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 06/08/2023]
Abstract
This study is the first report to evaluate (8 years data) the contamination degree and distribution characteristics of metals in the surface water and sediments of four Korean rivers (Nakdong, Yeongsan, Geum, and Han). Eight years of data were evaluated, and metal concentrations in the river water were found to be below permissible limits but high enough to cause detrimental effects (under chronic exposure) to aquatic organisms. The analysis of metals in the river sediments showed the following trend: Zn > Cu > Cd > Pb > Ni > As > Cr > Hg. The concentrations of metals in sediments (especially in the Geum and Han rivers) were above the permissible limits reported by international agencies. Concentrations of Cu, Ni, and Zn were high enough to pose risks to aquatic communities. In sediments, metals pollution was also evaluated using different indices, such as enrichment factor (EF), geoaccumulation index (Igeo), contamination factor (CF), degree of contamination (Cd), modified degree of contamination (mCd), and pollution load index (PLI). The CF, EF, and Igeo indices demonstrated that most of the river sediment samples were moderately to heavily contaminated by Cd, Cu, Pb, and Zn. The PLI values were above one in the Geum and Han river sediments, which indicated polluted conditions. Similarly, Cd indicated a considerable to very high degree of contamination, while mCd indicated a low to moderate degree of contamination in all four river sediments. Finally, it was found that the extent of metals pollution in the Korean rivers reached a critical condition, which could be detrimental to the biota of the rivers, as well as to humans in the long term.
Collapse
Affiliation(s)
- Lalit K Pandey
- Institute of Green Environmental Research Center, 169, Gaetbeol-ro, Yeonsu-gu, Incheon 21999, Republic of Korea; Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, Bareilly 243006, India
| | - Jihae Park
- Ghent University Global Campus, 119, Songdomunhwa-ro, Yeonsu-gu, Incheon 21985, Republic of Korea
| | - Dae Hee Son
- Zero Emission Center of SungKyunKwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si 16419, Gyeonggi-do, Republic of Korea
| | - Wonky Kim
- Envsol Partners Co., Ltd., 17, Gosan-ro 148beon-gil, Gunpo-si 15850, Gyeonggi-do, Republic of Korea
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Soyeon Choi
- Department of Marine Sciences, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Hojun Lee
- Department of Marine Sciences, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Taejun Han
- Ghent University Global Campus, 119, Songdomunhwa-ro, Yeonsu-gu, Incheon 21985, Republic of Korea; Department of Marine Sciences, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea.
| |
Collapse
|
40
|
Tang XY, Yang Y, McBride MB, Tao R, Dai YN, Zhang XM. Removal of chlorpyrifos in recirculating vertical flow constructed wetlands with five wetland plant species. CHEMOSPHERE 2019; 216:195-202. [PMID: 30368084 DOI: 10.1016/j.chemosphere.2018.10.150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/30/2018] [Accepted: 10/21/2018] [Indexed: 06/08/2023]
Abstract
The removal efficiency of the pesticide chlorpyrifos (50 and 500 μg L-1) by five wetland plant species (Cyperus alternifolius, Canna indica, Iris pseudacorus, Juncus effusus and Typha orientalis) was studied in recirculating vertical flow constructed wetland systems (RVFCWs). Results reveal that for chlorpyrifos at different concentrations, good removal efficiencies (94-98%) were observed using the same plant systems, while no significant differences in removal efficiencies were seen between the different plant systems. In addition, the chlorpyrifos removal efficiency of the planted systems increased significantly compared with the unplanted controls. The chlorpyrifos removal efficiency for wetland systems over time fit to the first-order kinetic model, with the first-order kinetic constant (k) ranging from 0.045 to 0.065 h-1. The half-life of chlorpyrifos in the systems ranged from 10.66-15.43 h. The shortest chlorpyrifos half-life was detected in the wetland system containing C. indica, followed by that with C. alternifolius and I. pseudacorus. The main pathways to remove chlorpyrifos in these wetland systems were sorption (accounting for 64.6-86.4% of the total removal efficiency) and biodegradation (8.1-33.7%). Plants can enhance chlorpyrifos removal through enhanced biodegradation in the system. Plants with high biomass and transpiration were able to accelerate the removal of chlorpyrifos and conventional pollutants. Hence, C. indica, C. alternifolius and I. pseudacorus could be used as optimal plants for pesticide removal in wetland systems.
