1
|
Zhang FY, Fang Y, Zhang CX, Zhang HY, Dong M, Zhang KW, Wu CY, Song HD, Chen G. The effects of disturbance on hypothalamus-pituitary-thyroid axis in zebrafish larvae after exposure to polyvinyl alcohol. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117396. [PMID: 39603223 DOI: 10.1016/j.ecoenv.2024.117396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/12/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
In recent years, considerable concerns have been raised regarding environmental pollution caused by water-soluble polymers (WSPs). Polyvinyl alcohol (PVA), used in the textile industry and in the manufacture of medical consumables, is one type of WSPs. After use, PVA is discharged and enters aquatic ecosystems, but most of it cannot be completely biodegraded in the environment. In this study, we investigated the effects of PVA on developmental toxicity and thyroid endocrine disruption using a zebrafish (Danio rerio) model. We treated zebrafish embryos with 10 g/L and 5 mg/L PVA for 96 h and found that the proportion of coagulated embryos significantly increased, resulting in a remarkable decrease in hatching rate and larval survival. The body length of zebrafish larvae in the exposed group was remarkably shorter than that of the control group (Control: 3.64 ± 0.03 mm vs. 10 g/L PVA: 3.46 ± 0.03 mm; p=0.001). Compared to the control group, the levels of T3 and T4 in embryos of the exposed group were significantly lower, while thyroid stimulating hormone (TSH) levels were significantly increased. Notable up-regulation of trh, tshβ, and tshr genes, as well as down-regulation of trα , tg, ttr, dio1, and dio2 genes, were observed in embryos of the exposed group. Collectively, these findings suggest that PVA negatively influences the development and function of the thyroid gland during zebrafish embryogenesis. These effects may be partly attributed to the disruption of hypothalamic-pituitary-thyroid (HPT) axis regulation. Therefore, raising awareness about the possible thyroid toxicity associated with PVA is crucial.
Collapse
Affiliation(s)
- Fei-Yang Zhang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China; Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China; Department of Endocrinology, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China.
| | - Ya Fang
- Department of Endocrinology and Metabolism, The Fourth Affiliated Hospital of Soochow University, Medical Center of Soochow University, Suzhou, Jiangsu, China.
| | - Cao-Xu Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Nantong University, Nantong, China.
| | - Hai-Yang Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Mei Dong
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Kai-Wen Zhang
- Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China.
| | - Chen-Yang Wu
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Huai-Dong Song
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Gang Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China; Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China; Department of Endocrinology, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China.
| |
Collapse
|
2
|
Mai S, Liang YQ, Zhou S, Lin H, Dong Z, Pan CG, Kong Q, Wang S, Wang S, Lin Z, Hou L. The long-term effects of norgestrel on the reproductive and thyroid systems in adult zebrafish at environmentally relevant concentrations. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107105. [PMID: 39306961 DOI: 10.1016/j.aquatox.2024.107105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 11/12/2024]
Abstract
Progestins are crucial steroid hormones that have attracted wide attention due to their endocrine disrupting effects in fish. The aim of this study is to investigate the effects of long-term exposure to low concentrations of norgestrel (NGT) on the reproductive and thyroid endocrine systems of adult zebrafish. Adult zebrafish were exposed to 7 and 39 ng/L NGT for a duration of 90 days. The results revealed that exposure to 39 ng/L NGT led to a significant up-regulation of 3β-hydroxysteroid dehydrogenase (hsd3b) and 20β-hydroxysteroid dehydrogenase (hsd20b) genes in the ovary of female zebrafish. Additionally, there was a significant up-regulation of 11β-hydroxysteroid dehydrogenase 2 (hsd11b2) gene in the testis of male zebrafish. Furthermore, egg production decreased significantly, accompanied by notable alterations in the proportion of ovarian development stages, as well as reductions of sex hormone levels (E2, 11-KT, and T) in both females and males. However, long-term exposure to low concentrations of NGT did not lead to changes in thyroid hormone levels and thyroid histopathology in adult zebrafish. The overall results imply that environmental concentrations of NGT have a strong endocrine disrupting effect on the reproductive system of zebrafish, while the thyroid system is not sensitive to NGT exposure. The present study underscores the reproductive endocrine impacts of NGT and emphasizes the necessity for prolonged exposure at environmental concentrations.
Collapse
Affiliation(s)
- Shuyan Mai
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yan-Qiu Liang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou 510006, China.
| | - Shuhui Zhou
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hongjie Lin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhongdian Dong
- College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chang-Gui Pan
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Qingwei Kong
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shaoshuai Wang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shiqing Wang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhong Lin
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Liping Hou
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| |
Collapse
|
3
|
Dasmahapatra AK, Chatterjee J, Tchounwou PB. A systematic review of the toxic potential of parabens in fish. FRONTIERS IN TOXICOLOGY 2024; 6:1399467. [PMID: 39434713 PMCID: PMC11491439 DOI: 10.3389/ftox.2024.1399467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/19/2024] [Indexed: 10/23/2024] Open
Abstract
Parabens are the most prevalent ingredients in cosmetics and personal care products (PCPs). They are colorless and tasteless and exhibit good stability when combined with other components. Because of these unique physicochemical properties, they are extensively used as antimicrobial and antifungal agents. Their release into the aquatic ecosystem poses potential threats to aquatic organisms, including fish. We conducted an electronic search in PubMed (http://www.ncbi.nlm.nih.gov/pubmed) using the search term parabens and fish and sorted 93 articles consisting of methyl paraben (MTP), ethyl paraben (ETP), propyl paraben (PPP), butyl paraben (BTP), and benzyl paraben (BNP) in several fish species. Furthermore, we confined our search to six fish species (common carp, Cyprinus carpio; fathead minnows, Pimephales promelas; Japanese medaka, Oryzias latipes; rainbow trout, Oncorhynchus mykiss; Nile tilapia, Oreochromis niloticus; and zebrafish, Danio rerio) and four common parabens (MTP, ETP, PPP, and BTP) and sorted 48 articles for review. Our search indicates that among all six fish, zebrafish was the most studied fish and the MTP was the most tested paraben in fish. Moreover, depending on the alkyl chain length and linearity, long-chained parabens were more toxic than the parabens with short chains. Parabens can be considered endocrine disruptors (EDs), targeting estrogen-androgen-thyroid-steroidogenesis (EATS) pathways, blocking the development and growth of gametes, and causing intergenerational toxicity to impact the viability of offspring/larvae. Paraben exposure can also induce behavioral changes and nervous system disorders in fish. Although the USEPA and EU limit the use of parabens in cosmetics and pharmaceuticals, their prolonged persistence in the environment may pose an additional health risk to humans.
Collapse
Affiliation(s)
- Asok K. Dasmahapatra
- Department of BioMolecular Science, Environmental Toxicology Division, University of Mississippi, Oxford, MS, United States
| | - Joydeep Chatterjee
- Department of Biology, University of Texas-Arlington, Arlington, TX, United States
| | - Paul B. Tchounwou
- RCMI Center for Urban Health Disparities Research and Innovation, School of Computer, Mathematical and Natural Sciences, Morgan State University, Baltimore, MD, United States
| |
Collapse
|
4
|
Kim GE, Kim DW, Zee S, Kim K, Park JW, Park CB. Co-exposure to microplastic and plastic additives causes development impairment in zebrafish embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107001. [PMID: 38878329 DOI: 10.1016/j.aquatox.2024.107001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/30/2024] [Accepted: 06/12/2024] [Indexed: 08/10/2024]
Abstract
Since the run off of microplastic and plastic additives into the aquatic environment through the disposal of plastic products, we investigated the adverse effects of co-exposure to microplastics and plastic additives on zebrafish embryonic development. To elucidate the combined effects between microplastic mixtures composed of microplastics and plastic additives in zebrafish embryonic development, polystyrene (PS), bisphenol S (BPS), and mono-(2-ethylhexyl) phthalate (MEHP) were chosen as a target contaminant. Based on non-toxic concentration of each contaminant in zebrafish embryos, microplastic mixtures which is consisted of binary and ternary mixed forms were prepared. A strong phenotypic toxicity to zebrafish embryos was observed in the mixtures composed with non-toxic concentration of each contaminant. In particular, the mixture combination with ≤ EC10 values for BPS and MEHP showed a with a strong synergistic effect. Based on phenotypic toxicity to zebrafish embryos, change of transcription levels for target genes related to cell damage and thyroid hormone synthesis were analyzed in the ternary mixtures with low concentrations that were observed non-toxicity. Compared with the control group, cell damage genes linked to the oxidative stress response and thyroid hormone transcription factors were remarkably down-regulated in the ternary mixture-exposed groups, whereas the transcriptional levels of cyp1a1 and p53 were significantly up-regulated in the ternary mixture-exposed groups (P < 0.05). These results demonstrate that even at low concentrations, exposure to microplastic mixtures can cause embryonic damage and developmental malformations in zebrafish, depending on the mixed concentration-combination. Consequently, our findings will provide data to examine the action mode of zebrafish developmental toxicity caused by microplastic mixtures exposure composed with microplastics and plastic additives.
Collapse
Affiliation(s)
- Go-Eun Kim
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea
| | - Dae-Wook Kim
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea
| | - Seonggeun Zee
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea; Food Safety Risk Assessment Division, National Institute of Food and Drug Safety Evaluation, Cheongju 28159, Republic of Korea
| | - Kanghee Kim
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea
| | - June-Woo Park
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea
| | - Chang-Beom Park
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea.
| |
Collapse
|
5
|
Zhao X, Meng X, Yang D, Dong S, Xu J, Chen D, Shi Y, Sun Y, Ding G. Thyroid disrupting effects and the developmental toxicity of hexafluoropropylene oxide oligomer acids in zebrafish during early development. CHEMOSPHERE 2024; 361:142462. [PMID: 38815816 DOI: 10.1016/j.chemosphere.2024.142462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/10/2024] [Accepted: 05/25/2024] [Indexed: 06/01/2024]
Abstract
As perfluorooctanoic acid (PFOA) alternatives, hexafluoropropylene oxide dimeric acid (HFPO-DA) and hexafluoropropylene oxide trimeric acid (HFPO-TA) have been increasingly used and caused considerable water pollution. However, their toxicities to aquatic organisms are still not well known. Therefore, in this study, zebrafish embryos were exposed to PFOA (0, 1.5, 3 and 6 mg/L), HFPO-DA (0, 3, 6 and 12 mg/L) and HFPO-TA (0, 1, 2 and 4 mg/L) to comparatively investigate their thyroid disrupting effects and the developmental toxicity. Results demonstrated that waterborne exposure to PFOA and its two alternatives decreased T4 contents, the heart rate and swirl-escape rate of zebrafish embryos/larvae. The transcription levels of genes related to thyroid hormone regulation (crh), biosynthesis (tpo and tg), function (trα and trβ), transport (transthyretin, ttr), and metabolism (dio1, dio2 and ugt1ab), were differently altered after the exposures, which induced the thyroid disrupting effects and decreased the heart rate. In addition, the transcription levels of some genes related to the nervous system development were also significantly affected, which was associated with the thyroid disrupting effects and consequently affected the locomotor activity of zebrafish. Therefore, HFPO-DA and HFPO-TA could not be safe alternatives to PFOA. Further studies to uncover the underlying mechanisms of these adverse effects are warranted.
Collapse
Affiliation(s)
- Xiaohui Zhao
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Xianghan Meng
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Dan Yang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Shasha Dong
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Jianhui Xu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Dezhi Chen
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Yawei Shi
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Ya Sun
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Guanghui Ding
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| |
Collapse
|
6
|
Fagundes T, Pannetier P, Gölz L, Behnstedt L, Morthorst J, Vergauwen L, Knapen D, Holbech H, Braunbeck T, Baumann L. The generation gap in endocrine disruption: Can the integrated fish endocrine disruptor test (iFEDT) bridge the gap by assessing intergenerational effects of thyroid hormone system disruption? AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 272:106969. [PMID: 38824743 DOI: 10.1016/j.aquatox.2024.106969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/03/2024] [Accepted: 05/20/2024] [Indexed: 06/04/2024]
Abstract
Thyroid hormones (THs) act early in ontogenesis, even prior to the differentiation of thyrocytes. Maternal transfer of THs is therefore known to play an essential role in early development. Current OECD test guidelines for the assessment of TH system disruption (THSD) do not address inter- or transgenerational effects. The integrated fish endocrine disruptor test (iFEDT), a test combining parental and developmental exposure of filial fish, may fill this gap. We tested the ability of the iFEDT to detect intergenerational effects in zebrafish (Danio rerio): Parental fish were exposed to propylthiouracil (PTU), an inhibitor of TH synthesis, or not exposed. The offspring was submitted to a crossed experimental design to obtain four exposure scenarios: (1) no exposure at all, (2) parental exposure only, (3) embryonic exposure only, and (4) combined parental and embryonic exposure. Swim bladder inflation, visual motor response (VMR) and gene expression of the progeny were analysed. Parental, but not embryonic PTU exposure reduced the size of the swim bladder of 5 d old embryos, indicating the existence of intergenerational effects. The VMR test produced opposite responses in 4.5 d old embryos exposed to PTU vs. embryos derived from exposed parents. Embryonic exposure, but not parental exposure increased gene expression of thyroperoxidase, the target of PTU, most likely due to a compensatory mechanism. The gene expression of pde-6h (phosphodiesterase) was reduced by embryonic, but not parental exposure, suggesting downregulation of phototransduction pathways. Hence, adverse effects on swim bladder inflation appear more sensitive to parental than embryonic exposure and the iFEDT represents an improvement in the testing strategy for THSD.
