1
|
Těšínská P, Škarohlíd R, Kroužek J, McGachy L. Environmental fate of organic UV filters: Global occurrence, transformation, and mitigation via advanced oxidation processes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125134. [PMID: 39419468 DOI: 10.1016/j.envpol.2024.125134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/09/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Organic UV filters are used in personal care products, plastics, paints, and textiles to protect against UV radiation. Despite regulatory limits, these compounds still enter the environment through direct wash-off during swimming, evaporation, leaching from products, and incomplete removal in wastewater treatment plants. They have been detected in various environmental matrices worldwide. Once in the environment, organic UV filters can undergo phototransformation and biotransformation, forming transformation products that, together with parent substances, pose health risks to humans and wildlife and harm marine ecosystems, especially coral reefs. The increasing concern over water scarcity and the environmental impact of pollutants underscores the importance of eliminating these contaminants from aquatic environments. This review primarily focuses on organic UV filters approved for use in sunscreens, many of which are also utilized in other materials, with a few exceptions including UV stabilizer UV-328. It includes an in-depth analysis of 155 peer-reviewed articles published from 2015 to 2024, assessing the concentrations of these filters in various environmental matrices, including water and solid matrices, air and biota. Moreover, this review explores the environmental transformation of these chemicals and assesses the effectiveness of advanced oxidation processes (AOPs) in removing these pollutants. The findings highlight the pervasive presence of organic UV filters in the environment and the promising potential of AOPs to mitigate the associated environmental challenges.
Collapse
Affiliation(s)
- Pavlína Těšínská
- Department of Environmental Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628, Prague, Czech Republic
| | - Radek Škarohlíd
- Department of Environmental Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628, Prague, Czech Republic
| | - Jiří Kroužek
- Department of Environmental Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628, Prague, Czech Republic
| | - Lenka McGachy
- Department of Environmental Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628, Prague, Czech Republic.
| |
Collapse
|
2
|
Castro MP, Mena IF, Sáez C, Rodrigo MA. Treatment of effluent from municipal wastewater treatment plants using electrochemically produced Caro's acid. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 373:123686. [PMID: 39673855 DOI: 10.1016/j.jenvman.2024.123686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/27/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
This work describes the application of electrochemically produced Caro's acid in a divided electrochemical flow cell for the removal of fourteen CECs from real effluent at a municipal wastewater treatment plant in Ciudad Real, Spain. The results are compared with direct dosing of the reagent (with an ionic/molecular oxidant) and radical-assisted oxidation (activated sulfate radical via photochemical oxidation or hydrogen peroxide-induced radical oxidation). This study sheds light on the underlying mechanisms of these processes. As well, the effect of these three technologies on effluent disinfection is evaluated. The results demonstrate that this treatment alternative efficiently destroys all monitored pollutants, reaching the detection limits of the analytical equipment.
Collapse
Affiliation(s)
- M Pilar Castro
- Department of Chemical Engineering, Research Institute for Chemical and Environmental Technologies (ITQUIMA), University of Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Ismael F Mena
- Department of Chemical Engineering, Faculty of Chemical Sciences &Technologies. University of Castilla-La Mancha, Campus Universitario s/n, 13071, Ciudad Real, Spain
| | - Cristina Sáez
- Department of Chemical Engineering, Faculty of Chemical Sciences &Technologies. University of Castilla-La Mancha, Campus Universitario s/n, 13071, Ciudad Real, Spain.
| | - Manuel A Rodrigo
- Department of Chemical Engineering, Faculty of Chemical Sciences &Technologies. University of Castilla-La Mancha, Campus Universitario s/n, 13071, Ciudad Real, Spain
| |
Collapse
|
3
|
Herrera-Muñoz J, Ibáñez M, Calzadilla W, Cabrera-Reina A, García V, Salazar-González R, Hernández F, Campos-Mañas M, Miralles-Cuevas S. Assessment of contaminants of emerging concern and antibiotic resistance genes in the Mapocho River (Chile): A comprehensive study on water quality and municipal wastewater impact. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176198. [PMID: 39278476 DOI: 10.1016/j.scitotenv.2024.176198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/08/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
The primary objective of this study was to evaluate the persistence and elimination of Contaminants of Emerging Concern (CECs) in municipal wastewater treatment plants (MWWTPs) and their presence in the Mapocho River within the metropolitan area of Santiago, Chile. The use of advanced analytical techniques, based on liquid chromatography coupled to both low and high-resolution mass spectrometry, allowed a comprehensive overview on the presence of CECs in samples. Additionally, a preliminary assessment of the microbiological aspects aimed to determine the presence of indicator microorganisms of fecal contamination, such as Escherichia coli and total coliforms was conducted. Furthermore, a qualitative assessment of Antibiotic Resistant Genes (ARGs) was performed. No CECs were detected upstream to the MWWTPs. However, the results from various wastewater samples (influent, secondary, and tertiary effluents) revealed significant diversity, with 73 CECs detected alongside prevalent ARGs including sulI, sulfII, qnrB, and blaTEM. The presence of CECs and ARGs downstream of the MWWTP in the Mapocho River was mainly attributed to effluent discharge. On the other hand, typical values for a healthy river and a MWWTP with a final disinfection stage were found in terms of fecal contamination. Consequently, the imperative for developing tertiary or quaternary treatments capable of degrading CECs and ARGs to minimize environmental impact is underscored. These findings hold public health significance, offering insights into potential risks and influencing future legislative measures in Chile.
Collapse
Affiliation(s)
- José Herrera-Muñoz
- Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Casilla 40, Correo 33, Santiago, Chile; Grupo de Investigación de Análisis, Tratamiento, Electroquímica, Recuperación y Reúso de Agua (WATER(b)), Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Chile; Instituto Universitario de Investigación y Desarrollo Tecnológico (IDT), Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago, Chile
| | - María Ibáñez
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat s/n, 12071 Castellón, Spain
| | - Wendy Calzadilla
- Grupo de Investigación de Análisis, Tratamiento, Electroquímica, Recuperación y Reúso de Agua (WATER(b)), Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Chile
| | - Alejandro Cabrera-Reina
- Instituto Universitario de Investigación y Desarrollo Tecnológico (IDT), Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago, Chile
| | - Verónica García
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile, Alameda 3363, Estación Central, Santiago, Chile; Centro de Estudio en Ciencia y Tecnología de los Alimentos (CECTA-USACH), Obispo Manuel Umaña 050, Estación Central, Santiago, Chile
| | - Ricardo Salazar-González
- Grupo de Investigación de Análisis, Tratamiento, Electroquímica, Recuperación y Reúso de Agua (WATER(b)), Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Chile.
| | - Félix Hernández
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat s/n, 12071 Castellón, Spain
| | - Marina Campos-Mañas
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat s/n, 12071 Castellón, Spain
| | - Sara Miralles-Cuevas
- Instituto Universitario de Investigación y Desarrollo Tecnológico (IDT), Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago, Chile.
| |
Collapse
|
4
|
Gokul P, Sobanaa M, Hari Krishna Kumar S, Prathiviraj R, Pamanji R, Suseela MNL, Vallamkonda B, Setia A, Selvin J, Muthu MS. Antibiotic contaminants and their impact in Gingee River, Puducherry: insights from SPE-UPLC-MS/MS and zebrafish study. Toxicol Res (Camb) 2024; 13:tfae183. [PMID: 39534183 PMCID: PMC11551050 DOI: 10.1093/toxres/tfae183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
The accumulation of antibiotic residues in ecosystems is intricately tied to the proliferation of bacterial resistance to antibiotics, with far-reaching consequences for the health and welfare of both humans and animal well-being. The analytical approach integrates solid phase extraction (SPE) with ultra performance liquid chromatography-mass spectrometry (UPLC-MS/MS) for quantification of multiclass antibiotic residues. Upon applying the aforementioned method to analyse water samples collected from the Gingee River, revealed the existence of five distinct antibiotics. This is the first study reporting antibiotic concentration in the Gingee River, Puducherry. The concentrations of nalidixic acid, sulfamethoxazole, and tetracycline were determined to be 8.5, 6.9, and 4.8 μg/L, respectively. Metronidazole and trimethoprim were detected at concentrations below the quantifiable limit. The microbial study of water samples also indicated that Shigella sp. and Acinetobacter sp. were the most predominant bacterial species present. Our preliminary observation underscores the importance of comprehending the intricate relationship between the presence of antibiotics in water and the concurrent proliferation of antibiotic-resistant bacteria within bacterial populations in the Gingee River. Further, we evaluated the developmental toxicity of environmentally relevant concentrations of antibiotics in zebrafish. The zebrafish model confirms that these antibiotics are sublethally hazardous to human health at environmentally relevant concentrations. This integrated approach allows unique views on the environmental impact of antibiotic residues, their role in the evolution of antibiotic resistance, and their impact on human health.
Collapse
Affiliation(s)
- Patharaj Gokul
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi-221005, Uttar Pradesh, India
| | - Murugesan Sobanaa
- Department of Microbiology, Pondicherry University, Puducherry 605014, India
| | | | | | - Rajesh Pamanji
- Department of Microbiology, Pondicherry University, Puducherry 605014, India
| | - Medapati Nikitha Lakshmi Suseela
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi-221005, Uttar Pradesh, India
| | - Bhaskar Vallamkonda
- Department of Pharmaceutical Science, School of Applied Sciences and Humanities, VIGNAN's Foundation for Science, Technology & Research, Vadlamudi, Andhra Pradesh 522213, India
| | - Aseem Setia
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi-221005, Uttar Pradesh, India
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University, Puducherry 605014, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi-221005, Uttar Pradesh, India
| |
Collapse
|
5
|
Serra Comineti CDS, Schlindwein MM, de Oliveira Hoeckel PH. Socio-environmental externalities of sewage waste management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174109. [PMID: 38908579 DOI: 10.1016/j.scitotenv.2024.174109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/22/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
Conventional sewage management is expensive and inefficient, putting the environment and public health at risk, making access to sewage services difficult for everyone. Reusing sewage waste has agricultural and economic potential, but can contain harmful contaminants if not treated properly. This review is based on the hypothesis that the destination of sewage waste generates environmental and social externalities, which have not yet been widely compared. With the aim of identifying, from the literature, the socio-environmental externalities generated by different sewage waste management approaches, a systematic review of the literature was carried out, including 244 documents, with 50 % of these discussing impacts of conventional treatment and 37 % analyzing the reuse of waste. The main impacts and externalities were evaluated in three situations: untreated sewage, treated sewage, and reused waste. The results indicate that sewage waste has an underutilized economic value and can generate revenue, reduce operational costs and electricity expenses. Six negative externalities generated by conventional sewage treatment were identified: health costs; environmental cleaning; carbon offsetting; damage to tourism; damage to fishing and agriculture; and real estate depreciation. In reuse, there is a risk of two negative externalities: health costs and environmental cleaning, but two positive externalities were also identified: the reduction of phosphate rock mining and the neutralization of carbon credits. The complexity of the transition to sustainable sewage treatment practices is highlighted given the lack of consensus on the safe use of sewage waste, the lack of regulatory standardization, implementation costs and differences in regional parameters, highlighting the need for preliminary experimentation in a multidisciplinary and contextualized approach, considering comparative externalities among the available sewage waste management possibilities.
Collapse
Affiliation(s)
- Camila da Silva Serra Comineti
- Federal University of Grande Dourados (UFGD), Rodovia Dourados/Itahum, Km 12, Cidade Universitária, Dourados 79.804-970, Brazil; Federal University of Mato Grosso do Sul (UFMS), Av. Costa e Silva, s/n° | Bairro Universitário, Campo Grande 79.070-900, Brazil.
| | - Madalena Maria Schlindwein
- Federal University of Grande Dourados (UFGD), Rodovia Dourados/Itahum, Km 12, Cidade Universitária, Dourados 79.804-970, Brazil.
| | | |
Collapse
|
6
|
Deng Z, Ma Y, Zhu J, Zeng C, Mu R, Zhang Z. In situ activation of peroxymonosulfate with bioelectricity for sulfamethoxazole sustainable removal. ENVIRONMENTAL RESEARCH 2024; 257:119294. [PMID: 38823609 DOI: 10.1016/j.envres.2024.119294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/15/2024] [Accepted: 05/30/2024] [Indexed: 06/03/2024]
Abstract
Conventional electrochemical activation of peroxymonosulfate (PMS) is not very cost-effective and practical by the excessive input of energy. The electricity generated by photosynthetic microalgae fuel cells (MFCs) is utilized to activate PMS, which would achieve the combination of green bioelectricity and advanced oxidation processes for sustainable pollutants degradation. In this study, a novel dual-chamber of MFCs was constructed by using microalgae as anode electron donor and PMS as cathode electron acceptor, which was operating under both close-circuit and open-circuit conditions. Under close-circuit condition, 1-12 mM PMS in cathode was successfully in situ activated, where 32.00%-99.83% of SMX was removed within 24 h, which was about 1.21-1.78 times of that in the open-circuit of MFCs. Meanwhile, a significant increase in bioelectricity generation in MFCs was observed after the accumulation of microalgae biomass (4.65-5.37 mg/L), which was attributed to the efficient electron separation and transfer. Furthermore, the electrochemical analysis demonstrated that SMX or its products were functioned as electronic shuttles, facilitating the electrochemical reaction and altering the electrical capacitance. The quenching experiments and voltage output results reflected that complex active radical (SO4⋅-, ⋅OH, and 1O2) were involved in SMX removal. Seven degradation products of SMX were detected and S-N bond cleavage was the main degradation pathway. Predicted toxicity values calculated by ECOSAR program showed that all the products were less toxic or nontoxic. Finally, the density functional theory (DFT) calculations revealed that the O and N atoms on SMX were more susceptible to electrophilic reactions, which were more vulnerable to be attacked by reactive species. This study provided new insights into the activation of PMS by bioelectricity for SMX degradation, proposing the mechanisms for PMS activation and degradation sites of SMX.
Collapse
Affiliation(s)
- Zhikang Deng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Yongfei Ma
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Jinyao Zhu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Chenyu Zeng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Rui Mu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Zulin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China; The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK.
| |
Collapse
|
7
|
Blair M, Garner E, Ji P, Pruden A. What is the Difference between Conventional Drinking Water, Potable Reuse Water, and Nonpotable Reuse Water? A Microbiome Perspective. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58. [PMID: 39258328 PMCID: PMC11428167 DOI: 10.1021/acs.est.4c04679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024]
Abstract
As water reuse applications expand, there is a need for more comprehensive means to assess water quality. Microbiome analysis could provide the ability to supplement fecal indicators and pathogen profiling toward defining a "healthy" drinking water microbiota while also providing insight into the impact of treatment and distribution. Here, we utilized 16S rRNA gene amplicon sequencing to identify signature features in the composition of microbiota across a wide spectrum of water types (potable conventional, potable reuse, and nonpotable reuse). A clear distinction was found in the composition of microbiota as a function of intended water use (e.g., potable vs nonpotable) across a very broad range of U.S. water systems at both the point of compliance (Betadisper p > 0.01; ANOSIM p < 0.01, r-stat = 0.71) and point of use (Betadisper p > 0.01; ANOSIM p < 0.01, r-stat = 0.41). Core and discriminatory analysis further served in identifying distinct differences between potable and nonpotable water microbiomes. Taxa were identified at both the phylum (Desulfobacterota, Patescibacteria, and Myxococcota) and genus (Aeromonas and NS11.12_marine_group) levels that effectively discriminated between potable and nonpotable waters, with the most discriminatory taxa being core/abundant in nonpotable waters (with few exceptions, such as Ralstonia being abundant in potable conventional waters). The approach and findings open the door to the possibility of microbial community signature profiling as a water quality monitoring approach for assessing efficacy of treatments and suitability of water for intended use/reuse application.
