1
|
Timoszczuk CT, Taniguchi S, da Silva J, Pereira LC, Rosa LD, Secchi ER, Negrete J, Borges JCG, Siciliano S, Baldassin P, Acevedo J, Aguayo-Lobo A, Fruet PF, Bícego MC, Lourenço RA. Persistent organic pollutants and fatty acids in humpback whales: Antarctic and Chilean feeding and Brazilian breeding sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 958:178170. [PMID: 39705950 DOI: 10.1016/j.scitotenv.2024.178170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/09/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
This study investigated the fatty acid composition and persistent organic pollutant (POP) levels in humpback whales across the Southern Ocean, Chilean and Brazilian coast. We found significant regional variations in both fatty acids and POPs. Whales from the Strait of Magellan exhibited a distinct fatty acid profile, indicative of a specialized diet rich in higher trophic level prey. In contrast, whales from the Antarctic Peninsula and Brazilian coast displayed fatty acid compositions typical of humpback whales with krill-based diets. Additionally, pollutant concentrations, particularly PCBs, were significantly elevated in whales from the Strait of Magellan. This suggests a strong link between dietary habits and pollutant exposure.
Collapse
Affiliation(s)
- Cristian T Timoszczuk
- Instituto Oceanográfico, Universidade de São Paulo, Praça do Oceanográfico, 191, São Paulo, SP 05508-120, Brazil.
| | - Satie Taniguchi
- Instituto Oceanográfico, Universidade de São Paulo, Praça do Oceanográfico, 191, São Paulo, SP 05508-120, Brazil
| | - Josilene da Silva
- Instituto Oceanográfico, Universidade de São Paulo, Praça do Oceanográfico, 191, São Paulo, SP 05508-120, Brazil
| | - Lucas Costa Pereira
- Instituto Oceanográfico, Universidade de São Paulo, Praça do Oceanográfico, 191, São Paulo, SP 05508-120, Brazil
| | - Luciano Dalla Rosa
- Laboratório de Ecologia e Conservação da Megafauna Marinha, Instituto de Oceanografia, Universidade Federal do Rio Grande - FURG, Rio Grande, RS 96203-000, Brazil
| | - Eduardo R Secchi
- Laboratório de Ecologia e Conservação da Megafauna Marinha, Instituto de Oceanografia, Universidade Federal do Rio Grande - FURG, Rio Grande, RS 96203-000, Brazil
| | - Javier Negrete
- Departamento de Biología de Predadores Tope, Instituto Antártico Argentino, Av. 25 de Mayo 1143(B1650HMK), San Martin, Buenos Aires, Argentina; Facultad de Ciencias Naturales, Universidad Nacional de La Plata, Av. 122 y 60 S/N (1900), La Plata, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Godoy Cruz, 2290, C1425FQB, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - João Carlos Gomes Borges
- Fundação de Mamíferos Aquáticos, Estrada de Matapuã, 411, Anexo Chácara Anjo Gabriel, Mosqueiro, São Cristóvão, SE 49100-000, Brazil; Programa de Pós-Graduação em Ecologia e Monitoramento Ambiental, Universidade Federal da Paraíba, Av. Santa Elisabete, 160, Rio Tinto, PB 58297-000, Brazil
| | - Salvatore Siciliano
- Escola Nacional de Saúde Pública/Fiocruz, Departamento de Ciências Biológicas, Rio de Janeiro, RJ 21041-210, Brazil
| | - Paula Baldassin
- Instituto BW para a Conservação e Medicina da Fauna Marinha, R. Profa. Suely Brasil Flores, 88. Praia Seca, Araruama, RJ 28972-765, Brazil
| | - Jorge Acevedo
- Centro de Estudios del Cuaternario de Fuego-Patagonia y Antártica (CEQUA), Punta Arenas, Chile
| | | | - Pedro F Fruet
- Museu Oceanográfico Prof. Eliézer de C. Rios, Universidade Federal do Rio Grande - FURG, Rio Grande, RS 96200-580, Brazil
| | - Márcia Caruso Bícego
- Instituto Oceanográfico, Universidade de São Paulo, Praça do Oceanográfico, 191, São Paulo, SP 05508-120, Brazil
| | - Rafael André Lourenço
- Instituto Oceanográfico, Universidade de São Paulo, Praça do Oceanográfico, 191, São Paulo, SP 05508-120, Brazil
| |
Collapse
|
2
|
Palmer N, Reichelt-Brushett A, Hall J, Cagnazzi D, Rose K, March D. Contaminant assessment of stranded and deceased beaked whales (Ziphiidae) on the New South Wales coast of Australia. MARINE POLLUTION BULLETIN 2024; 204:116520. [PMID: 38815472 DOI: 10.1016/j.marpolbul.2024.116520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
Metal and organic pollutants are prominent marine contaminants that disperse widely throughout the environment. Some contaminants biomagnify, leaving long-lived apex predators such as cetaceans at risk of toxicity. Various tissues collected post-mortem from 16 Ziphiidae individuals that stranded on the New South Wales (NSW) coast, Australia, over ∼15 years were investigated for 16 metals/metalloids and 33 organic contaminants. Polychlorinated biphenyls (PCBs) and Dichlorodiphenyltrichloroethanes (DDTs) were commonly detected in blubber and liver tissues. Mercury, cadmium and silver exceeded reported toxicity thresholds in several individuals. The liver tissue of a Mesoplodon layardii specimen had the highest mercury (386 mg/kg dry weight). Liver tissue of a Mesoplodon grayi specimen had the highest silver concentration (19.7 mg/kg dry weight), and the highest cadmium concentration was in Ziphius cavirostris kidney (478 mg/kg dry weight). This study provides important new information for rare Ziphiidae species globally.
Collapse
Affiliation(s)
- Natalie Palmer
- Faculty of Science and Engineering, Southern Cross University, Military Road, East Lismore, NSW 2480, Australia
| | - Amanda Reichelt-Brushett
- Faculty of Science and Engineering, Southern Cross University, Military Road, East Lismore, NSW 2480, Australia.
| | - Jane Hall
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Nathan, QLD 4222, Australia; Australian Registry of Wildlife Health, Taronga Conservation Society Australia, Bradleys Head Rd, Mosman, NSW 2088, Australia
| | - Daniele Cagnazzi
- Faculty of Science and Engineering, Southern Cross University, Military Road, East Lismore, NSW 2480, Australia
| | - Karrie Rose
- Australian Registry of Wildlife Health, Taronga Conservation Society Australia, Bradleys Head Rd, Mosman, NSW 2088, Australia
| | - Duane March
- NSW National Parks and Wildlife Service, 4/32 Edgar St, Coffs Harbour, NSW 2450, Australia
| |
Collapse
|
3
|
Feyrer LJ, Stanistreet JE, Moors-Murphy HB. Navigating the unknown: assessing anthropogenic threats to beaked whales, family Ziphiidae. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240058. [PMID: 38633351 PMCID: PMC11021932 DOI: 10.1098/rsos.240058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 04/19/2024]
Abstract
This review comprehensively evaluates the impacts of anthropogenic threats on beaked whales (Ziphiidae)-a taxonomic group characterized by cryptic biology, deep dives and remote offshore habitat, which have challenged direct scientific observation. By synthesizing information published in peer-reviewed studies and grey literature, we identified available evidence of impacts across 14 threats for each Ziphiidae species. Threats were assessed based on their pathways of effects on individuals, revealing many gaps in scientific understanding of the risks faced by beaked whales. By applying a comprehensive taxon-level analysis, we found evidence that all beaked whale species are affected by multiple stressors, with climate change, entanglement and plastic pollution being the most common threats documented across beaked whale species. Threats assessed as having a serious impact on individuals included whaling, military sonar, entanglement, depredation, vessel strikes, plastics and oil spills. This review emphasizes the urgent need for targeted research to address a range of uncertainties, including cumulative and population-level impacts. Understanding the evidence and pathways of the effects of stressors on individuals can support future assessments, guide practical mitigation strategies and advance current understanding of anthropogenic impacts on rare and elusive marine species.
Collapse
Affiliation(s)
- Laura J. Feyrer
- Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, Nova ScotiaB2Y 4A2, Canada
- Department of Biology, Dalhousie University, Halifax, Nova ScotiaB3H 4R2, Canada
| | - Joy E. Stanistreet
- Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, Nova ScotiaB2Y 4A2, Canada
| | - Hilary B. Moors-Murphy
- Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, Nova ScotiaB2Y 4A2, Canada
| |
Collapse
|
4
|
Cui N, Pan X, Liu J. Distribution, sources and health risk assessment of DDT and its metabolites in agricultural soils in Zhejiang Province, China. ENVIRONMENTAL TECHNOLOGY 2024; 45:1522-1530. [PMID: 36373367 DOI: 10.1080/09593330.2022.2147449] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Dichlorodiphenyltrichloroethane (DDT) is well known for its harmful effects and has been officially banned as a pesticide around the world. However, DDT pollution still exists in natural environments in China because DDT degrade very slowly. In this study, 60 soil samples were collected from Cixi, Zhejiang Province, and the levels of DDTs and its metabolites in soil and health risks were investigated. The results showed that the detection rate of DDT in soil samples were 100%, and the total DDTs residue in soil ranged from 0.007 to 1.208 mg/kg, with an average of 0. 113±0. 035 mg/kg, which exceeded the second-level Chinese soil environmental quality standard for farmland soil. The average residuals of p,p'-DDT, p,p'-DDE (dichlorodiphenyldichloroethylene), p,p'-DDD (dichlorodiphenyldichloroethane) and o,p'-DDT accounted for 34.8%, 50.9%, 8.0% and 6.3% of the total DDTs, respectively. The DDD/DDE ratios indicated a dehydrochlorination of DDT to DDE under aerobic conditions at most sampling sites. The ratios of (p,p'-DDE+p,p'-DDD)/p,p'-DDT and o,p'-DDT/p,p'-DDT indicating the DDT in the field were mainly introduced via industrial DDT and dicofol, including historical residue and fresh input. The health risk assessment showed that DDT-contaminated sites do not pose a non-carcinogenic risk to humans, and pose a very low risk of cancer to children and a low risk of cancer to adults. Overall, this study helps to understand the distribution, sources and health risks of DDT in typical soils.
Collapse
Affiliation(s)
- Ning Cui
- College of Medicine, Xi'an International University, Xi'an, People's Republic of China
| | - Xiong Pan
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, People's Republic of China
| | - Jing Liu
- College of Medicine, Xi'an International University, Xi'an, People's Republic of China
| |
Collapse
|
5
|
Xuereb N, Ólafsdóttir K, Samarra F, Svavarsson J, Magnúsdóttir EE. POPs in long-finned pilot whales mass stranded in Iceland as a proxy for their physiological condition. MARINE POLLUTION BULLETIN 2023; 197:115758. [PMID: 37979533 DOI: 10.1016/j.marpolbul.2023.115758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/13/2023] [Accepted: 11/03/2023] [Indexed: 11/20/2023]
Abstract
Long-finned pilot whales (Globicephala melas) are the most frequently stranded cetaceans in the world; however, the predominant drivers of these events are poorly understood. In this study the levels of persistent organic pollutants from pilot whales stranded in North-east Iceland were quantified and compared to historical data and physical parameters to investigate whether contaminant load may have influenced the physiological state of stranded individuals, how these loads fluctuate with sex and age group, and if this is consistent with the literature. Historical comparison was also carried out to discern how pollutant contamination has changed throughout the past few decades. DDE, transnonachlor and PCB-153 were the top three pollutants respectively. The accumulation of POPs was greater on average in immature individuals than adults, whilst among adults, males had higher concentration than females. Moreover, despite an indication of decreasing POP loads throughout the years, knowledge of harmful thresholds remains exceedingly limited.
Collapse
Affiliation(s)
- Nicholai Xuereb
- Faculty of Life and Environmental Sciences, University of Iceland, Askja, Sturlugata 7, 102 Reykjavík, Iceland.
| | - Kristín Ólafsdóttir
- Department of Pharmacology and Toxicology, University of Iceland, Hofsvallagata 53, 107 Reykjavík, Iceland
| | - Filipa Samarra
- University of Iceland's Institute of Research Centers, Ægisgata 2, 900 Vestmannaeyjar, Iceland
| | - Jörundur Svavarsson
- Faculty of Life and Environmental Sciences, University of Iceland, Askja, Sturlugata 7, 102 Reykjavík, Iceland
| | - Edda Elísabet Magnúsdóttir
- Faculty of Life and Environmental Sciences, University of Iceland, Askja, Sturlugata 7, 102 Reykjavík, Iceland; Faculty of Subject Teacher Education, University of Iceland, Askja, Sturlugata 7, 102 Reykjavík, Iceland
| |
Collapse
|
6
|
de Oliveira-Ferreira N, Santos-Neto EB, Manhães BMR, Carvalho VL, Gonçalves L, de Castilho PV, Secchi ER, Botta S, Marcondes MCC, Colosio AC, Cremer MJ, Cunha HA, Azevedo AF, Bisi TL, Lailson-Brito J. The deep dive of organohalogen compounds: Bioaccumulation in the top predators of mesopelagic trophic webs, pygmy and dwarf sperm whales, from the Southwestern Atlantic ocean. CHEMOSPHERE 2023; 345:140456. [PMID: 37839740 DOI: 10.1016/j.chemosphere.2023.140456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/28/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Kogia sima and Kogia breviceps are apex predators of mesopelagic trophic webs being far from most anthropogenic threats. However, chemical pollutants and naturally synthesized compounds may travel long distances. This study aimed to use kogiid whales as sentinels of mesopelagic trophic webs in the Southwestern Atlantic Ocean. Persistent organic pollutants (POPs), e.g., polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDT) and metabolites, mirex, hexachlorobenzene (HCB), polybrominated diphenylethers (PBDEs), pentabromoethylbenzene (PBEB) and hexabromobenzene (HBB), and the naturally produced methoxylated BDE (MeO-BDEs) were determined in the blubber of 16 K. sima and 15 K. breviceps. Among the organochlorine compounds, DDTs were the main group found in K. sima and in K. breviceps (1636.6 and 3983.3 ng g-1 lw, respective medians), followed by PCBs (425.9 and 956.1 ng g-1 lw, respectively), mirex (184.1 and 375.6 ng g-1 lw, respectively), and HCB (132.4 and 340.3 ng g-1 lw, respectively). As for the organobromine, the natural MeO-BDEs were predominant (1676.7 and 501.6 ng g-1 lw, respectively), followed by PBDEs (13.6 and 10.3 ng g-1 lw, respectively) and PBEB (2.2 and 2.9 ng g-1 lw, respectively). In general, POPs concentration was higher in K. breviceps than in K. sima. Conversely, MeO-BDEs concentration was higher in K. sima than in K. breviceps. Differences in concentrations in these sympatric odontocetes were attributed to distinct species, sampling sites, and biological parameters and suggest some level of niche segregation. It is noteworthy the long-range reach and bioaccumulation of these synthetic compounds in an unexplored habitat, that present an increasing economic interest.
