1
|
Fu C, Qian Q, Deng X, Zhuo Z, Xu D. Prediction and Analysis of the Global Suitable Habitat of the Oryctes rhinoceros (Linnaeus, 1758) (Coleoptera: Scarabaeidae) Based on the MaxEnt Model. INSECTS 2024; 15:774. [PMID: 39452350 PMCID: PMC11508917 DOI: 10.3390/insects15100774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/20/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
The Asiatic rhinoceros beetle, Oryctes rhinoceros (Linnaeus, 1758) (Coleoptera: Scarabaeidae), is a destructive invasive species that poses a serious threat to palms, oil palms, and other plants. Defining a suitable area for the distribution of O. rhinoceros is essential for the development of appropriate policies and preventive measures. In this work, the MaxEnt niche model and ArcGIS software were used to predict the potential geographic distribution of O. rhinoceros in the world based on occurrence data and related environmental variables and to speculate on the influence of environmental variables on the distribution of O. rhinoceros. The results showed that the suitable areas of O. rhinoceros beetle were mainly distributed in 30° N-30° S, and the highly suitable areas were concentrated in South Asia, East Asia, Southeast Asia, and northern Oceania. The key environmental variables that determine the distribution location of O. rhinoceros are Precipitation of Wettest Month (bio13), Temperature of July (tmin7), Minimum Temperature of November (tmin11), and Precipitation of September (prec9). The prediction results of the MaxEnt model can reflect the global distribution of O. rhinoceros. This study can provide a theoretical basis for the prevention and control of O. rhinoceros and the development of relevant quarantine measures.
Collapse
Affiliation(s)
- Chun Fu
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, Leshan 614000, China;
| | - Qianqian Qian
- College of Life Science, China West Normal University, Nanchong 637002, China; (Q.Q.); (X.D.); (Z.Z.)
| | - Xinqi Deng
- College of Life Science, China West Normal University, Nanchong 637002, China; (Q.Q.); (X.D.); (Z.Z.)
| | - Zhihang Zhuo
- College of Life Science, China West Normal University, Nanchong 637002, China; (Q.Q.); (X.D.); (Z.Z.)
| | - Danping Xu
- College of Life Science, China West Normal University, Nanchong 637002, China; (Q.Q.); (X.D.); (Z.Z.)
| |
Collapse
|
2
|
Shameer KS, Hardy IC. Host-parasitoid trophic webs in complex agricultural systems. CURRENT OPINION IN INSECT SCIENCE 2024; 65:101253. [PMID: 39153528 DOI: 10.1016/j.cois.2024.101253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
The composition and dynamics of ecological communities are complex because of the presence of large numbers of organisms, belonging to many different species, each with their own evolutionary history, and their numerous interactions. The construction and analysis of trophic webs summarize interactions across trophic levels and link community structure to properties such as ecosystem services. We focus on agroecological communities, which may be simpler than natural communities but nonetheless present considerable challenges to describe and understand. We review the characteristics and study of communities comprised of plants, phytophagous insects, and insect parasitoids with particular regard to the maintenance of sustainable agroecological communities and ecosystem services, especially biological pest control. We are constrained to largely overlook other members of these communities, such as hyperparasitoids, predators, parasites, and microbes. We draw chiefly on recent literature while acknowledging the importance of many advances made during the immediately preceding decades. Trophic web construction and analysis can greatly improve the understanding of the role and impact of herbivores and natural enemies in agroecological communities and the various species interactions, such as apparent competition, which assists biocontrol strategies. The study of trophic webs also helps in predicting community ecology consequences of externally driven changes to agroecosystems.
Collapse
Affiliation(s)
- K S Shameer
- Insect Ecology and Ethology Laboratory, Department of Zoology, University of Calicut, Calicut University P.O., Malappuram, Kerala 673635, India; Department of Agricultural Sciences, University of Helsinki, P.O. Box 27, FI-00014 Finland.
| | - Ian Cw Hardy
- Department of Agricultural Sciences, University of Helsinki, P.O. Box 27, FI-00014 Finland.
| |
Collapse
|
3
|
Nusillard W, Garinie T, Lelièvre Y, Zito S, Becker C, Thiéry D, Frandon J, Moreau J. Pest management facing warming and chemical stresses: Multi-stress effects on the biological agent Trichogramma oleae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174709. [PMID: 38997018 DOI: 10.1016/j.scitotenv.2024.174709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/12/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Global change is affecting plant-insect interactions in agroecosystems and can have dramatic consequences on yields when causing non-targeted pest outbreaks and threatening the use of pest natural enemies for biocontrol. The vineyard agroecosystem is an interesting system to study multi-stress conditions: on the one hand, agricultural intensification comes with high inputs of copper-based fungicides and, on the other hand, temperatures are rising due to climate change. We investigated interactive and bottom-up effects of both temperature increase and copper-based fungicides exposure on the important Lepidopteran vineyard pest Lobesia botrana and its natural enemy, the oophagous parasitoid Trichogramma oleae. We exposed L. botrana larvae to three increasing copper sulfate concentrations under two fluctuating thermal regimes, one current and one future. Eggs produced by L. botrana were then exposed to T. oleae. Our results showed that the survival of L. botrana, was only reduced by the highest copper sulfate concentration and improved under the warmer regime. The development time of L. botrana was strongly reduced by the warmer regime but increased with increasing copper sulfate concentrations, whereas pupal mass was reduced by both thermal regime and copper sulfate. T. oleae F1 emergence rate was reduced and their development time increased by combined effects of the warmer regime and increasing copper sulfate concentrations. Size, longevity and fecundity of T. oleae F1 decreased with high copper sulfate concentrations. These effects on the moth pest and its natural enemy are probably the result of trade-offs between the survival and the development of L. botrana facing multi-stress conditions and implicate potential consequences for future biological pest control. Our study supplies valuable data on how the interaction between pests and biological control agents is affected by multi-stress conditions.
Collapse
Affiliation(s)
- William Nusillard
- AgroParisTech, 91120 Palaiseau, France; Biogéosciences, UMR 6282 CNRS, Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France.
| | - Tessie Garinie
- Biogéosciences, UMR 6282 CNRS, Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Yann Lelièvre
- Biogéosciences, UMR 6282 CNRS, Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Sébastien Zito
- UMR 1287 Ecophysiologie et Génomique Fonctionnelle de la Vigne, INRAE, Institut des Sciences de la Vigne et du Vin 210, chemin de Leysotte, 33882, Villenave d'Ornon, France
| | - Christine Becker
- Department of Crop Protection, Hochschule Geisenheim University, Von-Lade-Str. 1, 65366 Geisenheim, Germany
| | - Denis Thiéry
- INRA (French National Institute for Agricultural Research), UMR 1065 Save, BSA, Centre de recherches INRAe Nouvelle-Aquitaine-Bordeaux, 33882, Villenave d'Ornon Cedex, France
| | - Jacques Frandon
- Recherche et Développement, Bioline Agrosciences, 26250, Livron-sur-Drôme, France
| | - Jérôme Moreau
- Biogéosciences, UMR 6282 CNRS, Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France; Centre d'Études Biologiques de Chizé, UMR 7372 CNRS & La Rochelle Université, 79360, Villiers-en-Bois, France
| |
Collapse
|
4
|
Zhao J, Shao W, Li Y, Chen H, Lin Z, Wei L. Potential impact of climate change on the distribution of Capricornis milneedwardsii, a vulnerable mammal in China. Ecol Evol 2024; 14:e11582. [PMID: 38932977 PMCID: PMC11199809 DOI: 10.1002/ece3.11582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Climate change significantly impacted on the survival, development, distribution, and abundance of living organisms. The Chinese serow Capricornis milneedwardsii, known as the "four unlike," is a Class II nationally protected species in China. In this study, we predicted the geographical suitability of C. milneedwardsii under current and future climatic conditions using MaxEnt. The model simulations resulted in area under the receiver operating characteristic curve (AUC) values above 0.9 for both current and future climate scenarios, indicating the excellent performance, high accuracy, and credibility of the MaxEnt model. The results also showed that annual precipitation (Bio12), slope, elevation, and mean temperature of wettest quarter (Bio8) were the key environmental variables affecting the distribution of C. milneedwardsii, with contributions of 31.2%, 26.4%, 11%, and 10.3%, respectively. The moderately and highly suitable habitats were mainly located in the moist area of China, with a total area of 34.56 × 104 and 16.61 × 104 km2, respectively. Under future climate change scenarios, the areas of suitability of C. milneedwardsii showed an increasing trend. The geometric center of the total suitable habitats of C. milneedwardsii would show the trend of northwest expansion and southeast contraction. These findings could provide a theoretical reference for the protection of C. milneedwardsii in the future.
