1
|
Chen F, Ma J, Pan K. Synergistic effect of silicon availability and salinity on metal adsorption in a common estuarine diatom. J Environ Sci (China) 2025; 148:364-374. [PMID: 39095171 DOI: 10.1016/j.jes.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 08/04/2024]
Abstract
Increasing nitrogen and phosphorus discharge and decreasing sediment input have made silicon (Si) a limiting element for diatoms in estuaries. Disturbances in nutrient structure and salinity fluctuation can greatly affect metal uptake by estuarine diatoms. However, the combined effects of Si and salinity on metal accumulation in these diatoms have not been evaluated. In this study, we aimed to investigate how salinity and Si availability combine to influence the adsorption of metals by a widely distributed diatom Phaeodactylum tricornutum. Our data indicate that replete Si and low salinity in seawater can enhance cadmium and copper adsorption onto the diatom surface. At the single-cell level, surface potential was a dominant factor determining metal adsorption, while surface roughness also contributed to the higher metal loading capacity at lower salinities. Using a combination of non-invasive micro-test technology, atomic force microscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy, we demonstrate that the diversity and abundance of the functional groups embedded in diatom cell walls vary with salinity and Si supply. This results in a change in the cell surface potential and transient metal influx. Our study provides novel mechanisms to explain the highly variable metal adsorption capacity of a model estuarine diatom.
Collapse
Affiliation(s)
- Fengyuan Chen
- SZU-HKUST Joint PhD Program in Marine Environmental Science, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Jie Ma
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Ke Pan
- SZU-HKUST Joint PhD Program in Marine Environmental Science, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
2
|
Kumar C, Singh H, Ghosh D, Jain A, Arya SK, Khatri M. Polystyrene nanoplastics: optimized removal using magnetic nano-adsorbent and toxicity assessment in zebrafish embryos. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2024; 22:593-604. [PMID: 39464815 PMCID: PMC11499579 DOI: 10.1007/s40201-024-00921-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/08/2024] [Indexed: 10/29/2024]
Abstract
Purpose The presence of microplastics (MPs) and nanoplastics (NPs) in aquatic ecosystems has raised serious environmental and health concerns. Polystyrene is one of the most abundant plastic polymers found in the environment. Polystyrene MPs/NPs have harmful implications for human health and their removal from the environment has become a serious challenge. Methods In this study, we investigated the adsorptive uptake of polystyrene nanoplastics (PS NPs) from aqueous solutions using fly ash-loaded magnetic nanoparticles (FAMNPs) as the magnetic nano-adsorbent. During the factor screening study, the adsorption process was studied as a function of four variables namely pH (5-10), adsorption time (30-120 min), amount of FAMNPs (0.01-0.04 g), and stirring speed (50-200 rpm). Central composite design (CCD) and response surface methodology (RSM) were employed to establish the relationship between the variables. Furthermore, toxicity assessments of PS NPs were checked on a zebrafish model, shedding light on its potential ecological effects. Results Two variables namely the pH and amount of FAMNPs significantly influenced the adsorption capacity of FAMNPs and were further optimized for subsequent analysis. The optimum operational readings proposed by the model were pH (8.5), and the amount of FAMNPs (0.03 g), resulting in a good adsorption capacity of 29.12 mg/g for PS NPs. The adequacy of the proposed model was evaluated by analysis of variance (ANOVA). Zebrafish embryos exposed to PS NPs revealed physical deformations such as pericardial edema and malformed notochord. Conclusion The study demonstrates the effectiveness of FAMNPs in the adsorption of PS NPs from aqueous solutions, with optimal conditions identified at pH 8.5 and 0.03 g of FAMNPs using RSM. The adequacy of the model was confirmed through ANOVA analysis. Toxicity assessments on zebrafish embryos exposed to PS NPs revealed significant mortality and physical deformations, highlighting the importance of PS NPs removal for environmental health. Graphical Abstract
Collapse
Affiliation(s)
- Chaitanya Kumar
- Centre for Nanoscience & Nanotechnology, University Institute for Emerging Areas in Science and Technology (UIEAST), Panjab University, Chandigarh, India
- Department of Biotechnology, University Institute of Engineering Technology (UIET), Panjab University, Chandigarh, India
| | - Harpreet Singh
- Department of Biotechnology, University Institute of Engineering Technology (UIET), Panjab University, Chandigarh, India
| | - Debopriya Ghosh
- Department of Biotechnology, University Institute of Engineering Technology (UIET), Panjab University, Chandigarh, India
| | - Atul Jain
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Shailendra Kumar Arya
- Department of Biotechnology, University Institute of Engineering Technology (UIET), Panjab University, Chandigarh, India
| | - Madhu Khatri
- Department of Biotechnology, University Institute of Engineering Technology (UIET), Panjab University, Chandigarh, India
| |
Collapse
|
3
|
de Lima DEPC, Pessanha ALM. Changes in the food selectivity of zooplanktivorous fishes related to the effects of nutrient enrichment in an urban tropical estuary. MARINE POLLUTION BULLETIN 2024; 209:117146. [PMID: 39454402 DOI: 10.1016/j.marpolbul.2024.117146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/15/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
Juvenile fish use estuarine ecosystems due to appropriate refuges and food supply found in these environments. The objective of this study was to investigate whether variations in the diet composition of juvenile fishes were mediated by changes in the availability of zooplankton prey in an urban estuary. Changes in fish foraging and prey selectivity were affected by nutrient enrichment. Calanoida and Cyclopoida were the most abundant items present in all zones and seasons, and for this reason, these were the items that most contributed to the fish diet. Shift in feeding strategy associated with eutrophication was registered due to a decrease in water quality. All species showed some contamination with microplastic particles and exhibited selectivity over them. The use of food resources available for fish is likely to be representative of estuarine habitat quality and may provide valuable information on the ecological status of estuaries.
Collapse
Affiliation(s)
- Diele Emele Pontes Carvalho de Lima
- Universidade Estadual da Paraíba, Programa de Pós-Graduação em Ecologia e Conservação, Laboratório de Ecologia de Peixes, Campina Grande, PB 58429-500, Brazil
| | - André Luiz Machado Pessanha
- Universidade Estadual da Paraíba, Programa de Pós-Graduação em Ecologia e Conservação, Laboratório de Ecologia de Peixes, Campina Grande, PB 58429-500, Brazil.
| |
Collapse
|
4
|
Soetan O, Nie J, Polius K, Feng H. Application of time series and multivariate statistical models for water quality assessment and pollution source apportionment in an Urban River, New Jersey, USA. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-35330-2. [PMID: 39433627 DOI: 10.1007/s11356-024-35330-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/13/2024] [Indexed: 10/23/2024]
Abstract
Water quality monitoring reveals changing trends in the environmental condition of aquatic systems, elucidates the prevailing factors impacting a water body, and facilitates science-backed policymaking. A 2020 hiatus in water quality data tracking in the Lower Passaic River (LPR), New Jersey, has created a 5-year information gap. To gain insight into the LPR water quality status during this lag period and ahead, water quality indices computed with 16-year historical data available for 12 physical, chemical, nutrient, and microbiological parameters were used to predict water quality between 2020 and 2025 using seasonal autoregressive moving average (ARIMA) models. Average water quality ranged from good to very poor (34 ≤ µWQI ≤ 95), with noticeable spatial and seasonal variations detected in the historical and predicted data. Pollution source tracking with the positive matrix factorization (PMF) model yielded significant R2 values (0.9 < R2 ≤ 1) for the input parameters and revealed four major LPR pollution factors, i.e., combined sewer systems, surface runoff, tide-influenced sediment resuspension, and industrial wastewater with pollution contribution rates of 23-30.2% in the upstream and downstream study areas. Significant correlation of toxic metals, nutrients, and sewage indicators suggest similarities in their sources.
Collapse
Affiliation(s)
- Oluwafemi Soetan
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ, 07043, USA
| | - Jing Nie
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ, 07043, USA
| | - Krishna Polius
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ, 07043, USA
| | - Huan Feng
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ, 07043, USA.
| |
Collapse
|
5
|
Yang J, Peng Z, Sun J, Chen Z, Niu X, Xu H, Ho KF, Cao J, Shen Z. A review on advancements in atmospheric microplastics research: The pivotal role of machine learning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173966. [PMID: 38897457 DOI: 10.1016/j.scitotenv.2024.173966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/26/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
Microplastics (MPs), recognized as emerging pollutants, pose significant potential impacts on the environment and human health. The investigation into atmospheric MPs is nascent due to the absence of effective characterization methods, leaving their concentration, distribution, sources, and impacts on human health largely undefined with evidence still emerging. This review compiles the latest literature on the sources, distribution, environmental behaviors, and toxicological effects of atmospheric MPs. It delves into the methodologies for source identification, distribution patterns, and the contemporary approaches to assess the toxicological effects of atmospheric MPs. Significantly, this review emphasizes the role of Machine Learning (ML) and Artificial Intelligence (AI) technologies as novel and promising tools in enhancing the precision and depth of research into atmospheric MPs, including but not limited to the spatiotemporal dynamics, source apportionment, and potential health impacts of atmospheric MPs. The integration of these advanced technologies facilitates a more nuanced understanding of MPs' behavior and effects, marking a pivotal advancement in the field. This review aims to deliver an in-depth view of atmospheric MPs, enhancing knowledge and awareness of their environmental and human health impacts. It calls upon scholars to focus on the research of atmospheric MPs based on new technologies of ML and AI, improving the database as well as offering fresh perspectives on this critical issue.
Collapse
Affiliation(s)
- Jiaer Yang
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zezhi Peng
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian Sun
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Zhiwen Chen
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xinyi Niu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hongmei Xu
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kin-Fai Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Junji Cao
- Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710049, China
| | - Zhenxing Shen
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
6
|
Pawak VS, Bhatt VK, Sabapathy M, Loganathan VA. Multifaceted analysis of microplastic pollution dynamics in the Yamuna river: Assessing anthropogenic impacts and ecological consequences. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135976. [PMID: 39369675 DOI: 10.1016/j.jhazmat.2024.135976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024]
Abstract
Microplastics (MPs) are pervasive contaminants that pose significant ecological and human health risks, emerging as one of the most widespread anthropogenic pollutants in natural environments. This study investigates the abundance, characteristics, and distribution of microplastics (MPs) in the Yamuna River, encompassing 29 sampling points across urban, rural, and industrial zones in and around Delhi, Mathura, Haryana, and Agra. Microplastics were identified and quantified using Nile red dye staining and Micro-Raman spectroscopy, with particle size distribution predominantly between 2 μm to 80 μm and the largest detected particle measuring 256.5 μm. The average MPs concentration was 14,717 ± 4444 L-1, with a significant abundance of hazardous polymers such as polyethylene terephthalate (PET), polypropylene (PP), and polystyrene (PS). The study found that MPs were predominantly fragments and films (65.6 %) and fibers (30.6 %), with transparent particles being the most prevalent. The Pollution Load Index (PLI) consistently indicated high-risk levels (PLI > 100) at all sampling sites, highlighting substantial MP contamination. These results underscore the urgent need for continuous monitoring and the development of robust management strategies to address microplastic pollution in the Yamuna River. This study provides valuable insights into MPs spatial distribution and persistence, contributing to an improved understanding of their environmental impacts and guiding future mitigation and regulatory efforts.
Collapse
Affiliation(s)
- Vishal Singh Pawak
- Department of Chemical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India
| | - Vinod K Bhatt
- Atulya Ganga Trust, Gurugram, 122009, Haryana, India
| | - Manigandan Sabapathy
- Department of Chemical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India; The Centre of Research for Energy Efficiency and Decarbonization (CREED), Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab.
| | - Vijay A Loganathan
- Department of Civil Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India.
| |
Collapse
|
7
|
Gao C, Long J, Yue Y, Li B, Huang Y, Wang Y, Zhang J, Zhang L, Qian G. Degradation and regeneration inhibition of PCDD/Fs in incineration fly ash by low-temperature thermal technology. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135315. [PMID: 39096638 DOI: 10.1016/j.jhazmat.2024.135315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/05/2024]
Abstract
Low-temperature thermal degradation of PCDD/Fs for incineration fly ash (IFA), as a novel and emerging technology approach, offers promising features of high degradation efficiency and low energy consumption, presenting enormous potential for application in IFA resource utilization processes. This review summarizes the concentrations, congener distributions, and heterogeneity characteristics of PCDD/Fs in IFA from municipal, medical, and hazardous waste incineration. A comparative analysis of five PCDD/Fs degradation technologies is conducted regarding their characteristics, industrial potential, and applicability. From the perspective of low-temperature degradation mechanisms, pathways to enhance PCDD/Fs degradation efficiency and inhibit their regeneration reactions are discussed in detail. Finally, the challenges to achieve low-temperature degradation of PCDD/Fs for IFA with high-efficiency are prospected. This review seeks to explore new opportunities for the detoxification and resource utilization of IFA by implementing more efficient and viable low-temperature degradation technologies.
Collapse
Affiliation(s)
- Chenqi Gao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jisheng Long
- Shanghai SUS Environment Co., LTD., Shanghai 201703, China
| | - Yang Yue
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Bin Li
- Shanghai SUS Environment Co., LTD., Shanghai 201703, China
| | - Yiru Huang
- Shanghai SUS Environment Co., LTD., Shanghai 201703, China
| | - Yao Wang
- Department of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jia Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Lingen Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Guangren Qian
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
8
|
Souza-Santos LP, Silva CC, Barcellos RL, Souza Neto JA. Assessing sediment quality at tropical mangrove areas for using as reference sites in ecotoxicological bioassays. MARINE POLLUTION BULLETIN 2024; 205:116607. [PMID: 38896957 DOI: 10.1016/j.marpolbul.2024.116607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
The sediment of five mangrove in Pernambuco/Brazil was investigated to find a reference site for toxicity bioassays. Sediment characteristics, metal levels, and toxic effects on the nauplius of the copepod Tisbe biminiensis were studied. The sediment was composed by terrigenous muds and siliciclastic sands with medium to high organic matter contents. The FeAs association show most of the high concentrations and positive correlation among its constituents in the south. In the north, the Ca-Sr-La association is higher and exhibits positive correlation among its components that usually found in carbonate rocks. Very intense toxic effects were observed, mainly in the south, with >70 % reductions in development. As and Hg were positively correlated with mortality and decrease in development. The sediment quality at studied mangroves prevent their use as a reference site in bioassays. These could be linked to the direct/perennial contribution of geogenic sources associated with anthropogenic environmental impacts.