Collapse
Affiliation(s)
- Matthew
F. Blair
- Via
Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Emily Garner
- Wadsworth
Department of Civil and Environmental Engineering, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Pan Ji
- Via
Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Amy Pruden
- Via
Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
8
|
Lu Z, Liu G, Xie H, Zhai Y, Li X. Advances and solutions in biological treatment for antibiotic wastewater with resistance genes: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122115. [PMID: 39121628 DOI: 10.1016/j.jenvman.2024.122115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/16/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
Biological treatment represents a fundamental component of wastewater treatment plants (WWTPs). The transmission of antibiotic resistance bacteria (ARB) and resistance genes (ARGs) occurred through the continuous migration and transformation, attributed to the residual presence of antibiotics in WWTPs effluent, posing a significant threat to the entire ecosystem. It is necessary to propose novel biological strategies to address the challenge of refractory contaminants, such as antibiotics, ARGs and ARB. This review summarizes the occurrence of antibiotics in wastewater, categorized by high and low concentrations. Additionally, current biological treatments used in WWTPs, such as aerobic activated sludge, anaerobic digestion, sequencing batch reactor (SBR), constructed wetland, membrane-related bioreactors and biological aerated filter (BAF) are introduced. In particular, because microorganisms are the key to those biological treatments, the effect of high and low concentration of antibiotics on microorganisms are thoroughly discussed. Finally, solutions involving functional bacteria, partial nitrification (PN)-Anammox and lysozyme embedding are suggested from the perspective of the entire biological treatment process. Overall, this review provides valuable insights for the simultaneous removal of antibiotics and ARGs in antibiotics wastewater.
Collapse
Affiliation(s)
- Ziyi Lu
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Gaige Liu
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Hongwei Xie
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Yining Zhai
- School of Civil Engineering, Heilongjiang University, Harbin 150080, China
| | - Xiangkun Li
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China.
| |
Collapse
|
9
|
Wang C, Ning X, Wan N, Xu S, Jiang C, Bai Z, Ma J, Zhang X, Wang X, Zhuang X. Season and side-chain length affect the occurrences and behaviors of phthalic acid esters in wastewater treatment plants. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134934. [PMID: 38889463 DOI: 10.1016/j.jhazmat.2024.134934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Emerging pollutants (EPs) are prevalent in aquatic environments globally. Researchers strive to understand their occurrence and behavior prior to their release into the environment. In this study, we examined five wastewater treatment plants (WWTPs), collected 50 wastewater samples and 10 sludge samples. We explored the sources and destinations of phthalic acid esters (PAEs) within these WWTPs using mass balance equations. Wastewater treatment diminished the frequency and concentration of PAEs, and decreased the fraction of short-chain PAEs. We confirmed the increased concentration of PAEs post-primary treatment and modified the mass balance equation. Calculations suggest that weaker "the mix" in winter than in summer and stronger sedimentation in winter than in summer resulted in high efficiency of PAEs removal by winter wastewater treatment. The mass flux of biodegradation was influenced by the combination of biodegradation efficiency and the strength of the particular type of PAEs collected, with no seasonal differences. Mass fluxes for sludge sedimentation were mainly influenced by season and were higher in winter than in summer. This study enhances our understanding of emerging pollutants in manual treatment facilities and offers insights for optimizing wastewater treatment methods for water professionals.
Collapse
Affiliation(s)
- Cong Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaojun Ning
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Na Wan
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Shengjun Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Yangtze River Delta Research Center for Eco-Environmental Sciences, Yiwu 322000, Zhejiang, China.
| | - Cancan Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihui Bai
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junyu Ma
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Xupo Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoping Wang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuliang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
10
|
Li T, Yang XL, Qin C, Xu H, Sun Y, Song HL. Role of membrane fouling layer in microbial fuel cell-membrane bioreactor (MFC-MBR) for controlling sulfamethoxazole and corresponding resistance genes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121876. [PMID: 39018855 DOI: 10.1016/j.jenvman.2024.121876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/28/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Integrated MFC-MBR systems effectively remove antibiotics and control the release of antibiotic resistance genes (ARGs). However, the fouling layers on membranes can potentially act as reservoirs for ARGs. This study aims to elucidate the roles of membrane fouling layers and levels in influencing sulfamethoxazole (SMX) removal and ARGs control within an MFC-MBR system. Our findings demonstrate that low-intensity bioelectricity (400-500 mV) mitigates membrane fouling rates. The membrane fouling layer significantly contributes (39%-47%) to SMX removal compared to the cathode/anode zones. Higher extracellular polymeric substance (EPS) content and a lower protein/polysaccharide (PN/PS) ratio favor SMX removal by the membrane fouling layer. Across different levels of membrane fouling, the PN/PS ratio rather than EPS concentration plays a crucial role in SMX removal efficiency. The MFC-MBR with low fouling achieved superior SMX removal (69.1%) compared to medium (54.3%) and high fouling conditions (46.8%). The presence of ARGs in the membrane fouling layer increases with fouling formation, with intrinsic ARGs prevailing. Dense membrane fouling layers effectively retain ARGs, thereby reducing the risk of extracellular ARGs (eARGs) diffusion in effluents. These results provide insights into controlling ARGs in MFC-MBR systems and underscore the significant role of membrane fouling layers in antibiotics and ARGs removal.
Collapse
Affiliation(s)
- Tao Li
- College of Urban Construction, Nanjing Tech University, 211816, China; School of Civil Engineering, Southeast University, Nanjing, 211189, China.
| | - Xiao-Li Yang
- School of Civil Engineering, Southeast University, Nanjing, 211189, China.
| | - Congyu Qin
- School of Civil Engineering, Southeast University, Nanjing, 211189, China.
| | - Han Xu
- School of Civil Engineering, Southeast University, Nanjing, 211189, China.
| | - Yun Sun
- School of Civil Engineering, Southeast University, Nanjing, 211189, China.
| | - Hai-Liang Song
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Wenyuan Road 1, Nanjing, 210023, China.
| |
Collapse
|
11
|
Rodrigues-Silva F, Santos CS, Marrero JA, Montes R, Quintana JB, Rodil R, Nunes OC, Starling MCVM, Amorim CC, Gomes AI, Vilar VJP. Continuous UV-C/H 2O 2 and UV-C/Chlorine applied to municipal secondary effluent and nanofiltration retentate: Removal of contaminants of emerging concern, ecotoxicity, and reuse potential. CHEMOSPHERE 2024; 361:142355. [PMID: 38768787 DOI: 10.1016/j.chemosphere.2024.142355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
As global effects of water scarcity raise concerns and environmental regulations evolve, contemporary wastewater treatment plants (WWTPs) face the challenge of effectively removing a diverse range of contaminants of emerging concern (CECs) from municipal effluents. This study focuses on the assessment of advanced oxidation processes (AOPs), specifically UV-C/H2O2 and UV-C/Chlorine, for the removal of 14 target CECs in municipal secondary effluent (MSE, spiked with 10 μg L-1 of each CEC) or in the subsequent MSE nanofiltration retentate (NFR, no spiking). Phototreatments were carried out in continuous mode operation, with a hydraulic retention time of 3.4 min, using a tube-in-tube membrane photoreactor. For both wastewater matrices, UV-C photolysis (3.3 kJ L-1) exhibited high efficacy in removing CECs susceptible to photolysis, although lower treatment performance was observed for NFR. In MSE, adding 10 mg L-1 of H2O2 or Cl2 enhanced treatment efficiency, with UV-C/H2O2 outperforming UV-C/Chlorine. Both UV-C/AOPs eliminated the chronic toxicity of MSE toward Chlorella vulgaris. In the NFR, not only was the degradation of target CECs diminished, but chronic toxicity to C. vulgaris persisted after both UV-C/AOPs, with UV-C/Chlorine increasing toxicity due to potential toxic by-products. Nanofiltration permeate (NFP) exhibited low CECs and microbial content. A single chlorine addition effectively controlled Escherichia coli regrowth for 3 days, proving NFP potential for safe reuse in crop irrigation (<1 CFU/100 mL for E. coli; <1 mg L-1 for free chlorine). These findings provide valuable insights into the applications and limitations of UV-C/H2O2 and UV-C/Chlorine for distinct wastewater treatment scenarios.
Collapse
Affiliation(s)
- Fernando Rodrigues-Silva
- Research Group on Environmental Applications of Advanced Oxidation Processes (GruPOA), Department of Sanitary and Environmental Engineering, The Federal University of Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Carla S Santos
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Joaquín A Marrero
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; Laboratory for Process and Reaction Engineering, Environment, Biotechnology and Energy (LEPABE), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Rosa Montes
- Aquatic One Health Research Center (ARCUS) & Department of Analytical Chemistry, Nutrition and Food Chemistry. R. Constantino Candeira S/N, IIAA building. Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - José Benito Quintana
- Aquatic One Health Research Center (ARCUS) & Department of Analytical Chemistry, Nutrition and Food Chemistry. R. Constantino Candeira S/N, IIAA building. Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Rosario Rodil
- Aquatic One Health Research Center (ARCUS) & Department of Analytical Chemistry, Nutrition and Food Chemistry. R. Constantino Candeira S/N, IIAA building. Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Olga C Nunes
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; Laboratory for Process and Reaction Engineering, Environment, Biotechnology and Energy (LEPABE), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Maria Clara V M Starling
- Research Group on Environmental Applications of Advanced Oxidation Processes (GruPOA), Department of Sanitary and Environmental Engineering, The Federal University of Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Camila C Amorim
- Research Group on Environmental Applications of Advanced Oxidation Processes (GruPOA), Department of Sanitary and Environmental Engineering, The Federal University of Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil.
| | - Ana I Gomes
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| | - Vítor J P Vilar
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| |
Collapse
|
12
|
Jha A, Mishra S. Exploring the potential of waste biomass-derived pectin and its functionalized derivatives for water treatment. Int J Biol Macromol 2024; 275:133613. [PMID: 38960223 DOI: 10.1016/j.ijbiomac.2024.133613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 02/02/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Environmental pollution remains a constant challenge due to the indiscriminate use of fossil fuels, mining activities, chemicals, drugs, aromatic compounds, pesticides, etc. Many emerging pollutants with no fixed standards for monitoring and control are being reported. These have adverse impacts on human life and the environment around us. This alarms the wastewater management towards developing materials that can be used for bulk water treatment and are easily available, low cost, non-toxic and biodegradable. Waste biomass like pectin is extracted from fruit peels which are a discarded material. It is used in pharmaceutical and nutraceutical applications but its application as a material for water treatment is very limited in literature. The scientific gap in literature review reports are evident with discussion only on pectin based hydrogels or specific pectin derivatives for some applications. This review focuses on the chemistry, extraction, functionalization and production of pectin derivatives and their applications in water treatment processes. Pectin functionalized derivatives can be used as a flocculant, adsorbent, nano biopolymer, biochar, hybrid material, metal-organic frameworks, and scaffold for the removal of heavy metals, ions, toxic dyes, and other contaminants. The huge quantum of pectin biomass may be explored further to strengthen environmental sustainability and circular economy practices.
Collapse
Affiliation(s)
- Adya Jha
- Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Sumit Mishra
- Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi 835215, India.
| |
Collapse
|
13
|
Bleotu C, Matei L, Dragu LD, Necula LG, Pitica IM, Chivu-Economescu M, Diaconu CC. Viruses in Wastewater-A Concern for Public Health and the Environment. Microorganisms 2024; 12:1430. [PMID: 39065197 PMCID: PMC11278728 DOI: 10.3390/microorganisms12071430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/07/2024] [Accepted: 07/11/2024] [Indexed: 07/26/2024] Open
Abstract
Wastewater monitoring provides essential information about water quality and the degree of contamination. Monitoring these waters helps identify and manage risks to public health, prevent the spread of disease, and protect the environment. Standardizing the appropriate and most accurate methods for the isolation and identification of viruses in wastewater is necessary. This review aims to present the major classes of viruses in wastewater, as well as the methods of concentration, isolation, and identification of viruses in wastewater to assess public health risks and implement corrective measures to prevent and control viral infections. Last but not least, we propose to evaluate the current strategies in wastewater treatment as well as new alternative methods of water disinfection.
Collapse
Affiliation(s)
- Coralia Bleotu
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 060023 Bucharest, Romania
- The Academy of Romanian Scientist, 050711 Bucharest, Romania
| | - Lilia Matei
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
| | - Laura Denisa Dragu
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
| | - Laura Georgiana Necula
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
| | - Ioana Madalina Pitica
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
| | - Mihaela Chivu-Economescu
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
| | - Carmen Cristina Diaconu
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
| |
Collapse
|
14
|
Bonanno Ferraro G, Bonomo C, Brandtner D, Mancini P, Veneri C, Briancesco R, Coccia AM, Lucentini L, Suffredini E, Bongiorno D, Musso N, Stefani S, La Rosa G. Characterisation of microbial communities and quantification of antibiotic resistance genes in Italian wastewater treatment plants using 16S rRNA sequencing and digital PCR. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173217. [PMID: 38750766 DOI: 10.1016/j.scitotenv.2024.173217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/19/2024]
Abstract
The spread of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in humans, animals and environment is a growing threat to public health. Wastewater treatment plants (WWTPs) are crucial in mitigating the risk of environmental contamination by effectively removing contaminants before discharge. However, the persistence of ARB and ARGs even after treatment is a challenge for the management of water system. To comprehensively assess antimicrobial resistance dynamics, we conducted a one-year monitoring study in three WWTPs in central Italy, both influents and effluents. We used seasonal sampling to analyze microbial communities by 16S rRNA, as well as to determine the prevalence and behaviour of major ARGs (sul1, tetA, blaTEM, blaOXA-48, blaCTX-M-1 group, blaKPC) and the class 1 Integron (int1). Predominant genera included in order: Arcobacter, Acinetobacter, Flavobacterium, Pseudarcobacter, Bacteroides, Aeromonas, Trichococcus, Cloacibacterium, Pseudomonas and Streptococcus. A higher diversity of bacterial communities was observed in the effluents compared to the influents. Within these communities, we also identified bacteria that may be associated with antibiotic resistance and pose a significant threat to human health. The mean concentrations (in gene copies per liter, gc/L) of ARGs and int1 in untreated wastewater (absolute abundance) were as follows: sul1 (4.1 × 109), tetA (5.2 × 108), blaTEM (1.1 × 108), blaOXA-48 (2.1 × 107), blaCTX-M-1 group (1.1 × 107), blaKPC (9.4 × 105), and int1 (5.5 × 109). The mean values in treated effluents showed reductions ranging from one to three log. However, after normalizing to the 16S rRNA gene (relative abundance), it was observed that in 37.5 % (42/112) of measurements, the relative abundance of ARGs increased in effluents compared to influents. Furthermore, correlations were identified between ARGs and bacterial genera including priority pathogens. This study improves our understanding of the dynamics of ARGs and provides insights to develop more effective strategies to reduce their spread, protecting public health and preserving the future efficacy of antibiotics.
