1
|
Newrick BA, Valdés D, Laca A, Laca A, Díaz M. Enhanced biodegradation of high-density polyethylene microplastics: Study of bacterial efficiency and process parameters. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136822. [PMID: 39673947 DOI: 10.1016/j.jhazmat.2024.136822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/16/2024]
Abstract
As global microplastic (MP) pollution intensifies, sustainable and effective remediation methods are gaining interest due to the growing environmental and health implications. Microorganisms are demonstrating remarkable capabilities to degrade these polymers, offering a promising solution for reducing MP contamination. The aim of this study was to utilize bacteria for the degradation of high-density polyethylene (HDPE) MPs, specifically Comamonas testosteroni NCIMB 8955, Bacillus firmus NCTC 10335 and Paenibacillus macquariensis NCTC 10419. During the incubation, bacterial growth, pH and carbohydrate concentration were monitored, and samples were taken to track MP weight loss and changes in surface morphology and functional groups. Gravimetric analysis revealed degradation efficiencies of 15.30 %, 13.00 %, and 12.29 % for B. firmus NCTC 10335, P. macquariensis NCTC 10419, and C. testosteroni NCIMB 8955, respectively, over 30 days or less. Scanning electron microscopy (SEM) further confirmed degradation, revealing surface deterioration and biofilm formation. Energy dispersive X-ray spectroscopy (EDS) showed changes in the functional groups on the polymer surface, indicating an increase in the O/C molar ratio. Fourier-transform infrared spectroscopy (FTIR) revealed an increase in the carbonyl and vinyl indexes. The influence of temperature, MP size, and concentration on biodegradation was systematically studied using C. testosteroni NCIMB 8955, which demonstrated the highest degradation rate. The best result, i.e., a degradation efficiency of 21.81 %, was achieved at 35 ºC, with MP sizes between 20 and 100 µm, and a concentration of 200 mg/L. These findings highlight the importance of process parameters during biodegradation and the potential of C. testosteroni NCIMB 8955 in developing sustainable bioremediation approaches to mitigate microplastic pollution.
Collapse
Affiliation(s)
- Bess A Newrick
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería s/n, Oviedo 33006, Spain
| | - David Valdés
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería s/n, Oviedo 33006, Spain
| | - Amanda Laca
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería s/n, Oviedo 33006, Spain
| | - Adriana Laca
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería s/n, Oviedo 33006, Spain.
| | - Mario Díaz
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería s/n, Oviedo 33006, Spain
| |
Collapse
|
2
|
Basu AG, Paul RS, Wang F, Roy S. Impact of microplastics on aquatic flora: Recent status, mechanisms of their toxicity and bioremediation strategies. CHEMOSPHERE 2025; 370:143983. [PMID: 39701309 DOI: 10.1016/j.chemosphere.2024.143983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
The accumulation of microplastics (MPs) in aquatic environments has occurred pervasively. The MPs affect almost all the aquatic plants including the aquatic microorganisms, ultimately disturbing the food chain. Aquatic flora attracts MPs due to the formation of several chemical bonds and interactions, including hydrogen bonds, electrostatic, hydrophobic, and van der Waals. Consequently, they hinder plant growth when adsorbed to the plant surfaces. Moreover, the major metabolic processes, including photosynthesis, reproduction, and nutrient uptake, get affected due to the pore-filling of plant tissues and the blockage of sunlight. Subsequently, prolonged exposure to MPs inflicts excessive generation of reactive oxygen species (ROS), ultimately accelerating programmed cell death. However, it has been realized that bioremediation techniques, including phytoremediation, can effectively mitigate MPs pollution by adsorbing or accumulating MPs by 25-80% at the laboratory scale. In this connection, several microorganisms are vital in deteriorating MPs due to their ability to form biofilm over the MPs' surface. Additionally, the secretion of extracellular enzymes such as styrene monooxygenase, styrene oxide isomerase, phenylacetaldehyde dehydrogenase, PETase, etc., facilitates the degradation of MPs. Moreover, the inherent ability of plants to adsorb and accumulate MPs can be utilized to manage the MPs in aquatic ecosystems. However, there is a dearth of literature and comprehensive reviews highlighting the potential of bioremediation strategies. Therefore, apart from addressing the impact of MPs on aquatic flora, this article attempts to elucidate the physical and chemical basis of plant-plastic interaction and the potential strategies aquatic flora including microorganisms employ to mitigate plastic pollution.
Collapse
Affiliation(s)
- Anindita Ghosh Basu
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, India.
| | - Rita Som Paul
- Department of Botany, Siliguri College, Siliguri, Dist. Darjeeling, West Bengal, India.
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao, Shandong Province, PR China.
| | - Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, India.
| |
Collapse
|
3
|
Kumar P, Kumar A, Kumar D, Prajapati KB, Mahajan AK, Pant D, Yadav A, Giri A, Manda S, Bhandari S, Panjla R. Microplastics influencing aquatic environment and human health: A review of source, determination, distribution, removal, degradation, management strategy and future perspective. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124249. [PMID: 39869960 DOI: 10.1016/j.jenvman.2025.124249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 12/15/2024] [Accepted: 01/19/2025] [Indexed: 01/29/2025]
Abstract
Microplastics (MPs) are produced from various primary and secondary sources and pose multifaceted environmental problems. They are of non-biodegradable nature and may stay in aquatic environments for a long time period. The present review has covered novel aspects pertaining to MPs that were not covered in earlier studies. It has been observed that several methods are being employed for samples collection, extraction and identification of MPs and polymer types using various equipment, chemicals and instrumental techniques. Aquatic species mistakenly ingest MPs, considering them prey and through food-chain, and then suffer from various metabolic disorders. The consumption of seafood and fish may consequently cause health implications in humans. Certain plasticizers are added during manufacturing to provide colour, durability, flexibility, and strength to plastics, but they leach out during usage, storage, and transport, as well as after entering the bodies of aquatic species and human beings. The leached chemicals (bisphenol-A, triclosan, phthalates, etc.) act as endocrine disrupting chemicals (EDCs), which effect on homeostasis; thereby causing neurotoxicity, cytotoxicity, reproductive problems, adverse behaviour and autism. Negative influence of MPs on carbon sequestration potential of water bodies is also observed, however more studies are required to understand it with a detail mechanism under natural conditions. The wastewater treatment plants are found to remove a large amount of MPs, but in turn, also act as significant sources of their release in sludge and effluents. Further, it is covered that how advanced oxidation processes, thermal- and photo-oxidation, fungi, algae and microbes degrade the plastics and increase their numbers in the surrounding environment. The management strategy comprising recovery of energy and other valuable by-products from plastic wastes, recycling and regulatory framework; are also described in detail. The future perspectives can be of paramount importance to control MPs generation and their abundance in the aquatic and other types of environments. The studies in future need to focus on advanced filtration techniques, advanced oxidation processes, energy recovery from plastic wastes and influences of MPs on carbon sequestration in aquatic environment and human health.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Natural Resources Management, Maharana Pratap Horticultural University, Karnal, Haryana, 132001, India.
| | - Anil Kumar
- Forest Ecology and Climate Change Division, ICFRE-Himalayan Forest Research Institute, Panthaghati, Shimla, Himachal Pradesh, 171013, India
| | - Deepak Kumar
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Kalp Bhusan Prajapati
- Department of Environmental Studies, Central University of Haryana, Jant-Pali, Mahendergarh, 123031, India
| | - Ambrish Kumar Mahajan
- Department of Environmental Sciences, Central University of Himachal Pradesh, Dharamshala, 176215, India
| | - Deepak Pant
- Department of Environmental Sciences, Central University of Himachal Pradesh, Dharamshala, 176215, India
| | - Anoop Yadav
- Department of Environmental Studies, Central University of Haryana, Jant-Pali, Mahendergarh, 123031, India
| | - Anand Giri
- School of Civil and Environmental Engineering, Indian Institute of Technology Mandi, Himachal Pradesh, 171013, India
| | - Satish Manda
- Department of Natural Resources Management, Maharana Pratap Horticultural University, Karnal, Haryana, 132001, India
| | - Soniya Bhandari
- Department of Environmental Sciences, Central University of Himachal Pradesh, Dharamshala, 176215, India
| | - Richa Panjla
- Department of Environmental Sciences, Central University of Himachal Pradesh, Dharamshala, 176215, India
| |
Collapse
|
4
|
Kong Y, Wang R, Zhou Q, Li J, Fan Y, Chen Q. Recent progresses and perspectives of polyethylene biodegradation by bacteria and fungi: A review. JOURNAL OF CONTAMINANT HYDROLOGY 2025; 269:104499. [PMID: 39787878 DOI: 10.1016/j.jconhyd.2025.104499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/25/2024] [Accepted: 01/04/2025] [Indexed: 01/12/2025]
Abstract
Plastics pollution has become a serious threat to the people and environment due to the mass production, unreasonable disposal and continuous pollution. Polyethylene (PE), one of the most utilized plastics all over the world, is considered as a highly recalcitrant environmental destruction problem on account of strong hydrophobicity and high molecular weight. Therefore, it is urgently necessary to seek economical and efficient treatment and disposal methods for PE. Considering microorganisms can use various carbon sources for anabolism, they are recognized to have great potential in the biodegradation of microplastics including PE. From this point of view, the present review concentrates on providing information regarding the current status of PE biodegradation microorganisms (bacteria and fungi), and the influencing factors such as PE characteristics, cellular surface hydrophobicity, physical treatments, chemicals addition, as well as environmental conditions for biodegradation are thoroughly discussed. Furthermore, the possible biodegradation mechanisms for PE involve the biofilm formation, biodeterioration, fragmentation, assimilation, and mineralization are elucidated in detail. Finally, the future research directions and application prospects of microbial degradation are prospected in this review. It is expected to provide reference and guidance for PE biodegradation and their potential applications in real contaminated sites.
Collapse
Affiliation(s)
- Yun Kong
- College of Resources and Environment, Yangtze University, Hubei, Wuhan 430100, China; State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Shaanxi, Xi'an 710048, China
| | - Renjuan Wang
- College of Resources and Environment, Yangtze University, Hubei, Wuhan 430100, China
| | - Qingyun Zhou
- College of Resources and Environment, Yangtze University, Hubei, Wuhan 430100, China
| | - Jiamiao Li
- College of Resources and Environment, Yangtze University, Hubei, Wuhan 430100, China
| | - Yimeng Fan
- College of Resources and Environment, Yangtze University, Hubei, Wuhan 430100, China
| | - Qi Chen
- College of Resources and Environment, Yangtze University, Hubei, Wuhan 430100, China.
| |
Collapse
|
5
|
Dan KB, Yoo JY, Min H. The Emerging Threat of Micro- and Nanoplastics on the Maturation and Activity of Immune Cells. Biomol Ther (Seoul) 2025; 33:95-105. [PMID: 39663987 PMCID: PMC11704408 DOI: 10.4062/biomolther.2024.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/11/2024] [Accepted: 11/16/2024] [Indexed: 12/13/2024] Open
Abstract
With the increasing use of plastics worldwide, the amount of plastic waste being discarded has also risen. This plastic waste undergoes physical and chemical processes, breaking down into smaller particles known as microplastics (MPs) or nanoplastics (NPs). Advances in technology have enhanced our ability to detect these smaller particles, and it has been confirmed that plastics can be found in marine organisms as well as within the human body. However, research on the effects of MPs or NPs on living organisms has only recently been started, and our understanding remains limited. Studies on the immunological impacts are still ongoing, revealing that MPs and NPs can differentially affect various immune cells based on the material, size, and shape of the plastic particles. In this review, we aim to provide a comprehensive understanding of the effects of MPs and NPs on the immune system. We will also explore the methods for plastic removal through physicochemical, microbial, or biological means.
Collapse
Affiliation(s)
- Kang-Bin Dan
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Ji Yoon Yoo
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyeyoung Min
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
6
|
Baby MG, Gerritse J, Beltran-Sanahuja A, Wolter H, Rohais S, Romero-Sarmiento MF. Aging of plastics and microplastics in the environment: a review on influencing factors, quantification methods, challenges, and future perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:1009-1042. [PMID: 39725849 DOI: 10.1007/s11356-024-35651-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024]
Abstract
The ubiquitous presence of fragmented plastic particles needs comprehensive understanding of its fate in the environment. The long-term persistence of microplastics (MPs) in the environment is a significant threat to the ecosystem. Even though various degradation mechanisms (physical, chemical, and biological) of commonly used plastics have been demonstrated, quantifying the degradation of MPs over time to predict the consequence of plastic littering and its persistence in the environment remains a challenge. Different advanced analytical techniques have been used to quantify the degradation of MPs by introducing various parameters such as bond indices, crystallinity, and carbon-oxygen ratio. However, a simple and widely accepted reliable methodology for comparing the environmental factors and their influence on the MP degradation has yet to be developed and validated. This paper reviews a section of relevant literature (n = 38) to synthesize an overview of methods implemented for the quantification of fragmentation and aging of MPs in natural and artificial environment. In addition, the inherent weakness and extrinsic factors affecting the degradation of MPs in the environment is discussed. Finally, it proposes challenges and future scope as guideline for research on MP degradation in the environment.