Collapse
Affiliation(s)
- L P Souza-Santos
- Laboratório de Cultivo e Ecotoxicologia, Departamento de Oceanografia, Universidade Federal de Pernambuco, Av. Arquitetura s/n, Cidade Universitária, Recife, Pernambuco 50740-550, Brazil.
| | - C C Silva
- Programa de Pós-Graduação em Oceanografia, Departamento de Oceanografia, Universidade Federal de Pernambuco, Av. Arquitetura s/n, Cidade Universitária, Recife, Pernambuco 50740-550, Brazil
| | - R L Barcellos
- Laboratório de Oceanografia Geológica, Departamento de Oceanografia, Universidade Federal de Pernambuco, Av. Arquitetura s/n, Cidade Universitária, Recife, Pernambuco 50740-550, Brazil
| | - J A Souza Neto
- Programa de Pós-Graduação em Geociências, Departamento de Geologia, Universidade Federal de Pernambuco, Av. Arquitetura s/n, Cidade Universitária, Recife, Pernambuco 50740-550, Brazil
| |
Collapse
|
9
|
Contieri BB, Rosa J, Scoarize MMR, Urbano VDA, Benedito E. Anthropogenic land uses lead to changes in limnological variables in Neotropical streams. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:702. [PMID: 38967705 DOI: 10.1007/s10661-024-12825-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/11/2024] [Indexed: 07/06/2024]
Abstract
Streams are vulnerable to anthropogenic impacts, such as changes in land use, which reflect on water quality and can be evaluated by abiotic variables. In this context, the aims were to compare the abiotic values recorded in streams of different land use categories with the limits established by National legislation, and to analyze changes in abiotic variables in response to different land use impacts. Thus, 17 streams located in southern Brazil were sampled and grouped into urban, rural, and protected areas (PA) categories. The results showed the major impacts in urban streams. However, some variables in rural streams and PA also exceeded local legislation limits. Conductivity, total dissolved solids, salinity, ammoniacal nitrogen and coliforms were significantly higher in the urban streams. Contrary to expectations, the highest levels of manganese were found in PA streams. The relationship between abiotic variables and land uses suggests possible contamination by sewage in urban streams and by pesticides in rural streams. The abiotic similarity between rural and PA streams indicates that the conservation of these water bodies is ineffective. We suggest the monitoring of these environments and measures to mitigate the impacts to seek the restoration of ecosystem services and the well-being of human populations.
Collapse
Affiliation(s)
- Beatriz Bosquê Contieri
- Graduate Program in Ecology of Inland Water Ecosystems (PEA). Av. Colombo, State University of Maringá (UEM), CEP 87020-900, Maringá, PR, 5790, Brazil.
| | - Jonathan Rosa
- Graduate Program in Ecology of Inland Water Ecosystems (PEA). Av. Colombo, State University of Maringá (UEM), CEP 87020-900, Maringá, PR, 5790, Brazil
| | - Matheus Maximilian Ratz Scoarize
- Graduate Program in Ecology of Inland Water Ecosystems (PEA). Av. Colombo, State University of Maringá (UEM), CEP 87020-900, Maringá, PR, 5790, Brazil
| | - Vinícius de Andrade Urbano
- Department of Biology (DBI). Av. Colombo, State University of Maringá (UEM), CEP 87020-900, Maringá, PR, 5790, Brazil
| | - Evanilde Benedito
- Graduate Program in Ecology of Inland Water Ecosystems (PEA). Av. Colombo, State University of Maringá (UEM), CEP 87020-900, Maringá, PR, 5790, Brazil
- Department of Biology (DBI). Av. Colombo, State University of Maringá (UEM), CEP 87020-900, Maringá, PR, 5790, Brazil
- Centre of Research in Limnology, Ichthyology and Aquaculture (Nupélia). Av. Colombo, State University of Maringá (UEM), CEP 87020-900, Maringá, PR, 5790, Brazil
| |
Collapse
|
10
|
Xu H, Hu Z, Sun Y, Xu J, Huang L, Yao W, Yu Z, Xie Y. Microplastics supply contaminants in food chain: non-negligible threat to health safety. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:276. [PMID: 38958774 DOI: 10.1007/s10653-024-02076-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/12/2024] [Indexed: 07/04/2024]
Abstract
The occurrence of microplastics (MPs) and organic pollutants (OPs) residues is commonly observed in diverse environmental settings, where their interactions can potentially alter the behavior, availability, and toxicity of OPs, thereby posing risks to ecosystems. Herein, we particularly emphasize the potential for bioaccumulation and the biomagnification effect of MPs in the presence of OPs within the food chain. Despite the ongoing influx of novel information, there exists a dearth of data concerning the destiny and consequences of MPs in the context of food pollution. Further endeavors are imperative to unravel the destiny and repercussions of MPs/OPs within food ecosystems and processing procedures, aiming to gain a deeper understanding of the joint effect on human health and food quality. Nevertheless, the adsorption and desorption behavior of coexisting pollutants can be significantly influenced by MPs forming biofilms within real-world environments, including temperature, pH, and food constituents. A considerable portion of MPs tend to accumulate in the epidermis of vegetables and fruits, thus necessitating further research to comprehend the potential ramifications of MPs on the infiltration behavior of OPs on agricultural product surfaces.
Collapse
Affiliation(s)
- Hongwen Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Zhenyang Hu
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Yingying Sun
- Research Institute, Centre Testing International Group Co., Ltd., Shenzhen, 518000, China
| | - Jiang Xu
- Research Institute, Centre Testing International Group Co., Ltd., Shenzhen, 518000, China
| | - Lijun Huang
- Wuxi Food Safety Inspection and Test Center, 35-210 Changjiang South Road, Wuxi, 214142, Jiangsu Province, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Zhilong Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China.
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China.
| | - Yunfei Xie
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China.
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China.
| |
Collapse
|
11
|
Wang F, Xiang L, Sze-Yin Leung K, Elsner M, Zhang Y, Guo Y, Pan B, Sun H, An T, Ying G, Brooks BW, Hou D, Helbling DE, Sun J, Qiu H, Vogel TM, Zhang W, Gao Y, Simpson MJ, Luo Y, Chang SX, Su G, Wong BM, Fu TM, Zhu D, Jobst KJ, Ge C, Coulon F, Harindintwali JD, Zeng X, Wang H, Fu Y, Wei Z, Lohmann R, Chen C, Song Y, Sanchez-Cid C, Wang Y, El-Naggar A, Yao Y, Huang Y, Cheuk-Fung Law J, Gu C, Shen H, Gao Y, Qin C, Li H, Zhang T, Corcoll N, Liu M, Alessi DS, Li H, Brandt KK, Pico Y, Gu C, Guo J, Su J, Corvini P, Ye M, Rocha-Santos T, He H, Yang Y, Tong M, Zhang W, Suanon F, Brahushi F, Wang Z, Hashsham SA, Virta M, Yuan Q, Jiang G, Tremblay LA, Bu Q, Wu J, Peijnenburg W, Topp E, Cao X, Jiang X, Zheng M, Zhang T, Luo Y, Zhu L, Li X, Barceló D, Chen J, Xing B, Amelung W, Cai Z, Naidu R, Shen Q, Pawliszyn J, Zhu YG, Schaeffer A, Rillig MC, Wu F, Yu G, Tiedje JM. Emerging contaminants: A One Health perspective. Innovation (N Y) 2024; 5:100612. [PMID: 38756954 PMCID: PMC11096751 DOI: 10.1016/j.xinn.2024.100612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/10/2024] [Indexed: 05/18/2024] Open
Abstract
Environmental pollution is escalating due to rapid global development that often prioritizes human needs over planetary health. Despite global efforts to mitigate legacy pollutants, the continuous introduction of new substances remains a major threat to both people and the planet. In response, global initiatives are focusing on risk assessment and regulation of emerging contaminants, as demonstrated by the ongoing efforts to establish the UN's Intergovernmental Science-Policy Panel on Chemicals, Waste, and Pollution Prevention. This review identifies the sources and impacts of emerging contaminants on planetary health, emphasizing the importance of adopting a One Health approach. Strategies for monitoring and addressing these pollutants are discussed, underscoring the need for robust and socially equitable environmental policies at both regional and international levels. Urgent actions are needed to transition toward sustainable pollution management practices to safeguard our planet for future generations.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leilei Xiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kelvin Sze-Yin Leung
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
- HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen, China
| | - Martin Elsner
- Technical University of Munich, TUM School of Natural Sciences, Institute of Hydrochemistry, 85748 Garching, Germany
| | - Ying Zhang
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yuming Guo
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Bo Pan
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Guangguo Ying
- Ministry of Education Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Bryan W. Brooks
- Department of Environmental Science, Baylor University, Waco, TX, USA
- Center for Reservoir and Aquatic Systems Research (CRASR), Baylor University, Waco, TX, USA
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Damian E. Helbling
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Jianqiang Sun
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Timothy M. Vogel
- Laboratoire d’Ecologie Microbienne, Universite Claude Bernard Lyon 1, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Wei Zhang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, China
| | - Myrna J. Simpson
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Yi Luo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Scott X. Chang
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, AB T6G 2E3, Canada
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Bryan M. Wong
- Materials Science & Engineering Program, Department of Chemistry, and Department of Physics & Astronomy, University of California-Riverside, Riverside, CA, USA
| | - Tzung-May Fu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Karl J. Jobst
- Department of Chemistry, Memorial University of Newfoundland, 45 Arctic Avenue, St. John’s, NL A1C 5S7, Canada
| | - Chengjun Ge
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou 570228, China
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Jean Damascene Harindintwali
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiankui Zeng
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Haijun Wang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Yuhao Fu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Rainer Lohmann
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| | - Changer Chen
- Ministry of Education Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Yang Song
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Concepcion Sanchez-Cid
- Environmental Microbial Genomics, UMR 5005 Laboratoire Ampère, CNRS, École Centrale de Lyon, Université de Lyon, Écully, France
| | - Yu Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ali El-Naggar
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, AB T6G 2E3, Canada
- Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Yiming Yao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yanran Huang
- Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong, China
| | | | - Chenggang Gu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huizhong Shen
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yanpeng Gao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Chao Qin
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, China
| | - Hao Li
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Natàlia Corcoll
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Min Liu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Daniel S. Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB T6G 2E3, Canada
| | - Hui Li
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Kristian K. Brandt
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- Sino-Danish Center (SDC), Beijing, China
| | - Yolanda Pico
- Food and Environmental Safety Research Group of the University of Valencia (SAMA-UV), Desertification Research Centre - CIDE (CSIC-UV-GV), Road CV-315 km 10.7, 46113 Moncada, Valencia, Spain
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jianqiang Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Philippe Corvini
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland
| | - Mao Ye
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Teresa Rocha-Santos
- Centre for Environmental and Marine Studies (CESAM) & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Huan He
- Jiangsu Engineering Laboratory of Water and Soil Eco-remediation, School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Yi Yang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Meiping Tong
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Weina Zhang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Fidèle Suanon
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Laboratory of Physical Chemistry, Materials and Molecular Modeling (LCP3M), University of Abomey-Calavi, Republic of Benin, Cotonou 01 BP 526, Benin
| | - Ferdi Brahushi
- Department of Environment and Natural Resources, Agricultural University of Tirana, 1029 Tirana, Albania
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Syed A. Hashsham
- Center for Microbial Ecology, Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Marko Virta
- Department of Microbiology, University of Helsinki, 00010 Helsinki, Finland
| | - Qingbin Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Gaofei Jiang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Louis A. Tremblay
- School of Biological Sciences, University of Auckland, Auckland, Aotearoa 1142, New Zealand
| | - Qingwei Bu
- School of Chemical & Environmental Engineering, China University of Mining & Technology - Beijing, Beijing 100083, China
| | - Jichun Wu
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Willie Peijnenburg
- National Institute of Public Health and the Environment, Center for the Safety of Substances and Products, 3720 BA Bilthoven, The Netherlands
- Leiden University, Center for Environmental Studies, Leiden, the Netherlands
| | - Edward Topp
- Agroecology Mixed Research Unit, INRAE, 17 rue Sully, 21065 Dijon Cedex, France
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Taolin Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongming Luo
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiangdong Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Damià Barceló
- Chemistry and Physics Department, University of Almeria, 04120 Almeria, Spain
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| | - Wulf Amelung
- Institute of Crop Science and Resource Conservation (INRES), Soil Science and Soil Ecology, University of Bonn, 53115 Bonn, Germany
- Agrosphere Institute (IBG-3), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), The University of Newcastle (UON), Newcastle, NSW 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle (UON), Newcastle, NSW 2308, Australia
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Yong-guan Zhu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Andreas Schaeffer
- Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Matthias C. Rillig
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Gang Yu
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai, China
| | - James M. Tiedje
- Center for Microbial Ecology, Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
12
|
Ferreira CP, Moreira RS, Bastolla CLV, Saldaña-Serrano M, Lima D, Gomes CHAM, Bainy ACD, Lüchmann KH. Transcriptomic investigation and biomarker discovery for zinc response in oysters Crassostrea gasar. Mar Genomics 2024; 75:101109. [PMID: 38603950 DOI: 10.1016/j.margen.2024.101109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/03/2024] [Accepted: 03/24/2024] [Indexed: 04/13/2024]
Abstract
In an era of unprecedented industrial and agricultural growth, metal contamination in marine environments is a pressing concern. Sentinel organisms such as the mangrove oyster Crassostrea gasar provide valuable insights into these environments' health. However, a comprehensive understanding of the molecular mechanisms underlying their response to metal exposure remains elusive. To address this gap, we reanalyzed the 454-sequencing data of C. gasar, utilizing an array of bioinformatics workflow of CDTA (Combined De Novo Transcriptome Assembly) to generate a more representative assembly. In parallel, C. gasar individuals were exposed to two concentrations of zinc (850 and 4500 μg L-1 Zn) for 48 h to understand their molecular responses. We utilized Trinotate workflow for the 11,684-CDTA unigenes annotation, with most transcripts aligning with the genus Crassostrea. Our analysis indicated that 67.3% of transcript sequences showed homology with Pfam, while 51.4% and 54.5%, respectively had GO and KO terms annotated. We identified potential metal pollution biomarkers, focusing on metal-related genes, such as those related to the GSH biosynthesis (CHAC1 and GCLC-like), to zinc transporters (ZNT2-like), and metallothionein (MT-like). The evolutionary conservation of these genes within the Crassostrea genus was assessed through phylogenetic analysis. Further, these genes were evaluated by qPCR in the laboratory exposed oysters. All target genes exhibited significant upregulation upon exposure to Zn at both 850 and 4500 μg L-1, except for GCLC-like, which showed upregulation only at the higher concentration of 4500 μg L-1. This result suggests distinct activation thresholds and complex interactions among these genes in response to varying Zn concentrations. Our study provides insights into the molecular responses of C. gasar to Zn, adding valuable tools for monitoring metal pollution in marine ecosystems using the mangrove oyster as a sentinel organism.