Collapse
Affiliation(s)
- Giusy Bonanno Ferraro
- National Center for Water Safety (CeNSia), Istituto Superiore di Sanità, Rome, Italy; Department of Biomedical and Biotechnological Science, University of Catania, Italy
| | - Carmelo Bonomo
- Department of Biomedical and Biotechnological Science, University of Catania, Italy
| | - David Brandtner
- Departments of Infectious Disease, Istituto Superiore di Sanità, Rome, Italy
| | - Pamela Mancini
- National Center for Water Safety (CeNSia), Istituto Superiore di Sanità, Rome, Italy
| | - Carolina Veneri
- National Center for Water Safety (CeNSia), Istituto Superiore di Sanità, Rome, Italy
| | - Rossella Briancesco
- National Center for Water Safety (CeNSia), Istituto Superiore di Sanità, Rome, Italy
| | - Anna Maria Coccia
- National Center for Water Safety (CeNSia), Istituto Superiore di Sanità, Rome, Italy
| | - Luca Lucentini
- National Center for Water Safety (CeNSia), Istituto Superiore di Sanità, Rome, Italy
| | - Elisabetta Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Dafne Bongiorno
- Department of Biomedical and Biotechnological Science, University of Catania, Italy
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Science, University of Catania, Italy
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Science, University of Catania, Italy
| | - Giuseppina La Rosa
- National Center for Water Safety (CeNSia), Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
15
|
Abbas M, Trari M. Removal of Amoxicillin From Wastewater Onto Activated Carbon: Optimization of Analytical Parameters by Response Surface Methodology. Dose Response 2024; 22:15593258241271655. [PMID: 39165285 PMCID: PMC11334137 DOI: 10.1177/15593258241271655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/26/2024] [Indexed: 08/22/2024] Open
Abstract
Antibiotics are widely used in veterinary and human medicine, but these compounds, when released into the aquatic environment, present potential risks to living organisms. In the present study, the activated carbon (AC) used for their removals is characterized by FT-IR spectroscopy, BET analysis and Scanning Electron Microscopy (SEM) to determine the physicochemical characteristics. Response surface methodology (RSM) and Box-Behnken statistical design (BBD) were used to optimize important parameters including pH (2-12), temperature (20-45°C), and AC dose (0.05-0.20 g). The experimental data were analyzed by analysis of variance (ANOVA) and fitted to second-order polynomial using multiple regression analysis. The optimal conditions for maximum elimination of Amoxicillin (Amox) are (Dose: 0.124 g, pH 5.03 and 45°C) by applying the desirability function (df). A confirmation experiment was carried out to evaluate the accuracy of the optimization model and maximum removal efficiency (R = 89.999%) was obtained under the optimized conditions. Several error analysis equations were used to measure goodness of fit. Pareto analysis suggests the importance of the relative order of factors: pH > Temperature > AC dose in optimized situations. The equilibrium adsorption data of Amox on Activated Carbone were analyzed by Freundlich, Elovich, Temkin and Langmuir models. The latter gave the best correlation with qmax capacities of 142.85 mg/g (R2 = 0.999) at 25°C is removed from solution. The adsorption process is dominated by chemisorption and the kinetic model obeys a pseudo-second order model (R2 = 0.999).
Collapse
Affiliation(s)
- Moussa Abbas
- Laboratory of Applied Chemistry and Materials (LabCAM), University of M’hamed Bougara of Boumerdes, Boumerdes, Algeria
| | - Mohamed Trari
- Laboratory of Storage and Valorization of Renewable Energies, Faculty of Chemistry (USTHB), Algiers, Algeria
| |
Collapse
|
16
|
Mthiyane ZL, Makhubela N, Nyoni H, Madikizela LM, Maseko BR, Ncube S. Determination of antibiotics during treatment of hospital wastewater using automated solid-phase extraction followed by UHPLC-MS: occurrence, removal and environmental risks. ENVIRONMENTAL TECHNOLOGY 2024; 45:3118-3128. [PMID: 37129286 DOI: 10.1080/09593330.2023.2209741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 03/21/2023] [Indexed: 05/03/2023]
Abstract
The extent of removal of pharmaceuticals by African-based wastewater treatment plants (WWTPs) is relatively unknown with various studies observing high concentrations in effluents. This is mainly due to WWTPs still utilising the traditional treatment methods which are known to be less effective. In this study, 15 selected antibiotics (amoxicillin, ampicillin, azithromycin, ciprofloxacin, doxycycline, erythromycin, gentamicin, metronidazole, norfloxacin, ofloxacin, penicillin, sulfamethoxazole, sulfapyridine, tetracycline and trimethoprim) were monitored in wastewater as it goes through sedimentation (primary and secondary), aeration and chlorination stages of a WWTP. Analytical method involved solid-phase extraction followed by liquid chromatographic determination. Removal efficiencies during sedimentation were generally positive with doxycycline achieving 80-95.8%, while negative removal efficiencies were observed for penicillin V (-46.4 to -17.1%) and trimethoprim (-26.2 to -18.9%). The aeration and agitation stage resulted in concentration enhancement for several antibiotics with seven of them ranging between -273 and -15.5%. This stage was responsible for the relatively low overall removal efficiencies in which only 4 antibiotics (doxycycline, tetracycline, ciprofloxacin, and erythromycin) experienced overall removal efficiencies above 50%. The recorded effluent concentrations ranging between 0.0130 and 0.383 ng/mL were translated to low potential for development of antibiotic resistance genes in the receiving environments while ecotoxicity risk was high for only amoxicillin, ampicillin and sulfapyridine. The study has provided an overview of the performance of common wastewater treatment processes in South Africa and hopes that more monitoring and environmental risk data can be made available towards drafting of antibiotic priority lists that cater for Africa.
Collapse
Affiliation(s)
| | - Nkosinathi Makhubela
- Department of Chemistry, Sefako Makgatho Health Sciences University, Medunsa, South Africa
| | - Hlengilizwe Nyoni
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, Roodepoort, South Africa
| | - Lawrence Mzukisi Madikizela
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, Roodepoort, South Africa
| | | | - Somandla Ncube
- Department of Chemistry, Durban University of Technology, Durban, South Africa
| |
Collapse
|
17
|
Saldaña-Serrano M, Bastolla CLV, Mattos JJ, de Lima D, Piazza CE, Righetti BPH, Martiol R, Dias VHV, Ferreira CP, Nogueira DJ, de Miranda Gomes CHA, Taniguchi S, Bícego MC, Bainy ACD. Biochemical responses in Pacific oysters Magallana gigas (Thunberg, 1793): Tools to evaluate the environmental quality of aquaculture areas. MARINE POLLUTION BULLETIN 2024; 201:116244. [PMID: 38489909 DOI: 10.1016/j.marpolbul.2024.116244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 03/17/2024]
Abstract
The discharge of sanitary sewage into the bays of the Florianópolis Metropolitan Area (Southern Brazil), has led to the contamination of oyster farms. Consequently, linear alkylbenzenes (LABs) were quantified in the sediment, and the biochemical responses in gills and digestive gland of oysters from six farms were assessed. Our findings revealed elevated levels of LABs in the sediment of the Imaruim and Serraria farms. Additionally, alterations were observed in the antioxidant enzymes: catalase, glutathione peroxidase and superoxide dismutase in both oyster tissue from the Serraria, Santo Antonio de Lisboa and Sambaqui farms. Furthermore, correlation analyses indicated strong and moderate associations between biochemical responses, organic contaminants, and certain physicochemical parameters. Consequently, our results demonstrated the activation of the antioxidant system in oysters, representing a protective response to the presence of sanitary sewage and other contaminants. Therefore, we propose the utilization of biochemical biomarkers for monitoring the environmental quality of farms.
Collapse
Affiliation(s)
- Miguel Saldaña-Serrano
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC 88034-257, Brazil
| | - Camila Lisarb Velasquez Bastolla
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC 88034-257, Brazil
| | - Jacó Joaquim Mattos
- Aquaculture Pathology Research Center-NEPAQ, Federal University of Santa Catarina, UFSC, Florianópolis, SC 88034-257, Brazil
| | - Daína de Lima
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC 88034-257, Brazil
| | - Clei Endrigo Piazza
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC 88034-257, Brazil
| | - Bárbara Pacheco Harrison Righetti
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC 88034-257, Brazil
| | - Renata Martiol
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC 88034-257, Brazil
| | - Vera Helena Vidal Dias
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC 88034-257, Brazil
| | - Clarissa Pellegrini Ferreira
- Department of Fisheries Engineering and Biological Sciences, University of Santa Catarina State, UDESC, Laguna, SC 88.790-000, Brazil
| | - Diego José Nogueira
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC 88034-257, Brazil
| | - Carlos Henrique Araujo de Miranda Gomes
- Laboratory of Marine Mollusks-LMM, Department of Aquaculture, Center of Agricultural Science, Federal University of Santa Catarina, UFSC, Florianópolis, SC 88040900, Brazil
| | - Satie Taniguchi
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo, São Paulo 05508-120, Brazil
| | - Marcia Caruso Bícego
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo, São Paulo 05508-120, Brazil
| | - Afonso Celso Dias Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC 88034-257, Brazil.
| |
Collapse
|
18
|
Yu K, Song Y, Wang N, Yu X, Sun T, Yu H, Ruan Z, Qiu Y. Exposure of Danio rerio to environmental sulfamethoxazole may contribute to neurobehavioral abnormalities via gut microbiome disturbance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170546. [PMID: 38309340 DOI: 10.1016/j.scitotenv.2024.170546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/08/2024] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
The neurotoxic effects and mechanisms of low-dose and long-term sulfamethoxazole (SMZ) exposure remain unknown. This study exposed zebrafish to environmental SMZ concentrations and observed behavioral outcomes. SMZ exposure increased hyperactivity and altered the transcript levels of 17 genes associated with neurological function. It impaired intestinal function by reducing the number of intestinal goblet cells and lipid content. Metabolomic results indicated that the contents of several lipids and amino acids in the gut were altered, which might affect the expression levels of neurological function-related genes. Metagenomic results demonstrated that SMZ exposure substantially altered the composition of the gut microbiome. Zebrafish receiving a transplanted fecal microbiome from the SMZ group were also found to exhibit abnormal behavior, suggesting that the gut microbiome is an important target for SMZ exposure-induced neurobehavioral abnormalities. Multi-omics correlation analysis revealed that gut micrometabolic function was related to differential gut metabolite levels, which may affect neurological function through the gut-brain-axis. Reduced abundance of Lefsonia and Microbacterium was strongly correlated with intestinal metabolic function and may be the key bacterial genera in neurobehavioral changes. This study confirms for the first time that SMZ-induced neurotoxicity in zebrafish is closely mediated by alterations in the gut microbiome.
Collapse
Affiliation(s)
- Kan Yu
- Department of Infectious Diseases, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Yueqiang Song
- School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Nengzheng Wang
- School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Xiaogang Yu
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Tong Sun
- Institute of Metabolism & Integrative Biology (MIB), Fudan University, Shanghai 200438, China.
| | - Huiju Yu
- Department of Infectious Diseases, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Zhengshang Ruan
- Department of Infectious Disease, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Yushu Qiu
- Department of Infectious Diseases, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
19
|
Hazra M, Watts JEM, Williams JB, Joshi H. An evaluation of conventional and nature-based technologies for controlling antibiotic-resistant bacteria and antibiotic-resistant genes in wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170433. [PMID: 38286289 DOI: 10.1016/j.scitotenv.2024.170433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/10/2024] [Accepted: 01/23/2024] [Indexed: 01/31/2024]
Abstract
Antibiotic resistance is a globally recognized health concern which leads to longer hospital stays, increased morbidity, increased mortality, and higher medical costs. Understanding how antibiotic resistance persists and exchanges in environmental systems like soil, water, and wastewater are critically important for understanding the emergence of pathogens with new resistance profiles and the subsequent exposure of people who indirectly/directly come in contact with these pathogens. There are concerns about the widespread application of prophylactic antibiotics in the clinical and agriculture sectors, as well as chemicals/detergents used in food and manufacturing industries, especially the quaternary ammonium compounds which have been found responsible for the generation of resistant genes in water and soil. The rates of horizontal gene transfer increase where there is a lack of proper water/wastewater infrastructure, high antibiotic manufacturing industries, or endpoint users - such as hospitals and intensive agriculture. Conventional wastewater treatment technologies are often inefficient in the reduction of ARB/ARGs and provide the perfect combination of conditions for the development of antibiotic resistance. The wastewater discharged from municipal facilities may therefore be enriched with bacterial communities/pathogens and provide a suitable environment (due to the presence of nutrients and other pollutants) to enhance the transfer of antibiotic resistance. However, facilities with tertiary treatment (either traditional/emerging technologies) provide higher rates of reduction. This review provides a synthesis of the current understanding of wastewater treatment and antibiotic resistance, examining the drivers that may accelerate their possible transmission to a different environment, and highlighting the need for tertiary technologies used in treatment plants for the reduction of resistant bacteria/genes.
Collapse
Affiliation(s)
- Moushumi Hazra
- Department of Hydrology, Indian Institute of Technology, Roorkee, Uttarakhand, India; International Water Management Institute, New Delhi, India; Civil and Environmental Engineering, University of Nebraska Lincoln, United States.
| | - Joy E M Watts
- School of Biological Sciences, University of Portsmouth, United Kingdom
| | - John B Williams
- School of Civil Engineering and Surveying, University of Portsmouth, United Kingdom
| | - Himanshu Joshi
- Department of Hydrology, Indian Institute of Technology, Roorkee, Uttarakhand, India
| |
Collapse
|
20
|
Li X, Lu Z, Wu B, Xie H, Liu G. Antibiotics and antibiotic resistance genes removal in biological aerated filter. BIORESOURCE TECHNOLOGY 2024; 395:130392. [PMID: 38301943 DOI: 10.1016/j.biortech.2024.130392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
Two laboratory-level biological aerated filters (BAF) were constructed to explore their treatment capacity for simulated antibiotic wastewater at high (1 - 16 mg/L) and low (0 - 0.5 mg/L) concentrations. Results showed that BAF was capable of removing both sulfonamides and tetracyclines with an efficiency of over 90 % at 16 mg/L. The main mechanism for removing antibiotics was found to be biodegradation followed by adsorption. Paenarthrobacter was identified as the key genus in sulfonamides degradation, while Hydrogenophaga played a crucial role in tetracyclines degradation. Antibiotics resistant genes such as intI1, sul1, sul2, tetA, tetW and tetX were frequently detected in the effluent, with interception rates ranging from 105 - 106 copies/mL. The dominated microorganisms obtained in the study could potentially be utilized to enhance the capacity of biological processes for treating antibiotics contaminated wastewater. These findings contribute to a better understanding of BAF treating wastewater containing antibiotics and resistant genes.
Collapse
Affiliation(s)
- Xiangkun Li
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Ziyi Lu
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Baoli Wu
- North China Municipal Engineering Design & Research Institute Co.,Ltd., Tianjin 300381, China
| | - Hongwei Xie
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Gaige Liu
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China.
| |
Collapse
|
21
|
Chebii F, K'oreje K, Okoth M, Lutta S, Masime P, Demeestere K. Occurrence and environmental risks of contaminants of emerging concern across the River Athi Basin, Kenya, in dry and wet seasons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169696. [PMID: 38160815 DOI: 10.1016/j.scitotenv.2023.169696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/23/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Globally, the environmental occurrence of Contaminants of Emerging Concern (CECs) including pharmaceuticals (PhACs), personal care products (PCPs) and modern polar pesticides has raised ecological and human health awareness. However, as the developed world races against time to establish regulatory measures to mitigate their effects, developing nations including Kenya are lagging behind, partly due to unavailability of adequate data. In this work, a multi-residue analysis of 86 CECs was carried out on 198 surface water and 18 effluent samples collected at 24 sites across the River Athi basin area, Kenya, in both dry and rainy seasons. Overall, 57 CECs comprising 31 PhACs (0.4 ng L-1-142 μg L-1), 6 PCPs (0.7-570 ng L-1) and 20 pesticides (0.3 ng L-1-8.3 μg L-1) were detected. The maximum loads varied from 217 g day-1 (PCPs) to 46 kg day-1 (PhACs). Individually, carbamazepine, nevirapine, sulfamethoxazole and DEET were the most ubiquitous CECs, with detection frequencies (DF) higher than 80 %. The highest concentrations were observed at river sites that are heavily impacted by informal settlements, highlighting the critical role of slums in urban rivers pollution. At least 8 CECs including acetamiprid, alachlor, atrazine, diuron, nevirapine and paracetamol show potential risk to algae, Daphnia magna and fish, as exemplified by Risk Quotients (RQ) up to 174. Similarly, potential risk of antibiotic resistant bacteria development is evident (RQ up to 64), being driven by metronidazole, sulfamethoxazole and trimethoprim. Ultimately, further studies on the occurrence and distribution of antibiotic resistant bacteria within the basin and among the communities consuming untreated river water for drinking is merited.