Collapse
Affiliation(s)
- Merin Grace Baby
- IFP Énergies Nouvelles (IFPEN), Direction Sciences de La Terre Et Technologies de L'Environnement, 1 Et 4 Avenue de Bois-Préau, 92852, Rueil-Malmaison Cedex, France.
| | - Jan Gerritse
- Deltares, Unit Subsurface and Groundwater Systems, Daltonlaan 600, 3584 BK, Utrecht, The Netherlands
| | - Ana Beltran-Sanahuja
- Analytical Chemistry, Nutrition & Food Sciences Department, University of Alicante, 03690, Alicante, Spain
| | - Helen Wolter
- The Ocean Cleanup, Coolsingel 6, 3011 AD, Rotterdam, The Netherlands
| | - Sébastien Rohais
- IFP Énergies Nouvelles (IFPEN), Direction Sciences de La Terre Et Technologies de L'Environnement, 1 Et 4 Avenue de Bois-Préau, 92852, Rueil-Malmaison Cedex, France
| | - Maria-Fernanda Romero-Sarmiento
- IFP Énergies Nouvelles (IFPEN), Direction Sciences de La Terre Et Technologies de L'Environnement, 1 Et 4 Avenue de Bois-Préau, 92852, Rueil-Malmaison Cedex, France
| |
Collapse
|
7
|
Dar MA, Palsania P, Satya S, Dashora M, Bhat OA, Parveen S, Patidar SK, Kaushik G. Microplastic pollution: A global perspective in surface waters, microbial degradation, and corresponding mechanism. MARINE POLLUTION BULLETIN 2025; 210:117344. [PMID: 39615341 DOI: 10.1016/j.marpolbul.2024.117344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/22/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024]
Abstract
Plastics are incredibly useful materials that have many benefits for both society and individual daily lives. However, the extensive utilization of plastic and plastic-derived products has led to plastic pollution in various environmental compartments across the world at alarming levels. Due to different biogeochemical processes, this plastic waste is broken down into tiny, omnipresent, and long-lasting fragments known as microplastics (<5 mm), which are causing great concern among scientists. Microplastics tend to bioaccumulate, contain toxic chemicals, and have other pollutants and pathogens adsorbed on their surface, thus having adverse effects on organisms. Globally dispersed, microplastics can now be found in almost every environmental niche. Therefore, the purpose of this paper is to give an overview of the research that has been done on this topic, summarize the evidence of microplastic pollution in surface waters, and discuss the analytical summary of recent findings on the microbial degradation of microplastics and effects of various parameters on its degradation as well as the potential degradation mechanism of microplastics. A summary of the most recent and relevant literature is provided on microplastic pollution and microorganisms that can break down various microplastics are classified according to their types including bacteria, fungi, and algae. The environmental factors influencing microplastic degradation and the associated degradation effects are therefore generalized. Additionally, a brief discussion of the mechanism underlying the microbial-mediated degradation of microplastics is provided. This review serves as a reference for upcoming research looking into efficient ways to reduce microplastic pollution.
Collapse
Affiliation(s)
- Mohd Ashraf Dar
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, BandarSindri, Ajmer 305817, Rajasthan, India
| | - Preksha Palsania
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, BandarSindri, Ajmer 305817, Rajasthan, India
| | - Shalni Satya
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, BandarSindri, Ajmer 305817, Rajasthan, India
| | - Milap Dashora
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, BandarSindri, Ajmer 305817, Rajasthan, India
| | - Ommer Ahad Bhat
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, BandarSindri, Ajmer 305817, Rajasthan, India
| | - Sana Parveen
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, BandarSindri, Ajmer 305817, Rajasthan, India
| | - Shailesh Kumar Patidar
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, BandarSindri, Ajmer 305817, Rajasthan, India
| | - Garima Kaushik
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, BandarSindri, Ajmer 305817, Rajasthan, India.
| |
Collapse
|
8
|
Song Q, Zhang Y, Ju C, Zhao T, Meng Q, Cong J. Microbial strategies for effective microplastics biodegradation: Insights and innovations in environmental remediation. ENVIRONMENTAL RESEARCH 2024; 263:120046. [PMID: 39313172 DOI: 10.1016/j.envres.2024.120046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/05/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Microplastics (MPs), diminutive yet ubiquitous fragments arising from the degradation of plastic waste, pervade environmental matrices, posing substantial risks to ecological systems and trophic dynamics. This review meticulously examines the origins, distribution, and biological impacts of MPs, with an incisive focus on elucidating the molecular and cellular mechanisms underpinning their toxicity. We highlight the indispensable role of microbial consortia and enzymatic pathways in the oxidative degradation of MPs, offering insights into enhanced biodegradation processes facilitated by innovative pretreatment methodologies. Central to our discourse is the interplay between MPs and biota, emphasizing the detoxification capabilities of microbial metabolisms and enzymatic functions in ameliorating MPs' deleterious effects. Additionally, we address the practical implementations of MP biodegradation in environmental remediation, advocating for intensified research to unravel the complex biodegradation pathways and to forge effective strategies for the expeditious elimination of MPs from diverse ecosystems. This review not only articulates the pervasive challenges posed by MPs but also positions microbial strategies at the forefront of remedial interventions, thereby paving the way for groundbreaking advancements in environmental conservation.
Collapse
Affiliation(s)
- Qianqian Song
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Yun Zhang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Cuiping Ju
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, 266000, China
| | - Tianyu Zhao
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Qingxuan Meng
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Jing Cong
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China.
| |
Collapse
|
9
|
Hoang HG, Tran HT, Nguyen MK, Nguyen NSH, Thuy BTP. Investigating the polyethylene degradation mechanism using docking and molecular dynamics simulations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64857-64869. [PMID: 39560866 DOI: 10.1007/s11356-024-35547-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 11/06/2024] [Indexed: 11/20/2024]
Abstract
Polyethylene (PE), widely utilized in everyday life, is notorious for its protracted degradation period, extending over decades, presenting an environmental hazard. Recently, there has been growing interest in utilizing microorganisms to aid in PE decomposition. Molecular docking and molecular dynamics simulations are valuable tools for understanding specific mechanisms and conducting initial screenings to support experimental research in this context. In this study, various enzymes, including lignin peroxidase, laccase, manganese peroxidase, and cutinase, sourced from Phanerodontia chrysosporium, Melanocarpus albomyces, and Fusarium vanettenii, were investigated. The docking simulations revealed that lignin peroxidase exhibited the most substantial binding interaction with PE, displaying a binding energy of - 4.69162 kcal mol-1 and an RMSD value of 0.93428 Å. Following lignin peroxidase in binding strength were laccase, manganese peroxidase, and cutinase. Furthermore, molecular dynamics simulations provided insights into the binding mechanisms. These simulations demonstrated stability over a 200-ns period, as indicated by RMSD and RMSF values below 0.2 nm. Additionally, the study delved into the interaction mechanisms between microorganisms and plastic molecules, enriching our understanding of this process. While the findings of this study may be considered modest, they contribute to a broader perspective and have the potential to influence more profound and significant research in the field.
Collapse
Affiliation(s)
- Hong-Giang Hoang
- Faculty of Technology, Dong Nai Technology University, Bien Hoa City, Vietnam
| | - Huu-Tuan Tran
- Laboratory of Ecology and Environmental Management, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Minh-Ky Nguyen
- Faculty of Environment and Natural Resources, Nong Lam University of Ho Chi Minh City, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, 700000, Vietnam
| | - Ngoc Son Hai Nguyen
- Faculty of Environment, Thai Nguyen University of Agriculture and Forestry (TUAF), Thai Nguyen, 23000, Vietnam
| | - Bui Thi Phuong Thuy
- Faculty of Fundamental Sciences, Van Lang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
10
|
Bajo K, Romano R, Kolvenbach B, Nazemi SA, Shahgaldian P, Corvini PFX, Fava F, Raddadi N. Biodegradation of untreated plasticizers-free linear low-density polyethylene films by marine bacteria. MARINE POLLUTION BULLETIN 2024; 209:117115. [PMID: 39442357 DOI: 10.1016/j.marpolbul.2024.117115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/25/2024]
Abstract
Polyethylene significantly contributes to marine plastic pollution. This study focuses on isolating bacteria from sea water and microplastic samples collected from the Tyrrhenian Sea and evaluating their ability to degrade virgin plasticizers-free linear low-density polyethylene (LLDPE) films. The isolates grew on the plastic film under aerobic conditions in shaken flasks leading to LLDPE mass losses of up to 2.597 ± 0.971 % after 60 days incubation. Biofilm formation on the film surface was confirmed by adhered protein quantification while film surface erosion and appearance of functional groups were revealed using SEM and FTIR analyses confirming biodegradation capabilities especially for isolates Bacillus velezensis MT9, Vreelandella venusta MT1 and Vreelandellatitanicae MT11. This is the first report on the biodegradation of plasticizers-free non pretreated LLDPE films by marine Bacillus sp. and Vreelandella sp.; most of the LLDPE biodegradation studies have been so far performed on plasticizer containing, pre-treated, or naturally weathered films.
Collapse
Affiliation(s)
- Kejvin Bajo
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM)-University of Bologna, Italy
| | - Roberta Romano
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM)-University of Bologna, Italy
| | - Boris Kolvenbach
- Institute for Ecopreneurship, School of Life Sciences, FHNW, Muttenz, Switzerland
| | | | - Patrick Shahgaldian
- Institute for Ecopreneurship, School of Life Sciences, FHNW, Muttenz, Switzerland
| | - Philippe F-X Corvini
- Institute for Ecopreneurship, School of Life Sciences, FHNW, Muttenz, Switzerland
| | - Fabio Fava
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM)-University of Bologna, Italy
| | - Noura Raddadi
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM)-University of Bologna, Italy.
| |
Collapse
|
11
|
Bagiyan V, Ghazanchyan N, Khachaturyan N, Gevorgyan S, Barseghyan S, Davidyan T, Chitchyan K. Fungal microbiota of biodamages of various polymeric materials. Braz J Microbiol 2024; 55:3251-3260. [PMID: 39441516 PMCID: PMC11711409 DOI: 10.1007/s42770-024-01547-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
Data on microbial fouling of various synthetic polymer materials, including those used in space technology, are summarized. It has been established that the dominant groups of microbiota of polymer fouling are the genera of mitosporous fungi Aspergillus, Penicillium, Alternaria, Trichoderma. The enzymatic properties of fungal strains from the collection of microbial cultures of the Microbial Depository Center of the National Academy of Sciences of Armenia were studied. It has been shown that Aspergillus fumigatus, Penicillium chrysogenum, P. steckii, Juxtiphoma eupyrena and a number of other fungi have biofouling activity towards polyethylene, polyethylene terephthalate and some other synthetic polymers. New fungal kits have been developed and proposed to evaluate the fungal resistance of polymeric materials. They include fungi isolated from bio-damaged polymers used in space technology and contain 2 to 5 fungal strains instead of 7 to 9 strains in previously used kits. Taking into account the obtained data, a comparative assessment of the fungal resistance of samples of synthetic polymeric materials of various classes that passed accelerated climatic tests has been carried out. It has been established that the kits of biodegradant fungi, composed of cultures of bio-damaged space technology, generally exceeded the activity of the previously used kits, based on which one can judge the obvious advantages of strains isolated from bio-damaged space technology. In the future, these kits could find application not only for biodegradation of polymers, but also for testing the biostability of various polymers, to use for the construction of aviation and space techniques. Moreover, new optimized kits may be developed based on the strains involved in this study.