Collapse
Affiliation(s)
- Clarissa P Ferreira
- Multicentric PostGraduate Program in Biochemistry and Molecular Biology - PMBqBM, Santa Catarina State University, Lages 88520-000, Brazil
| | - Renato S Moreira
- Federal Institute of Santa Catarina, Gaspar 89111-009, Brazil; Bioinformatic Laboratory, Federal University of Santa Catarina, Florianópolis 88040-970, Brazil
| | - Camila L V Bastolla
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, Florianópolis 88034-257, Brazil
| | - Miguel Saldaña-Serrano
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, Florianópolis 88034-257, Brazil
| | - Daína Lima
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, Florianópolis 88034-257, Brazil
| | - Carlos H A M Gomes
- Laboratory of Marine Mollusks (LMM), Department of Aquaculture, Center of Agricultural Science, Federal University of Santa Catarina, UFSC, Florianópolis, Santa Catarina, Brazil
| | - Afonso C D Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, Florianópolis 88034-257, Brazil
| | - Karim H Lüchmann
- Department of Scientific and Technological Education, Santa Catarina State University, Florianópolis 88035-001, Brazil.
| |
Collapse
|
13
|
Latwal M, Arora S, Murthy KSR. Data driven AI (artificial intelligence) detection furnish economic pathways for microplastics. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 264:104365. [PMID: 38776560 DOI: 10.1016/j.jconhyd.2024.104365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/18/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
Microplastics pollution is killing human life, contaminating our oceans, and lasting for longer in the environment than it is used. Microplastics have contaminated the geochemistry and turned the water system into trash barrel. Its detection in water is easy in comparison to soil and air so the attention of researchers is focused on it for now. Being very small in size, microplastics can easily cross the water filtration system and end up in the ocean or lakes and become the prospective challenge to aquatic life. This review piece provides the hot research theme and current advances in the field of microplastics and their eradication through the virtual world of artificial intelligence (AI) because Microplastics have confrontation with clean water tactics.
Collapse
Affiliation(s)
- Mamta Latwal
- Department of Chemistry, University of Petroleum and Energy Studies, Dehradun, UK, India
| | - Shefali Arora
- Department of Chemistry, University of Petroleum and Energy Studies, Dehradun, UK, India.
| | - K S R Murthy
- Department of Chemistry, University of Petroleum and Energy Studies, Dehradun, UK, India
| |
Collapse
|
14
|
Santucci L, Carol E, Borda LG, García MG. Hydrochemistry and trace metals in water and sediments in forest coastal wetlands influenced by tidal regime in the middle Río de la Plata estuary, Argentina. MARINE POLLUTION BULLETIN 2024; 202:116359. [PMID: 38640766 DOI: 10.1016/j.marpolbul.2024.116359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/18/2024] [Accepted: 04/06/2024] [Indexed: 04/21/2024]
Abstract
Coastal wetland ecosystems are of utmost importance in regulating the mobility and distribution of elements in water and sediments, being the flooding by tidal events a recurrent process that strongly controls the hydrodynamics of the system. The aim of this work is to assess the control of the tidal regime and anthropogenic influence on the dynamics of some trace metals in water and sediments in the Punta Lara Natural Reserve situated in the Río de la Plata littoral. For that purpose, relationship between tidal flows, surface water and groundwater was evaluated. Also, hydrochemistry was analyzed based on the study of major ions and trace metals, being the presence of high concentrations of elements in groundwater, such as Fe and Mn, probably favoured by redox processes associated with organic matter decomposition in the water - sediment interaction. Sediments in the wetland register deficient to minimal enrichment in most of the studied trace metals despite the numerous contributions that the Río de la Plata receives in relation to dissolved and particulate trace metals from diverse anthropogenic contributions. Despite that, there is a moderate enrichment in Pb and Cr in the surface sediments of the wetland. The data analyzed within the natural reserve in relation to the chemical composition of the water and sediments of the coastal wetland showed the strong influence of the tidal regime over the area.
Collapse
Affiliation(s)
- Lucía Santucci
- Centro de Investigaciones Geológicas (CIG), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de La Plata (UNLP). Calle 64 y Diag. 113, 1900, La Plata, Buenos Aires, Argentina.
| | - Eleonora Carol
- Centro de Investigaciones Geológicas (CIG), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de La Plata (UNLP). Calle 64 y Diag. 113, 1900, La Plata, Buenos Aires, Argentina
| | - Laura G Borda
- Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), CONICET, FCEFyN Universidad Nacional de Córdoba, Córdoba, Argentina
| | - M Gabriela García
- Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), CONICET, FCEFyN Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
15
|
Senez-Mello TM, Martins MVA, de Lima Ferreira PA, Figueira R, Castelo WFL, Damasceno FL, Hohenegger J, Pereira E, Duleba W, Gerardes MC. Assessment of anthropogenic pollution in Guanabara Bay (SE Brazil) through biogeochemical data and stable isotope mixing models. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:32972-32997. [PMID: 38671267 DOI: 10.1007/s11356-024-33144-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
This work intends to identify pollution sources along the margins of Guanabara Bay (GB; SE Brazil) through a multiproxy approach and Bayesian stable isotopic mixture model (BSIMM). For this purpose, 33 surface sediment samples were collected and analyzed for granulometry, geochemistry (heavy metals, total organic carbon-TOC, stable isotopes of carbon and nitrogen-δ13C and δ15N, Rock-Eval pyrolysis parameters-REPP), and physicochemical parameters. Metal concentrations (E) dissolved in water (EW), adsorbed by organic matter (EOM) and by Mn hydroxides (EMn), and total extracted concentrations (ET) were analyzed. Sampling was conducted in 2018 after an oil spill from Reduc Oil Refinery. Potential Ecological risk index (PERI), based on metals, classified 85% of the analyzed stations as having moderate to considerable ecological risk. The metals with the potential to cause the highest ecological risk were CdW, CdOM, PbOM, and HgOM. The combination of BSIMM and REPP data was an effective proxy for oil spill detection by indicating the presence of polycyclic aromatic hydrocarbons (PAHs). Relatively high TOC contents suggested that the analyzed stations are eutrophicated environments. BSIMM discriminated three groups of stations with different sources of organic matter (OM), endorsing the result previously shown by the cluster analysis: (A) Niterói region, Botafogo marina, Glória marina, Fiscal and Fundão islands with diffuse sources of OM, including marine phytoplankton and material of continental origin from highly polluted rivers and domestic sewage; (B) region near Fundão and Governador islands and Mangue Channel outlet with OM (≃70%) supplied by highly polluted streams and a small contribution of PAHs; (C) Duque de Caxias and Botafogo-Urca inlet with significant contributions of PAHs, materials from C-3 plants and rivers polluted by urban sewage. Results of linear regressions in conjunction with BSIMM indicate that HgMn and PbOM mainly affect Group A's stations. Although the eastern margin of GB (Niterói; Group A) showed greater oceanic interaction than the other groups, it presented substantial concentrations of metals, potentially harmful (i.e., Hg and Pb) to marine biota and human health.
Collapse
Affiliation(s)
- Thaise Machado Senez-Mello
- Faculdade de Geologia (FGEL), Universidade Do Estado Do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil.
- Programa de Pós Graduação Em Dinâmica Dos Oceanos E da Terra, Universidade Federal Fluminense (UFF), Niterói, RJ, Brazil.
| | - Maria Virgínia Alves Martins
- Faculdade de Geologia (FGEL), Universidade Do Estado Do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
- Geobiosciências, Geoengenharia e Geotecnologias (GeoBioTec), Universidade de Aveiro, Campus de Santiago, Aveiro, Portugal
| | | | - Rubens Figueira
- Geobiosciências, Geoengenharia e Geotecnologias (GeoBioTec), Universidade de Aveiro, Campus de Santiago, Aveiro, Portugal
| | | | - Fabrício Leandro Damasceno
- Faculdade de Geologia (FGEL), Universidade Do Estado Do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Johann Hohenegger
- Institut Fur Palaontologie, Universitat Wien, Vienna, Althanstrasse, Austria
| | - Egberto Pereira
- Faculdade de Geologia (FGEL), Universidade Do Estado Do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Wânia Duleba
- Escola de Artes, Universidade de São Paulo, Ciências E Humanidades, São Paulo, SP, Brazil
| | - Mauro Cesar Gerardes
- Faculdade de Geologia (FGEL), Universidade Do Estado Do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
16
|
Li X, Liu L, Zhang X, Yang X, Niu S, Zheng Z, Dong B, Hur J, Dai X. Aging and mitigation of microplastics during sewage sludge treatments: An overview. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171338. [PMID: 38428608 DOI: 10.1016/j.scitotenv.2024.171338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
Wastewater treatment plants (WWTPs) receive large quantities of microplastics (MPs) from raw wastewater, but many MPs are trapped in the sludge. Land application of sludge is a significant source of MP pollution. Existing reviews have summarized the analysis methods of MPs in sludge and the effect of MPs on sludge treatments. However, MP aging and mitigation during sludge treatment processes are not fully reviewed. Treatment processes used to remove water, pathogenic microorganisms, and other pollutants in sewage sludge also cause surface changes and degradation in the sludge MPs, affecting the potential risk of MPs. This study integrates MP abundance and distribution in sludge and their aging and mitigation characteristics during sludge treatment processes. The abundance, composition, and distribution of sludge MPs vary significantly with WWTPs. Furthermore, MPs exhibit variable degrees of aging, including rough surfaces, enhanced adsorption potentials for pollutants, and increased leaching behavior. Various sludge treatment processes further intensify these aging characteristics. Some sludge treatments, such as hydrothermal treatment, have efficiently removed MPs from sewage sludge. It is crucial to understand the potential risk of MP aging in sludge and the degradation properties of the MP-derived products from MP degradation in-depth and develop novel MP mitigation strategies in sludge, such as combining hydrothermal treatment and biological processes.
Collapse
Affiliation(s)
- Xiaowei Li
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai 200444, PR China
| | - Lulu Liu
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai 200444, PR China
| | - Xiaolei Zhang
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai 200444, PR China
| | - XingFeng Yang
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai 200444, PR China
| | - Shiyu Niu
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai 200444, PR China
| | - Zhiyong Zheng
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai 200444, PR China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resources Reuse, National Engineering Research Center for Urban Pollution Control, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Jin Hur
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, South Korea.
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, National Engineering Research Center for Urban Pollution Control, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
17
|
Oza J, Rabari V, Yadav VK, Sahoo DK, Patel A, Trivedi J. A Systematic Review on Microplastic Contamination in Fishes of Asia: Polymeric Risk Assessment and Future Prospectives. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:671-685. [PMID: 38353354 DOI: 10.1002/etc.5821] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/25/2023] [Accepted: 01/02/2024] [Indexed: 07/23/2024]
Abstract
Microplastics (MPs) have attracted global concern because of their harmful effects on marine biota; their toxic properties can negatively impact aquatic ecosystems. Fish is an essential source of protein for humans, playing a crucial role in daily food intake. Until recently, MPs were addressed primarily as environmental pollutants, but they are now increasingly recognized as contaminants in the food supply. The present review has comprehended the current knowledge of MP contamination in freshwater and marine fishes of Asia, including 112 peer-reviewed sources from 2016 to 2023. The review recorded 422 Asian fishes (345 marine and 77 freshwater) to be contaminated with MPs. Clarias gariepinus and Selaroides leptolepi have shown maximum MP contamination in the freshwater and marine environments of Asia, respectively. Omnivorous and carnivorous fishes exhibited higher susceptibility to ingesting MPs. Benthopelagic, demersal, and reef-associated habitats were identified as more prone to MP accumulation. In both freshwater and marine environments, China has the highest number of contaminated species among all the countries. Pollution indices indicated high MP contamination in both freshwater and marine environments. A prevalence of fibers was recorded in all fishes. Black- and blue-colored MPs of <500 µm-1 mm size were found dominantly. Polyethylene terephthalate and polyethylene were recorded as the prevalent plastic polymers in freshwater and marine fish, respectively. Overall, the review served as a comprehensive understanding of MP concentrations and variations between species, between feeding habits, and between geographic locations, which can be pivotal for addressing pressing environmental challenges, protecting human health, and fostering global sustainability efforts in the face of escalating plastic pollution. Environ Toxicol Chem 2024;43:671-685. © 2024 SETAC.
Collapse
Affiliation(s)
- Jahnvi Oza
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| | - Vasantkumar Rabari
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| | - Jigneshkumar Trivedi
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| |
Collapse
|
18
|
Rex KR, Vinod PG, Praveen KS, Chakraborty P. Sediment-water exchange and risk assessment of pesticidal persistent organic pollutants in Bharathappuzha and Periyar Riverine region along the Arabian Sea. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:144. [PMID: 38538830 DOI: 10.1007/s10653-024-01911-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/11/2024] [Indexed: 04/12/2024]
Abstract
Considering the extensive agricultural practices along the perennial rivers, viz. Periyar and Bharathappuzha of Kerala in the southwest coast of India, the first comprehensive surveillance of new and legacy organochlorine pesticides (OCPs) in surface sediment was conducted. Further, the sediment-water exchange fluxes have been elucidated. Mean concentrations of total HCH, DDT and endosulfan were 0.84 ng/g, 0.42 ng/g and 0.30 ng/g for Bharathappuzha Riverine sediment (BRS) and 1.08 ng/g, 0.39 ng/g and 0.35 ng/g for Periyar Riverine sediment (PRS). The dominance α-HCH and β-HCH isomers in PRS and BRS reflect the ongoing use of technical HCH in Kerala. The calculated KSW in both rivers was very low in comparison with other Indian rivers. The average log K'OC for all the detected OCPs in both the rivers was lower than the predicted log KOC in equilibrium indicating the higher adherence of OCPs to sediment. Furthermore, fugacity fraction (fs/fw) was < 1.0 for all OCPs confirming the net deposition of OCPs into the sediment. Sediment concentrations for each of the OCPs in PRS and BRS did not surpass the threshold effect level and probable effect level as stipulated by the Canadian Council of Ministry of the Environment Guidelines. In addition, all the sites of both rivers had sediment quality guideline quotient (SQGQ) values below 0.1 indicating the absence of significant biological and ecological risks.
