1
|
Choi JW, Oh J, Bennett DH, Kannan K, Tancredi DJ, Miller M, Schmidt RJ, Shin HM. Gestational exposure to organophosphate esters and autism spectrum disorder and other non-typical development in a cohort with elevated familial likelihood. ENVIRONMENTAL RESEARCH 2024; 263:120141. [PMID: 39395555 DOI: 10.1016/j.envres.2024.120141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND Gestational exposure to organophosphate esters (OPEs) is known to affect offspring neurodevelopment in animal studies. However, epidemiological evidence is inconsistent. METHODS Participants were 277 mother-child pairs from MARBLES (Markers of Autism Risk in Babies - Learning Early Signs), a cohort with elevated familial likelihood of autism spectrum disorder (ASD). Nine OPE biomarker concentrations were quantified in maternal urine collected during the 2nd or 3rd trimesters of pregnancy. At age 3 years, children underwent clinical assessment for ASD and were classified into ASD, other non-typical development (non-TD), or typical development (TD). Multinomial logistic regression was used to estimate associations between each OPE biomarker and relative risk ratios for ASD and non-TD compared to TD. We examined effect modification by child sex and socioeconomic status. We also conducted a secondary analysis by using a continuous measure of ASD symptom severity as an outcome. Quantile-based g-computation was performed to examine the associations for an OPE mixture. RESULTS Overall, no significant association was observed between the concentrations of each OPE biomarker or their mixture and relative risk for either ASD or non-TD. Effect modifications by child sex and maternal education were not observed. When the analysis was stratified by homeownership, among non-homeowners, ASD likelihood was increased with increased levels of bis(1-chloro-2-propyl) phosphate, bis(butoxyethyl) phosphate, and sum of di-n-butyl phosphate and di-iso-butyl phosphate (DBUP/DIBP) (pint < 0.10). Higher DBUP/DIBP were associated with increased ASD symptom severity scores. CONCLUSION There was no clear evidence of gestational OPE exposure in association with relative risk for ASD; however, potential effect modification by homeownership was observed. Although our cohort includes children with elevated familial likelihood of ASD, this is the first study investigating the association between gestational OPE exposure and clinically-diagnosed ASD. Further research is needed to confirm our findings in the general population.
Collapse
Affiliation(s)
- Jeong Weon Choi
- Department of Environmental Science, Baylor University, Waco, TX, USA.
| | - Jiwon Oh
- Department of Public Health Sciences, University of California Davis, Davis, CA, USA
| | - Deborah H Bennett
- Department of Public Health Sciences, University of California Davis, Davis, CA, USA
| | - Kurunthachalam Kannan
- Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Daniel J Tancredi
- Department of Pediatrics, University of California, Davis, Sacramento, CA, USA
| | - Meghan Miller
- Department of Psychiatry & Behavioral Sciences, University of California, Davis, Sacramento, CA, USA
| | - Rebecca J Schmidt
- Department of Public Health Sciences, University of California Davis, Davis, CA, USA; MIND Institute, University of California Davis, Sacramento, CA, USA
| | - Hyeong-Moo Shin
- Department of Environmental Science, Baylor University, Waco, TX, USA
| |
Collapse
|
2
|
Mok S, Lee S, Lee N, Kim S, Choi K, Park J, Kho Y, Moon HB. Nationwide human biomonitoring strategy in Korea: Prioritization of novel contaminants using GC/TOF-MS with suspect and non-target screening. CHEMOSPHERE 2024; 369:143814. [PMID: 39608654 DOI: 10.1016/j.chemosphere.2024.143814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/12/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024]
Abstract
According to global regulations on hazardous chemicals, numerous alternatives have been manufactured and used in various consumer products. Suspect and non-target analyses are advanced analytical techniques used for identifying novel contaminants. In the present study, suspect and non-target analytical approaches using a gas chromatography coupled to a time-of-flight mass spectrometer were applied to identify novel contaminants in 40 pooled serum samples from a sub-population (n = 400) of the 2015-2017 national biomonitoring program. Suspect screening analysis was performed using an in-house library based on retention times and quantifier and qualifier ions for 222 contaminants, including persistent organic pollutants and emerging contaminants. Non-target analysis was performed by matching deconvoluted mass spectra to the spectral library from the National Institute of Standards and Technology. The suspect screening analysis identified organochlorinated pesticides, organophosphate esters, phthalate esters, and alternative plasticizers. Among the 68 compounds identified in the non-target analysis, siloxanes, novel organophosphate esters, and UV ink photoinitiators were considered candidates for future inclusion in the biomonitoring program based upon significant human exposure. Our findings demonstrate the feasibility of suspect and non-target analysis to identify novel contaminants to prioritize for inclusion within a national human biomonitoring program.