Collapse
Affiliation(s)
- Xiao-Yan Tang
- Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
| | - Yang Yang
- Institute of Hydrobiology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China.
| | - Murray B McBride
- Section of Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14850, USA
| | - Ran Tao
- Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
| | - Yu-Nv Dai
- Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
| | - Xiao-Meng Zhang
- Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
41
|
Tang XY, Yang Y, Tam NFY, Tao R, Dai YN. Pesticides in three rural rivers in Guangzhou, China: spatiotemporal distribution and ecological risk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:3569-3577. [PMID: 30523525 DOI: 10.1007/s11356-018-3808-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 11/19/2018] [Indexed: 05/24/2023]
Abstract
Frequent and widespread pesticide use is a major concern for both human and environmental health. The aim of this study was to screen for 19 pesticides in rural rivers in Guangzhou, China, evaluating the potential impact of detected pesticides on the local ecosystem. Sampling was performed in rural rivers in three environment types: agricultural, industrial, and unpolluted, with sampling of water and sediments in both wet and dry seasons. A total of 11 pesticides were detected overall and their spatiotemporal distribution in water and ecological risk were assessed. Five pesticides were detected at concentrations above 100 ng L-1, with the highest concentration pesticides being dimethoate (1318 ng L-1) in surface water and quinalphos (328 ng g-1 dry weight (dw)) in sediments. The most commonly detected pesticides were chlorpyrifos, acetochlor, and butachlor with detection frequencies of 50-57% and 29-43%, in water and sediments, respectively. Samples from the agricultural rural river contained the most pesticides and at higher concentrations, as compared to industrial and unpolluted areas, especially during the wet season. Ecotoxicological risk assessment through Risk Quotients (RQs) showed that chlorpyrifos and fenvalerate pose high ecological risks in water and therefore, reduction of the source input of these pesticides is essential.
Collapse
Affiliation(s)
- Xiao-Yan Tang
- Institute of Hydrobiology, Jinan University, 601 Huangpu West Road, Guangzhou, 510632, People's Republic of China
| | - Yang Yang
- Institute of Hydrobiology, Jinan University, 601 Huangpu West Road, Guangzhou, 510632, People's Republic of China.
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China.
| | - Nora Fung-Yee Tam
- Department of Biology and Chemistry, State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, SAR, China
| | - Ran Tao
- Institute of Hydrobiology, Jinan University, 601 Huangpu West Road, Guangzhou, 510632, People's Republic of China
| | - Yu-Nv Dai
- Institute of Hydrobiology, Jinan University, 601 Huangpu West Road, Guangzhou, 510632, People's Republic of China
| |
Collapse
|
42
|
Pandey LK, Lavoie I, Morin S, Depuydt S, Lyu J, Lee H, Jung J, Yeom DH, Han T, Park J. Towards a multi-bioassay-based index for toxicity assessment of fluvial waters. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:112. [PMID: 30693376 DOI: 10.1007/s10661-019-7234-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 01/11/2019] [Indexed: 06/09/2023]
Abstract
Despite their proven reliability for revealing 'acceptable' degrees of toxicity in waste- and reclaimed waters, bioassays are rarely used to assess the toxicity of hazardous contaminants present in natural waters. In this study, we used organisms from different trophic levels to assess the toxicity of water samples collected from four different South Korean rivers. The main objective was to develop a multi-descriptor index of toxicity for undiluted river water. The responses of six test organisms (Aliivibrio fischeri, Pseudokirchneriella subcapitata, Heterocypris incongruens, Moina macrocopa, Danio rerio and Lemna minor) after laboratory exposure to water samples were considered for this index, as well as the frequency of teratologies in diatom assemblages. Each individual test was attributed a toxicity class and score (three levels; no toxicity = 0, low toxicity = 1, confirmed toxicity = 2) based on the organism's response after exposure and a total score was calculated. The proposed index also considers the number of test organisms that received the highest toxicity score (value = 2). An overall toxicity category was then attributed to the water sample based on those two metrics: A = no toxicity, B = slight toxicity, C = moderate toxicity; D = toxicity and E = high toxicity. The susceptibility of the test organisms varied greatly and the sensitivity of their response also differed among bioassays. The combined responses of organisms from different trophic levels and with different life strategies provided multi-level diagnostic information about the intensity and the nature of contamination.