Collapse
Affiliation(s)
- Teresa Fagundes
- Aquatic Ecology and Toxicology Group, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany; Eurofins Aquatic Ecotoxicolgy, Eutinger Str. 24, D-75223 Niefern-Öschelbronn, Germany
| | - Pauline Pannetier
- Aquatic Ecology and Toxicology Group, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany; Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail, Laboratoire de Ploufragan-Plouzané-Niort, Site de Plouzané, Technopôle Brest Iroise, CS 10070, F-29280 Plouzané, France
| | - Lisa Gölz
- Aquatic Ecology and Toxicology Group, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany; Institute of Pharmacology, University of Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | - Laura Behnstedt
- Aquatic Ecology and Toxicology Group, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany
| | - Jane Morthorst
- University of Southern Denmark, Institute of Biology, Campusvej 55, DK-5230 Odense M, Denmark
| | - Lucia Vergauwen
- University of Antwerp, Department of Veterinary Sciences, Veterinary Physiology and Biochemistry, Zebrafishlab, Universiteitsplein 1, BE-2160 Wilrijk, Belgium
| | - Dries Knapen
- University of Antwerp, Department of Veterinary Sciences, Veterinary Physiology and Biochemistry, Zebrafishlab, Universiteitsplein 1, BE-2160 Wilrijk, Belgium
| | - Henrik Holbech
- University of Southern Denmark, Institute of Biology, Campusvej 55, DK-5230 Odense M, Denmark
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Group, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany
| | - Lisa Baumann
- Aquatic Ecology and Toxicology Group, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany; Amsterdam Institute for Life and Environment, Section Environmental Health & Toxicology, Vrije Universiteit Amsterdam, De Boelelaan 1085, NL-1081 HV Amsterdam, the Netherlands.
| |
Collapse
|
7
|
Gölz L, Blanc-Legendre M, Rinderknecht M, Behnstedt L, Coordes S, Reger L, Sire S, Cousin X, Braunbeck T, Baumann L. Development of a Zebrafish Embryo-Based Test System for Thyroid Hormone System Disruption: 3Rs in Ecotoxicological Research. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024. [PMID: 38804632 DOI: 10.1002/etc.5878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/05/2024] [Accepted: 03/25/2024] [Indexed: 05/29/2024]
Abstract
There is increasing concern regarding pollutants disrupting the vertebrate thyroid hormone (TH) system, which is crucial for development. Thus, identification of TH system-disrupting chemicals (THSDCs) is an important requirement in the Organisation for Economic Co-operation and Development (OECD) testing framework. The current OECD approach uses different model organisms for different endocrine modalities, leading to a high number of animal tests. Alternative models compatible with the 3Rs (replacement, reduction, refinement) principle are required. Zebrafish embryos, not protected by current European Union animal welfare legislation, represent a promising model. Studies show that zebrafish swim bladder inflation and eye development are affected by THSDCs, and the respective adverse outcome pathways (AOPs) have been established. The present study compared effects of four THSDCs with distinct molecular modes of action: Propylthiouracil (PTU), potassium perchlorate, iopanoic acid, and the TH triiodothyronine (T3) were tested with a protocol based on the OECD fish embryo toxicity test (FET). Effects were analyzed according to the AOP concept from molecular over morphological to behavioral levels: Analysis of thyroid- and eye-related gene expression revealed significant effects after PTU and T3 exposure. All substances caused changes in thyroid follicle morphology of a transgenic zebrafish line expressing fluorescence in thyrocytes. Impaired eye development and swimming activity were observed in all treatments, supporting the hypothesis that THSDCs cause adverse population-relevant changes. Findings thus confirm that the FET can be amended by TH system-related endpoints into an integrated protocol comprising molecular, morphological, and behavioral endpoints for environmental risk assessment of potential endocrine disruptors, which is compatible with the 3Rs principle. Environ Toxicol Chem 2024;00:1-18. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Lisa Gölz
- Aquatic Ecology & Toxicology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
- Current affiliation: Institute of Pharmacology, University of Heidelberg, Heidelberg, Germany
| | | | - Maximilian Rinderknecht
- Aquatic Ecology & Toxicology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Laura Behnstedt
- Aquatic Ecology & Toxicology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Sara Coordes
- Aquatic Ecology & Toxicology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Luisa Reger
- Aquatic Ecology & Toxicology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Sacha Sire
- MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, INRAE, Palavas, France
| | - Xavier Cousin
- MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, INRAE, Palavas, France
| | - Thomas Braunbeck
- Aquatic Ecology & Toxicology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Lisa Baumann
- Aquatic Ecology & Toxicology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
- Current affiliation: Amsterdam Institute for Life and Environment, Section Environmental Health & Toxicology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Lee J, Zee S, Kim HI, Cho SH, Park CB. Effects of crosstalk between steroid hormones mediated thyroid hormone in zebrafish exposed to 4-tert-octylphenol: Estrogenic and anti-androgenic effects. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116348. [PMID: 38669872 DOI: 10.1016/j.ecoenv.2024.116348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
Alkylphenols, such as nonylphenol and 4-tert-octylphenol (OP), are byproducts of the biodegradation of alkylphenol ethoxylates and present substantial ecological and health risks in aquatic environments and higher life forms. In this context, our study aimed to explore the effect of OP on reproductive endocrine function in both female and male zebrafish. Over a period of 21 days, the zebrafish were subjected to varying concentrations of OP (0, 0.02, 0.1, and 0.5 μg/L), based on the lowest effective concentration (EC10 = 0.48 μg/L) identified for zebrafish embryos. OP exposure led to a pronounced increase in hepatic vitellogenin (vtg) mRNA expression and 17β-estradiol biosynthesis in both sexes. Conversely, OP exhibits anti-androgenic properties, significantly diminishes gonadal androgen receptor (ar) mRNA expression, and reduces endogenous androgen (testosterone and 11-ketotestosterone) levels in male zebrafish. Notably, cortisol and thyroid hormone (TH) levels demonstrated concentration-dependent elevations in zebrafish, influencing the regulation of gonadal steroid hormones (GSHs). These findings suggest that prolonged OP exposure may result in sustained reproductive dysfunction in adult zebrafish, which is largely attributable to the intricate reciprocal relationship between hormone levels and the associated gene expression. Our comprehensive biological response analysis of adult zebrafish offers vital insights into the reproductive toxicological effects of OP, thereby enriching future ecological studies on aquatic systems.
Collapse
Affiliation(s)
- Jangjae Lee
- Chemical Analysis Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea; Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Seonggeun Zee
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea; Food Safety Risk Assessment Division, National Institute of Food and Drug Safety Evaluation, Cheongju 28159, Republic of Korea
| | - Hugh I Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Sung-Hee Cho
- Chemical Analysis Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
| | - Chang-Beom Park
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea.
| |
Collapse
|
9
|
Pesce E, Garde M, Rigolet M, Tindall AJ, Lemkine GF, Baumann LA, Sachs LM, Du Pasquier D. A Novel Transgenic Model to Study Thyroid Axis Activity in Early Life Stage Medaka. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:99-109. [PMID: 38117130 PMCID: PMC10786150 DOI: 10.1021/acs.est.3c05515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023]
Abstract
Identifying endocrine disrupting chemicals in order to limit their usage is a priority and required according to the European Regulation. There are no Organization for Economic Co-operation and Development (OECD) test guidelines based on fish available for the detection of Thyroid axis Active Chemicals (TACs). This study aimed to fill this gap by developing an assay at eleuthero-embryonic life stages in a novel medaka (Oryzias latipes) transgenic line. This transgenic line expresses green fluorescent protein (GFP) in thyrocytes, under the control of the medaka thyroglobulin gene promoter. The fluorescence expressed in the thyrocytes is inversely proportional to the thyroid axis activity. When exposed for 72 h to activators (triiodothyronine (T3) and thyroxine (T4)) or inhibitors (6-N-propylthiouracil (PTU), Tetrabromobisphenol A (TBBPA)) of the thyroid axis, the thyrocytes can change their size and express lower or higher levels of fluorescence, respectively. This reflects the regulation of thyroglobulin by the negative feedback loop of the Hypothalamic-Pituitary-Thyroid axis. T3, T4, PTU, and TBBPA induced fluorescence changes with the lowest observable effect concentrations (LOECs) of 5 μg/L, 1 μg/L, 8 mg/L, and 5 mg/L, respectively. This promising tool could be used as a rapid screening assay and also to help decipher the mechanisms by which TACs can disrupt the thyroid axis in medaka.
Collapse
Affiliation(s)
- Elise Pesce
- Laboratoire
WatchFrog S.A., 1 Rue
Pierre Fontaine, 91000 Évry, France
- UMR
7221 Physiologie Moléculaire et Adaptation, CNRS, Muséum
National d’Histoire Naturelle, CP32, 7 rue Cuvier, 75005 Paris, France
| | - Marion Garde
- Laboratoire
WatchFrog S.A., 1 Rue
Pierre Fontaine, 91000 Évry, France
| | - Muriel Rigolet
- UMR
7221 Physiologie Moléculaire et Adaptation, CNRS, Muséum
National d’Histoire Naturelle, CP32, 7 rue Cuvier, 75005 Paris, France
| | - Andrew J. Tindall
- Laboratoire
WatchFrog S.A., 1 Rue
Pierre Fontaine, 91000 Évry, France
| | | | - Lisa A. Baumann
- University
of Heidelberg, Centre for Organismal
Studies, Aquatic Ecology and Toxicology, Im Neuenheimer Feld 504, 69120 Heidelberg, Germany
- Vrije
Universiteit Amsterdam, Amsterdam Institute
for Life and Environment, Section Environmental Health & Toxicology, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Laurent M. Sachs
- UMR
7221 Physiologie Moléculaire et Adaptation, CNRS, Muséum
National d’Histoire Naturelle, CP32, 7 rue Cuvier, 75005 Paris, France
| | - David Du Pasquier
- Laboratoire
WatchFrog S.A., 1 Rue
Pierre Fontaine, 91000 Évry, France
| |
Collapse
|
10
|
Lee J, Park JW, Kim HI, Park CB, Cho SH. Thyroid-gonadal hormonal interplay in zebrafish exposed to sodium perchlorate: Implications for reproductive health. CHEMOSPHERE 2024; 346:140662. [PMID: 37949182 DOI: 10.1016/j.chemosphere.2023.140662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Perchlorate, a widespread environmental contaminant originating from various industrial applications, agricultural practices, and natural sources, poses potential risks to ecosystems and human health. While previous studies have highlighted its influence on the thyroid endocrine system and its impact on gonadal maturation, reproduction, and sex hormone synthesis, the specific interplay between thyroid and steroid hormones, in this context, remains largely unexplored. Therefore, this study was undertaken to investigate the adverse effects and underlying mechanisms triggered by exposure to sodium perchlorate (SP) on reproductive endocrine activity in zebrafish. For 21 d, the fish were exposed to test SP concentrations (0, 3, 30, 300 mg/L), which were determined based on the exposure concentrations that induced various toxic effects in the fish, considering naturally occurring concentrations. Exposure to SP, except at 3 mg/L in males, significantly decreased the production of thyroid hormone (TH) in both female and male zebrafish. Moreover, gonadal steroid levels were markedly reduced in both sexes. The expression of hepatic vitellogenin (VTG) mRNA in female zebrafish was significantly decreased, whereas aromatase activity in male zebrafish was significantly elevated in the SP exposure groups. The reduced levels of THs and gonadal steroid hormones were strongly correlated. Abnormal responses to SP exposure led to reduced reproductive success in the 300 mg/L SP exposure group. These findings indicate that prolonged and continuous exposure to a specific concentration of SP may lead to long-term reproductive problems in zebrafish, primarily through hormonal imbalances and suppression of hepatic VTG mRNA expression.
Collapse
Affiliation(s)
- Jangjae Lee
- Chemical Analysis Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea; Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - June-Woo Park
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea
| | - Hugh I Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Chang-Beom Park
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea.
| | - Sung-Hee Cho
- Chemical Analysis Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
| |
Collapse
|
11
|
Chen P, Hu Y, Chen G, Zhao N, Dou Z. Probing the bioconcentration and metabolism disruption of bisphenol A and its analogues in adult female zebrafish from integrated AutoQSAR and metabolomics studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167011. [PMID: 37704156 DOI: 10.1016/j.scitotenv.2023.167011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/31/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
Plenty of emerging bisphenol A (BPA) substitutes rise to wait for assessment of bioconcentration and metabolism disruption. Computational methods are useful to fill the data gap in chemical risk assessment, such as automated quantitative structure-activity relationship (AutoQSAR). It is not clear how AutoQSAR performs in predicting the bioconcentration factor (BCF) in adult zebrafish. Herein, AutoQSAR was used to predict the logBCFs of BPA, bisphenol AF (BPAF), bisphenol B, bisphenol F and bisphenol S (BPS). For the test set, a linear relationship was shown between the observed and predicted logBCFs with a slope of 0.97. The predicted logBCFs of these five bisphenols were quite close to their experimental data with a slope of 0.94, suggesting better performance than directed message passing neural networks and EPI Suite with a slope of 0.69 and 0.61, respectively. Thus, AutoQSAR is powerful in modeling logBCFs in fish with minimal time and expertise. To link bioconcentration with metabolic effects, female zebrafish were exposed to BPA, BPAF and BPS for metabolomics analysis. BPA caused a significant disturbance in amino acid metabolism, while BPAF and BPS significantly altered another three metabolic pathways, showing chemical-specific responses. BPAF with the highest logBCF elicited the strongest metabolomic responses reflected by the metabolic effect level index, followed by BPA and BPS. Thus, BPAF and BPS elicited higher or similar metabolism disruption compared with BPA in female zebrafish, respectively, reflecting consequences of bioconcentration.