Collapse
Affiliation(s)
- Valeri Bagiyan
- Microbial Depository Center of the Scientific and Production Center of "Armbiotechnology" of NAS RA, Yerevan, 0056, Armenia.
| | - Narine Ghazanchyan
- Microbial Depository Center of the Scientific and Production Center of "Armbiotechnology" of NAS RA, Yerevan, 0056, Armenia
| | - Nune Khachaturyan
- Microbial Depository Center of the Scientific and Production Center of "Armbiotechnology" of NAS RA, Yerevan, 0056, Armenia
| | - Sona Gevorgyan
- Microbial Depository Center of the Scientific and Production Center of "Armbiotechnology" of NAS RA, Yerevan, 0056, Armenia
| | - Sona Barseghyan
- Microbial Depository Center of the Scientific and Production Center of "Armbiotechnology" of NAS RA, Yerevan, 0056, Armenia
| | - Tamara Davidyan
- Microbial Depository Center of the Scientific and Production Center of "Armbiotechnology" of NAS RA, Yerevan, 0056, Armenia
| | - Karine Chitchyan
- Microbial Depository Center of the Scientific and Production Center of "Armbiotechnology" of NAS RA, Yerevan, 0056, Armenia
| |
Collapse
|
12
|
Cao Z, Kim C, Li Z, Jung J. Comparing environmental fate and ecotoxicity of conventional and biodegradable plastics: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175735. [PMID: 39187074 DOI: 10.1016/j.scitotenv.2024.175735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/31/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024]
Abstract
Plastic pollution is a consequential problem worldwide, prompting the widespread use of biodegradable plastics (BPs). However, not all BPs are completely degradable under natural conditions, but instead produce biodegradable microplastics (BMPs), release chemical additives, and absorb micropollutants, thus causing toxicity to living organisms in similar manners to conventional plastics (CPs). The new problems caused by biodegradable plastics cannot be ignored and requires a thorough comparison of the differences between conventional and biodegradable plastics and microplastics. This review comprehensively compares their environmental fates, such as biodegradation and micropollutant sorption, and ecotoxicity in soil and water environments. The results showed that it is difficult to determine the natural conditions required for the complete biodegradation of BPs. Some chemical additives in BPs differ from those in CPs and may pose new threats to ecosystems. Because of functional group differences, most BMPs had higher micropollutant sorption capacities than conventional microplastics (CMPs). The ecotoxicity comparison showed that BMPs had similar or even greater adverse effects than CMPs. This review highlights several knowledge gaps in this new field and suggests directions for future studies.
Collapse
Affiliation(s)
- Zhihan Cao
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Changhae Kim
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Zhihua Li
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
13
|
Jamil A, Ahmad A, Irfan M, Hou X, Wang Y, Chen Z, Liu X. Global microplastics pollution: a bibliometric analysis and review on research trends and hotspots in agroecosystems. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:486. [PMID: 39509054 DOI: 10.1007/s10653-024-02274-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/16/2024] [Indexed: 11/15/2024]
Abstract
The prevalence of microplastics (MPs) in agricultural ecosystems poses a notable threat to dynamics of soil ecosystems, crop productivity, and global food security. MPs enter agricultural ecosystems from various sources and have considerable impacts on the physiochemical properties soil, soil organisms and microbial communities, and plants. However, the intensity of these impacts can vary with the size, shape, types, and the concentrations of MPs in the soil. Besides, MPs can enter food chain through consummation of crops grown on MPs polluted soils. In this study, we conducted a bibliometric analysis of 1636 publications on the effects of MPs on agricultural ecosystems from 2012 to May 2024. The results revealed a substantial increase in publications over the years, and China, the USA, Germany, and India have emerged as leading countries in this field of research. Social network analysis identified emerging trends and research hotspots. The latest burst keywords were contaminants, biochar, polyethylene microplastics, biodegradable microplastics, antibiotic resistance genes, and quantification. Furthermore, we have summarized the effects of MPs on various components of agricultural ecosystems. By integrating findings from diverse disciplinary perspectives, this study provides a valuable insight into the current knowledge landscape, identifies research gaps, and proposes future research directions to effectively tackle the intricate challenges associated with MPs pollution in agricultural environments.
Collapse
Affiliation(s)
- Asad Jamil
- School of Environmental Science and Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Ambreen Ahmad
- School of Environmental Science and Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Muhammad Irfan
- School of Environmental Science and Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Xin Hou
- School of Environmental Science and Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Yi Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Ziwei Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, People's Republic of China.
| |
Collapse
|
14
|
Kumar M, Chaudhary V, Chaudhary V, Srivastav AL, Madhav S. Impacts of microplastics on ecosystem services and their microbial degradation: a systematic review of the recent state of the art and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63524-63575. [PMID: 39508948 DOI: 10.1007/s11356-024-35472-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/26/2024] [Indexed: 11/15/2024]
Abstract
Microplastics are tiny plastic particles with a usual diameter ranging from ~ 1 μ to 5 µm. Recently, microplastic pollution has raised the attention of the worldwide environmental and human concerns. In human beings, digestive system illness, respiratory system disorders, sleep disturbances, obesity, diabetes, and even cancer have been reported after microplastic exposure either through food, air, or skin. Similarly, microplastics are also having negative impacts on the plant health, soil microorganisms, aquatic lives, and other animals. Policies and initiatives have already been in the pipeline to address this problem to deal with microplastic pollution. However, many obstacles are also being observed such as lack of knowledge, lack of research, and also absence of regulatory frameworks. This article has covered the distribution of microplastics in water, soil, food and air. Application of multimodel strategies including fewer plastic item consumption, developing low-cost novel technologies using microorganisms, biofilm, and genetic modified microorganisms has been used to reduce microplastics from the environment. Researchers, academician, policy-makers, and environmentalists should work jointly to cope up with microplastic contamination and their effect on the ecosystem as a whole which can be reduced in the coming years and also to make earth clean.
Collapse
Affiliation(s)
- Mukesh Kumar
- College of Horticulture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, India
| | - Veena Chaudhary
- Department of Chemistry, Meerut College Meerut, Meerut, Uttar Pradesh, India
| | - Vidisha Chaudhary
- Institute of Business Studies, CCS University, Meerut, India, Uttar Pradesh
| | - Arun Lal Srivastav
- Chitkara University School of Engineering and Technology, Chitkara University, Solan, Himachal Pradesh, India.
- Center of Excellence for Sustainability, Chitkara University, Solan, Himachal Pradesh, India.
| | - Sughosh Madhav
- Department of Civil Engineering, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
15
|
Ojha PC, Satpathy SS, Ojha R, Dash J, Pradhan D. Insight into the removal of nanoplastics and microplastics by physical, chemical, and biological techniques. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1055. [PMID: 39404908 DOI: 10.1007/s10661-024-13247-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/10/2024] [Indexed: 11/14/2024]
Abstract
Plastic pollutants create health crises like physical damage to tissues, upset reproductive processes, altered behaviour, oxidative stress, neurological disorders, DNA damage, gene expression, and disrupt physiological functions, as the biosphere accumulates them inadvertently through the food web. Water resources have become the generic host of plastic wastes irrespective of their particle size, resulting in widespread distribution in aquatic environments. The pre-treatment step of the traditional water treatment process can easily remove coarse-sized plastic wastes. However, the fine plastic particles, with sizes ranging from nanometres to millimetres, are indifferent to the traditional water treatment. To address the escalating problems, the upgradation of different traditional physical, chemical, and biological remediation techniques offers a promising avenue for tackling tiny plastic particles from the water environment. Further, new techniques and hybrid incorporations to the existing water treatment techniques have been explored, specifically removing tiny plastic debris. A detailed understanding of the sources, fate, and impact of plastic wastes in the environment, as well as an evaluation of the above treatment techniques and their limitations and challenges, can only show the way for their upgradation, hybridization, and development of new techniques. This review paper provides a comprehensive overview of the current knowledge and techniques for the remediation of nanoplastics and microplastics.
Collapse
Affiliation(s)
- Priti Chhanda Ojha
- Biofuels and Bioprocessing Research Center, ITER, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751030, India
| | - Swati Sucharita Satpathy
- Biofuels and Bioprocessing Research Center, ITER, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751030, India
| | - Ritesh Ojha
- Biofuels and Bioprocessing Research Center, ITER, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751030, India
| | - Jyotilagna Dash
- Biofuels and Bioprocessing Research Center, ITER, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751030, India
| | - Debabrata Pradhan
- Biofuels and Bioprocessing Research Center, ITER, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751030, India.
| |
Collapse
|
16
|
Battulga B, Nakayama M, Matsuoka S, Kondo T, Atarashi-Andoh M, Koarashi J. Dynamics and functions of microbial communities in the plastisphere in temperate coastal environments. WATER RESEARCH 2024; 264:122207. [PMID: 39142044 DOI: 10.1016/j.watres.2024.122207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024]
Abstract
Microbial attachment and biofilm formation on microplastics (MPs <5 mm in size) in the environment have received growing attention. However, there is limited knowledge of microbial function and their effect on the properties and behavior of MPs in the environment. In this study, microbial communities in the plastisphere were explored to understand microbial ecology as well as their impact on aquatic ecosystems. Using the amplicon sequencing of 16S and internal transcribed spacer (ITS) genes, we uncovered the composition and diversity of bacterial and fungal communities in samples of MPs (fiber, film, foam, and fragment), surface water, bottom sediment, and coastal sand in two contrasting coastal areas of Japan. Differences in microbial diversity and taxonomic composition were detected depending on sample type (MPs, water, sediment, and sand) and the research site. Although relatively higher bacterial and fungal gene counts were determined in MP fragments and foams from the research sites, there were no significant differences in microbial community composition depending on the morphotypes of MPs. Given the colonization by hydrocarbon-degrading communities and the presence of pathogens on MPs, the complex processes of microbial taxa influence the characteristics of MP-associated biofilms, and thus, the properties of MPs. This study highlights the metabolic functions of microbes in MP-associated biofilms, which could be key to uncovering the true impact of plastic debris on the global ecosystem.
Collapse
Affiliation(s)
- Batdulam Battulga
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Ibaraki, 319-1195, Japan.
| | - Masataka Nakayama
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Ibaraki, 319-1195, Japan
| | - Shunsuke Matsuoka
- Field Science Education and Research Center, Kyoto University, Kyoto, 601-0703, Japan
| | - Toshiaki Kondo
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki, 305-8686, Japan
| | - Mariko Atarashi-Andoh
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Ibaraki, 319-1195, Japan
| | - Jun Koarashi
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Ibaraki, 319-1195, Japan
| |
Collapse
|
17
|
Fang X, Cai Z, Wang X, Liu Z, Lin Y, Li M, Gong H, Yan M. Isolation and Identification of Four Strains of Bacteria with Potential to Biodegrade Polyethylene and Polypropylene from Mangrove. Microorganisms 2024; 12:2005. [PMID: 39458314 PMCID: PMC11509307 DOI: 10.3390/microorganisms12102005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
With the rapid growth of global plastic production, the degradation of microplastics (MPs) has received widespread attention, and the search for efficient biodegradation pathways has become a hot topic. The aim of this study was to screen mangrove sediment and surface water for bacteria capable of degrading polyethylene (PE) and polypropylene (PP) MPs. In this study, two strains of PE-degrading bacteria and two strains of PP-degrading candidate bacteria were obtained from mangrove, named Pseudomonas sp. strain GIA7, Bacillus cereus strain GIA17, Acinetobacter sp. strain GIB8, and Bacillus cereus strain GIB10. The results showed that the degradation rate of the bacteria increased gradually with the increase in degradation time for 60 days. Most of the MP-degrading bacteria had higher degradation rates in the presence of weak acid. The appropriate addition of Mg2+ and K+ was favorable to improve the degradation rate of MPs. Interestingly, high salt concentration inhibited the biodegradation of MPs. Results of scanning electron microscopy (SEM), atomic force microscopy (AFM), and Fourier-transform infrared spectroscopy (FTIR) indicated the degradation and surface changes of PP and PE MPs caused by candidate bacteria, which may depend on the biodegradation-related enzymes laccase and lipase. Our results indicated that these four bacterial strains may contribute to the biodegradation of MPs in the mangrove environment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Han Gong
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (X.F.); (Z.C.); (X.W.); (Z.L.); (Y.L.); (M.L.)
| | - Muting Yan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (X.F.); (Z.C.); (X.W.); (Z.L.); (Y.L.); (M.L.)
| |
Collapse
|
18
|
Stepnov AA, Lopez-Tavera E, Klauer R, Lincoln CL, Chowreddy RR, Beckham GT, Eijsink VGH, Solomon K, Blenner M, Vaaje-Kolstad G. Revisiting the activity of two poly(vinyl chloride)- and polyethylene-degrading enzymes. Nat Commun 2024; 15:8501. [PMID: 39353919 PMCID: PMC11445424 DOI: 10.1038/s41467-024-52665-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/17/2024] [Indexed: 10/03/2024] Open
Abstract
Biocatalytic degradation of non-hydrolyzable plastics is a rapidly growing field of research, driven by the global accumulation of waste. Enzymes capable of cleaving the carbon-carbon bonds in synthetic polymers are highly sought-after as they may provide tools for environmentally friendly plastic recycling. Despite some reports of oxidative enzymes acting on non-hydrolyzable plastics, including polyethylene or poly(vinyl chloride), the notion that these materials are susceptible to efficient enzymatic degradation remains controversial, partly driven by a general lack of studies independently reproducing previous observations. Here, we attempt to replicate two recent studies reporting that deconstruction of polyethylene and poly(vinyl chloride) can be achieved using an insect hexamerin from Galleria mellonella (so-called "Ceres") or a bacterial catalase-peroxidase from Klebsiella sp., respectively. Reproducing previously described experiments, we do not observe any activity on plastics using multiple reaction conditions and multiple substrate types. Digging deeper into the discrepancies between the previous data and our observations, we show how and why the original experimental results may have been misinterpreted.