Collapse
Affiliation(s)
- Jiale Zhao
- College of EcologyLishui UniversityLishuiChina
- College of Animal Science and TechnologyZhejiang Agriculture and Forestry UniversityLin'anChina
- College of Veterinary MedicineZhejiang Agriculture and Forestry UniversityLin'anChina
| | - Weiwei Shao
- College of EcologyLishui UniversityLishuiChina
| | - Yalei Li
- College of EcologyLishui UniversityLishuiChina
| | | | - Zhihua Lin
- College of EcologyLishui UniversityLishuiChina
| | - Li Wei
- College of EcologyLishui UniversityLishuiChina
| |
Collapse
|
5
|
Hausmann J, Heimbach U, Gabriel D, Brandes M. Effects of regional crop rotations on autumn insect pests in winter oilseed rape. PEST MANAGEMENT SCIENCE 2024; 80:2371-2382. [PMID: 37572375 DOI: 10.1002/ps.7716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 07/28/2023] [Accepted: 08/13/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND Chemical control of insect pests in oilseed rape (OSR) is becoming increasingly difficult due to the development of resistance and restrictive insecticide approvals in Europe. At the same time, there is a lack of preventive and alternative control measures. Crop rotation mostly fails to control insects due to their mobility; however, changing regional cropping densities can dilute or concentrate pest pressure. In this study, we investigated whether the local occurrence of Psylliodes chrysocephala and Delia radicum, serious insect pests in winter OSR, is influenced by distance from the previous year's OSR fields and how changes in OSR rape cropping density at a regional scale (up to 10 km radius) affect pest pressure. RESULTS Abundance of P. chrysocephala in yellow water traps decreased with increasing distance to previous year's OSR. Estimated catches in the first 3 weeks of migration were about 68-76% lower at 10 km distance compared to 1 km in autumn 2019 and 2020. However, in both seasons P. chrysocephala was able to disperse over distances of 10 km. Probability of root damage by D. radicum was affected by changes of OSR cropping area at a spatial scale of 2.5 km radius; it increased if acreage of OSR decreased. Furthermore, aphid infestation was lower when OSR was distant in the previous year. CONCLUSION This study could enable field-specific risk assessment and prediction of pest pressure. To decide about the effectiveness of cropping breaks at a regional level as a preventive crop protection measure, more knowledge on other pest species and antagonists is needed. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Johannes Hausmann
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Field Crops and Grassland, Braunschweig, Germany
| | - Udo Heimbach
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Field Crops and Grassland, Braunschweig, Germany
| | - Doreen Gabriel
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Crop and Soil Science, Braunschweig, Germany
| | - Meike Brandes
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Field Crops and Grassland, Braunschweig, Germany
| |
Collapse
|
6
|
Liao W, Zhuo Z, Qian Q, Hu D, Xu D. Potential impact of climatic factors on the distribution of Graphium sarpedon in China. Ecol Evol 2024; 14:e10858. [PMID: 38327692 PMCID: PMC10847806 DOI: 10.1002/ece3.10858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
Graphium sarpedon is a significant foliar pest of Laurel plants in China. In this study, the MaxEnt model was used to investigate the distribution of G. sarpedon and predict its potential distribution areas in China in the future (2050s and 2090s) based on three Shared Socioeconomic Pathways (SSP1-2.6, SSP2-4.5, and SSP5-8.5), and key environmental variables affecting its distribution were identified. The results showed that under the current climatic conditions, the suitable distribution areas of G. sarpedon were 92.17°-134.96° E and 18.04°-33.61° N, including Yangtze Plain (Middle and Lower), Pearl River Delta, Yangtze River Delta, and Lingnan areas. Under the future climate conditions, the total suitable distribution area of G. sarpedon decreased, but the area of medium suitable area increased. The study identified 11 key environmental variables affecting the distribution of G. sarpedon, the most critical of which was Precipitation of Warmest Quarter (bio18) and precipitation in April, May, June, and September (prec4, prec5, prec6, and prec9). This study is beneficial for monitoring and preventing the possible changes of G. sarpedon and provides theoretical references for its prevention and control.
Collapse
Affiliation(s)
- Wenkai Liao
- College of Life ScienceChina West Normal UniversityNanchongChina
| | - Zhihang Zhuo
- College of Life ScienceChina West Normal UniversityNanchongChina
| | - Qianqian Qian
- College of Life ScienceChina West Normal UniversityNanchongChina
| | - Dan Hu
- College of Life ScienceChina West Normal UniversityNanchongChina
| | - Danping Xu
- College of Life ScienceChina West Normal UniversityNanchongChina
| |
Collapse
|
7
|
Burbank L, Sisterson MS, Wei W, Ortega B, Luna N, Naegele R. High Growing Season Temperatures Limit Winter Recovery of Grapevines from Xylella fastidiosa Infection - Implications for Epidemiology in Hot Climates. PLANT DISEASE 2023; 107:3858-3867. [PMID: 37278547 DOI: 10.1094/pdis-03-23-0492-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Management of widespread plant pathogens is challenging as climatic differences among crop-growing regions may alter key aspects of pathogen spread and disease severity. Xylella fastidiosa is a xylem-limited bacterial pathogen that is transmitted by xylem sap-feeding insects. Geographic distribution of X. fastidiosa is limited by winter climate, and vines infected with X. fastidiosa can recover from infection when held at cold temperatures. California has a long history of research on Pierce's disease and significant geographic and climatic diversity among grape-growing regions. This background in combination with experimental disease studies under controlled temperature conditions can inform risk assessment for X. fastidiosa spread and epidemic severity across different regions and under changing climate conditions. California's grape-growing regions have considerable differences in summer and winter climate. In northern and coastal regions, summers are mild and winters are cool, conditions which favor winter recovery of infected vines. In contrast, in inland and southern areas, summers are hot and winters mild, reducing likelihood of winter recovery. Here, winter recovery of three table grape cultivars (Flame, Scarlet Royal, and Thompson Seedless) and three wine grape cultivars (Sauvignon Blanc, Cabernet Sauvignon, and Zinfandel) were evaluated under temperature conditions representative of the San Joaquin Valley, an area with hot summers and mild winters that has been severely impacted by Pierce's disease and contains a large portion of California grape production. Mechanically inoculated vines were held in the greenhouse under one of three warming treatments to represent different seasonal inoculation dates prior to being moved into a cold chamber. Winter recovery under all treatments was generally limited but with some cultivar variation. Given hot summer temperatures of many grape-growing regions worldwide, as well as increasing global temperatures overall, winter recovery of grapevines should not be considered a key factor limiting X. fastidiosa spread and epidemic severity in the majority of cases.
Collapse
Affiliation(s)
- Lindsey Burbank
- Crop Diseases, Pests, and Genetics Research Unit, Agricultural Research Service, USDA, Parlier, CA 93648
| | - Mark S Sisterson
- Crop Diseases, Pests, and Genetics Research Unit, Agricultural Research Service, USDA, Parlier, CA 93648
| | - Wei Wei
- Crop Diseases, Pests, and Genetics Research Unit, Agricultural Research Service, USDA, Parlier, CA 93648
| | - Brandon Ortega
- Crop Diseases, Pests, and Genetics Research Unit, Agricultural Research Service, USDA, Parlier, CA 93648
| | - Nathaniel Luna
- Crop Diseases, Pests, and Genetics Research Unit, Agricultural Research Service, USDA, Parlier, CA 93648
| | - Rachel Naegele
- Sugar Beet and Bean Research Unit, Agricultural Research Service, USDA, East Lansing, MI 48824
| |
Collapse
|
8
|
Naveed H, Andoh V, Islam W, Chen L, Chen K. Sustainable Pest Management in Date Palm Ecosystems: Unveiling the Ecological Dynamics of Red Palm Weevil (Coleoptera: Curculionidae) Infestations. INSECTS 2023; 14:859. [PMID: 37999058 PMCID: PMC10671898 DOI: 10.3390/insects14110859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023]
Abstract
The red palm weevil (RPW) poses a significant threat to date palm ecosystems, highlighting the necessity of sustainable pest management strategies that carefully consider the delicate ecological balance within these environments. This comprehensive review delves into innovative approaches to sustainable pest management, specifically focusing on date palm, and seeks to unravel the intricate ecological dynamics underlying RPW infestations. We thoroughly analyze biocontrol methods, eco-friendly chemical interventions, and integrated pest management (IPM) strategies, aiming to minimize the ecological impact while effectively addressing RPW infestations. By emphasizing the interplay of both living organisms (biotic) and environmental factors (abiotic) in shaping RPW dynamics, we advocate for a holistic and sustainable management approach that ensures the long-term resilience of date palm ecosystems. This review aims to contribute to an ecologically sound framework for pest management, promoting the sustainability and vitality of date palm ecosystems amidst the challenges posed by the RPW.
Collapse
Affiliation(s)
- Hassan Naveed
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (H.N.); (V.A.)
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Vivian Andoh
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (H.N.); (V.A.)
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Waqar Islam
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
| | - Liang Chen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Keping Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (H.N.); (V.A.)
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
9
|
Kansman JT, Jaramillo JL, Ali JG, Hermann SL. Chemical ecology in conservation biocontrol: new perspectives for plant protection. TRENDS IN PLANT SCIENCE 2023; 28:1166-1177. [PMID: 37271617 DOI: 10.1016/j.tplants.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023]
Abstract
Threats to food security require novel sustainable agriculture practices to manage insect pests. One strategy is conservation biological control (CBC), which relies on pest control services provided by local populations of arthropod natural enemies. Research has explored manipulative use of chemical information from plants and insects that act as attractant cues for natural enemies (predators and parasitoids) and repellents of pests. In this review, we reflect on past strategies using chemical ecology in CBC, such as herbivore-induced plant volatiles and the push-pull technique, and propose future directions, including leveraging induced plant defenses in crop plants, repellent insect-based signaling, and genetically engineered crops. Further, we discuss how climate change may disrupt CBC and stress the importance of context dependency and yield outcomes.