Collapse
Affiliation(s)
- Nara de Oliveira-Ferreira
- Laboratório de Mamíferos Aquáticos e Bioindicadores (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 20550-013, Rio de Janeiro, Rio de Janeiro, Brazil; Programa de Pós-Graduação em Ciências Biológicas - Biofísica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho, 373, 21941-590, Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Elitieri B Santos-Neto
- Laboratório de Mamíferos Aquáticos e Bioindicadores (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 20550-013, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bárbara M R Manhães
- Laboratório de Mamíferos Aquáticos e Bioindicadores (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 20550-013, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vitor L Carvalho
- Associação de Pesquisa e Preservação de Ecossistemas Aquáticos (AQUASIS), Av. Pintor João Figueiredo, S/N, 61627-250, Caucaia, Ceará, Brazil
| | - Letícia Gonçalves
- Associação de Pesquisa e Preservação de Ecossistemas Aquáticos (AQUASIS), Av. Pintor João Figueiredo, S/N, 61627-250, Caucaia, Ceará, Brazil
| | - Pedro V de Castilho
- Laboratório de Zoologia, Departamento de Engenharia de Pesca e Ciências Biológicas, Universidade do Estado de Santa Catarina (UDESC), Rua Coronel Fernandes Martins, 270, 88790-000, Laguna, Santa Catarina, Brazil
| | - Eduardo R Secchi
- Laboratório de Ecologia e Conservação da Megafauna Marinha (ECOMEGA), Instituto de Oceanografia, Universidade Federal do Rio Grande (FURG), Avenida Itália s/n, 96203-900, Rio Grande, Rio Grande do Sul, Brazil
| | - Silvina Botta
- Laboratório de Ecologia e Conservação da Megafauna Marinha (ECOMEGA), Instituto de Oceanografia, Universidade Federal do Rio Grande (FURG), Avenida Itália s/n, 96203-900, Rio Grande, Rio Grande do Sul, Brazil
| | - Milton C C Marcondes
- Instituto Baleia Jubarte (IBJ), Rua Barão do Rio Branco, 125, 45900-000, Caravelas, Bahia, Brazil
| | - Adriana C Colosio
- Instituto Baleia Jubarte (IBJ), Rua Barão do Rio Branco, 125, 45900-000, Caravelas, Bahia, Brazil
| | - Marta J Cremer
- Laboratório de Ecologia e Conservação de Tetrápodes Marinhos e Costeiros, Universidade da Região de Joinville (UNIVILLE), R. Rodovia Duque de Caxias, 6365, 89240-000, São Francisco do Sul, Santa Catarina, Brazil
| | - Haydée A Cunha
- Laboratório de Mamíferos Aquáticos e Bioindicadores (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 20550-013, Rio de Janeiro, Rio de Janeiro, Brazil; Departamento de Genética, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 20550-013, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre F Azevedo
- Laboratório de Mamíferos Aquáticos e Bioindicadores (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 20550-013, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tatiana L Bisi
- Laboratório de Mamíferos Aquáticos e Bioindicadores (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 20550-013, Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Lailson-Brito
- Laboratório de Mamíferos Aquáticos e Bioindicadores (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 20550-013, Rio de Janeiro, Rio de Janeiro, Brazil; Programa de Pós-Graduação em Ciências Biológicas - Biofísica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho, 373, 21941-590, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
González-Bareiro E, Montesdeoca-Esponda S, De la Fuente J, Sosa-Ferrera Z, Arbelo M, Fernández A, Santana-Rodríguez JJ. Assessment of the presence of UV filters and UV stabilizers in stranded dolphin blubber. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165041. [PMID: 37356772 DOI: 10.1016/j.scitotenv.2023.165041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 06/07/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
The presence of ultraviolet filters (UVFs) and stabilizers (UVSs) was evaluated for the first time in the common bottlenose dolphin (Tursiops truncatus). UVFs and UVSs are compounds of growing concern because their effects on the environment are not completely known. UVFs and UVSs are added to personal care products (PCPs), such as cosmetics and products related to sun care and once released to the aquatic ecosystem, marine organisms can bioaccumulate these substances. This work aimed to determine the presence of 12 UVFs and UVSs in cetacean blubber samples to assess the pollution to which these animals of the highest trophic chain levels are exposed due to human activity. Analytical determinations were carried out using a method based on microwave-assisted extraction combined with ultrahigh-performance liquid chromatography and tandem mass spectrometry detection. The developed method was successfully applied to determine the target compounds in the blubber tissues of five necropsied common bottlenose dolphins. Three of the 12 studied compounds, namely 2-ethylhexyl 2-cyano-3,3-diphenylprop-2-enoate (octocrilene, OC), 2-hydroxy-4-methoxybenzophenone (benzophenone 3, BP3) and 3-methylbutyl (E)-3-(4methoxyphenyl) prop-2-enoate (IMC), were detected in several samples. Of the identified compounds, OC was present in all the samples and at the highest concentration within the range from 52.61 ± 18.59 to 108.0 ± 11.32 ng·g-1.
Collapse
Affiliation(s)
- Emily González-Bareiro
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain
| | - Sarah Montesdeoca-Esponda
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain.
| | - Jesús De la Fuente
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Centro Atlántico de Investigación de Cetáceos, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Zoraida Sosa-Ferrera
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain
| | - Manuel Arbelo
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Centro Atlántico de Investigación de Cetáceos, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Antonio Fernández
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Centro Atlántico de Investigación de Cetáceos, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - José Juan Santana-Rodríguez
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain
| |
Collapse
|
8
|
Lu F, Hao X, Dai J, Wang H, Yang G, Sun C, Chen B. Regional variation of polybrominated diphenyl ethers in East Asian finless porpoises in the East China Sea. MARINE POLLUTION BULLETIN 2023; 194:115257. [PMID: 37478784 DOI: 10.1016/j.marpolbul.2023.115257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/26/2023] [Accepted: 07/03/2023] [Indexed: 07/23/2023]
Abstract
Certain polybrominated diphenyl ethers (PBDEs) have been banned for years, however, they still possess the potential to harm marine cetaceans. In this study, 56 East Asian finless porpoises (EAFPs) collected from three locations of the East China Sea between 2009 and 2011, were analyzed to determine the presence of typical PBDE congeners. Among all the samples, BDE47 was the main congener, constituting ∼48.3 % of the ΣPBDEs. Significant variations (p < 0.01) in PBDE abundance were observed among different regions (Pingtan: 172.8 ng/g, Lvsi: 61.2 ng/g and Ningbo: 32.9 ng/g). In addition, there was a significant positive correlation between PBDE abundance and male body length. The general ΣPBDEs concentration of this population was lower compared to other populations and cetaceans. Although combined risk assessments indicated a low risk to porpoise health, long-term surveillance is essential as PBDEs are not completely banned.
Collapse
Affiliation(s)
- Fangting Lu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, Nanjing Normal University, Nanjing, 210023, PR China
| | - Xiuqing Hao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, Nanjing Normal University, Nanjing, 210023, PR China
| | - Jianhua Dai
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, Nanjing Normal University, Nanjing, 210023, PR China
| | - Hui Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, Nanjing Normal University, Nanjing, 210023, PR China
| | - Guang Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, Nanjing Normal University, Nanjing, 210023, PR China
| | - Cheng Sun
- School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Bingyao Chen
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, Nanjing Normal University, Nanjing, 210023, PR China.
| |
Collapse
|
9
|
Bridge C, Methion S, Díaz López B. The impact of anthropogenic pollutants on the distribution of a marine top predator within a coastal estuarine system. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:898. [PMID: 37369947 DOI: 10.1007/s10661-023-11477-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
Due to anthropogenic pressures, estuarine systems are among the most broadly impacted areas for marine top predator species. Given this, it is crucial to study the interaction between the vulnerable marine species that inhabit these regions with environmental and anthropogenic variables. This study aims to determine whether nutrient pollution is related to the presence of bottlenose dolphins in a coastal environment. Using a multi-year dataset and GAMs, we studied the relationship between marine pollutants and the presence of bottlenose dolphins in this highly impacted coastal marine environment. We observed that urban fertilizers were linked to the spatial distribution of bottlenose dolphins. There was a higher presence of bottlenose dolphins in areas with high levels of phosphoric acid. In contrast, at higher concentrations of nitrate, the presence of bottlenose dolphins decreased.
Collapse
Affiliation(s)
- Cheyenne Bridge
- Bottlenose Dolphin Research Institute, Av. Beiramar 192, 36980 O Grove, Pontevedra, Spain
| | - Séverine Methion
- Bottlenose Dolphin Research Institute, Av. Beiramar 192, 36980 O Grove, Pontevedra, Spain
| | - Bruno Díaz López
- Bottlenose Dolphin Research Institute, Av. Beiramar 192, 36980 O Grove, Pontevedra, Spain.
| |
Collapse
|
10
|
Falahudin D, Herandarudewi SMC, Hukom FD, Arifin Z, Wulandari I, Sudaryanto A, Hoang AQ, Watanabe I, Takahashi S. The first full-congener analysis of 209 polychlorinated biphenyls (PCBs) in the blubber of short-finned pilot whales (Globicephala macrorhynchus) stranded along the coast of Savu Island, Indonesia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163008. [PMID: 36966839 DOI: 10.1016/j.scitotenv.2023.163008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 05/17/2023]
Abstract
Short-finned pilot whales (SFPW) are a group of cetaceans found globally in tropical and temperate seas and are commonly stranded in the group, but the reason behind their stranding is still unknown. No detailed information on the contamination status and bioaccumulation of halogenated organic compounds, including polychlorinated biphenyls (PCBs), in the SFPW from Indonesian waters has been reported. Therefore, we analyzed all 209 PCB congeners in the blubber of 20 SFPW specimens stranded along the coast of Savu Island, East Nusa Tenggara, Indonesia, in October 2012 to explain the status of contamination, congener profiles, potential risk of PCBs to cetaceans, and the determination of unintentionally produced PCBs (u-PCBs) in the blubber of SFPW. Concentrations of Σ209PCBs, Σ7in-PCBs, Σ12dl-PCBs, and Σ21u-PCBs were between 48 and 490 (mean:240 ± 140), 22-230 (110 ± 60), 2.6-38 (17 ± 10), and 1.0-13 (6.3 ± 3.7) ng g-1 lipid weight (lw), respectively. Congener-specific profiles of PCBs among sex and estimated age groups were observed; relatively high proportions of tri-to penta-CBs in juveniles and highly chlorinated recalcitrant congeners in structure-activity groups (SAGs) in sub-adult females were noted. The estimated toxic equivalency (TEQs) value for dl-PCBs ranged from 2.2 to 60 TEQWHO pg/g lw, with juveniles containing high TEQ values than sub-adults and adults. Although the TEQs and concentrations of PCBs in SFPW stranded along Indonesian coasts were lower than those reported for similar whale species from other North Pacific regions, further research is needed to assess the long-term impact of halogenated organic pollutants on their survival and health.
Collapse
Affiliation(s)
- Dede Falahudin
- The United Graduate School of Agricultural Sciences, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan; Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan; Research Center for Oceanography, National Research and Innovation Agency, Pasir Putih 1, Ancol Timur, Jakarta 14430, Indonesia
| | - Sekar M C Herandarudewi
- Research Center for Oceanography, National Research and Innovation Agency, Pasir Putih 1, Ancol Timur, Jakarta 14430, Indonesia
| | - Frensly Demianus Hukom
- Research Center for Oceanography, National Research and Innovation Agency, Pasir Putih 1, Ancol Timur, Jakarta 14430, Indonesia
| | - Zainal Arifin
- Research Center for Oceanography, National Research and Innovation Agency, Pasir Putih 1, Ancol Timur, Jakarta 14430, Indonesia
| | - Ita Wulandari
- Research Center for Oceanography, National Research and Innovation Agency, Pasir Putih 1, Ancol Timur, Jakarta 14430, Indonesia
| | - Agus Sudaryanto
- Research Center for Environmental and Clean Technology, National Research and Innovation Agency, Building 820 KST BJ. Habibie, Serpong 15314, Banten, Indonesia
| | - Anh Quoc Hoang
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hanoi 11000, Viet Nam
| | - Isao Watanabe
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan
| | - Shin Takahashi
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan; Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan.
| |
Collapse
|
11
|
de Oliveira-Ferreira N, Santos-Neto EB, Manhães BMR, Domit C, Secchi ER, Botta S, Cunha HA, Azevedo AF, Bisi TL, Lailson-Brito J. An additional threat to populations predicted to collapse: Organobromine compounds of natural and anthropogenic sources in rough-toothed dolphins from the Southwestern Atlantic Ocean. CHEMOSPHERE 2023; 323:138237. [PMID: 36863632 DOI: 10.1016/j.chemosphere.2023.138237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/14/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Organic contaminants with toxic effects, like the conventional brominated flame retardants (BFRs) and BFRs of emergent concern, and their synergistic effects with other micropollutants, can be an additional threat to delphinids. Rough-toothed dolphins (Steno bredanensis) populations strongly associated with coastal environments already face a potential risk of decline due to high exposure to organochlorine pollutants. Moreover, natural organobromine compounds are important indicators of the environment's health. Polybrominated diphenyl ethers (PBDEs), pentabromoethylbenzene (PBEB), hexabromobenzene (HBB) and the methoxylated PBDEs (MeO-BDEs) were determined in the blubber of rough-toothed dolphins from three ecological populations from the Southwestern Atlantic Ocean (Southeastern, Southern and Outer Continental Shelf/Southern populations, SE, S, and OCS/S, respectively). The profile was dominated by the naturally produced MeO-BDEs (mainly 2'-MeO-BDE 68 and 6-MeO-BDE 47), followed by the anthropogenic BFRs PBDEs (mainly BDE 47). Median ΣMeO-BDE concentrations varied between 705.4 and 3346.0 ng g-1 lw among populations and ΣPBDE from 89.4 until 538.0 ng g-1 lw. Concentrations of anthropogenic organobromine compounds (ΣPBDE, BDE 99 and BDE 100) were higher in SE population than in OCS/S, indicating a coast - ocean gradient of contamination. Negative correlations were found between the concentration of the natural compounds and age, suggesting their metabolization and/or biodilution and maternal transference. Conversely, positive correlations were found between the concentrations of BDE 153 and BDE 154 and age, indicating low biotransformation capability of these heavy congeners. The levels of PBDEs found are concerning, particularly for SE population, because they are similar to concentrations known for the onset of endocrine disruption in other marine mammals and may be an additional threat to a population in a hotspot for chemical pollution.
Collapse
Affiliation(s)
- Nara de Oliveira-Ferreira
- Laboratório de Mamíferos Aquáticos e Bioindicadores (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Postal Code: 20550-013, Rio de Janeiro, Brazil; Programa de Pós-Graduação em Ciências Biológicas - Biofísica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho, 373, Postal Code: 21941-590; Rio de Janeiro, Brazil.
| | - Elitieri B Santos-Neto
- Laboratório de Mamíferos Aquáticos e Bioindicadores (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Postal Code: 20550-013, Rio de Janeiro, Brazil
| | - Bárbara M R Manhães
- Laboratório de Mamíferos Aquáticos e Bioindicadores (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Postal Code: 20550-013, Rio de Janeiro, Brazil
| | - Camila Domit
- Laboratório de Ecologia e Conservação (LEC), Centro de Estudos do Mar (CEM), Universidade Federal do Paraná (UFPR), Avenida Beira Mar s/n, Postal Code: 83255-000, Pontal do Paraná, Paraná, Brazil
| | - Eduardo R Secchi
- Laboratório de Ecologia e Conservação da Megafauna Marinha (ECOMEGA), Instituto de Oceanografia, Universidade Federal do Rio Grande (FURG), Avenida Itália, km 8, Postal Code: 96203-900, Rio Grande, Rio Grande do Sul, Brazil
| | - Silvina Botta
- Laboratório de Ecologia e Conservação da Megafauna Marinha (ECOMEGA), Instituto de Oceanografia, Universidade Federal do Rio Grande (FURG), Avenida Itália, km 8, Postal Code: 96203-900, Rio Grande, Rio Grande do Sul, Brazil
| | - Haydée A Cunha
- Laboratório de Mamíferos Aquáticos e Bioindicadores (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Postal Code: 20550-013, Rio de Janeiro, Brazil; Departamento de Genética, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Postal Code: 20550-013, Rio de Janeiro, Brazil
| | - Alexandre F Azevedo
- Laboratório de Mamíferos Aquáticos e Bioindicadores (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Postal Code: 20550-013, Rio de Janeiro, Brazil
| | - Tatiana L Bisi
- Laboratório de Mamíferos Aquáticos e Bioindicadores (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Postal Code: 20550-013, Rio de Janeiro, Brazil
| | - José Lailson-Brito
- Laboratório de Mamíferos Aquáticos e Bioindicadores (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Postal Code: 20550-013, Rio de Janeiro, Brazil; Programa de Pós-Graduação em Ciências Biológicas - Biofísica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho, 373, Postal Code: 21941-590; Rio de Janeiro, Brazil
| |
Collapse
|
12
|
López-Berenguer G, Acosta-Dacal A, Luzardo OP, Peñalver J, Martínez-López E. POPs concentrations in cetaceans stranded along the agricultural coastline of SE Spain show lower burdens of industrial pollutants in comparison to other Mediterranean cetaceans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159743. [PMID: 36461580 DOI: 10.1016/j.scitotenv.2022.159743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/18/2022] [Accepted: 10/22/2022] [Indexed: 06/17/2023]
Abstract
Despite the Mediterranean Sea being one of the world's marine biodiversity hotspots, it is a hotspot of various environmental pollutants. This sea holds eight cetacean with resident populations whose numbers are considered to decline in the last decades and which are particularly susceptible to POPs bioaccumulation due to their peculiar characteristics. In this work, we studied blubber concentration of various OCPs and several PCBs and PBDEs congeners in cetaceans stranded in the northern coast of the Gulf of Vera (Region of Murcia, SE Spain) between 2011 and 2018. Most compounds and congeners were above the limit of detection in most samples, although some pesticides like endosulfan stereoisomers or endrin were never detected. DDT and its metabolites, PCBs and metoxychlor appear as the dominant compounds while PBDEs shows concentrations of lower magnitude. Striped dolphin was the species accounting for higher concentrations of most pollutants. There were differences in concentrations and profiles between species which could be partially explained by differences on diet and feeding behavior. We also observed differences based on life history parameters suggesting maternal transfer for most POPs, in accordance with other works. DDE/ ΣDDT ratio suggest no recent exposure to these pesticides. Despite showing lower concentrations than some previous works, PCB concentrations accounted for higher total TEQ than many studies. According to toxicity thresholds in the literature, we cannot guarantee the absence of health consequences on populations studied, especially for those caused by PCBs. These findings are of major importance considering the relevance of the study area in the conservation of Mediterranean cetaceans.