Collapse
Affiliation(s)
- Lalit K Pandey
- Institute of Green Environmental Research Center, 169, Gaetbeol-ro, Yeonsu-gu, Incheon, 21999, South Korea
- Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, Bareilly, 243006, India
| | - Isabelle Lavoie
- Institut national de la recherche scientifique, centre Eau Terre Environnement, 490 rue de la Couronne, Québec City, Québec, G1K 9A9, Canada
| | - Soizic Morin
- Irstea, UR EABX, 50 avenue de Verdun, 33612, Cestas Cedex, France
| | - Stephen Depuydt
- Lab of Plant Growth Analysis, Ghent University Global Campus, 119, Songdomunwha-ro, Yeonsu-gu, Incheon, 21985, Republic of Korea
| | - Jie Lyu
- Department of Life Sciences, Jilin Normal University, Siping City, Jilin Province, China
| | - Hojun Lee
- Department of Marine Sciences, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon, 22012, South Korea
| | - Jinho Jung
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul, 02841, South Korea
| | - Dong-Hyuk Yeom
- Ecotoxicology Team, Korea Institute of Toxicology, Daejeon, 34114, South Korea
| | - Taejun Han
- Department of Marine Sciences, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon, 22012, South Korea
- Ghent University Global Campus, 119, Songdomunwha-ro, Yeonsu-gu, Incheon, 21985, South Korea
| | - Jihae Park
- Lab of Plant Growth Analysis, Ghent University Global Campus, 119, Songdomunwha-ro, Yeonsu-gu, Incheon, 21985, Republic of Korea.
| |
Collapse
|
43
|
Cao F, Qin P, Lu S, He Q, Wu F, Sun H, Wang L, Li L. Measurement of volatile organic compounds and associated risk assessments through ingestion and dermal routes in Dongjiang Lake, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 165:645-653. [PMID: 30243211 DOI: 10.1016/j.ecoenv.2018.08.108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 08/29/2018] [Accepted: 08/31/2018] [Indexed: 06/08/2023]
Abstract
This study aims to investigate the occurrence, distribution and risk assessment of volatile organic compounds (VOCs) in Dongjiang Lake of China. Twenty two kinds of VOCs were detected, and the major VOCs were alkene compounds. The total concentration of VOCs (∑VOCs) ranged from 2.93 to 4.69 µg/L, and none of the VOCs detected in Dongjiang Lake exceeded the concentration limits set in the National Drinking Water Quality Standards (GB5749-2006) or the National Environmental Quality Standards for Surface Water (GB3838-2002) of China. Risk quotients (RQ) model, Multimedia Environment Pollutant Assessment System (MEPAS) and value of odor hazard index (OHI) were used to assess the ecological risk, lifetime carcinogenic risk and olfactory risk of VOCs in Dongjiang Lake, respectively. The RQtotal values varied from 3.95 × 10-3 to 0.34 and the RQ values for all the 22 detected VOCs in 12 sample locations of Dongjiang Lake were below 0.01, which means negligible risk to aquatic organisms. The cancerous and non-cancerous risk indices were in the range of 2.31 × 10-9-5.16 × 10-7 and 1.68 × 10-7-1.45 × 10-2, respectively. Bromodichloromethane and 1,1-dichloroethene were associated with the highest and lowest carcinogenic risks in all 12 sample locations. Results also demonstrated that the olfactory risk in Dongjiang Lake is negligible. These data suggest that the VOCs in Dongjiang Lake may not lead great ecological and health risks for organism and human.
Collapse
Affiliation(s)
- Fengmei Cao
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria and Risk Assessment, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Dayangfang Beiyuan Road, 8#, Chaoyang District, Beijing 100012, China
| | - Pan Qin
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria and Risk Assessment, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Dayangfang Beiyuan Road, 8#, Chaoyang District, Beijing 100012, China; Beijing Normal University, Beijing 100012, China
| | - Shaoyong Lu
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria and Risk Assessment, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Dayangfang Beiyuan Road, 8#, Chaoyang District, Beijing 100012, China.