Collapse
Affiliation(s)
- Jessica T Kansman
- Center for Chemical Ecology, Department of Entomology, The Pennsylvania State University, University Park, PA, USA.
| | - Jorge L Jaramillo
- Center for Chemical Ecology, Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| | - Jared G Ali
- Center for Chemical Ecology, Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| | - Sara L Hermann
- Center for Chemical Ecology, Department of Entomology, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
10
|
Segoli M, Abram PK, Ellers J, Greenbaum G, Hardy ICW, Heimpel GE, Keasar T, Ode PJ, Sadeh A, Wajnberg E. Trait-based approaches to predicting biological control success: challenges and prospects. Trends Ecol Evol 2023; 38:802-811. [PMID: 37202283 DOI: 10.1016/j.tree.2023.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 05/20/2023]
Abstract
Identifying traits that are associated with success of introduced natural enemies in establishing and controlling pest insects has occupied researchers and biological control practitioners for decades. Unfortunately, consistent general relationships have been difficult to detect, preventing a priori ranking of candidate biological control agents based on their traits. We summarise previous efforts and propose a series of potential explanations for the lack of clear patterns. We argue that the quality of current datasets is insufficient to detect complex trait-efficacy relationships and suggest several measures by which current limitations may be overcome. We conclude that efforts to address this elusive issue have not yet been exhausted and that further explorations are likely to be worthwhile.
Collapse
Affiliation(s)
- Michal Segoli
- Mitrani Department of Desert Ecology, BIDR, SIDEER, Ben-Gurion University of the Negev, Sede-Boqer Campus, Israel.
| | - Paul K Abram
- Agassiz Research and Development Centre, Agriculture and Agri-Food Canada, Agassiz, BC, Canada
| | - Jacintha Ellers
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Gili Greenbaum
- The Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Israel
| | - Ian C W Hardy
- Department of Agricultural Sciences, University of Helsinki, FI-00014, Finland
| | - George E Heimpel
- Department of Entomology, University of Minnesota, St. Paul, MN, USA
| | - Tamar Keasar
- Department of Biology, University of Haifa at Oranim, Tivon, Israel
| | - Paul J Ode
- Department of Agricultural Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| | - Asaf Sadeh
- Department of Natural Resources, Newe Ya'ar Research Center, Agricultural Research Organization (Volcani Institute), Israel
| | - Eric Wajnberg
- INRAE, Sophia Antipolis Cedex, France and INRIA, Sophia Antipolis Cedex, France
| |
Collapse
|
11
|
Wei X, Xu D, Zhuo Z. Predicting the Impact of Climate Change on the Geographical Distribution of Leafhopper, Cicadella viridis in China through the MaxEnt Model. INSECTS 2023; 14:586. [PMID: 37504592 PMCID: PMC10380802 DOI: 10.3390/insects14070586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023]
Abstract
Cicadella viridis (Hemiptera: Cicadellidae) is an omnivorous leafhopper that feeds on plant sap. It significantly reduces the yield of agricultural and forestry crops while feeding or ovipositing on the host plant. In recent years, the rapid expansion of C. viridis has posed a serious threat to agricultural and forestry crops. To study the impact of climate change on the geographical distribution of the leafhopper, the maximum entropy (MaxEnt) model and ArcGIS software, combined with 253 geographic distribution records of the pest and 24 environmental variables, were used, for the first time, to predict the potential distribution of C. viridis in China under conditions of climatic change. The results showed that the currently suitable areas for C. viridis are 29.06-43° N, 65.25-85.15° E, and 93.45-128.85° E, with an estimated area of 11,231,423.79 km2, i.e., 11.66% of China. The Loess Plateau, the North China Plain, and the Shandong Peninsula are the main suitable areas. The potential distribution of the leafhopper for the high and medium suitability areas decreased under each climate scenario (except RCP8.5 in the 2090s). Several key variables that have the most significant effect on the distribution of C. viridis were identified, including the mean annual temperature (Bio1), the standard deviation of temperature seasonality (Bio4), the minimum temperature of the coldest month (Bio6), and the precipitation of the coldest quarter (Bio19). Our research provides important guidance for developing effective monitoring and pest control methods for C. viridis, given the predicted challenges of altered pest dynamics related to future climate change.
Collapse
Affiliation(s)
- Xinju Wei
- College of Life Science, China West Normal University, Nanchong 637002, China
| | - Danping Xu
- College of Life Science, China West Normal University, Nanchong 637002, China
| | - Zhihang Zhuo
- College of Life Science, China West Normal University, Nanchong 637002, China
| |
Collapse
|
12
|
Vicente-Díez I, Pou A, Campos-Herrera R. The deterrent ability of Xenorhabdus nematophila and Photorhabdus laumondii compounds as a potential novel tool for Lobesia botrana (Lepidoptera: Tortricidae) management. J Invertebr Pathol 2023; 198:107911. [PMID: 36921888 DOI: 10.1016/j.jip.2023.107911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/14/2023]
Abstract
The grapevine moth, Lobesia botrana (Lepidoptera: Tortricidae), is a critical pest for vineyards and causes significant economic losses in wine-growing areas worldwide. Identifying and developing novel semiochemical cues (e.g. volatile bacterial compounds) which modify the ovipositional and trophic behaviour of L. botrana in vineyard fields could be a novel control alternative in viticulture. Xenorhabdus spp. and Photorhabdus spp. are becoming one of the best-studied bacterial species due to their potential interest in producing toxins and deterrent factors. In this study, we investigated the effect of the deterrent compounds produced by Xenorhabdus nematophila and Photorhabdus laumondii on the ovipositional moth behaviour and the larval feeding preference of L. botrana. Along with the in-vitro bioassays performed, we screened the potential use of 3 d cell-free bacterial supernatants and 3 and 5 d unfiltered bacterial ferments. In addition, we tested two application systems: (i) contact application of the bacterial compounds and (ii) volatile bacterial compounds application. Our findings indicate that the deterrent effectiveness varied with bacterial species, the use of bacterial cell-free supernatants or unfiltered fermentation product, and the culture times. Grapes soaked in the 3 d X. nematophila and P. laumondii ferments had ∼ 55% and ∼ 95% fewer eggs laid than the control, respectively. Likewise, the volatile compounds emitted by the 5 d P. laumondii fermentations resulted in ∼ 100% avoidance of L. botrana ovipositional activity for three days. Furthermore, both bacterial fermentation products have larval feeding deterrent effects (∼65% of the larva chose the control grapes), and they significantly reduced the severity of damage caused by third instar larva in treated grapes. This study provides insightful information about a novel bacteria-based tool which can be used as an eco-friendly and economical alternative in both organic and integrated control of L. botrana in vineyard.
Collapse
Affiliation(s)
- Ignacio Vicente-Díez
- Instituto de Ciencias de la Vid y del Vino (ICVV, Gobierno de La Rioja, CSIC, Universidad de La Rioja), Finca La GRajera, Ctra. Burgos Km. 6 Salida 13 Lo-20, Logroño 26007, Spain
| | - Alicia Pou
- Instituto de Ciencias de la Vid y del Vino (ICVV, Gobierno de La Rioja, CSIC, Universidad de La Rioja), Finca La GRajera, Ctra. Burgos Km. 6 Salida 13 Lo-20, Logroño 26007, Spain
| | - Raquel Campos-Herrera
- Instituto de Ciencias de la Vid y del Vino (ICVV, Gobierno de La Rioja, CSIC, Universidad de La Rioja), Finca La GRajera, Ctra. Burgos Km. 6 Salida 13 Lo-20, Logroño 26007, Spain.
| |
Collapse
|
13
|
Mastore M, Quadroni S, Rezzonico A, Brivio MF. The Influence of Daily Temperature Fluctuation on the Efficacy of Bioinsecticides on Spotted Wing Drosophila Larvae. INSECTS 2022; 14:43. [PMID: 36661971 PMCID: PMC9866168 DOI: 10.3390/insects14010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/21/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Global climate change is allowing the invasion of insect pests into new areas without natural competitors and/or predators. The dipteran Drosophila suzukii has invaded both the Americas and Europe, becoming a serious problem for fruit crops. Control methods for this pest are still based on the use of pesticides, but less invasive and more sustainable methods, such as biocontrol, are needed. Variations in environmental conditions can affect the efficacy of bioinsecticides influencing their behavior and physiology besides that of the target insects. In this work, we developed a system that simulates the daily temperature fluctuations (DTFs) detected in the environment, with the aim of studying the influence of temperature on biocontrol processes. We investigated the effects of DTFs on the efficacy of four bioinsecticides. Results showed that DTFs modify the efficacy of some entomopathogens while they are ineffective on others. Specifically, the bacterium Bacillus thuringiensis is the most effective bioinsecticide under all conditions tested, i.e., low DTF (11−22 °C) and high DTF (17−33 °C) compared to constant temperature (25 °C). In contrast, nematodes are more sensitive to changes in temperature: Steinernema carpocapsae loses efficacy at low DTF, while Steinernema feltiae and Heterorhabditis bacteriophora are not effective in controlling the target dipteran. This work provides a basis for reviewing biological control methods against invasive species in the current context of climate change.