Collapse
Affiliation(s)
| | - A Acosta-Dacal
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - O P Luzardo
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - J Peñalver
- Area of Toxicology, Veterinary Faculty, University of Murcia, Spain; Fishing and Aquaculture Service (CARM), Murcia, Spain
| | - E Martínez-López
- Area of Toxicology, Veterinary Faculty, University of Murcia, Spain; Biomedical Research Institute of Murcia (IMIB-Arrixaca), Spain.
| |
Collapse
|
13
|
Hayes KRR, Ylitalo GM, Anderson TA, Urbán
R. J, Jacobsen JK, Scordino JJ, Lang AR, Baugh KA, Bolton JL, Brüniche-Olsen A, Calambokidis J, Martínez-Aguilar S, Subbiah S, Gribble MO, Godard-Codding CAJ. Influence of Life-History Parameters on Persistent Organic Pollutant Concentrations in Blubber of Eastern North Pacific Gray Whales ( Eschrichtius robustus). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17119-17130. [PMID: 36346717 PMCID: PMC9730851 DOI: 10.1021/acs.est.2c05998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/12/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Exposure to persistent organic pollutants (POPs) can significantly impact marine mammal health, reproduction, and fitness. This study addresses a significant 20-year gap in gray whale contaminant monitoring through analysis of POPs in 120 blubber biopsies. The scope of this substantial sample set is noteworthy in its range and diversity with collection between 2003 and 2017 along North America's west coast and across diverse sex, age, and reproductive parameters, including paired mothers and calves. Mean blubber concentrations of polychlorinated biphenyls (∑PCBs), dichlorodiphenyltrichloroethanes (∑DDTs), and chlordanes (∑CHLs) generally decreased since previous reports (1968-1999). This is the first report of polybrominated diphenyl ethers (PBDEs) and select hexachlorocyclohexanes (HCHs) in this species. Statistical modeling of the 19 most frequently detected compounds in this dataset revealed sex-, age-, and reproductive status-related patterns, predominantly attributed to maternal offloading. Mean POP concentrations differed significantly by sex in adults (17 compounds, up to 3-fold higher in males) but not in immatures (all 19 compounds). Mean POP concentrations were significantly greater in adults versus immatures in both males (17 compounds, up to 12-fold) and females (13 compounds, up to 3-fold). POP concentrations were detected with compound-specific patterns in nursing calves, confirming maternal offloading for the first time in this species.
Collapse
Affiliation(s)
- Kia R. R. Hayes
- The
Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas 79409, United States
- Environmental
and Fisheries Sciences Division, Northwest Fisheries Science Center,
National Marine Fisheries Service, National
Oceanic and Atmospheric Administration, Seattle, Washington 98112, United States
- Ocean
Associates, Inc., Arlington, Virginia 22207, United States
| | - Gina M. Ylitalo
- Environmental
and Fisheries Sciences Division, Northwest Fisheries Science Center,
National Marine Fisheries Service, National
Oceanic and Atmospheric Administration, Seattle, Washington 98112, United States
| | - Todd A. Anderson
- The
Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas 79409, United States
| | - Jorge Urbán
R.
- Departamento
de Ciencias Marinas y Costeras, Universidad
Autónoma de Baja California Sur, La Paz, BCS 23085, Mexico
| | | | - Jonathan J. Scordino
- Marine Mammal
Program, Makah Fisheries Management, Makah Tribe, Neah Bay, Washington 98357, United States
| | - Aimee R. Lang
- Ocean
Associates, Inc., Arlington, Virginia 22207, United States
- Southwest
Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, California 92037, United States
| | - Keri A. Baugh
- Environmental
and Fisheries Sciences Division, Northwest Fisheries Science Center,
National Marine Fisheries Service, National
Oceanic and Atmospheric Administration, Seattle, Washington 98112, United States
| | - Jennie L. Bolton
- Environmental
and Fisheries Sciences Division, Northwest Fisheries Science Center,
National Marine Fisheries Service, National
Oceanic and Atmospheric Administration, Seattle, Washington 98112, United States
| | - Anna Brüniche-Olsen
- Department
of Forestry and Natural Resources, Purdue
University, West Lafayette, Indiana 47907, United States
| | - John Calambokidis
- Cascadia
Research Collective, Olympia, Washington 98501, United States
| | - Sergio Martínez-Aguilar
- Departamento
de Ciencias Marinas y Costeras, Universidad
Autónoma de Baja California Sur, La Paz, BCS 23085, Mexico
| | - Seenivasan Subbiah
- The
Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas 79409, United States
| | - Matthew O. Gribble
- Department
of Epidemiology, University of Alabama at
Birmingham, Birmingham, Alabama 35294, United
States
| | | |
Collapse
|
14
|
Chormare R, Kumar MA. Environmental health and risk assessment metrics with special mention to biotransfer, bioaccumulation and biomagnification of environmental pollutants. CHEMOSPHERE 2022; 302:134836. [PMID: 35525441 DOI: 10.1016/j.chemosphere.2022.134836] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/13/2022] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
The environment pollutants, which are landed up in environment because of human activities like urbanization, mining and industrializations, affects human health, plants and animals. The living organisms present in environment are constantly affected by the toxic pollutants through direct contact or bioaccumulation of chemicals from the environment. The toxic and hazardous pollutants are easily transferred to different environmental matrices like land, air and water bodies such as surface and ground waters. This comprehensive review deeply discusses the routes and causes of different environmental pollutants along with their toxicity, impact, occurrences and fate in the environment. Environment health and risk assessment tools that are used to evaluate the harmfulness, exposure of living organisms to pollutants and the amount of pollutant accumulated are explained with help of bio-kinetic models. Biotransfer, toxicity factor, biomagnification and bioaccumulation of different pollutants in the air, water and marine ecosystems are critically addressed. Thus, the presented survey would be collection of correlations those addresses the factors involved in assessing the environmental health and risk impacts of distinct environmental pollutants.
Collapse
Affiliation(s)
- Rishikesh Chormare
- Process Design and Engineering Cell, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India
| | - Madhava Anil Kumar
- Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India; Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India.
| |
Collapse
|
15
|
Whalers in “A Post-Whaling World”: Sustainable Conservation of Marine Mammals and Sustainable Development of Whaling Communities—With a Case Study from the Eastern Caribbean. SUSTAINABILITY 2022. [DOI: 10.3390/su14148782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The sustainable conservation of marine mammals depends not only upon considerations made for the marine mammals themselves. In many parts of the world, human societies have developed a deep reliance upon marine mammals as a food source. The sustainability and the equitable, sustainable development of these communities should be considered alongside efforts to conserve the marine mammals upon which people rely. As an example of the complexity inherent to simultaneous efforts on both fronts, this paper reviews and synthesizes two lines of research related to a small-scale whaling operation for odontocetes (dolphins and toothed whales) based in the Eastern Caribbean. The first considers the patterns of consumption and demand by the local public. The second analyzes the presence of mercury and other environmental contaminants in the tissues of the odontocetes. The results of this synthesis suggest that odontocete-based food products in the Eastern Caribbean are both highly popular and heavily contaminated, thus complicating an already-complex system in need of efforts toward both sustainability and sustainable development. The paper concludes with recommendations for both future research and future policy considerations.
Collapse
|
16
|
Combi T, Montone RC, Corada-Fernández C, Lara-Martín PA, Gusmao JB, de Oliveira Santos MC. Persistent organic pollutants and contaminants of emerging concern in spinner dolphins (Stenella longirostris) from the Western Atlantic Ocean. MARINE POLLUTION BULLETIN 2022; 174:113263. [PMID: 34952404 DOI: 10.1016/j.marpolbul.2021.113263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/06/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
The presence and distribution of persistent organic pollutants (POPs) and contaminants of emerging concern (CECs) were evaluated in spinner dolphins (Stenella longirostris) from the Fernando de Noronha Archipelago (Western Atlantic Ocean). Blubber samples (n = 37) were Soxhlet extracted and analyzed using gas chromatography tandem mass spectrometry. The levels of POPs reported in this study are far below those previously reported in spinner dolphins from the Indian and Pacific Oceans. Despite relatively low levels of contaminants, the presence of chemicals represents an additional stressor to these marine mammals, which are subject to increasing anthropogenic pressures, especially regarding tourism activities, in Fernando de Noronha.
Collapse
Affiliation(s)
- Tatiane Combi
- Universidade Federal da Bahia, Instituto de Geociências, Departamento de Oceanografia, Rua Barão de Jeremoabo, Salvador, BA 40170-020, Brazil.
| | - Rosalinda Carmela Montone
- Laboratório de Química Orgânica Marinha, Instituto Oceanográfico, Universidade de São Paulo, São Paulo, SP 05508-120, Brazil
| | - Carmen Corada-Fernández
- Department of Physical-Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, Campus of International Excellence of the Sea (CEI.MAR), Río San Pedro, Puerto Real, Cadiz 11510, Spain
| | - Pablo A Lara-Martín
- Department of Physical-Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, Campus of International Excellence of the Sea (CEI.MAR), Río San Pedro, Puerto Real, Cadiz 11510, Spain
| | - Joao Bosco Gusmao
- Programa de Pós-Graduação em Geoquímica: Petróleo e Meio Ambiente (POSPETRO), Universidade Federal da Bahia, Salvador, BA 40170-020, Brazil
| | - Marcos César de Oliveira Santos
- Laboratório de Biologia da Conservação de Mamíferos Aquáticos, Instituto Oceanográfico, Universidade de São Paulo, São Paulo, SP 05508-120, Brazil
| |
Collapse
|
17
|
de Oliveira-Ferreira N, Carvalho RR, Santos-Neto EB, Manhães BMR, Guari EB, Domit C, Secchi ER, Botta S, Cunha HA, Azevedo AF, Bisi TL, Lailson-Brito J. Long-Term Consequences of High Polychlorinated Biphenyl Exposure: Projected Decline of Delphinid Populations in a Hotspot for Chemical Pollution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15149-15161. [PMID: 34726395 DOI: 10.1021/acs.est.1c03837] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Rough-toothed dolphins, Steno bredanensis, are closely associated with coastal waters in the Southwestern Atlantic Ocean, increasing the exposure to multiple stressors, such as chemical pollution. Persistent organic pollutants (POPs) are known to affect the health of cetacean species. To comprehend the potential impacts of POPs on populations' viability, it is necessary to distinguish populations and predict their risk of long-term exposure. Blubbers of rough-toothed dolphins (n = 28) collected along the southeastern (SE) and southern (S) Brazilian coast were screened for polychlorinated biphenyls (PCBs) and pesticides in a gas chromatograph coupled to a mass spectrometer. Based on the contamination profile, a discriminant function analysis separated the rough-toothed dolphins into three ecological populations: two coastal and one offshore. POP concentrations were the highest reported for the species worldwide and highest among the delphinids in Brazilian waters, reaching 647.9 μg g-1 lw for PCBs. The SE population presented 212.9 ± 163.0, S population presented 101.0 ± 96.7, and OCS/S population presented 183.3 ± 85.3 μg g-1 lw (mean ± SD) of PCBs. The potential risk of effects triggered by elevated PCB concentrations was assessed in an individual-based model. A risk of severe decline in population size is projected for the three populations in the next 100 years, especially in SE Brazil, varying between 67 and 99%.
Collapse
Affiliation(s)
- Nara de Oliveira-Ferreira
- Laboratório de Mamíferos Aquáticos e Bioindicadores (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 20550-013 Rio de Janeiro, Brasil
- Programa de Pós-Graduação em Ecologia e Evolução (PPGEE), Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 20550-013 Rio de Janeiro, Brasil
| | - Rafael R Carvalho
- Laboratório de Mamíferos Aquáticos e Bioindicadores (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 20550-013 Rio de Janeiro, Brasil
| | - Elitieri B Santos-Neto
- Laboratório de Mamíferos Aquáticos e Bioindicadores (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 20550-013 Rio de Janeiro, Brasil
| | - Bárbara M R Manhães
- Laboratório de Mamíferos Aquáticos e Bioindicadores (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 20550-013 Rio de Janeiro, Brasil
| | - Emi B Guari
- Laboratório de Mamíferos Aquáticos e Bioindicadores (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 20550-013 Rio de Janeiro, Brasil
| | - Camila Domit
- Laboratório de Ecologia e Conservação (LEC), Centro de Estudos do Mar (CEM), Universidade Federal do Paraná (UFPR), Avenida Beira Mar s/n, 83255-000 Pontal do Paraná, Paraná, Brasil
| | - Eduardo R Secchi
- Laboratório de Ecologia e Conservação da Megafauna Marinha (ECOMEGA), Instituto de Oceanografia, Universidade Federal do Rio Grande (FURG), Avenida Itália, km 8, 96203-900 Rio Grande, Rio Grande do Sul, Brasil
| | - Silvina Botta
- Laboratório de Ecologia e Conservação da Megafauna Marinha (ECOMEGA), Instituto de Oceanografia, Universidade Federal do Rio Grande (FURG), Avenida Itália, km 8, 96203-900 Rio Grande, Rio Grande do Sul, Brasil
| | - Haydée A Cunha
- Laboratório de Mamíferos Aquáticos e Bioindicadores (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 20550-013 Rio de Janeiro, Brasil
| | - Alexandre F Azevedo
- Laboratório de Mamíferos Aquáticos e Bioindicadores (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 20550-013 Rio de Janeiro, Brasil
| | - Tatiana L Bisi
- Laboratório de Mamíferos Aquáticos e Bioindicadores (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 20550-013 Rio de Janeiro, Brasil
| | - José Lailson-Brito
- Laboratório de Mamíferos Aquáticos e Bioindicadores (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 20550-013 Rio de Janeiro, Brasil
| |
Collapse
|
18
|
Timokhina EP, Yaglov VV, Nazimova SV. Dichlorodiphenyltrichloroethane and the Adrenal Gland: From Toxicity to Endocrine Disruption. TOXICS 2021; 9:toxics9100243. [PMID: 34678939 PMCID: PMC8539486 DOI: 10.3390/toxics9100243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022]
Abstract
Endocrine disruptors are exogenous compounds that pollute the environment and have effects similar to hormones when inside the body. One of the most widespread endocrine disruptors in the wild is the pesticide dichlorodiphenyltrichloroethane (DDT). Toxic doses of DDT are known to cause cell atrophy and degeneration in the adrenal zona fasciculata and zona reticularis. Daily exposure in a developing organism to supposedly non-toxic doses of DDT have been found to impair the morphogenesis of both the cortex and the medulla of the adrenal glands, as well as disturbing the secretion of hormones in cortical and chromaffin cells. Comparison of high and very low levels of DDT exposure revealed drastic differences in the morphological and functional changes in the adrenal cortex. Moreover, the three adrenocortical zones have different levels of sensitivity to the disruptive actions of DDT. The zona glomerulosa and zona reticularis demonstrate sensitivity to both high and very low levels of DDT in prenatal and postnatal periods. In contrast, the zona fasciculata is less damaged by low (supposedly non-toxic) exposure to DDT and its metabolites but is affected by toxic levels of exposure; thus, DDT exerts both toxic and disruptive effects on the adrenal glands, and sensitivity to these two types of action varies in adrenocortical zones. Disruptive low-dose exposure leads to more severe affection of the adrenal function.