Collapse
Affiliation(s)
- K Ronnie Rex
- Department of Civil Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
- Environmental Science and Technology Laboratory, Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - P G Vinod
- GeoVin Solutions Pvt. Ltd, Thiruvananthapuram, Kerala, India
- Neuvo Chakra (OPC) Pvt. Ltd., Vasai, India
| | - K S Praveen
- Liquid Waste Management Division, Suchitwa Mission, Government of Kerala, Thiruvananthapuram, Kerala, India
| | - Paromita Chakraborty
- Environmental Science and Technology Laboratory, Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
- UNESCO Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, The University of Lodz, Lodz, Poland.
| |
Collapse
|
19
|
Lorre E, Bianchi F, Mėžinė J, Politi T, Vybernaite-Lubiene I, Zilius M. The seasonal distribution of plasticizers in estuarine system: Controlling factors, storage and impact on the ecosystem. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123539. [PMID: 38341066 DOI: 10.1016/j.envpol.2024.123539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/19/2024] [Accepted: 02/08/2024] [Indexed: 02/12/2024]
Abstract
Plasticizers such as phthalate esters (PAEs) are commonly used in various consumer and industrial products. This widespread use raises valid concerns regarding their ubiquity in the environment and potential negative impacts. The present study investigates the distribution of eight common plasticizers in the largest European lagoon (Curonian Lagoon) located in the SE Baltic Sea. The concentration levels of plasticizers in the water column, containing both the dissolved and particulate-bound phases, and in sediments were evaluated to reveal seasonal patterns in distribution and potential effects on the lagoon ecosystem. A total of 24 water samples and 48 sediment samples were collected across all four seasons from the two dominant sedimentary areas within the lagoon. The average concentration of total PAEs in the water column ranged from 1 to 21 μg L-1, whereas sediment concentration varied from 5.0 to 250 ng g-1. The distribution of plasticizers was influenced by the patterns in hydrodynamics and water circulation within the lagoon. The confined south-central area contained a higher amount of PAEs in sediments, accounting for most of the lagoon's plasticizer accumulation. More than 7 tons of plasticizers are stored in the 5 upper centimetres of sediment, with over 3 tons persisting for more than five years. Di(2-ethylhexyl) phthalate (DEHP), Diisobutyl phthalate (DiBP), and Dibutyl phthalate (DnBP) were the most abundant PAE congeners, with DEHP posing the highest risk quotient to algae, based on water column concentration. Several other congeners demonstrated medium to high-risk levels for organisms living in the lagoon.
Collapse
Affiliation(s)
- Elise Lorre
- Marine Research Institute, Klaipeda University, 92295, Klaipeda, Lithuania.
| | - Federica Bianchi
- University of Parma, Department of Chemistry, Life Science and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124, Parma, Italy; University of Parma, Interdepartmental Center for Energy and Environment (CIDEA), Parco Area delle Scienze, 43124, Parma, Italy
| | - Jovita Mėžinė
- Marine Research Institute, Klaipeda University, 92295, Klaipeda, Lithuania
| | - Tobia Politi
- Marine Research Institute, Klaipeda University, 92295, Klaipeda, Lithuania
| | | | - Mindaugas Zilius
- Marine Research Institute, Klaipeda University, 92295, Klaipeda, Lithuania
| |
Collapse
|
20
|
Huang W, Wei L, Yang Y, Sun J, Ding L, Wu X, Zheng L, Huang Q. Estuarine environmental flow assessment based on the flow-ecological health index relation model: a case study in Yangtze River Estuary, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:348. [PMID: 38446276 DOI: 10.1007/s10661-024-12487-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/19/2024] [Indexed: 03/07/2024]
Abstract
Environmental flow (e-flow) is the water demand of one given ecosystem, which can become the flow regulation target for protection and restoration of river or estuarine ecosystems. In this study, an e-flow assessment based on the flow-ecological health index (EHI) relation model was conducted to improve ecosystem health of the Yangtze River Estuary (YRE). Monitoring data of hydrology, biology, and water environment in the last decades were used for the model establishment. For the description of the YRE ecosystem, an EHI system was developed by cumulative frequency distribution curves and adaption of national standards. After preprocessing original flow values into proportional flow values, the generalized additive model and Monte Carlo random sampling were used for the establishment of the flow-EHI relation model. From the model calculation, the e-flow assessment results were that, in proportional flow values, the suitable flow range was 1.05-1.35, and the optimum flow range was 1.15-1.25 (flows in Yangtze River Datong Station). For flow regulation in two crucial periods, flows of 42,630-65,545 m3/s or over 14,675 m3/s are needed for the suitable flow of YRE in summer (June-August) or January, respectively. An adaptive management framework of ecological health-based estuarine e-flow assessment for YRE was contrived due to the limitation of current established model when facing the extreme drought in summer, 2022. The methodology and framework in this study are expected to provide valuable management and data support for the sustainable development of estuarine ecosystems and to bring inspiration for further studies at even continental or global levels.
Collapse
Affiliation(s)
- Weizheng Huang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Lai Wei
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Ya Yang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Jinnuo Sun
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Ling Ding
- Shanghai Investigation, Design and Research Institute Co., Ltd. (SIDRI), Shanghai, 200335, China
| | - Xinghua Wu
- Research Center for Eco-Environmental Engineering, China Three Gorges Corporation (CTG), Beijing, 100038, China
| | - Leifu Zheng
- Shanghai Investigation, Design and Research Institute Co., Ltd. (SIDRI), Shanghai, 200335, China
| | - Qinghui Huang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
21
|
Guo M, Wang L, Du H, Liu F, Yang K, Zhang Y, Fan S, Liu X, Xu H. Dissolved organic matter promoted hydroxyl radical formation and phenanthrene attenuation during oxygenation of iron-pillared montmorillonites. CHEMOSPHERE 2024; 352:141264. [PMID: 38244867 DOI: 10.1016/j.chemosphere.2024.141264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/22/2024]
Abstract
The oxygenation of Fe(II)-bearing minerals for hydroxyl radicals (HO•) formation and contaminant attenuation receives increasing attentions. However, information on dissolved organic matter (DOM) with different types, concentrations, and molecular weights (MWs) in manipulating HO• formation and contaminant attenuation during mineral oxygenation remain unclear. In this study, four iron-pillared montmorillonites (IPMs) and two DOM samples [e.g., humic acids (HA) and fulvic acids (FA)] were prepared to explore the HO• formation and phenanthrene attenuation during the oxygenation of IPMs in the presence or absence of DOMs. Results showed that iron-pillared and high-temperature calcination procedures extended the interlayer domain of IPMs, which provided favorable conditions for a high HO• production from 1293 to 14537 μmol kg-1. The surface-absorbed/low crystalline Fe(Ⅱ) was the predominant Fe(Ⅱ) fractionations for HO• production, and presence of DOMs significantly enhanced the HO• production and phenanthrene attenuation. Moreover, regardless of the types and concentrations, the low MW (LMW, <1 kDa) fraction within DOM pool contributed highest to HO• production and phenanthrene attenuation, followed by the bulk and high MW (HMW-, 1 kDa∼0.45 μm) fractions, and FA exhibited more efficient effects in promoting HO• production and phenanthrene attenuation than HA. The fluorescent spectral analysis further revealed that phenolic-like fluorophores in LMW-fraction were the main substances responsible for the enhanced HO• production and phenanthrene attenuation. The results deepen our understandings toward the behaviors and fate of aquatic HO• and contaminants, and also provide technical guidance for the remediation of contaminated environments.
Collapse
Affiliation(s)
- Mengjing Guo
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, China
| | - Longliang Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Haiyan Du
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Fei Liu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Keli Yang
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Technology Research and Development Center of Comprehensive Utilization of Salt Lakes Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China
| | - Yaoling Zhang
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Technology Research and Development Center of Comprehensive Utilization of Salt Lakes Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China
| | - Shisuo Fan
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Xin Liu
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Technology Research and Development Center of Comprehensive Utilization of Salt Lakes Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China.
| | - Huacheng Xu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Technology Research and Development Center of Comprehensive Utilization of Salt Lakes Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China.
| |
Collapse
|
22
|
Santucci L, Fernández-Severini MD, Rimondino GN, Colombo CV, Prieto G, Forero-López AD, Carol ES. Assessment of meso- and microplastics distribution in coastal sediments and waters at the middle estuary of the Rio De La Plata, Argentina (SW Atlantic Ocean). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:170026. [PMID: 38218486 DOI: 10.1016/j.scitotenv.2024.170026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 01/15/2024]
Abstract
Estuarine coastal water and sediments collected from multiple locations within the middle Río de la Plata (RDLP) estuary were analyzed in order to identify the presence of microplastics (MPs, <5 mm) and mesoplastics (MePs, 5-25 mm) in one of the most significant estuaries in the Southwestern Atlantic. The present study represents one of the first researches to survey MPs and MePs contamination in key stations at RDLP estuary. Average concentrations of 14.17 ± 5.50 MPs/L and 10.00 MePs/L were detected in water samples, while 547.83 ± 620.06 MPs/kg (dry weight) and 74.23 ± 47.29 MePs/kg d.w. were recorded in sediments. The greatest abundances were observed in the more anthropized areas, near urban settlements. Fibers were the most conspicuous plastic items in water and sediments, followed by fragments. On the other hand, surface sediments, and 50 cm and 100 cm-depth sediments also presented MPs and MePs indicating they could serve as a stratigraphic indicator for recently formed sediments. The main polymer type identified were acrylic fibers, followed by polypropylene (PP) and polyethylene terephthalate (PET). Besides, SEM-EDX detected the presence of Si, Fe, Ti, Al and Cl onto the plastics' surface. These elements may serve as additives to enhance the plastics' properties, such as in the case of Ti, or they could originate from the environment, like biogenic Si or Fe, and Al possibly as a component of the suspended particles or sediments adhered to the micro or meso plastics. Finally, the results of the present study showed that MPs and MePs are commonly found in waters and also tend to be trapped in sediments of the RDLP estuary supporting the assertion that these areas play a substantial role in influencing the transport, dispersion, and buildup of MPs in estuarine regions.
Collapse
Affiliation(s)
- L Santucci
- Centro de Investigaciones Geológicas (CIG), CONICET/UNLP, CCT-La Plata, Buenos Aires, Argentina.
| | - M D Fernández-Severini
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Buenos Aires, Argentina
| | - G N Rimondino
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - C V Colombo
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Buenos Aires, Argentina
| | - G Prieto
- Departamento de Ingeniería, Universidad Nacional del Sur, Bahía Blanca, Argentina (IFISUR), Universidad Nacional del Sur, CONICET, Bahía Blanca, Argentina
| | - A D Forero-López
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Buenos Aires, Argentina
| | - E S Carol
- Centro de Investigaciones Geológicas (CIG), CONICET/UNLP, CCT-La Plata, Buenos Aires, Argentina
| |
Collapse
|
23
|
Aryal P, Hefner C, Martinez B, Henry CS. Microfluidics in environmental analysis: advancements, challenges, and future prospects for rapid and efficient monitoring. LAB ON A CHIP 2024; 24:1175-1206. [PMID: 38165815 DOI: 10.1039/d3lc00871a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Microfluidic devices have emerged as advantageous tools for detecting environmental contaminants due to their portability, ease of use, cost-effectiveness, and rapid response capabilities. These devices have wide-ranging applications in environmental monitoring of air, water, and soil matrices, and have also been applied to agricultural monitoring. Although several previous reviews have explored microfluidic devices' utility, this paper presents an up-to-date account of the latest advancements in this field for environmental monitoring, looking back at the past five years. In this review, we discuss devices for prominent contaminants such as heavy metals, pesticides, nutrients, microorganisms, per- and polyfluoroalkyl substances (PFAS), etc. We cover numerous detection methods (electrochemical, colorimetric, fluorescent, etc.) and critically assess the current state of microfluidic devices for environmental monitoring, highlighting both their successes and limitations. Moreover, we propose potential strategies to mitigate these limitations and offer valuable insights into future research and development directions.
Collapse
Affiliation(s)
- Prakash Aryal
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
| | - Claire Hefner
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
| | - Brandaise Martinez
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
| | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
24
|
Wu H, Sun Z, Wang H, Chen B, Hu X, Li X. Impacts of spatial expansion by Phragmites australis on spatiotemporal variation of sulfur fractions in marsh soils of the Min River estuary, Southeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168910. [PMID: 38013101 DOI: 10.1016/j.scitotenv.2023.168910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
To investigate the impacts of spatial expansion by Phragmites australis on spatiotemporal variations of sulfur (S) fractions in marsh soils of the Min River estuary (Southeast China), the contents of total sulfur (TS) and inorganic sulfur (IS) fractions (Water-Soluble-S, W-S-S; Adsorbed-S, A-S; HCl-Soluble-S, H-S-S; and HCl-Volatile-S, H-V-S) were determined in soils of Cyperus malaccensis marsh (before expansion, BE stage), P. australis-C. malaccensis marsh (during expansion, DE stage) and P. australis marsh (after expansion, AE stage) by space-for-time substitution method. Results showed that the expansion of P. australis greatly altered the spatiotemporal variations of TS and IS fractions in marsh soils. The TS contents in soils at AE stage were significantly lower than those at DE and BE stages throughout a year (p < 0.01). Higher levels of W-S-S, A-S, H-S-S and total inorganic sulfur (TIS) generally occurred in soils at DE and AE stages, whereas higher values of H-V-S were observed in soils at BE stage. Although P. australis expansion did not alter the temporal variations of TS stock in soils greatly, the values during autumn and winter were generally higher than those in spring and summer (p < 0.05). The highest TIS stocks in soils of different expansion stages were observed in spring, while the lowest values occurred in summer. The expansion of P. australis significantly increased the IS supply capacity of soils and, compared with the BE stage, stocks of W-S-S, A-S, H-S-S and TIS in soils of all sampling seasons at DE and AE stages increased by 51.40 %, 50.76 %, 63.35 %, 50.52 % and 20.00 %, 31.46 %, 42.93 %, 27.56 %, respectively. It was worth noting that stocks of H-V-S in soils at DE and AE stages showed a decreasing trend compared to the BE stage, implying that the expansion of P. australis might reduce the production of sulfides. This paper found that, compared with C. malaccensis, the increased available IS stocks in soils might be an effective strategy for P. australis to maintain its expansion advantage and the decreased volatile-S in soils might be more favorable for boosting its competitiveness. Our study provided valuable information for understanding the interspecific competition mechanism between P. australis and C. malaccensis. Next step, in order to protect the diversity of marsh vegetations in the Min River estuary, effective measures should be taken to suppress the rapid expansion of P. australis.
Collapse
Affiliation(s)
- Huihui Wu
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou 350007, People's Republic of China; Key Laboratory of Humid Subtropical Eco-geographical Process (Fujian Normal University), Ministry of Education, Fuzhou 350007, People's Republic of China
| | - Zhigao Sun
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou 350007, People's Republic of China; Key Laboratory of Humid Subtropical Eco-geographical Process (Fujian Normal University), Ministry of Education, Fuzhou 350007, People's Republic of China.
| | - Hua Wang
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou 350007, People's Republic of China; Key Laboratory of Humid Subtropical Eco-geographical Process (Fujian Normal University), Ministry of Education, Fuzhou 350007, People's Republic of China
| | - Bingbing Chen
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou 350007, People's Republic of China; Key Laboratory of Humid Subtropical Eco-geographical Process (Fujian Normal University), Ministry of Education, Fuzhou 350007, People's Republic of China; College of Tourism, Resources and Environment, Zaozhuang University, Zaozhuang 277000, People's Republic of China
| | - Xingyun Hu
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou 350007, People's Republic of China; Key Laboratory of Humid Subtropical Eco-geographical Process (Fujian Normal University), Ministry of Education, Fuzhou 350007, People's Republic of China
| | - Xinhua Li
- Yellow River Delta Modern Agriculture Research Center, Dongying 257000, People's Republic of China
| |
Collapse
|
25
|
Ding R, Li Q, Wang K, Tian J, Lu L, Li W, Xu L. Occurrence and distribution of microplastics in the adjacent environment of Yellow River Delta, China. MARINE POLLUTION BULLETIN 2024; 199:116019. [PMID: 38184859 DOI: 10.1016/j.marpolbul.2023.116019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/17/2023] [Accepted: 12/28/2023] [Indexed: 01/09/2024]
Abstract
In the precent study, the microplastics (MPs) pollution level was evaluated in diverse environmental samples from the Yellow River Delta. The results indicated that the abundance of MPs in water, sediment and soil samples ranged from 0.50 to 7.83 items·L-1, 200 to 4200 items·kg-1, and 100 to 1400 items·kg-1, respectively. Film form of MPs was dominant in water, while fiber MPs were dominant in both sediment and soil samples. In all samples, most MPs were < 1 mm in size. White was the main color in water, black was the main color in sediment and soil samples. The most common MPs type was polyethylene (33 %) in water, while rayon accounted for the majority of MPs in sediment (42 %) and soil (70 %) samples. The redundancy analysis results showed that MPs in water and sediment were more affected by water quality, while soil MPs were easily affected by landscape pattern.