Collapse
Affiliation(s)
- Anton A Stepnov
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
| | - Esteban Lopez-Tavera
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
| | - Ross Klauer
- Department of Chemical and Biological Engineering, University of Delaware, Newark, DE, USA
| | - Clarissa L Lincoln
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
- BOTTLE Consortium, Golden, CO, 80401, USA
| | | | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
- BOTTLE Consortium, Golden, CO, 80401, USA
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
| | - Kevin Solomon
- Department of Chemical and Biological Engineering, University of Delaware, Newark, DE, USA
| | - Mark Blenner
- Department of Chemical and Biological Engineering, University of Delaware, Newark, DE, USA.
| | - Gustav Vaaje-Kolstad
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
19
|
Ruginescu R, Purcarea C. Plastic-Degrading Enzymes from Marine Microorganisms and Their Potential Value in Recycling Technologies. Mar Drugs 2024; 22:441. [PMID: 39452849 PMCID: PMC11509169 DOI: 10.3390/md22100441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Since the 2005 discovery of the first enzyme capable of depolymerizing polyethylene terephthalate (PET), an aromatic polyester once thought to be enzymatically inert, extensive research has been undertaken to identify and engineer new biocatalysts for plastic degradation. This effort was directed toward developing efficient enzymatic recycling technologies that could overcome the limitations of mechanical and chemical methods. These enzymes are versatile molecules obtained from microorganisms living in various environments, including soil, compost, surface seawater, and extreme habitats such as hot springs, hydrothermal vents, deep-sea regions, and Antarctic seawater. Among various plastics, PET and polylactic acid (PLA) have been the primary focus of enzymatic depolymerization research, greatly enhancing our knowledge of enzymes that degrade these specific polymers. They often display unique catalytic properties that reflect their particular ecological niches. This review explores recent advancements in marine-derived enzymes that can depolymerize synthetic plastic polymers, emphasizing their structural and functional features that influence the efficiency of these catalysts in biorecycling processes. Current status and future perspectives of enzymatic plastic depolymerization are also discussed, with a focus on the underexplored marine enzymatic resources.
Collapse
Affiliation(s)
| | - Cristina Purcarea
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania;
| |
Collapse
|
20
|
Kherdekar RD, Ade AB. Integrated approaches for plastic waste management. Front Microbiol 2024; 15:1426509. [PMID: 39391604 PMCID: PMC11465426 DOI: 10.3389/fmicb.2024.1426509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/20/2024] [Indexed: 10/12/2024] Open
Abstract
Plastic pollution is the challenging problem of the world due to usage of plastic in daily life. Plastic is essential for packaging food and other goods and utensils to avoid the risk of microbial attack. Due to its hydrophobic nature, it is used for wrapping as laminates or packaging liquid substances in pouches and sachets. The tensile strength of the plastic is more therefore it is used for manufacturing carrying bags that can bear heavy loads. Plastic is available in various forms as per the requirements in our daily life. Annually millions to trillions of polyethene carry bags are being manufactured and utilized throughout the world. The plastic requires millions of years for natural degradation. The physical and chemical processes are able to degrade plastic material at the meager level by 200 to 500 years in natural conditions. Many industries focus on recycling of plastic. Biodegradation is a comparatively slow and cheaper process that involves microbes. To dispose of plastic completely there is a need of an integrated process in which all the possible methods of disposal are involved and used sustainably so that minimum depletion occurs to the livestock and the environment. In the current review, we could try to emphasize the intricate nature of plastic polymers, pollution caused by it and possible mitigation strategies for plastic waste management.
Collapse
|
21
|
Ali SS, Elsamahy T, Al-Tohamy R, Sun J. A critical review of microplastics in aquatic ecosystems: Degradation mechanisms and removing strategies. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 21:100427. [PMID: 38765892 PMCID: PMC11099331 DOI: 10.1016/j.ese.2024.100427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/21/2024] [Accepted: 04/21/2024] [Indexed: 05/22/2024]
Abstract
Plastic waste discarded into aquatic environments gradually degrades into smaller fragments, known as microplastics (MPs), which range in size from 0.05 to 5 mm. The ubiquity of MPs poses a significant threat to aquatic ecosystems and, by extension, human health, as these particles are ingested by various marine organisms including zooplankton, crustaceans, and fish, eventually entering the human food chain. This contamination threatens the entire ecological balance, encompassing food safety and the health of aquatic systems. Consequently, developing effective MP removal technologies has emerged as a critical area of research. Here, we summarize the mechanisms and recently reported strategies for removing MPs from aquatic ecosystems. Strategies combining physical and chemical pretreatments with microbial degradation have shown promise in decomposing MPs. Microorganisms such as bacteria, fungi, algae, and specific enzymes are being leveraged in MP remediation efforts. Recent advancements have focused on innovative methods such as membrane bioreactors, synthetic biology, organosilane-based techniques, biofilm-mediated remediation, and nanomaterial-enabled strategies, with nano-enabled technologies demonstrating substantial potential to enhance MP removal efficiency. This review aims to stimulate further innovation in effective MP removal methods, promoting environmental and social well-being.
Collapse
Affiliation(s)
- Sameh S. Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
22
|
Noornama, Abidin MNZ, Abu Bakar NK, Hashim NA. Innovative solutions for the removal of emerging microplastics from water by utilizing advanced techniques. MARINE POLLUTION BULLETIN 2024; 206:116752. [PMID: 39053257 DOI: 10.1016/j.marpolbul.2024.116752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/13/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Microplastic pollution is one of the most pressing global environmental problems due to its harmful effects on living organisms and ecosystems. To address this issue, researchers have explored several techniques to successfully eliminate microplastics from water sources. Chemical coagulation, electrocoagulation, magnetic extraction, adsorption, photocatalytic degradation, and biodegradation are some of the recognized techniques used for the removal of microplastics from water. In addition, membrane-based techniques encompass processes propelled by pressure or potential, along with sophisticated membrane technologies like the dynamic membrane and the membrane bioreactor. Recently, researchers have been developing advanced membranes composed of metal-organic frameworks, MXene, zeolites, carbon nanomaterials, metals, and metal oxides to remove microplastics. This paper aims to analyze the effectiveness, advantages, and drawbacks of each method to provide insights into their application for reducing microplastic pollution.
Collapse
Affiliation(s)
- Noornama
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Department of Chemistry, Faculty of Science, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | | | - Nor Kartini Abu Bakar
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nur Awanis Hashim
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
23
|
Yuan W, Xu EG, Shabaka S, Chen P, Yang Y. The power of green: Harnessing phytoremediation to combat micro/nanoplastics. ECO-ENVIRONMENT & HEALTH 2024; 3:260-265. [PMID: 39234422 PMCID: PMC11372594 DOI: 10.1016/j.eehl.2024.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/07/2024] [Accepted: 04/02/2024] [Indexed: 09/06/2024]
Abstract
Plastic pollution and its potential risks have been raising public concerns as a global environmental issue. Global plastic waste may double by 2030, posing a significant challenge to the remediation of environmental plastics. In addition to finding alternative products and managing plastic emission sources, effective removal technologies are crucial to mitigate the negative impact of plastic pollution. However, current remediation strategies, including physical, chemical, and biological measures, are unable to compete with the surging amounts of plastics entering the environment. This perspective lays out recent advances to propel both research and action. In this process, phytoaccumulation, phytostabilization, and phytofiltration can be applied to reduce the concentration of nanoplastics and submicron plastics in terrestrial, aquatic, and atmospheric environments, as well as to prevent the transport of microplastics from sources to sinks. Meanwhile, advocating for a more promising future still requires significant efforts in screening hyperaccumulators, coupling multiple measures, and recycling stabilized plastics from plants. Phytoremediation can be an excellent strategy to alleviate global micro/nanoplastic pollution because of the cost-effectiveness and environmental sustainability of green technologies.
Collapse
Affiliation(s)
- Wenke Yuan
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Odense 5230, Denmark
| | - Soha Shabaka
- National Institute of Oceanography and Fisheries, Cairo 11516, Egypt
| | - Peng Chen
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China
| | - Yuyi Yang
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China
| |
Collapse
|
24
|
Priyadharshini S, Jeyavani J, Al-Ghanim KA, Govindarajan M, Karthikeyan S, Vaseeharan B. Eco-toxicity assessment of polypropylene microplastics in juvenile zebrafish (Danio rerio). JOURNAL OF CONTAMINANT HYDROLOGY 2024; 266:104415. [PMID: 39173506 DOI: 10.1016/j.jconhyd.2024.104415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/24/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
In recent years, everyone has recognized microplastics as an emerging contaminant in aquatic ecosystems. Polypropylene is one of the dominant pollutants. The purpose of this study was to examine the effects of exposing zebrafish (Danio rerio) to water with various concentrations of polypropylene microplastics (11.86 ± 44.62 μm), including control (0 mg/L), group 1 (1 mg/L), group 2 (10 mg/L), and group 3 (100 mg/L) for up to 28 days (chronic exposure). The bioaccumulation of microplastics in the tract was noted after 28 days. From the experimental groups, blood and detoxifying organs of the liver and brain were collected. Using liver tissues evaluated the toxic effects by crucial biomarkers such as reactive oxygen species, anti-oxidant parameters, oxidative effects in protein & lipids, total protein content and free amino acid level. The study revealed that the bioaccumulation of microplastics in the organisms is a reflection of the oxidative stress and liver tissue damage experienced by the group exposed to microplastics. Also, apoptosis of blood cells was observed in the treated group as well as increased the neurotransmitter enzyme acetylcholine esterase activity based on exposure concentration-dependent manner. The overall results indicated bioaccumulation of microplastics in the gut, which led to increased ROS levels. This consequently affected antioxidant biomarkers, ultimately causing oxidation of biomolecules and liver tissue injury, as evidenced by histological analysis. This study concludes that chronic ingestion of microplastics causes considerable effects on population fitness in the aquatic environment, as well as other ecological complications, and is also critical to understand the magnitude of these contaminants' influence on ichthyofauna.
Collapse
Affiliation(s)
- Suresh Priyadharshini
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Jeyaraj Jeyavani
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Khalid A Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Marimuthu Govindarajan
- Unit of Mycology, Parasitology, Tropical Medicine and Ecotoxicology, Department of Zoology, Annamalai University, Annamalainagar 608 002, TamilNadu, India; Unit of Natural Products and Nanotechnology, Department of Zoology, Government College for Women (Autonomous), Kumbakonam 612 001, TamilNadu, India
| | - Sivashanmugam Karthikeyan
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tami Nadu 632,014, India
| | - Baskaralingam Vaseeharan
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630003, Tamil Nadu, India.
| |
Collapse
|
25
|
González-Márquez A, Andrade-Alvarado AD, González-Mota R, Sánchez C. Enhanced degradation of phototreated recycled and unused low-density polyethylene films by Pleurotus ostreatus. World J Microbiol Biotechnol 2024; 40:309. [PMID: 39179751 DOI: 10.1007/s11274-024-04116-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Polyethylene, one of the most used petroleum-derived polymers, causes serious environmental pollution. The ability of Pleurotus ostreatus to degrade UV-treated and untreated recycled and unused (new) low-density polyethylene (LDPE) films was studied. We determined the fungal biomass production, enzyme production, and enzyme yield. Changes in the chemical structure and surface morphology of the LDPE after fungal growth were analyzed using FTIR spectroscopy and SEM. Functional group indices and contact angles were also evaluated. In general, the highest Lac (6013 U/L), LiP (2432 U/L), MnP (995 U/L) and UP (6671 U/L) activities were observed in irradiated recycled LDPE (IrRPE). The contact angle of all samples was negatively correlated with fermentation time; the smaller the contact angle, the longer the fermentation time, indicating effective biodegradation. The IrRPE samples exhibited the smallest contact angle (49°) at 4 weeks, and the samples were fragmented (into two pieces) at 5 weeks. This fungus could degrade unused (new) LDPE significantly within 6 weeks. The biodegradation of LDPE proceeded faster in recycled than in unused samples, which can be enhanced by exposing LDPE to UV radiation. Enzymatic production during fungal growth suggest that LDPE degradation is initiated by laccase (Lac) followed by lignin peroxidase (LiP), whereas manganese peroxidase (MnP) and unspecific peroxygenase (UP) are involved in the final degradation process. This is the first experimental study on the fungal growth and its main enzymes involved in LDPE biodegradation. This fungus has great promise as a safe, efficient, and environmentally friendly organism capable of degrading LDPE.