Collapse
|
19
|
Van Cise AM, Baird RW, Harnish AE, Currie JJ, Stack SH, Cullins T, Gorgone AM. Mark-recapture estimates suggest declines in abundance of common bottlenose dolphin stocks in the main Hawaiian Islands. ENDANGER SPECIES RES 2021. [DOI: 10.3354/esr01117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Species conservation relies on understanding population demographics, yet this information is lacking for many species and populations. Four stocks of common bottlenose dolphins Tursiops truncatus inhabiting the waters surrounding the main Hawaiian Islands (USA) are exposed to anthropogenic disturbances including fisheries interactions, tourism, naval activities, ocean noise, and contaminants. Although these stocks are managed under the Marine Mammal Protection Act, a demographic assessment has not been undertaken since 2006, and there is currently no information on population trends. We combined regular survey effort with citizen science contributions to estimate apparent survival and annual abundance within each stock using photographs collected between 2000 and 2018. Over this time period, we collected 2818 high-quality identifications of 765 distinctive individuals across all 4 stocks. Analyses of inter-annual movements indicated that individuals exhibit restricted habitat use within stocks, which contributed to non-random sampling. Annual abundance estimates ranged from the 10s to the low 100s. Apparent survival ranged from 0.84 to 0.9, with lower-than-expected estimates in all stocks. Annual abundance estimates declined in 3 of the 4 stocks; however, this decline was not significant for the Kaua‘i/Ni‘ihau and O‘ahu stocks, and may be an artifact of sampling design in all stocks. Given the small population size for these stocks, it is important to closely monitor trends in abundance as a first step in mitigating negative effects of anthropogenic activities. Future efforts should focus on consistent geographic coverage in all stocks to decrease model uncertainty and improve trend assessment.
Collapse
Affiliation(s)
- AM Van Cise
- Cascadia Research Collective, 218 1/2 W 4th Ave., Olympia, WA 98501, USA
| | - RW Baird
- Cascadia Research Collective, 218 1/2 W 4th Ave., Olympia, WA 98501, USA
| | - AE Harnish
- Cascadia Research Collective, 218 1/2 W 4th Ave., Olympia, WA 98501, USA
| | - JJ Currie
- Pacific Whale Foundation, Wailuku, 300 Ma‘alaea Road, Suite 211, HI 96793, USA
| | - SH Stack
- Pacific Whale Foundation, Wailuku, 300 Ma‘alaea Road, Suite 211, HI 96793, USA
| | - T Cullins
- Wild Dolphin Foundation, Wai‘anae, 87-1002C Hakimo Pl, HI 96792, USA
| | - AM Gorgone
- Cascadia Research Collective, 218 1/2 W 4th Ave., Olympia, WA 98501, USA
| |
Collapse
|
20
|
Chen Y, Yan C, Sun Z, Wang Y, Tao S, Shen G, Xu T, Zhou P, Cao X, Wang F, Wang S, Hao S, Yang H, Li H, Zhang Q, Liu W, Zhao M, Zhang Z. Organochlorine Pesticide Ban Facilitated Reproductive Recovery of Chinese Striped Hamsters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6140-6149. [PMID: 33797225 DOI: 10.1021/acs.est.1c00167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Organochlorine pesticides (OCPs) have been used worldwide on an enormous scale over the last century but are banned globally due to environmental persistence and ecotoxicity in recent decades. The long-term effects of OCP ban for agricultural use in China since 1983 on the reproductive health of small terrestrial mammals have never been evaluated in the field. We examined the residue dynamics of OCPs and the reproductive performance of Chinese striped hamsters (Cricetulus barabensis) in North China Plain during 1983-2010 and concluded that the exposure levels of OCPs in hamsters drastically decreased from 2900 ± 740 to 25.2 ± 6.88 ng/g with an average half-life of 5.08 yrs, coinciding with the observed reproductive recovery of hamsters. The population-based reproductive performance of hamsters was significantly and negatively associated with OCP exposure levels after adjusting the contributions from climate and population density factors, indicating that the ban of OCPs has facilitated the reproductive recovery of hamsters by up to 81% contribution. Our findings suggest that the OCP ban is effective to restore reproduction of small terrestrial mammals. Integration of population biology and environmental science is essential to assess the impacts of persistent organic pollutants on ecological safety and biodiversity loss under accelerated global change.
Collapse
Affiliation(s)
- Yuanchen Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Research Center of Environmental Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chuan Yan
- State Key Laboratory of Integrated Management on Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhe Sun
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Yonghui Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Research Center of Environmental Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shu Tao
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Guofeng Shen
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Tongqin Xu
- State Key Laboratory of Integrated Management on Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Peixue Zhou
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Research Center of Environmental Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaoping Cao
- State Key Laboratory of Integrated Management on Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fusheng Wang
- State Key Laboratory of Integrated Management on Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuqing Wang
- State Key Laboratory of Integrated Management on Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shoushen Hao
- State Key Laboratory of Integrated Management on Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hefang Yang
- State Key Laboratory of Integrated Management on Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongjun Li
- State Key Laboratory of Integrated Management on Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Quan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Research Center of Environmental Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Weiping Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Research Center of Environmental Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhibin Zhang
- State Key Laboratory of Integrated Management on Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Kunisue T, Goto A, Sunouchi T, Egashira K, Ochiai M, Isobe T, Tajima Y, Yamada TK, Tanabe S. Anthropogenic and natural organohalogen compounds in melon-headed whales (Peponocephala electra) stranded along the Japanese coastal waters: Temporal trend analysis using archived samples in the environmental specimen bank (es-BANK). CHEMOSPHERE 2021; 269:129401. [PMID: 33385672 DOI: 10.1016/j.chemosphere.2020.129401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
The present study determined recent accumulation levels of polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane and its metabolites (DDTs), hexachlorocyclohexane isomers (HCHs), chlordane compounds (CHLs), hexachlorobenzene (HCB), polybrominated diphenyl ethers (PBDEs), hexabromocyclododecanes (HBCDDs), polychlorinated diphenyl ethers (PCDEs), methoxylated-PBDEs (MeO-PBDEs) and 2,3,3',4,4',5,5'-heptachloro-1'-methyl-1,2'-bipyrrole (Q1) in the blubber of melon-headed whales (Peponocephala electra) stranded along the Japanese coastal waters in 2015 and examined temporal trends of these organohalogen compound (OHC) levels by analyzing blubber samples of this species archived in the environmental specimen bank which were collected in 1982, 2001, 2002, 2006, 2010 and 2011. The median concentrations in melon-headed whales stranded recently were in the order of DDTs ≈ PCBs > HBCDDs > Q1 > CHLs > MeO-PBDEs > PBDEs > HCB > HCHs > PCDEs, indicating that considerable amounts of HBCDDs, in addition to DDTs and PCBs, have been transported to tropical and subtropical waters of the open ocean and pelagic whale species might be exposed to relatively high levels of these OHCs. Temporal trend analyses of OHC levels in the blubber of melon-headed whales revealed significant decrease for anthropogenic OCs such as DDTs, PCBs, HCB, HCHs and PCDEs, and significant increase for CHLs, PBDEs, HBCDDs, MeO-PBDEs and Q1 since 1982. Besides, the analyses from 2001 to 2015 showed no decreasing trends (unchanged) for some PCB congeners, p,p'-DDE, cis- and trans-nonachlors, Q1, BDE-47, -100 and -154, and significantly increasing trends for α-HBCDD and 6MeO-BDE47, suggesting their chronic exposure for this pelagic whale species.
Collapse
Affiliation(s)
- Tatsuya Kunisue
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan.
| | - Akitoshi Goto
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan
| | - Tomoya Sunouchi
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan
| | - Kana Egashira
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan
| | - Mari Ochiai
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan
| | - Tomohiko Isobe
- Center for Environmental Health Sciences, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 305-8506, Japan
| | - Yuko Tajima
- Department of Zoology, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, 305-0005, Japan
| | - Tadasu K Yamada
- Department of Zoology, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, 305-0005, Japan
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan
| |
Collapse
|
22
|
Ranjbar Jafarabadi A, Mashjoor S, Mohamadjafari Dehkordi S, Riyahi Bakhtiari A, Cappello T. Emerging POPs-type cocktail signatures in Pusa caspica in quantitative structure-activity relationship of Caspian Sea. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124334. [PMID: 33162245 DOI: 10.1016/j.jhazmat.2020.124334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/17/2020] [Accepted: 10/17/2020] [Indexed: 06/11/2023]
Abstract
The Caspian seal Pusa caspica is the only endemic mammalian species throughout the Caspian Sea. This is the first report on risk assessment of persistent organic pollutants (POPs) in Caspian seals by age-sex and tissue-specific uptake, and their surrounding environment (seawater, surface sediments, and suspended particulate matters, SPMs) in the Gorgan Bay (Caspian Sea, Iran). Among the quantified 70 POPs (∑35PCBs, ∑3HCHs, ∑6CHLs, ∑6DDTs, ∑17PCDD/Fs, HCB, dieldrin, and aldrin), ∑35PCBs were dominant in abiotic matrices (48.80% of ∑70POPs), followed by HCHs > CHLs > DDTs > PCDD/Fs > other POPs in surface sediments > SPMs > seawater, while the toxic equivalent quantity (TEQWHO) exceeded the safe value (possible risk in this area). In biota, the highest levels of ∑70POPs were found in males (756.3 ng g-1 dw, p < 0.05), followed by females (419.0 ng g-1 dw) and pups (191.6 ng g-1 dw) in liver > kidney > muscle > blubber > intestine > fur > heart > spleen > brain. The positive age-related POPs declining correlation between mother-pup pairs suggested the possible maternal transfer of POPs to offspring. The cocktail toxicity assessment revealed that Caspian seals can pose a low risk based on their mixed-TEQ values. Self-organizing map (SOM) indicated the non-coplanar PCB-93 as the most over-represented functional congener in tissue-specific POPs bioaccumulation. Quantitative toxicant tissue-profiling is valuable for predicting the state of mixture toxicity in pinniped species.
Collapse
Affiliation(s)
- Ali Ranjbar Jafarabadi
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran
| | - Sakineh Mashjoor
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Shirin Mohamadjafari Dehkordi
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran
| | - Alireza Riyahi Bakhtiari
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran.
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
23
|
Kean EF, Shore RF, Scholey G, Strachan R, Chadwick EA. Persistent pollutants exceed toxic thresholds in a freshwater top predator decades after legislative control. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:116415. [PMID: 33421660 DOI: 10.1016/j.envpol.2020.116415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/16/2020] [Accepted: 12/29/2020] [Indexed: 05/25/2023]
Abstract
Declining emissions of persistent organic pollutants (POPs), subject to international control under the Stockholm convention, are not consistently reflected in biotic samples. To assess spatial and temporal variation in organochlorine pesticides and PCBs in UK freshwaters, we analysed tissues of a sentinel predator, the Eurasian otter, Lutra lutra between 1992 and 2009. Past declines in otter populations have been linked to POPs and it is unclear whether otter recovery is hampered in any areas by their persistence. PCBs, DDT (and derivatives), dieldrin and HCB were detected in over 80% of 755 otter livers sampled. Concentrations of ∑PCB, ∑DDT and dieldrin in otter livers declined across the UK, but there was no significant time trend for ∑PCB-TEQ (WHO toxic equivalency, Van den Berg et al., 2006) or HCB. In general, higher concentrations were found in the midlands and eastern regions, and lowest concentrations in western regions. Concentrations of PCBs and HCB in otters increased near the coast, potentially reflecting higher pollutant levels in estuarine systems. Decades after legislative controls, concentrations of these legacy pollutants still pose a risk to otters and other freshwater predators, with spatially widespread exceedance of thresholds above which reproduction or survival has been reduced in related species.
Collapse
Affiliation(s)
- E F Kean
- Cardiff University, Biomedical Science Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - R F Shore
- Deceased, formerly at UK Centre for Ecology & Hydrology, UK
| | - G Scholey
- Environment Agency, Red Kite House, Howbery Park, Wallingford, Oxfordshire, OX10 8BD, UK
| | - R Strachan
- Deceased, formerly at Natural Resources Wales, UK
| | - E A Chadwick
- Cardiff University, Biomedical Science Building, Museum Avenue, Cardiff, CF10 3AX, UK.
| |
Collapse
|
24
|
First assessment of POPs and cytochrome P450 expression in Cuvier's beaked whales (Ziphius cavirostris) skin biopsies from the Mediterranean Sea. Sci Rep 2020; 10:21891. [PMID: 33318545 PMCID: PMC7736872 DOI: 10.1038/s41598-020-78962-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 12/01/2020] [Indexed: 12/24/2022] Open
Abstract
The Cuvier's beaked whale (Ziphius cavirostris) is one of the least known cetacean species worldwide. The decreasing population trend and associated threats has led to the IUCN categorising the Mediterranean subpopulation as Vulnerable on the Red List of Threatened Species. This study aimed to investigate for the first time the ecotoxicological status of Cuvier's beaked whale in the NW Mediterranean Sea. The study sampled around the 20% of the individuals belonging to the Ligurian subpopulation, collecting skin biopsies from free-ranging specimens. The levels of polychlorinated biphenyl (PCBs), polybrominated diphenyl ethers (PBDEs) and induction of cytochrome's P450 (CYP1A1 and CYP2B isoforms) were evaluated. Results highlighted that the pattern of concentration for the target contaminants was PCBs > PBDEs and the accumulation values were linked to age and sex, with adult males showing significantly higher levels than juvenile. Concerns raised by the fact that 80% of the individuals had PCB levels above the toxicity threshold for negative physiological effects in marine mammals. Therefore, these findings shed light on this silent and serious threat never assessed in the Mediterranean Cuvier’s beaked whale population, indicating that anthropogenic pressures, including chemical pollution, may represent menaces for the conservation of this species in the Mediterranean Sea.