Collapse
Affiliation(s)
- Ruibo Ding
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China; Institute of Quality Standards and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China
| | - Qiaoling Li
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| | - Kang Wang
- Institute of Quality Standards and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China
| | - Jiayu Tian
- Institute of Quality Standards and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China
| | - Luli Lu
- Institute of Quality Standards and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China
| | - Wenxing Li
- Institute of Quality Standards and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China
| | - Li Xu
- Institute of Quality Standards and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China.
| |
Collapse
|
26
|
Li Z, Qi R, Li Y, Miao J, Li Y, He Z, Zhang N, Pan L. Source-specific ecological and health risks of polycyclic aromatic hydrocarbons in the adjacent coastal area of the Yellow River Estuary, China. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:146-160. [PMID: 38009362 DOI: 10.1039/d3em00419h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Industrialization and urbanization have led to increasing levels of PAH pollution in highly urbanized estuaries and their adjacent coastal areas globally. This study focused on the adjacent coastal area of the Yellow River Estuary (YRE) and collected surface seawater, surface sediment, and clams Ruditapes philippinarum and Mactra veneriformis at four sites (S1 to S4) in May, August, and October 2021 to analyze the source-specific ecological and health risks and bioeffects. The findings revealed that the main sources of PAHs were traffic emission (25.2% to 28.5%), petroleum sources (23.3% to 29.5%), coal combustion (24.7% to 27.5%), and biomass combustion (19.8% to 20.7%). Further, the PMF-RQ and PMF-ILCR analyses indicated that traffic emission was the primary contributor to ecological risks in seawater and health risks in both clam species, while coal combustion was the major contributor in sediment. Taken together, it is recommended to implement control strategies for PAH pollution following the priority order: traffic > coal > petroleum > biomass, to reduce the content and risk of PAHs in the YRE.
Collapse
Affiliation(s)
- Zeyuan Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Ruicheng Qi
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Yufen Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Yaobing Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Zhiheng He
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Ning Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Luqing Pan
- Fisheries College, Ocean University of China, Yushan Road 5, Qingdao 266003, China.
| |
Collapse
|
27
|
Chen T, Jiang H, He Y, Shen Y, Fang J, Huang Z, Shen Y, Chen X. Histopathological, physiological, and multi-omics insights into the hepatotoxicity mechanism of nanopolystyrene and/or diclofenac in Mylopharyngodon piceus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122894. [PMID: 37944890 DOI: 10.1016/j.envpol.2023.122894] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/08/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
Nanopolystyrene (NP) and diclofenac (DCF) are common environmental contaminants in the aquatic ecosystem; therefore, the present study aimed to investigate the hepatotoxicity of NP and/or DCF exposure on aquatic organisms and the underlying mechanisms. Juvenile Mylopharyngodon piceus were used as a model organism to study the effects of NP and/or DCF exposure at environmentally relevant concentrations for 21 days. Subchronic exposure to NP and/or DCF resulted in liver histological damage. In the NP group, the presence of large lipid droplets was observed, whereas the DCF group exhibited marked hepatic sinusoidal dilatation accompanied by inflammation. Additionally, this exposure induced liver oxidative stress, as evidenced by the changes in several physiological parameters, including catalase (CAT), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), total antioxidant capacity (T-AOC), reactive oxygen species (ROS), and malondialdehyde (MDA). Integrated transcriptomic and metabolomic analysis was performed to further investigate the molecular mechanism underlying hepatotoxicity. Multi-omics analysis demonstrated, for the first time to our knowledge, that NP induced hepatic steatosis mainly through activating the glycerol-3-phosphate pathway and inhibiting VLDL assembly by targeting several key enzyme genes including GPAT, DGAT, ACSL, APOB, and MTTP. Furthermore, NP exposure disrupted arachidonic acid metabolism, which induced the release of inflammatory factors and inhibited the release of anti-inflammatory factors, ultimately causing liver inflammation in M. piceus. In contrast, DCF induced interleukin production and downregulated KLF2, causing hepatic sinusoidal dilatation with inflammation in juvenile M. piceus, which is consistent with the finding of JAK-STAT signaling pathway activation. In addition, the upregulated AMPK signaling pathway in the DCF group suggested perturbation of energy metabolism. Collectively, these findings provide novel insights into the molecular mechanism of the multiple hepatotoxicity endpoints of NP and/or DCF exposure in aquatic organisms.
Collapse
Affiliation(s)
- Tiantian Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Hewei Jiang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yaoji He
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yawei Shen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jiajie Fang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zequn Huang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yubang Shen
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaowu Chen
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
28
|
Yu Y, Wang S, Yu P, Wang D, Hu B, Zheng P, Zhang M. A bibliometric analysis of emerging contaminants (ECs) (2001-2021): Evolution of hotspots and research trends. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168116. [PMID: 37884150 DOI: 10.1016/j.scitotenv.2023.168116] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/05/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Emerging contaminants (ECs) have attracted increasing attention in the past two decades because of their ubiquitous existence and high environmental risk. Understanding the progress of research and the evolution of hot topics is critical. This study provides a bibliometric review, along with a quantitative trend analysis of approximately 8000 publication records dated from 2001 to 2021. Wider distribution in various subjects was discovered in terms of publication numbers, indicating a strong tendency for EC research to become an interdisciplinary topic. Visualization of term co-occurrence analysis revealed that the ECs study went through three stages over time: identification and detection, traceability and risk, and process and control. Quantitative trend analysis revealed that antibiotics, microplastics, endocrine disrupting chemicals (EDCs), per/poly-fluoroalkyl substances (PFAS), pesticides, heavy metals, and nanoparticles are attracting increasing attention, whereas conventional pharmaceuticals, persistent organic pollutants, and materials such as benzotriazole, diclofenac, bisphenol A, carbamazepine, triclosan, and titanium dioxide exhibit a downward trend. PFAS and EDCs are considered potential future core hotspots for the hysteretic rise in research attention compared with conventional ECs. Furthermore, analysis of research linkage and the developing stages of ECs could be possible approach to determine the evolution of hotspots in ECs study. This study provides objective and comprehensive insights into the research landscape of ECs, which may shed light on future developmental directions for researchers interested in this field.
Collapse
Affiliation(s)
- Yang Yu
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Siyu Wang
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore
| | - Pingfeng Yu
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| | - Dongsheng Wang
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| | - Baolan Hu
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China
| | - Ping Zheng
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China
| | - Meng Zhang
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China.
| |
Collapse
|
29
|
Piccirillo S, Honigberg SM. Measuring effect of mutations & conditions on microbial respiratory rates. J Microbiol Methods 2024; 216:106864. [PMID: 38030085 PMCID: PMC10843655 DOI: 10.1016/j.mimet.2023.106864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
Cellular respiration is central to a wide range of cellular processes. In microorganisms, the effect of a mutation or an environmental condition on the rate of respiration is usually determined by measuring oxygen consumption in the media. We describe this method and discuss caveats and controls for the method.
Collapse
Affiliation(s)
- Sarah Piccirillo
- Division of Biological and Biomedical Systems, 5007 Rockhill Rd, University of Missouri-Kansas City, Kansas City, MO 64110-1299, United States of America
| | - Saul M Honigberg
- Division of Biological and Biomedical Systems, 5007 Rockhill Rd, University of Missouri-Kansas City, Kansas City, MO 64110-1299, United States of America.
| |
Collapse
|
30
|
Negrin VL, La Colla NS, Schwab F, Domini C, Botté SE. Evaluating metal phytorremediation and biondication potential of Spartina alterniflora in a South American estuary. MARINE ENVIRONMENTAL RESEARCH 2024; 193:106292. [PMID: 38064897 DOI: 10.1016/j.marenvres.2023.106292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 01/02/2024]
Abstract
Soil metal pollution has been widely studied in salt marshes but mainly regarding non-essential metals. The aim of this study was to assess the levels of two essential metals (Fe and Mn) and one non-essential one (Cd) in Spartina alterniflora salt marshes in a South American estuary in order to evaluate the potential of this species as a phytoremediator and/or bioindicator of Fe, Mn and Cd and to analyze the distribution of these metals according to the edaphic conditions. The metals present in the soils varied among the three sites studied according to the content of organic matter and fine sediments. In comparison with other Spartina-dominated salt marshes worldwide, in this study Fe and Mn were approximately in the same range, whereas Cd levels were always lower, with a high number of samples below the method detection limit (MDL). All metals were highly correlated with each other suggesting an association of Cd with Mn and Fe oxides/hydroxides or sulfides and/or a common anthropogenic source. Metals in plant tissues also varied from site to site and between the aboveground and belowground tissues. Compared to the metal levels in Spartina tissues in other salt marshes, our levels of Fe and Mn were in the same range, whereas the Cd levels were lower, among most samples, especially those from aboveground tissues that were below the MDL. The bioconcentration factor (metal in belowground tissues/metal in soil) was always lower than one for Fe and Mn meaning that there is no accumulation of these metals in belowground tissues, but this factor for Cd was sometimes higher than one, even as high as 3.45, implying that S. alterniflora can accumulate this metal in its tissues, pointing to a potential role of this species in Cd phytoremediation. Translocation factors (metal in aboveground tissues/metal in belowground tissues) were always lower than one for Fe and could not be calculated for Cd but were usually higher than one for Mn, showing the role of this element in photosynthetic tissues and a possible function of this species for phytoextraction of Mn. In most samples the Fe levels in plant tissues were higher than the permissible levels reported in the literature, suggesting a potential role of S. alterniflora in Fe phytoremediation. No correlation was observed between metal concentrations in soils and aboveground tissues; therefore, S.alterniflora is not a good bioindicator for the metals studied. Although our results are not conclusive, they reinforce the importance of local edaphic conditions on the behavior of metals in salt marshes and shed light on the potential role of S. alterniflora in the phytoremediation of highly toxic metals such as Cd or poorly studied metals such as Fe and Mn.
Collapse
Affiliation(s)
- V L Negrin
- Instituto Argentino de Oceanografía (IADO-CONICET/UNS), Camino La Carrindanga Km 7.5, (8000) Bahía Blanca, Buenos Aires, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, (8000) Bahía Blanca, Buenos Aires, Argentina.
| | - N S La Colla
- Instituto Argentino de Oceanografía (IADO-CONICET/UNS), Camino La Carrindanga Km 7.5, (8000) Bahía Blanca, Buenos Aires, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, (8000) Bahía Blanca, Buenos Aires, Argentina
| | - F Schwab
- Instituto Argentino de Oceanografía (IADO-CONICET/UNS), Camino La Carrindanga Km 7.5, (8000) Bahía Blanca, Buenos Aires, Argentina
| | - C Domini
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Av. Alem 1253, 8000, Bahía Blanca, Argentina
| | - S E Botté
- Instituto Argentino de Oceanografía (IADO-CONICET/UNS), Camino La Carrindanga Km 7.5, (8000) Bahía Blanca, Buenos Aires, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, (8000) Bahía Blanca, Buenos Aires, Argentina
| |
Collapse
|
31
|
Mubin AN, Islam ARMT, Hasan M, Islam MS, Ali MM, Siddique MAB, Alam MS, Rakib MRJ, Islam MS, Momtaz N, Senapathi V, Idris AM, Malafaia G. The path of microplastics through the rare biodiversity estuary region of the northern Bay of Bengal. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 260:104271. [PMID: 38056088 DOI: 10.1016/j.jconhyd.2023.104271] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/01/2023] [Accepted: 11/25/2023] [Indexed: 12/08/2023]
Abstract
Due to its harmful effects on ecosystems and human health, microplastic (MP) pollution has become a significant environmental problem on a global scale. Although MPs' pollution path and toxic effects on marine habitats have been examined worldwide, the studies are limited to the rare biodiversity estuary region of Hatiya Island from the northern Bay of Bengal. This study aimed to investigate the MP pollution path and its influencing factors in estuarine sediments and water in rare biodiversity Hatiya Island in the northern Bay of Bengal. Sixty water and sediment samples were collected from 10 sampling sites on the Island and analyzed for MPs. The abundance of MPs in sediment ranged from 67 to 143 pieces/kg, while the abundance in water ranged from 24.34 to 59 pieces/m3. The average concentrations of MPs in sediment and water were 110.90 ± 20.62 pieces/kg and 38.77 ± 10.09 pieces/m3, respectively. Most identified MPs from sediment samples were transparent (51%), while about 54.1% of the identified MPs from water samples were colored. The fragment was the most common form of MP in both compartments, with a value of 64.6% in sediment samples and 60.6% in water samples. In sediment and water samples, almost 74% and 80% of MP were <0.5 mm, respectively. Polypropylene (PP) was the most abundant polymer type, accounting for 51% of all identified polymers. The contamination factor, pollution load index, polymer risk score, and pollution risk score values indicated that the study area was moderately polluted with MPs. The spatial distribution patterns and hotspots of MPs echoed profound human pathways. Based on the results, sustainable management strategies and intervention measures were proposed to reduce the pollution level in the ecologically diverse area. This study provides important insights into evaluating estuary ecosystem susceptibility and mitigation policies against persistent MP issues.