Collapse
Affiliation(s)
- Sori Mok
- Department of Marine Science and Convergence Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Sunggyu Lee
- Department of Marine Science and Convergence Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Nahyun Lee
- Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sungkyoon Kim
- Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyungho Choi
- Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeongim Park
- Department of Environmental Health Sciences, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Younglim Kho
- Department of Health, Environment & Safety, Eulji University, Seongnam, 13135, Gyeonggi-do, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea.
| |
Collapse
|
3
|
Bai C, Ge X, Huang Z, Qi Z, Ren H, Yu Y, An T. Polybrominated diphenyl ethers and their alternatives in soil cores from a typical flame-retardant production park: Vertical distribution and potential influencing factors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124597. [PMID: 39047890 DOI: 10.1016/j.envpol.2024.124597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/12/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
With the prohibition on the production and use of polybrominated diphenyl ethers (PBDEs), decabromodiphenyl ethane (DBDPE) and organophosphate flame retardants (OPFRs) have emerged as their alternatives. However, the vertical transport and associated influencing factors of these chemicals into soil are not clearly understood. To clarify the vertical distribution of the pollutants and related influencing factors, surface soil and soil core samples were collected at a depth in the range of 0.10-5.00 m in a typical 20-year-old flame-retardant production park and surrounding area. PBDEs and DBDPE show a clear point source distribution around the production park with their central concentrations up to 2.88 × 104 and 8.46 × 104 ng/g, respectively. OPFRs are mainly found in residential areas. The production conversion of PBDEs to DBDPE has obvious environmental characteristics. The vertical distribution revealed that most of the pollutants have penetrated into the soil 5.00 m or even deeper. The median concentrations of deca-BDE and DBDPE reached 50.9 and 9.85 × 103 ng/g, respectively, even at a depth of 5.00 m. Soil organic matter plays a crucial role in determining the vertical distribution, while soil clay particles have a greater impact on the high molecular weight and/or highly brominated compounds.
Collapse
Affiliation(s)
- Chifei Bai
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Xiang Ge
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Zhaofa Huang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Zenghua Qi
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Helong Ren
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| |
Collapse
|
4
|
Cui Y, Xiao Q, Zhang Q, Yang J, Liu Y, Hao W, Jiang J, Meng Q, Wei X. 1,2-bis(2,4,6-tribromophenoxy) ethane induces necroptosis via the co-competition of GAS5 and NUAK1 for miR-743a-5p in rat hepatocytes. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135375. [PMID: 39141942 DOI: 10.1016/j.jhazmat.2024.135375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/15/2024] [Accepted: 07/27/2024] [Indexed: 08/16/2024]
Abstract
The brominated flame retardant 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE) widely used in manufacturing is inevitably released into the environment, resulting in the exposure of organisms to BTBPE. Therefore, it is particularly important to explore its toxic mechanism. The liver is one of the main accumulating organs of BTBPE, but the mechanism underlying BTBPE hepatotoxicity has not been thoroughly investigated. In our study, BTBPE was administered to Sprague-Dawley (SD) rats and rat hepatocytes (BRL cells) in vivo and in vitro, respectively, and HE staining, AO/EB staining, fluorescent probes, qPCR, immunofluorescence, and dual-luciferase reporter assays were performed. We investigated the mechanism of action of growth arrest-specific 5 (GAS5), miR-743a-5p, and NUAK family kinase 1 (NUAK1) in BTBPE-induced necroptosis from the perspective of competing endogenous RNAs (ceRNAs) using NUAK1 inhibitors, siRNAs, mimics, and overexpression plasmids. Our study showed that exposure to BTBPE caused necroptosis in the liver and BRL cells, accompanied by an oxidation-reduction imbalance and an inflammatory response. It is worth noting that NUAK1 is a newly discovered upstream regulatory target for necroptosis. In addition, miR-743a-5p was shown to inhibit necroptosis by targeting NUAK1 and down-regulating NUAK1. GAS5 upregulates NUAK1 expression by competitively binding to miR-743a-5p, thereby inducing necroptosis. This study demonstrated, for the first time, that the GAS5-miR-743a-5p-NUAK1 axis is involved in the regulation of necroptosis via ceRNAs. Thus, GAS5 and NUAK1 induce necroptosis by competitively binding to miR-743a-5p.