Collapse
Affiliation(s)
- Pengyu Chen
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210024, China; Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210024, China.
| | - Yuxi Hu
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210024, China
| | - Geng Chen
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 330106, China
| | - Na Zhao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210024, China
| | - Zhichao Dou
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210024, China
| |
Collapse
|
12
|
Bai Y, Wang Q, Li J, Zhou B, Lam PKS, Hu C, Chen L. Significant Variability in the Developmental Toxicity of Representative Perfluoroalkyl Acids as a Function of Chemical Speciation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14904-14916. [PMID: 37774144 DOI: 10.1021/acs.est.3c06178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Current toxicological data of perfluoroalkyl acids (PFAAs) are disparate under similar exposure scenarios. To find the cause of the conflicting data, this study examined the influence of chemical speciation on the toxicity of representative PFAAs, including perfluorooctanoic acid (PFOA), perfluorobutane carboxylic acid (PFBA), and perfluorobutanesulfonic acid (PFBS). Zebrafish embryos were acutely exposed to PFAA, PFAA salt, and a pH-negative control, after which the developmental impairment and mechanisms were explored. The results showed that PFAAs were generally more toxic than the corresponding pH control, indicating that the embryonic toxicity of PFAAs was mainly caused by the pollutants themselves. In contrast to the high toxicity of PFAAs, PFAA salts only exhibited mild hazards to zebrafish embryos. Fingerprinting the changes along the thyroidal axis demonstrated distinct modes of endocrine disruption for PFAAs and PFAA salts. Furthermore, biolayer interferometry monitoring found that PFOA and PFBS acids bound more strongly with albumin proteins than did their salts. Accordingly, the acid of PFAAs accumulated significantly higher concentrations than their salt counterparts. The present findings highlight the importance of chemical forms to the outcome of developmental toxicity, calling for the discriminative risk assessment and management of PFAAs and salts.
Collapse
Affiliation(s)
- Yachen Bai
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Wang
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Jing Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingsheng Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Paul K S Lam
- Department of Science, School of Science and Technology, Hong Kong Metropolitan University, Kowloon 999077, Hong Kong, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Lianguo Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
13
|
Blanc-Legendre M, Sire S, Christophe A, Brion F, Bégout ML, Cousin X. Embryonic exposures to chemicals acting on brain aromatase lead to different locomotor effects in zebrafish larvae. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104221. [PMID: 37451529 DOI: 10.1016/j.etap.2023.104221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/22/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Pathways underlying neurodevelopmental effects of endocrine disruptors (EDs) remain poorly known. Expression of brain aromatase (aroB), responsible for estrogen production in the brain of teleosts, is regulated by estrogenic EDs and could play a role in their behavioral effects. We exposed zebrafish eleutheroembryos (0-120 h post-fertilization) to various concentrations of 16 estrogenic chemicals (incl. bisphenols and contraceptives), and of 2 aroB inhibitors. Behavior was monitored using a photomotor response test procedure. Both aroB inhibitors (clotrimazole and prochloraz) and a total of 6 estrogenic EDs induced significant behavioral alterations, including DM-BPA, BPC and BPS-MPE, three bisphenol substitutes which behavioral effects were, to our knowledge, previously unknown. However, no consensus was reported on the effects among tested substances. It appears that behavioral changes could not be linked to groups of substances defined by their specificity or potency to modulate aroB expression, or by their structure. Altogether, behavioral effects of estrogenic EDs in 120 h post-fertilization larvae appear unrelated to aroB but are nonetheless not to be neglected in the context of environmental safety.
Collapse
Affiliation(s)
| | - Sacha Sire
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, INRAE, Palavas, France
| | - Armelle Christophe
- Ecotoxicologie des substances et des milieux, Parc ALATA, INERIS, Verneuil-en-Halatte, France
| | - François Brion
- Ecotoxicologie des substances et des milieux, Parc ALATA, INERIS, Verneuil-en-Halatte, France
| | | | - Xavier Cousin
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, INRAE, Palavas, France
| |
Collapse
|
14
|
Santos TP, da Silva Bastos PE, da Silva JF, de Medeiros Vieira SM, da Silva MCG, de Andrade ALC, Padilha RMO, Dos Santos Magnabosco AR, Cadena MRS, Cadena PG. Single and joint toxic effects of thyroid hormone, levothyroxine, and amiodarone on embryo-larval stages of zebrafish (Danio rerio). ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:525-535. [PMID: 37119427 DOI: 10.1007/s10646-023-02655-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/20/2023] [Indexed: 05/22/2023]
Abstract
This study evaluates single and joint endocrine disruptor toxicities of thyroid hormone, levothyroxine, and amiodarone in the embryo-larval stages of Danio rerio. Single toxicity experiments were carried out in concentrations based on the environmental concentration and increasing concentrations of 10, 100, and 1000 times the environmental concentration. Joint toxicity experiments evaluated the combined effects of these compounds. Toxic effects were examined during zebrafish embryonic development, and the parameters analyzed were apical sublethal, teratogenicity, mortality endpoints, and morphometry. Thyroid hormone exhibited the highest toxicity. However, the results showed that the environmental concentrations for all 3 compounds had low risk in relation to the parameters studied, such as teratogenic effects and morphometry. The larvae were more affected than embryos, where embryos needed higher concentrations in all experiments, possibly due to the absence of the chorion. The same type of effects were observed in the joint toxicity test, except that a possible antagonistic effect was detected. However, high concentrations showed stronger effects of these toxic compounds on fish development.
Collapse
Affiliation(s)
- Thamiris Pinheiro Santos
- Departamento de Morfologia e Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros s/n Dois Irmãos, 52171-900, Recife, PE, Brazil
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, 50780-901, Recife, PE, Brazil
| | - Paulo Eduardo da Silva Bastos
- Departamento de Morfologia e Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros s/n Dois Irmãos, 52171-900, Recife, PE, Brazil
| | - Jadson Freitas da Silva
- Departamento de Morfologia e Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros s/n Dois Irmãos, 52171-900, Recife, PE, Brazil
| | - Stefânia Maria de Medeiros Vieira
- Departamento de Morfologia e Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros s/n Dois Irmãos, 52171-900, Recife, PE, Brazil
| | - Marília Cordeiro Galvão da Silva
- Departamento de Morfologia e Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros s/n Dois Irmãos, 52171-900, Recife, PE, Brazil
| | - André Lucas Corrêa de Andrade
- Departamento de Morfologia e Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros s/n Dois Irmãos, 52171-900, Recife, PE, Brazil
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, 50780-901, Recife, PE, Brazil
| | - Renata Meireles Oliveira Padilha
- Departamento de Morfologia e Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros s/n Dois Irmãos, 52171-900, Recife, PE, Brazil
| | - Amanda Rodrigues Dos Santos Magnabosco
- Departamento de Morfologia e Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros s/n Dois Irmãos, 52171-900, Recife, PE, Brazil
| | - Marilia Ribeiro Sales Cadena
- Departamento de Biologia (DB), Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros s/n Dois Irmãos, 52171-900, Recife, PE, Brazil
| | - Pabyton Gonçalves Cadena
- Departamento de Morfologia e Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros s/n Dois Irmãos, 52171-900, Recife, PE, Brazil.
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, 50780-901, Recife, PE, Brazil.
| |
Collapse
|
15
|
Wei P, Xiao Y, Liu C, Yan B. Thyroid endocrine disruption induced by [C 8mim]Br: An integrated in vivo, in vitro, and in silico study. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 259:106535. [PMID: 37086652 DOI: 10.1016/j.aquatox.2023.106535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 05/03/2023]
Abstract
Conventional thyroid-disrupting chemicals (TDCs) such as polybrominated diphenyl ethers, polychlorinated biphenyls, and bisphenols perturb animal's thyroid endocrine system by mimicking the action of endogenous thyroid hormones (THs), since they share a similar backbone structure of coupled benzene rings with THs. 1-methyl-3-octylimidazolium bromide ([C8mim]Br), a commonly used ionic liquid (IL), has no structural similarity to THs. Whether it interferes with thyroid function and how its mode of action differs from conventional TDCs is largely unknown. Herein, zebrafish embryo-larvae experiments (in vivo), GH3 cell line studies (in vitro), and molecular simulation analyses (in silico) were carried out to explore the effect of [C8mim]Br on thyroid homeostasis and its underlying mechanism. Molecular docking results suggested that [C8mim]+ likely bound to retinoid X receptors (RXRs), which may compromise the formation of TH receptor/RXR heterodimers. This then perturbed the negative regulation of thyroid-stimulating hormone β (tshβ) transcription by T3 in GH3 cell line. The resulting enhancement of tshβ expression further caused hyperthyroidism and developmental toxicity in larval zebrafish. These findings provided a crucial aspect of the ecological risks of ILs, and presented a new insight into the thyroid-disrupting mechanisms for emerging pollutants that do not have structural similarity to THs.
Collapse
Affiliation(s)
- Penghao Wei
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yihua Xiao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Changqing Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
16
|
Tan J, Liang C, Guo Y, Zou H, Guo Y, Ye J, Hou L, Wang X. Thyroid endocrine disruption and neurotoxicity of gestodene in adult female mosquitofish (Gambusia affinis). CHEMOSPHERE 2023; 313:137594. [PMID: 36538954 DOI: 10.1016/j.chemosphere.2022.137594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
The frequent detection of progestins in various aquatic environments and their potential endocrine disruptive effects in fish have attracted increasing attention worldwide. However, data on their effects on thyroid function and neurotoxicity in fish are limited, and the underlying mechanisms remain unclear. Here, the effects of gestodene (GES, a common progestin) on the thyroid endocrine and nervous systems of mosquitofish (Gambusia affinis) were studied. Adult female fish were exposed to GES at environmentally relevant concentrations (4.4-378.7 ng/L) for 60 days. The results showed that exposure to 378.7 ng/L GES caused a significant decrease in fish growth compared with the control and a marked reduction in the total distance traveled (50.6%) and swimming velocity (40.1-61.9%). The triiodothyronine (T3) levels were significantly increased by GES in a dose-dependent manner, whereas those of tetraiodothyronine (T4) were significantly decreased only at the G500 concentration. The acetylcholinesterase (AChE) activity was decreased significantly in the 4.42 ng/L GES treatments, but increased significantly at 378.67 ng/L. In the brain, a strong increase in the transcriptional levels of bdnf, trh, and dio2 was observed in fish after the 378.7 ng/L treatment. In addition, chronic exposure to GES caused colloid depletion with a concentration-dependent manner in the thyroid, and angiectasis, congestion, and vacuolar necrosis in the brain. These findings provide a better understanding of the effects of GES and associated underlying mechanisms in G. affinis.
Collapse
Affiliation(s)
- Jiefeng Tan
- School of Life Sciences, Guangzhou University, Guangzhou, 510655, China; School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Chuyan Liang
- School of Life Sciences, Guangzhou University, Guangzhou, 510655, China
| | - Yanfang Guo
- School of Life Sciences, Guangzhou University, Guangzhou, 510655, China
| | - Hong Zou
- School of Life Sciences, Guangzhou University, Guangzhou, 510655, China
| | - Yuqi Guo
- School of Life Sciences, Guangzhou University, Guangzhou, 510655, China
| | - Jiahui Ye
- School of Life Sciences, Guangzhou University, Guangzhou, 510655, China
| | - Liping Hou
- School of Life Sciences, Guangzhou University, Guangzhou, 510655, China.
| | - Xiaolan Wang
- School of Life Sciences, Guangzhou University, Guangzhou, 510655, China.
| |
Collapse
|
17
|
Understanding CNS Effects of Antimicrobial Drugs Using Zebrafish Models. Vet Sci 2023; 10:vetsci10020096. [PMID: 36851400 PMCID: PMC9964482 DOI: 10.3390/vetsci10020096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
Antimicrobial drugs represent a diverse group of widely utilized antibiotic, antifungal, antiparasitic and antiviral agents. Their growing use and clinical importance necessitate our improved understanding of physiological effects of antimicrobial drugs, including their potential effects on the central nervous system (CNS), at molecular, cellular, and behavioral levels. In addition, antimicrobial drugs can alter the composition of gut microbiota, and hence affect the gut-microbiota-brain axis, further modulating brain and behavioral processes. Complementing rodent studies, the zebrafish (Danio rerio) emerges as a powerful model system for screening various antimicrobial drugs, including probing their putative CNS effects. Here, we critically discuss recent evidence on the effects of antimicrobial drugs on brain and behavior in zebrafish, and outline future related lines of research using this aquatic model organism.
Collapse
|
18
|
Lee S, Ji K. Toxicological signature for thyroid endocrine disruption of dichlorooctylisothiazolinone in zebrafish larvae. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:38-45. [PMID: 36564586 DOI: 10.1007/s10646-022-02614-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Dichlorooctylisothiazolinone (DCOIT), which is one of the isothiazolinone preservatives, is applied to water-based adhesives in food packaging. This study investigated the effects of DCOIT on the embryonic growth and thyroid endocrine system using zebrafish. Organism-level (hatchability, survival, and growth), hormone-level (triiodothyronine (T3) and thyroxine (T4)), gene-level (genes associated with the hypothalamus-pituitary-thyroid axis), and microRNA-level (microRNAs related to thyroid endocrine disruption) endpoints were measured. Significant rise in embryonic coagulation and delayed hatching (≥0.3 μg/L), and decreased larval length (30 μg/L) were observed in fish exposed to DCOIT. Lower contents of T3 and T4 were observed after exposure to DCOIT, which was accompanied by the upregulation of genes associated with the thyrotropin releasing hormone and thyroid stimulating hormone and the downregulation of genes associated with the thyroid hormone receptors and deiodination. Strong influence of DCOIT on dre-miR-193b and -499 may be a critical mechanism to inhibit transcription of trαa and trβ, which in turn may affect thyroid hormones and development of the organism. Our findings suggest that hypothyroidism induced by the exposure to DCOIT is potentially associated with genetic and microRNA-level changes, which eventually affects development.