Collapse
Affiliation(s)
- Faith Chebii
- Department of Chemistry & Biochemistry, School of Science, University of Eldoret, P.O. Box 1125, Eldoret, Kenya
| | - Kenneth K'oreje
- Water Resources Management Authority, P.O. Box 45250, Nairobi, Kenya
| | - Maurice Okoth
- Department of Chemistry & Biochemistry, School of Science, University of Eldoret, P.O. Box 1125, Eldoret, Kenya
| | - Samuel Lutta
- Department of Chemistry & Biochemistry, School of Science, University of Eldoret, P.O. Box 1125, Eldoret, Kenya
| | - Philip Masime
- Department of Chemistry & Biochemistry, School of Science, University of Eldoret, P.O. Box 1125, Eldoret, Kenya
| | - Kristof Demeestere
- Research Group Environmental Organic Chemistry and Technology (EnVOC), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| |
Collapse
|
22
|
Felis E, Sochacki A, Bajkacz S, Łuczkiewicz A, Jóźwiakowski K, García J, Vymazal J. Removal of selected sulfonamides and sulfonamide resistance genes from wastewater in full-scale constructed wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169195. [PMID: 38081427 DOI: 10.1016/j.scitotenv.2023.169195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/28/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Sulfonamides are high-consumption antibiotics that reach the aquatic environment. The threat related to their presence in wastewater and the environment is not only associated with their antibacterial properties, but also with risk of the spread of drug resistance in bacteria. Therefore, the aim of this work was to evaluate the occurrence of eight commonly used sulfonamides, sulfonamide resistance genes (sul1-3) and integrase genes intI1-3 in five full-scale constructed wetlands (CWs) differing in design (including hybrid systems) and in the source of wastewater (agricultural drainage, domestic sewage/surface runoff, and animal runs runoff in a zoo). The CWs were located in low-urbanized areas in Poland and in Czechia. No sulfonamides were detected in the CW treating agricultural tile drainage water. In the other four systems, four sulfonamide compounds were detected. Sulfamethoxazole exhibited the highest concentration in those four CWs and its highest was 12,603.23 ± 1000.66 ng/L in a CW treating a mixture of domestic sewage and surface runoff. Despite the high removal efficiencies of sulfamethoxazole in the tested CWs (86 %-99 %), it was still detected in the treated wastewater. The sul1 genes occurred in all samples of raw and treated wastewater and their abundance did not change significantly after the treatment process and it was, predominantly, at the level 105 gene copies numbers/mL. Noteworthy, sul2 genes were only found in the influents, and sul3 were not detected. The sulfonamides can be removed in CWs, but their elimination is not complete. However, hybrid CWs treating sewage were superior in decreasing the relative abundance of genes and the concentration of SMX. CWs may play a role in the dissemination of sulfonamide resistance genes of the sul1 type and other determinants of drug resistance, such as the intI1 gene, in the environment, however, the magnitude of this phenomenon is a matter of further research.
Collapse
Affiliation(s)
- Ewa Felis
- Silesian University of Technology, Faculty of Energy and Environmental Engineering, Environmental Biotechnology Department, ul. Akademicka 2, 44-100 Gliwice, Poland
| | - Adam Sochacki
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Department of Applied Ecology, Kamýcká 129, 165 00 Prague 6, Czech Republic.
| | - Sylwia Bajkacz
- Silesian University of Technology, Faculty of Chemistry, Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, ul. M. Strzody 7, 44-100 Gliwice, Poland
| | - Aneta Łuczkiewicz
- Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, Department of Environmental Engineering Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Krzysztof Jóźwiakowski
- University of Life Sciences in Lublin, Faculty of Production Engineering, Department of Environmental Engineering and Geodesy, ul. Leszczyńskiego 7, 20-069 Lublin, Poland
| | - Joan García
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain
| | - Jan Vymazal
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Department of Applied Ecology, Kamýcká 129, 165 00 Prague 6, Czech Republic
| |
Collapse
|
23
|
Larsson Y, Mongelli A, Kisielius V, Bester K. Microbial biofilm metabolization of benzalkonium compounds (benzyl dimethyl dodecyl ammonium & benzyl dimethyl tetradecyl ammonium chloride). JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132834. [PMID: 37918070 DOI: 10.1016/j.jhazmat.2023.132834] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
Benzalkonium chlorides (BACs) are quaternary ammonium compounds (QUATs) that are used as biocides. The degradation of these compounds in wastewater treatment plants is essential to reduce their spread into the environment and thus prevent the development of QUAT-resistant genes. The biodegradation of two BACs (BAC-12 and BAC-14) was investigated in moving bed biofilm reactors (MBBRs). Degradation half-lives of 12 and 20 h for BAC-12 and - 14, respectively, were detected as well as the formation of 42 metabolites. Two new degradation pathways for the BACs were identified in this study: 1) one involving an ω-oxidation, followed by β-oxidation and 2) one via an ω-oxidation followed by an α-oxidation that was succeeded by β-oxidation. Similar metabolites were detected for both BAC-12 and BAC-14. Additional metabolites were detected in the study, that could not be assigned to the above-mentioned pathways, revealing even more metabolic pathways in the MBBR which is probably due to the complexity of the microbial community in the biofilm. Interestingly, both TP194 (Benzyl-(carboxymethyl)-dimethylazanium) and TP208B (Benzyl-(2-carboxyethyl)-dimethylazanium) were identified as end products of the ω/β-pathway and the α/β-pathway. TP208B, TP152 and TP250 that were identified in this study, as well as the known BDMA were discovered in the effluent of a wastewater treatment plant.
Collapse
Affiliation(s)
- Yrsa Larsson
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, Roskilde 4000, Denmark
| | - Andrea Mongelli
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, Roskilde 4000, Denmark
| | - Vaidotas Kisielius
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, Roskilde 4000, Denmark
| | - Kai Bester
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, Roskilde 4000, Denmark.
| |
Collapse
|
24
|
Wang C, Chai X, Lu B, Lu W, Han H, Mu Y, Gu Q, Wu B. Integrated control strategy for dual sludge ages in the high-concentration powder carrier bio-fluidized bed (HPB) technology: Enhancing municipal wastewater treatment efficiency. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119890. [PMID: 38160542 DOI: 10.1016/j.jenvman.2023.119890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/01/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
The high-concentration powder carrier bio-fluidized bed (HPB) technology is an emerging approach that enables on-site upgrading of wastewater treatment plants (WWTPs). HPB technology promotes the formation of biofilm sludge with micron-scale composite powder carriers as the core and suspended sludge mainly composed of flocs surrounding the biofilm sludge. This study proposed a novel integrated strategy for assessing and controlling the sludge ages in suspended/bio-film activated sludge supported by micron-scale composite powder carrier. Utilizing the cyclone unit and the corresponding theoretical model, the proposed strategy effectively addresses the sludge ages contradiction between denitrifying bacteria and polyphosphate-accumulating organisms (PAOs), thereby enhancing the efficiency of municipal wastewater treatment. The sludge age of the suspended (25 d) and bio-film (99 d) sludge, calculated using the model, contribute to the simultaneous removal of nitrogen and phosphorus. Meanwhile, the model further estimates distinct contributions of suspended and bio-film sludge to chemical oxygen demand (COD) and total nitrogen (TN), which are 55% and 42% for COD, 20% and 57% for TN of suspended sludge and bio-film sludge, respectively. This suggests that the contribution of suspended sludge and bio-film sludge to COD and TN removal efficiency can be determined and controlled by the operational conditions of the cyclone unit. Additionally, the simulation values for COD, ammonia nitrogen (NH4+-N), TN and total phosphorus (TP) closely align with the actual values of WWTPs over 70 days (p < 0.001) with the correlation coefficients (R2) of 0.9809, 0.9932, 0.9825, and 0.837, respectively. These results support the theoretical foundation of HPB technology for simultaneous nitrogen and phosphorus removal in sewage treatment plants. Therefore, this model serves as a valuable tool to guide the operation, design, and carrier addition in HPB technology implementation.
Collapse
Affiliation(s)
- Chengxian Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xiaoli Chai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Bin Lu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Wei Lu
- Shanghai Key Lab. of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, China
| | - Hongbo Han
- Hunan Sanyou Environmental Protection Co. Ltd., Changsha, 410205, China
| | - Yue Mu
- Hunan Sanyou Environmental Protection Co. Ltd., Changsha, 410205, China
| | - Qun Gu
- Hunan Sanyou Environmental Protection Co. Ltd., Changsha, 410205, China
| | - Boran Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
25
|
Vargas-Villalobos S, Hernández F, Fabregat-Safont D, Salas-González D, Quesada-Alvarado F, Botero-Coy AM, Esperón F, Martín-Maldonado B, Monrós-Gonzalez J, Ruepert C, Estrada-König S, Rivera-Castillo J, Chaverri-Fonseca F, Blanco-Peña K. A case study on pharmaceutical residues and antimicrobial resistance genes in Costa Rican rivers: A possible route of contamination for feline and other species. ENVIRONMENTAL RESEARCH 2024; 242:117665. [PMID: 37993051 DOI: 10.1016/j.envres.2023.117665] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/08/2023] [Accepted: 11/12/2023] [Indexed: 11/24/2023]
Abstract
In this investigation, the presence of antibiotics and pharmaceuticals in Costa Rican surface waters, specifically in regions near feline habitats, was examined. The study revealed that 47% of the water samples contained detectable traces of at least one antibiotic. Ciprofloxacin and norfloxacin were the most frequently detected compounds, each with a detection rate of 27%. Other antibiotics, such as erythromycin, roxithromycin, and trimethoprim, were also found but at lower frequencies, around 14%. Notably, all antibiotic concentrations remained below 10 ng/L, with ciprofloxacin, norfloxacin, and erythromycin showing the highest concentrations. Furthermore, the investigation revealed the presence of non-antibiotic pharmaceutical residues in the water samples, typically at concentrations below 64 ng/L. Tramadol was the most frequently detected compound, present in 18% of the samples. The highest concentrations were observed for acetaminophen and tramadol, measuring 64 and 10 ng/L, respectively. Comparing these findings with studies conducted in treated wastewater and urban rivers, it became evident that the concentrations of antibiotics and pharmaceuticals were notably lower in this study. While previous research reported higher values, the limited number of studies conducted in protected areas raises concerns about the potential environmental impact on biodiversity. In summary, these results emphasize the importance of monitoring pharmaceutical residues and antimicrobial resistance genes ARGs in vulnerable ecosystems, especially those in close proximity to feline habitats in Costa Rica. Additionally, the study delved into the detection of (ARGs). All tested water samples were positive for at least one ARG, with the blaTEM gene being the most prevalent at 82%, followed by tetS at 64% and qnrB at 23%. Moreover, this research shed light on the complexity of evaluating ARGs in environmental samples, as their presence does not necessarily indicate their expression. It also highlighted the potential for co-selection and co-regulation of ARGs, showcasing the intricate behaviors of these genes in aquatic environments.
Collapse
Affiliation(s)
- Seiling Vargas-Villalobos
- Universidad Nacional, Instituto Regional de Estudios en Sustancias Tóxicas, (IRET), 86-3000, Heredia, Costa Rica; Doctoral Program in Pollution, Toxicology and Environmental Health Universitat de València, España Av. Blasco Ibáñez, 13.46010, Valencia, Spain.
| | - Félix Hernández
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat S/n, 12071, Castelló, Spain
| | - David Fabregat-Safont
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat S/n, 12071, Castelló, Spain; Applied Metabolomics Research Laboratory, IMIM-Hospital Del Mar Medical Research Institute, 88 Doctor Aiguader, 08003, Barcelona, Spain
| | - Denis Salas-González
- Universidad Nacional, Instituto Regional de Estudios en Sustancias Tóxicas, (IRET), 86-3000, Heredia, Costa Rica
| | - Francisco Quesada-Alvarado
- Universidad Nacional, Instituto Regional de Estudios en Sustancias Tóxicas, (IRET), 86-3000, Heredia, Costa Rica
| | - Ana Maria Botero-Coy
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat S/n, 12071, Castelló, Spain
| | - Fernando Esperón
- Veterinary Department, School of Biomedical and Health Sciences, Universidad Europea de Madrid, Spain
| | - Bárbara Martín-Maldonado
- Veterinary Department, School of Biomedical and Health Sciences, Universidad Europea de Madrid, Spain
| | - Juan Monrós-Gonzalez
- Institut "Cavanilles" de Biodiversitat I Biologia Evolutiva Universitat de València, Spain
| | - Clemens Ruepert
- Universidad Nacional, Instituto Regional de Estudios en Sustancias Tóxicas, (IRET), 86-3000, Heredia, Costa Rica
| | - Sandra Estrada-König
- Universidad Nacional. Escuela de Medicina Veterinaria, 86-3000, Heredia, Costa Rica
| | | | - Fabio Chaverri-Fonseca
- Universidad Nacional, Instituto Regional de Estudios en Sustancias Tóxicas, (IRET), 86-3000, Heredia, Costa Rica
| | - Kinndle Blanco-Peña
- Universidad Nacional, Instituto Regional de Estudios en Sustancias Tóxicas, (IRET), 86-3000, Heredia, Costa Rica
| |
Collapse
|
26
|
Murgolo S, De Giglio O, De Ceglie C, Triggiano F, Apollonio F, Calia C, Pousis C, Marzella A, Fasano F, Giordano ME, Lionetto MG, Santoro D, Santoro O, Mancini S, Di Iaconi C, De Sanctis M, Montagna MT, Mascolo G. Multi-target assessment of advanced oxidation processes-based strategies for indirect potable reuse of tertiary wastewater: Fate of compounds of emerging concerns, microbial and ecotoxicological parameters. ENVIRONMENTAL RESEARCH 2024; 241:117661. [PMID: 37980992 DOI: 10.1016/j.envres.2023.117661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/29/2023] [Accepted: 11/11/2023] [Indexed: 11/21/2023]
Abstract
Two advanced oxidation processes (AOPs), namely ozone/H2O2 and UV/H2O2, were tested at pilot scale as zero-liquid-discharge alternative treatments for the removal of microbiological (bacteria and viruses), chemical (compounds of emerging concern (CECs)) and genotoxic responses from tertiary municipal wastewater for indirect potable reuse (IPR). The AOP treated effluents were further subjected to granular activated carbon (GAC) adsorption and UV disinfection, following the concept of multiple treatment barriers. As a reference, a consolidated advanced wastewater treatment train consisting of ultrafiltration, UV disinfection, and reverse osmosis (RO) was also employed. The results showed that, for the same electrical energy applied, the ozone/H2O2 treatment was more effective than the UV/H2O2 treatment in removing CECs. Specifically, the ozone/H2O2 treatment, intensified by high pressure and high mixing, achieved an average CECs removal efficiency higher than UV/H2O2 (66.8% with respect to 18.4%). The subsequent GAC adsorption step, applied downstream the AOPs, further improved the removal efficiency of the whole treatment trains, achieving rates of 98.5% and 96.8% for the ozone/H2O2 and UV/H2O2 treatments, respectively. In contrast, the ultrafiltration step of the reference treatment train only achieved a removal percentage of 22.5%, which increased to 99% when reverse osmosis was used as the final step. Microbiological investigations showed that all three wastewater treatment lines displayed good performance in the complete removal of regulated and optional parameters according to both national and the European Directive 2020/2184. Only P. aeruginosa resulted resistant to all treatments with a higher removal by UV/H2O2 when higher UV dose was applied. In addition, E. coli STEC/VTEC and enteric viruses, were found to be completely removed in all tested treatments and no genotoxic activity was detected even after a 1000-fold concentration. The obtained results suggest that the investigated treatments are suitable for groundwater recharge to be used as a potable water source being such a procedure an IPR. The intensified ozone/H2O2 or UV/H2O2 treatments can be conveniently incorporated into a multi-barrier zero-liquid-discharge scheme, thus avoiding the management issues associated with the retentate of the conventional scheme that uses reverse osmosis. By including the chemical cost associated with using 11-12 mg/L of H2O2 in the cost calculations, the overall operational cost (energy plus chemical) required to achieve 50% average CECs removal in tertiary effluent for an hypothetical full-scale plant of 250 m3/h (or 25,000 inhabitants) was 0.183 €/m3 and 0.425 €/m3 for ozone/H2O2 and UV/H2O2 treatment train, respectively.