Collapse
Affiliation(s)
- Angel González-Márquez
- Laboratory of Biotechnology, Research Centre for Biological Sciences, Autonomous University of Tlaxcala, Ixtacuixtla, Tlaxcala, 90120, Mexico
| | | | - Rosario González-Mota
- Laboratory of Optoelectronics, Technological Institute of Aguascalientes, Aguascalientes, 20256, Mexico
| | - Carmen Sánchez
- Laboratory of Biotechnology, Research Centre for Biological Sciences, Autonomous University of Tlaxcala, Ixtacuixtla, Tlaxcala, 90120, Mexico.
| |
Collapse
|
26
|
Witczak A, Przedpełska L, Pokorska-Niewiada K, Cybulski J. Microplastics as a Threat to Aquatic Ecosystems and Human Health. TOXICS 2024; 12:571. [PMID: 39195673 PMCID: PMC11359092 DOI: 10.3390/toxics12080571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/25/2024] [Accepted: 08/03/2024] [Indexed: 08/29/2024]
Abstract
The threat posed by microplastics has become one of the world's most serious problems. Recent reports indicate that the presence of microplastics has been documented not only in coastal areas and beaches, but also in water reservoirs, from which they enter the bodies of aquatic animals and humans. Microplastics can also bioaccumulate contaminants that lead to serious damage to aquatic ecosystems. The lack of comprehensive data makes it challenging to ascertain the potential consequences of acute and chronic exposure, particularly for future generations. It is crucial to acknowledge that there is still a substantial need for rapid and effective techniques to identify microplastic particles for precise evaluation. Additionally, implementing legal regulations, limiting plastic production, and developing biodegradation methods are promising solutions, the implementation of which could limit the spread of toxic microplastics.
Collapse
Affiliation(s)
- Agata Witczak
- Department of Toxicology, Dairy Technology and Food Storage, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology in Szczecin, 70-310 Szczecin, Poland; (L.P.); (K.P.-N.); (J.C.)
| | | | | | | |
Collapse
|
27
|
Ferreira-Filipe DA, Oliveira L, Paço A, Fernandes AJS, Costa FM, Duarte AC, Rocha-Santos T, Patrício Silva AL. Biodegradation of e-waste microplastics by Penicillium brevicompactum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173334. [PMID: 38763191 DOI: 10.1016/j.scitotenv.2024.173334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Electronic and electric waste (e-waste) management strategies often fall short in dealing with the plastic constituents of printed circuit boards (PCB). Some plastic materials from PCB, such as epoxy resins, may release contaminants, but neither potential environmental impact has been assessed nor mitigation strategies have been put forward. This study assessed the biodegradation of microplastics (1-2 mm in size) from PCB by the fungus Penicillium brevicompactum over 28 days, thus contributing to the discussion of mitigation strategies for decreasing the environmental impact of such plastics in the environment. The capacity of P. brevicompactum to induce microplastic fragmentation and degradation has been determined by the increased the number of smaller-sized particles and microplastic mass reduction (up to 75 % within 14 days), respectively. The occurrence of chain scission and oxidation of microplastics exposed to P. brevicompactum when compared with the control conditions (which occurred only after 28 days of exposure) can be observed. Furthermore, Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy performed in dried biomass put in evidence an increase in the absorption intensities in regions that could be attributed to functional groups associated with carbohydrates. The results underline the potential role of the genus Penicillium, particularly P. brevicompactum, in the biodegradation of microplastics from PCB, thus providing the basis for further exploration of its potential for e-waste bioremediation and research on the underlying mechanisms for sustainable approaches to mitigate e-waste pollution.
Collapse
Affiliation(s)
- Diogo A Ferreira-Filipe
- Centre for Environmental and Marine Studies (CESAM) & Department of Chemistry, University of Aveiro, Portugal.
| | | | - Ana Paço
- Centre for Environmental and Marine Studies (CESAM) & Department of Chemistry, University of Aveiro, Portugal
| | | | | | - Armando C Duarte
- Centre for Environmental and Marine Studies (CESAM) & Department of Chemistry, University of Aveiro, Portugal
| | - Teresa Rocha-Santos
- Centre for Environmental and Marine Studies (CESAM) & Department of Chemistry, University of Aveiro, Portugal
| | - Ana L Patrício Silva
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, Portugal
| |
Collapse
|
28
|
Mubayi V, Ahern CB, Calusinska M, O’Malley MA. Toward a Circular Bioeconomy: Designing Microbes and Polymers for Biodegradation. ACS Synth Biol 2024; 13:1978-1993. [PMID: 38918080 PMCID: PMC11264326 DOI: 10.1021/acssynbio.4c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
Polymer production is rapidly increasing, but there are no large-scale technologies available to effectively mitigate the massive accumulation of these recalcitrant materials. One potential solution is the development of a carbon-neutral polymer life cycle, where microorganisms convert plant biomass to chemicals, which are used to synthesize biodegradable materials that ultimately contribute to the growth of new plants. Realizing a circular carbon life cycle requires the integration of knowledge across microbiology, bioengineering, materials science, and organic chemistry, which itself has hindered large-scale industrial advances. This review addresses the biodegradation status of common synthetic polymers, identifying novel microbes and enzymes capable of metabolizing these recalcitrant materials and engineering approaches to enhance their biodegradation pathways. Design considerations for the next generation of biodegradable polymers are also reviewed, and finally, opportunities to apply findings from lignocellulosic biodegradation to the design and biodegradation of similarly recalcitrant synthetic polymers are discussed.
Collapse
Affiliation(s)
- Vikram Mubayi
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Colleen B. Ahern
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Magdalena Calusinska
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Environmental
Research and Innovation Department, Luxembourg
Institute of Science and Technology, L-4422 Belvaux, Luxembourg
| | - Michelle A. O’Malley
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Department
of Bioengineering, University of California, Santa Barbara, California 93106, United States
- Joint
BioEnergy Institute (JBEI), Emeryville, California 94608, United States
| |
Collapse
|
29
|
Vaksmaa A, Vielfaure H, Polerecky L, Kienhuis MVM, van der Meer MTJ, Pflüger T, Egger M, Niemann H. Biodegradation of polyethylene by the marine fungus Parengyodontium album. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:172819. [PMID: 38679106 DOI: 10.1016/j.scitotenv.2024.172819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Plastic pollution in the marine realm is a severe environmental problem. Nevertheless, plastic may also serve as a potential carbon and energy source for microbes, yet the contribution of marine microbes, especially marine fungi to plastic degradation is not well constrained. We isolated the fungus Parengyodontium album from floating plastic debris in the North Pacific Subtropical Gyre and measured fungal-mediated mineralization rates (conversion to CO2) of polyethylene (PE) by applying stable isotope probing assays with 13C-PE over 9 days of incubation. When the PE was pretreated with UV light, the biodegradation rate of the initially added PE was 0.044 %/day. Furthermore, we traced the incorporation of PE-derived 13C carbon into P. album biomass using nanoSIMS and fatty acid analysis. Despite the high mineralization rate of the UV-treated 13C-PE, incorporation of PE-derived 13C into fungal cells was minor, and 13C incorporation was not detectable for the non-treated PE. Together, our results reveal the potential of P. album to degrade PE in the marine environment and to mineralize it to CO2. However, the initial photodegradation of PE is crucial for P. album to metabolize the PE-derived carbon.
Collapse
Affiliation(s)
- A Vaksmaa
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, the Netherlands.
| | - H Vielfaure
- Université de Paris, INSERM U1284, Center for Research and Interdisciplinarity (CRI), Paris, France
| | - L Polerecky
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, the Netherlands
| | - M V M Kienhuis
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, the Netherlands
| | - M T J van der Meer
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, the Netherlands
| | - T Pflüger
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
| | - M Egger
- The Ocean Cleanup, Rotterdam, the Netherlands; Egger Research and Consulting, St. Gallen, Switzerland
| | - H Niemann
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, the Netherlands; Department of Earth Sciences, Faculty of Geosciences, Utrecht University, the Netherlands
| |
Collapse
|
30
|
Barone GD, Rodríguez-Seijo A, Parati M, Johnston B, Erdem E, Cernava T, Zhu Z, Liu X, Axmann IM, Lindblad P, Radecka I. Harnessing photosynthetic microorganisms for enhanced bioremediation of microplastics: A comprehensive review. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 20:100407. [PMID: 38544950 PMCID: PMC10965471 DOI: 10.1016/j.ese.2024.100407] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 11/11/2024]
Abstract
Mismanaged plastics, upon entering the environment, undergo degradation through physicochemical and/or biological processes. This process often results in the formation of microplastics (MPs), the most prevalent form of plastic debris (<1 mm). MPs pose severe threats to aquatic and terrestrial ecosystems, necessitating innovative strategies for effective remediation. Some photosynthetic microorganisms can degrade MPs but there lacks a comprehensive review. Here we examine the specific role of photoautotrophic microorganisms in water and soil environments for the biodegradation of plastics, focussing on their unique ability to grow persistently on diverse polymers under sunlight. Notably, these cells utilise light and CO2 to produce valuable compounds such as carbohydrates, lipids, and proteins, showcasing their multifaceted environmental benefits. We address key scientific questions surrounding the utilisation of photosynthetic microorganisms for MPs and nanoplastics (NPs) bioremediation, discussing potential engineering strategies for enhanced efficacy. Our review highlights the significance of alternative biomaterials and the exploration of strains expressing enzymes, such as polyethylene terephthalate (PET) hydrolases, in conjunction with microalgal and/or cyanobacterial metabolisms. Furthermore, we delve into the promising potential of photo-biocatalytic approaches, emphasising the coupling of plastic debris degradation with sunlight exposure. The integration of microalgal-bacterial consortia is explored for biotechnological applications against MPs and NPs pollution, showcasing the synergistic effects in wastewater treatment through the absorption of nitrogen, heavy metals, phosphorous, and carbon. In conclusion, this review provides a comprehensive overview of the current state of research on the use of photoautotrophic cells for plastic bioremediation. It underscores the need for continued investigation into the engineering of these microorganisms and the development of innovative approaches to tackle the global issue of plastic pollution in aquatic and terrestrial ecosystems.
Collapse
Affiliation(s)
| | - Andrés Rodríguez-Seijo
- Área de Edafoloxía, Departamento de Bioloxía Vexetal e Ciencia Do Solo, Facultade de Ciencias, Universidade de Vigo, 32004, Ourense, Spain
- Agroecology and Food Institute (IAA), University of Vigo – Campus Auga, 32004, Ourense, Spain
| | - Mattia Parati
- School of Life Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, WV1 1LY, United Kingdom
- FlexSea Ltd., London, EC2A4NE, United Kingdom
| | - Brian Johnston
- School of Life Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, WV1 1LY, United Kingdom
| | - Elif Erdem
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, 8010, Graz, Austria
| | - Zhi Zhu
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, China
- Department of Chemistry—Ångström Laboratory, Uppsala University, SE-751 20, Uppsala, Sweden
| | - Xufeng Liu
- Department of Chemistry—Ångström Laboratory, Uppsala University, SE-751 20, Uppsala, Sweden
| | - Ilka M. Axmann
- Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine, University Düsseldorf, D-40001, Düsseldorf, Germany
| | - Peter Lindblad
- Department of Chemistry—Ångström Laboratory, Uppsala University, SE-751 20, Uppsala, Sweden
| | - Iza Radecka
- School of Life Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, WV1 1LY, United Kingdom
| |
Collapse
|
31
|
Philippe A, Salaun M, Quemener M, Noël C, Tallec K, Lacroix C, Coton E, Burgaud G. Colonization and Biodegradation Potential of Fungal Communities on Immersed Polystyrene vs. Biodegradable Plastics: A Time Series Study in a Marina Environment. J Fungi (Basel) 2024; 10:428. [PMID: 38921415 PMCID: PMC11204492 DOI: 10.3390/jof10060428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/30/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
Plastic pollution of the ocean is a major environmental threat. In this context, a better understanding of the microorganisms able to colonize and potentially degrade these pollutants is of interest. This study explores the colonization and biodegradation potential of fungal communities on foamed polystyrene and alternatives biodegradable plastics immersed in a marina environment over time, using the Brest marina (France) as a model site. The methodology involved a combination of high-throughput 18S rRNA gene amplicon sequencing to investigate fungal taxa associated with plastics compared to the surrounding seawater, and a culture-dependent approach to isolate environmentally relevant fungi to further assess their capabilities to utilize polymers as carbon sources. Metabarcoding results highlighted the significant diversity of fungal communities associated with both foamed polystyrene and biodegradable plastics, revealing a dynamic colonization process influenced by the type of polymer and immersion time. Notably, the research suggests a potential for certain fungal species to utilize polymers as a carbon source, emphasizing the need for further exploration of fungal biodegradation potential and mechanisms.