Collapse
Affiliation(s)
- Sujin Lee
- Department of Environmental Health, Graduate School at Yongin University, Yongin, 17092, Republic of Korea
| | - Kyunghee Ji
- Department of Environmental Health, Graduate School at Yongin University, Yongin, 17092, Republic of Korea.
| |
Collapse
|
19
|
Qin JY, Jia W, Ru S, Xiong JQ, Wang J, Wang W, Hao L, Zhang X. Bisphenols induce cardiotoxicity in zebrafish embryos: Role of the thyroid hormone receptor pathway. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 254:106354. [PMID: 36423468 DOI: 10.1016/j.aquatox.2022.106354] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/21/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Bisphenols are frequently found in the environment and have been of emerging concern because of their adverse effects on aquatic animals and humans. In this study, we demonstrated that bisphenol A, S, and F (BPA, BPS, BPF) at environmental concentrations induced cardiotoxicity in zebrafish embryos. BPA decreased heart rate at 96 hpf (hours post fertilization) and increased the distance between the sinus venosus (SV) and bulbus arteriosus (BA), in zebrafish. BPF promoted heart pumping and stroke volume, shortened the SV-BAdistance, and increased body weight. Furthermore, we found that BPA increased the expression of the dio3b, thrβ, and myh7 genes but decreased the transcription of dio2. In contrast, BPF downregulated the expression of myh7 but upregulated that of thrβ. Molecular docking results showed that both BPA and BPF are predicted to bind tightly to the active pockets of zebrafish THRβ with affinities of -4.7 and -4.77 kcal/mol, respectively. However, BPS did not significantly affect dio3b, thrβ, and myh7 transcription and had a higher affinity for zebrafish THRβ (-2.13 kcal/mol). These findings suggest that although BPA, BPS, and BPF have similar structures, they may induce cardiotoxicity through different molecular mechanisms involving thyroid hormone systems. This investigation provides novel insights into the potential mechanism of cardiotoxicity from the perspective of thyroid disruption and offer a cautionary role for the use of BPA substitution.
Collapse
Affiliation(s)
- Jing-Yu Qin
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Wenyi Jia
- College of urban and environmental sciences, Peking University, Beijing 100871, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jiu-Qiang Xiong
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Weiwei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Liping Hao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
20
|
Junior SFS, Mannarino CF, de Farias Araújo G, Bila DM, Hauser-Davis RA, Saint'Pierre T, da Costa GL, Oliveira MME, Parente CET, Correia FV, Saggioro EM. A comprehensive assessment of leachate contamination at a non-operational open dumpsite: mycoflora screening, metal soil pollution indices, and ecotoxicological risks. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:243. [PMID: 36576602 DOI: 10.1007/s10661-022-10885-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
The final disposal of municipal solid waste (MSW) in dumpsites is still a reality worldwide, especially in low- and middle-income countries, leading to leachate-contaminated zones. Therefore, the aim of this study was to carry out soil and leachate physicochemical, microbiological, and toxicological characterizations from a non-operational dumpsite. The L-01 pond samples presented the highest physicochemical parameters, especially chloride (Cl; 4101 ± 44.8 mg L-1), electrical conductivity (EC; 10,452 ± 0.1 mS cm-1), and chemical oxygen demand (COD; 760 ± 6.6 mg L-1) indicating the presence of leachate, explained by its close proximity to the landfill cell. Pond L-03 presented higher parameters compared to pond L-02, except for N-ammoniacal and phosphorus levels, explained by the local geological configuration, configured as a slope from the landfill cell towards L-03. Seven filamentous and/or yeast fungi genera were identified, including the opportunistic pathogenic fungi Candida krusei (4 CFU) in an outcrop sample. Regarding soil samples, Br, Se, and I were present at high concentrations leading to high soil contamination (CF ≤ 6). Pond L-02 presented the highest CF for Br (18.14 ± 18.41 mg kg-1) and I (10.63 ± 3.66 mg kg-1), while pond L-03 presented the highest CF for Se (7.60 ± 1.33 mg kg-1). The most severe lethal effect for Artemia salina was observed for L-03 samples (LC50: 79.91%), while only samples from L-01 were toxic to Danio rerio (LC50: 32.99%). The highest lethality for Eisenia andrei was observed for L-02 samples (LC50: 50.30%). The applied risk characterization indicates high risk of all proposed scenarios for both aquatic (RQ 375-909) and terrestrial environments (RQ > 1.4 × 105). These findings indicate that the investigated dumpsite is contaminated by both leachate and metals, high risks to living organisms and adjacent water resources, also potentially affecting human health.
Collapse
Affiliation(s)
- Sidney Fernandes Sales Junior
- Post-Graduation Program in Public Health and Environment, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, 1480 Leopoldo Bulhões Ave, 21041-210, Rio de Janeiro, RJ, Brazil
- Environmental Health Evaluation and Promotion Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 4365 Brasil Ave, 21045-900, Rio de Janeiro, RJ, Brazil
| | - Camille Ferreira Mannarino
- Sanitation and Environment Health Department, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, 1480 Leopoldo Bulhões Ave, 21041-210, Rio de Janeiro, RJ, Brazil
| | - Gabriel de Farias Araújo
- Post-Graduation Program in Public Health and Environment, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, 1480 Leopoldo Bulhões Ave, 21041-210, Rio de Janeiro, RJ, Brazil
- Environmental Health Evaluation and Promotion Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 4365 Brasil Ave, 21045-900, Rio de Janeiro, RJ, Brazil
| | - Daniele Maia Bila
- Department of Sanitary and Environment Engineering, State University of Rio de Janeiro, 524 São Francisco Xavier Street, Room 5029-F, 20550-900, Rio de Janeiro, Brazil
| | - Rachel Ann Hauser-Davis
- Environmental Health Evaluation and Promotion Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 4365 Brasil Ave, 21045-900, Rio de Janeiro, RJ, Brazil
| | - Tatiana Saint'Pierre
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, Marquês de São Vicente Street, 225, 22541-041, Gávea, Rio de Janeiro, RJ, Brazil
| | - Gisela Lara da Costa
- Laboratory of Taxonomy, Biochemistry and Bioprospecting of Fungi, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 4365 Brasil Ave, 21045-900, Rio de Janeiro, RJ, Brazil
| | - Manoel Marques Evangelista Oliveira
- Laboratory of Taxonomy, Biochemistry and Bioprospecting of Fungi, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 4365 Brasil Ave, 21045-900, Rio de Janeiro, RJ, Brazil
| | - Cláudio Ernesto Taveira Parente
- Laboratório de Radioisótopos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho s/n, Bloco G0, Sala 60, Subsolo, Rio de Janeiro, 21941-902, Brazil
| | - Fábio Veríssimo Correia
- Department of Natural Sciences, Federal University of the State of Rio de Janeiro, 458 Pasteur Ave, 22290-20, Urca, Rio de Janeiro, Brazil
| | - Enrico Mendes Saggioro
- Post-Graduation Program in Public Health and Environment, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, 1480 Leopoldo Bulhões Ave, 21041-210, Rio de Janeiro, RJ, Brazil.
- Environmental Health Evaluation and Promotion Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 4365 Brasil Ave, 21045-900, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
21
|
Zheng S, Zhang Q, Wu R, Shi X, Peng J, Tan W, Huang W, Wu K, Liu C. Behavioral changes and transcriptomic effects at embryonic and post-embryonic stages reveal the toxic effects of 2,2',4,4'-tetrabromodiphenyl ether on neurodevelopment in zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114310. [PMID: 36423367 DOI: 10.1016/j.ecoenv.2022.114310] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
Polybrominated biphenyl ethers (PBDEs) are new persistent pollutants that are widely exist in the environment and have many toxic effects. However, their toxicity mechanisms on neurodevelopment are still unclear. In this study, zebrafish embryos were exposed to 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47) (control, 10, 50 and 100 μg/L) at 2 h postfertilization (hpf) - 7 dpf. Locomotion analysis indicated that BDE-47 increased spontaneous coiling activity in zebrafish embryos under high-intensity light stimuli and decreased locomotor in zebrafish larvae. RNA-Seq analysis revealed that most of the up-regulated pathways were related to the metabolism of cells and tissues, while the down-regulated pathways were related to neurodevelopment. Consistent with the locomotion and KEGG results, BDE-47 affected the expression of genes for central nervous system (gfap, mbpa, bdnf & pomcb), early neurogenesis (neurog1 & elavl3), and axonal development (tuba1a, tuba1b, tuba1c, syn2a, gap43 & shha). Furthermore, BDE-47 interfered with gene expression of the Wnt signaling pathway, especially during embryonic stages, suggesting that the mechanisms of BDE-47 toxicity to zebrafish at various stages of neurodevelopment may be different. In summary, early neurodevelopment effects and metabolic disturbances may have contributed to the abnormal neurobehavioral changes induced by BDE-47 in zebrafish embryos/larvae, suggesting the neurodevelopmental toxicity of BDE-47.
Collapse
Affiliation(s)
- Shukai Zheng
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Qiong Zhang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Ruotong Wu
- School of Life Science, Xiamen University, Xiamen 361102, Fujian, China
| | - Xiaoling Shi
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Jiajun Peng
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Wei Tan
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Wenlong Huang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Caixia Liu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| |
Collapse
|
22
|
Özkan-Kotiloğlu S, Arslan P, Akca G, Günal AÇ. Are BPA-free plastics safe for aquatic life? - Fluorene-9-bisphenol induced thyroid-disrupting effects and histopathological alterations in adult zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2022; 260:109419. [PMID: 35902060 DOI: 10.1016/j.cbpc.2022.109419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 11/20/2022]
Abstract
Fluorene-9-bisphenol (BPFL) is used as an alternative compound for bisphenol A, an endocrine disruptor compound which is present in various materials including plastic bottles and packaging. Although it is used extensively in products that are labelled BPA-free, its effect on wildlife and humans have not been fully studied. Therefore, this study aimed to investigate the effects of BPFL in adult zebrafish. In the preliminary experiments of the study, the median lethal concentration value (LC50) of BPFL was 0.25 mg/L (95 % confidence interval 0.15-0.41) for 96 h. Following exposure to three different sublethal concentrations of BPFL after 96 h and 15 days, T4 hormone levels, expression levels of genes involved in thyroid metabolism and histopathological alterations were assessed. T4 hormone levels were found to be significantly higher in females at the lowest BPFL concentration following 96 h exposure (P < 0.05). Expression levels of trh, tshba and trhrb genes were upregulated following 96 h exposure at 0.025 mg/L concentration and crh was upregulated following 15 days exposure at 0.025 mg/L concentration in female zebrafish (P < 0.05). The most prominent histopathological findings in zebrafish exposed to 0.025 and 0.125 mg/L of BPFL were observed in the gill, liver, kidney and testis tissues. The gill tissues showed some hyperemia, lamellar fusion, hyperplasia, epithelial lifting, and telangiectasis, while passive hyperemia, hydropic degeneration, and necrosis were observed in the liver tissues. The BPFL is highly toxic to zebrafish even in sublethal concentrations according to the molecular and histopathological responses.
Collapse
Affiliation(s)
- Selin Özkan-Kotiloğlu
- Department of Molecular Biology and Genetics, Faculty of Science and Art, Kırşehir Ahi Evran University, Kırşehir, Turkey.
| | - Pınar Arslan
- Biology Department, Faculty of Science, Çankırı Karatekin University, Çankırı, Turkey
| | - Gülçin Akca
- Department of Medical Microbiology, Faculty of Dentistry, Gazi University, Ankara, Turkey
| | - Aysel Çağlan Günal
- Department of Biology Education, Faculty of Gazi Education, Gazi University, Ankara, Turkey
| |
Collapse
|
23
|
Expression and Characterization of the Spats1 Gene and Its Response to E2/MT Treatment in the Chinese Soft-Shelled Turtle ( Pelodiscus sinensis). Animals (Basel) 2022; 12:ani12141858. [PMID: 35883403 PMCID: PMC9311554 DOI: 10.3390/ani12141858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
Spats1 (spermatogenesis-associated, serinerich 1) has been characterized as a male-biased gene which acts an important role in the germ cell differentiation of mammals. Nevertheless, the function of Spats1 in the Chinese soft-shelled turtle (P. sinensis) has not yet been reported. To initially explore the expression of Spats1 in P. sinensis and its response to sex steroid treatment, we cloned the CDS of Spats1 for the first time and analyzed its expression profile in different tissues, including the testes in different seasons. The Spats1 cDNA fragment is 1201 base pairs (bp) in length and contains an open reading frame (ORF) of 849 bp, which codes for 283 amino acids. Spats1 mRNA was highly expressed in the testes (p < 0.01) and barely detectable in other tissues. In P. sinensis, the relative expression of Spats1 also responsive to seasonal changes in testis development. In summer (July) and autumn (October), Spats1 gene expression was significantly higher in the testes than in other seasons (p < 0.05). Spats1 mRNA was found to be specifically expressed in germ cells by chemical in situ hybridization (CISH), and it was mainly located in primary spermatocytes (Sc1), secondary spermatocytes (Sc2) and spermatozoa (St). Spats1 expression in embryos was not significantly changed after 17α-methyltestosterone (MT)and 17β-estradiol (E2) treatment. In adults, MT significantly induced Spats1 expression in male P. sinensis. However, the expression of Spats1 in testes was not responsive to E2 treatment. In addition, the expression of Spats1 in females was not affected by either MT or E2 treatment. These results imply that Spats1 is a male-specific expressed gene that is mainly regulated by MT and is closely linked to spermatogenesis and release in P. sinensis.