Collapse
|
25
|
Remili A, Gallego P, Pinzone M, Castro C, Jauniaux T, Garigliany MM, Malarvannan G, Covaci A, Das K. Humpback whales (Megaptera novaeangliae) breeding off Mozambique and Ecuador show geographic variation of persistent organic pollutants and isotopic niches. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115575. [PMID: 33254700 DOI: 10.1016/j.envpol.2020.115575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 06/12/2023]
Abstract
Humpback whales (Megaptera novaeangliae) from the Southern Hemisphere carry information on persistent organic pollutants (POPs) from their feeding zones in Antarctica to their breeding grounds, making this species a sentinel of contaminants accumulation in the Southern Ocean. This study aimed to evaluate driving factors, namely feeding areas, trophic level, and sex, affecting POP concentrations in the blubber of humpback whales breeding off Mozambique and off Ecuador. Biopsies of free-ranging humpback whales including blubber and skin were collected in 2014 and 2015 from Ecuador (n = 59) and in 2017 from Mozambique (n = 89). In both populations, HCB was the major contaminant followed by DDTs > CHLs > PCBs > HCHs > PBDEs. POP concentrations were significantly higher in males compared to females. HCB, DDTs, HCHs and PBDEs were significantly different between whales from the Mozambique population and the Ecuador population. Sex and feeding habits were important driving factors accounting for POP concentrations in Ecuador whales. The whales from our study had some of the lowest POP concentrations measured for humpback whales in the world. These whales fed predominantly on krill as reflected from the low δ13C and δ15N values measured in the skin. However, the isotopic niches of whales from Mozambique and Ecuador did not overlap indicating that the two populations are feeding in different areas of the Southern Ocean.
Collapse
Affiliation(s)
- Anaïs Remili
- Freshwater and Oceanic Sciences Unit of ReSearch (FOCUS - Oceanology), University of Liege, 4000, Liege, Belgium; Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Pierre Gallego
- Freshwater and Oceanic Sciences Unit of ReSearch (FOCUS - Oceanology), University of Liege, 4000, Liege, Belgium; Odyssea asbl., 37 rue du Nord, L-4260, Esch-sur-Alzette, Luxembourg
| | - Marianna Pinzone
- Freshwater and Oceanic Sciences Unit of ReSearch (FOCUS - Oceanology), University of Liege, 4000, Liege, Belgium
| | - Cristina Castro
- Pacific Whale Foundation Ecuador, Malecón Julio Izurieta y Abdón Calderón. Palo Santo Travel, Puerto López - Manabí - Ecuador
| | - Thierry Jauniaux
- Department of Pathology, Veterinary College, University of Liege, Sart Tilman B43, 4000, Liege, Belgium
| | - Mutien-Marie Garigliany
- Department of Pathology, Veterinary College, University of Liege, Sart Tilman B43, 4000, Liege, Belgium
| | - Govindan Malarvannan
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Krishna Das
- Freshwater and Oceanic Sciences Unit of ReSearch (FOCUS - Oceanology), University of Liege, 4000, Liege, Belgium.
| |
Collapse
|
26
|
Sun RX, Sun Y, Xie XD, Yang BZ, Cao LY, Luo S, Wang YY, Mai BX. Bioaccumulation and human health risk assessment of DDT and its metabolites (DDTs) in yellowfin tuna (Thunnus albacares) and their prey from the South China Sea. MARINE POLLUTION BULLETIN 2020; 158:111396. [PMID: 32753181 DOI: 10.1016/j.marpolbul.2020.111396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
DDTs were detected in yellowfin tuna (Thunnus albacares, 92.1-221.8 ng‧g-1 lipid weight) and their prey (54.9-93.5 ng‧g-1 lipid weight) from the South China Sea (SCS). DDT levels reported in this study were lower than those of the previous studies indicated the recent mitigation of DDT contamination in the SCS. Higher DDT levels were observed in fat abdominal muscle than lean dorsal muscle in adult yellowfin tuna. Meanwhile, DDT levels in adult yellowfin tuna were higher than the young ones. The composition profiles of DDT and its metabolites suggested DDTs in fish in the SCS were mainly derived from the historical use of technical DDTs. DDTs were biomagnified through food chains with the trophic magnification factor of 2.5. Risk assessment results indicated that dietary exposure to DDTs through lifetime fish consumption from the SCS would pose little cancer and noncarcinogenic risk to coastal residents.
Collapse
Affiliation(s)
- Run-Xia Sun
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yue Sun
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Xian-De Xie
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| | - Bing-Zhong Yang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Open-Sea Fishery Development, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
| | - Lin-Ying Cao
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Shuang Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Yang-Yang Wang
- College of Environment and Planning, Henan University, Kaifeng 475004, China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
27
|
Kratofil MA, Ylitalo GM, Mahaffy SD, West KL, Baird RW. Life history and social structure as drivers of persistent organic pollutant levels and stable isotopes in Hawaiian false killer whales (Pseudorca crassidens). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 733:138880. [PMID: 32446048 DOI: 10.1016/j.scitotenv.2020.138880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/15/2020] [Accepted: 04/19/2020] [Indexed: 06/11/2023]
Abstract
False killer whales are long-lived, slow to mature, apex predators, and therefore susceptible to bioaccumulation of persistent organic pollutants (POPs). Hawaiian waters are home to three distinct populations: pelagic; Northwestern Hawaiian Islands (NWHI) insular; and main Hawaiian Islands (MHI) insular. Following a precipitous decline over recent decades, the MHI population was listed as "endangered" under the Endangered Species Act in 2012. This study assesses the risk of POP exposure to these populations by examining pollutant concentrations and ratios from blubber samples (n = 56) related to life history characteristics and MHI social clusters. Samples were analyzed for PCBs, DDTs, PBDEs, and some organochlorine pesticides. Skin samples (n = 52) were analyzed for stable isotopes δ13C and δ15N to gain insight into MHI false killer whale foraging ecology. Pollutant levels were similar among populations, although MHI whales had a significantly higher mean ratio of DDTs/PCBs than NWHI whales. The ∑PCB concentrations of 28 MHI individuals (68%) sampled were equal to or greater than suggested thresholds for deleterious health effects in marine mammals. The highest POP values among our samples were found in four stranded MHI animals. Eight of 24 MHI adult females have not been documented to have given birth; whether they have yet to reproduce, are reproductive senescent, or are experiencing reproductive dysfunction related to high POP exposure is unknown. Juvenile/sub-adults had significantly higher concentrations of certain contaminants than those measured in adults, and may be at greater risk of negative health effects during development. Multivariate analyses, POP ratios, and stable isotope ratios indicate varying risk of POP exposure, foraging locations and potentially prey items among MHI social clusters. Our findings provide invaluable insight into the ongoing risk POPs pose to the MHI population's viability, as well as consideration of risk for the NWHI and pelagic stocks.
Collapse
Affiliation(s)
| | - Gina M Ylitalo
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Association, 2725 Montlake Boulevard East, Seattle, WA 98112, USA.
| | - Sabre D Mahaffy
- Cascadia Research Collective, 218½ W. 4th Avenue, Olympia, WA 98501, USA.
| | - Kristi L West
- Hawai'i Institute of Marine Biology, PO Box 1346, Kaneohe, HI 96744, USA; Human Nutrition Food and Animal Sciences, College of Tropical Agriculture and Human Resources, 1955 East West Road, Ag Sci 216, Honolulu, HI 96822, USA.
| | - Robin W Baird
- Cascadia Research Collective, 218½ W. 4th Avenue, Olympia, WA 98501, USA; Hawai'i Institute of Marine Biology, PO Box 1346, Kaneohe, HI 96744, USA.
| |
Collapse
|
28
|
Yaglova NV, Timokhina EP, Yaglov VV, Obernikhin SS, Nazimova SV, Tsomartova DA. Changes in Histophysiology of the Adrenal Medulla in Rats after Prenatal and Postnatal Exposure to Endocrine Disruptor DDT. Bull Exp Biol Med 2020; 169:398-400. [PMID: 32748142 DOI: 10.1007/s10517-020-04895-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Indexed: 11/29/2022]
Abstract
We studied histophysiology of the adrenal medulla in adult (70-day-old) male Wistar rats developmentally exposed to low doses of endocrine disruptor DDT. It was found that exposure to DDT during the prenatal and postnatal ontogeny decelerated the development of the adrenal medulla and reduced the synthesis of tyrosine hydroxylase, the rate-liming enzyme of catecholamine synthesis, in chromaffin cells, which led to a decrease in epinephrine secretion into the blood.
Collapse
Affiliation(s)
- N V Yaglova
- Research Institute of Human Morphology, Moscow, Russia.
| | - E P Timokhina
- Research Institute of Human Morphology, Moscow, Russia
| | - V V Yaglov
- Research Institute of Human Morphology, Moscow, Russia
| | | | - S V Nazimova
- Research Institute of Human Morphology, Moscow, Russia
| | | |
Collapse
|
29
|
Capanni F, Muñoz-Arnanz J, Marsili L, Fossi MC, Jiménez B. Assessment of PCDD/Fs, dioxin-like PCBs and PBDEs in Mediterranean striped dolphins. MARINE POLLUTION BULLETIN 2020; 156:111207. [PMID: 32510364 DOI: 10.1016/j.marpolbul.2020.111207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Bio-accumulation of high levels of persistent organic pollutants represent a serious conservation concern for Mediterranean marine odontocetes. In this study, blubber samples from 10 striped dolphins (Stenella coeruleoalba) stranded along the Italian coasts during 2015-2016 were analyzed. All specimens showed dl-PCBs > PBDEs ≫ PCDD/Fs. Median concentrations were 1820 ng/g l.w., 456 ng/g l.w. and 23.9 pg/g l.w., respectively. dl-PCBs accounted for 93.3% of total TEQs. PBDE concentrations suggest that the Mediterranean basin may be considered a hotspot for organobromine compounds. OCDD did not represent the greatest contributor to PCDD/Fs profile, most likely due to a change in dioxin environmental sources in the last two-three decades. Despite international regulations, the present study emphasized that POP exposure levels in Mediterranean striped dolphins have not declined significantly in recent years. Toxicological and risk assessment studies on this sentinel species may provide an early indication of potential adverse health effects on Mediterranean ecosystems.
Collapse
Affiliation(s)
- Francesca Capanni
- Dept. Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; Dept. Physical Sciences, Earth and Environment, University of Siena, via P. A. Mattioli 4, 53100 Siena, Italy.
| | - Juan Muñoz-Arnanz
- Dept. Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Letizia Marsili
- Dept. Physical Sciences, Earth and Environment, University of Siena, via P. A. Mattioli 4, 53100 Siena, Italy
| | - M Cristina Fossi
- Dept. Physical Sciences, Earth and Environment, University of Siena, via P. A. Mattioli 4, 53100 Siena, Italy
| | - Begoña Jiménez
- Dept. Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
30
|
Timokhina EP, Nazimova SV, Tsomartova DA, Yaglova NV, Obernikhin SS, Yaglov VV. Morphological and Cytophysiological Changes in the Adult Rat Adrenal Medulla after Prenatal and Postnatal Exposure to Endocrine-Disrupting DDT. Sovrem Tekhnologii Med 2020; 12:50-54. [PMID: 34513053 PMCID: PMC8353676 DOI: 10.17691/stm2020.12.2.06] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Indexed: 11/17/2022] Open
Abstract
The aim of the investigation was to study morphological and cytophysiological changes in the adult rat adrenal medulla after prenatal and postnatal exposure to endocrine-disrupting chemical dichlorodiphenyltrichloroethane (DDT).
Collapse
Affiliation(s)
- E P Timokhina
- Researcher, Laboratory of Endocrine System Development, Research Institute of Human Morphology, 3 Tsurupa St., Moscow, 117418, Russia
| | - S V Nazimova
- Senior Researcher, Laboratory of Endocrine System Development, Research Institute of Human Morphology, 3 Tsurupa St., Moscow, 117418, Russia
| | - D A Tsomartova
- Researcher, Laboratory of Endocrine System Development, Research Institute of Human Morphology, 3 Tsurupa St., Moscow, 117418, Russia
| | - N V Yaglova
- Head of the Laboratory of Endocrine System Development, Research Institute of Human Morphology, 3 Tsurupa St., Moscow, 117418, Russia
| | - S S Obernikhin
- Senior Researcher, Laboratory of Endocrine System Development, Research Institute of Human Morphology, 3 Tsurupa St., Moscow, 117418, Russia
| | - V V Yaglov
- Professor, Chief Researcher, Laboratory of Endocrine System Development, Research Institute of Human Morphology, 3 Tsurupa St., Moscow, 117418, Russia
| |
Collapse
|
31
|
Trukhin AM, Boyarova MD. Organochlorine pesticides (HCH and DDT) in blubber of spotted seals (Phoca largha) from the western Sea of Japan. MARINE POLLUTION BULLETIN 2020; 150:110738. [PMID: 31759636 DOI: 10.1016/j.marpolbul.2019.110738] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
In 2014-2019, a total of 31 blubber samples were collected from spotted seals (Phoca largha) in the western Sea of Japan. The samples were analyzed by gas chromatography to determine level of organochlorine pesticides (OCPs). The concentration of hexachlorocyclohexane and its isomers (∑HCH) ranged from 389 to 50,070 ng/g lipid weght; the concentration of dichlorodiphenyltrichloroethane and its metabolites (∑DDT), ranged from 62,720 to 1,110,930 ng/g lipid wt. Transfer of HCH and DDT from mother to pup during pregnancy and lactation was documented. The OCP concentration in blubber of spotted seals from the western Sea of Japan is one to two orders of magnitude higher than in spotted seals inhabiting waters off the Japan coast. Organochlorines detected in the western Sea of Japan likely come from some countries of Southeast Asia still using OCPs in the agriculture sector.
Collapse
Affiliation(s)
- Alexey M Trukhin
- V.I. Il'ichev Pacific Oceanological Institute (POI), Far Eastern Branch, Russian Academy of Science, ul. Baltiyskaya 41, 690043 Vladivostok, Russia.
| | - Margarita D Boyarova
- School of Biomedicine, Far Eastern Federal University, ul. Sukhanova 8, 690091 Vladivostok, Russia
| |
Collapse
|
32
|
Zhan F, Yu X, Zhang X, Chen L, Sun X, Yu RQ, Wu Y. Tissue distribution of organic contaminants in stranded pregnant sperm whale (Physeter microcephalus) from the Huizhou coast of the South China Sea. MARINE POLLUTION BULLETIN 2019; 144:181-188. [PMID: 31179986 DOI: 10.1016/j.marpolbul.2019.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/24/2019] [Accepted: 05/03/2019] [Indexed: 06/09/2023]
Abstract
Twelve persistent organic pollutants (POPs) were measured in 11 tissue samples from a pregnant sperm whale stranded on the Huizhou coast of the South China Sea, China, in March 2017. POPs were found to be more concentrated in the irrigated tissues such as placenta, ovary, mammary gland, and liver than the less irrigated tissues such as epidermis. High POP levels detected in the placenta might result in abnormal hormone secretion in the placenta, which would affect the unborn offspring. We hypothesized that ovary is potentially vulnerable to the exposure of higher contaminant levels. The PAH concentrations were higher in the lung than in other tissues, which suggest that PAH levels in the lung were breath-dependent in the sperm whale. The concentrations of POPs except PAHs in the sperm whale blubber were lower than those in the same species in the Northern Hemisphere and were comparable to or lower than those in the same species in the Southern Hemisphere.