Collapse
Affiliation(s)
- S Murgolo
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Ricerca Sulle Acque (IRSA), Via F. De Blasio 5, Bari, 70132, Italy
| | - O De Giglio
- Interdisciplinary Department of Medicine, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124, Bari, Italy
| | - C De Ceglie
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Ricerca Sulle Acque (IRSA), Via F. De Blasio 5, Bari, 70132, Italy
| | - F Triggiano
- Interdisciplinary Department of Medicine, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124, Bari, Italy
| | - F Apollonio
- Interdisciplinary Department of Medicine, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124, Bari, Italy
| | - C Calia
- Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124, Bari, Italy
| | - C Pousis
- Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124, Bari, Italy
| | - A Marzella
- Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124, Bari, Italy
| | - F Fasano
- Interdisciplinary Department of Medicine, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124, Bari, Italy
| | - M E Giordano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, 73100, Lecce, Italy
| | - M G Lionetto
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, 73100, Lecce, Italy; National Biodiversity Future Center (NBFC), Palermo, 90133, Italy
| | - D Santoro
- Department of Chemical and Biochemical Engineering, Western University, London, N6A 5B9, Ontario, Canada
| | - O Santoro
- AquaSoil S.r.l., Via del Calvario 35, 72015, Fasano, Brindisi, Italy
| | - S Mancini
- AquaSoil S.r.l., Via del Calvario 35, 72015, Fasano, Brindisi, Italy
| | - C Di Iaconi
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Ricerca Sulle Acque (IRSA), Via F. De Blasio 5, Bari, 70132, Italy
| | - M De Sanctis
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Ricerca Sulle Acque (IRSA), Via F. De Blasio 5, Bari, 70132, Italy
| | - M T Montagna
- Interdisciplinary Department of Medicine, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124, Bari, Italy
| | - G Mascolo
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Ricerca Sulle Acque (IRSA), Via F. De Blasio 5, Bari, 70132, Italy; Consiglio Nazionale delle Ricerche (CNR), Istituto di Ricerca per La Protezione Idrogeologica (IRPI), Via Amendola 122 I, Bari, 70126, Italy.
| |
Collapse
|
27
|
Mantovani M, Rossi S, Ficara E, Collina E, Marazzi F, Lasagni M, Mezzanotte V. Removal of pharmaceutical compounds from the liquid phase of anaerobic sludge in a pilot-scale high-rate algae-bacteria pond. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:167881. [PMID: 37865249 DOI: 10.1016/j.scitotenv.2023.167881] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/09/2023] [Accepted: 10/14/2023] [Indexed: 10/23/2023]
Abstract
This study evaluates the effectiveness of a pilot-scale high-rate algae-bacteria pond (HRAP) to remove pharmaceutical compounds (PhACs) from municipal centrate. The studied PhACs belonged to different classes of synthetic active compounds: antihypertensives, antiepileptics, antidepressants, neuroprotectors, and anti-inflammatory drugs. The HRAP, growing a mixed microalgal consortium made of Chlorella spp. and Scenedesmus spp., was operated in continuous mode (6 days hydraulic retention time) from May to November 2021. Removal efficiencies were high (>85 %) for Sulfamethoxazole and Lamotrigine, promising (65-70 %) for Metoprolol, Fluoxetine, and Diclofenac but low (30-40 %) for Amisulpride, Ofloxacin, Carbamazepine, and Clarithromycin. Propyphenazone and Irbesartan were not removed, and their concentrations increased after the treatment. The combination of abiotic and biotic drivers (mostly global radiation and the synergy between microalgae and bacteria metabolisms) fostered photo and biodegradation processes. Overall, results suggest that microalgae-based systems can be a valuable solution to remove PhACs from wastewater.
Collapse
Affiliation(s)
- Marco Mantovani
- Università degli Studi di Milano - Bicocca, Department of Earth and Environmental Sciences (DISAT), P.zza della Scienza 1, 20126 Milano, Italy
| | - Simone Rossi
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA), P.zza L. da Vinci 32, 20133 Milano, Italy
| | - Elena Ficara
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA), P.zza L. da Vinci 32, 20133 Milano, Italy
| | - Elena Collina
- Università degli Studi di Milano - Bicocca, Department of Earth and Environmental Sciences (DISAT), P.zza della Scienza 1, 20126 Milano, Italy
| | - Francesca Marazzi
- Università degli Studi di Milano - Bicocca, Department of Earth and Environmental Sciences (DISAT), P.zza della Scienza 1, 20126 Milano, Italy
| | - Marina Lasagni
- Università degli Studi di Milano - Bicocca, Department of Earth and Environmental Sciences (DISAT), P.zza della Scienza 1, 20126 Milano, Italy
| | - Valeria Mezzanotte
- Università degli Studi di Milano - Bicocca, Department of Earth and Environmental Sciences (DISAT), P.zza della Scienza 1, 20126 Milano, Italy.
| |
Collapse
|
28
|
Adeel M, Maniakova G, Rizzo L. Tertiary/quaternary treatment of urban wastewater by UV/H 2O 2 or ozonation: Microplastics may affect removal of E. coli and contaminants of emerging concern. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167940. [PMID: 37875205 DOI: 10.1016/j.scitotenv.2023.167940] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/23/2023] [Accepted: 10/17/2023] [Indexed: 10/26/2023]
Abstract
The aim of this study was to investigate the interference of polyethylene microplastics (MPs) on ultraviolet irradiation/hydrogen peroxide (UV/H2O2) and ozonation processes in the inactivation of E. coli bacteria (tertiary treatment) and removal of contaminants of emerging concern (CECs) (quaternary treatment) from simulated and real secondary treated urban wastewater. Three pharmaceuticals were investigated as model CECs, namely carbamazepine, sulfamethoxazole and trimethoprim. Experimental results showed that disinfection efficiency of UV/H2O2 treatment decreased (2.4, 1.8 and 1.3 log reductions of E. coli, initial H2O2 dose of 30 mg/L, 2.5 min treatment) as the initial concentration of MPs was increased (0.25, 0.5 and 1.0 g/L, respectively). Similarly, an increase in MPs concentration (0.25, 0.5 and 1.0 g/L) reduced the inactivation (4.7, 4.1 and 3.7 log reductions) of the target bacteria after 60 min of ozonation treatment. Although the disinfection efficiency of both treatment processes was negatively affected by the presence of MPs, UV/H2O2 was more effective than the ozonation, despite ozonation being investigated at high doses to better discriminate the effect of MPs. Noteworthy, CECs degradation by UV/H2O2 under realistic operating conditions was affected to some extent by MPs, while a lower effect was observed for ozonation, at not realistic ozone dose.
Collapse
Affiliation(s)
- Mister Adeel
- Water Science and Technology Group (WaSTe), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Gulnara Maniakova
- Water Science and Technology Group (WaSTe), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Luigi Rizzo
- Water Science and Technology Group (WaSTe), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy.
| |
Collapse
|
29
|
Koseoglu-Imer DY, Oral HV, Coutinho Calheiros CS, Krzeminski P, Güçlü S, Pereira SA, Surmacz-Górska J, Plaza E, Samaras P, Binder PM, van Hullebusch ED, Devolli A. Current challenges and future perspectives for the full circular economy of water in European countries. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118627. [PMID: 37531861 DOI: 10.1016/j.jenvman.2023.118627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 08/04/2023]
Abstract
This paper reviews the current problems and prospects to overcome circular water economy management challenges in European countries. The geopolitical paradigm of water, the water economy, water innovation, water management and regulation in Europe, environmental and safety concerns at water reuse, and technological solutions for water recovery are all covered in this review, which has been prepared in the frame of the COST ACTION (CA, 20133) FULLRECO4US, Working Group (WG) 4. With a Circular Economy approach to water recycling and recovery based on this COST Action, this review paper aims to develop novel, futuristic solutions to overcome the difficulties that the European Union (EU) is currently facing. The detailed review of the current environmental barriers and upcoming difficulties for water reuse in Europe with a Circular Economy vision is another distinctive aspect of this study. It is observed that the biggest challenge in using and recycling water from wastewater treatment plants is dealing with technical, social, political, and economic issues. For instance, geographical differences significantly affect technological problems, and it is effective in terms of social acceptance of the reuse of treated water. Local governmental organizations should support and encourage initiatives to expand water reuse, particularly for agricultural and industrial uses across all of Europe. It should not also be disregarded that the latest hydro politics approach to water management will actively contribute to addressing the issues associated with water scarcity.
Collapse
Affiliation(s)
- Derya Y Koseoglu-Imer
- Istanbul Technical University, Environmental Engineering Department, Maslak, 34469, Istanbul, Turkey.
| | - Hasan Volkan Oral
- İstanbul Aydın University, Department of Civil Engineering (English), Faculty of Engineering, Florya Campus, K. Cekmece, 34295, İstanbul, Turkey.
| | - Cristina Sousa Coutinho Calheiros
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal.
| | - Pawel Krzeminski
- Norwegian Institute for Water Research (NIVA), Økernveien 94, N-0579, Oslo, Norway
| | - Serkan Güçlü
- Integrated Manufacturing Technologies Research and Application Center & Composite Technologies Center of Excellence, Sabanci University, Istanbul, Turkey
| | - Sofia Almeida Pereira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal.
| | - Joanna Surmacz-Górska
- Silesian University of Technology, Environmental Biotechnology Department, Akademicka 2, 44-100, Gliwice, Poland
| | - Elzbieta Plaza
- Royal Institute of Technology, Department of Sustainable Development, Environmental Science and Engineering, 100 44, Stockholm, Sweden
| | - Petros Samaras
- International Hellenic University, Department of Food Science and Technology, Sindos campus, 57400, Thessaloniki, Greece
| | - Pablo Martin Binder
- BETA Tech. Center (TECNIO Network). University of Vic - Central University of Catalonia (UVic-UCC), Carretera de Roda 70, 08500, Vic, Spain
| | | | - Ariola Devolli
- Agricultural University of Tirana, Department of Chemistry, Faculty of Biotechnology and Food, Tirana, Albania
| |
Collapse
|
30
|
Pino-Sandoval DA, Cantú-Cárdenas ME, Rodríguez-González V, Patrón-Soberano OA, Rosas-Castor JM, Murillo-Sierra JC, Hernández-Ramírez A. Solar heterogeneous photo-Fenton for complete inactivation of Escherichia coli and Salmonella typhimurium in secondary-treated wastewater effluent. CHEMOSPHERE 2023; 342:140132. [PMID: 37690560 DOI: 10.1016/j.chemosphere.2023.140132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
In this work, complete elimination of Escherichia coli and Salmonella typhimurium was achieved in 120 min using a heterogeneous photo-Fenton process under sunlight at pH 6.5 in distilled water. A face-centered composite central design 22 with one categoric factor and three replicates at the central point was used to evaluate the effect of iron (III) oxide concentration (0.8-3.4 mg L-1), H2O2 (2-10 mg L-1), and the type of iron oxide phase (maghemite and hematite) on the inactivation of both bacteria. The results showed that the amount of catalyst, H2O2 concentration and their interaction were significant factors (p < 0.05) in the elimination of the microorganisms. Thus, under the best conditions (3.4 mg L-1 of iron (III) oxide and 10 mg L-1 of H2O2) in the experimental ranges, complete inactivation of E. coli and S. typhimurium was achieved (6-log reduction) in 120 min using the photo-Fenton treatment with both iron-oxide phases. Furthermore, the photocatalytic elimination of both bacteria by the photo-Fenton process using hematite and maghemite in secondary-treated wastewater effluent was performed obtaining slower inactivation rates (1.2-5.9 times) than in distilled water due to the matrix effect of the effluent from a wastewater treatment plant. Nevertheless, the process continued to be effective in the effluent, achieving complete bacterial elimination in 150 min using the hematite phase. Additionally, the SEM images of the bacterial cells showed that the heterogeneous photo-Fenton treatment generated permanent and irreversible cell damage, resulting in complete cell death.
Collapse
Affiliation(s)
- Diego A Pino-Sandoval
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Cd. Universitaria, San Nicolás de Los Garza, C.P. 66455, Nuevo León, Mexico; Universidad Politécnica de Apodaca, Av. Politécnica No. 2331, El Barretal, Apodaca, C. P. 66600, Nuevo León, Mexico
| | - M Elena Cantú-Cárdenas
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Cd. Universitaria, San Nicolás de Los Garza, C.P. 66455, Nuevo León, Mexico
| | - Vicente Rodríguez-González
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica, División de Biología Molecular, División de Materiales Avanzados, Camino a La Presa San José 2055, Lomas 4a. Sección, 78216, San Luis Potosí, S.L.P., Mexico
| | - O Araceli Patrón-Soberano
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica, División de Biología Molecular, División de Materiales Avanzados, Camino a La Presa San José 2055, Lomas 4a. Sección, 78216, San Luis Potosí, S.L.P., Mexico
| | - J Martín Rosas-Castor
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Cd. Universitaria, San Nicolás de Los Garza, C.P. 66455, Nuevo León, Mexico
| | - J Camilo Murillo-Sierra
- Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción, Chile
| | - Aracely Hernández-Ramírez
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Cd. Universitaria, San Nicolás de Los Garza, C.P. 66455, Nuevo León, Mexico.
| |
Collapse
|
31
|
Gualda-Alonso E, Pichel N, Soriano-Molina P, Olivares-Ligero E, Cadena-Aponte FX, Agüera A, Sánchez Pérez JA, Casas López JL. Continuous solar photo-Fenton for wastewater reclamation in operational environment at demonstration scale. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132101. [PMID: 37487332 DOI: 10.1016/j.jhazmat.2023.132101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/27/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023]
Abstract
For the first time, a continuous flow solar photo-Fenton demonstration plant has been assessed for wastewater reclamation according to the EU 2020/741 regulation. The treated water qualities achieved under two operating strategies (acidic and neutral pH) in a 100-m2 raceway pond reactor were explored in terms of liquid depth, iron source, reagent concentrations, and hydraulic residence time over three consecutive days of operation. The results obtained at acidic pH showed removal percentages of contaminants of emerging concern (CECs) > 75% and water quality classes B, C and D according to EU regulation at both assessed operating conditions, with treatment capacities up to 1.92 m3 m-2 d-1. At neutral pH with ferric nitrilotriacetate (Fe3+-NTA), 50% of CEC removal and only water quality class D were achieved with the most oxidizing condition assessed, giving a treatment capacity of 0.80 m3 m-2 d-1. The treatment capacities obtained in this work, which have never been achieved with solar water treatments, demonstrate the potential of this technology for commercial-scale application.