Collapse
|
24
|
Chen P, Wang R, Chen G, An B, Liu M, Wang Q, Tao Y. Thyroid endocrine disruption and hepatotoxicity induced by bisphenol AF: Integrated zebrafish embryotoxicity test and deep learning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153639. [PMID: 35131240 DOI: 10.1016/j.scitotenv.2022.153639] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Bisphenol AF (BPAF) is an emerging contaminant prevalent in the environment as one of main substitutes of bisphenol A (BPA). It was found that BPAF exhibited estrogenic effects in zebrafish larvae in our previous study, while little is known about its effects on the thyroid and liver. A 7 d zebrafish embryotoxicity test was conducted to study the potential thyroid disruption and hepatotoxicity of BPAF. BPAF decreased levels of thyroid hormones and deiodinases but increased expressions of transthyretin at 12.5 and 125 μg/L after 7 d exposure, indicating that both the metabolism and transport of thyroid hormones were perturbed. The thyroid hormone receptor (TR) levels decreased significantly upon exposure to ≥12.5 μg/L BPAF, implying that BPAF acts as a TR antagonist, which coincided well with the prediction from the Direct Message Passing Neural Network. The liver impairment (mainly cell necrosis of hepatocytes) and apoptosis were triggered by 125 μg/L and ≥12.5 μg/L BPAF respectively, accompanied by the increased activities of caspase 3 and caspase 9. Thus BPAF might not be a safe alternative to BPA given the thyroid and liver toxicity. DMPNN appears useful to screen for thyroid disrupting activity from molecular structures.
Collapse
Affiliation(s)
- Pengyu Chen
- College of Oceanography, Hohai University, Nanjing 210024, China
| | - Ruihan Wang
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Geng Chen
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 330106, China
| | - Baihui An
- College of Oceanography, Hohai University, Nanjing 210024, China
| | - Ming Liu
- College of Oceanography, Hohai University, Nanjing 210024, China
| | - Qiang Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yuqiang Tao
- College of Oceanography, Hohai University, Nanjing 210024, China.
| |
Collapse
|
25
|
Lee S, Lee JS, Kho Y, Ji K. Effects of methylisothiazolinone and octylisothiazolinone on development and thyroid endocrine system in zebrafish larvae. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127994. [PMID: 34915294 DOI: 10.1016/j.jhazmat.2021.127994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/28/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Methylisothiazolinone (MIT) and octylisothiazolinone (OIT) are used as preservatives and biocides to prevent product decay or deterioration. In the present study, developmental toxicity and the effect on the thyroid endocrine system were investigated in zebrafish embryos exposed to MIT and OIT for 96 h. Coagulation was significantly increased when zebrafish embryos were exposed to a concentration of 300 μg/L MIT and ≥ 0.3 μg/L OIT, resulting in a significant decrease in hatchability and larvae survival. The body length in zebrafish larvae exposed to 30 μg/L OIT was significantly shorter than that of the control group. The whole-body levels of triiodothyronine and thyroxine were significantly decreased in larvae exposed to MIT and OIT. Significant upregulation of crh, trh, tshβ, and tshr genes and downregulation of trαa, tg, ttr, and deio2 genes were observed in fish exposed to two isothiazolinones. The expression of dre-miR-193b and dre-miR-499 was significantly increased in zebrafish larvae exposed to MIT and OIT, indicating that epigenetic deregulation of miRNAs modulated genes involved in thyroid hormone regulation. OIT has a higher magnitude of toxicity than MIT, corresponding to the observed changes in thyroid hormones and developmental toxicity.
Collapse
Affiliation(s)
- Sujin Lee
- Department of Environmental Health, Graduate School at Yongin University, Yongin 17092, Republic of Korea
| | - Ji-Su Lee
- Department of Health, Environment and Safety, Eulji University, Seongnam, Gyeonggi 13135, Republic of Korea; National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Younglim Kho
- Department of Health, Environment and Safety, Eulji University, Seongnam, Gyeonggi 13135, Republic of Korea
| | - Kyunghee Ji
- Department of Environmental Health, Graduate School at Yongin University, Yongin 17092, Republic of Korea.
| |
Collapse
|
26
|
Horie Y, Nomura M, Okamoto K, Takahashi C, Sato T, Miyagawa S, Okamura H, Iguchi T. Effect of thyroid hormone-disrupting chemicals on swim bladder inflation and thyroid hormone-related gene expression in Japanese medaka and zebrafish. J Appl Toxicol 2022; 42:1385-1395. [PMID: 35172387 DOI: 10.1002/jat.4302] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 11/10/2022]
Abstract
We compared the influence of thyroid hormone-disrupting chemicals (heptafluorobutanoic acid, PFBA and tris(1,3-dichloro-2-propyl) phosphate, TDCPP), and thyroid hormone (3,3',5-triiodo-L-thyronine, T3) on swim bladder inflation and thyroid hormone-related gene expression in Japanese medaka and zebrafish. The swim bladder of most larvae had inflated at 4 hours post hatching (hph) in Japanese medaka and at 48 hph in zebrafish in controls. In both fish species, the swim bladder inflation was inhibited in larvae exposed to PFBA (lowest observed effect concentration (LOEC) in medaka: 40 mg/L; in zebrafish: 80 mg/L), TDCPP (LOEC in medaka: 1 mg/L; in zebrafish: 0.5 mg/L), and T3 (no inhibition in Japanese medaka; LOEC in zebrafish: 7.5 μg/L). We also examined the influence of PFBA, TDCPP, and T3 on the expression of thyroid stimulating hormone subunit beta (tshβ) or thyroid hormone receptor alpha (trα) and beta (trβ). No changes were observed in the expression of genes after PFBA and TDCPP exposure; however, T3 exposure upregulated trα and trβ expression in both fish species. When the results were compared between Japanese medaka and zebrafish, swim bladder inflation in both species was found to be inhibited by exposure to thyroid hormone-disrupting chemicals. Our results show that inhibition of the swim bladder inflation at 4 hph in Japanese medaka and 48 hph in zebrafish is a potential indicator of thyroid hormone-disturbing activity of chemicals.
Collapse
Affiliation(s)
- Yoshifumi Horie
- Research Center for Inland Sea (KURCIS), Kobe University, Kobe, Japan.,Faculty of Bioresource Sciences, Akita Prefectural University, Akita, Japan
| | - Miho Nomura
- Faculty of Maritime Sciences, Kobe University, Kobe, Japan
| | - Konori Okamoto
- Faculty of Maritime Sciences, Kobe University, Kobe, Japan
| | - Chiho Takahashi
- Faculty of Bioresource Sciences, Akita Prefectural University, Akita, Japan
| | - Tomomi Sato
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| | - Shinichi Miyagawa
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Hideo Okamura
- Research Center for Inland Sea (KURCIS), Kobe University, Kobe, Japan
| | - Taisen Iguchi
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| |
Collapse
|
27
|
Tan J, Chen H, Chen S, Hu J, Wang X, Wang Y, Liao S, Chen P, Liang C, Dai M, Du Q, Hou L. The interactive effects of ethinylestradiol and progesterone on transcriptional expression of genes along the hypothalamus-pituitary-thyroid axis in embryonic zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150371. [PMID: 34818814 DOI: 10.1016/j.scitotenv.2021.150371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 09/06/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Progestins and estrogens are widespread in various aquatic environments and their potential endocrine disruption effects to aquatic organisms have drawn growing concern. However, their combined effects in aquatic organisms remain elusive. The aim of the present study was to assess the effects of the binary mixtures of gestodene (GES) and 17α-ethinylestradiol (EE2) on the hypothalamic-pituitary-thyroid (HPT) axis of zebrafish (Danio rerio) using the eleuthero-embryos. Embryos were exposed to GES and EE2 alone or in combination at concentrations ranging from 41 to 5329 ng L-1 (nominal ones from 50 to 5000 ng L-1) for 48 h, 96 h and 144 h post fertilization (hpf). The results showed that the transcripts of the genes along the HPT axis displayed pronounced alterations. There was no clear pattern in the change of the transcripts of these genes over time and with concentrations. However, in general, the transcripts of the genes were inversely affected by EE2 (increase 0.5 to 4.2-folds) and GES (inhibition 0.4 to 4.9-folds), and their mixtures showed interactive effects in embryonic zebrafish. In addition, physiological data (mortality, malformation, body length and heart rate etc.) denoted higher toxicity of the two chemicals in combination than alone based on the developmental toxicity and neurotoxicity (locomotor behavior). These results indicated that the interactive effects of these two chemicals might be different between at the transcriptional level and at the whole organismal level. In summary, GES and EE2 affect the HPT axis (related genes expression and thyroid hormones (THs) levels) and exhibit developmental toxicity and neurotoxicity.
Collapse
Affiliation(s)
- Jiefeng Tan
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Hongxing Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Shanduo Chen
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Junjie Hu
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Xiaolan Wang
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Yifan Wang
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Shuling Liao
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Peixian Chen
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Chuyan Liang
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Menglin Dai
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Qianping Du
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Liping Hou
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China.
| |
Collapse
|
28
|
Wang Y, Chen C, Yang G, Wang X, Wang Q, Weng H, Zhang Z, Qian Y. Combined lethal toxicity, biochemical responses, and gene expression variations induced by tebuconazole, bifenthrin and their mixture in zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113116. [PMID: 34979316 DOI: 10.1016/j.ecoenv.2021.113116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Pesticides commonly occur as mixtures in an aqueous environment, causing deleterious effects on human health and the environment. However, the mechanism underlying the combined effects on aqueous organisms remains largely unknown, especially at low concentrations. In the current study, we inspected the interactive toxicity of tebuconazole (TEB), a triazole fungicide, and bifenthrin (BIF), a pyrethroid insecticide, to zebrafish (Danio rerio) using various toxicological assays. Our data revealed that the 96 h-LC50 (lethal concentration 50) values of BIF to fish at different life periods (embryonic, larval, juvenile, and adult periods) ranged from 0.013 (0.011-0.016) to 0.41 (0.35-0.48) mg a.i. L-1, which were lower than that of TEB ranging from 1.1 (0.88-1.3) to 4.8 (4.1-5.7) mg a.i. L-1. Combination of TEB and BIF induced synergetic acute toxicity to embryonic fish. Activities of T-SOD, POD, and GST were distinctly altered in most individual and joint administrations. Expressions of 16 genes associated with oxidative stress, cellular apoptosis, immune system, and endocrine system at the mRNA level were evaluated, and the information revealed that embryonic zebrafish were impacted by both individual compounds and their combinations. Six genes (cas9, P53, gr, TRα, IL-8, and cxcl-clc) exhibited greater changes when exposed to pesticide mixtures. Therefore, the joint effects induced by the pesticides at low concentrations should be considered in the risk assessment of mixtures and regulated as priorities for mixture risk management in the aqueous ecosystem. More research is needed to identify the threshold concentrations of the realistic pesticide mixtures above which synergistic interactions occur.
Collapse
Affiliation(s)
- Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Chen Chen
- School of Public Health, Shandong University, Jinan 250012, Shandong, China
| | - Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Hongbiao Weng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Zhiheng Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China.
| | - Yongzhong Qian
- Key Laboratory of Agro-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
29
|
Liang J, Yang X, Liu QS, Sun Z, Ren Z, Wang X, Zhang Q, Ren X, Liu X, Zhou Q, Jiang G. Assessment of Thyroid Endocrine Disruption Effects of Parabens Using In Vivo, In Vitro, and In Silico Approaches. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:460-469. [PMID: 34930008 DOI: 10.1021/acs.est.1c06562] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The extensive applications of parabens in foods, drugs, and cosmetics cause inevitable exposure to humans. Revealing the developmental toxicity of parabens is of utmost importance regarding their safety evaluation. In this study, the effects of four commonly used parabens, including methyl paraben (20 ∼ 200 μM), ethyl paraben (20 ∼ 100 μM), propyl paraben (5 ∼ 20 μM), and butyl paraben (BuP, 2 ∼ 10 μM), were investigated on the early development of zebrafish embryos and larvae. The underlying mechanisms were explored from the aspect of their disturbance in the thyroid endocrine system using in vivo, in vitro, and in silico assays. Paraben exposure caused deleterious effects on the early development of zebrafish, with BuP displaying the highest toxicity among all, resulting in the exposure concentration-related mortality, decreased hatching rate, reduced body length, lowered heart rate, and the incidence of malformation. Further investigation showed that paraben exposure reduced thyroid hormone levels and disturbed the transcriptional expressions of the target genes in the hypothalamic-pituitary-thyroid axis. Molecular docking analysis combined with in vitro GH3 cell proliferation assay testified that all test parabens exhibited thyroid receptor agonistic activities. The findings confirmed the developmental toxicity of the test parabens and their thyroid endocrine disruption effects, providing substantial evidence on the safety control of paraben-based preservatives.
Collapse
Affiliation(s)
- Jiefeng Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Zhendong Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, P. R. China
| | - Zhihua Ren
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiaoyun Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qing Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Xiaomin Ren
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Xiuchang Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
30
|
Asala TE, Dasmahapatra AK, Myla A, Tchounwou PB. Histological and Histochemical Evaluation of the Effects of Graphene Oxide on Thyroid Follicles and Gas Gland of Japanese Medaka (Oryzias latipes) Larvae. CHEMOSPHERE 2022; 286:131719. [PMID: 34426126 PMCID: PMC8595807 DOI: 10.1016/j.chemosphere.2021.131719] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 05/13/2023]
Abstract
Graphene oxide (GO) has become a topic of increasing concern for its environmental and health risks. However, studies on the potential toxic effects of GO, especially as an endocrine disrupting chemical (EDC), are very limited. In the present study we have used Japanese medaka fish as a model to assess the endocrine disruption potential of GO by evaluating its toxic and histopathologic effects on thyroid follicles and the gas gland (GG) of medaka larvae. One day post-hatch (dph) starved medaka fries were exposed to GO (2.5, 5.0, 10.0, and 20 mg/L) for 96 h, followed by 6 weeks depuration in a GO-free environment with feeding. Larvae were sacrificed and histopathological evaluation of thyroid follicles and the GG cells were done microscopically. Different sizes of spherical/oval shape thyroid follicles containing PAS positive colloids, surrounded by single-layered squamous/cuboidal epithelium, were found to be scattered predominantly throughout the pharyngeal region near the ventral aorta. We have apparently observed a sex-specific difference in the follicular size and thyrocytes height and a non-linear effect of GO exposure on the larvae on 47th day post hatch (dph). The GG is composed of large uniform epithelial cells with eosinophilic cytoplasm. Like thyroids, our studies on GG cells indicate a sex-specific difference and GO exposure non-linearly reduced the GG cell numbers in males and females as well as in XY and XX genotypes. Our data further confirm that sex effect should be carefully considered while assessing the toxicity of EDCs on the thyroid gland.