Collapse
Affiliation(s)
- Maristella Mastore
- Laboratory of Environmental Entomology and Parasitology, Department of Theoretical and Applied Sciences, University of Insubria, 21100 Varese, Italy
| | - Silvia Quadroni
- Laboratory of Ecology, Department of Theoretical and Applied Sciences, University of Insubria, 21100 Varese, Italy
| | - Alberto Rezzonico
- Laboratory of Environmental Entomology and Parasitology, Department of Theoretical and Applied Sciences, University of Insubria, 21100 Varese, Italy
| | - Maurizio Francesco Brivio
- Laboratory of Environmental Entomology and Parasitology, Department of Theoretical and Applied Sciences, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
14
|
Pires D, Vicente CSL, Menéndez E, Faria JMS, Rusinque L, Camacho MJ, Inácio ML. The Fight against Plant-Parasitic Nematodes: Current Status of Bacterial and Fungal Biocontrol Agents. Pathogens 2022; 11:1178. [PMID: 36297235 PMCID: PMC9606992 DOI: 10.3390/pathogens11101178] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/24/2022] Open
Abstract
Plant-parasitic nematodes (PPNs) are among the most notorious and underrated threats to food security and plant health worldwide, compromising crop yields and causing billions of dollars of losses annually. Chemical control strategies rely heavily on synthetic chemical nematicides to reduce PPN population densities, but their use is being progressively restricted due to environmental and human health concerns, so alternative control methods are urgently needed. Here, we review the potential of bacterial and fungal agents to suppress the most important PPNs, namely Aphelenchoides besseyi, Bursaphelenchus xylophilus, Ditylenchus dipsaci, Globodera spp., Heterodera spp., Meloidogyne spp., Nacobbus aberrans, Pratylenchus spp., Radopholus similis, Rotylenchulus reniformis, and Xiphinema index.
Collapse
Affiliation(s)
- David Pires
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), Av. da República, 2780-159 Oeiras, Portugal
- Mediterranean Institute for Agriculture, Environment and Development (MED) & Global Change and Sustainability Institute (CHANGE), Institute for Advanced Studies and Research, University of Évora, Pólo da Mitra, Apartado 94, 7006-554 Évora, Portugal
| | - Cláudia S. L. Vicente
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), Av. da República, 2780-159 Oeiras, Portugal
- Mediterranean Institute for Agriculture, Environment and Development (MED) & Global Change and Sustainability Institute (CHANGE), Institute for Advanced Studies and Research, University of Évora, Pólo da Mitra, Apartado 94, 7006-554 Évora, Portugal
| | - Esther Menéndez
- Mediterranean Institute for Agriculture, Environment and Development (MED) & Global Change and Sustainability Institute (CHANGE), Institute for Advanced Studies and Research, University of Évora, Pólo da Mitra, Apartado 94, 7006-554 Évora, Portugal
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), Universidad de Salamanca, 37007 Salamanca, Spain
| | - Jorge M. S. Faria
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), Av. da República, 2780-159 Oeiras, Portugal
- Mediterranean Institute for Agriculture, Environment and Development (MED) & Global Change and Sustainability Institute (CHANGE), Institute for Advanced Studies and Research, University of Évora, Pólo da Mitra, Apartado 94, 7006-554 Évora, Portugal
| | - Leidy Rusinque
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), Av. da República, 2780-159 Oeiras, Portugal
| | - Maria J. Camacho
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), Av. da República, 2780-159 Oeiras, Portugal
- Mediterranean Institute for Agriculture, Environment and Development (MED) & Global Change and Sustainability Institute (CHANGE), Institute for Advanced Studies and Research, University of Évora, Pólo da Mitra, Apartado 94, 7006-554 Évora, Portugal
| | - Maria L. Inácio
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), Av. da República, 2780-159 Oeiras, Portugal
- GREEN-IT Bioresources for Sustainability, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
15
|
Sentis A, Hemptinne J, Magro A, Outreman Y. Biological control needs evolutionary perspectives of ecological interactions. Evol Appl 2022; 15:1537-1554. [PMID: 36330295 PMCID: PMC9624075 DOI: 10.1111/eva.13457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 05/30/2024] Open
Abstract
While ecological interactions have been identified as determinant for biological control efficiency, the role of evolution remains largely underestimated in biological control programs. With the restrictions on the use of both pesticides and exotic biological control agents (BCAs), the evolutionary optimization of local BCAs becomes central for improving the efficiency and the resilience of biological control. In particular, we need to better account for the natural processes of evolution to fully understand the interactions of pests and BCAs, including in biocontrol strategies integrating human manipulations of evolution (i.e., artificial selection and genetic engineering). In agroecosystems, the evolution of BCAs traits and performance depends on heritable phenotypic variation, trait genetic architecture, selection strength, stochastic processes, and other selective forces. Humans can manipulate these natural processes to increase the likelihood of evolutionary trait improvement, by artificially increasing heritable phenotypic variation, strengthening selection, controlling stochastic processes, or overpassing evolution through genetic engineering. We highlight these facets by reviewing recent studies addressing the importance of natural processes of evolution and human manipulations of these processes in biological control. We then discuss the interactions between the natural processes of evolution occurring in agroecosystems and affecting the artificially improved BCAs after their release. We emphasize that biological control cannot be summarized by interactions between species pairs because pests and biological control agents are entangled in diverse communities and are exposed to a multitude of deterministic and stochastic selective forces that can change rapidly in direction and intensity. We conclude that the combination of different evolutionary approaches can help optimize BCAs to remain efficient under changing environmental conditions and, ultimately, favor agroecosystem sustainability.
Collapse
Affiliation(s)
- Arnaud Sentis
- INRAEAix Marseille University, UMR RECOVERAix‐en‐ProvenceFrance
| | - Jean‐Louis Hemptinne
- Laboratoire Évolution et Diversité biologiqueUMR 5174 CNRS/UPS/IRDToulouseFrance
- Université Fédérale de Toulouse Midi‐Pyrénées – ENSFEACastanet‐TolosanFrance
| | - Alexandra Magro
- Laboratoire Évolution et Diversité biologiqueUMR 5174 CNRS/UPS/IRDToulouseFrance
- Université Fédérale de Toulouse Midi‐Pyrénées – ENSFEACastanet‐TolosanFrance
| | | |
Collapse
|
16
|
Chalchissa FB, Diga GM, Feyisa GL, Tolossa AR. Impacts of extreme agroclimatic indicators on the performance of coffee ( Coffea arabica L.) aboveground biomass in Jimma Zone, Ethiopia. Heliyon 2022; 8:e10136. [PMID: 36016531 PMCID: PMC9396549 DOI: 10.1016/j.heliyon.2022.e10136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/11/2022] [Accepted: 07/28/2022] [Indexed: 11/19/2022] Open
Abstract
Estimating crop biomass is critical for countries whose primary source of income is agriculture. It is a valuable indicator for evaluating crop yields and provides information to growers and managers for developing climate change adaptation strategies. The objective of the study was to model the impacts of agroclimatic indicators on the performance of aboveground biomass (AGB) in Arabica coffee trees, a critical income source for millions of Ethiopians. One hundred thirty-five coffee tree stump diameters were measured at 40 cm above ground level. The historical (1998–2010) and future (2041–2070) agroclimatic data were downloaded from the European Copernicus climate change services website. All datasets were tested for missing data, outliers, and multicollinearity and were grouped into three clusters using the K-mean clustering method. The parameter estimates (coefficients of regression) were analyzed using a generalized regression model. The performance of coffee trees' AGB in each cluster was estimated using an artificial neural network model. The future expected change in AGB of coffee trees was compared using a paired t-test. The regression model’s results reveal that the sensitivity of C. arabica to agroclimatic variables significantly differs based on the kind of indicator, RCP scenario, and microclimate. Under the current climatic conditions, the rise of the coldest minimum (TNn) and warmest (TXx) temperatures raises the AGB of the coffee tree, but the rise of the warmest minimum (TNx) and coldest maximum (TXn) temperatures decreased it (P < 0.05). Under the RCP4.5, the rise of consecutively dry days (CDD) and TNx would increase the AGB of the coffee tree, while TNx and TXx would decrease it (P < 0.05). Except for TXx, all indicators would significantly reduce the AGB of coffee trees under RCP8.5 (P < 0.05). The average values of AGB under the current, RCP4.5, and RCP85 climate change scenarios, respectively, were 26.66, 28.79, and 24.41 kg/tree. The predicted values of AGB under RCP4.5 and RCP8.5 will be higher in the first and third clusters and lower in the second cluster in the 2060s compared to the current climatic conditions. As a result, early warning systems and adaptive strategies will be necessary to reduce the detrimental consequences of climate change. More research into the effects of other climatic conditions on crops, such as physiologically effective degree days, cold, hot, and rainy periods, is also required.