Collapse
Affiliation(s)
- Yuan Cui
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Qianqian Xiao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Qiong Zhang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Jiawei Yang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Yuetong Liu
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Jianjun Jiang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Qinghe Meng
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Xuetao Wei
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China.
| |
Collapse
|
5
|
Erusappan E, Govindan M, Choi Y, Kim D. Enhanced photocatalytic oxidation of gaseous acetaldehyde using Fe-grafted ZnO nanocomposites in a continuous flow reactor. CHEMOSPHERE 2024; 365:143405. [PMID: 39326713 DOI: 10.1016/j.chemosphere.2024.143405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
The purification of indoor air is a crucial application of photocatalysis, emphasizing the urgent need for more efficient photocatalytic systems. While photocatalytic oxidation of volatile organic compounds (VOCs) has been extensively studied in the liquid phase, effective removal of VOCs in the gaseous state in indoor air remains a significant challenge. This study focuses on the continuous gas-phase oxidation of gaseous acetaldehyde using ZnO and different weight percentage of Fe-grafted ZnO catalysts under light irradiation. The surface analysis using XPS and HR-TEM confirmed the presence of Fe(III) species, and UV-Vis-DRS analysis demonstrated a shift in the absorption edge towards the visible region. Real-time gas FTIR monitoring of acetaldehyde oxidation revealed that the 0.7% Fe(III)-grafted ZnO composite catalyst achieved a higher removal efficiency (74%) compared to bare ZnO and other Fe(III)-grafted ZnO ratios. The enhanced photocatalytic efficiency of acetaldehyde by Fe(III)-grafted ZnO supports indicated direct interfacial charge transfer (IFCT) from ZnO to Fe(III) species. Additionally, the Fe(III) cluster effectively improved the separation of electrons and holes, preventing their recombination and accelerating O₂ activation to generate O₂•⁻ radicals, which lead to high photocatalytic performance. The 0.7% Fe(III)-grafted ZnO also maintained its performance over a prolonged period of 360 min, showing excellent structural stability and durability across multiple cycles. This study highlights the possible synergistic effect of the ZnO and Fe systems, offering a new perspective on the photocatalytic decomposition of gaseous acetaldehyde in indoor environments.
Collapse
Affiliation(s)
- Elangovan Erusappan
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Muthuraman Govindan
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Youngyu Choi
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Daekeun Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea.
| |
Collapse
|
6
|
Jagić K, Dvoršćak M, Tariba Lovaković B, Klinčić D. Polybrominated diphenyl ethers in paired dust-breast milk samples: Levels, predictors of contamination, and health risk assessment for infants and mothers. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 111:104547. [PMID: 39218329 DOI: 10.1016/j.etap.2024.104547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
An integrated study on the levels of 7 polybrominated diphenyl ethers (PBDEs) in house dust and breast milk samples from women (N = 30) living in these households was conducted. ∑PBDEs ranged from
Collapse
Affiliation(s)
- Karla Jagić
- Division of Environmental Hygiene, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, Zagreb 10001, Croatia
| | - Marija Dvoršćak
- Division of Environmental Hygiene, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, Zagreb 10001, Croatia
| | - Blanka Tariba Lovaković
- Division of Toxicology, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, Zagreb 10001, Croatia
| | - Darija Klinčić
- Division of Environmental Hygiene, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, Zagreb 10001, Croatia.