Collapse
Affiliation(s)
- Fengping Zhan
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xinjian Yu
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiyang Zhang
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Laiguo Chen
- Urban Environment and Ecology Research Center, South China Institute of Environmental Sciences (SCIES), Ministry of Environmental Protection, Guangzhou, 510655, China
| | - Xian Sun
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Ri-Qing Yu
- Department of Biology, University of Texas at Tyler, Tyler, TX 75799, USA
| | - Yuping Wu
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
33
|
Righetti BPH, Mattos JJ, Siebert MN, Daura-Jorge FG, Bezamat C, Fruet PF, Genoves RC, Taniguchi S, da Silva J, Montone RC, Simões-Lopes PCDA, Bainy ACD, Lüchmann KH. Biochemical and molecular biomarkers in integument biopsies of free-ranging coastal bottlenose dolphins from southern Brazil. CHEMOSPHERE 2019; 225:139-149. [PMID: 30870631 DOI: 10.1016/j.chemosphere.2019.02.179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/24/2019] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
Adverse effects of exposure to persistent organic pollutants (POPs) threaten the maintenance of odontocete populations. In southern Brazil, coastal bottlenose dolphins from the Laguna Estuarine System (LES) and Patos Lagoon Estuary (PLE) were sampled using remote biopsies during the winter and summer months. Levels of bioaccumulated POPs were measured in the blubber. The activities of glutathione S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx), and superoxide dismutase (SOD) were also quantified, as were the mRNA transcript levels of aryl hydrocarbon receptor (AhR), AhR nuclear translocator (ARNT), cytochrome P450 1A1-like (CYP1A1), metallothionein 2A (MT2A), GST-π, GPx-4, GR, interleukin 1 alpha (IL-1α), and major histocompatibility complex II (MHCII) in the skin. In general, levels of POPs were similar among sites, sexes, ages and seasons. For most animals, total polychlorinated biphenyl (ΣPCBs) levels were above the threshold level have physiological effects and pose risks to cetaceans. The best-fitting generalized linear models (GLMs) found significant associations between GR, IL-1α and GPx-4 transcript levels, SOD and GST activities, and total polybrominated diphenyl ether (ΣPBDEs) and pesticide levels. GLMs and Kruskal-Wallis analyses also indicated that there were higher transcript levels for most genes and lower GST activity in the winter. These results reinforce the need to consider the influence of environmental traits on biomarker values in wildlife assessments.
Collapse
Affiliation(s)
- Barbara Pacheco Harrison Righetti
- Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Jacó Joaquim Mattos
- Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Marília Nardelli Siebert
- Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Fábio Gonçalves Daura-Jorge
- Laboratório de Mamíferos Aquáticos, Departamento de Ecologia e Zoologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Carolina Bezamat
- Laboratório de Mamíferos Aquáticos, Departamento de Ecologia e Zoologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Pedro Friedrich Fruet
- Museu Oceanográfico, Universidade Federal de Rio Grande, Rio Grande, Brazil; Kaosa, Rio Grade, Brazil; Centro Nacional de Pesquisa e Conservação de Mamíferos Aquáticos - ICMBio/CMA, Santos, SP, Brazil
| | - Rodrigo Cezar Genoves
- Museu Oceanográfico, Universidade Federal de Rio Grande, Rio Grande, Brazil; Kaosa, Rio Grade, Brazil
| | - Satie Taniguchi
- Laboratório de Química Orgânica, Universidade de São Paulo, São Paulo, Brazil
| | - Josilene da Silva
- Laboratório de Química Orgânica, Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Afonso Celso Dias Bainy
- Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Karim Hahn Lüchmann
- Departamento de Educação Científica e Tecnológica, Universidade do Estado de Santa Catarina, Florianópolis, Brazil.
| |
Collapse
|
34
|
Bartalini A, Muñoz-Arnanz J, Marsili L, Mazzariol S, Fossi MC, Jiménez B. Evaluation of PCDD/Fs, dioxin-like PCBs and PBDEs in sperm whales from the Mediterranean Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:1417-1425. [PMID: 30759580 DOI: 10.1016/j.scitotenv.2018.10.436] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/31/2018] [Accepted: 10/31/2018] [Indexed: 06/09/2023]
Abstract
Numerous studies to date have reported concentrations of Persistent Organic Pollutants (POPs) in different marine mammal species worldwide. Yet data on sperm whales are scarce from rich and unique biodiverse areas such as the Mediterranean Sea. This work aimed to assess levels of dioxin-like polychlorinated biphenyls (dl-PCBs), polybrominated diphenyl ethers (PBDEs), and polychlorodibenzo-p-dioxins and furans (PCDD/Fs) in blubber of sperm whales stranded along the Italian coast between 2008 and 2016. POP mean concentrations (dl-PCBs: 6410 ng/g l.w.; PBDEs: 612 ng/g l.w.; PCDD/Fs: 57.8 pg/g l.w.) were mostly in line with what has been previously reported on the same species in the Mediterranean environment and tended to be higher than those reported from other geographical regions. The relative abundance followed the order dl-PCBs > PBDEs ≫ PCDD/Fs. Interestingly, the non-ortho dl-PCB pattern (126 > 169 > 77) was similar to that described in other studies worldwide and different from what is described in its main prey. This could be linked to particular metabolic activities in sperm whales against these highly toxic contaminants. Total TEQs ranged from 275 to 987 pg/g l.w. and showed the pattern Σnon-ortho-dl-PCBs > Σortho-dl-PCBs > PCDDs > PCDFs, with PCBs' contribution about 96%. These findings highlight the high abundance of PCBs still found in the Mediterranean environment despite having been banned for decades. All sperm whales analyzed in this study surpassed the threshold of 210 pg WHO-TEQ/g l.w. proposed as starting point of immunosuppression in harbour seals; a level of contamination that may have contributed to an impairment of their immune system.
Collapse
Affiliation(s)
- A Bartalini
- Department of Environmental, Earth and Physical Sciences, University of Siena, Via Mattioli 4, Siena, Italy
| | - J Muñoz-Arnanz
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry, CSIC. Juan de la Cierva, 3, 28006 Madrid, Spain.
| | - L Marsili
- Department of Environmental, Earth and Physical Sciences, University of Siena, Via Mattioli 4, Siena, Italy
| | - S Mazzariol
- Department of Public Health, Comparative Pathology and Veterinary Hygiene, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - M C Fossi
- Department of Environmental, Earth and Physical Sciences, University of Siena, Via Mattioli 4, Siena, Italy
| | - B Jiménez
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry, CSIC. Juan de la Cierva, 3, 28006 Madrid, Spain
| |
Collapse
|
35
|
Muñoz-Arnanz J, Chirife AD, Galletti Vernazzani B, Cabrera E, Sironi M, Millán J, Attard CRM, Jiménez B. First assessment of persistent organic pollutant contamination in blubber of Chilean blue whales from Isla de Chiloé, southern Chile. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:1521-1528. [PMID: 30308837 DOI: 10.1016/j.scitotenv.2018.09.070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 06/08/2023]
Abstract
Persistent organic pollutants (POPs) were assessed for the first time in blue whales from the South Pacific Ocean. Concentrations of polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), hexachlorobenzene (HCB) and dichlorodiphenyltrichloroethane and its main metabolites (DDTs), were determined in 40 blubber samples from 36 free-ranging individuals and one stranded, dead animal along the coast of southern Chile between 2011 and 2013. PCBs were the most abundant pollutants (2.97-975 ng/g l.w.), followed by DDTs (3.50-537 ng/g l.w.), HCB (nd-77.5 ng/g l.w.) and PBDEs (nd-33.4 ng/g l.w). There was evidence of differences between sexes, with lower loads in females potentially due to pollutants passing to calves. POP concentrations were higher in specimens sampled in 2013; yet, between-year differences were only statistically significant for HCB and PBDEs. Lower chlorinated (penta > tetra > tri) and brominated (tetra > tri) congeners were the most prevalent among PCBs and PBDEs, respectively, mostly in agreement with findings previously reported in blue and other baleen whales. The present study provides evidence of lower levels of contamination by POPs in eastern South Pacific blue whales in comparison to those reported for the Northern Hemisphere.
Collapse
Affiliation(s)
- J Muñoz-Arnanz
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry, (IQOG-CSIC), Juan de la Cierva 3, Madrid, Spain.
| | - A D Chirife
- Facultad de Ciencias de la Vida, Universidad Andres Bello, República 252, Santiago, Chile
| | - B Galletti Vernazzani
- Centro de Conservación Cetacea (CCC), Casilla 19178 Correo Alonso de Cordoba, Santiago, Chile
| | - E Cabrera
- Centro de Conservación Cetacea (CCC), Casilla 19178 Correo Alonso de Cordoba, Santiago, Chile
| | - M Sironi
- Instituto de Conservación de Ballenas, O'Higgins 4380, 1429 Buenos Aires, Argentina
| | - J Millán
- Facultad de Ciencias de la Vida, Universidad Andres Bello, República 252, Santiago, Chile
| | - C R M Attard
- Molecular Ecology Lab, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia; Cetacean Ecology, Behaviour and Evolution Lab, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | - B Jiménez
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry, (IQOG-CSIC), Juan de la Cierva 3, Madrid, Spain
| |
Collapse
|
36
|
Desforges JP, Hall A, McConnell B, Rosing-Asvid A, Barber JL, Brownlow A, De Guise S, Eulaers I, Jepson PD, Letcher RJ, Levin M, Ross PS, Samarra F, Víkingson G, Sonne C, Dietz R. Predicting global killer whale population collapse from PCB pollution. Science 2018; 361:1373-1376. [DOI: 10.1126/science.aat1953] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 08/16/2018] [Indexed: 01/07/2023]
Abstract
Killer whales (Orcinus orca) are among the most highly polychlorinated biphenyl (PCB)–contaminated mammals in the world, raising concern about the health consequences of current PCB exposures. Using an individual-based model framework and globally available data on PCB concentrations in killer whale tissues, we show that PCB-mediated effects on reproduction and immune function threaten the long-term viability of >50% of the world’s killer whale populations. PCB-mediated effects over the coming 100 years predicted that killer whale populations near industrialized regions, and those feeding at high trophic levels regardless of location, are at high risk of population collapse. Despite a near-global ban of PCBs more than 30 years ago, the world’s killer whales illustrate the troubling persistence of this chemical class.
Collapse
|
37
|
Zaccaroni A, Andreini R, Franzellitti S, Barceló D, Eljarrat E. Halogenated flame retardants in stranded sperm whales (Physeter macrocephalus) from the Mediterranean Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 635:892-900. [PMID: 29710611 DOI: 10.1016/j.scitotenv.2018.04.147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/26/2018] [Accepted: 04/10/2018] [Indexed: 06/08/2023]
Abstract
In recent years, decline of marine mammals' populations and increased frequency of strandings have arised the interest on the role that pollution may have in these events. The present work aimed at quantifying levels of brominated flame retardants (BFRs) and dechloranes (DECs) in tissues of 3 adult females and one foetus of sperm whales stranded in the Southern Adriatic Sea coasts (Italy). Results proved the presence of different flame retardants (FRs) in tissues of sperm whales, including various polybrominated diphenyl ethers (PBDE) congeners (47, 99, 100, 154, entering the composition of PentaBDE mixture), hexabromocyclodecanes (HBCDs), Dec 602 and methoxylated polibrominated diphenyl ethers (MeO-BDEs). In blubber, a target tissue for contaminant accumulation, ΣPBDEs reached values of 160, 158 and 183 ng/g lw, α-HBCD of 5.75 ng/g lw, Dec 602 of 1632 ng/g lw and MeO-BDEs of 563 ng/g lw. The availability of foetal tissues allowed evaluating the potential maternal transfer on many of these compounds, and to discuss the potential adverse effects on foetal health. To the best of our knowledge, obtained data are the first reporting placental transfer of FRs in sperm whales. PBDE levels detected in foetus suggested a potentially long-term exposure to BFRs, which could cause severe damages to the developing organism, likely at the cerebral, endocrine and immunologic levels. Dec 602, which was detected at the highest concentrations among all FRs considered, could potentially cause dysfunctional effects on the immune system of adult females.
Collapse
Affiliation(s)
- A Zaccaroni
- Large Pelagic Vertebrates Research Group, Department of Veterinary Medical Sciences, University of Bologna, Italy; MarLab, Place du Chateau 7, 06250 Mougins, France
| | - R Andreini
- Large Pelagic Vertebrates Research Group, Department of Veterinary Medical Sciences, University of Bologna, Italy; MarLab, Place du Chateau 7, 06250 Mougins, France
| | - S Franzellitti
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences, University of Bologna, Italy
| | - D Barceló
- Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - E Eljarrat
- Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
38
|
Mancia A. On the revolution of cetacean evolution. Mar Genomics 2018; 41:1-5. [PMID: 30154054 DOI: 10.1016/j.margen.2018.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/21/2018] [Accepted: 08/21/2018] [Indexed: 01/13/2023]
Abstract
The order of Cetacea with 88 species including Odontoceti (or toothed whales) and Mysticeti (or baleen whales) is the most specialized and diversified group of mammals. The blue whale with a maximum recorded length of 29.9 m for 173 t of weight is the largest animal known to have ever existed, and any dolphin's brain is most powerful and complex than any other brain in the animal kingdom, second only to primate's. Nevertheless, Cetacea are mammals that re-entered the oceans only a little over 50 million years ago, a relatively short time on the evolutionary scale. During this time cetaceans and humans have developed marked morphological and behavioral differences, yet their genomes show a high level of similarity. This present review is focused on the description and significance of newly accessible cetacean genome tools and information, and their relevance in the study of the evolution of successful phenotypic adaptations associated to mammal's marine existence, and their applicability to the unresolved disease mechanisms in humans.
Collapse
Affiliation(s)
- Annalaura Mancia
- University of Ferrara, Department of Life Sciences and Biotechnology, Ferrara 44121, Italy.
| |
Collapse
|
39
|
Trego ML, Hoh E, Kellar NM, Meszaros S, Robbins MN, Dodder NG, Whitehead A, Lewison RL. Comprehensive Screening Links Halogenated Organic Compounds with Testosterone Levels in Male Delphinus delphis from the Southern California Bight. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:3101-3109. [PMID: 29397698 PMCID: PMC6301072 DOI: 10.1021/acs.est.7b04652] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
While environmental pollutants have been associated with changes in endocrine health in cetaceans, efforts to link contaminant exposure with hormones have largely been limited to a list of known, targeted contaminants, overlooking minimally characterized or unknown compounds of emerging concern. To address this gap, we analyzed a suite of potential endocrine disrupting halogenated organic compounds (HOCs) in blubber from 16 male short-beaked common dolphins ( Delphinus delphis) with known maturity status collected from fishery bycatch in the Southern California Bight. We employed a suspect screening mass spectrometry-based method to investigate a wide range of HOCs that were previously observed in cetaceans from the same region. Potential endocrine effects were assessed through the measurement of blubber testosterone. We detected 167 HOCs, including 81 with known anthropogenic sources, 49 of unknown origin, and 37 with known natural sources. The sum of 11 anthropogenic and 4 unknown HOC classes were negatively correlated with blubber testosterone. Evidence suggests that elevated anthropogenic HOC load contributes to impaired testosterone production in mature male D. delphis. The application of this integrative analytical approach to cetacean contaminant analysis allows for inference of the biological consequences of accumulation of HOCs and prioritization of compounds for future environmental toxicology research.
Collapse
Affiliation(s)
- Marisa L. Trego
- Department of Biology, San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182, USA
- Department of Environmental Toxicology, University of California Davis, 1 Shields Avenue, Davis, CA, 95616, USA
- Corresponding Author, Phone: (858) 546-7066
| | - Eunha Hoh
- Graduate School of Public Health, San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182, USA
| | - Nicholas M. Kellar
- Southwest Fisheries Science Center, MMTD, NMFS, NOAA, 8901 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Sara Meszaros
- Department of Environmental Toxicology, University of California Davis, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Michelle N. Robbins
- Ocean Associates, Inc., under contract to the Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration - USA
| | - Nathan G. Dodder
- Graduate School of Public Health, San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182, USA
| | - Andrew Whitehead
- Department of Environmental Toxicology, University of California Davis, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Rebecca L. Lewison
- Department of Biology, San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182, USA
| |
Collapse
|
40
|
Ng CKY, Lam JCW, Zhang XH, Gu HX, Li TH, Ye MB, Xia ZR, Zhang FY, Duan JX, Wang WX, Lam IKS, Balazs GH, Lam PKS, Murphy MB. Levels of trace elements, methylmercury and polybrominated diphenyl ethers in foraging green turtles in the South China region and their conservation implications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:735-742. [PMID: 29245147 DOI: 10.1016/j.envpol.2017.11.100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 05/14/2023]
Abstract
Sea turtles are globally endangered and face daily anthropogenic threats, including pollution. However, there is a lack of ecotoxicological information on sea turtles, especially in the Asia-Pacific region. This study aims to determine pollutant levels of foraging green turtles (Chelonia mydas) in South China, including Hong Kong, Guangdong and Taiwan, as a basis for their conservation. Scute, liver and muscle tissues of stranded green turtles were analysed for levels of 17 trace elements and methylmercury (MeHg) (n = 86 for scute and n = 14 for liver) and polybrominated diphenyl ethers (PBDEs) (n = 11 for muscle and n = 13 for liver). Ten-fold higher levels of Pb, Ba, V and Tl and 40-fold greater Cd levels were measured in green turtle livers in South China relative to other studies conducted over 10 years ago. Measured PBDE levels were also 27-fold and 50-fold greater than those reported in Australia and Japan. These results warrant further investigation of potential toxicological risks to green turtles in South China and their source rookeries in Malaysia, Micronesia, Indonesia, Marshall Islands, Japan and Taiwan. Research should target monitoring pollutant levels in sea turtles within the West Pacific/Southeast Asia regional management unit spanning East Asia to Southeast Asia to fill in knowledge gaps, in particular in areas such as Thailand, Vietnam, Indonesia, Malaysia and the Philippines where less or no data is available and where foraging grounds of sea turtles have been identified.