Collapse
Affiliation(s)
| | - Girma Mamo Diga
- Ethiopia Agricultural Research Institute, Addis Ababa, Ethiopia
| | | | | |
Collapse
|
17
|
Modeling and Prediction of the Species’ Range of Neurobasis chinensis (Linnaeus, 1758) under Climate Change. BIOLOGY 2022; 11:biology11060868. [PMID: 35741389 PMCID: PMC9220025 DOI: 10.3390/biology11060868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/15/2022] [Accepted: 06/03/2022] [Indexed: 12/04/2022]
Abstract
Simple Summary Global climate change is accelerating and modifying the distribution of many extant species. Dragonflies, as a group, inhabit aquatic as well as terrestrial environments and are considered sensitive climate change indicators. In this study, we model and predict the range of a large, tropical damselfly Neurobasis chinensis L. under the last glacial maximum (LGM), the current, and four future warming scenarios. The models show that the species mainly occupies forest ecosystems below 1200 m (preferring 500 to 1200 m) and had two historic core distribution areas in LGM, one of which survived, namely south-central Vietnam. The future scenarios show that the core distribution, high suitable habitats, and even the whole species range of N. chinensis will extend northwards. Abstract Neurobasis chinensis is widely distributed in eastern tropical Asia. Its only congener in China, the N. anderssoni, has not been observed for decades. To protect N. chinensis, it is necessary to understand the ecological properties of its habitats and specie’s range shift under climate change. In the present study, we modeled its potential distribution under one historical, current, and four future scenarios. We evaluated the importance of the factors that shape its distribution and habitats and predicted the historical and current core spatial distributions and their shifting in the future. Two historical core distribution areas were identified: the inland region of the Bay of Bengal and south-central Vietnam. The current potential distribution includes south China, Vietnam, Laos, Thailand, Myanmar, Luzon of Philippines, Malaysia, southwest and northeast India, Sri Lanka, Indonesia (Java, Sumatera), Bangladesh, Nepal, Bhutan, and foothills of the Himalayas, in total, ca. 3.59 × 106 km2. Only one core distribution remained, concentrated in south-central Vietnam. In a warming future, the core distribution, high suitable habitats, and even the whole range of N. chinensis will expand and shift northwards. Currently, N. chinensis mainly resides in forest ecosystems below 1200 m above sea level (preferred 500 m to 1200 m a.s.l.). Annual precipitation, mean temperature of driest quarter, and seasonality of precipitation are important factors shaping the species distribution. Our study provides systematic information on habitats and geographical distribution, which is useful for the conservation of N. chinensis.
Collapse
|
18
|
Schneider L, Rebetez M, Rasmann S. The effect of climate change on invasive crop pests across biomes. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100895. [PMID: 35240333 DOI: 10.1016/j.cois.2022.100895] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Climate change has various and complex effects on crop pests worldwide. In this review, we detail the role of the main climatic parameters related to temperature and precipitation changes that might have direct or indirect impacts on pest species. Changes in these parameters are likely to favour or to limit pest species, depending on their ecological context. On a global scale, crop pests are expected to benefit from current and future climate change. However, substantial differences appear across biomes and species. Temperate regions are generally more likely to face an increase in pest attacks compared with tropical regions. Therefore, climate change effects should be studied in the context of local climate and local ecological interactions across biomes.
Collapse
Affiliation(s)
- Léonard Schneider
- Institute of Geography, University of Neuchâtel, Espace Tilo-Frey 1, 2000 Neuchâtel, Switzerland; Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Neuchâtel, Switzerland.
| | - Martine Rebetez
- Institute of Geography, University of Neuchâtel, Espace Tilo-Frey 1, 2000 Neuchâtel, Switzerland; Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Neuchâtel, Switzerland
| | - Sergio Rasmann
- Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| |
Collapse
|
19
|
Silva ACSD, Carvalho CALD, Machado CS, Costa JA, Almeida RSDJ, Santos JAD, Alves RMDO, Sodré GDS. Orchidists’ profile, management and perception of the main pests in orchid cultivation. ARQUIVOS DO INSTITUTO BIOLÓGICO 2022. [DOI: 10.1590/1808-1657000502020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
20
|
|
21
|
Vicente-Díez I, Blanco-Pérez R, Chelkha M, Puelles M, Pou A, Campos-Herrera R. Exploring the Use of Entomopathogenic Nematodes and the Natural Products Derived from Their Symbiotic Bacteria to Control the Grapevine Moth, Lobesia botrana (Lepidoptera: Tortricidae). INSECTS 2021; 12:insects12111033. [PMID: 34821833 PMCID: PMC8622629 DOI: 10.3390/insects12111033] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/26/2021] [Accepted: 11/11/2021] [Indexed: 01/22/2023]
Abstract
Simple Summary The European grapevine moth (EGVM) Lobesia botrana (Lepidoptera: Tortricidae) attacks vineyards in Europe, the Middle East, and North and South America. Global movement toward sustainable agriculture urges the development of environmentally friendly tools that can replace traditional pesticides. Entomopathogenic nematodes (EPNs) are well-known biological control agents against various arthropod pests. The EPNs act together with symbiotic bacteria that produce natural products with insecticidal potential. Novel formulations and application technology allow their application against aerial pests, including those associated with vineyards. This study investigated the viability of four EPN species and their corresponding bacteria derivates (unfiltered ferment, UF, or cell-free supernatant, CFS) against EGVM (larval and pupa instars). The results revealed that all EPN species killed various EGVM larval stages. Killing pupae required a higher number of IJs than controlling larvae. Steinernema carpocapsae registered the most promising results, killing ~50% L1 and >75% L3/L5 in 2 days. The use of the bacterial bioactive compounds achieved similar results, with UF registering higher activity than CFS. Overall, we demonstrated that both EPN and bacterial bioproducts have a great potential to control EGVM in sustainable viticulture. Further research in co-formulation with adjuvants is required to ensure their survival in the aboveground grapevine areas. Abstract The European grapevine moth (EGVM) Lobesia botrana (Lepidoptera: Tortricidae) is a relevant pest in the Palearctic region vineyards and is present in the Americas. Their management using biological control agents and environmentally friendly biotechnical tools would reduce intensive pesticide use. The entomopathogenic nematodes (EPNs) in the families Steinernematidae and Heterorhabditidae are well-known virulent agents against arthropod pests thanks to symbiotic bacteria in the genera Xenorhabdus and Photorhabdus (respectively) that produce natural products with insecticidal potential. Novel technological advances allow field applications of EPNs and those bioactive compounds as powerful bio-tools against aerial insect pests. This study aimed to determine the viability of four EPN species (Steinernema feltiae, S. carpocapsae, S. riojaense, and Heterorhabditis bacteriophora) as biological control agents against EGVM larval instars (L1, L3, and L5) and pupae. Additionally, the bioactive compounds from their four symbiotic bacteria (Xenorhabdus bovienii, X. nematophila, X. kozodoii, and Photorhabdus laumondii subsp. laumondii, respectively) were tested as unfiltered ferment (UF) and cell-free supernatant (CFS) against the EGVM larval instars L1 and L3. All of the EPN species showed the capability of killing EGVM during the larval and pupal stages, particularly S. carpocapsae (mortalities of ~50% for L1 and >75% for L3 and L5 in only two days), followed by efficacy by S. feltiae. Similarly, the bacterial bioactive compounds produced higher larval mortality at three days against L1 (>90%) than L3 (~50%), making the application of UF more virulent than the application of CFS. Our findings indicate that both steinernematid species and their symbiotic bacterial bioactive compounds could be considered for a novel agro-technological approach to control L. botrana in vineyards. Further research into co-formulation with adjuvants is required to expand their viability when implemented for aboveground grapevine application.
Collapse
Affiliation(s)
- Ignacio Vicente-Díez
- Instituto de Ciencias de la Vid y del Vino (ICVV), Gobierno de La Rioja, CSIC, Universidad de La Rioja, Finca La Grajera Crta. Burgos Km. 6 Salida 13 Lo-20, 26007 Logroño, Spain; (I.V.-D.); (R.B.-P.); (M.C.); (M.P.); (A.P.)
| | - Rubén Blanco-Pérez
- Instituto de Ciencias de la Vid y del Vino (ICVV), Gobierno de La Rioja, CSIC, Universidad de La Rioja, Finca La Grajera Crta. Burgos Km. 6 Salida 13 Lo-20, 26007 Logroño, Spain; (I.V.-D.); (R.B.-P.); (M.C.); (M.P.); (A.P.)
| | - Maryam Chelkha
- Instituto de Ciencias de la Vid y del Vino (ICVV), Gobierno de La Rioja, CSIC, Universidad de La Rioja, Finca La Grajera Crta. Burgos Km. 6 Salida 13 Lo-20, 26007 Logroño, Spain; (I.V.-D.); (R.B.-P.); (M.C.); (M.P.); (A.P.)