| | - Qi He
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria and Risk Assessment, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Dayangfang Beiyuan Road, 8#, Chaoyang District, Beijing 100012, China
| | - Fengchang Wu
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria and Risk Assessment, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Dayangfang Beiyuan Road, 8#, Chaoyang District, Beijing 100012, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Lei Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Linlin Li
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria and Risk Assessment, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Dayangfang Beiyuan Road, 8#, Chaoyang District, Beijing 100012, China; Beijing Normal University, Beijing 100012, China
| |
Collapse
|
44
|
Barbosa MO, Ribeiro AR, Ratola N, Hain E, Homem V, Pereira MFR, Blaney L, Silva AMT. Spatial and seasonal occurrence of micropollutants in four Portuguese rivers and a case study for fluorescence excitation-emission matrices. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 644:1128-1140. [PMID: 30743826 DOI: 10.1016/j.scitotenv.2018.06.355] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/11/2018] [Accepted: 06/28/2018] [Indexed: 05/27/2023]
Abstract
The European Union (EU) has recommended the monitoring of specific priority substances (PSs, Directive 2013/39) and some contaminants of emerging concern (CECs, Decision 2015/495) in surface waterbodies. The present study provides spatial distributions and temporal variations of a wide range of multi-class PSs and CECs in four stressed rivers in Portugal (Ave, Leça, Antuã, and Cértima). Thirteen micropollutants were found in all four rivers, including the priority pesticide isoproturon (up to 92 ng L-1), various pharmaceuticals (up to 396 ng L-1), and the UV-filter 2-ethyl-hexyl-4-methoxycinnamate (EHMC, up to 562 ng L-1) identified in Decision 2015/495. The industrial priority compound perfluorooctanesulfonic acid (PFOS) was found in three rivers (Antuã, Cértima, and Leça) below the method quantification limit, together with four pharmaceuticals not included in these EU guidelines. The already banned priority pesticide atrazine was detected in Ave, Antuã, and Leça (up to 41 ng L-1) and simazine in Cértima and Leça (up to 26 ng L-1). Acetamiprid and imidacloprid (included in Decision 2015/495) were only detected during the dry season in the Ave. Leça river was selected as a waterbody case study for assessment of fluorescence excitation-emission matrices (EEMs). These results matched the spatial distribution trend of micropollutants along the river, with stronger fluorescence response and higher concentrations being found downstream of industrial areas and urban wastewater treatment plants (WWTPs). Moreover, the fluorescence signature of surface water collected downstream of an urban WWTP aligned very well with that obtained for the respective WWTP effluent. Thus, actions are needed to preserve a good environmental status of these stressed European waterbodies.
Collapse
Affiliation(s)
- Marta O Barbosa
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Ana R Ribeiro
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal.
| | - Nuno Ratola
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, Portugal
| | - Ethan Hain
- University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Vera Homem
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, Portugal
| | - M Fernando R Pereira
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Lee Blaney
- University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Adrián M T Silva
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| |
Collapse
|
45
|
Bai Y, Ruan X, van der Hoek JP. Residues of organochlorine pesticides (OCPs) in aquatic environment and risk assessment along Shaying River, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2018; 40:2525-2538. [PMID: 29748733 DOI: 10.1007/s10653-018-0117-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 05/04/2018] [Indexed: 06/08/2023]
Abstract
Organochlorine pesticides (OCPs) are pesticides with global scale ubiquity, persistence and bioaccumulation, which leave long-term residuals in the water body. OCPs' high toxicity poses significant threats to human health and aquatic biodiversity, making assessment of OCPs' impact on aquatic ecology and human health urgently necessary. In this research, the presence of 16 OCPs in surface water and groundwater along Shaying River, China, as well as OCPs concentration correlations, was investigated at 24 selected sampling sites. At the same time, the ecological risk and human carcinogenic risk were also analyzed by risk quotient method and USEPA's Risk Assessment Guidance, respectively. Results showed that the total concentration of OCPs ranged from 21.0 to 61.4 ng L-1 in groundwater, and 12.3-77.5 ng L-1 in surface water. Hexachlorocyclohexane (HCHs) and heptachlor were the prominent contaminants in groundwater, which indicated their use in the recent past and confirmed their persistence. The α-HCH/γ-HCH ratios in groundwater confirmed that γ-HCH (lindane) was used as main substitute of technical HCH in the study area. The correlation analysis illustrated that δ-HCH and γ-HCH played a dominant role in HCHs residue. Heptachlor and α-HCH, as well as endosulfan and heptachlor epoxide, had a strongly significant positive correlation, suggesting an associated usage of the two pair OCPs. An extremely high ecological risk for aquatic organism was observed for γ-HCH, heptachlor and dieldrin, while the carcinogenic risks posed by the selected OCPs in surface water and groundwater were all acceptable.
Collapse
Affiliation(s)
- Ying Bai
- Key Laboratory of Surfacial Geochemistry, Ministry of Education, Nanjing University, Nanjing, 210023, China
- Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, 163# Xianlin Road, Nanjing, 210023, China
| | - Xiaohong Ruan
- Key Laboratory of Surfacial Geochemistry, Ministry of Education, Nanjing University, Nanjing, 210023, China.
- Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, 163# Xianlin Road, Nanjing, 210023, China.
| | - J P van der Hoek
- Department of Water Management, Delft University of Technology, Stevinweg1, 2628CN, Delft, The Netherlands
- Strategic Centre, Waternet, Korte Ouderkerkerdijk 7, 1096AC, Amsterdam, The Netherlands
| |
Collapse
|
46
|
Park N, Choi Y, Kim D, Kim K, Jeon J. Prioritization of highly exposable pharmaceuticals via a suspect/non-target screening approach: A case study for Yeongsan River, Korea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 639:570-579. [PMID: 29800850 DOI: 10.1016/j.scitotenv.2018.05.081] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/20/2018] [Accepted: 05/06/2018] [Indexed: 06/08/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) in the Yeongsan River, Korea were prioritized via suspect and non-target analysis using LC-HRMS (QExactive plus Orbitrap) followed by semi-quantitative analysis to confirm the priority of PPCPs. A scoring and ranking system for prioritization was suggested based on occurrence frequency and chromatographic peak area or concentration. Through suspect and non-target screening, more than 50 PPCPs were tentatively identified and ranked by the scoring system. Among them, 28 substances were finally confirmed using reference standards. For estimating concentration, 26 confirmed PPCPs and 12 additional substances not included in the first ranking were semi-quantitatively analyzed. We found that carbamazepine, metformin, paraxanthine, naproxen, and fluconazole occurred 100% of the time above the limit of quantification in 14 samples, whereas carbamazepine, metformin, paraxanthine, caffeine, and cimetidine showed maximum concentrations above 1000 ng/L. Thus, in the final prioritization list, carbamazepine, metformin, and paraxanthine shared first place, followed by caffeine, cimetidine, lidocaine, naproxen, cetirizine, climbazole, fexofenadine, tramadol, and fluconazole, with scores of 100 or above. We suggest that these 12 PPCPs are the most highly exposable substances, and thus must be considered in future water monitoring in the Yeongsan River.
Collapse
Affiliation(s)
- Naree Park
- Graduate School of FEED of Eco-Friendly Offshore Structure, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea
| | - Younghun Choi
- Graduate School of FEED of Eco-Friendly Offshore Structure, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea
| | - Deokwon Kim
- Graduate School of FEED of Eco-Friendly Offshore Structure, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea
| | - Kyunghyun Kim
- Water Quality Assessment Research Division, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Junho Jeon
- Graduate School of FEED of Eco-Friendly Offshore Structure, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea; School of Civil, Environmental and Chemical Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea.
| |
Collapse
|
47
|
Škrbić BD, Kadokami K, Antić I. Survey on the micro-pollutants presence in surface water system of northern Serbia and environmental and health risk assessment. ENVIRONMENTAL RESEARCH 2018; 166:130-140. [PMID: 29886389 DOI: 10.1016/j.envres.2018.05.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/06/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
This study demonstrates the occurrence of 940 organic micro-pollutants in surface water of four rivers, one irrigation canal system, and two lakes in Vojvodina Province, the northern part of Serbia, summing in total eighteen samples. The number of detected chemicals ranged from 22 to 84, with 127 micro-pollutants detected at least once, representing 13% of the studied substances. The targeted compounds include n-alkanes, sterols, polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides polychlorinated biphenyls, pesticides, pharmaceutical active compounds, industrial chemicals, plasticizers, etc. Among the analysed compounds, sterols were the most dominant with maximum quantified concentrations. The substances which were quantified with frequency over 50% were two PAHs (2-methylnaphthalene, benzo(ghi)perylene), five sterols (cholesterol, cholestanol, stigmasterol, fucosterol, beta-sitosterol), three pharmaceuticals and personal care products (L-menthol, diethyltoluamide, caffeine), and ten household chemicals (4-tert-octylphenol, dimethyl phthalate, methyl palmitate, phenylethyl alcohol, 1-nonanol, alpha-terpineol, 2-phenoxy-ethanol, methyl myristate, acetophenone, and 2-ethyl-1-hexanol). The list of priority substances under the European Union Directive 2013/39/EU includes 49 priority substances (PSs) out of which 34 were analysed. Among these, eleven PSs were quantified, and only two compounds (fluoranthene and benzo (a) pyrene) exceeded EU Environmental Quality Standards targeted values. The obtained results were compared with the previously published data that dealt with the same targeted number of micro-pollutants in sediment samples. This revealed connections between the same sampling locations. Environmental risk assessment showed the existence of potential ecological risk as 72% of the obtained values for the ecological hazard index (HI) at investigated locations were higher that the targeted value (HI > 1). Estimated values for hazard quotient (HQ) and hazard index (HI) for non-carcinogenic risk were lower than the targeted value, indicating no non-carcinogenic risk through dermal contact and non-intentional ingestion of water. Estimated values for cancer risk were all below 1 × 10-6, which is not considered to pose significant human health risk.