| |
Collapse
|
7
|
Kreutz A, Oyetade OB, Chang X, Hsieh JH, Behl M, Allen DG, Kleinstreuer NC, Hogberg HT. Integrated Approach for Testing and Assessment for Developmental Neurotoxicity (DNT) to Prioritize Aromatic Organophosphorus Flame Retardants. TOXICS 2024; 12:437. [PMID: 38922117 PMCID: PMC11209292 DOI: 10.3390/toxics12060437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024]
Abstract
Organophosphorus flame retardants (OPFRs) are abundant and persistent in the environment but have limited toxicity information. Their similarity in structure to organophosphate pesticides presents great concern for developmental neurotoxicity (DNT). However, current in vivo testing is not suitable to provide DNT information on the amount of OPFRs that lack data. Over the past decade, an in vitro battery was developed to enhance DNT assessment, consisting of assays that evaluate cellular processes in neurodevelopment and function. In this study, behavioral data of small model organisms were also included. To assess if these assays provide sufficient mechanistic coverage to prioritize chemicals for further testing and/or identify hazards, an integrated approach to testing and assessment (IATA) was developed with additional information from the Integrated Chemical Environment (ICE) and the literature. Human biomonitoring and exposure data were identified and physiologically-based toxicokinetic models were applied to relate in vitro toxicity data to human exposure based on maximum plasma concentration. Eight OPFRs were evaluated, including aromatic OPFRs (triphenyl phosphate (TPHP), isopropylated phenyl phosphate (IPP), 2-ethylhexyl diphenyl phosphate (EHDP), tricresyl phosphate (TMPP), isodecyl diphenyl phosphate (IDDP), tert-butylphenyl diphenyl phosphate (BPDP)) and halogenated FRs ((Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP), tris(2-chloroethyl) phosphate (TCEP)). Two representative brominated flame retardants (BFRs) (2,2'4,4'-tetrabromodiphenyl ether (BDE-47) and 3,3',5,5'-tetrabromobisphenol A (TBBPA)) with known DNT potential were selected for toxicity benchmarking. Data from the DNT battery indicate that the aromatic OPFRs have activity at similar concentrations as the BFRs and should therefore be evaluated further. However, these assays provide limited information on the mechanism of the compounds. By integrating information from ICE and the literature, endocrine disruption was identified as a potential mechanism. This IATA case study indicates that human exposure to some OPFRs could lead to a plasma concentration similar to those exerting in vitro activities, indicating potential concern for human health.
Collapse
Affiliation(s)
- Anna Kreutz
- Inotiv, Research Triangle Park, NC 27560, USA; (A.K.); (O.B.O.); (X.C.); (D.G.A.)
| | - Oluwakemi B. Oyetade
- Inotiv, Research Triangle Park, NC 27560, USA; (A.K.); (O.B.O.); (X.C.); (D.G.A.)
| | - Xiaoqing Chang
- Inotiv, Research Triangle Park, NC 27560, USA; (A.K.); (O.B.O.); (X.C.); (D.G.A.)
| | - Jui-Hua Hsieh
- NIH/NIEHS/DTT/PTB, Research Triangle Park, NC 27560, USA;
| | - Mamta Behl
- Neurocrine Biosciences Inc., San Diego, CA 92130, USA;
| | - David G. Allen
- Inotiv, Research Triangle Park, NC 27560, USA; (A.K.); (O.B.O.); (X.C.); (D.G.A.)
| | | | | |
Collapse
|
8
|
Tian Z, Li J, Tang H, Liu W, Hou H, Wang C, Li D, Chen G, Xia T, Wang A. ZLN005 alleviates PBDE-47 induced impairment of mitochondrial translation and neurotoxicity through PGC-1α/ERRα axis. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134331. [PMID: 38677116 DOI: 10.1016/j.jhazmat.2024.134331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/28/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024]
Abstract
Recent studies are identified the mitochondria as critical targets of 2, 2', 4, 4'-tetrabromodiphenyl ether (PBDE-47) induced neurotoxicity. This study aimed at examining the impact of PBDE-47 exposure on mitochondrial translation, and its subsequent effect on PBDE-47 neurotoxicity. The Sprague-Dawley (SD) rat model and neuroendocrine pheochromocytoma (PC12) cells were adopted for the measurements of mitochondrial ATP levels, mitochondrial translation products, and expressions of important mitochondrial regulators, such as required meiotic nuclear division 1 (RMND1), estrogen-related receptor α (ERRα), and peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α). To delve into the role of PGC-1α/ERRα axis in mitochondrial translation, 2-(4-tert-butylphenyl) benzimidazole (ZLN005) was employed. Both cellular and animal model results shown that PBDE-47 impeded PGC-1α/ERRα axis and mitochondrial translation. PBDE-47 suppressed mitochondrial function in rat hippocampus and PC12 cells by decreasing relative mitochondrial DNA (mtDNA) content, mitochondrial translation products, and mitochondrial ATP levels. Particularly, ZLN005 reversed PBDE-47 neurotoxicity by enhancing mitochondrial translation through activation of PGC-1α/ERRα axis, yet suppressing PGC-1α with siRNA attenuates its neuroprotective effect in vitro. In conclusion, this work highlights the importance of mitochondrial translation in PBDE-47 neurotoxicity by presenting results from cellular and animal models and suggests a potential therapeutic approach through activation of PGC-1α/ERRα axis. ENVIRONMENTAL IMPLICATION: PBDEs have attracted extensive attention because of their high lipophilicity, persistence, and detection levels in various environmental media. Increasing evidence has shown that neurodevelopmental disorders in children are associated with PBDE exposure. Several studies have also found that perinatal PBDE exposure can cause long-lasting neurobehavioral abnormalities in experimental animals. Our recent studies have also demonstrated the impact of PBDE-47 exposure on mitochondrial biogenesis and dynamics, leading to memory and neurobehavioral deficits. Therefore, we explore whether the pathological mechanism of PBDE-47-induced neurotoxicity involves the regulation of mitochondrial translation through the PGC-1α/ERRα axis.