- Research Team “Lombricidae, Improving Soil Productivity and Environment” (LAPSE), Ecole Normale Supérieure (E.N.S.), Centre Eau, Ressources Naturelles, Environnement et Développement Durable (CERNE2D), Mohammed V University, Avenue Mohamed Bel Hassan El Ouazzani, Takaddoum, Rabat BP 5118, Morocco
| | - Miguel Puelles
- Instituto de Ciencias de la Vid y del Vino (ICVV), Gobierno de La Rioja, CSIC, Universidad de La Rioja, Finca La Grajera Crta. Burgos Km. 6 Salida 13 Lo-20, 26007 Logroño, Spain; (I.V.-D.); (R.B.-P.); (M.C.); (M.P.); (A.P.)
| | - Alicia Pou
- Instituto de Ciencias de la Vid y del Vino (ICVV), Gobierno de La Rioja, CSIC, Universidad de La Rioja, Finca La Grajera Crta. Burgos Km. 6 Salida 13 Lo-20, 26007 Logroño, Spain; (I.V.-D.); (R.B.-P.); (M.C.); (M.P.); (A.P.)
| | - Raquel Campos-Herrera
- Instituto de Ciencias de la Vid y del Vino (ICVV), Gobierno de La Rioja, CSIC, Universidad de La Rioja, Finca La Grajera Crta. Burgos Km. 6 Salida 13 Lo-20, 26007 Logroño, Spain; (I.V.-D.); (R.B.-P.); (M.C.); (M.P.); (A.P.)
- Correspondence: ; Tel.: +34-941-894980 (ext. 410102)
| |
Collapse
|
22
|
Nobre T. Olive fruit fly and its obligate symbiont Candidatus Erwinia dacicola: Two new symbiont haplotypes in the Mediterranean basin. PLoS One 2021; 16:e0256284. [PMID: 34495983 PMCID: PMC8425570 DOI: 10.1371/journal.pone.0256284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/03/2021] [Indexed: 11/19/2022] Open
Abstract
The olive fruit fly, specialized to become monophagous during several life stages, remains the most important olive tree pest with high direct production losses, but also affecting the quality, composition, and inherent properties of the olives. Thought to have originated in Africa is nowadays present wherever olive groves are grown. The olive fruit fly evolved to harbor a vertically transmitted and obligate bacterial symbiont -Candidatus Erwinia dacicola- leading thus to a tight evolutionary history between olive tree, fruit fly and obligate, vertical transmitted symbiotic bacterium. Considering this linkage, the genetic diversity (at a 16S fragment) of this obligate symbiont was added in the understanding of the distribution pattern of the holobiont at nine locations throughout four countries in the Mediterranean Basin. This was complemented with mitochondrial (four mtDNA fragments) and nuclear (ten microsatellites) data of the host. We focused on the previously established Iberian cluster for the B. oleae structure and hypothesised that the Tunisian samples would fall into a differentiated cluster. From the host point of view, we were unable to confirm this hypothesis. Looking at the symbiont, however, two new 16S haplotypes were found exclusively in the populations from Tunisia. This finding is discussed in the frame of host-symbiont specificity and transmission mode. To understand olive fruit fly population diversity and dispersion, the dynamics of the symbiont also needs to be taken into consideration, as it enables the fly to, so efficiently and uniquely, exploit the olive fruit resource.
Collapse
Affiliation(s)
- Tânia Nobre
- MED - Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Évora, Portugal
- * E-mail:
| |
Collapse
|
23
|
Sanané I, Legrand J, Dillmann C, Marion-Poll F. High-Throughput Feeding Bioassay for Lepidoptera Larvae. J Chem Ecol 2021; 47:642-652. [PMID: 34331170 PMCID: PMC8346434 DOI: 10.1007/s10886-021-01290-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/21/2021] [Accepted: 06/10/2021] [Indexed: 12/03/2022]
Abstract
Finding plant cultivars that are resistant or tolerant against lepidopteran pests, takes time, effort and is costly. We present here a high throughput leaf-disk consumption assay system, to screen plants for resistance or chemicals for their deterrence. A webcam capturing images at regular intervals can follow the feeding activities of 150 larvae placed into individual cages. We developed a computer program running under an open source image analysis program to analyze and measure the surface of each leaf disk over time. We further developed new statistical procedures to analyze the time course of the feeding activities of the larvae and to compare them between treatments. As a test case, we compared how European corn borer larvae respond to a commercial antifeedant containing azadirachtin, and to quinine, which is a bitter alkaloid for many organisms. As expected, increasing doses of azadirachtin reduced and delayed feeding. However, quinine was poorly effective at the range of concentrations tested (10-5 M to 10-2 M). The model cage, the camera holder, the plugins, and the R scripts are freely available, and can be modified according to the users' needs.
Collapse
Affiliation(s)
- Inoussa Sanané
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, 91190, Gif-sur-Yvette, France
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France
| | - Judith Legrand
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, 91190, Gif-sur-Yvette, France
| | - Christine Dillmann
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, 91190, Gif-sur-Yvette, France
| | - Frédéric Marion-Poll
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France.
- Université Paris-Saclay, AgroParisTech, Paris, France.
| |
Collapse
|
24
|
Morse DH. Rapid phenological change differs across four trophic levels over 15 years. Oecologia 2021; 196:577-587. [PMID: 33999268 DOI: 10.1007/s00442-021-04938-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/05/2021] [Indexed: 11/29/2022]
Abstract
The success of consumers often depends on synchronizing with their resources; however, recent climate change has affected the phenology of many species, resulting in mismatches and leading to community-wide changes. Field studies chronicling both the dynamics and behavior of four trophic levels seldom run for more than a few years, thereby bringing into question the longer term trajectories of these phenological shifts at multiple levels. Do these shifts between trophic levels remain constant over time, or do they continue to move apart? To address these questions, in 2004, I initiated a long-term study of the phenological relationships of two ferns, a host caterpillar (and its moth), its principal primary parasitoid wasp, and hyperparasitoid wasp. The study involves only a few species at each level, but they make up nearly all the members of the community. Ferns emerged progressively earlier in the spring, at rates exceeding one day per year, while moths eclosed roughly 0.6 days earlier per year, the primary parasitoid at 0.8 days earlier per year, and the hyperparasitoid fluctuated widely. Each of these changes fostered significant mismatches. Year-to-year changes of the moth and primary parasitoid varied much more than those of the ferns. In each instance, dates of last eclosions moved earlier more rapidly than did early eclosion dates, truncating their seasons. The extremely rapid, though variable, changes in phenology of the various trophic levels follow the unprecedentedly rapid temperature increase of the immediately adjacent Gulf of Maine.
Collapse
Affiliation(s)
- Douglass H Morse
- Department of Ecology and Evolutionary Biology, Brown University, Box G-W, Providence, RI, 02912, USA.
| |
Collapse
|
25
|
Zytynska SE. Embracing the complexity of plant-microbe-insect interactions under a changing climate for sustainable agriculture. CURRENT OPINION IN INSECT SCIENCE 2021; 44:89-94. [PMID: 33887532 DOI: 10.1016/j.cois.2021.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Using beneficial soil bacteria to promote plant growth and reduce pests is a promising direction for sustainable agriculture. However, we need to understand the ecological basis of these interactions in order to identify those with the greatest potential to have an impact in the field. To do this, we need to embrace the complexity of multifactorial experiments to observe the strength of benefits across variable environments. I briefly review the recent literature on plant-microbe-insect interactions across changing environments, focusing on those using multiple factors. I finish by exploring ecological research approaches and multifactorial experimental designs that can be used to simplify the study of plant-microbe-insect interactions.
Collapse
Affiliation(s)
- Sharon E Zytynska
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.
| |
Collapse
|
26
|
Wilson JK, Casajus N, Hutchinson RA, McFarland KP, Kerr JT, Berteaux D, Larrivée M, Prudic KL. Climate Change and Local Host Availability Drive the Northern Range Boundary in the Rapid Expansion of a Specialist Insect Herbivore, Papilio cresphontes. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.579230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Species distributions, abundance, and interactions have always been influenced by human activity and are currently experiencing rapid change. Biodiversity benchmark surveys traditionally require intense human labor inputs to find, identify, and record organisms limiting the rate and impact of scientific enquiry and discovery. Recent emergence and advancement of monitoring technologies have improved biodiversity data collection to a scale and scope previously unimaginable. Community science web platforms, smartphone applications, and technology assisted identification have expedited the speed and enhanced the volume of observational data all while providing open access to these data worldwide. How to integrate and leverage the data into valuable information on how species are changing in space and time requires new best practices in computational and analytical approaches. Here we integrate data from three community science repositories to explore how a specialist herbivore distribution changes in relation to host plant distributions and other environmental factors. We generate a series of temporally explicit species distribution models to generate range predictions for a specialist insect herbivore (Papilio cresphontes) and three predominant host-plant species. We find that this insect species has experienced rapid northern range expansion, likely due to a combination of the range of its larval host plants and climate changes in winter. This case study shows rapid data collection through large scale community science endeavors can be leveraged through thoughtful data integration and transparent analytic pipelines to inform how environmental change impacts where species are and their interactions for a more cost effective method of biodiversity benchmarking.