Collapse
Affiliation(s)
- Tolulope E Asala
- RCMI Center for Environmental Health, Jackson State University, 1400 JR Lynch Street, Jackson, MS, 39217, USA
| | - Asok K Dasmahapatra
- RCMI Center for Environmental Health, Jackson State University, 1400 JR Lynch Street, Jackson, MS, 39217, USA; Department of BioMolecular Sciences, Environmental Toxicology Division, University of Mississippi, University, MS, 38677, USA
| | - Anitha Myla
- RCMI Center for Environmental Health, Jackson State University, 1400 JR Lynch Street, Jackson, MS, 39217, USA
| | - Paul B Tchounwou
- RCMI Center for Environmental Health, Jackson State University, 1400 JR Lynch Street, Jackson, MS, 39217, USA.
| |
Collapse
|
31
|
Rousseau K, Dufour S, Sachs LM. Interdependence of Thyroid and Corticosteroid Signaling in Vertebrate Developmental Transitions. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.735487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Post-embryonic acute developmental processes mainly allow the transition from one life stage in a specific ecological niche to the next life stage in a different ecological niche. Metamorphosis, an emblematic type of these post-embryonic developmental processes, has occurred repeatedly and independently in various phylogenetic groups throughout metazoan evolution, such as in cnidarian, insects, molluscs, tunicates, or vertebrates. This review will focus on metamorphoses and developmental transitions in vertebrates, including typical larval metamorphosis in anuran amphibians, larval and secondary metamorphoses in teleost fishes, egg hatching in sauropsids and birth in mammals. Two neuroendocrine axes, the hypothalamic-pituitary-thyroid and the hypothalamic-pituitary-adrenal/interrenal axes, are central players in the regulation of these life transitions. The review will address the molecular and functional evolution of these axes and their interactions. Mechanisms of integration of internal and environmental cues, and activation of these neuroendocrine axes represent key questions in an “eco-evo-devo” perspective of metamorphosis. The roles played by developmental transitions in the innovation, adaptation, and plasticity of life cycles throughout vertebrates will be discussed. In the current context of global climate change and habitat destruction, the review will also address the impact of environmental factors, such as global warming and endocrine disruptors on hypothalamic-pituitary-thyroid and hypothalamic-pituitary-adrenal/interrenal axes, and regulation of developmental transitions.
Collapse
|
32
|
Yang G, Wang Y, Wang T, Wang D, Weng H, Wang Q, Chen C. Variations of enzymatic activity and gene expression in zebrafish (Danio rerio) embryos co-exposed to zearalenone and fumonisin B1. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112533. [PMID: 34303040 DOI: 10.1016/j.ecoenv.2021.112533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
The natural co-occurrence of multiple mycotoxins has been reported in cereals and cereal products worldwide. Even though the dietary exposure to mycotoxins constitutes a serious human health, most reports are limited to the toxic effect of individual mycotoxins. The purpose of the present study was to assess the combined toxic effects of zearalenone (ZEN) and fumonisin B1 (FB1) and the potential interaction of their mixture on zebrafish (Danio rerio) embryos. Our results showed that ZEN possessed the higher toxicity to embryonic zebrafish (7-day LC50 value of 0.78 mg a.i. L-1) compared with FB1 (7-day LC50 value of 227.7 mg a.i. L-1). The combination of ZEN and FB1 exerted an additive effect on zebrafish embryos. Meanwhile, the activities of antioxidant CAT, caspase-3, and detoxification enzyme CYP450, as well as the expressions of six genes (Mn-sod, cas9, bax, cc-chem, ERα, and crh) associated with oxidative stress, cellular apoptosis, immune system, and endocrine system were prominently altered in the mixture exposure compared with the corresponding single treatment group of ZEN or FB1. Taken together, the regulatory standards of mycotoxins in food and feed should be updated based on the mixture effects of mycotoxins, and there is an increased need on effective detoxification methods for controlling and reducing the toxicity of multiple mycotoxins in animal feed and throughout the food supply chain.
Collapse
Affiliation(s)
- Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Tiancai Wang
- Key Laboratory of Agro-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dou Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Hongbiao Weng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Chen Chen
- Key Laboratory of Agro-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; School of Public Health, Shandong University, Jinan 250012, Shandong, China.
| |
Collapse
|
33
|
Sales Junior SF, Mannarino CF, Bila DM, Taveira Parente CE, Correia FV, Saggioro EM. Lethal and long-term effects of landfill leachate on Eisenia andrei earthworms: Behavior, reproduction and risk assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 285:112029. [PMID: 33578208 DOI: 10.1016/j.jenvman.2021.112029] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/03/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Leachate is difficult to biodegrade, and presents variable physical, chemical and biological characteristics, as well as high toxicological potential for soil, groundwater and water bodies. In this context, untreated leachate toxicity was evaluated through acute and chronic exposures in Eisenia andrei earthworms. Physico-chemical leachate characterizations indicate a complex composition, with high organic matter (COD - 10,634 mg L-1) and ammoniacal nitrogen (2388 mg L-1) concentrations. Metals with carcinogenic potential, such as Cr, As and Pb, were present at 0.60, 0.14 and 0.01 μg L-1, respectively and endocrine disrupting compounds were detected in estradiol equivalents of 660 ± 50 ng L-1. Acute tests with Eisenia andrei indicated an LC50 (72 h) of 1.3 ± 0.1 μL cm-2 in a filter paper contact test and 53.9 ± 1.3 mL kg-1 in natural soil (14 days). The EC50 in a behavioral test was estimated as 31.6 ± 6.8 mL kg-1, indicating an escape effect for concentrations ranging from 35.0 to 70.0 mL kg-1 and habitat loss from 87.5 mL kg-1 of leachate exposure. Chronic exposure (56 days) led to reproduction effects, resulting in a 4-fold decreased cocoon production and 7-fold juvenile decrease. This effect was mainly attributed to the possible presence of endocrine disrupting compounds. An estimated NOAEL of 1.7 mL L-1 and LOAEL of 3.5 mL L-1 were estimated for earthworms exposed to the assessed effluent. Extremely high-risk quotients (RQ ≥ 1) were estimated based on leachate application in irrigation. Thus, adequate municipal solid waste management is paramount, especially with regard to generated by-products, which can result in high toxicological risks for terrestrial organisms.
Collapse
Affiliation(s)
- Sidney Fernandes Sales Junior
- Center of Studies on Worker's Health and Human Ecology, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões 1480, 21041-210, Rio de Janeiro, RJ, Brazil
| | - Camille Ferreira Mannarino
- Sanitation and Environment Health Department, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões 1480, 21041-210, Rio de Janeiro, RJ, Brazil
| | - Daniele Maia Bila
- Department of Sanitary and Environment Engineering, State University of Rio de Janeiro, 524 São Francisco Xavier Street, Room 5029-F, 20550-900, Rio de Janeiro, Brazil
| | - Cláudio Ernesto Taveira Parente
- Laboratório de Radioisótopos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho s/n, Bloco G0, 21941-902, Rio de Janeiro, Brazil
| | - Fábio Veríssimo Correia
- UNIRIO, Departamento de Ciências Naturais, Av. Pasteur, 458, Urca, 22290-20, Rio de Janeiro, Brazil.
| | - Enrico Mendes Saggioro
- Center of Studies on Worker's Health and Human Ecology, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões 1480, 21041-210, Rio de Janeiro, RJ, Brazil; Sanitation and Environment Health Department, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões 1480, 21041-210, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
34
|
Hu F, Zhao Y, Yuan Y, Yin L, Dong F, Zhang W, Chen X. Effects of environmentally relevant concentrations of tris (2-chloroethyl) phosphate (TCEP) on early life stages of zebrafish (Danio rerio). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 83:103600. [PMID: 33508468 DOI: 10.1016/j.etap.2021.103600] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 01/17/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Tris (2-chloroethyl) phosphate (TCEP) has been received great concerns because of its increasing presence in various environmental compartments and toxicity. In the present study, zebrafish embryos were exposed to environmentally relevant concentrations of TCEP (0.2, 2, 20, 200 μg/L) from 3 to 120 h post-fertilization (hpf). The results showed that TCEP exposure (20, 200 μg/L) led to developmental toxicity including decreased body length and delay of hatching. Treatment with TCEP significantly decreased whole-body thyroxine (T4) levels and mRNA level of thyroglobulin (tg), and enhanced transcriptions of genes sodium/iodide symporter (nis), thyroid hormone receptor α (trα) and ugt1ab involved in thyroid synthesis and metabolism, respectively. Additionally, TCEP altered the transcription of α1-tubulin, gap43 and mbp related to nervous system development, even at relatively low concentrations. Overall, our results revealed that TCEP exposure can lead to developmental toxicity, thyroid endocrine disruption and neurotoxicity on early developmental stages of zebrafish.
Collapse
Affiliation(s)
- Fengxiao Hu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yixin Zhao
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuan Yuan
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li Yin
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feilong Dong
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weini Zhang
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China.
| |
Collapse
|
35
|
Horie Y, Chiba T, Takahashi C, Tatarazako N, Iguchi T. Influence of triphenyltin on morphologic abnormalities and the thyroid hormone system in early-stage zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2021; 242:108948. [PMID: 33285321 DOI: 10.1016/j.cbpc.2020.108948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 10/22/2022]
Abstract
In the present study, we assessed the negative effects of triphenyltin (TPT) on zebrafish (Danio rerio) by exposing embryos and early-stage larvae to various concentrations of TPT from 2 h after fertilization (haf) until 30 days after hatching (dah). Whether test groups were fed or fasted during ecotoxicity studies using fish models has varied historically, and whether this experimental condition influences test results is unknown. Here, we confirmed that the lethal concentration of TPT to embryo and early-stage larvae (i.e., 3 dah or younger) showed in fed (lowest observed effect concentration (LOEC); 6.34 μg/L) and fasted (LOEC; 6.84 μg/L) groups. In addition, 84% and 100% of the larvae in the 2.95 and 6.64 μg/L exposure groups, respectively, had uninflated swim bladders; all affected larvae died within 9 dah. This finding suggests that morphologic abnormalities in early larval zebrafish are useful as endpoints for predicting the lethality of chemical substances after hatching. We then assessed the expression of several genes in the thyroid hormone pathway, which regulates swim bladder development in many fish species, including zebrafish. Larvae exposed to 6.64 μg/L TPT showed significant increases in the mRNA expression levels of thyroid hormone receptor α (trα) and trβ but not of thyroid stimulating hormone β subunit. These findings suggest that TPT disrupts the thyroid system in zebrafish.
Collapse
Affiliation(s)
- Yoshifumi Horie
- Faculty of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidobata-Nishi Nakano Simoshinjo, Akita 010-0195, Japan.
| | - Takashi Chiba
- Faculty of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidobata-Nishi Nakano Simoshinjo, Akita 010-0195, Japan
| | - Chiho Takahashi
- Faculty of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidobata-Nishi Nakano Simoshinjo, Akita 010-0195, Japan
| | - Norihisa Tatarazako
- Department of Science and Technology for Biological Resources and Environment, Graduate School of Agriculture, Ehime University, Tarumi 3-5-7, Matsuyama 790-8566, Japan
| | - Taisen Iguchi
- Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| |
Collapse
|
36
|
Reinwald H, König A, Ayobahan SU, Alvincz J, Sipos L, Göckener B, Böhle G, Shomroni O, Hollert H, Salinas G, Schäfers C, Eilebrecht E, Eilebrecht S. Toxicogenomic fin(ger)prints for thyroid disruption AOP refinement and biomarker identification in zebrafish embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143914. [PMID: 33333401 DOI: 10.1016/j.scitotenv.2020.143914] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Endocrine disruption (ED) can trigger far-reaching effects on environmental populations, justifying a refusal of market approval for chemicals with ED properties. For the hazard assessment of ED effects on the thyroid system, regulatory decisions mostly rely on amphibian studies. Here, we used transcriptomics and proteomics for identifying molecular signatures of interference with thyroid hormone signaling preceding physiological effects in zebrafish embryos. For this, we analyzed the thyroid hormone 3,3',5-triiodothyronine (T3) and the thyroid peroxidase inhibitor 6-propyl-2-thiouracil (6-PTU) as model substances for increased and repressed thyroid hormone signaling in a modified zebrafish embryo toxicity test. We identified consistent gene expression fingerprints for both modes-of-action (MoA) at sublethal test concentrations. T3 and 6-PTU both significantly target the expression of genes involved in muscle contraction and functioning in an opposing fashion, allowing for a mechanistic refinement of key event relationships in thyroid-related adverse outcome pathways in fish. Furthermore, our fingerprints identify biomarker candidates for thyroid disruption hazard screening approaches. Perspectively, our findings will promote the AOP-based development of in vitro assays for thyroidal ED assessment, which in the long term will contribute to a reduction of regulatory animal tests.