Collapse
Affiliation(s)
- Connie Ka Yan Ng
- Department of Biology and Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region, People's Republic of China.
| | - James Chung Wah Lam
- Department of Science and Environmental Studies, Education University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China.
| | - Xiao Hua Zhang
- Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for Sustainable Use of Marine Biodiversity, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region, People's Republic of China; Department of Science and Environmental Studies, Education University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - He Xiang Gu
- Guangdong Huidong Sea Turtle National Nature Reserve Bureau, China Sea Turtle Base, Sea Turtle Bay, Gangkou Town, Huidong County, Guangdong Province, 516359, People's Republic of China
| | - Tsung Hsien Li
- National Museum of Marine Biology and Aquarium, Checheng, Pingtung, 94450, Taiwan
| | - Min Bin Ye
- Guangdong Huidong Sea Turtle National Nature Reserve Bureau, China Sea Turtle Base, Sea Turtle Bay, Gangkou Town, Huidong County, Guangdong Province, 516359, People's Republic of China
| | - Zhong Rong Xia
- Guangdong Huidong Sea Turtle National Nature Reserve Bureau, China Sea Turtle Base, Sea Turtle Bay, Gangkou Town, Huidong County, Guangdong Province, 516359, People's Republic of China
| | - Fei Yan Zhang
- Guangdong Huidong Sea Turtle National Nature Reserve Bureau, China Sea Turtle Base, Sea Turtle Bay, Gangkou Town, Huidong County, Guangdong Province, 516359, People's Republic of China
| | - Jin Xia Duan
- Guangdong Huidong Sea Turtle National Nature Reserve Bureau, China Sea Turtle Base, Sea Turtle Bay, Gangkou Town, Huidong County, Guangdong Province, 516359, People's Republic of China
| | - Wen Xiong Wang
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong Special Administrative Region, People's Republic of China
| | - Isaac Kam Sum Lam
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong Special Administrative Region, People's Republic of China
| | - George H Balazs
- NOAA Pacific Islands Fisheries Science Center, National Oceanic and Atmospheric Administration, 1845 Wasp Blvd., Honolulu, HI, 96818, USA
| | - Paul K S Lam
- Department of Biology and Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region, People's Republic of China; State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region, People's Republic of China; Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for Sustainable Use of Marine Biodiversity, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region, People's Republic of China
| | - Margaret B Murphy
- Department of Biology and Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region, People's Republic of China; State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region, People's Republic of China
| |
Collapse
|
41
|
Clukey KE, Lepczyk CA, Balazs GH, Work TM, Li QX, Bachman MJ, Lynch JM. Persistent organic pollutants in fat of three species of Pacific pelagic longline caught sea turtles: Accumulation in relation to ingested plastic marine debris. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 610-611:402-411. [PMID: 28806556 DOI: 10.1016/j.scitotenv.2017.07.242] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 07/27/2017] [Accepted: 07/27/2017] [Indexed: 06/07/2023]
Abstract
In addition to eating contaminated prey, sea turtles may be exposed to persistent organic pollutants (POPs) from ingesting plastic debris that has absorbed these chemicals. Given the limited knowledge about POPs in pelagic sea turtles and how plastic ingestion influences POP exposure, our objectives were to: 1) provide baseline contaminant levels of three species of pelagic Pacific sea turtles; and 2) assess trends of contaminant levels in relation to species, sex, length, body condition and capture location. In addition, we hypothesized that if ingesting plastic is a significant source of POP exposure, then the amount of ingested plastic may be correlated to POP concentrations accumulated in fat. To address our objectives we compared POP concentrations in fat samples to previously described amounts of ingested plastic from the same turtles. Fat samples from 25 Pacific pelagic sea turtles [2 loggerhead (Caretta caretta), 6 green (Chelonia mydas) and 17 olive ridley (Lepidochelys olivacea) turtles] were analyzed for 81 polychlorinated biphenyls (PCBs), 20 organochlorine pesticides, and 35 brominated flame-retardants. The olive ridley and loggerhead turtles had higher ΣDDTs (dichlorodiphenyltrichloroethane and metabolites) than ΣPCBs, at a ratio similar to biota measured in the South China Sea and southern California. Green turtles had a ratio close to 1:1. These pelagic turtles had lower POP levels than previously reported in nearshore turtles. POP concentrations were unrelated to the amounts of ingested plastic in olive ridleys, suggesting that their exposure to POPs is mainly through prey. In green turtles, concentrations of ΣPCBs were positively correlated with the number of plastic pieces ingested, but these findings were confounded by covariance with body condition index (BCI). Green turtles with a higher BCI had eaten more plastic and also had higher POPs. Taken together, our findings suggest that sea turtles accumulate most POPs through their prey rather than marine debris.
Collapse
Affiliation(s)
- Katharine E Clukey
- Department of Natural Resources and Environmental Management, University of Hawai'i at Mānoa, Honolulu, HI 96822, United States
| | - Christopher A Lepczyk
- Department of Natural Resources and Environmental Management, University of Hawai'i at Mānoa, Honolulu, HI 96822, United States; Auburn University, School of Forestry and Wildlife Science, Auburn, AL, United States
| | - George H Balazs
- Pacific Islands Fisheries Science Center, National Marine Fisheries Service, Honolulu, HI, United States
| | - Thierry M Work
- U.S. Geological Survey, National Wildlife Health Center, Honolulu Field Station, Honolulu, HI, United States
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI 96822, United States
| | - Melannie J Bachman
- Chemical Sciences Division, National Institute of Standards and Technology, Charleston, SC, United States
| | - Jennifer M Lynch
- Chemical Sciences Division, National Institute of Standards and Technology, Kaneohe, HI, United States.
| |
Collapse
|
42
|
Pedro S, Boba C, Dietz R, Sonne C, Rosing-Asvid A, Hansen M, Provatas A, McKinney MA. Blubber-depth distribution and bioaccumulation of PCBs and organochlorine pesticides in Arctic-invading killer whales. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 601-602:237-246. [PMID: 28554115 DOI: 10.1016/j.scitotenv.2017.05.193] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 05/19/2017] [Accepted: 05/20/2017] [Indexed: 06/07/2023]
Abstract
Sightings of killer whales (Orcinus orca) in Greenland have increased in recent years, coincident with sea ice loss. These killer whales are likely from fish-feeding North Atlantic populations, but may have access to marine mammal prey in Greenlandic waters, which could lead to increased exposures to biomagnifying contaminants. Most studies on polychlorinated biphenyl (PCB) and organochlorine (OC) contaminants in killer whales have used biopsies which may not be representative of contaminant concentrations through the entire blubber depth. Here, we measured PCB and OC concentrations in 10 equal-length blubber sections of 18 killer whales harvested in southeast Greenland (2012-2014), and 3 stranded in the Faroe Islands (2008) and Denmark (2005). Overall, very high concentrations of ΣPCB, Σchlordanes (ΣCHL), and Σdichlorodiphenyltrichloroethane (ΣDDT) were found in the southeast Greenland and Denmark individuals (means of ~40 to 70mgkg-1 lipid weight). These concentrations were higher than in the Faroe Island individuals (means of ~2 to 5mgkg-1 lipid weight) and above those previously reported for other fish-feeding killer whales in the North Atlantic, likely in part due to additional feeding on marine mammals. On a wet weight basis, concentrations of all contaminants were significantly lower in the outermost blubber layer (0.15-0.65cm) compared to all other layers (p<0.01), except for Σhexachlorocyclohexanes. However, after lipid correction, no variation was found for ΣCHL and Σchlorobenzene concentrations, while the outermost layer(s) still showed significantly lower ΣPCB, ΣDDT, Σmirex, Σendosulfan, and dieldrin concentrations than one or more of the inner layers. Yet, the magnitude of these differences was low (up to 2-fold) suggesting that a typical biopsy may be a reasonable representation of the PCB and OC concentrations reported in killer whales, at least on a lipid weight basis.
Collapse
Affiliation(s)
- Sara Pedro
- Wildlife and Fisheries Conservation Center, Department of Natural Resources and the Environment and Center for Environmental Sciences and Engineering, University of Connecticut, Storrs, CT 06269, USA.
| | - Conor Boba
- Wildlife and Fisheries Conservation Center, Department of Natural Resources and the Environment and Center for Environmental Sciences and Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Rune Dietz
- Department of Bioscience, Arctic Research Centre, Aarhus University, Roskilde DK-4000, Denmark
| | - Christian Sonne
- Department of Bioscience, Arctic Research Centre, Aarhus University, Roskilde DK-4000, Denmark
| | | | - Martin Hansen
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720, USA; Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Anthony Provatas
- Center for Environmental Sciences and Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Melissa A McKinney
- Wildlife and Fisheries Conservation Center, Department of Natural Resources and the Environment and Center for Environmental Sciences and Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
43
|
Rojo-Nieto E, Fernández-Maldonado C. Assessing trace elements in striped dolphins from the Strait of Gibraltar: Clues to link the bioaccumulation in the westernmost Mediterranean Sea area and nearest Atlantic Ocean. CHEMOSPHERE 2017; 170:41-50. [PMID: 27974270 DOI: 10.1016/j.chemosphere.2016.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/24/2016] [Accepted: 12/03/2016] [Indexed: 06/06/2023]
Abstract
Dolphins are considered sentinel species in the marine environment. The Strait of Gibraltar is the only passage between the Mediterranean Sea and the Atlantic Ocean, being the transitional region which connects these two basins and one of the most important routes of cetacean migration worldwide. In this work, eight trace elements (TE) were studied in 45 samples of liver, kidney and muscle, from 15 specimens stranded in this study area. The preliminary results show, among others, the patterns of distribution of the TE in the target organs studied, the influence of sex, length and developmental stage in these TE concentrations and the Se/Hg ratio. Subsequently, the results of TE concentrations in liver have being compared to previous data on S. coeruleoalba from the westernmost Mediterranean Sea and the nearest Atlantic Ocean. For some elements (e.g. for As), concentrations are similar to those obtained from Atlantic samples, despite in other cases (e.g. for Cd) results are lined up with those observed in Mediterranean studies. In addition, in the case of some TE (e.g. Se and Zn) the results are in the middle of those reported for both basins, reinforcing the idea of the Strait of Gibraltar being a transitional zone. Present study is the first research regarding this issue in this outstanding region, aiming to give insights of how this matchless area can help to link TE concentrations observed in these Atlantic and Mediterranean threatened species.
Collapse
Affiliation(s)
- Elisa Rojo-Nieto
- Department of Environmental Technologies, Andalusian Center for Marine Science and Technology (CACYTMAR/INMAR), International Campus of Excellence of the Sea, University of Cádiz, Spain; Stranding-Supporting Network, DELPHIS - Ecologistas en Acción Cádiz, c/ San Alejandro s/n., Puerto Real, Spain.
| | - Carolina Fernández-Maldonado
- Center for the Management of the Marine Environment (CEGMA), Andalusian Agency for Environment and Water, (Andalusian Environmental and Spatial Planning Council), Avda. Johan Gütemberg 1, Isla de la Cartuja, Sevilla, Spain
| |
Collapse
|
44
|
Anezaki K, Matsuda A, Matsuishi T. Concentration and congener pattern of polychlorinated biphenyls in blubber and liver of Hubbs' beaked whale (Mesoplodon carlhubbsi), using a sulfoxide and an Ag-ION solid phase extraction cartridge as a simplified cleanup technique for biological samples. MARINE POLLUTION BULLETIN 2016; 113:282-286. [PMID: 27707471 DOI: 10.1016/j.marpolbul.2016.09.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/16/2016] [Accepted: 09/22/2016] [Indexed: 06/06/2023]
Abstract
We performed the first known study of polychlorinated biphenyls (PCBs) concentrations and patterns in the blubber and liver of a Hubbs' beaked whale. Samples were pretreated with Supelclean™ sulfoxide and Discovery® Ag-ION solid phase extraction cartridges to remove whale oil. PCB concentrations in the blubber and liver were 13,000 and 7300ng/g lipid, respectively. Highly poisonous congeners such as dioxin-like (DL) PCBs tended to accumulate in the liver. The toxic equivalents (TEQ) of DL-PCBs in the liver (740pg-TEQ/g lipid) were higher than those in the blubber (74pg-TEQ/g lipid). The blubber and liver samples showed that hexachlorinated biphenyls were dominant among homologues, and PCB-153 was dominant among congeners. Several congeners accumulated disproportionately in the blubber and the liver (PCB-28, 52, 74, 99, and 118), while others did not persist (PCB-31, 70, and 110). This indicates that PCBs are metabolized differently according to their specific composition.
Collapse
Affiliation(s)
- Katsunori Anezaki
- Hokkaido Research Organization, Environmental and Geological Research Department, Institute of Environmental Sciences, Hokkaido, Japan.
| | - Ayaka Matsuda
- Graduate School of Fisheries Sciences, Hokkaido University, Hokkaido, Japan
| | | |
Collapse
|
45
|
Gui D, Karczmarski L, Yu RQ, Plön S, Chen L, Tu Q, Cliff G, Wu Y. Profiling and Spatial Variation Analysis of Persistent Organic Pollutants in South African Delphinids. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:4008-4017. [PMID: 26967261 DOI: 10.1021/acs.est.5b06009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The continuous disposal of persistent organic pollutants (POPs) in South Africa (SA) warrants concern about their detrimental effects on humans and wildlife. We surveyed six dolphin species (n = 90) incidentally captured in shark net installations or stranded off the SA east and south coast from 2005 to 2009 to study the POP exposure. Sousa plumbea, an inshore and estuarine species, was found to be the most contaminated by total POPs (21 100 ng g(-1) lw) of all the dolphins off SA, followed by Tursiops aduncus (19 800 ng g(-1) lw), Lagenodelphis hosei (13 600 ng g(-1) lw), and Delphinus capensis (5500 ng g(-1) lw), whereas POP levels in the offshore or pelagic delphinids were much lower. In all delphinids, dominant pollutants were dichlorodiphenyltrichloroethanes (DDTs), which represented more than 60% of the total concentration of total POPs, followed by polychlorinated biphenyls (PCBs, 30%). Concentrations of DDTs in S. plumbea and T. aduncus off SA were among the highest levels reported in delphinids globally. Approximately half of the adult T. aduncus had PCB concentrations above the effect threshold for impairment of immune functions. The concentrations of Mirex and Dieldrin in SA delphinids were higher than those found in species from other regions of the Southern Hemisphere.