Collapse
|
27
|
Gilbert EPK, Edwin L. A Review on Prediction Models for Pesticide Use, Transmission, and Its Impacts. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 257:37-68. [PMID: 33932184 DOI: 10.1007/398_2020_64] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The lure of increased productivity and crop yield has caused the imprudent use of pesticides in great quantity that has unfavorably affected environmental health. Pesticides are chemicals intended for avoiding, eliminating, and mitigating any pests that affect the crop. Lack of awareness, improper management, and negligent disposal of pesticide containers have led to the permeation of pesticide residues into the food chain and other environmental pathways, leading to environmental degradation. Sufficient steps must be undertaken at various levels to monitor and ensure judicious use of pesticides. Development of prediction models for optimum use of pesticides, pesticide management, and their impact would be of great help in monitoring and controlling the ill effects of excessive use of pesticides. This paper aims to present an exhaustive review of the prediction models developed and modeling strategies used to optimize the use of pesticides.
Collapse
Affiliation(s)
- Edwin Prem Kumar Gilbert
- Department of Information Technology, Sri Krishna College of Engineering and Technology, Coimbatore, Tamil Nadu, India.
| | - Lydia Edwin
- Department of Mechatronics Engineering, Sri Krishna College of Engineering and Technology, Coimbatore, Tamil Nadu, India
| |
Collapse
|
28
|
Xu D, Li X, Jin Y, Zhuo Z, Yang H, Hu J, Wang R. Influence of climatic factors on the potential distribution of pest Heortia vitessoides Moore in China. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
29
|
Ward SF, Aukema BH, Fei S, Liebhold AM. Warm temperatures increase population growth of a nonnative defoliator and inhibit demographic responses by parasitoids. Ecology 2020; 101:e03156. [PMID: 32740922 DOI: 10.1002/ecy.3156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 06/01/2020] [Accepted: 06/19/2020] [Indexed: 11/06/2022]
Abstract
Changes in thermal regimes that disparately affect hosts and parasitoids could release hosts from biological control. When multiple natural enemy species share a host, shifts in host-parasitoid dynamics could depend on whether natural enemies interact antagonistically vs. synergistically. We investigated how biotic and abiotic factors influence the population ecology of larch casebearer (Coleophora laricella), a nonnative pest, and two imported parasitoids, Agathis pumila and Chrysocharis laricinellae, by analyzing (1) temporal dynamics in defoliation from 1962 to 2018, and (2) historical, branch-level data on densities of larch casebearer and parasitism rates by the two imported natural enemies from 1972 to 1995. Analyses of defoliation indicated that, prior to the widespread establishment of parasitoids (1962 to ~1980), larch casebearer outbreaks occurred in 2-6 yr cycles. This pattern was followed by a >15-yr period during which populations were at low, apparently stable densities undetectable via aerial surveys, presumably under control from parasitoids. However, since the late 1990s and despite the persistence of both parasitoids, outbreaks exhibiting unstable dynamics have occurred. Analyses of branch-level data indicated that growth of casebearer populations, A. pumila populations, and within-casebearer densities of C. laricinellae-a generalist whose population dynamics are likely also influenced by use of alternative hosts-were inhibited by density dependence, with high intraspecific densities in one year slowing growth into the next. Casebearer population growth was also inhibited by parasitism from A. pumila, but not C. laricinellae, and increased with warmer autumnal temperatures. Growth of A. pumila populations and within-casebearer densities of C. laricinellae increased with casebearer densities but decreased with warmer annual maximum temperatures. Moreover, parasitism by A. pumila was associated with increased growth of within-casebearer densities of C. laricinellae without adverse effects on its own demographics, indicating a synergistic interaction between these parasitoids. Our results indicate that warming can be associated with opposing effects between trophic levels, with deleterious effects of warming on one natural enemy species potentially being exacerbated by similar impacts on another. Coupling of such parasitoid responses with positive responses of hosts to warming might have contributed to the return of casebearer outbreaks to North America.
Collapse
Affiliation(s)
- Samuel F Ward
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Brian H Aukema
- Department of Entomology, University of Minnesota, Saint Paul, Minnesota, 55108, USA
| | - Songlin Fei
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Andrew M Liebhold
- USDA Forest Service, Northern Research Station, Morgantown, West Virginia, 26505, USA.,Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, CZ 165 21, Praha 6-Suchdol, Czech Republic
| |
Collapse
|
30
|
Gomez-Zavaglia A, Mejuto JC, Simal-Gandara J. Mitigation of emerging implications of climate change on food production systems. Food Res Int 2020; 134:109256. [PMID: 32517948 PMCID: PMC7176580 DOI: 10.1016/j.foodres.2020.109256] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/25/2020] [Accepted: 04/17/2020] [Indexed: 02/01/2023]
Abstract
Crops, livestock and seafood are major contributors to global economy. Agriculture and fisheries are especially dependent on climate. Thus, elevated temperatures and carbon dioxide levels can have large impacts on appropriate nutrient levels, soil moisture, water availability and various other critical performance conditions. Changes in drought and flood frequency and severity can pose severe challenges to farmers and threaten food safety. In addition, increasingly warmer water temperatures are likely to shift the habitat ranges of many fish and shellfish species, ultimately disrupting ecosystems. In general, climate change will probably have negative implications for farming, animal husbandry and fishing. The effects of climate change must be taken into account as a key aspect along with other evolving factors with a potential impact on agricultural production, such as changes in agricultural practices and technology; all of them with a serious impact on food availability and price. This review is intended to provide critical and timely information on climate change and its implications in the food production/consumption system, paying special attention to the available mitigation strategies.
Collapse
Affiliation(s)
- A Gomez-Zavaglia
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), RA1900 La Plata, Buenos Aires Argentina.
| | - J C Mejuto
- Department of Physical Chemistry, Faculty of Science, University of Vigo - Ourense Campus, Ourense, Spain.
| | - J Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Science, University of Vigo - Ourense Campus, Ourense Spain.
| |
Collapse
|
31
|
Mondani L, Palumbo R, Tsitsigiannis D, Perdikis D, Mazzoni E, Battilani P. Pest Management and Ochratoxin A Contamination in Grapes: A Review. Toxins (Basel) 2020; 12:E303. [PMID: 32392817 PMCID: PMC7290310 DOI: 10.3390/toxins12050303] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 12/26/2022] Open
Abstract
Ochratoxin A (OTA) is the most toxic member of ochratoxins, a group of toxic secondary metabolites produced by fungi. The most relevant species involved in OTA production in grapes is Aspergillus carbonarius. Berry infection by A. carbonarius is enhanced by damage to the skin caused by abiotic and biotic factors. Insect pests play a major role in European vineyards, and Lepidopteran species such as the European grapevine moth Lobesia botrana are undoubtedly crucial. New scenarios are also emerging due to the introduction and spread of allochthonous pests as well as climate change. Such pests may be involved in the dissemination of OTA producing fungi even if confirmation is still lacking and further studies are needed. An OTA predicting model is available, but it should be integrated with models aimed at forecasting L. botrana phenology and demography in order to improve model reliability.
Collapse
Affiliation(s)
- Letizia Mondani
- Department of Sustainable Crop Production (DI.PRO.VE.S.), Faculty of Agriculture, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29100 Piacenza, Italy; (L.M.); (R.P.)
| | - Roberta Palumbo
- Department of Sustainable Crop Production (DI.PRO.VE.S.), Faculty of Agriculture, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29100 Piacenza, Italy; (L.M.); (R.P.)
| | - Dimitrios Tsitsigiannis
- School of Plant Sciences, Department of Crop Science, Laboratory of Plant Pathology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece;
| | - Dionysios Perdikis
- School of Plant Sciences, Department of Crop Science, Laboratory of Agricultural Zoology and Entomology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece;
| | - Emanuele Mazzoni
- Department of Sustainable Crop Production (DI.PRO.VE.S.), Faculty of Agriculture, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29100 Piacenza, Italy; (L.M.); (R.P.)
| | - Paola Battilani
- Department of Sustainable Crop Production (DI.PRO.VE.S.), Faculty of Agriculture, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29100 Piacenza, Italy; (L.M.); (R.P.)
| |
Collapse
|
32
|
Damien M, Tougeron K. Prey-predator phenological mismatch under climate change. CURRENT OPINION IN INSECT SCIENCE 2019; 35:60-68. [PMID: 31401300 DOI: 10.1016/j.cois.2019.07.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 05/21/2023]
Abstract
Insect phenology is affected by climate change and main responses are driven by phenotypic plasticity and evolutionary changes. Any modification in seasonal activity in one species can have consequences on interacting species, within and among trophic levels. In this overview, we focus on synchronisation mismatches that can occur between tightly interacting species such as hosts and parasitoids or preys and predators. Asynchronies happen because species from different trophic levels can have different response rates to climate change. We show that insect species alter their seasonal activities by modifying their life-cycle through change in voltinism or by altering their development rate. We expect strong bottom-up effects for phenology adjustments rather than top-down effects within food-webs. Extremely complex outcomes arise from such trophic mismatches, which make consequences at the community or ecosystem levels tricky to predict in a climate change context. We explore a set of potential consequences on population dynamics, conservation of species interactions, with a particular focus on the provision of ecosystem services by predators and parasitoids, such as biological pest control.