Collapse
Affiliation(s)
- Hannes Reinwald
- Fraunhofer Attract Eco'n'OMICs, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany; Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Azora König
- Fraunhofer Attract Eco'n'OMICs, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| | - Steve U Ayobahan
- Fraunhofer Attract Eco'n'OMICs, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| | - Julia Alvincz
- Fraunhofer Attract Eco'n'OMICs, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| | - Levente Sipos
- Fraunhofer Attract Eco'n'OMICs, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| | - Bernd Göckener
- Department Environmental and Food Analysis, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| | - Gisela Böhle
- Department Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| | - Orr Shomroni
- NGS-Services for Integrative Genomics, University of Göttingen, Göttingen, Germany
| | - Henner Hollert
- Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Gabriela Salinas
- NGS-Services for Integrative Genomics, University of Göttingen, Göttingen, Germany
| | - Christoph Schäfers
- Department Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| | - Elke Eilebrecht
- Department Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| | - Sebastian Eilebrecht
- Fraunhofer Attract Eco'n'OMICs, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany.
| |
Collapse
|
37
|
Wang S, Zhang J, Zhang S, Shi F, Feng D, Feng X. Exposure to Melamine cyanuric acid in adolescent mice caused emotional disorder and behavioral disorder. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111938. [PMID: 33476844 DOI: 10.1016/j.ecoenv.2021.111938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Melamine cyanuric acid (MCA) is a flame retardant linked by hydrogen bonds between melamine and cyanuric acid. MCA is used in an excellent series of phosphorus and nitrogen flame retardants. MCA can harm the kidney, liver, testis, and spleen cells. However, the effects of MCA on the emotions and behaviour of adolescent mice have not yet been investigated. In this article, male mice were exposed to MCA at 10, 20, and 40 mg/kg for four weeks. MCA exposure resulted in enhanced mouse locomotor and nocturnal activity. We also observed anxiety-like and depression-like behaviours. Moreover, after MCA exposure, the serum concentrations of thyroid-related hormones were changed, and the mRNA levels were affected. In short, MCA exposure can cause behavioural and emotion disorders.
Collapse
Affiliation(s)
- Sijie Wang
- The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Jingwen Zhang
- The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Shaozhi Zhang
- The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Feifei Shi
- The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Daofu Feng
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin 300052, China.
| | - Xizeng Feng
- The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin 300071, China.
| |
Collapse
|
38
|
Li ZH, Li P. Effects of the tributyltin on the blood parameters, immune responses and thyroid hormone system in zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115707. [PMID: 33007597 DOI: 10.1016/j.envpol.2020.115707] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
Tributyltin (TBT) is a widely used organotin compound around the world and was frequently detected in surface waters, which would pose risk to aquatic organisms. However, the mechanisms of TBT-induced toxicity is not full clear. The present study investigated the effects of the tributyltin (TBT) on the blood parameters, immune responses and thyroid hormone system in zebrafish. Fish were exposed to sublethal concentrations of TBT (10 ng/L, 100 ng/L and 300 ng/L) for 6 weeks. The effects of long-term exposure to TBT on blood parameters (NH3, ammonia; GLU, glucose; TP, total proteins; CK, creatine kinase; ALT, alanine aminotransferase; AST, aspartate aminotransferase), immune responses (Lys, lysozyme; IgM, immunoglobulin M) and some indexes related thyroid hormone system (T3, 3,5,3'-triiodothyronine; T4, thyroxine) were measured in zebrafish, as well as the expression of genes related to immune responses and thyroid hormone system. Based on the results, the physiological-biochemical responses was significantly enhanced with an increase in TBT concentration, reflected by the abnormal blood indices, dysregulation of endocrine system and immunotoxicity in zebrafish under TBT stress. The present study greatly extends our understanding of adverse effects of TBT on aquatic organisms.
Collapse
Affiliation(s)
- Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China; Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
39
|
Zebrafish Embryonic Exposure to BPAP and Its Relatively Weak Thyroid Hormone-Disrupting Effects. TOXICS 2020; 8:toxics8040103. [PMID: 33202880 PMCID: PMC7712898 DOI: 10.3390/toxics8040103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 11/16/2022]
Abstract
Safe endocrine-disrupting alternatives for bisphenol A (BPA) are needed because its adverse health effects have become a public concern. Some bisphenol analogues (bisphenol F and S) have been applied, but their endocrine-disrupting potential is either not negligible or weaker than that of BPA. However, the endocrine-disrupting potential of bisphenol AP (BPAP), another BPA alternative, has not yet been fully assessed. Hence, we evaluated the thyroid hormone (TH)-disrupting potency of BPAP because THs are essential endocrine hormones. Zebrafish embryos were exposed to BPAP (0, 18.2, 43.4, or 105.9 μg/L) for 120 h, and TH levels, the transcription of 16 TH-related genes, the transcriptome, development, and behavior were evaluated. In our study, a decrease in T4 level was observed only at the maximum nonlethal concentration, but significant changes in the T3 and TSHβ levels were not detected. BPAP did not cause significant changes in transcription and gene ontology enrichment related to the TH system. Developmental and behavioral changes were not observed. Despite T4 level reduction, other markers were not significantly affected by BPAP. These might indicate that BPAP has weak or negligible potency regarding TH disruption as a BPA alternative. This study might provide novel information on the TH-disrupting potential of BPAP.
Collapse
|
40
|
Maddela NR, Venkateswarlu K, Kakarla D, Megharaj M. Inevitable human exposure to emissions of polybrominated diphenyl ethers: A perspective on potential health risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115240. [PMID: 32698055 DOI: 10.1016/j.envpol.2020.115240] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 05/24/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) serve as flame retardants in many household materials such as electrical and electronic devices, furniture, textiles, plastics, and baby products. Though the use of PBDEs like penta-, octa- and deca-BDE greatly reduces the fire damage, indoor pollution by these toxic emissions is ever-growing. In fact, a boom in the global market projections of PBDEs threatens human health security. Therefore, efforts are made to minimize PBDEs pollution in USA and Europe by encouraging voluntary phasing out of the production or imposing compelled regulations through Stockholm Convention, but >500 kilotons of PBDEs still exist globally. Both 'environmental persistence' and 'bioaccumulation tendencies' are the hallmarks of PBDE toxicities; however, both these issues concerning household emissions of PBDEs have been least addressed theoretically or practically. Critical physiological functions, lipophilicity and toxicity, trophic transfer and tissue specificities are of utmost importance in the benefit/risk assessments of PBDEs. Since indoor debromination of deca-BDE often yields many products, a better understanding on their sorption propensity, environmental fate and human toxicities is critical in taking rigorous measures on the ever-growing global deca-BDE market. The data available in the literature on human toxicities of PBDEs have been validated following meta-analysis. In this direction, the intent of the present review was to provide a critical evaluation of the key aspects like compositional patterns/isomer ratios of PBDEs implicated in bioaccumulation, indoor PBDE emissions versus human exposure, secured technologies to deal with the toxic emissions, and human toxicity of PBDEs in relation to the number of bromine atoms. Finally, an emphasis has been made on the knowledge gaps and future research directions related to endurable flame retardants which could fit well into the benefit/risk strategy.
Collapse
Affiliation(s)
- Naga Raju Maddela
- Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo, 130105, Ecuador; Facultad la Ciencias la Salud, Universidad Técnica de Manabí, Portoviejo, 130105, Ecuador
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu, 515003, India
| | - Dhatri Kakarla
- University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
41
|
Pang S, Gao Y, Li A, Yao X, Qu G, Hu L, Liang Y, Song M, Jiang G. Tetrabromobisphenol A Perturbs Erythropoiesis and Impairs Blood Circulation in Zebrafish Embryos. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12998-13007. [PMID: 32841016 DOI: 10.1021/acs.est.0c02934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tetrabromobisphenol A (TBBPA), a ubiquitous environmental pollutant, has been implicated in developmental toxicity of aquatic animals. However, the impact of TBBPA on development and the related mechanism have not been fully elucidated. In this study, using a live imaging technique and transgenic labeling of zebrafish embryos, we described the toxic effects of TBBPA on hematopoietic development in zebrafish. We demonstrated that TBBPA induced erythroid precursor expansion in the intermediate cell mass (ICM), which perturbed the onset of blood circulation at 24-26 hours postfertilization (hpf). Consequently, excessive blood cells accumulated in the posterior blood island (PBI) and vascular cells formed defective caudal veins (CVs), preventing blood cell flow to the heart at 32-34 hpf. We found that the one-cell to 50% epiboly stage was the most sensitive period to TBBPA exposure during hematopoietic development. Furthermore, our results demonstrated that PBI malformation induced by TBBPA resulted from effects on erythroid precursor cells, which might involve THR signaling in complex ways. These findings will improve the understanding of TBBPA-induced developmental toxicity in teleost.
Collapse
Affiliation(s)
- Shaochen Pang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan 430056, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yue Gao
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aijing Li
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinglei Yao
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan 430056, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan 430056, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan 430056, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Maoyong Song
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan 430056, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan 430056, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
42
|
Giannocco G, Kizys MML, Maciel RM, de Souza JS. Thyroid hormone, gene expression, and Central Nervous System: Where we are. Semin Cell Dev Biol 2020; 114:47-56. [PMID: 32980238 DOI: 10.1016/j.semcdb.2020.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 12/27/2022]
Abstract
Thyroid hormones (TH; T3 and T4) play a fundamental role in the fetal stage to the adult phase, controlling gene and protein expression in virtually all tissues. The endocrine and CNS systems have relevant interaction, and the TH are pivotal for the proper functioning of the CNS. A slight failure to regulate TH availability during pregnancy and/or childhood can lead to neurological disorders, for example, autism and cognitive impairment, or depression. In this review, we highlight how TH acts in controlling gene expression, its role in the CNS, and what substances widely found in the environment can cause in this tissue. We highlight the role of Endocrine Disruptors used on an everyday basis in the processing of mRNAs responsible for neurodevelopment. We conclude that TH, more precisely T3, acts mainly throughout its nuclear receptors, that the deficiency of this hormone, either due to the lack of its main substrate iodine, or by to incorrect organification of T4 and T3 in the gland, or by a mutation in transporters, receptors and deiodinases may cause mild (dysregulated mood in adulthood) to severe neurological impairment (Allan-Herndon-Dudley syndrome, presented as early as childhood); T3 is responsible for the expression of numerous CNS genes related to oxygen transport, growth factors, myelination, cell maturation. Substances present in the environment and widely used can interfere with the functioning of the thyroid gland, the action of TH, and the functioning of the CNS.
Collapse
Affiliation(s)
- Gisele Giannocco
- Departamento de Medicina, Laboratório de Endocrinologia e Medicina Translacional, Universidade Federal de São Paulo, UNIFESP/EPM, Rua Pedro de Toledo, 669 - 11 andar, São Paulo, SP 04039-032, Brazil; Departamento de Ciências Biológicas, Universidade Federal de São Paulo, UNIFESP, Diadema, SP 09920-000, Brazil
| | - Marina Malta Letro Kizys
- Departamento de Medicina, Laboratório de Endocrinologia e Medicina Translacional, Universidade Federal de São Paulo, UNIFESP/EPM, Rua Pedro de Toledo, 669 - 11 andar, São Paulo, SP 04039-032, Brazil
| | - Rui Monteiro Maciel
- Departamento de Medicina, Laboratório de Endocrinologia e Medicina Translacional, Universidade Federal de São Paulo, UNIFESP/EPM, Rua Pedro de Toledo, 669 - 11 andar, São Paulo, SP 04039-032, Brazil
| | - Janaina Sena de Souza
- Departamento de Medicina, Laboratório de Endocrinologia e Medicina Translacional, Universidade Federal de São Paulo, UNIFESP/EPM, Rua Pedro de Toledo, 669 - 11 andar, São Paulo, SP 04039-032, Brazil; Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
43
|
Tian J, Hu J, He W, Zhou L, Huang Y. Parental exposure to cadmium chloride causes developmental toxicity and thyroid endocrine disruption in zebrafish offspring. Comp Biochem Physiol C Toxicol Pharmacol 2020; 234:108782. [PMID: 32339758 DOI: 10.1016/j.cbpc.2020.108782] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022]
Abstract
Cadmium is a common heavy metal pollutant. Previous studies have found that long-term cadmium exposure can cause damage to multiple organs/systems in humans and experimental animals; however, there are few studies that elucidate its effects on offspring development, discuss whether it can be transmitted to offspring from the parent, and debate whether it affects the functional development of the thyroid hormone system in offsprings. In this study, sexually mature zebrafish were exposed to different concentrations of cadmium chloride (0.01 μmol/L, 0.1 μmol/L, and 1 μmol/L) to study reproductive toxicity. It was found that parental zebrafish exposed to 1 μmol/L of cadmium chloride produced offsprings with different degrees of malformation. At 5 days post-fertilization (dpf), the levels of 3,5,3'-triiododenosine (T3) and thyroxine (T4) in the zebrafish were decreased. At 10 dpf, the T4 and T3 levels in the zebrafish of the offspring were significantly reduced. At the same time, the expression of thyroid receptor (trα and trβ) genes in five dpf larvae was significantly up-regulated in the 1 μmol/L treatment group relative to the control group. The mRNAs of thyroid hormone synthesis and metabolism-related genes (tshβ, dio1, dio2, ugt1ab, and ttr) were significantly up-regulated in the 0.1 μmol/L and 1 μmol/L treatment groups. This study demonstrates that parental cadmium chloride exposure produces reproductive toxicity in zebrafish and that the effects can be transferred from the parent to the offspring, resulting in developmental toxicity in the thyroid endocrine system.