Collapse
Affiliation(s)
- E Gualda-Alonso
- Solar Energy Research Centre (CIESOL), Joint Centre University of Almería-CIEMAT, Ctra. de Sacramento s/n, 04120 Almería, Spain; Chemical Engineering Department, University of Almería, Ctra. de Sacramento s/n, 04120 Almería, Spain
| | - N Pichel
- Solar Energy Research Centre (CIESOL), Joint Centre University of Almería-CIEMAT, Ctra. de Sacramento s/n, 04120 Almería, Spain; Chemical Engineering Department, University of Almería, Ctra. de Sacramento s/n, 04120 Almería, Spain
| | - P Soriano-Molina
- Solar Energy Research Centre (CIESOL), Joint Centre University of Almería-CIEMAT, Ctra. de Sacramento s/n, 04120 Almería, Spain; Chemical Engineering Department, University of Almería, Ctra. de Sacramento s/n, 04120 Almería, Spain
| | - E Olivares-Ligero
- Solar Energy Research Centre (CIESOL), Joint Centre University of Almería-CIEMAT, Ctra. de Sacramento s/n, 04120 Almería, Spain; Chemical Engineering Department, University of Almería, Ctra. de Sacramento s/n, 04120 Almería, Spain
| | - F X Cadena-Aponte
- Solar Energy Research Centre (CIESOL), Joint Centre University of Almería-CIEMAT, Ctra. de Sacramento s/n, 04120 Almería, Spain; Department of Chemistry and Physics, University of Almería, Ctra. de Sacramento s/n, 04120 Almería, Spain
| | - A Agüera
- Solar Energy Research Centre (CIESOL), Joint Centre University of Almería-CIEMAT, Ctra. de Sacramento s/n, 04120 Almería, Spain; Department of Chemistry and Physics, University of Almería, Ctra. de Sacramento s/n, 04120 Almería, Spain
| | - J A Sánchez Pérez
- Solar Energy Research Centre (CIESOL), Joint Centre University of Almería-CIEMAT, Ctra. de Sacramento s/n, 04120 Almería, Spain; Chemical Engineering Department, University of Almería, Ctra. de Sacramento s/n, 04120 Almería, Spain
| | - J L Casas López
- Solar Energy Research Centre (CIESOL), Joint Centre University of Almería-CIEMAT, Ctra. de Sacramento s/n, 04120 Almería, Spain; Chemical Engineering Department, University of Almería, Ctra. de Sacramento s/n, 04120 Almería, Spain.
| |
Collapse
|
32
|
Hinojosa M, Oller I, Quiroga JM, Malato S, Egea-Corbacho A, Acevedo-Merino A. Solar photo-Fenton optimization at neutral pH for microcontaminant removal at pilot plant scale. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:96208-96218. [PMID: 37566324 PMCID: PMC10482785 DOI: 10.1007/s11356-023-28988-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 07/21/2023] [Indexed: 08/12/2023]
Abstract
The increasing occurrence of micropollutants in natural water bodies has medium to long-term effects on both aquatic life and human health. The aim of this study is to optimize the degradation of two pharmaceutical pollutants of emerging concern: amoxicillin and acetaminophen in aqueous solution at laboratory and pilot scale, by solar photo-Fenton process carried out at neutral pH using ethylenediamine-N,N'-disuccinic acid (EDDS) as a complexing agent to maintain iron in solution. The initial concentration of each compound was set at 1 mg/L dissolved in a simulated effluent from a municipal wastewater treatment plant (MWTP). A factorial experimental design and its surface response analysis were used to optimize the operating parameters to achieve the highest initial degradation rate of each target. The evolution of the degradation process was measured by ultra-performance liquid chromatography (UPLC/UV), obtaining elimination rates above 90% for both contaminants. Statistical study showed the optimum concentrations of Fe(III) at 3 mg/L at an Fe-EDDS ratio of 1:2 and 2.75 mg/L H2O2 for the almost complete removal of the target compounds by solar photo-Fenton process. Validation of the experimental design was successfully carried out with actual MWTP effluent spiked with 100 μg/L of amoxicillin and acetaminophen, each at pilot plant scale.
Collapse
Affiliation(s)
- Mercedes Hinojosa
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, University of Cadiz, 11510, Puerto Real, Cádiz, Spain
| | - Isabel Oller
- Plataforma Solar de Almería-CIEMAT, Carretera de Senés, Km 4.5, 04200, Tabernas, Almería, Spain.
- CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120, Almería, Spain.
| | - José María Quiroga
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, University of Cadiz, 11510, Puerto Real, Cádiz, Spain
| | - Sixto Malato
- Plataforma Solar de Almería-CIEMAT, Carretera de Senés, Km 4.5, 04200, Tabernas, Almería, Spain
- CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120, Almería, Spain
| | - Agata Egea-Corbacho
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, University of Cadiz, 11510, Puerto Real, Cádiz, Spain
| | - Asunción Acevedo-Merino
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, University of Cadiz, 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
33
|
Leão I, Khalifa L, Gallois N, Vaz-Moreira I, Klümper U, Youdkes D, Palmony S, Dagai L, Berendonk TU, Merlin C, Manaia CM, Cytryn E. Microbiome and Resistome Profiles along a Sewage-Effluent-Reservoir Trajectory Underline the Role of Natural Attenuation in Wastewater Stabilization Reservoirs. Appl Environ Microbiol 2023; 89:e0017023. [PMID: 37199629 PMCID: PMC10304787 DOI: 10.1128/aem.00170-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023] Open
Abstract
Antibiotic-resistant bacteria and antibiotic resistance gene (ARGs) loads dissipate through sewage treatment plants to receiving aquatic environments, but the mechanisms that mitigate the spread of these ARGs are not well understood due to the complexity of full-scale systems and the difficulty of source tracking in downstream environments. To overcome this problem, we targeted a controlled experimental system comprising a semicommercial membrane-aerated bioreactor (MABR), whose effluents fed a 4,500-L polypropylene basin that mimicked effluent stabilization reservoirs and receiving aquatic ecosystems. We analyzed a large set of physicochemical measurements, concomitant with the cultivation of total and cefotaxime-resistant Escherichia coli, microbial community analyses, and quantitative PCR (qPCR)/digital droplet PCR (ddPCR) quantification of selected ARGs and mobile genetic elements (MGEs). The MABR removed most of the sewage-derived organic carbon and nitrogen, and simultaneously, E. coli, ARG, and MGE levels dropped by approximately 1.5- and 1.0-log unit mL-1, respectively. Similar levels of E. coli, ARGs, and MGEs were removed in the reservoir, but interestingly, unlike in the MABR, the relative abundance (normalized to 16S rRNA gene-inferred total bacterial abundance) of these genes also decreased. Microbial community analyses revealed the substantial shifts in bacterial and eukaryotic community composition in the reservoir relative to the MABR. Collectively, our observations lead us to conclude that the removal of ARGs in the MABR is mainly a consequence of treatment-facilitated biomass removal, whereas in the stabilization reservoir, mitigation is linked to natural attenuation associated with ecosystem functioning, which includes abiotic parameters, and the development of native microbiomes that prevent the establishment of wastewater-derived bacteria and associated ARGs. IMPORTANCE Wastewater treatment plants are sources of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs), which can contaminate receiving aquatic environments and contribute to antibiotic resistance. We focused on a controlled experimental system comprising a semicommercial membrane-aerated bioreactor (MABR) that treated raw sewage, whose effluents fed a 4,500-L polypropylene basin that mimicked effluent stabilization reservoirs. We evaluated ARB and ARG dynamics across the raw-sewage-MABR-effluent trajectory, concomitant with evaluation of microbial community composition and physicochemical parameters, in an attempt to identify mechanisms associated with ARB and ARG dissipation. We found that removal of ARB and ARGs in the MABR was primarily associated with bacterial death or sludge removal, whereas in the reservoir it was attributed to the inability of ARBs and associated ARGs to colonize the reservoir due to a dynamic and persistent microbial community. The study demonstrates the importance of ecosystem functioning in removing microbial contaminants from wastewater.
Collapse
Affiliation(s)
- Inês Leão
- Universidade Católica Portuguesa, Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Leron Khalifa
- Institute of Soil, Water and Environmental Sciences, Volcani Institute, Agricultural Research Organization, Rishon-Lezion, Israel
| | | | - Ivone Vaz-Moreira
- Universidade Católica Portuguesa, Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Uli Klümper
- Technische Universität Dresden, Institute of Hydrobiology, Dresden, Germany
| | - Daniel Youdkes
- Institute of Soil, Water and Environmental Sciences, Volcani Institute, Agricultural Research Organization, Rishon-Lezion, Israel
| | | | | | | | | | - Célia M. Manaia
- Universidade Católica Portuguesa, Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Eddie Cytryn
- Institute of Soil, Water and Environmental Sciences, Volcani Institute, Agricultural Research Organization, Rishon-Lezion, Israel
| |
Collapse
|
34
|
La Manna P, De Carluccio M, Iannece P, Vigliotta G, Proto A, Rizzo L. Chelating agents supported solar photo-Fenton and sunlight/H 2O 2 processes for pharmaceuticals removal and resistant pathogens inactivation in quaternary treatment for urban wastewater reuse. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131235. [PMID: 36948125 DOI: 10.1016/j.jhazmat.2023.131235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 05/03/2023]
Abstract
In this work, Fe3+-iminodisuccinic acid (Fe:IDS) based solar photo Fenton (SPF), an Italian patented method, was investigated in quaternary treatment of real urban wastewater and compared to Fe3+-ethylenediamine-N,N'-disuccinic acid (Fe:EDDS) for the first time. Three pharmaceuticals (PCs) (sulfamethoxazole, carbamazepine and trimethoprim) and four pathogens (Escherichia coli, somatic and F-plus coliphages, Clostridium perfringens, consistently with the new EU regulation for wastewater reuse (2020/741)), were chosen as target pollutants. SPF with Fe:EDDS was more effective in PCs removal (80%, 10 kJ L-1) than the SPF with Fe:IDS (58%), possibly due to the higher capability of generating hydroxyl radicals. On the contrary, Fe:IDS was more effective (4.3 log inactivation for E. coli) than Fe:EDDS (1.9 log) in pathogens inactivation, possibly due to a lower iron precipitation and turbidity which finally promoted an improved intracellular photo-Fenton mechanism. Fe:L based SPF was subsequently coupled to sunlight/H2O2. Interestingly, while its combination with Fe:EDDS based SPF slightly increased disinfectant efficacy (2.3 vs 1.9 log inactivation for E. coli), the combination with Fe:IDS decreased inactivation efficiency (3.4 vs 4.3 log reduction). In conclusion, due to the good compromise between PCs removal and disinfection efficiency, Fe:IDS SPF alone is an attractive option for quaternary treatment for urban wastewater reuse.
Collapse
Affiliation(s)
- Pellegrino La Manna
- Water Science and Tecnology group (WaSTe), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Marco De Carluccio
- Water Science and Tecnology group (WaSTe), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Patrizia Iannece
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Giovanni Vigliotta
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Antonio Proto
- Environmental Chemistry Group (ECG), Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Luigi Rizzo
- Water Science and Tecnology group (WaSTe), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy.
| |
Collapse
|
35
|
Gao X, Fu X, Xie M, Wang L. Environmental risks of antibiotic resistance genes released from biological laboratories and its control measure. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:636. [PMID: 37133624 DOI: 10.1007/s10661-023-11316-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 04/25/2023] [Indexed: 05/04/2023]
Abstract
Antibiotic resistance genes (ARGs) are a growing global threat to public health. Biological laboratory wastewater contains large amounts of free ARGs. It is important to assess the risk of free ARGs from biological laboratories and to find appropriate treatments to control their spread. The fate of plasmids in the environment and the effect of different thermal treatments on their persistence activity were tested. The results showed that untreated resistance plasmids could exist in water for more than 24 h (the special 245 bp fragment). Gel electrophoresis and transformation assays showed that the plasmids boiled for 20 min retained 3.65% ± 0.31% transformation activity of the intact plasmids, while autoclaving for 20 min at 121 °C could effectively degrade the plasmids and that NaCl, bovine serum albumin, and EDTA-2Na affected the degradation efficiency of the plasmids during boiling. In the simulated aquatic system, using 106 copy/μL of plasmids after autoclaving, only 102 copies/μL of the fragment after only 1-2 h could be detected. By contrast, boiled plasmids for 20 min were still detectable after plunging them into water for 24 h. These findings suggest that untreated and boiled plasmids can remain in the aquatic environment for a certain time resulting in the risk of disseminating ARGs. However, autoclaving is an effective way of degrading waste free resistance plasmids.
Collapse
Affiliation(s)
- Xiaoyu Gao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Research Institute for Shanghai Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Xiaohua Fu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Research Institute for Shanghai Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Mengdi Xie
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Research Institute for Shanghai Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Lei Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
- Research Institute for Shanghai Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
36
|
Liu Y, Shi X, Chen X, Ding P, Zhang L, Yang J, Pan J, Yu Y, Wu J, Hu G. Spatial Distribution and Risk Assessment of Antibiotics in 15 Pharmaceutical Plants in the Pearl River Delta. TOXICS 2023; 11:382. [PMID: 37112609 PMCID: PMC10143516 DOI: 10.3390/toxics11040382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Pharmaceutical plants are an essential source of antibiotics emitted into the aqueous environment. The monitoring of target antibiotics in pharmaceutical plants through various regions is vital to optimize contaminant release. The occurrence, distribution, removal, and ecological risk of 30 kinds of selected antibiotics in 15 pharmaceutical plants in the Pearl River Delta (PRD) were investigated in this study. Lincomycin (LIN) showed the highest concentration (up to 56,258.3 ng/L) in the pharmaceutical plant influents from Zhongshan city. Norfloxacin (NFX) showed a higher detection frequency than other antibiotics. In addition, the spatial distribution of antibiotics in pharmaceutical plants showed significant differences, with higher concentrations of total antibiotics found in pharmaceutical plant influents in Shenzhen City than those of different regions in PRD. The treatment processes adopted by pharmaceutical plants were commonly ineffective in removing antibiotics, with only 26.7% of antibiotics being effectively removed (average removal greater than 70%), while 55.6% of antibiotics had removal rates of below 60%. The anaerobic/anoxic/oxic (AAO)-membrane bioreactor (MBR) combined process exhibited better treatment performance than the single treatment process. Sulfamethoxazole (SMX), ofloxacin (OFL), erythromycin-H2O (ETM-H2O), sulfadiazine (SDZ), sulfamethazine (SMZ), norfloxacin (NFX), and ciprofloxacin (CIP) in pharmaceutical plant effluents posed high or moderate ecological risk and deserve particular attention.
Collapse
Affiliation(s)
- Yuanfei Liu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
- School of Environment and Energy, South China University of Technology, Guangzhou 510641, China
| | - Xiaoxia Shi
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Xiaoxia Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
- Chongqing Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Chongqing 404000, China
| | - Ping Ding
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Lijuan Zhang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Jian Yang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Jun Pan
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
- Chongqing Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Chongqing 404000, China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Jinhua Wu
- School of Environment and Energy, South China University of Technology, Guangzhou 510641, China
| | - Guocheng Hu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
| |
Collapse
|
37
|
Puri M, Gandhi K, Kumar MS. Emerging environmental contaminants: A global perspective on policies and regulations. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117344. [PMID: 36736081 DOI: 10.1016/j.jenvman.2023.117344] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Emerging contaminants include many synthetic or natural substances, such as pharmaceuticals and personal care products, hormones, and flame retardants that are not often controlled or monitored in the environment. The consumption or use of these substances is on an ever-rising trend, which dangerously increases their prevalence in practically all environmental matrices. These contaminants are present in low environmental concentrations and cause severe effects on human health and the biota. The present review analyzed 2012-2022 years papers via PubChem, science direct, National Center for Biotechnology Information, web of science on the legislations and policies of emerging contaminants globally. A state-of-the-art review of several studies in the literature focus on examining and evaluating the emerging contaminants and the frameworks adopted by developed and developing countries to combat the release of emerging contaminants and form footprints towards water sustainability which includes water availability, usage patterns, generation and pollution management, the health of aquatic systems, and societal vulnerability. The paper aims to provide a comprehensive view of current global policies and framework regarding evaluating and assessing the chemicals, in light of being a threat to the environment and biota. The review also highlights the future global prospects, including current governmental activities and emerging contaminant policy measures. The review concludes with suggestions and way forward to control the inventory and disposal of emerging contaminants in the environment.