Collapse
Affiliation(s)
- Maxime Damien
- Crop Research Institute (Výzkumný ústav rostlinné výroby), Drnovská 507, 161 06 Praha 6, Ruzyně, Czech Republic.
| | - Kévin Tougeron
- The University of Wisconsin - La Crosse, Department of Biology, La Crosse 54601, WI, USA; UMR 7058, CNRS-UPJV, EDYSAN "Ecologie et Dynamique des Systèmes Anthropisés", Amiens 80000, France
| |
Collapse
|
33
|
Boukal DS, Bideault A, Carreira BM, Sentis A. Species interactions under climate change: connecting kinetic effects of temperature on individuals to community dynamics. CURRENT OPINION IN INSECT SCIENCE 2019; 35:88-95. [PMID: 31445412 DOI: 10.1016/j.cois.2019.06.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 06/10/2023]
Abstract
Human-induced climate change, dominated by warming trends, poses a major threat to global biodiversity and ecosystem functioning. Species interactions relay the direct and indirect effects of climate warming on individuals to communities, and detailed understanding across these levels is crucial to predict ecological consequences of climate change. We provide a conceptual framework that links temperature effects on insect physiology and behaviour to altered species interactions and community dynamics. We highlight key features of this framework with recent studies investigating the impacts of warming climate on insects and other ectotherms and identify methodological, taxonomic and geographic biases. While the effects of increased constant temperatures are now well understood, future studies should focus on temperature variation, interactions with other stressors and cross-system comparisons.
Collapse
Affiliation(s)
- David S Boukal
- University of South Bohemia, Faculty of Science, Department of Ecosystem Biology and Soil and Water Research Infrastructure, Branišovská 1760, 37005 České Budějovice, Czech Republic; Czech Academy of Sciences, Biology Centre, Institute of Entomology, Branišovská 31, 37005 České Budějovice, Czech Republic.
| | - Azenor Bideault
- Département de biologie, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, Québec J1K 2R1, Canada; Centre for Biodiversity Theory and Modelling, Station d'Ecologie Expérimentale du Centre National de la Recherche Scientifique (CNRS), 2 Route du CNRS, 09200 Moulis, France
| | - Bruno M Carreira
- University of South Bohemia, Faculty of Science, Department of Ecosystem Biology and Soil and Water Research Infrastructure, Branišovská 1760, 37005 České Budějovice, Czech Republic; Czech Academy of Sciences, Biology Centre, Institute of Entomology, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Arnaud Sentis
- IRSTEA, Aix Marseille Univ., UMR RECOVER, 3275 route Cézanne, 13182 Aix-en-Provence, France
| |
Collapse
|
34
|
A novel modelling approach to describe an insect life cycle vis-à-vis plant protection: description and application in the case study of Tuta absoluta. Ecol Modell 2019. [DOI: 10.1016/j.ecolmodel.2019.108778] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Savi T, García González A, Herrera JC, Forneck A. Gas exchange, biomass and non-structural carbohydrates dynamics in vines under combined drought and biotic stress. BMC PLANT BIOLOGY 2019; 19:408. [PMID: 31533621 PMCID: PMC6749654 DOI: 10.1186/s12870-019-2017-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/05/2019] [Indexed: 05/07/2023]
Abstract
BACKGROUND Intensity of drought stress and pest attacks is forecasted to increase in the near future posing a serious threat to natural and agricultural ecosystems. Knowledge on potential effects of a combined abiotic-biotic stress on whole-plant physiology is lacking. We monitored the water status and carbon metabolism of a vine rootstock with or without scion subjected to water shortening and/or infestation with the sucking insect phylloxera (Daktulosphaira vitifoliae Fitch). We measured non-structural carbohydrates and biomass of different plant organs to assess the stress-induced responses at the root, stem, and leaf level. Effects of watering on root infestation were also addressed. RESULTS Higher root infestation was observed in drought-stressed plants compared to well-watered. The drought had a significant impact on most of the measured functional traits. Phylloxera further influenced vines water and carbon metabolism and enforced the sink strength of the roots by stimulating photosynthates translocation. The insect induced carbon depletion, reprogramed vine development, while preventing biomass compensation. A synergic effect of biotic-abiotic stress could be detected in several physiological and morphological traits. CONCLUSIONS Our results indicate that events of water shortage favour insects' feeding damage and increase the abundance of root nodosities. Root phylloxera infestation imposes a considerable stress to the plants which might exacerbate the negative effects of drought.
Collapse
Affiliation(s)
- Tadeja Savi
- Department of Integrative Biology and Biodiversity Research, University of Natural Resources and Life Sciences, Vienna (BOKU), Institute of Botany, Gregor-Mendel-Straße 33, 1190 Vienna, Austria
- Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna (BOKU), Institute of Viticulture and Pomology, Konrad Lorenz Strasse 24, A-3430 Tulln, Austria
| | - Almudena García González
- Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna (BOKU), Institute of Viticulture and Pomology, Konrad Lorenz Strasse 24, A-3430 Tulln, Austria
| | - Jose Carlos Herrera
- Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna (BOKU), Institute of Viticulture and Pomology, Konrad Lorenz Strasse 24, A-3430 Tulln, Austria
| | - Astrid Forneck
- Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna (BOKU), Institute of Viticulture and Pomology, Konrad Lorenz Strasse 24, A-3430 Tulln, Austria
| |
Collapse
|
36
|
Tripathi L, Ntui VO, Tripathi JN. Application of genetic modification and genome editing for developing climate‐smart banana. Food Energy Secur 2019. [DOI: 10.1002/fes3.168] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Leena Tripathi
- International Institute of Tropical Agriculture (IITA) Nairobi Kenya
| | | | | |
Collapse
|
37
|
Cao Y, Xu K, Zhu X, Bai Y, Yang W, Li C. Role of Modified Atmosphere in Pest Control and Mechanism of Its Effect on Insects. Front Physiol 2019; 10:206. [PMID: 30914968 PMCID: PMC6422892 DOI: 10.3389/fphys.2019.00206] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/18/2019] [Indexed: 11/13/2022] Open
Abstract
Pests not only attack field crops during the growing season, but also damage grains and other food products stored in granaries. Modified or controlled atmospheres (MAs or CAs) with higher or lower concentrations of atmospheric gases, mainly oxygen (O2), carbon dioxide (CO2), ozone (O3), and nitric oxide (NO), provide a cost-effective method to kill target pests and protect stored products. In this review, the most recent discoveries in the field of MAs are discussed, with a focus on pest control as well as current MA technologies. Although MAs have been used for more than 30 years in pest control and play a role in storage pest management, the specific mechanisms by which insects are affected by and adapt to low O2 (hypoxia) and high carbon CO2 (hypercapnia) are not completely understood. Insect tolerance to hypoxia/anoxia and hypercapnia involves a decrease in aerobic metabolism, including decreased NADPH enzyme activity, and subsequently, decreases in glutathione production and catalase, superoxide dismutase, glutathione-S-transferase, and glutathione peroxidase activities, as well as increases in carboxyl esterase and phosphatase activities. In addition, hypoxia induces energy and nutrient production, and in adapted insects, glycolysis and pyruvate carboxylase fluxes are downregulated, accompanied with O2 consumption and acetate production. Consequently, genes encoding various signal transduction pathway components, including epidermal growth factor, insulin, Notch, and Toll/Imd signaling, are downregulated. We review the changes in insect energy and nutrient sources, metabolic enzymes, and molecular pathways in response to modified O2, CO2, NO, and O3 concentrations, as well as the role of MAs in pest control. This knowledge will be useful for applying MAs in combination with temperature control for pest control in stored food products.
Collapse
Affiliation(s)
- Yu Cao
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, China
| | - Kangkang Xu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, China
| | - Xiaoye Zhu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, China
| | - Yu Bai
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, China
| | - Wenjia Yang
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, China
| | - Can Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, China
| |
Collapse
|
38
|
Climate Change, Carbon Dioxide, and Pest Biology, Managing the Future: Coffee as a Case Study. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8080152] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The challenge of maintaining sufficient food, feed, fiber, and forests, for a projected end of century population of between 9–10 billion in the context of a climate averaging 2–4 °C warmer, is a global imperative. However, climate change is likely to alter the geographic ranges and impacts for a variety of insect pests, plant pathogens, and weeds, and the consequences for managed systems, particularly agriculture, remain uncertain. That uncertainty is related, in part, to whether pest management practices (e.g., biological, chemical, cultural, etc.) can adapt to climate/CO2 induced changes in pest biology to minimize potential loss. The ongoing and projected changes in CO2, environment, managed plant systems, and pest interactions, necessitates an assessment of current management practices and, if warranted, development of viable alternative strategies to counter damage from invasive alien species and evolving native pest populations. We provide an overview of the interactions regarding pest biology and climate/CO2; assess these interactions currently using coffee as a case study; identify the potential vulnerabilities regarding future pest impacts; and discuss possible adaptive strategies, including early detection and rapid response via EDDMapS (Early Detection & Distribution Mapping System), and integrated pest management (IPM), as adaptive means to improve monitoring pest movements and minimizing biotic losses while improving the efficacy of pest control.
Collapse
|