Collapse
Affiliation(s)
- Jingjing Tian
- Academy for Engineering & Technology, Fudan University, Shanghai 200433, PR China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China
| | - Jia Hu
- School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Wei He
- Shaanxi Institute of Pediatric Diseases, Xi'an Key Laboratory of Children's Health and Diseases, Xi'an Children's Hospital, Xi'an, Shaanxi 710003, PR China
| | - Lianqun Zhou
- Academy for Engineering & Technology, Fudan University, Shanghai 200433, PR China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China.
| | - Yinong Huang
- Shaanxi Institute of Pediatric Diseases, Xi'an Key Laboratory of Children's Health and Diseases, Xi'an Children's Hospital, Xi'an, Shaanxi 710003, PR China.
| |
Collapse
|
44
|
Stinckens E, Vergauwen L, Blackwell BR, Ankley GT, Villeneuve DL, Knapen D. Effect of Thyroperoxidase and Deiodinase Inhibition on Anterior Swim Bladder Inflation in the Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6213-6223. [PMID: 32320227 PMCID: PMC7477623 DOI: 10.1021/acs.est.9b07204] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A set of adverse outcome pathways (AOPs) linking inhibition of thyroperoxidase and deiodinase to impaired swim bladder inflation in fish has recently been developed. These AOPs help to establish links between these thyroid hormone (TH) disrupting molecular events and adverse outcomes relevant to aquatic ecological risk assessment. Until now, very little data on the effects of TH disruption on inflation of the anterior chamber (AC) of the swim bladder were available. The present study used zebrafish exposure experiments with three model compounds with distinct thyroperoxidase and deiodinase inhibition potencies (methimazole, iopanoic acid, and propylthiouracil) to evaluate this linkage. Exposure to all three chemicals decreased whole body triiodothyronine (T3) concentrations, either through inhibition of thyroxine (T4) synthesis or through inhibition of Dio mediated conversion of T4 to T3. A quantitative relationship between reduced T3 and reduced AC inflation was established, a critical key event relationship linking impaired swim bladder inflation to TH disruption. Reduced inflation of the AC was directly linked to reductions in swimming distance compared to controls as well as to chemical-exposed fish whose ACs inflated. Together the data provide compelling support for AOPs linking TH disruption to impaired AC inflation in fish.
Collapse
Affiliation(s)
- Evelyn Stinckens
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Lucia Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Brett R. Blackwell
- United States Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, MN 55804, USA
| | - Gerald T. Ankley
- United States Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, MN 55804, USA
| | - Daniel L. Villeneuve
- United States Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, MN 55804, USA
| | - Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
45
|
Couderq S, Leemans M, Fini JB. Testing for thyroid hormone disruptors, a review of non-mammalian in vivo models. Mol Cell Endocrinol 2020; 508:110779. [PMID: 32147522 DOI: 10.1016/j.mce.2020.110779] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023]
Abstract
Thyroid hormones (THs) play critical roles in profound changes in many vertebrates, notably in mammalian neurodevelopment, although the precise molecular mechanisms of these fundamental biological processes are still being unravelled. Environmental and health concerns prompted the development of chemical safety testing and, in the context of endocrine disruption, identification of thyroid hormone axis disrupting chemicals (THADCs) remains particularly challenging. As various molecules are known to interfere with different levels of TH signalling, screening tests for THADCs may not rely solely on in vitro ligand/receptor binding to TH receptors. Therefore, alternatives to mammalian in vivo assays featuring TH-related endpoints that are more sensitive than circulatory THs and more rapid than thyroid histopathology are needed to fulfil the ambition of higher throughput screening of the myriad of environmental chemicals. After a detailed introduction of the context, we have listed current assays and parameters to assess thyroid disruption following a literature search of recent publications referring to non-mammalian models. Potential THADCs were mostly investigated in zebrafish and the frog Xenopus laevis, an amphibian model extensively used to study TH signalling.
Collapse
Affiliation(s)
- Stephan Couderq
- Unité PhyMA laboratory, Adaptation du Vivant, Muséum national d'Histoire naturelle, 7 rue Cuvier, 75005, Paris, France
| | - Michelle Leemans
- Unité PhyMA laboratory, Adaptation du Vivant, Muséum national d'Histoire naturelle, 7 rue Cuvier, 75005, Paris, France
| | - Jean-Baptiste Fini
- Unité PhyMA laboratory, Adaptation du Vivant, Muséum national d'Histoire naturelle, 7 rue Cuvier, 75005, Paris, France.
| |
Collapse
|
46
|
Rozmánková E, Pípal M, Bláhová L, Njattuvetty Chandran N, Morin B, Gonzalez P, Bláha L. Environmentally relevant mixture of S-metolachlor and its two metabolites affects thyroid metabolism in zebrafish embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 221:105444. [PMID: 32078888 DOI: 10.1016/j.aquatox.2020.105444] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
Herbicides and their metabolites are often detected in water bodies where they may cause adverse effects to non-target organisms. Their effects at environmentally relevant concentrations are often unclear, especially concerning mixtures of pesticides. This study thus investigated the impacts of one of the most used herbicides: S-metolachlor and its two metabolites, metolachlor oxanilic acid (MOA) and metolachlor ethanesulfonic acid (MESA) on the development of zebrafish embryos (Danio rerio). Embryos were exposed to the individual substances and their environmentally relevant mixture until 120 hpf (hours post-fertilization). The focus was set on sublethal endpoints such as malformations, hatching success, length of fish larvae, spontaneous movements, heart rate and locomotion. Moreover, expression levels of eight genes linked to the thyroid system disruption, oxidative stress defense, mitochondrial metabolism, regulation of cell cycle and retinoic acid (RA) signaling pathway were analyzed. Exposure to S-metolachlor (1 μg/L) and the pesticide mixture (1 μg/L of each substance) significantly reduced spontaneous tail movements of 21 hpf embryos. Few rare developmental malformations were observed, but only in larvae exposed to more than 100 μg/L of individual substances (craniofacial deformation, non-inflated gas bladder, yolk sac malabsorption) and to 30 μg/L of each substance in the pesticide mixture (spine deformation). No effect on hatching success, length of larvae, heart rate or larvae locomotion were found. Strong responses were detected at the molecular level including induction of p53 gene regulating the cell cycle (the pesticide mixture - 1 μg/L of each substance; MESA 30 μg/L; and MOA 100 μg/L), as induction of cyp26a1 gene encoding cytochrome P450 (pesticide mixture - 1 μg/L of each substance). Genes implicated in the thyroid system regulation (dio2, thra, thrb) were all overexpressed by the environmentally relevant concentrations of the pesticide mixture (1 μg/L of each substance) and MESA metabolite (1 μg/L). Zebrafish thyroid system disruption was revealed by the overexpressed genes, as well as by some related developmental malformations (mainly gas bladder and yolk sac abnormalities), and reduced spontaneous tail movements. Thus, the thyroid system disruption represents a likely hypothesis behind the effects caused by the low environmental concentrations of S-metolachlor, its two metabolites and their mixture.
Collapse
Affiliation(s)
- Eliška Rozmánková
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 625 00 Brno, Czech Republic; University of Bordeaux, EPOC, UMR 5805, 33400 Talence, France
| | - Marek Pípal
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Lucie Bláhová
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 625 00 Brno, Czech Republic
| | | | - Bénédicte Morin
- University of Bordeaux, EPOC, UMR 5805, 33400 Talence, France
| | | | - Luděk Bláha
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 625 00 Brno, Czech Republic.
| |
Collapse
|
47
|
Li P, Li ZH, Zhong L. Effects of low concentrations of triphenyltin on neurobehavior and the thyroid endocrine system in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 186:109776. [PMID: 31606647 DOI: 10.1016/j.ecoenv.2019.109776] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 06/10/2023]
Abstract
In the present study, to evaluate neurobehavioral toxicity and the thyroid-disrupting effects of environmental levels of triphenyltin (TPT), the zebrafish larvae were exposed to 1, 10 and 100 ng/l TPT. In the neurobehavioral assay, increased levels of dopamine and serotonin, decreased content of nitric oxide, inhibited activities of acetylcholinesterase and monoamine oxidase were observed in the whole body of zebrafish larvae after TPT treatment, as well as the serious abnormal non-reproductive behavior. Moreover, the whole-body the T4 levels were markedly decreased significantly, whereas T3 levels were not significantly changed under TPT stress. In addition, TPT exposure significantly changed the expression levels of genes related to thyroid system, including corticotropin-releasing hormone gene crh, thyroid-stimulating hormone gene tshβ, thyroglobulin gene tg, sodium/iodide symporter gene nis, thyroid hormone nuclear receptor trα, isoform trβ, types I deiodinase gene dio1and types II deiodinase gene dio2. The regulated responsiveness of thyroid hormone and related genes expression levels suggested that TPT could induce the thyroid disrupting effects in zebrafish larvae. Therefore, our results provide new aspects of TPT as an endocrine disrupting chemical.
Collapse
Affiliation(s)
- Ping Li
- Marine College, Shandong University, Weihai, 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, 264209, China; Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| | - Liqiao Zhong
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| |
Collapse
|
48
|
Cassar S, Adatto I, Freeman JL, Gamse JT, Iturria I, Lawrence C, Muriana A, Peterson RT, Van Cruchten S, Zon LI. Use of Zebrafish in Drug Discovery Toxicology. Chem Res Toxicol 2019; 33:95-118. [PMID: 31625720 DOI: 10.1021/acs.chemrestox.9b00335] [Citation(s) in RCA: 308] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Unpredicted human safety events in clinical trials for new drugs are costly in terms of human health and money. The drug discovery industry attempts to minimize those events with diligent preclinical safety testing. Current standard practices are good at preventing toxic compounds from being tested in the clinic; however, false negative preclinical toxicity results are still a reality. Continual improvement must be pursued in the preclinical realm. Higher-quality therapies can be brought forward with more information about potential toxicities and associated mechanisms. The zebrafish model is a bridge between in vitro assays and mammalian in vivo studies. This model is powerful in its breadth of application and tractability for research. In the past two decades, our understanding of disease biology and drug toxicity has grown significantly owing to thousands of studies on this tiny vertebrate. This Review summarizes challenges and strengths of the model, discusses the 3Rs value that it can deliver, highlights translatable and untranslatable biology, and brings together reports from recent studies with zebrafish focusing on new drug discovery toxicology.
Collapse
Affiliation(s)
- Steven Cassar
- Preclinical Safety , AbbVie , North Chicago , Illinois 60064 , United States
| | - Isaac Adatto
- Stem Cell and Regenerative Biology , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Jennifer L Freeman
- School of Health Sciences , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Joshua T Gamse
- Drug Safety Evaluation , Bristol-Myers Squibb , New Brunswick , New Jersey 08901 , United States
| | | | - Christian Lawrence
- Aquatic Resources Program , Boston Children's Hospital , Boston , Massachusetts 02115 , United States
| | | | - Randall T Peterson
- Pharmacology and Toxicology, College of Pharmacy , University of Utah , Salt Lake City , Utah 84112 , United States
| | | | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department , Harvard University , Boston , Massachusetts 02138 , United States
| |
Collapse
|
49
|
Promoting zebrafish embryo tool to identify the effects of chemicals in the context of Water Framework Directive monitoring and assessment. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
50
|
de Oliveira M, Rodrigues BM, Olimpio RMC, Graceli JB, Gonçalves BM, Costa SMB, da Silva TM, De Sibio MT, Moretto FCF, Mathias LS, Cardoso DBM, Tilli HP, Freitas-Lima LC, Nogueira CR. Disruptive Effect of Organotin on Thyroid Gland Function Might Contribute to Hypothyroidism. Int J Endocrinol 2019; 2019:7396716. [PMID: 31178910 PMCID: PMC6501155 DOI: 10.1155/2019/7396716] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 02/11/2019] [Accepted: 03/05/2019] [Indexed: 12/05/2022] Open
Abstract
A considerable increase in endocrine abnormalities has been reported over the last few decades worldwide. A growing exposure to endocrine-disrupting chemicals (EDCs) can be one of the causes of endocrine disorders in populations, and these disorders are not only restricted to the metabolic hormone system but can also cause abnormal functions. Thyroid hormone (TH) disruption is defined as an abnormal change in TH production, transport, function, or metabolism, which results in some degree of impairment in body homeostasis. Many EDCs, including organotin compounds (OTCs), are environmental contaminants that are commonly found in antifouling paints used on ships and in several other industrial procedures. OTCs are obesogenic and can disrupt TH metabolism; however, abnormalities in thyroid function resulting from OTC exposure are less well understood. OTCs, one of the most prevalent EDCs that are encountered on a daily basis, modulate the thyroid axis. In most toxicology studies, it has been reported that OTCs might contribute to hypothyroidism.
Collapse
Affiliation(s)
- Miriane de Oliveira
- Department of Internal Clinic, São Paulo State University (UNESP), Medical School, Botucatu, SP, Brazil
| | - Bruna Moretto Rodrigues
- Department of Internal Clinic, São Paulo State University (UNESP), Medical School, Botucatu, SP, Brazil
| | | | | | - Bianca Mariani Gonçalves
- Department of Internal Clinic, São Paulo State University (UNESP), Medical School, Botucatu, SP, Brazil
| | - Sarah Maria Barneze Costa
- Department of Internal Clinic, São Paulo State University (UNESP), Medical School, Botucatu, SP, Brazil
| | - Tabata Marinda da Silva
- Department of Internal Clinic, São Paulo State University (UNESP), Medical School, Botucatu, SP, Brazil
| | - Maria Teresa De Sibio
- Department of Internal Clinic, São Paulo State University (UNESP), Medical School, Botucatu, SP, Brazil
| | | | - Lucas Solla Mathias
- Department of Internal Clinic, São Paulo State University (UNESP), Medical School, Botucatu, SP, Brazil
| | | | - Helena Paim Tilli
- Department of Internal Clinic, São Paulo State University (UNESP), Medical School, Botucatu, SP, Brazil
| | | | - Celia Regina Nogueira
- Department of Internal Clinic, São Paulo State University (UNESP), Medical School, Botucatu, SP, Brazil
| |
Collapse
|