Collapse
Affiliation(s)
- Duan Gui
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-Sen University , Guangzhou, Guangdong 510275, China
| | - Leszek Karczmarski
- The Swire Institute of Marine Sciences, School of Biological Sciences, The University of Hong Kong , Cape d'Aguilar Road, Shek O, Hong Kong
| | - Ri-Qing Yu
- Department of Biology, University of Texas at Tyler , Tyler, Texas 75799, United States
| | - Stephanie Plön
- Coastal and Marine Research Institute, Nelson Mandela Metropolitan University , PO Box 77000, Port Elizabeth, Eastern Cape 6031, South Africa
| | - Laiguo Chen
- Urban Environment and Ecology Research Center, South China Institute of Environmental Sciences (SCIES), Ministry of Environmental Protection, Guangzhou, Guangdong 510655, China
| | - Qin Tu
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-Sen University , Guangzhou, Guangdong 510275, China
| | - Geremy Cliff
- KwaZulu-Natal Sharks Board, Private Bag 2, Umhlanga Rocks 4320, KwaZulu-Natal, South Africa and Biomedical Resource Unit, University of KwaZulu-Natal , Durban, KwaZulu-Natal 4001, South Africa
| | - Yuping Wu
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-Sen University , Guangzhou, Guangdong 510275, China
| |
Collapse
|
46
|
Dirtu AC, Malarvannan G, Das K, Dulau-Drouot V, Kiszka JJ, Lepoint G, Mongin P, Covaci A. Contrasted accumulation patterns of persistent organic pollutants and mercury in sympatric tropical dolphins from the south-western Indian Ocean. ENVIRONMENTAL RESEARCH 2016; 146:263-273. [PMID: 26775007 DOI: 10.1016/j.envres.2016.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/09/2015] [Accepted: 01/04/2016] [Indexed: 06/05/2023]
Abstract
Due to their high trophic position and long life span, small cetaceans are considered as suitable bioindicators to monitor the presence of contaminants in marine ecosystems. Here, we document the contamination with persistent organic pollutants (POPs) and total mercury (T-Hg) of spinner (Stenella longirostris, n =21) and Indo-Pacific bottlenose dolphins (Tursiops aduncus, n=32) sampled from the coastal waters of La Réunion (south-western Indian Ocean). In addition, seven co-occurring teleost fish species were sampled and analyzed as well. Blubber samples from living dolphins and muscle from teleosts were analyzed for polychlorinated biphenyls (PCBs), DDT and metabolites (DDTs), chlordanes (CHLs), hexachlorocyclohexanes (HCHs), hexachlorobenzene (HCB), and polybrominated diphenyl ethers (PBDEs). Methoxylated PBDEs (MeO-PBDEs), reported as having a natural origin, were also analyzed. T-Hg levels were measured in blubber and skin biopsies of the two dolphin species. Stable isotopes δ(13)C and δ(15)N values were determined in skin of the dolphins and in the muscle of teleosts. For PCBs, HCHs and T-Hg, concentrations were significantly higher in T. aduncus than in S. longirostris. For other POP levels, intra-species variability was high. MeO-PBDEs were the dominant compounds (55% of the total POPs) in S. longirostris, while PCBs dominated (50% contribution) in T. aduncus. Other contaminants showed similar profiles between the two species. Given the different patterns of POPs and T-Hg contamination and the δ(15)N values observed among analyzed teleosts, dietary and foraging habitat preferences most likely explain the contrasted contaminant profiles observed in the two dolphin species. Levels of each class of contaminants were significantly higher in males than females. Despite their spatial and temporal overlap in the waters of La Réunion, S. longirostris and T. aduncus are differently exposed to contaminant accumulation.
Collapse
Affiliation(s)
- Alin C Dirtu
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Department of Chemistry, "Al. I. Cuza" University of Iasi, 700506 Iasi, Romania
| | - Govindan Malarvannan
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Krishna Das
- University of Liege, MARE Center, Laboratory for Oceanology, 4000 Liege, Belgium
| | - Violaine Dulau-Drouot
- Groupe Local d'Observation et d'Identification des Cétacés (GLOBICE), 30 Chemin Parc Cabris, Grand Bois, 97410 Saint Pierre, La Réunion, France
| | - Jeremy J Kiszka
- Marine Sciences Program, Department of Biological Sciences, Florida International University, 3000 NE 151st, North Miami, FL 33181, USA
| | - Gilles Lepoint
- University of Liege, MARE Center, Laboratory for Oceanology, 4000 Liege, Belgium
| | - Philippe Mongin
- Brigade Nature Océan Indien (BNOI)/ONCFS, 12 Allée de la Foret - Parc de la Providence, 97400 Saint Denis, La Réunion, France
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| |
Collapse
|
47
|
Reiner JL, Becker PR, Gribble MO, Lynch JM, Moors AJ, Ness J, Peterson D, Pugh RS, Ragland T, Rimmer C, Rhoderick J, Schantz MM, Trevillian J, Kucklick JR. Organohalogen Contaminants and Vitamins in Northern Fur Seals (Callorhinus ursinus) Collected During Subsistence Hunts in Alaska. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 70:96-105. [PMID: 26142120 PMCID: PMC4817544 DOI: 10.1007/s00244-015-0179-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 06/06/2015] [Indexed: 05/16/2023]
Abstract
During native subsistence hunts from 1987 to 2007, blubber and liver samples from 50 subadult male northern fur seals (Callorhinus ursinus) were collected on St. Paul Island, Alaska. Samples were analyzed for legacy persistent organic pollutants (POPs), recently phased-out/current-use POPs, and vitamins. The legacy POPs measured from blubber samples included polychlorinated biphenyl congeners, DDT (and its metabolites), chlorobenzenes, chlordanes, and mirex. Recently phased-out/current-use POPs included in the blubber analysis were the flame retardants, polybrominated diphenyl ethers, and hexabromocyclododecanes. The chemical surfactants, perfluorinated alkyl acids, and vitamins A and E were assessed in the liver samples. Overall, concentrations of legacy POPs are similar to levels seen in seal samples from other areas of the North Pacific Ocean and the Bering Sea. Statistically significant correlations were seen between compounds with similar functions (pesticides, flame retardants, vitamins). With sample collection spanning two decades, the temporal trends in the concentrations of POPs and vitamins were assessed. For these animals, the concentrations of the legacy POPs tend to decrease or stay the same with sampling year; however, the concentrations of the current-use POPs increased with sampling year. Vitamin concentrations tended to stay the same across the sampling years. With the population of northern fur seals from St. Paul Island on the decline, a detailed assessment of exposure to contaminants and the correlations with vitamins fills a critical gap for identifying potential population risk factors that might be associated with health effects.
Collapse
Affiliation(s)
- Jessica L Reiner
- Chemical Sciences Division, Hollings Marine Laboratory, National Institute of Standards and Technology, Charleston, SC, 29412, USA.
| | - Paul R Becker
- Chemical Sciences Division, Hollings Marine Laboratory, National Institute of Standards and Technology, Charleston, SC, 29412, USA
| | - Matthew O Gribble
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, 90032, USA
| | - Jennifer M Lynch
- Chemical Sciences Division, Hollings Marine Laboratory, National Institute of Standards and Technology, Charleston, SC, 29412, USA
| | - Amanda J Moors
- Chemical Sciences Division, Hollings Marine Laboratory, National Institute of Standards and Technology, Charleston, SC, 29412, USA
| | - Jennifer Ness
- Chemical Sciences Division, Hollings Marine Laboratory, National Institute of Standards and Technology, Charleston, SC, 29412, USA
| | - Danielle Peterson
- Chemical Sciences Division, Hollings Marine Laboratory, National Institute of Standards and Technology, Charleston, SC, 29412, USA
| | - Rebecca S Pugh
- Chemical Sciences Division, Hollings Marine Laboratory, National Institute of Standards and Technology, Charleston, SC, 29412, USA
| | - Tamika Ragland
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Catherine Rimmer
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Jody Rhoderick
- Chemical Sciences Division, Hollings Marine Laboratory, National Institute of Standards and Technology, Charleston, SC, 29412, USA
| | - Michele M Schantz
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Jennifer Trevillian
- Chemical Sciences Division, Hollings Marine Laboratory, National Institute of Standards and Technology, Charleston, SC, 29412, USA
| | - John R Kucklick
- Chemical Sciences Division, Hollings Marine Laboratory, National Institute of Standards and Technology, Charleston, SC, 29412, USA
| |
Collapse
|
48
|
Hansen AMK, Bryan CE, West K, Jensen BA. Trace Element Concentrations in Liver of 16 Species of Cetaceans Stranded on Pacific Islands from 1997 through 2013. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 70:75-95. [PMID: 26283019 PMCID: PMC4988065 DOI: 10.1007/s00244-015-0204-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 07/27/2015] [Indexed: 05/06/2023]
Abstract
The impacts of anthropogenic contaminants on marine ecosystems are a concern worldwide. Anthropogenic activities can enrich trace elements in marine biota to concentrations that may negatively impact organism health. Exposure to elevated concentrations of trace elements is considered a contributing factor in marine mammal population declines. Hawai'i is an increasingly important geographic location for global monitoring, yet trace element concentrations have not been quantified in Hawaiian cetaceans, and there is little trace element data for Pacific cetaceans. This study measured trace elements (Cr, Mn, Cu, Zn, As, Se, Sr, Cd, Sn, Hg, and Pb) in liver of 16 species of cetaceans that stranded on U.S. Pacific Islands from 1997 to 2013, using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) (n = 31), and direct mercury analysis atomic absorption spectrometry (DMA-AAS) (n = 43). Concentration ranges (μg/g wet mass fraction) for non-essential trace elements, such as Cd (0.0031-58.93) and Hg (0.0062-1571.75) were much greater than essential trace elements, such as Mn (0.590-17.31) and Zn (14.72-245.38). Differences were found among age classes in Cu, Zn, Hg, and Se concentrations. The highest concentrations of Se, Cd, Sn, Hg, and Pb were found in one adult female false killer whale (Pseudorca crassidens) at concentrations that are known to affect health in marine mammals. The results of this study establish initial trace element concentration ranges for Pacific cetaceans in the Hawaiian Islands region, provide insights into contaminant exposure of these marine mammals, and contribute to a greater understanding of anthropogenic impacts in the Pacific Ocean.
Collapse
Affiliation(s)
- Angela M K Hansen
- College of Natural and Computational Science, Hawaii Pacific University, 45-045 Kamehameha Highway, Kaneohe, HI, 96744-5297, USA
| | - Colleen E Bryan
- Chemical Sciences Division, Hollings Marine Laboratory, National Institute of Standards and Technology, 331 Fort Johnson Road, Charleston, SC, 29412, USA.
| | - Kristi West
- College of Natural and Computational Science, Hawaii Pacific University, 45-045 Kamehameha Highway, Kaneohe, HI, 96744-5297, USA
| | - Brenda A Jensen
- College of Natural and Computational Science, Hawaii Pacific University, 45-045 Kamehameha Highway, Kaneohe, HI, 96744-5297, USA
| |
Collapse
|
49
|
Martín de Vidales MJ, Millán M, Sáez C, Pérez JF, Rodrigo MA, Cañizares P. Conductive diamond electrochemical oxidation of caffeine-intensified biologically treated urban wastewater. CHEMOSPHERE 2015; 136:281-288. [PMID: 26048815 DOI: 10.1016/j.chemosphere.2015.05.077] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 05/21/2015] [Accepted: 05/24/2015] [Indexed: 06/04/2023]
Abstract
In this work, the usefulness of Conductive Diamond Electrochemical Oxidation (CDEO) to degrade caffeine in real urban wastewater matrixes was assessed. The oxidation of actual wastewater intensified with caffeine (from 1 to 100 mg L(-1)) was studied, paying particular attention to the influence of the initial load of caffeine and the differences observed during the treatment of caffeine in synthetic wastewater. The results showed that CDEO is a technology that is capable of efficiently degrading this compound even at very low concentrations and that it can even be completely depleted. Profiles of the ionic species of S (SO4(2-)), N (NH4(+), NO3(-)) and Cl (ClO(-), ClO3(-) and ClO4(-)) were monitored and explained for plausible oxidation mechanisms. It was observed that the efficiency achieved is higher in the treatment of real wastewater than in the oxidation of synthetic wastewater because of the contribution of electrogenerated oxidant species such as hypochlorite. The formation of chlorate and perchlorate during electrochemical processes was observed, and a combined strategy to prevent this important drawback was successfully tested based on the application of low current densities with the simultaneous dosing of hydrogen peroxide.
Collapse
Affiliation(s)
- María J Martín de Vidales
- Chemical Engineering Department, University of Castilla-La Mancha, Enrique Costa Novella Building, Av. Camilo José Cela n° 12, 13071 Ciudad Real, Spain
| | - María Millán
- Chemical Engineering Department, University of Castilla-La Mancha, Enrique Costa Novella Building, Av. Camilo José Cela n° 12, 13071 Ciudad Real, Spain
| | - Cristina Sáez
- Chemical Engineering Department, University of Castilla-La Mancha, Enrique Costa Novella Building, Av. Camilo José Cela n° 12, 13071 Ciudad Real, Spain.
| | - José F Pérez
- Chemical Engineering Department, University of Castilla-La Mancha, Enrique Costa Novella Building, Av. Camilo José Cela n° 12, 13071 Ciudad Real, Spain
| | - Manuel A Rodrigo
- Chemical Engineering Department, University of Castilla-La Mancha, Enrique Costa Novella Building, Av. Camilo José Cela n° 12, 13071 Ciudad Real, Spain
| | - Pablo Cañizares
- Chemical Engineering Department, University of Castilla-La Mancha, Enrique Costa Novella Building, Av. Camilo José Cela n° 12, 13071 Ciudad Real, Spain
| |
Collapse
|
50
|
Bachman MJ, Foltz KM, Lynch JM, West KL, Jensen BA. Using cytochrome P4501A1 expression in liver and blubber to understand effects of persistent organic pollutant exposure in stranded Pacific Island cetaceans. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:1989-1995. [PMID: 25892359 DOI: 10.1002/etc.3018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/19/2014] [Accepted: 04/05/2015] [Indexed: 06/04/2023]
Abstract
Elevated levels of persistent organic pollutants (POPs) have been reported in tropical Pacific Island cetaceans and their environment. In addition, recent health concerns in cetacean populations have warranted investigation into potential physiological effects from POP exposure for this region. Cytochrome P450 1A1 (CYP1A1) is a candidate for examining such effects. This well-studied biomarker of exposure and effect was examined in stranded cetacean liver using immunoblot (n = 39, 16 species) and blubber using immunohistochemistry (n = 23, 10 species). Paired tissue samples allowed for CYP1A1 comparisons not only between species but also within each individual animal to examine differences between tissue types. Liver CYP1A1 expression correlated positively and significantly with blubber concentrations of all POP categories (n = 39, p < 0.050) except octachlorostyrene and pentachlorobenzene (p > 0.100). Among Stenella species, liver CYP1A1 tissue expression was correlated negatively with the sum of all blubber layer endothelial cell CYP1A1 expression (n = 14, p = 0.049). Overall, elevated expression of liver CYP1A1 confirms its use as a biomarker of POP exposure to cetaceans stranded in the tropical Pacific basin.
Collapse
Affiliation(s)
- Melannie J Bachman
- Department of Natural Sciences, Hawaii Pacific University, Kaneohe, Hawaii, USA
- Hollings Marine Laboratory, Chemical Sciences Division, National Institute of Standards and Technology, Charleston, South Carolina, USA
| | - Kerry M Foltz
- Department of Natural Sciences, Hawaii Pacific University, Kaneohe, Hawaii, USA
| | - Jennifer M Lynch
- Hollings Marine Laboratory, Chemical Sciences Division, National Institute of Standards and Technology, Charleston, South Carolina, USA
| | - Kristi L West
- Department of Natural Sciences, Hawaii Pacific University, Kaneohe, Hawaii, USA
| | - Brenda A Jensen
- Department of Natural Sciences, Hawaii Pacific University, Kaneohe, Hawaii, USA
| |
Collapse
|