Collapse
Affiliation(s)
- Aurélie Philippe
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France; (A.P.); (M.S.); (M.Q.); (E.C.)
| | - Marie Salaun
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France; (A.P.); (M.S.); (M.Q.); (E.C.)
| | - Maxence Quemener
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France; (A.P.); (M.S.); (M.Q.); (E.C.)
| | - Cyril Noël
- Ifremer, IRSI, SeBiMER Service de Bioinformatique de l’Ifremer, F-29280 Plouzané, France;
| | - Kévin Tallec
- CEDRE Centre de Documentation, de Recherche et d’Expérimentations sur les Pollutions Accidentelles des Eaux, 715 Rue Alain Colas, CS 41836, CEDEX 2, 29218 Brest, France; (K.T.); (C.L.)
| | - Camille Lacroix
- CEDRE Centre de Documentation, de Recherche et d’Expérimentations sur les Pollutions Accidentelles des Eaux, 715 Rue Alain Colas, CS 41836, CEDEX 2, 29218 Brest, France; (K.T.); (C.L.)
| | - Emmanuel Coton
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France; (A.P.); (M.S.); (M.Q.); (E.C.)
| | - Gaëtan Burgaud
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France; (A.P.); (M.S.); (M.Q.); (E.C.)
- Institut Universitaire de France, France
| |
Collapse
|
32
|
Yarahmadi A, Heidari S, Sepahvand P, Afkhami H, Kheradjoo H. Microplastics and environmental effects: investigating the effects of microplastics on aquatic habitats and their impact on human health. Front Public Health 2024; 12:1411389. [PMID: 38912266 PMCID: PMC11191580 DOI: 10.3389/fpubh.2024.1411389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/13/2024] [Indexed: 06/25/2024] Open
Abstract
Microplastics (MPs) are particles with a diameter of <5 mm. The disposal of plastic waste into the environment poses a significant and pressing issue concern globally. Growing worry has been expressed in recent years over the impact of MPs on both human health and the entire natural ecosystem. MPs impact the feeding and digestive capabilities of marine organisms, as well as hinder the development of plant roots and leaves. Numerous studies have shown that the majority of individuals consume substantial quantities of MPs either through their dietary intake or by inhaling them. MPs have been identified in various human biological samples, such as lungs, stool, placenta, sputum, breast milk, liver, and blood. MPs can cause various illnesses in humans, depending on how they enter the body. Healthy and sustainable ecosystems depend on the proper functioning of microbiota, however, MPs disrupt the balance of microbiota. Also, due to their high surface area compared to their volume and chemical characteristics, MPs act as pollutant absorbers in different environments. Multiple policies and initiatives exist at both the domestic and global levels to mitigate pollution caused by MPs. Various techniques are currently employed to remove MPs, such as biodegradation, filtration systems, incineration, landfill disposal, and recycling, among others. In this review, we will discuss the sources and types of MPs, the presence of MPs in different environments and food, the impact of MPs on human health and microbiota, mechanisms of pollutant adsorption on MPs, and the methods of removing MPs with algae and microbes.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | | | - Parisa Sepahvand
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | | |
Collapse
|
33
|
Khatua S, Simal-Gandara J, Acharya K. Myco-remediation of plastic pollution: current knowledge and future prospects. Biodegradation 2024; 35:249-279. [PMID: 37665521 PMCID: PMC10950981 DOI: 10.1007/s10532-023-10053-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023]
Abstract
To date, enumerable fungi have been reported to participate in the biodegradation of several notorious plastic materials following their isolation from soil of plastic-dumping sites, marine water, waste of mulch films, landfills, plant parts and gut of wax moth. The general mechanism begins with formation of hydrophobin and biofilm proceding to secretion of specific plastic degarding enzymes (peroxidase, hydrolase, protease and urease), penetration of three dimensional substrates and mineralization of plastic polymers into harmless products. As a result, several synthetic polymers including polyethylene, polystyrene, polypropylene, polyvinyl chloride, polyurethane and/or bio-degradable plastics have been validated to deteriorate within months through the action of a wide variety of fungal strains predominantly Ascomycota (Alternaria, Aspergillus, Cladosporium, Fusarium, Penicillium spp.). Understanding the potential and mode of operation of these organisms is thus of prime importance inspiring us to furnish an up to date view on all the presently known fungal strains claimed to mitigate the plastic waste problem. Future research henceforth needs to be directed towards metagenomic approach to distinguish polymer degrading microbial diversity followed by bio-augmentation to build fascinating future of waste disposal.
Collapse
Affiliation(s)
- Somanjana Khatua
- Department of Botany, Faculty of Science, University of Allahabad, Prayagraj, Uttar Pradesh, 211002, India
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, 32004, Ourense, Spain.
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, Centre of Advanced Study, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India.
| |
Collapse
|
34
|
Mottola F, Carannante M, Barretta A, Palmieri I, Rocco L. Reproductive cytotoxic and genotoxic impact of polystyrene microplastic on Paracentrotus lividus spermatozoa. Curr Res Toxicol 2024; 6:100173. [PMID: 38826685 PMCID: PMC11143891 DOI: 10.1016/j.crtox.2024.100173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 06/04/2024] Open
Abstract
In recent decades, industrialization, intensive agriculture, and urban development have severely impacted marine environments, compromising the health of aquatic and terrestrial organisms. Inadequate disposal results in hundreds of tons of plastic products released annually into the environment, which degrade into microplastics (MPs), posing health risks due to their ability to biomagnify and bioaccumulate. Among these, polystyrene MPs (PS-MPs) are significant pollutants in marine ecosystems, widely studied for their reproductive toxicological effects. This research aimed to evaluate the reproductive cytotoxic and genotoxic effects of PS-MPs on sea urchin (Paracentrotus lividus) spermatozoa in vitro. Results showed that PS-MPs significantly reduced sperm viability and motility without altering morphology, and induced sperm DNA fragmentation mediated by reactive oxygen species production. Furthermore, head-to-head agglutination of the spermatozoa was observed exclusively in the sample treated with the plastic agents, indicating the ability of microplastics to adhere to the surface of sperm cells and form aggregates with microplastics on other sperm cells, thereby impeding movement and reducing reproductive potential. These findings suggest that PS-MPs can adversely affect the quality of sea urchin sperm, potentially impacting reproductive events.
Collapse
Affiliation(s)
- Filomena Mottola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Maria Carannante
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Angela Barretta
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Ilaria Palmieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Lucia Rocco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| |
Collapse
|
35
|
Zhao E, Xiong X, Li X, Hu H, Wu C. Effect of Biofilm Forming on the Migration of Di(2-ethylhexyl)phthalate from PVC Plastics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6326-6334. [PMID: 38551364 DOI: 10.1021/acs.est.3c09021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Plastic additives, represented by plasticizers, are important components of plastic pollution. Biofilms inevitably form on plastic surfaces when plastic enters the aqueous environment. However, little is known about the effect of biofilms on plastic surfaces on the release of additives therein. In this study, PVC plastics with different levels of di(2-ethylhexyl)phthalate (DEHP) content were investigated to study the effect of biofilm growth on DEHP release. The presence of biofilms promoted the migration of DEHP from PVC plastics to the external environment. Relative to biofilm-free controls, although the presence of surface biofilm resulted in 0.8 to 11.6 times lower DEHP concentrations in water, the concentrations of the degradation product, monoethylhexyl phthalate (MEHP) in water, were 2.3 to 57.3 times higher. When the total release amounts of DEHP in the biofilm and in the water were combined, they were increased by 0.6-73 times after biofilm growth. However, most of the released DEHP was adsorbed in the biofilms and was subsequently degraded. The results of this study suggest that the biofilm as a new interface between plastics and the surrounding environment can affect the transport and transformation of plastic additives in the environment through barrier, adsorption, and degradation. Future research endeavors should aim to explore the transport dynamics and fate of plastic additives under various biofilm compositions as well as evaluate the ecological risks associated with their enrichment by biofilms.
Collapse
Affiliation(s)
- E Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, PR China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, PR China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, PR China
| | - Xiong Xiong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, PR China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, PR China
| | - Xin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, PR China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, PR China
| | - Hongjuan Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, PR China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, PR China
| | - Chenxi Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, PR China
| |
Collapse
|
36
|
K S V, Prapanchan VN, Selvan VNI, Karmegam N, Kim W, Barcelo D, Govarthanan M. Microplastics, their abundance, and distribution in water and sediments in North Chennai, India: An assessment of pollution risk and human health impacts. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 263:104339. [PMID: 38564944 DOI: 10.1016/j.jconhyd.2024.104339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 03/09/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
Plastic particles, measuring <5 mm in size, mainly originate from larger plastic debris undergoing degradation, fragmenting into even smaller fragments. The goal was to analyze the spatial diversity and polymer composition of microplastics (MPs) in North Chennai, South India, aiming to evaluate their prevalence and features like composition, dimensions, color, and shape. In 60 sediment samples, a combined count of 1589 particles were detected, averaging 26 particles per 5 g-1 of dry sediment. The water samples from the North Chennai vicinity encompassed a sum of 1588 particles across 71 samples, with an average of 22 items/L. The majority of MPs ranged in size from 1 mm to 500 μm. The ATR-FTIR results identified the predominant types of MPs as polystyrene, polyvinyl chloride, polyethylene, polyethylene terephthalate, and polypropylene in sediment and water. The spatial variation analysis revealed high MPs concentration in landfill sites, areas with dense populations, and popular tourist destinations. The pollution load index in water demonstrated that MPs had contaminated all stations. Upon evaluating the polymeric and pollution risks, it was evident that they ranged from 5.13 to 430.15 and 2.83 to 15,963.2, which is relatively low to exceedingly high levels. As the quantity of MPs and hazardous polymers increased, the level of pollution and corresponding risks also escalated significantly. The existence of MPs in lake water, as opposed to open well water, could potentially pose a cancer risk for both children and adults who consume it. Detecting MPs in water samples highlights the significance of implementing precautionary actions to alleviate the potential health hazards they create.
Collapse
Affiliation(s)
- Vignesh K S
- Centre for Occupational Safety and Health, Department of Mechanical Engineering, SRM Institute of Science and Technology, Chennai 603203, Tamil Nadu, India
| | - V N Prapanchan
- Department of Geology, Anna University, Chennai 600025, Tamil Nadu, India.
| | - V N Indhiya Selvan
- Department of Geography, University of Madras, Chennai 600025, Tamil Nadu, India
| | - Natchimuthu Karmegam
- PG and Research Department of Botany, Government Arts College (Autonomous), Salem 636007, Tamil Nadu, India
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Damia Barcelo
- Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India; Chemistry and Physics Department, University of Almeria, 04120, Almería, Spain
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu 600077, India.
| |
Collapse
|
37
|
Arif Y, Mir AR, Zieliński P, Hayat S, Bajguz A. Microplastics and nanoplastics: Source, behavior, remediation, and multi-level environmental impact. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120618. [PMID: 38508005 DOI: 10.1016/j.jenvman.2024.120618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/21/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
Plastics introduced into the natural environment persist, degrade, and fragment into smaller particles due to various environmental factors. Microplastics (MPs) (ranging from 1 μm to 5 mm) and nanoplastics (NPs) (less than 1 μm) have emerged as pollutants posing a significant threat to all life forms on Earth. Easily ingested by living organisms, they lead to ongoing bioaccumulation and biomagnification. This review summarizes existing studies on the sources of MPs and NPs in various environments, highlighting their widespread presence in air, water, and soil. It primarily focuses on the sources, fate, degradation, fragmentation, transport, and ecotoxicity of MPs and NPs. The aim is to elucidate their harmful effects on marine organisms, soil biota, plants, mammals, and humans, thereby enhancing the understanding of the complex impacts of plastic particles on the environment. Additionally, this review highlights remediation technologies and global legislative and institutional measures for managing waste associated with MPs and NPs. It also shows that effectively combating plastic pollution requires the synergization of diverse management, monitoring strategies, and regulatory measures into a comprehensive policy framework.