Collapse
Affiliation(s)
- Al-Nure Mubin
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh
| | - Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh; Department of Development Studies, Daffodil International University, Dhaka 1216, Bangladesh.
| | - Mehedi Hasan
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Mir Mohammad Ali
- Department of Aquaculture, Sher - e - Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Md Abu Bakar Siddique
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | - Md Sha Alam
- Institute of Mining, Mineralogy & Metallurgy (IMMM), Bangladesh Council of Scientific & Industrial Research (BCSIR), Joypurhat 5900, Bangladesh
| | - Md Refat Jahan Rakib
- Department of Fisheries and Marine Science, Faculty of Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Muhammad Saiful Islam
- Fiber and Polymer Research Division, BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | - Nasima Momtaz
- Biological Research Division, BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | | | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Goiânia, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
32
|
Duong TT, Nguyen-Thuy D, Phuong NN, Ngo HM, Doan TO, Le TPQ, Bui HM, Nguyen-Van H, Nguyen-Dinh T, Nguyen TAN, Cao TTN, Pham TMH, Hoang THT, Gasperi J, Strady E. Microplastics in sediments from urban and suburban rivers: Influence of sediment properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166330. [PMID: 37591389 DOI: 10.1016/j.scitotenv.2023.166330] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/25/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Although sediments are considered to be a major sink for microplastics (MP), there is still a relative lack of knowledge on the factors that influence the occurrence and abundance of MP in riverine sediments. The present study investigated the occurrence and distribution of MP in riverine sediments collected at twelve sites representative of different populated and urbanized rivers (To Lich, Nhue and Day Rivers) located in the Red River Delta (RRD, Vietnam, during dry and rainy seasons. MP concentrations ranged from 1600 items kg-1 dw to 94,300 items kg-1dw. Fiber shape dominated and MP were made of polypropylene (PP) and polyethylene (PE) predominantly. An absence of seasonal effect was observed for both fragments and fibers for each rivers. Decreasing MP concentrations trend was evidenced from the To Lich River, to the Nhue River and to the Day River, coupled with a decreasing fiber length and an increasing fragment area in the surface sediment from upstream to downstream. Content of organic matter was correlated to MP concentrations suggesting that, high levels of organic matter could be MP hotspots in urban rivers. Also, high population density as well as in highly residential areas are related to higher MP concentrations in sediments. Finally, a MP high ecological risk (RI: 866 to 4711) was calculated in the RDD.
Collapse
Affiliation(s)
- Thi Thuy Duong
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam.
| | - Duong Nguyen-Thuy
- University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai Street, Thanh Xuan, Hanoi, Viet Nam
| | - Ngoc Nam Phuong
- PhuTho College of Medicine and Pharmacy, 2201 Hung Vuong Boulevard, Viet Tri City, Phu Tho Province, Viet Nam; GERS-LEE Université Gustave Eiffel, IFSTTAR, F44344 Bouguenais, France
| | - Ha My Ngo
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
| | - Thi Oanh Doan
- Faculty of Environment, Hanoi University of Natural Resources and Environment, No 41A, Phu Dien Street, Bac Tu Liem, Hanoi, Viet Nam
| | - Thi Phuong Quynh Le
- Institute of Natural Product Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam
| | - Ha Manh Bui
- Faculty of Environment, Saigon University, 273 An Duong Vuong St., District 5, Ho Chi Minh City, Viet Nam
| | - Huong Nguyen-Van
- University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai Street, Thanh Xuan, Hanoi, Viet Nam
| | - Thai Nguyen-Dinh
- University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai Street, Thanh Xuan, Hanoi, Viet Nam
| | - Thi Anh Nguyet Nguyen
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam
| | - Thi Thanh Nga Cao
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam; Institute of Human Geography - Vietnam Academy of Social Sciences, 1 Lieu Giai Street Ba Dinh District, Hanoi, Viet Nam
| | - Thi Minh Hanh Pham
- Institute of Mechanics, Vietnam Academy of Science and Technology, 264 Doi Can, Ba Dinh, Hanoi, Viet Nam
| | - Thu-Huong Thi Hoang
- Hanoi University of Science and Technology, No 1 Dai Co Viet Street, Hanoi, Viet Nam; School of Chemistry and Life Science, Hanoi University of Science and Technology, No 1 Dai Co Viet Street, Hanoi, Viet Nam
| | - Johnny Gasperi
- GERS-LEE Université Gustave Eiffel, IFSTTAR, F44344 Bouguenais, France
| | - Emilie Strady
- Aix-Marseille Univ., Toulon University, CNRS, IRD, MIO, UM 110, Marseille, France
| |
Collapse
|
33
|
Lehtonen TK, Gilljam D, Veneranta L, Keskinen T, Bergenius Nord M. The ecology and fishery of the vendace (Coregonus albula) in the Baltic Sea. JOURNAL OF FISH BIOLOGY 2023; 103:1463-1475. [PMID: 37642401 DOI: 10.1111/jfb.15542] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 08/31/2023]
Abstract
Brackish water ecosystems often have high primary production, intermediate salinities, and fluctuating physical conditions and therefore provide challenging environments for many of their inhabitants. This is especially true of the Baltic Sea, which is a large body of brackish water under strong anthropogenic influence. One freshwater species that is able to cope under these conditions in the northern Baltic Sea is the vendace (Coregonus albula), a small salmonid fish. Here, we review the current knowledge of its ecology and fishery in this brackish water environment. The literature shows that, by competing for resources with other planktivores and being an important prey for a range of larger species, C. albula plays a notable role in the northern Baltic Sea ecosystem. It also sustains significant fisheries in the coastal waters of Sweden and Finland. We identify the need to better understand these C. albula populations in terms of the predator-prey interactions, distributions of anadromous and sea spawning populations and other putative (eco)morphs, extent of gene exchange between the populations, and effects of climate change on their future. In this regard, we recommend strengthening C. albula-related research and management efforts by improved collaboration and coordination between research institutions, other governmental agencies, and fishers, as well as by harmonization of fishery policies across national borders.
Collapse
Affiliation(s)
| | - David Gilljam
- Swedish University of Agricultural Sciences, Department of Aquatic Resources, Institute of Coastal Research, Öregrund, Sweden
| | | | | | - Mikaela Bergenius Nord
- Swedish University of Agricultural Sciences, Department of Aquatic Resources, Institute of Marine Research, Lysekil, Sweden
| |
Collapse
|
34
|
Madaloz TZ, Dos Santos K, Zacchi FL, Bainy ACD, Razzera G. Nuclear receptor superfamily structural diversity in pacific oyster: In silico identification of estradiol binding candidates. CHEMOSPHERE 2023; 340:139877. [PMID: 37619748 DOI: 10.1016/j.chemosphere.2023.139877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/21/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
The increasing presence of anthropogenic contaminants in aquatic environments poses challenges for species inhabiting contaminated sites. Due to their structural binding characteristics to ligands that inhibit or activate gene transcription, these xenobiotic compounds frequently target the nuclear receptor superfamily. The present work aims to understand the potential interaction between the hormone 17-β-estradiol, an environmental contaminant, and the nuclear receptors of Crassostrea gigas, the Pacific oyster. This filter-feeding, sessile oyster species is subject to environmental changes and exposure to contaminants. In the Pacific oyster, the estrogen-binding nuclear receptor is not able to bind this hormone as it does in vertebrates. However, another receptor may exhibit responsiveness to estrogen-like molecules and derivatives. We employed high-performance in silico methodologies, including three-dimensional modeling, molecular docking and atomistic molecular dynamics to identify likely binding candidates with the target moecule. Our approach revealed that among the C. gigas nuclear receptor superfamily, candidates with the most favorable interaction with the molecule of interest belonged to the NR1D, NR1H, NR1P, NR2E, NHR42, and NR0B groups. Interestingly, NR1H and NR0B were associated with planktonic/larval life cycle stages, while NR1P, NR2E, and NR0B were associated with sessile/adult life stages. The application of this computational methodological strategy demonstrated high performance in the virtual screening of candidates for binding with the target xenobiotic molecule and can be employed in other studies in the field of ecotoxicology in non-model organisms.
Collapse
Affiliation(s)
- Tâmela Zamboni Madaloz
- Programa de Pós-Graduação Em Bioquímica, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil; Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Karin Dos Santos
- Programa de Pós-Graduação Em Bioquímica, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil; Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Flávia Lucena Zacchi
- Laboratório de Moluscos Marinhos, Universidade Federal de Santa Catarina, Florianópolis, SC, 88061-600, Brazil
| | - Afonso Celso Dias Bainy
- Programa de Pós-Graduação Em Bioquímica, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil; Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Guilherme Razzera
- Programa de Pós-Graduação Em Bioquímica, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil; Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
35
|
Córdoba-Tovar L, Marrugo-Negrete J, Ramos Barón PA, Díez S. Ecological and human health risk from exposure to contaminated sediments in a tropical river impacted by gold mining in Colombia. ENVIRONMENTAL RESEARCH 2023; 236:116759. [PMID: 37507038 DOI: 10.1016/j.envres.2023.116759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 07/30/2023]
Abstract
Despite being one of the most important tropical biomes in the world, the Atrato River basin has experienced a critical ecological deterioration due to gold mining, posing a significant threat to wildlife and human health. In this study, we measured the concentrations of mercury (Hg) and arsenic (As) in sediments at various swamps within the basin. Classical indices were employed to assess the associated ecological and human health risks linked to exposure to these elements. The concentrations of Hg and As in the sediments ranged between 0.09 and 0.23 mg/kg and 0.59-2.68 mg/kg, respectively. The highest Hg values were found at upstream stations impacted by gold mining activities. For As, the highest levels were found near river mouth (except for station B), where agricultural practices are taken place. The contamination factor (CF) indicated that most of the sediments exhibited moderate contamination levels of Hg and As, depending on the specific sampling area. Conversely, the pollution load index (PLI) suggested a contamination level ranging from basic to moderate, with the exception of station B, which showed a progressive deterioration of the site. The geoaccumulation index (Igeo) indicated that the sediments were moderately contaminated with Hg, while showing signs of increasing contamination for As. According to the criteria for limiting effect concentrations (TEC), Hg concentrations exceeded the TEC at stations B and C, indicating a potential toxic risk to aquatic biota. A moderate potential ecological risk (PERI) was detected at downstream stations (D and E), and a high risk was detected at upstream stations (A, B and C). The hazard index (HI), used for non-carcinogenic risk assessment, suggested a risk of adverse effects on the population, particularly in children, with HI values exceeding 1. However, all lifetime cancer risk (TLCR) values fell within the acceptable range (1 × 10-6 to 1 × 10-4), indicating a negligible risk. Oral ingestion and inhalation were identified as the two primary routes of concern. This study serves as a valuable reference for risk assessment regarding exposures to environmental matrices that may not pose an immediate risk to human health.
Collapse
Affiliation(s)
- Leonomir Córdoba-Tovar
- Pontificia Universidad Javeriana, Facultad de Estudios Ambientales y Rurales, Transversal 4#42-00, Bogotá, D.C, Colombia; Environmental Toxicology and Natural Resources Group, Universidad Tecnológica del Chocó, Quibdó, Chocó, A.A. 292, Colombia
| | | | - Pablo Andrés Ramos Barón
- Pontificia Universidad Javeriana, Facultad de Estudios Ambientales y Rurales, Transversal 4#42-00, Bogotá, D.C, Colombia
| | - Sergi Díez
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, E-08034, Barcelona, Spain.
| |
Collapse
|
36
|
Ta AT, Babel S. Microplastics and heavy metals in a tropical river: Understanding spatial and seasonal trends and developing response strategies using DPSIR framework. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165405. [PMID: 37429472 DOI: 10.1016/j.scitotenv.2023.165405] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
Microplastics (MPs) have become an increasingly popular topic in recent years due to the growing concern about their impact on human health and the environment. Rivers in Southeast Asia are the dominant source of plastics and MPs into the environment; however, research on MPs in rivers from the region is insufficient. This study aims to investigate the impacts of spatial and seasonal variations on the distribution of MPs with heavy metals in one of the top 15 rivers releasing plastics into oceans (Chao Phraya, Thailand). Findings from this study are analyzed using the Driver-Pressure-State-Impact-Response (DPSIR) framework for proposing strategies to minimize plastic and MPs in this tropical river. Spatially, most MPs were detected in the urban zone, while the lowest was in the agricultural zone. Also, MP levels in the dry season are higher than at the end but lower than at the beginning of the rainy season. MPs with fragment morphology were mainly found in the river (70-78 %). Polypropylene was found with the highest percentage (54-59 %). MPs in the river were mostly detected in the size range of 0.05-0.3 mm (36-60 %). Heavy metals were also found in all MPs collected from the river. Higher metal concentrations were detected in the agricultural and estuary zones in the rainy season. Potential responses, including regulatory and policy instruments, environmental education, and environmental cleanups, were drawn from the DPSIR framework.
Collapse
Affiliation(s)
- Anh Tuan Ta
- Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| | - Sandhya Babel
- School of Biochemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University, P.O. Box 22, Pathum Thani 12121, Thailand
| |
Collapse
|
37
|
Szafranski GT, Granek EF. Contamination in mangrove ecosystems: A synthesis of literature reviews across multiple contaminant categories. MARINE POLLUTION BULLETIN 2023; 196:115595. [PMID: 37852064 DOI: 10.1016/j.marpolbul.2023.115595] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/17/2023] [Accepted: 09/24/2023] [Indexed: 10/20/2023]
Abstract
Mangrove forests are exposed to diverse ocean-sourced and land-based contaminants, yet mangrove contamination research lags. We synthesize existing data and identify major gaps in research on five classes of mangrove contaminants: trace metals, persistent organic pollutants, polycyclic aromatic hydrocarbons, microplastics, and pharmaceuticals and personal care products. Research is concentrated in Asia, neglected in Africa and the Americas; higher concentrations are correlated with waste water treatment plants, industry, and urbanized landscapes. Trace metals and polycyclic aromatic hydrocarbons, frequently at concentrations below regulatory thresholds, may bioconcentrate in fauna, whereas persistent organic pollutants were at levels potentially harmful to biota through short- or long-term exposure. Microplastics were at variable levels, yet lack regulatory and ecotoxicological thresholds. Pharmaceuticals and personal care products received minimal research despite biological activity at small concentrations. Given potential synergistic effects, multi-contaminant research, increased monitoring of multiple contaminant classes, and increased public outreach and involvement are needed.
Collapse
Affiliation(s)
- Geoffrey T Szafranski
- Environmental Science & Management, Portland State University, Portland, OR, United States of America
| | - Elise F Granek
- Environmental Science & Management, Portland State University, Portland, OR, United States of America.
| |
Collapse
|
38
|
Gupta P, Mahapatra A, Suman A, Ray SS, Malafaia G, Singh RK. Polystyrene microplastics disrupt female reproductive health and fertility via sirt1 modulation in zebrafish (Danio rerio). JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132359. [PMID: 37639793 DOI: 10.1016/j.jhazmat.2023.132359] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/26/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023]
Abstract
Microplastics (MPs) pollution poses an emerging threat to aquatic biota, which could hinder their physiological processes. Recently various evidence has demonstrated the toxic impacts of MPs on cellular and organismal levels, but still, the underlying molecular mechanism behind their toxicity remains ambiguous. The hypothalamic-pituitary-gonadal (HPG) axis regulates the synthesis and release of sex steroid hormones, and SIRT1 plays a vital role in this process. The current study aimed to elucidate the harmful effects of MPs on female reproduction via SIRT1 modulation. Healthy female zebrafish were exposed to different concentrations (50 and 500 µg/L) of polystyrene microplastics (PS-MPs). The results revealed a significant change in the gonadosomatic index (GSI) after exposure to PS-MPs. In addition, the decreased fecundity rate displayed an evident dosage effect, indicating that exposure to PS-MPs causes deleterious effects on fertilization. Furthermore, significantly enhanced levels of reactive oxygen species (ROS) and apoptotic signals through the TUNEL assay were evaluated in different treated groups. Moreover, morphological alterations in the gonads of zebrafish exposed to MPs were also observed through H&E staining. The subsequent change in plasma steroid hormone levels (E2/T ratio) showed an imbalance in hormonal homeostasis. Meanwhile, to follow PS-MPs' effects on the HPG axis via SIRT1 modulation and gene expression related to steroidogenesis, SIRT1/p53 pathway was evaluated through qPCR. The altered transcription levels of genes indicated the plausible interference of PS-MPs on the HPG axis function. Our in-silico molecular docking study proves that PS-MPs efficiently bind and inhibit endocrine receptors and SIRT1. Thus, these findings add to our understanding of the probable molecular mechanisms of reproductive impairment caused by PS-MPs in zebrafish.