Collapse
Affiliation(s)
- Mehak Puri
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Kavita Gandhi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Sophisticated Environmental Analytical Facility, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India.
| | - M Suresh Kumar
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
38
|
Sunyer-Caldú A, Benedetti B, Valhondo C, Martínez-Landa L, Carrera J, Di Carro M, Magi E, Diaz-Cruz MS. Using integrative samplers to estimate the removal of pharmaceuticals and personal care products in a WWTP and by soil aquifer treatment enhanced with a reactive barrier. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161466. [PMID: 36626994 DOI: 10.1016/j.scitotenv.2023.161466] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
The need and availability of freshwater is a major environmental issue, aggravated by climate change. It is necessary to find alternative sources of freshwater. Wastewater could represent a valid option but requires extensive treatment to remove wastewater-borne contaminants, such as contaminants of emerging concern (CECs). It is urgent to develop not only sustainable and effective wastewater treatment techniques, but also water quality assessment methods. In this study, we used polar organic chemical integrative samplers (POCIS) to investigate the presence and abatement of contaminants in an urban wastewater treatment plant (WWTP) and in soil aquifer treatment (SAT) systems (a conventional one and one enhanced with a reactive barrier). This approach allowed us to overcome inter-day and intraday variability of the wastewater composition. Passive sampler extracts were analyzed to investigate contamination from 56 pharmaceuticals and personal care products (PPCPs). Data from the POCIS were used to estimate PPCPs' removal efficiency along the WWTP and the SAT systems. A total of 31 compounds, out of the 56 investigated, were detected in the WWTP influent. Removal rates along WWTP were highly variable (16-100 %), with benzophenone-3, benzophenone-1, parabens, ciprofloxacin, ibuprofen, and acetaminophen as the most effectively removed chemicals. The two SAT systems yielded much higher elimination rates than those achieved through the primary and secondary treatments together. The SAT system that integrated a reactive barrier, based on sustainable materials to promote enhanced elimination of CECs, was significantly more efficient than the conventional one. The removal of the recalcitrant carbamazepine and its epoxy- metabolite was especially remarkable in this SAT, with removal rates between 69-81 % and 63-70 %, respectively.
Collapse
Affiliation(s)
- Adrià Sunyer-Caldú
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center, Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Barbara Benedetti
- Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Cristina Valhondo
- GHS (UPC-CSIC) Geosciences Department, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center of the Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; Géosciences Montpellier, Université de Montpellier, CNRS, 300 avenue Emile Jeanbrau, CC MSE, 34095, Montpellier, France
| | - Lurdes Martínez-Landa
- GHS (UPC-CSIC) Geosciences Department, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center of the Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Jesús Carrera
- GHS (UPC-CSIC) Geosciences Department, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center of the Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Marina Di Carro
- Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Emanuele Magi
- Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - M Silvia Diaz-Cruz
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center, Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
39
|
Evaluation of the bacterial contamination of face masks worn by personnel in a center of COVID 19 hospitalized patients: A cross-sectional study. New Microbes New Infect 2023; 52:101090. [PMID: 36744172 PMCID: PMC9883076 DOI: 10.1016/j.nmni.2023.101090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/29/2023] Open
Abstract
Background During the Coronavirus Pandemic, the use of masks has increased significantly. The lack of control on hygiene protocols and the need to use PPE properly increases the spread of bacterial infection. The purpose of this study was to investigate the degree of contamination and frequency of bacterial species isolated from surgical and N95 masks used by hospital personnel. Methods A total number of 175 masks were collected from staff working in Sina hospital (Hamadan province, Iran) during the first six months of 2022. The bacterial contamination of masks were evaluated and identified using biochemical kits. Antimicrobial susceptibility testing of the isolates were done using Kirby-Bauer methods and MIC were assessed for each isolate against different disinfectants (Sodium hypochlorite 5%, Hydrogen Peroxide 3%, Ethanol 70% and Deconex). Results Of 175 masks, 471 bacterial isolates were detected including 9 species. The most prevalent strain were Coagulase negative Staphylococcus (28%) followed by Acinetobacter (20.8%) and Pseudomonas (13.8%), while, Klebsiealla and Enterococcus were the least frequent species with the rate of 3.8% and 1.2%, respectively. The results of MIC methods indicated that all 471 strains were resistant to ehtanol70% and sensitive to hydrogen peroxide 3%. Furthermore, the mean average of Deconex inhibitory effect is lower than Sodium hypochlorite 5%. Conclusions According to the results of this study, there was a high prevalence of CoNS, Acinetobacter and Pseudomonas in hospital with a high resistance pattern against antibiotics especially Ampicillin and disinfectants.
Collapse
|
40
|
Fatimazahra S, Latifa M, Laila S, Monsif K. Review of hospital effluents: special emphasis on characterization, impact, and treatment of pollutants and antibiotic resistance. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:393. [PMID: 36780024 PMCID: PMC9923651 DOI: 10.1007/s10661-023-11002-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Health care institutions generate large volumes of liquid effluents from specific activities related to healthcare, analysis, and research. Their direct discharge into the environment has various negative effects on aquatic environments and human health, due to their high organic matter charges and the presence of various emerging contaminants such as disinfectants, drugs, bacteria, viruses, and parasites. Moreover, hospital effluents, by carrying antibiotics, contribute to the development of antibiotic-resistant microorganisms in the environment. This resistance has become a global issue that manifests itself variously in different countries, causing the transmission of different infections. In this respect, an effort is provided to protect water resources by current treatment methods that imply physical-chemical processes such as adsorption and advanced oxidation processes, biological processes such as activated sludge and membrane bioreactors and other hybrid techniques. The purpose of this review is to improve the knowledge on the composition and impact of hospital wastewater on man and the environment, highlighting the different treatment techniques appropriate to this type of disposal before discharge into the environment.
Collapse
Affiliation(s)
- Sayerh Fatimazahra
- Process Engineering and Environment Laboratory, Faculty of Science and Technology of Mohammedia, Hassan II University, Casablanca, Morocco
| | - Mouhir Latifa
- Process Engineering and Environment Laboratory, Faculty of Science and Technology of Mohammedia, Hassan II University, Casablanca, Morocco
| | - Saafadi Laila
- Process Engineering and Environment Laboratory, Faculty of Science and Technology of Mohammedia, Hassan II University, Casablanca, Morocco
| | - Khazraji Monsif
- Process Engineering and Environment Laboratory, Faculty of Science and Technology of Mohammedia, Hassan II University, Casablanca, Morocco
| |
Collapse
|
41
|
Cui E, Zhou Z, Gao F, Chen H, Li J. Roles of substrates in removing antibiotics and antibiotic resistance genes in constructed wetlands: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160257. [PMID: 36402338 DOI: 10.1016/j.scitotenv.2022.160257] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Antibiotics and corresponding antibiotic resistance genes (ARGs) are emerging pollutants in wastewater that pose a significant threat to the environment and human health. Constructed wetlands (CWs) are a cost-effective technology for eliminating these pollutants through substrates, plants, and microorganisms. Detailed reviews of the roles of CW substrates on antibiotic and ARG removal and recent progress in the field are lacking. This paper reviews the mechanisms influencing antibiotic and ARG (intracellular and extracellular) removal in CWs, and natural, biomass, chemical, modified, industrial, novel, and combined substrates on their removal efficiencies. Generally, substrates remove antibiotics and ARGs mainly through adsorption, biodegradation, chemical oxidation, and filtration. Other mechanisms, such as photolysis, may also contribute to removal. Natural substrates (e.g., gravel, zeolite) are more frequently employed than other types of substrates. The removal performance of antibiotics and intracellular ARGs by zeolite was better than that of gravel through enhanced substrate adsorption, filtration, and biodegradation processes. Moreover, Mn ore showed promising high capability to remove high concentration of antibiotics through various removal pathways. In addition, combined substrates of soil/sand/gravel and other substrates further facilitate antibiotic removal. Future research is suggested to explore the mechanisms of competitive adsorption and redox-controlled biodegradation, investigate the effect of Fe/Mn oxides on the removal of antibiotics and ARGs via chemical oxidation, evaluate the removal of extracellular ARGs by CWs with different substrates, and investigate the effect of substrates on removal of antibiotics and ARGs in full-scale CWs.
Collapse
Affiliation(s)
- Erping Cui
- Institute of Farmland Irrigation of Chinese Academy of Agricultural Sciences, Xinxiang 453002, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhenchao Zhou
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feng Gao
- Institute of Farmland Irrigation of Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
| | - Hong Chen
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianan Li
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China.
| |
Collapse
|
42
|
Castanheira B, Brochsztain S, Otubo L, Teixeira ACSC. Periodic mesoporous organosilicas containing naphthalenediimides as organic sensitizers for sulfadiazine photodegradation. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130224. [PMID: 36345058 DOI: 10.1016/j.jhazmat.2022.130224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/27/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
In this work, periodic mesoporous organosilicas (PMO) functionalized with the organic sentisizer naphthalenediimide (NDI) were employed as heterogeneous catalysts for the photodegradation of the antibiotic sulfadiazine (SDZ), taken as a model for contaminants of emerging concern (CECs). The catalysts, designated as PMONDI, were prepared by surfactant-directed co-condensation of the precursor N,N'-bis(3-triethoxysilylpropyl)- 1,4,5,8-naphthalenediimide with tetraethoxysilane. The synthesized PMONDI were characterized using transmission electron microscopy, nitrogen adsorption isotherms and small and large angle x-ray scattering. The performance of PMONDI catalysts in the photodegradation of SDZ was compared to that of TiO2 nanoparticles impregnated into SBA-15 mesoporous silica (TiO2/SBA-15), under irradiation with a Hg lamp with a bandpass filter of 320-500 nm. Under optimal conditions, PMONDI degraded 100% of the SDZ in 45 min, while the total degradation of SDZ was achieved only after 150 min with TiO2/SBA-15. PMONDI also performed better than TiO2/SBA-15 in reuse tests. The mechanism of photodegradation with PMONDI involves the formation of excited triplet states of NDI (3NDI*) upon irradiation, which can then react with molecular oxygen to form reactive oxygen species, which degrade SDZ. Analysis of the SDZ degradation products indicated two main pathways: (1) hydroxylation of the aniline ring and (2) SO2 extrusion and rearrangement, followed by oxidation of the aniline ring to nitrobenzene. In conclusion, the great potential of the PMONDI materials as photocatalysts for CECs degradation was demonstrated in this work, encouraging further research on these materials for the degradation of pollutants.
Collapse
Affiliation(s)
- Bruna Castanheira
- Department of Chemical Engineering, University of São Paulo, Av. Prof. Luciano Gualberto, tr. 3, São Paulo 380, SP, Brazil.
| | - Sergio Brochsztain
- Federal University of ABC, Av. dos Estados, 5001, Santo André, SP 09210-580, Brazil
| | - Larissa Otubo
- Nuclear and Energy Research Institute (IPEN), Av. Prof. Lineu Prestes, 2242, São Paulo, SP 05508-000, Brazil
| | - Antonio Carlos S C Teixeira
- Department of Chemical Engineering, University of São Paulo, Av. Prof. Luciano Gualberto, tr. 3, São Paulo 380, SP, Brazil.
| |
Collapse
|
43
|
Wang J, Yue W, Wang Z, Bai Y, Song J. Removal effect of trihalomethanes (THMs) and halogenated acetic acids (HAAs) precursors in reclaimed water by polyaluminum chloride (PACl) coagulation. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:672-684. [PMID: 36789711 DOI: 10.2166/wst.2023.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
This study analyzed the removal effect of various doses of polyaluminum chloride (PACI) on wastewater treatment plants at pH 7. The sewage plant's secondary effluent organic matter (EfOM) separates into four components: hydrophobic base (HOB), hydrophilic (HI), hydrophobic acid (HOA), and hydrophobic neutral (HON). The removal effect for various forms of organic waste is optimum at 16 mg/L and that halogenated acetic acids (HAAs) and trihalomethanes (THMs) are formed simultaneously. After PACI treatment, hydrophobic organic compounds were converted to humic acid (HA), fulvic acid (FA), soluble microbial products (SMPs), and other HI organic compounds, increasing the amount of HAAs produced by HI fractions. Removal rate of hydrophobic organic compounds, particularly HON, is 92.8% when using PAC. Moreover, after EfOM coagulation, most HAAs are trichloroacetic acid (TCAA), followed by bromochloroacetic acid (BCAA) and bromodichloroacetic acid (BDCAA). Only HOB can produce monochloroacetic acid (MCAA), whereas HA and SMPs with HOA are primary components of dichloroacetic acid (DCAA). The toughest removable byproduct of THMs is CHBr3, and after condensation of each THM component, only HOA and HON produce CHBr3, while HI produces only a minimal quantity of CHBrCl2 and CHCl3.This finding is critical for understanding how disinfection byproducts are produced after chlorinating EfOM.
Collapse
Affiliation(s)
- Juncheng Wang
- College of Energy and Environmental Engineering, Hebei University of Engineering, No. 19 Taiji Road, Handan City, Hebei Province 056038, China
| | - Wen Yue
- College of Energy and Environmental Engineering, Hebei University of Engineering, No. 19 Taiji Road, Handan City, Hebei Province 056038, China
| | - Zhenghao Wang
- College of Environment, Hohai University, Nanjing City, Jiangsu Province 210024, China
| | - Yu Bai
- Handan Municipal Engineering Company, Handan City, Hebei Province 056001, China
| | - Jina Song
- College of Energy and Environmental Engineering, Hebei University of Engineering, No. 19 Taiji Road, Handan City, Hebei Province 056038, China
| |
Collapse
|
44
|
Gabrielli M, Delli Compagni R, Gusmaroli L, Malpei F, Polesel F, Buttiglieri G, Antonelli M, Turolla A. Modelling and prediction of the effect of operational parameters on the fate of contaminants of emerging concern in WWTPs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159200. [PMID: 36202354 DOI: 10.1016/j.scitotenv.2022.159200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/08/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Wastewater treatment plants (WWTPs) provide a barrier against the discharge of contaminants of emerging concern (CECs) into the environment. The removal of CECs is highly WWTP-specific and the underlying mechanisms are still poorly understood, hampering the optimization of biological treatment steps for their removal. To fill this knowledge gap, we assessed the influence of four operational parameters of activated sludge biological treatment, namely total suspended solids, temperature, pH and redox conditions, on the sorption and biodegradation of four CECs under controlled laboratory conditions. Design of Experiments was used to better address the factors influencing CECs removal and interactions among operational parameters. The derived statistical models showed results in concordance with previous studies and indicated how sorption and biodegradation of the investigated CECs depend on most tested parameters and few of their interactions. The predictions of the developed models have been compared with literature values, indicating how the tested parameters are responsible for most of the variability of sorption, while they could not reliably generalize biodegradation rates. The developed models were also implemented as an extension of a mechanistic biological treatment model, successfully describing the dynamic behaviour of a large-scale WWTP, which was observed during a three-day continuous monitoring campaign. Compared to a traditional modelling approach, the one including the developed models showed on average almost a three-fold uncertainty reduction, favouring its use to aid WWTP managers and regulators for improved assessment of CEC fate and removal. Finally, the models highlighted that, while higher temperatures and solids concentrations generically favoured CECs removal, removal efficiency vary significantly due to operational parameters and no globally optimum conditions for CECs removal exist. The use of these models opens the door to the combined dynamic management of both traditional contaminants and CECs in WWTPs.