Collapse
Affiliation(s)
- Yamshi Arif
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Anayat Rasool Mir
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Piotr Zieliński
- Department of Water Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245, Bialystok, Poland
| | - Shamsul Hayat
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Andrzej Bajguz
- Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245, Bialystok, Poland.
| |
Collapse
|
38
|
Boran T, Zengin OS, Seker Z, Akyildiz AG, Kara M, Oztas E, Özhan G. An evaluation of a hepatotoxicity risk induced by the microplastic polymethyl methacrylate (PMMA) using HepG2/THP-1 co-culture model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28890-28904. [PMID: 38564126 PMCID: PMC11058773 DOI: 10.1007/s11356-024-33086-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Inappropriate disposal of plastic wastes and their durability in nature cause uncontrolled accumulation of plastic in land/marine ecosystems, also causing destructive effects by bioaccumulating along the food chain. Microplastics may cause chronic inflammation in relation to their permanent structures, especially through oxidative stress and cytotoxic cellular damage, which could increase the risk of cancer development. The accumulation of microplastics in the liver is a major concern, and therefore, the identification of the mechanisms of their hepatotoxic effects is of great importance. Polymethyl methacrylate (PMMA) is a widely used thermoplastic. It has been determined that PMMA disrupts lipid metabolism in the liver in various aquatic organisms and causes reproductive and developmental toxicity. PMMA-induced hepatotoxic effects in humans have not yet been clarified. In our study, the toxic effects of PMMA (in the range of 3-10 μm) on the human liver were investigated using the HepG2/THP-1 macrophage co-culture model, which is a sensitive immune-mediated liver injury model. Cellular uptake of micro-sized PMMA in the cells was done by transmission electron microscopy. Determination of its effects on cell viability and inflammatory response, oxidative stress, along with gene and protein expression levels that play a role in the mechanism pathways underlying the effects were investigated. The results concluded that inflammation, oxidative stress, and disruptions in lipid metabolism should be the focus of attention as important underlying causes of PMMA-induced hepatotoxicity. Our study, which points out the potential adverse effects of microplastics on human health, supports the literature information on the subject.
Collapse
Affiliation(s)
- Tugce Boran
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Ozge Sultan Zengin
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
- Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey
| | - Zehra Seker
- Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkey
| | - Aysenur Gunaydin Akyildiz
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkey
| | - Mehtap Kara
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Ezgi Oztas
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Gül Özhan
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
39
|
Mahmood M, Hussain SM, Sarker PK, Ali S, Arif MS, Nazish N, Riaz D, Ahmad N, Paray BA, Naeem A. Toxicological assessment of dietary exposure of polyethylene microplastics on growth, nutrient digestibility, carcass and gut histology of Nile Tilapia (Oreochromis niloticus) fingerlings. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:296-304. [PMID: 38498245 DOI: 10.1007/s10646-024-02749-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/06/2024] [Indexed: 03/20/2024]
Abstract
This study was conducted to ascertain the negative effects of dietary low-density polyethylene microplastics (LDPE-MPs) exposure on growth, nutrient digestibility, body composition and gut histology of Nile tilapia (Oreochromis niloticus). Six sunflower meal-based diets (protein 30.95%; fat 8.04%) were prepared; one was the control (0%) and five were incorporated with LDPE-MPs at levels of 2, 4, 6, 8 and 10% in sunflower meal-based diets. A total of eighteen experimental tanks, each with 15 fingerlings, were used in triplicates. Fish were fed at the rate of 5% biomass twice a day for 60 days. Results revealed that best values of growth, nutrient digestibility, body composition and gut histology were observed by control diet, while 10% exposure to LDPE-MPs significantly (P < 0.05) reduced weight gain (WG%, 85.04%), specific growth rate (SGR%, 0.68%), and increased FCR (3.92%). The findings showed that higher level of LDPE-MPs (10%) exposure in the diet of O. niloticus negatively affects nutrient digestibility. Furthermore, the results revealed that the higher concentration of LDPE-MPs (10%) had a detrimental impact on crude protein (11.92%) and crude fat (8.04%). A high number of histological lesions were seen in gut of fingerlings exposed to LDPE-MPs. Hence, LDPE-MPs potentially harm the aquatic health.
Collapse
Affiliation(s)
- Muhammad Mahmood
- Fish Nutrition Laboratory, Department of Zoology, Government College University Faisalabad, Faisalabad, Punjab, 38000, Pakistan
| | - Syed Makhdoom Hussain
- Fish Nutrition Laboratory, Department of Zoology, Government College University Faisalabad, Faisalabad, Punjab, 38000, Pakistan.
| | - Pallab K Sarker
- Environmental Studies Department, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, Punjab, 38000, Pakistan.
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| | - Muhammad Saleem Arif
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, Punjab, 38000, Pakistan
| | - Nadia Nazish
- Department of Zoology, University of Sialkot, Sialkot, Punjab, 51040, Pakistan
| | - Danish Riaz
- Department of Zoology, University of Education, Lahore, Punjab, 38000, Pakistan
| | - Nisar Ahmad
- Department of Zoology, University of Jhang, Jhang, Punjab, 35200, Pakistan
| | - Bilal Ahamad Paray
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Adan Naeem
- Fish Nutrition Laboratory, Department of Zoology, Government College University Faisalabad, Faisalabad, Punjab, 38000, Pakistan
| |
Collapse
|
40
|
Zhang Z, Zhang Q, Yang H, Cui L, Qian H. Mining strategies for isolating plastic-degrading microorganisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123572. [PMID: 38369095 DOI: 10.1016/j.envpol.2024.123572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
Plastic waste is a growing global pollutant. Plastic degradation by microorganisms has captured attention as an earth-friendly tactic. Although the mechanisms of plastic degradation by bacteria, fungi, and algae have been explored over the past decade, a large knowledge gap still exists regarding the identification, sorting, and cultivation of efficient plastic degraders, primarily because of their uncultivability. Advances in sequencing techniques and bioinformatics have enabled the identification of microbial degraders and related enzymes and genes involved in plastic biodegradation. In this review, we provide an outline of the situation of plastic degradation and summarize the methods for effective microbial identification using multidisciplinary techniques such as multiomics, meta-analysis, and spectroscopy. This review introduces new strategies for controlling plastic pollution in an environmentally friendly manner. Using this information, highly efficient and colonizing plastic degraders can be mined via targeted sorting and cultivation. In addition, based on the recognized rules and plastic degraders, we can perform an in-depth analysis of the associated degradation mechanism, metabolic features, and interactions.
Collapse
Affiliation(s)
- Ziyao Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Huihui Yang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Li Cui
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China.
| |
Collapse
|
41
|
Choi J, Kim H, Ahn YR, Kim M, Yu S, Kim N, Lim SY, Park JA, Ha SJ, Lim KS, Kim HO. Recent advances in microbial and enzymatic engineering for the biodegradation of micro- and nanoplastics. RSC Adv 2024; 14:9943-9966. [PMID: 38528920 PMCID: PMC10961967 DOI: 10.1039/d4ra00844h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024] Open
Abstract
This review examines the escalating issue of plastic pollution, specifically highlighting the detrimental effects on the environment and human health caused by microplastics and nanoplastics. The extensive use of synthetic polymers such as polyethylene (PE), polyethylene terephthalate (PET), and polystyrene (PS) has raised significant environmental concerns because of their long-lasting and non-degradable characteristics. This review delves into the role of enzymatic and microbial strategies in breaking down these polymers, showcasing recent advancements in the field. The intricacies of enzymatic degradation are thoroughly examined, including the effectiveness of enzymes such as PETase and MHETase, as well as the contribution of microbial pathways in breaking down resilient polymers into more benign substances. The paper also discusses the impact of chemical composition on plastic degradation kinetics and emphasizes the need for an approach to managing the environmental impact of synthetic polymers. The review highlights the significance of comprehending the physical characteristics and long-term impacts of micro- and nanoplastics in different ecosystems. Furthermore, it points out the environmental and health consequences of these contaminants, such as their ability to cause cancer and interfere with the endocrine system. The paper emphasizes the need for advanced analytical methods and effective strategies for enzymatic degradation, as well as continued research and development in this area. This review highlights the crucial role of enzymatic and microbial strategies in addressing plastic pollution and proposes methods to create effective and environmentally friendly solutions.
Collapse
Affiliation(s)
- Jaewon Choi
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Hongbin Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Yu-Rim Ahn
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Minse Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Seona Yu
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Nanhyeon Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Su Yeon Lim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Jeong-Ann Park
- Department of Environmental Engineering, Kangwon National University Chuncheon 24341 Republic of Korea
| | - Suk-Jin Ha
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Kwang Suk Lim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Hyun-Ouk Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| |
Collapse
|
42
|
Shah MZ, Quraishi M, Sreejith A, Pandit S, Roy A, Khandaker MU. Sustainable degradation of synthetic plastics: A solution to rising environmental concerns. CHEMOSPHERE 2024; 352:141451. [PMID: 38368957 DOI: 10.1016/j.chemosphere.2024.141451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/30/2024] [Accepted: 02/10/2024] [Indexed: 02/20/2024]
Abstract
Plastics have a significant role in various sectors of the global economy since they are widely utilized in agriculture, architecture, and construction, as well as health and consumer goods. They play a crucial role in several industries as they are utilized in the production of diverse things such as defense materials, sanitary wares, tiles, plastic bottles, artificial leather, and various other household goods. Plastics are utilized in the packaging of food items, medications, detergents, and cosmetics. The overconsumption of plastics presents a significant peril to both the ecosystem and human existence on Earth. The accumulation of plastics on land and in the sea has sparked interest in finding ways to breakdown these polymers. It is necessary to employ suitable biodegradable techniques to decrease the accumulation of plastics in the environment. To address the environmental issues related to plastics, it is crucial to have a comprehensive understanding of the interaction between microorganisms and polymers. A wide range of creatures, particularly microbes, have developed techniques to survive and break down plastics. This review specifically examines the categorization of plastics based on their thermal and biodegradable properties, as well as the many types of degradation and biodegradation. It also discusses the various types of degradable plastics, the characterization of biodegradation, and the factors that influence the process of biodegradation. The plastic breakdown and bioremediation capabilities of these microbes make them ideal for green chemistry applications aimed at removing hazardous polymers from the ecosystem.
Collapse
Affiliation(s)
- Masirah Zahid Shah
- Amity Institute of Biotechnology, Amity University, Mumbai, Maharashtra, 410206, India
| | - Marzuqa Quraishi
- Amity Institute of Biotechnology, Amity University, Mumbai, Maharashtra, 410206, India
| | - Anushree Sreejith
- Amity Institute of Biotechnology, Amity University, Mumbai, Maharashtra, 410206, India
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, 201306, India.
| | - Arpita Roy
- Department of Biotechnology, Sharda School of Engineering & Technology, Sharda University, Greater Noida, India.
| | - Mayeen Uddin Khandaker
- Applied Physics and Radiation Technologies Group, CCDCU, School of Engineering and Technology, Sunway University, 47500, Bandar Sunway, Selangor, Malaysia; Faculty of Graduate Studies, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| |
Collapse
|
43
|
Bhatia SK, Kumar G, Yang YH. Understanding microplastic pollution: Tracing the footprints and eco-friendly solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169926. [PMID: 38199349 DOI: 10.1016/j.scitotenv.2024.169926] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Microplastics (MPs) pollution has emerged as a critical environmental issue with far-reaching consequences for ecosystems and human health. These are plastic particles measuring <5 mm and are categorized as primary and secondary based on their origin. Primary MPs are used in various products like cosmetics, scrubs, body wash, and toothpaste, while secondary MPs are generated through the degradation of plastic products. These have been detected in seas, rivers, snow, indoor air, and seafood, posing potential risks to human health through the food chain. Detecting and quantifying MPs are essential to understand their distribution and abundance in the environment. Various microscopic (fluorescence microscopy, scanning electron microscopy) and spectroscopy techniques (FTIR, Raman spectroscopy, X-ray photoelectron spectroscopy) have been reported to analyse MPs. Despite the challenges in scalable removal methods, biological systems have emerged as promising options for eco-friendly MPs remediation. Algae, bacteria, and fungi have shown the potential to adsorb and degrade MPs in wastewater treatment plants (WWTPs) offering hope for mitigating this global crisis. This review examines the sources, impacts, detection, and biological removal of MPs, highlighting future directions in this crucial field of environmental conservation. By fostering global collaboration and innovative research a path towards a cleaner and healthier planet for future generations can be promised.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Seoul 05029, Republic of Korea.
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea; Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Seoul 05029, Republic of Korea.
| |
Collapse
|
44
|
Istomina A, Chelomin V, Mazur A, Zhukovskaya A, Karpenko A, Mazur M. Biodegradation of polyethylene in digestive gland homogenates of marine invertebrates. PeerJ 2024; 12:e17041. [PMID: 38426135 PMCID: PMC10903337 DOI: 10.7717/peerj.17041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
Вiotic factors may be the driving force of plastic fragmentation along with abiotic factors. Since understanding the processes of biodegradation and biological depolymerization of plastic is important, a new methodological approach was proposed in this study to investigate the role of marine invertebrate digestive enzymes in plastic biodegradation. The aim of this study is to evaluate the possibility of enzymatic biodegradation of polyethylene fragments in the digestive gland homogenate of marine invertebrates differing in their feeding type (Strongylocentrotus nudus, Patiria pectinifera, Mizuhopecten yessoensis). Significant changes are found in the functional groups of the polymer after 3 days of incubation in the digestive gland homogenates of the studied marine invertebrates. A significant increase in the calculated CI (carbonyl index) and COI (сarbon-oxygen index) indices compared to the control sample was observed. The results suggest that digestive enzymes of studied organisms may play an important role in the biogeochemical cycling of plastic.