Collapse
Affiliation(s)
- Biljana D Škrbić
- University of Novi Sad, Faculty of Technology, Laboratory for Chemical Contaminants and Sustainable Development, 21000 Novi Sad, Serbia.
| | - Kiwao Kadokami
- Institute of Environmental Science and Technology, University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0135, Japan
| | - Igor Antić
- University of Novi Sad, Faculty of Technology, Laboratory for Chemical Contaminants and Sustainable Development, 21000 Novi Sad, Serbia
| |
Collapse
|
48
|
Wang L, Bie P, Zhang J. Estimates of unintentional production and emission of hexachlorobutadiene from 1992 to 2016 in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 238:204-212. [PMID: 29554568 DOI: 10.1016/j.envpol.2018.03.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/09/2018] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
Although hexachlorobutadiene (HCBD) has been listed as a persistent organic pollutant (POP) under Annexes A and C of the Stockholm Convention, information about its unintentional production and emission is still very limited. We estimated the historical unintentional production and emission of HCBD during 1992-2016 in China based on aggregated activity data and emission functions. The unintentional production of HCBD increased from 60.8 (95% confidence interval, 38.2-88.5) MT/yr to 2871.5 (2234.2-3530.0) MT/yr during 1992-2016, representing an average annual growth rate of 17.4%. The main unintentional source of HCBD changed from carbon tetrachloride to trichloroethylene production during this period. We estimated that China's cumulative emissions of HCBD were 8211.3 (6131.5-10,579.5) MT during the same period. HCBD consumption and the chlorinated hydrocarbon production sector were the major contributors to total HCBD emissions. Owing to the long-range transport capability of HCBD (8784 km), such high emissions in China may cause adverse effects in other regions.
Collapse
Affiliation(s)
- Lei Wang
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Pengju Bie
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Jianbo Zhang
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
49
|
Ilyas S, Abtahi SM, Akkilic N, Roesink H, de Vos WM. Weak polyelectrolyte multilayers as tunable separation layers for micro-pollutant removal by hollow fiber nanofiltration membranes. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.05.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
50
|
Terzopoulou E, Voutsa D. Study of persistent toxic pollutants in a river basin-ecotoxicological risk assessment. ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:625-638. [PMID: 28382548 DOI: 10.1007/s10646-017-1795-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/21/2017] [Indexed: 06/07/2023]
Abstract
This study presents a complementary approach for the evaluation of water quality in a river basin by employing active and passive sampling. Persistent toxic pollutants representing three classes: organochlorinated pesticides (OCPs), polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs), were studied in grab water samples, in passive samplers/SemiPermeable Membrane Devices (SPMDs) and in fish tissues collected along the Strymonas River, northern Greece at three sampling campaigns during the year 2013. Almost all the target compounds were detected in the study river of Strymonas, northern Greece at the periods of high rainfall intensity and/or low flow-rate. The most frequently detected compounds were 1,2-benzanthracene, benzo(a)pyrene, benzo(b)fluoranthene, endosulfan I, endosulfan II, endosulfan sulfate, endrin aldehyde, fluorene, methoxychlor, polychlorinated biphenyl PCB 28, PCB 180 and pyrene. The family of DDT compounds and aldrin were also occasionally detected. Agricultural run-off and waste effluents are the main sources of hydrophobic organic compounds in the river basin. The use of SPMDs allowed the detection of more micropollutants than active sampling (31 vs. 16, respectively). Results showed relatively low risk however the potential risk associated with micropollutants such as 1,2-benzanthracene, benzo(b)fluoranthene, p,p-dichlorodiphenyldichloroethane (DDD), endosulfan II, methoxychlor, PCB 180 and pyrene should not be neglected. Performing risk assessment based on passive sampling, more information was obtained about temporal and spatial variation. SPMDs could be applied as a pre-evaluation before chemical monitoring in biota.
Collapse
Affiliation(s)
- Evangelia Terzopoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University, Thessaloniki, 54124, Greece
- Veterinary Laboratory of Serres, Terma Omonoias, Serres, 62110, Greece
| | - Dimitra Voutsa
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University, Thessaloniki, 54124, Greece.
| |
Collapse
|