Collapse
Affiliation(s)
- Marco Gabrielli
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA), Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Riccardo Delli Compagni
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA), Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Lucia Gusmaroli
- Catalan Institute for Water Research (ICRA-CERCA), C. Emili Grahit 101, 17003 Girona, Spain; Universitat de Girona, Plaça de Sant Domènec, 3, 17004 Girona, Spain
| | - Francesca Malpei
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA), Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | | | - Gianluigi Buttiglieri
- Catalan Institute for Water Research (ICRA-CERCA), C. Emili Grahit 101, 17003 Girona, Spain; Universitat de Girona, Plaça de Sant Domènec, 3, 17004 Girona, Spain
| | - Manuela Antonelli
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA), Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Andrea Turolla
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA), Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
| |
Collapse
|
45
|
Masoner JR, Kolpin DW, Cozzarelli IM, Bradley PM, Arnall BB, Forshay KJ, Gray JL, Groves JF, Hladik ML, Hubbard LE, Iwanowicz LR, Jaeschke JB, Lane RF, McCleskey RB, Polite BF, Roth DA, Pettijohn MB, Wilson MC. Contaminant Exposure and Transport from Three Potential Reuse Waters within a Single Watershed. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1353-1365. [PMID: 36626647 PMCID: PMC9878729 DOI: 10.1021/acs.est.2c07372] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Global demand for safe and sustainable water supplies necessitates a better understanding of contaminant exposures in potential reuse waters. In this study, we compared exposures and load contributions to surface water from the discharge of three reuse waters (wastewater effluent, urban stormwater, and agricultural runoff). Results document substantial and varying organic-chemical contribution to surface water from effluent discharges (e.g., disinfection byproducts [DBP], prescription pharmaceuticals, industrial/household chemicals), urban stormwater (e.g., polycyclic aromatic hydrocarbons, pesticides, nonprescription pharmaceuticals), and agricultural runoff (e.g., pesticides). Excluding DBPs, episodic storm-event organic concentrations and loads from urban stormwater were comparable to and often exceeded those of daily wastewater-effluent discharges. We also assessed if wastewater-effluent irrigation to corn resulted in measurable effects on organic-chemical concentrations in rain-induced agricultural runoff and harvested feedstock. Overall, the target-organic load of 491 g from wastewater-effluent irrigation to the study corn field during the 2019 growing season did not produce substantial dissolved organic-contaminant contributions in subsequent rain-induced runoff events. Out of the 140 detected organics in source wastewater-effluent irrigation, only imidacloprid and estrone had concentrations that resulted in observable differences between rain-induced agricultural runoff from the effluent-irrigated and nonirrigated corn fields. Analyses of pharmaceuticals and per-/polyfluoroalkyl substances in at-harvest corn-plant samples detected two prescription antibiotics, norfloxacin and ciprofloxacin, at concentrations of 36 and 70 ng/g, respectively, in effluent-irrigated corn-plant samples; no contaminants were detected in noneffluent irrigated corn-plant samples.
Collapse
Affiliation(s)
- Jason R. Masoner
- U.S.
Geological Survey, Oklahoma
City, Oklahoma 73116, United States
| | - Dana W. Kolpin
- U.S.
Geological Survey, Iowa City, Iowa 52240, United States
| | | | - Paul M. Bradley
- U.S.
Geological Survey, Columbia, South Carolina 29210, United States
| | - Brian B. Arnall
- Oklahoma
State University, Stillwater, Oklahoma 74078, United States
| | - Kenneth J. Forshay
- U.S. Environmental
Protection Agency, Ada, Oklahoma 74820, United States
| | - James L. Gray
- U.S.
Geological Survey, Lakewood, Colorado 80225, United States
| | - Justin F. Groves
- U.S. Environmental
Protection Agency, Ada, Oklahoma 74820, United States
| | | | | | - Luke R. Iwanowicz
- U.S.
Geological Survey, Kearneysville, West Virginia, 25430, United States
| | | | - Rachael F. Lane
- U.S. Geological
Survey, Lawrence, Kansas 66049, United States
| | | | | | - David A. Roth
- U.S. Geological Survey, Boulder, Colorado 80303, United States
| | | | | |
Collapse
|
46
|
Zhang H, Wang XC, Zheng Y, Dzakpasu M. Removal of pharmaceutical active compounds in wastewater by constructed wetlands: Performance and mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116478. [PMID: 36272291 DOI: 10.1016/j.jenvman.2022.116478] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/22/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
The occurrence of pharmaceutical active compounds (PhACs) in aquatic environments is a cause for concern due to potential adverse effects on human and ecosystem health. Constructed wetlands (CWs) are cost-efficient and sustainable wastewater treatment systems for the removal of these PhACs. The removal processes and mechanisms comprise a complex interplay of photodegradation, biodegradation, phytoremediation, and sorption. This review synthesized the current knowledge on CWs for the removal of 20 widely detected PhACs in wastewater. In addition, the major removal mechanisms and influencing factors are discussed, enabling comprehensive and critical understanding for optimizing the removal of PhACs in CWs. Consequently, potential strategies for intensifying CWs system performance for PhACs removal are discussed. Overall, the results of this review showed that CWs performance in the elimination of some pharmaceuticals was on a par with conventional wastewater treatment plants (WWTPs) and, for others, it was above par. Furthermore, the findings indicated that system design, operational, and environmental factors played important but highly variable roles in the removal of pharmaceuticals. Nonetheless, although CWs were proven to be a more cost-efficient and sustainable technology for pharmaceuticals removal than other engineered treatment systems, there were still several research gaps to be addressed, mainly including the fate of a broad range of emerging contaminants in CWs, identification of specific functional microorganisms, transformation pathways of specific pharmaceuticals, assessment of transformation products and the ecotoxicity evaluation of CWs effluents.
Collapse
Affiliation(s)
- Hengfeng Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Xiaochang C Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Yucong Zheng
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Mawuli Dzakpasu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China.
| |
Collapse
|
47
|
Di Marcantonio C, Chiavola A, Gioia V, Leoni S, Cecchini G, Frugis A, Ceci C, Spizzirri M, Boni MR. A step forward on site-specific environmental risk assessment and insight into the main influencing factors of CECs removal from wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116541. [PMID: 36419300 DOI: 10.1016/j.jenvman.2022.116541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/20/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The presence of Contaminants of Emerging Concern (CECs) in water systems has been recognized as a potential source of risk for human health and the ecosystem. The present paper aims at evaluating the effects of different characteristics of full-scale Wastewater Treatment Plants (WWTPs) on the removal of 14 selected CECs belonging to the classes of caffeine, illicit drugs and pharmaceuticals. Particularly, the investigated plants differed because of the treatment lay-out, the type of biological process, the value of the operating parameters, the fate of the treated effluent (i.e. release into surface water or reuse), and the treatment capacity. The activity consisted of measuring concentrations of the selected CECs and also traditional water quality parameters (i.e. COD, phosphorous, nitrogen species and TSS) in the influent and effluent of 8 plants. The study highlights that biodegradable CECs (cocaine, methamphetamine, amphetamine, benzoylecgonine, 11-nor-9carboxy-Δ9-THC, lincomycin, trimethoprim, sulfamethoxazole, sulfadiazine, sulfadimethoxine, carbamazepine, ketoprofen, warfarin and caffeine) were well removed by all the WWTPs, with the best performance achieved by the MBR for antibiotics. Carbamazepine was removed at the lowest extent by all the WWTPs. The environmental risk assessed by using the site-specific value of the dilution factor resulted to be high in 3 out of 8 WWTPs for carbamazepine and less frequently for caffeine. However, the risk was reduced when the dilution factor was assumed equal to the default value of 10 as proposed by EU guidelines. Therefore, a specific determination of this factor is needed taking into account the hydraulic characteristics of the receiving water body.
Collapse
Affiliation(s)
- Camilla Di Marcantonio
- Sapienza University of Rome, Department of Civil, Constructional and Environmental Engineering (DICEA), Via Eudossiana 18, Rome, Italy, Zip code 00184.
| | - Agostina Chiavola
- Sapienza University of Rome, Department of Civil, Constructional and Environmental Engineering (DICEA), Via Eudossiana 18, Rome, Italy, Zip code 00184
| | | | - Simone Leoni
- ACEA ELABORI SpA, Via Vitorchiano 165, Rome, Italy
| | | | | | - Claudia Ceci
- ACEA ATO 2 SpA, Viale di Porta Ardeatina 129, 00154, Rome, Italy
| | | | - Maria Rosaria Boni
- Sapienza University of Rome, Department of Civil, Constructional and Environmental Engineering (DICEA), Via Eudossiana 18, Rome, Italy, Zip code 00184
| |
Collapse
|
48
|
Mheidli N, Malli A, Mansour F, Al-Hindi M. Occurrence and risk assessment of pharmaceuticals in surface waters of the Middle East and North Africa: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158302. [PMID: 36030863 DOI: 10.1016/j.scitotenv.2022.158302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Pharmaceutical compounds in surface water are perceived as contaminants of emerging concern due to their impacts on the aquatic environment and human health. The risk associated with these compounds has not been quantified in the Middle East and North Africa (MENA). This review identified that 210 pharmaceutical compounds have been analyzed in MENA water compartments between 2008 and 2022. In fact, 151 of these substances were detected in at least one of 13 MENA countries where occurrence studies had been conducted. Antibiotics claimed the highest number of pharmaceuticals detected with concentrations ranging between 0.03 and 66,400 ng/L (for Thiamphenicol and Spiramycin respectively). To investigate whether any of these compounds exert an ecological, human health, or antibiotic resistance risk, a screening-level risk assessment was performed in surface water matrices using maximum, median, and minimum concentrations. 39 and 8 detected pharmaceuticals in MENA surface waters posed a possible risk on aquatic ecosystems and human health respectively. Extremely high risk quotients (>1000) for six pharmaceuticals (17β estradiol, spiramycin, diclofenac, metoprolol, ethinylestradiol, and carbamazepine) were enumerated based on maximal concentrations implying an alarming risk on aquatic toxicity. Moreover, hormones posed the highest possible risk on human health whether ingested through drinking water or fish (e.g., 17β-estradiol had a health risk quotient of 2880 for children). Spiramycin showed a high risk of antibiotic resistance with a risk quotient of 133. This review serves as a basis for future prioritization studies and regulatory guidelines in the MENA region to minimize the risks of the identified compounds.
Collapse
Affiliation(s)
- Nourhan Mheidli
- Baha and Walid Bassatne Department of Chemical Engineering and Advanced Energy, American University of Beirut, Beirut, Lebanon
| | - Ali Malli
- Baha and Walid Bassatne Department of Chemical Engineering and Advanced Energy, American University of Beirut, Beirut, Lebanon.
| | - Fatima Mansour
- Department of Civil and Environmental Engineering, American University of Beirut, Beirut, Lebanon
| | - Mahmoud Al-Hindi
- Baha and Walid Bassatne Department of Chemical Engineering and Advanced Energy, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
49
|
Nava AR, Daneshian L, Sarma H. Antibiotic resistant genes in the environment-exploring surveillance methods and sustainable remediation strategies of antibiotics and ARGs. ENVIRONMENTAL RESEARCH 2022; 215:114212. [PMID: 36037921 DOI: 10.1016/j.envres.2022.114212] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/05/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Antibiotic Resistant Genes (ARGs) are an emerging environmental health threat due to the potential change in the human microbiome and selection for the emergence of antibiotic resistant bacteria. The rise of antibiotic resistant bacteria has caused a global health burden. The WHO (world health organization) predicts a rise in deaths due to antibiotic resistant infections. Since bacteria can acquire ARGs through horizontal transmission, it is important to assess the dissemination of antibioticresistant genes from anthropogenic sources. There are several sources of antibiotics, antibiotic resistant bacteria and genes in the environment. These include wastewater treatment plants, landfill leachate, agricultural, animal industrial sources and estuaries. The use of antibiotics is a worldwide practice that has resulted in the evolution of resistance to antibiotics. Our review provides a more comprehensive look into multiple sources of ARG's and antibiotics rather than one. Moreover, we focus on effective surveillance methods of ARGs and antibiotics and sustainable abiotic and biotic remediation strategies for removal and reduction of antibiotics and ARGs from both terrestrial and aquatic environments. Further, we consider the impact on public health as this problem cannot be addressed without a global transdisciplinary effort.
Collapse
Affiliation(s)
- Amy R Nava
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, 94305, USA.
| | - Leily Daneshian
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, 94305, USA.
| | - Hemen Sarma
- Bioremediation Technology Research Group, Department of Botany, Bodoland University, Rangalikhata, Deborgaon, Kokrajhar (BTR), Assam, 783370, India.
| |
Collapse
|
50
|
Ranjan N, Singh PK, Maurya NS. Pharmaceuticals in water as emerging pollutants for river health: A critical review under Indian conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114220. [PMID: 36332401 DOI: 10.1016/j.ecoenv.2022.114220] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 09/07/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The wastewaters from pharmaceutical manufacturing units, hospitals, and domestic sewage contaminated with excretal matters of medicine users are the prime sources of pharmaceutical pollutants (PPs) in natural water bodies. In the present study, PPs have been considered one of the emerging pollutants (EPs) and a cause of concern in river health assessment. Beyond the reported increase in antibiotic-resistant bacteria (ABRB), PPs have been found adversely affecting the biotic diversity in such water environments. Considering Algae, Macroinvertebrates, and Fishes as three distinct trophic level indicators, the present study puts forward a framework for showing River Health Condition (RHC) based on the calculation of a River Health Index (RHI). The RHI is calculated using six Indicator Group Scores (IGS) which individually reflect river health in a defined category of water quality characteristics. While Dissolved Oxygen Related Parameters (DORP), Nutrients (NT), and PPs are taken as causative agents affecting RHCs, scores of Algal-Bacterial (AB) symbiosis, Macroinvertebrates (MI), and Fishes (F) are considered as an effect of such environmental conditions. Current wastewater treatment technologies are also not very effective in the removal of PPs. The objective of the present study is to review the harmful effects of PPs on the aquatic environment, particularly on the chemical and biotic indicators of river health. Based on predicted no-effect concentrations (PNEC) for algae, macroinvertebrates, and fishes in the aquatic environment and measured environmental concentration (MEC) in the river, the estimated risk quotient (RQ) for norfloxacin in the Isakavagu-Nakkavagu stream of river Godavari, Hyderabad is found 293 for algae, 39 for MI, and 335 for fish. Among PPs, in Indian rivers, the presence of caffeine is the most frequent, with algae at the highest level of risk (RQmax= 24.5). Broadly six PPs, including azithromycin, caffeine, diclofenac, naproxen, norfloxacin, and sulfamethoxazole are found above PNEC values in Indian rivers. The application of IGS and RHI in understanding and presenting the river health condition (RHC) through colored hexagons has been demonstrated for the river Ganga near Varanasi (India) as an example. Identification of critical indicator groups, based on IGS provides a scientific basis for planned intervention for river health restoration to achieve an acceptable category.
Collapse
Affiliation(s)
- Nitin Ranjan
- Department of Civil Engineering, IIT(BHU), Varanasi 221005, India.
| | | | | |
Collapse
|