Collapse
Affiliation(s)
- Priya Gupta
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Banaras Hindu University, Varanasi, India.
| | - Archisman Mahapatra
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Banaras Hindu University, Varanasi, India.
| | - Anjali Suman
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Banaras Hindu University, Varanasi, India
| | - Shubhendu Shekhar Ray
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Banaras Hindu University, Varanasi, India
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO 75790-000, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG 38400-902, Brazil; Post-Graduation Programa in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO 74605-050, Brazil.
| | - Rahul Kumar Singh
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
39
|
Borriello L, Scivicco M, Cacciola NA, Esposito F, Severino L, Cirillo T. Microplastics, a Global Issue: Human Exposure through Environmental and Dietary Sources. Foods 2023; 12:3396. [PMID: 37761106 PMCID: PMC10649135 DOI: 10.3390/foods12183396] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Plastic production has grown dramatically over the years. Microplastics (MPs) are formed from the fragmentation of larger plastic debris by combining chemical, physical, and biological processes and can degrade further to form nanoplastics (NPs). Because of their size, MPs and NPs are bioavailable to many organisms and can reach humans through transport along the food chain. In addition to the risk from ingesting MPs themselves, there are risks associated with the substances they carry, such as pesticides, pathogenic microorganisms, and heavy metals, and with the additives added to plastics to improve their characteristics. In addition, bioaccumulation and biomagnification can cause a cumulative exposure effect for organisms at the top of the food chain and humans. Despite the growing scientific interest in this emerging contaminant, the potential adverse effects remain unclear. The aim of this review is to summarize the characteristics (size, shape, color, and properties) of MPs in the environment, the primary sources, and the transport pathways in various environmental compartments, and to shed more light on the ecological impact of MPs and the potential health effects on organisms and humans by identifying human exposure pathways.
Collapse
Affiliation(s)
- Lucrezia Borriello
- Department of Veterinary Medicine and Animal Production, Division of Toxicology, University of Naples Federico II, Via Delpino 1, 80137 Naples, Italy; (L.B.); (M.S.); (N.A.C.); (L.S.)
| | - Marcello Scivicco
- Department of Veterinary Medicine and Animal Production, Division of Toxicology, University of Naples Federico II, Via Delpino 1, 80137 Naples, Italy; (L.B.); (M.S.); (N.A.C.); (L.S.)
| | - Nunzio Antonio Cacciola
- Department of Veterinary Medicine and Animal Production, Division of Toxicology, University of Naples Federico II, Via Delpino 1, 80137 Naples, Italy; (L.B.); (M.S.); (N.A.C.); (L.S.)
| | - Francesco Esposito
- Department of Public Health, University of Naples Federico II, Via Sergio Pansini, 5, 80131 Naples, Italy
| | - Lorella Severino
- Department of Veterinary Medicine and Animal Production, Division of Toxicology, University of Naples Federico II, Via Delpino 1, 80137 Naples, Italy; (L.B.); (M.S.); (N.A.C.); (L.S.)
| | - Teresa Cirillo
- Department of Agricultural Sciences, University of Naples Federico II, Via Università, 100, 80055 Portici, Italy;
| |
Collapse
|
40
|
Müller L, Josende ME, Soares GC, Monserrat JM, Ventura-Lima J. Multigenerational effects of co-exposure to dimethylarsinic acid and polystyrene microplastics on the nematode Caenorhabditis elegans. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:85359-85372. [PMID: 37382819 DOI: 10.1007/s11356-023-28050-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 05/29/2023] [Indexed: 06/30/2023]
Abstract
In the current study, we assessed the impact of DMA (dimethylarsinic acid) and MPs (microplastics) interactions in C. elegans over the course of five generations. We found that the redox state of the organisms changed over generations as a result of exposure to both pollutants. From the third generation onward, exposure to MPs reduced GST activity, indicating reduced detoxifying abilities of these organisms. Additionally, dimethylarsinic exposure decreased the growth of organisms in the second, fourth, and fifth generations. In comparison to isolated pollutants, the cumulative effects of co-exposure to DMA and MPs seem to have been more harmful to the organisms, as demonstrated by correlation analysis. These findings demonstrate that DMA, despite being considered less hazardous than its inorganic equivalents, can still have toxic effects on species at low concentrations and the presence of MPs, can worsen these effects.
Collapse
Affiliation(s)
- Larissa Müller
- Instituto de Ciências Biológicas (ICB), Instituto de Ciências Biológicas (ICB), Universidade Federal Do Rio Grande - FURG, Av. Itália, Km 08, Rio Grande, RS, 96201-900, Brazil
- Programa de Pós-Graduação Em Ciências Fisiológicas - FURG, Rio Grande, RS, Brazil
| | - Marcelo Estrella Josende
- Instituto de Ciências Biológicas (ICB), Instituto de Ciências Biológicas (ICB), Universidade Federal Do Rio Grande - FURG, Av. Itália, Km 08, Rio Grande, RS, 96201-900, Brazil
- Programa de Pós-Graduação Em Ciências Fisiológicas - FURG, Rio Grande, RS, Brazil
| | - Gabriela Corrêa Soares
- Instituto de Ciências Biológicas (ICB), Instituto de Ciências Biológicas (ICB), Universidade Federal Do Rio Grande - FURG, Av. Itália, Km 08, Rio Grande, RS, 96201-900, Brazil
- Programa de Pós-Graduação Em Ciências Fisiológicas - FURG, Rio Grande, RS, Brazil
| | - José Marìa Monserrat
- Instituto de Ciências Biológicas (ICB), Instituto de Ciências Biológicas (ICB), Universidade Federal Do Rio Grande - FURG, Av. Itália, Km 08, Rio Grande, RS, 96201-900, Brazil
- Programa de Pós-Graduação Em Ciências Fisiológicas - FURG, Rio Grande, RS, Brazil
| | - Juliane Ventura-Lima
- Instituto de Ciências Biológicas (ICB), Instituto de Ciências Biológicas (ICB), Universidade Federal Do Rio Grande - FURG, Av. Itália, Km 08, Rio Grande, RS, 96201-900, Brazil.
- Programa de Pós-Graduação Em Ciências Fisiológicas - FURG, Rio Grande, RS, Brazil.
| |
Collapse
|
41
|
Karbalaee Hosseini A, Tadjarodi A. Novel Zn metal-organic framework with the thiazole sites for fast and efficient removal of heavy metal ions from water. Sci Rep 2023; 13:11430. [PMID: 37454199 PMCID: PMC10349873 DOI: 10.1038/s41598-023-38523-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023] Open
Abstract
Pollution of water by heavy metal ions such as Pb2+ and Hg2+ is considered as an important issue, because of the potential toxic effects these ions impose on environmental ecosystems and human health. A new Zn-based metal-organic framework, [Zn2(DPTTZ) (OBA)2] (IUST-2), was synthesized through a solvothermal method by the reaction of 2, 5-di (4- pyridyl) thiazolo [5, 4-d] thiazole ligand (DPTTZ), the "V-shape" 4,4'-oxybis (benzoic acid) ligand (OBA) and zinc nitrate (Zn(NO3)2·6H2O). This novel MOF has been characterized by several analysis techniques such as fourier transform infrared spectroscopy (FT-IR), elemental analysis (EA), powder x-ray diffraction (PXRD), thermogravimetry analysis (TGA), differential thermal analysis (DTA), field emission scanning electron microscopy (FE-SEM), Brunauer-Emmett-Teller (BET) surface area analysis and single-crystal X-ray diffraction (SXRD). This 3D MOF was tested for removing Pb2+ and Hg2+ ions from water. The factors that were investigated on the elimination of Pb2+ and Hg2+ ions were of pH, adsorption time, and the effect of initial ions concentration. According to the results, this particular Zn-MOF had significant performance in eliminating Pb2+ and Hg2+ ions from water with a removal efficiency of more than 97% and 87% within 3 min, respectively.
Collapse
Affiliation(s)
- Akram Karbalaee Hosseini
- Research Laboratory of Inorganic Materials Synthesis, Department of Chemistry, Iran University of Science and Technology (IUST), Tehran, 16846-13114, Iran
| | - Azadeh Tadjarodi
- Research Laboratory of Inorganic Materials Synthesis, Department of Chemistry, Iran University of Science and Technology (IUST), Tehran, 16846-13114, Iran.
| |
Collapse
|
42
|
Capparelli MV, Ramírez CA, Rodríguez-Santiago MA, Valencia-Castañeda G, Ávila E, Moulatlet GM. Effect of salinity on microplastic accumulation and osmoregulatory toxicity in the fiddler crab Minuca rapax. MARINE POLLUTION BULLETIN 2023; 193:115260. [PMID: 37423082 DOI: 10.1016/j.marpolbul.2023.115260] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
The effects of salinity on the accumulation and toxicity of microplastics (MPs) in mangrove invertebrates are still scarcely described. We assessed the accumulation and osmoregulatory toxicity of the estuarine fiddler crab Minuca rapax, exposed to 25 mg L-1 of high-density polyethylene MPs at three combinations of osmotic media (hypo- 6, iso- 25, or hyper-35 psu), in 1, 3 and 5 days of exposure. Gills accumulated more MPs than the digestive tract (DT) and muscle. MP accumulation in the gills and DT was enhanced at 6 psu and reduced at 21 and 35 psu after 1 day of exposure. Muscle MP accumulation was not affected by salinity or exposure time. Osmotic regulation was unaffected by MP exposure in any exposure time. Our findings demonstrate that M. rapax accumulates MPs in gills and DT depending on the salinity and that MPs are not osmoregulatory toxicant for this species.
Collapse
Affiliation(s)
- Mariana V Capparelli
- Estación el Carmen, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Carretera Carmen-Puerto Real km. 9.5, C. P 24157 Ciudad del Carmen, Campeche, Mexico.
| | - Carla A Ramírez
- Universidad Autónoma del Carmen (UNACAR), Ciudad del Carmen, Campeche, Mexico
| | - María A Rodríguez-Santiago
- Universidad Autónoma del Carmen (UNACAR), Ciudad del Carmen, Campeche, Mexico; Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico; Grupo de Investigación en Sostenibilidad Ambiental (GISA), Escuela Universitaria de Posgrado, Universidad Nacional Federico Villarreal, Lima, Peru; Grupo de investigación One Health-Una Salud, Universidad Ricardo Palma, Lima, Peru
| | - Gladys Valencia-Castañeda
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de Mexico, Unidad Académica Mazatlán, Mexico
| | - Enrique Ávila
- Estación el Carmen, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Carretera Carmen-Puerto Real km. 9.5, C. P 24157 Ciudad del Carmen, Campeche, Mexico
| | - Gabriel M Moulatlet
- Red de Biología Evolutiva, Instituto de Ecología, A.C., Xalapa, Veracruz, Mexico
| |
Collapse
|
43
|
Velandia-Aquino LB, Botello AV, Ponce-Vélez G, Armstrong-Altrin JS, Ruiz-Fernández AC, Prado B, Villanueva-Fragoso S. 210Pb geochronology and metal concentrations in sediment cores recovered in the Alvarado Lagoon system, Veracruz, Mexico. CHEMOSPHERE 2023; 330:138709. [PMID: 37072086 DOI: 10.1016/j.chemosphere.2023.138709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/06/2023] [Accepted: 04/14/2023] [Indexed: 05/14/2023]
Abstract
Three sediment cores recovered from the Alvarado Lagoon System (ALS) in the Gulf of Mexico were used to reconstruct the history of metals and metalloids and their environmental importance. The sedimentary profiles were dated with 210Pb and verified with 137Cs. Maximum ages of 77 and 86 years were estimated. Sediment provenance was described by sedimentological and geochemical proxies. The chemical alteration index (CIA) and weathering index (CIW) revealed moderate to high intensity of weathering in the source area that is controlled tropical climatic conditions, runoff, and precipitation in the basin that feeds sediments to this coastal lagoon. The Al2O3/TiO2 ratios indicated that the sediments were derived from intermediate igneous rocks. The enrichment factor values revealed the lithogenic and anthropic contribution of metals and metalloids. Cd is classified under the category extremely severe enrichment; agricultural activities, fertilizers, herbicides, and pesticides containing Cd are expected to supply this metal to the ecosystem. Factor Analysis and Principal Components provided two main factors, terrigenous and biological origins; ANOVA indicated that there are significant differences between the cores for the parameters analyzed and revealed that there are differences in depositional environments between the recovery zones of the cores. The ALS presented natural variations associated with the climatic conditions, terrigenous input, and its relationship with the hydrological variations of the main rivers. The contribution of this work was to identify the magnitude of the natural component versus the human contribution, mainly of risk metals such as Cd, to support better management of the hydrological basin that affects the ALS.