Collapse
Affiliation(s)
- Aleksandra Istomina
- V.I. Il’ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Victor Chelomin
- V.I. Il’ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Andrey Mazur
- V.I. Il’ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Avianna Zhukovskaya
- V.I. Il’ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Alexander Karpenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Marina Mazur
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
45
|
Ferreira-Filipe DA, Paço A, Pinho B, Silva R, Silva SAM, Jesus F, Pereira JL, Duarte AC, Rocha-Santos TAP, Patrício-Silva AL. Microplastics from agricultural mulch films: Biodegradation and ecotoxicity in freshwater systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169287. [PMID: 38103621 DOI: 10.1016/j.scitotenv.2023.169287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
The application of bio-based biodegradable mulch films in agriculture has raised environmental concerns regarding their potential impacts on adjacent freshwater ecosystems. This study investigated the biodegradation of microplastics derived from a bio-based biodegradable mulch (bio-MPs) and its acute and chronic ecotoxicity considering relevant scenarios (up to 200 and 250 mg/kg of sediment, using pristine and/or UV-aged particles), using the fungus Penicillium brevicompactum and the dipteran Chironomus riparius as model organisms, respectively, due to their ecological relevance in freshwater environments. Fourier-transform infrared spectroscopy analysis suggested changes in the fungus's carbohydrate reserves and bio-MP degradation through the appearance of low molecular weight esters throughout a 28 day biodegradation test. In a short-term exposure (48 h), C. riparius larvae exposed to pristine or UV-aged bio-MPs had up to 2 particles in their gut. Exposure to pristine bio-MPs decreased larval aerobic metabolism (<20 %) and increased neurotransmission (>15 %), whereas exposure to UV-aged bio-MPs activated larval aerobic metabolism (>20 %) and increased antioxidant defences (catalase activity by >30 % and glutathione-s-transferase by >20 %) and neurotransmission (>30 %). Longer-term (28-d) exposure to UV-aged bio-MPs did not affect larval survival and growth nor the dipteran's emergence but increased male numbers (>30 %) at higher concentrations. This study suggests that the selected agricultural bio-based mulch film is prone to biodegradation by a naturally occurring fungus. However, there is a potential for endocrine disruption in the case of prolonged exposures to UV-aged microplastics. This study emphasises the importance of further research to elucidate the potential ecological effects of these plastic products, to ensure effective management practices, and to establish new regulations governing their use.
Collapse
Affiliation(s)
- Diogo A Ferreira-Filipe
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal; Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana Paço
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal; Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bruna Pinho
- Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rafael Silva
- Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Sara A M Silva
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Fátima Jesus
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal; Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Joana L Pereira
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal; Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Armando C Duarte
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal; Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Teresa A P Rocha-Santos
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal; Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana L Patrício-Silva
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal; Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
46
|
Ding S, Gu X, Sun S, He S. Optimization of microplastic removal based on the complementarity of constructed wetland and microalgal-based system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169081. [PMID: 38104829 DOI: 10.1016/j.scitotenv.2023.169081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/06/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
As one of the emblematic emerging contaminants, microplastics (MPs) have aroused great public concern. Nevertheless, the global community still insufficiently acknowledges the ecological health risks and resolution strategies of MP pollution. As the nature-based biotechnologies, the constructed wetland (CW) and microalgal-based system (MBS) have been applied in exploring the removal of MPs recently. This review separately presents the removal research (mechanism, interactions, implications, and technical defects) of MPs by a single method of CWs or MBS. But one thing with certitude is that the exclusive usage of these techniques to combat MPs has non-negligible and formidable challenges. The negative impacts of MP accumulation on CWs involve toxicity to macrophytes, substrates blocking, and nitrogen-removing performance inhibition. While MPs restrict MBS practical application by making troubles for separation difficulties of microalgal-based aggregations from effluent. Hence the combined strategy of microalgal-assisted CWs is proposed based on the complementarity of biotechnologies, in an attempt to expand the removing size range of MPs, create more biodegradable conditions and improve the effluent quality. Our work evaluates and forecasts the potential of integrating combination for strengthening micro-polluted wastewater treatment, completing the synergistic removal of MP-based co-pollutants and achieving long-term stability and sustainability, which is expected to provide new insights into MP pollution regulation and control.
Collapse
Affiliation(s)
- Shaoxuan Ding
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xushun Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shanshan Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; Shanghai Engineering Research Center of Landscape Water Environment, Shanghai 200031, PR China.
| |
Collapse
|
47
|
Zambrano-Pinto MV, Tinizaray-Castillo R, Riera MA, Maddela NR, Luque R, Díaz JMR. Microplastics as vectors of other contaminants: Analytical determination techniques and remediation methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168244. [PMID: 37923271 DOI: 10.1016/j.scitotenv.2023.168244] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/04/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
The ubiquitous and persistent presence of microplastics (MPs) in aquatic and terrestrial ecosystems has raised global concerns due to their detrimental effects on human health and the natural environment. These minuscule plastic fragments not only threaten biodiversity but also serve as vectors for contaminants, absorbing organic and inorganic pollutants, thereby causing a range of health and environmental issues. This review provides an overview of microplastics and their effects. This work highlights available analytical techniques for detecting and characterizing microplastics in different environmental matrices, assessing their advantages and limitations. Additionally, this review explores innovative remediation approaches, such as microbial degradation and other advanced methods, offering promising prospects for combatting microplastic accumulation in contaminated environments. The focus on environmentally-friendly technologies, such as the use of microorganisms and enzymes for microplastic degradation, underscores the importance of sustainable solutions in plastic pollution management. In conclusion, this article not only deepens our understanding of the microplastic issue and its impact but also advocates for the urgent need to develop and implement effective strategies to mitigate this critical environmental challenge. In this context, the crucial role of advanced technologies, like quantitative Nuclear Magnetic Resonance spectroscopy (qNMR), as promising tools for rapid and efficient microplastic detection, is emphasized. Furthermore, the potential of the enzyme PETase (polyethylene terephthalate esterase) in microplastic degradation is examined, aiming to address the growing plastic pollution, particularly in saline environments like oceanic ecosystems. These innovations offer hope for effectively addressing microplastic accumulation in contaminated environments and minimizing its adverse impacts.
Collapse
Affiliation(s)
- Maria Veronica Zambrano-Pinto
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Ecuador; Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo 130104, Ecuador.
| | - Rolando Tinizaray-Castillo
- Departamento de Construcciones Civiles, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Ecuador.
| | - María A Riera
- Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo 130104, Ecuador.
| | - Naga Raju Maddela
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Salud, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador.
| | - Rafael Luque
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str., 117198 Moscow, Russian Federation; Universidad ECOTEC, Km. 13.5 Samborondón, Samborondón EC092302, Ecuador.
| | - Joan Manuel Rodríguez Díaz
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Ecuador; Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo 130104, Ecuador.
| |
Collapse
|
48
|
Zhang Z, Zou S, Li P. Aging of plastics in aquatic environments: Pathways, environmental behavior, ecological impacts, analyses and quantifications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122926. [PMID: 37963513 DOI: 10.1016/j.envpol.2023.122926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/30/2023] [Accepted: 11/10/2023] [Indexed: 11/16/2023]
Abstract
The ubiquity of plastics in our environment has brought about pressing concerns, with their aging processes, photo-oxidation, mechanical abrasion, and biodegradation, being at the forefront. Microplastics (MPs), whether originating from plastic degradation or direct anthropogenic sources, further complicate this landscape. This review delves into the intricate aging dynamics of plastics in aquatic environments under various influential factors. We discuss the physicochemical changes that occur in aged plastics and the release of oxidation products during their degradation. Particular attention is given to their evolving environmental interactions and the resulting ecotoxicological implications. A rigorous evaluation is also conducted for methodologies in the analysis and quantification of plastics aging, identifying their merits and limitations and suggesting potential avenues for future research. This comprehensive review is able to illuminate the complexities of plastics aging, charting a path for future research and aiding in the formulation of informed policy decisions.
Collapse
Affiliation(s)
- Zekun Zhang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Shichun Zou
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai 519082, China
| | - Pu Li
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai 519082, China.
| |
Collapse
|
49
|
Zhou J, Xu H, Xiang Y, Wu J. Effects of microplastics pollution on plant and soil phosphorus: A meta-analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132705. [PMID: 37813034 DOI: 10.1016/j.jhazmat.2023.132705] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/02/2023] [Indexed: 10/11/2023]
Abstract
The widespread use of microplastics leads to environmental pollution, which threatens ecosystem functions (i.e., nutrient cycling). Some studies have focused on the impacts of microplastics on phosphorus from plants and soils. However, inconsistent responses of plant and soil phosphorus to microplastics have been observed. This work synthesized the results of 781 paired observations from 73 publications to explore the overall effects of microplastics on plant and soil phosphorus and whether the impacts depended on microplastics properties and experimental variables. We found the overall negative effects of microplastics on plant phosphorus and soil available phosphorus. Additionally, microplastics significantly inhibited neutral phosphatase activity but increased soil phosphorus leaching. Furthermore, the impacts of microplastics on plant and soil phosphorus varied depending on microplastics types, sizes, concentrations, and experimental durations. Soil total phosphorus and available phosphorus exhibited stronger negative responses to biodegradable than conventional microplastics. Acid phosphatase was more sensitive to biodegradable than conventional microplastics. In addition, soil total phosphorus, available phosphorus, and alkaline phosphatase were significantly correlated with microplastic concentrations and exposure time. Overall, our findings suggest that microplastics potentially threaten soil fertility and plant productivity. This work provides an important reference for predicting ecosystem functions in the context of microplastics pollution.
Collapse
Affiliation(s)
- Juan Zhou
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, Yunnan, PR China; Laboratory of Soil Ecology and Health in Universities of Yunnan Province, Key Laboratory of Southwest Cross-Board Ecosecurity, Ministry of Education, Kunming 650500, PR China
| | - Haibian Xu
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, Yunnan, PR China; Laboratory of Soil Ecology and Health in Universities of Yunnan Province, Key Laboratory of Southwest Cross-Board Ecosecurity, Ministry of Education, Kunming 650500, PR China
| | - Yangzhou Xiang
- School of Geography and Resources, Guizhou Education University, Guiyang 550018, PR China.
| | - Jianping Wu
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, Yunnan, PR China; Laboratory of Soil Ecology and Health in Universities of Yunnan Province, Key Laboratory of Southwest Cross-Board Ecosecurity, Ministry of Education, Kunming 650500, PR China.
| |
Collapse
|
50
|
Lv S, Li Y, Zhao S, Shao Z. Biodegradation of Typical Plastics: From Microbial Diversity to Metabolic Mechanisms. Int J Mol Sci 2024; 25:593. [PMID: 38203764 PMCID: PMC10778777 DOI: 10.3390/ijms25010593] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Plastic production has increased dramatically, leading to accumulated plastic waste in the ocean. Marine plastics can be broken down into microplastics (<5 mm) by sunlight, machinery, and pressure. The accumulation of microplastics in organisms and the release of plastic additives can adversely affect the health of marine organisms. Biodegradation is one way to address plastic pollution in an environmentally friendly manner. Marine microorganisms can be more adapted to fluctuating environmental conditions such as salinity, temperature, pH, and pressure compared with terrestrial microorganisms, providing new opportunities to address plastic pollution. Pseudomonadota (Proteobacteria), Bacteroidota (Bacteroidetes), Bacillota (Firmicutes), and Cyanobacteria were frequently found on plastic biofilms and may degrade plastics. Currently, diverse plastic-degrading bacteria are being isolated from marine environments such as offshore and deep oceanic waters, especially Pseudomonas spp. Bacillus spp. Alcanivoras spp. and Actinomycetes. Some marine fungi and algae have also been revealed as plastic degraders. In this review, we focused on the advances in plastic biodegradation by marine microorganisms and their enzymes (esterase, cutinase, laccase, etc.) involved in the process of biodegradation of polyethylene terephthalate (PET), polystyrene (PS), polyethylene (PE), polyvinyl chloride (PVC), and polypropylene (PP) and highlighted the need to study plastic biodegradation in the deep sea.
Collapse
Affiliation(s)
- Shiwei Lv
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen 361005, China; (S.L.); (Y.L.); (S.Z.)
- School of Environmental Science, Harbin Institute of Technology, Harbin 150090, China
| | - Yufei Li
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen 361005, China; (S.L.); (Y.L.); (S.Z.)
- School of Marine Sciences, China University of Geosciences, Beijing 100083, China
| | - Sufang Zhao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen 361005, China; (S.L.); (Y.L.); (S.Z.)
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen 361005, China; (S.L.); (Y.L.); (S.Z.)
- School of Environmental Science, Harbin Institute of Technology, Harbin 150090, China
- School of Marine Sciences, China University of Geosciences, Beijing 100083, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| |
Collapse
|