Collapse
Affiliation(s)
- Laura Begoña Velandia-Aquino
- Universidad Nacional Autónoma de México, Posgrado en Ciencias de la Tierra, Instituto de Geología. Av. Universidad N° 3000, UNAM CU, Coyoacán, 04510, Cd. de México, Mexico.
| | - Alfonso V Botello
- Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Laboratorio de Contaminación Marina. Circuito exterior s/n, CU Coyoacán 04510, Cd. de México, Mexico.
| | - Guadalupe Ponce-Vélez
- Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Laboratorio de Contaminación Marina. Circuito exterior s/n, CU Coyoacán 04510, Cd. de México, Mexico.
| | - John S Armstrong-Altrin
- Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Unidad de Procesos Oceánicos y Costeros, Circuito Exterior s/n, CU Coyoacán, 04510, Cd. de México, Mexico.
| | - Ana Carolina Ruiz-Fernández
- Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Laboratorio de Geoquímica Isotópica y Geocronología. Joel Monte Camarena s/n, Col. Playa Sur, 82040, Mazatlán, Sinaloa, Mexico.
| | - Blanca Prado
- Universidad Nacional Autónoma de México, Instituto de Geología, Departamento de Ciencias Ambientales y del Suelo. Av. Universidad N° 3000, UNAM CU, Coyoacán, 04510, Cd. de México, Mexico.
| | - Susana Villanueva-Fragoso
- Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Laboratorio de Contaminación Marina. Circuito exterior s/n, CU Coyoacán 04510, Cd. de México, Mexico.
| |
Collapse
|
44
|
Ren S, Luo Z, Pan Y, Ling C, Yu L, Yin K. Distinctive adsorption and desorption behaviors of temporal and post-treatment heavy metals by iron nanoparticles in the presence of microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163141. [PMID: 36990234 DOI: 10.1016/j.scitotenv.2023.163141] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 05/13/2023]
Abstract
There are increasing concerns about microplastic (MP) pollution in the natural environment. Consequently, numerous physicochemical and toxicological studies have been conducted on the effects of MPs. However, few studies have concerned the potential impact of MPs on contaminated site remediation. We herein investigated the influence of MPs on the temporary and post heavy metal removal by iron nanoparticles, including pristine and sulfurized nano zero-valent irons (nZVI and S-nZVI). MPs inhibited adsorption of most heavy metals during the treatment of iron nanoparticles, and facilitated their desorption, such as Pb (II) from nZVI and Zn (II) from S-nZVI. However, such effects presented by MPs was usually less than those by dissolved oxygen (DO). Most desorption cases are irrelevant to the reduced formats of heavy metals involving redox reactions, such as Cu (I) or Cr (III), suggesting that the influence of MPs on metals are limited to those binding with iron nanoparticles through surface complexation or electrostatic interaction. As another common factor, natural organic matter (NOM) had almost no influence on the heavy metal desorption. These insights shed lights for enhanced remediation of heavy metals by nZVI/S-NZVI in the presence of MPs.
Collapse
Affiliation(s)
- Shuhan Ren
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Zhenyi Luo
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Yuwei Pan
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Chen Ling
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Lei Yu
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Ke Yin
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China.
| |
Collapse
|
45
|
Cui L, Wang Y, Zhang H, Lv X, Lei K. Use of non-linear multiple regression models for setting water quality criteria for copper: Consider the effects of salinity and dissolved organic carbon. JOURNAL OF HAZARDOUS MATERIALS 2023; 450:131107. [PMID: 36871370 DOI: 10.1016/j.jhazmat.2023.131107] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/05/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Cu pollution is a global concern because of its high toxicity and persistence. Few investigations have been conducted on the effects of salinity and dissolved organic carbon (DOC) on Cu toxicity and water quality criteria (WQC). To analyze their impact on the WQC of Cu, non-linear multiple regression (NLMR) models based on salinity and DOC were constructed. The NLMR models demonstrated that when salinity increased, the toxicity values for Cu on fish, mollusca, rotifer, and echinodermata first increased and then declined, whereas those for arthropoda and algae increased. These findings demonstrate that salinity has a substantial impact on Cu toxicity, primarily owing to changes in physiological activity. The original and corrected WQC values in the upper, middle, and outer regions of the Yangtze Estuary were derived based on the species sensitivity distribution method. These values were 1.49, 3.49, 8.86, and 0.87 μg·L-1. An important finding was that lower Cu concentrations in the outer areas posed the highest ecological risk owing to the effects of salinity and DOC. NLMR models are applicable to other coastal areas worldwide. This provides valuable information for the establishment of an accurate and protective estuary for Cu-related WQC.
Collapse
Affiliation(s)
- Liang Cui
- Institute of Water Ecology and Environment, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yan Wang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Hua Zhang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xubo Lv
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Kun Lei
- Institute of Water Ecology and Environment, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
46
|
Diallo T, Leleu J, Parinet J, Guérin T, Thomas H, Lerebours A. Approaches to determine pesticides in marine bivalves. Anal Bioanal Chem 2023:10.1007/s00216-023-04709-4. [PMID: 37127735 DOI: 10.1007/s00216-023-04709-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
Due to agricultural runoff, pesticides end up in aquatic ecosystems and some accumulate in marine bivalves. As filter feeders, bivalves can accumulate high concentrations of chemicals in their tissue representing a potential risk to the health of human and aquatic ecosystems. So far, most of the studies dealing with pesticide contamination in marine bivalves, for example, in the French Atlantic and English Channel coasts, have focused on the old generation of pesticides. Only a few investigated the newly emerging pesticides partly due to methodological challenges. A better understanding of the most sensitive and reliable methods is thus essential for accurately determining a wide variety of environmentally relevant pesticides in marine bivalves. The review highlighted the use of more environmentally friendly and efficient materials such as sorbents and the "quick easy cheap effective rugged safe" extraction procedure to extract pesticides from bivalve matrices, as they appeared to be the most efficient while being the safest. Moreover, this method combined with the high-resolution mass spectrometry (MS) technique offers promising perspectives by highlighting a wide range of pesticides including those that are not usually sought. Finally, recent developments in the field of ultra-high-performance liquid chromatography coupled to MS, such as two-dimensional chromatography and ion mobility spectrometry, will improve the analysis of pesticides in complex matrices.
Collapse
Affiliation(s)
- Thierno Diallo
- Laboratory for Food Safety, ANSES, F-94701, Maisons-Alfort, France
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, F-17042, La Rochelle Cedex 01, France
| | - Julia Leleu
- Laboratory for Food Safety, ANSES, F-94701, Maisons-Alfort, France
| | - Julien Parinet
- Laboratory for Food Safety, ANSES, F-94701, Maisons-Alfort, France
| | - Thierry Guérin
- ANSES, Strategy and Programmes Department, F-94701, Maisons-Alfort, France
| | - Hélène Thomas
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, F-17042, La Rochelle Cedex 01, France
| | - Adélaïde Lerebours
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, F-17042, La Rochelle Cedex 01, France.
| |
Collapse
|
47
|
Jeong H, Araújo DF, Garnier J, Mulholland D, Machado W, Cunha B, Ponzevera E. Copper and lead isotope records from an electroplating activity in sediments and biota from Sepetiba Bay (southeastern Brazil). MARINE POLLUTION BULLETIN 2023; 190:114848. [PMID: 37027955 DOI: 10.1016/j.marpolbul.2023.114848] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
An old electroplating plant in Sepetiba Bay discharged metal-enriched wastes into the surrounding mangroves for 30 years (from the 1960s to 1990s), resulting in a hotspot zone of legacy sediments highly concentrated in toxic trace metals. This study applies Cu and Pb isotope systems to investigate the contributions of past punctual sources relative to emerging modern diffuse sources. The electroplating activity imprinted particular isotopic signatures (average δ65CuSRM-976: 0.4 ‰ and 206Pb/207Pb: 1.14) distinct from the natural baseline and urban fluvial sediments. The isotopic compositions of tidal flat sediments show intermediate isotope compositions reflecting the mixing of Cu and Pb from the hotspot zone and terrigenous materials carried by rivers. Oyster isotope fingerprints match legacy sediments, attesting that anthropogenic Cu and Pb are bioavailable to the biota. These findings confirm the interest in combining two or more metal isotope systems to discriminate between modern and past metal source emissions in coastal environments.
Collapse
Affiliation(s)
- Hyeryeong Jeong
- Ifremer, CCEM Contamination Chimique des Écosystèmes Marins, F-44000 Nantes, France.
| | - Daniel F Araújo
- Ifremer, CCEM Contamination Chimique des Écosystèmes Marins, F-44000 Nantes, France
| | - Jeremie Garnier
- Universidade de Brasília, Instituto de Geociências, Campus Darcy Ribeiro, L2, Asa Norte, Brasília, Distrito Federal, Brazil
| | - Daniel Mulholland
- Laboratório de Águas e Efluentes & Laboratório de Análises Ambientais, Universidade Federal do Tocantins, Rua Badejos, Gurupi, TO, Brazil
| | - Wilson Machado
- Universidade Federal Fluminense, Departamento de Geoquímica, Campus do Valonguinho, Niterói, Rio de Janeiro, Brazil
| | - Bruno Cunha
- Universidade de São Paulo Instituto de Geociências, Cidade Universitária, São Paulo SP Brazil CEP 05508-080
| | - Emmanuel Ponzevera
- Ifremer, CCEM Contamination Chimique des Écosystèmes Marins, F-44000 Nantes, France
| |
Collapse
|
48
|
Fuentes SN, Díaz Andrade MC, Awruch CA, Moya AC, Arias AH. Impacts of water pollutants on chondrichthyans species from South America: A review. CHEMOSPHERE 2023; 324:138262. [PMID: 36870615 DOI: 10.1016/j.chemosphere.2023.138262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/18/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
This is the first research that extensively compiles all the available scientific literature on the presence of trace metals (TMs), persistent organic pollutants (POPs), and plastic debris in Chondrichthyan species inhabiting South America (including the Atlantic and Pacific Oceans), providing an insight into Chondrichthyans as bioindicators of pollutants as well as the impacts of pollutant exposure on the organisms. Seventy-three studies were published in South America between 1986 and 2022. While 68.5% focused on TMs, 17.8% on POPs, and 9.6% on plastic debris. Brazil and Argentina were at the top in terms of the number of publications; however, there is an absence of information regarding pollutants for Chondrichthyans in Venezuela, Guyana, and French Guiana. Of the 65 Chondrichthyan species reported, 98.5% belong to the Elasmobranch group, and 1.5% from the Holocephalans. Most studies focused on Chondrichthyans of economic importance, and the most analyzed organs were the muscle and liver. There is a lack of studies on Chondrichthyan species with low economic value and critical conservation status. Due to their ecological relevance, distribution, accessibility, high trophic position, capacity to accumulate high levels of pollutants, and the number of studies published, Prionace glauca and Mustelus schmitii seem to be adequate to serve as bioindicators. For TMs, POPs, and plastic debris there is a lack of studies focusing on the pollutant levels as well as their effect on Chondrichthyans. Future research reporting TMs, POPs, and plastic debris occurrences in Chondrichthyan species are required in order to increase the scarce databases about pollutants in this group, with a clear need for further research on the responses of chondrichthyans to pollutants, as well as making inferences about the potential risks to the ecosystems and human health.
Collapse
Affiliation(s)
- Sabrina N Fuentes
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR - CONICET/UNS), San Juan 671, 8000, Bahía Blanca, Argentina.
| | - M Constanza Díaz Andrade
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR - CONICET/UNS), San Juan 671, 8000, Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia (DBByF, UNS), San Juan 670, 8000, Bahía Blanca, Argentina
| | - Cynthia A Awruch
- Centro Para el Estudio de Sistemas Marinos (CESIMAR - CENPAT- CONICET), Bv. Almirante Brown 2915 U9120ACD, Puerto Madryn, Argentina; School of Natural Sciences and Institute for Marine and Antarctic Studies (IMAS), College of Sciences and Engineering, University of Tasmania, Hobart, Tasmania, Australia.
| | - Ana C Moya
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR - CONICET/UNS), San Juan 671, 8000, Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia (DBByF, UNS), San Juan 670, 8000, Bahía Blanca, Argentina
| | - Andrés H Arias
- Departamento de Química, Área III, Universidad Nacional del Sur, Av Alem 1253, 8000, Bahía Blanca, Argentina; Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Camino La Carrindanga km 7.5, 8000, Bahía Blanca, Argentina
| |
Collapse
|
49
|
Gosavi SM, Phuge SK. First report on microplastics contamination in a meteorite impact Crater Lake from India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:64755-64770. [PMID: 37079229 DOI: 10.1007/s11356-023-27074-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Microplastic pollution is a worldwide concern affecting all environmental matrices, including pristine lakes. Lentic lakes operate as a sink for microplastics (MPs), which interfere with a biogeochemical cycle and, therefore, deserve immediate attention. We present a comprehensive assessment of MPs contamination in the sediment and surface water of a geo-heritage site, Lonar lake (India). It is the third largest natural saltwater lake and only basaltic crater in the world formed by meteoric impact around 52,000 years ago. Mean MPs abundance in lakeshore sediment and surface water was 14.44 particles/kg and 2.66 particles/L, respectively. Small-sized MPs dominate the hypersaline region of the lake. Transparent and green fragments and filaments morphotypes were abundant. Most of the MPs in Lonar lake were secondary in origin. FTIR-ATR analysis revealed 16 types of polymers in the lake, of which polypropylene, polyvinyl chloride, polyethylene, high-density polyethylene, low-density polyethylene, polystyrene, and polyester were the most common. The overall pollution load index (PLI) for Lonar lake sediment and water was 1.39 and 2.58, respectively. Although all sampling stations had significant MPs pollution (PLI > 1), there was noticeable station-specific variability, which could be linked to anthropogenic activities. Irresponsible tourist behavior and religious activities, coupled with poor waste management are the leading causes of MPs contamination in the lake. The current work fills a gap in the investigation of MP pollution in a crater lake formed by a meteorite impact by being the first to provide a precise estimate of the MPs contamination in the Lonar lake.
Collapse
Affiliation(s)
- Sachin M Gosavi
- Department of Zoology, Maharashtra College of Arts, Science and Commerce, Mumbai, Maharashtra, India.
| | - Samadhan K Phuge
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra, India
- Department of Education and Extension, Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra, India
| |
Collapse
|
50
|
Lei P, Zhang W, Ma J, Xia Y, Yu H, Du J, Fang Y, Wang L, Zhang K, Jin L, Sun D, Zhong J. Advances in the Utilization of Zebrafish for Assessing and Understanding the Mechanisms of Nano-/Microparticles Toxicity in Water. TOXICS 2023; 11:380. [PMID: 37112607 PMCID: PMC10142380 DOI: 10.3390/toxics11040380] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 06/19/2023]
Abstract
A large amount of nano-/microparticles (MNPs) are released into water, not only causing severe water pollution, but also negatively affecting organisms. Therefore, it is crucial to evaluate MNP toxicity and mechanisms in water. There is a significant degree of similarity between the genes, the central nervous system, the liver, the kidney, and the intestines of zebrafish and the human body. It has been shown that zebrafish are exceptionally suitable for evaluating the toxicity and action mechanisms of MNPs in water on reproduction, the central nervous system, and metabolism. Providing ideas and methods for studying MNP toxicity, this article discusses the toxicity and mechanisms of MNPs from zebrafish.
Collapse
Affiliation(s)
- Pengyu Lei
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China (L.J.)
| | - Wenxia Zhang
- Department of Burn and Plastic Surgery, Zigong Fourth People’s Hospital, Zigong 643099, China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China (L.J.)
| | - Yuping Xia
- Department of Burn and Plastic Surgery, Zigong Fourth People’s Hospital, Zigong 643099, China
| | - Haiyang Yu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China (L.J.)
| | - Jiao Du
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China (L.J.)
| | - Yimeng Fang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China (L.J.)
| | - Lei Wang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China (L.J.)
| | - Kun Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China (L.J.)
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China (L.J.)
| | - Junbo Zhong
- Department of Burn and Plastic Surgery, Zigong Fourth People’s Hospital, Zigong 643099, China
| |
Collapse
|