Collapse
Affiliation(s)
- Zhiyuan Tian
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jing Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Huayang Tang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Wenhui Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Haoqi Hou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Chenxi Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Dongjie Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Gaoshuai Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Tao Xia
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| | - Aiguo Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
9
|
Yang J, Yao Y, Li X, He A, Chen S, Wang Y, Dong X, Chen H, Wang Y, Wang L, Sun H. Nontarget Identification of Novel Organophosphorus Flame Retardants and Plasticizers in Indoor Air and Dust from Multiple Microenvironments in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7986-7997. [PMID: 38657129 DOI: 10.1021/acs.est.4c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The indoor environment is a typical source for organophosphorus flame retardants and plasticizers (OPFRs), yet the source characteristics of OPFRs in different microenvironments remain less clear. This study collected 109 indoor air samples and 34 paired indoor dust samples from 4 typical microenvironments within a university in Tianjin, China, including the dormitory, office, library, and information center. 29 target OPFRs were analyzed, and novel organophosphorus compounds (NOPs) were identified by fragment-based nontarget analysis. Target OPFRs exhibited the highest air and dust concentrations of 46.2-234 ng/m3 and 20.4-76.0 μg/g, respectively, in the information center, where chlorinated OPFRs were dominant. Triphenyl phosphate (TPHP) was the primary OPFR in office air, while tris(2-chloroethyl) phosphate dominated in the dust. TPHP was predominant in the library. Triethyl phosphate (TEP) was ubiquitous in the dormitory, and tris(2-butoxyethyl) phosphate was particularly high in the dust. 9 of 25 NOPs were identified for the first time, mainly from the information center and office, such as bis(chloropropyl) 2,3-dichloropropyl phosphate. Diphenyl phosphinic acid, two hydroxylated and methylated metabolites of tris(2,4-ditert-butylphenyl) phosphite (AO168), and a dimer phosphate were newly reported in the indoor environment. NOPs were widely associated with target OPFRs, and their human exposure risk and environmental behaviors warrant further study.
Collapse
Affiliation(s)
- Ji Yang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaoxiao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ana He
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shijie Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yulong Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaoyu Dong
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
10
|
Dvoršćak M, Živančev J, Jagić K, Buljovčić M, Antić I, Đurišić-Mladenović N, Klinčić D. Contamination levels, influencing factors, and risk assessment of polybrominated diphenyl ethers in house dust of northern Serbia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:25033-25045. [PMID: 38466382 DOI: 10.1007/s11356-024-32836-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
Polybrominated diphenyl ethers (PBDEs) are a group of compounds that, due to their applications, are considered mainly indoor contaminants. To obtain the first information about the presence of PBDEs in Serbia, dust samples (n = 50) were collected in settlements in the northern Serbian province of Vojvodina. The selected/target congeners (BDE-28, 47, 99, 100, 153, 154, and 183) were extracted from house dust by microwave-assisted extraction technique, and purified extracts were analyzed on a dual-column gas chromatograph with micro-electron capture detectors. A wide range of ΣPBDEs was detected (0.295 to 394 ng g-1 dust), which reflects large differences in contamination among the examined homes. For the majority of samples (72%), ΣPBDEs were lower than 5 ng g-1 indicating that people living in Vojvodina province are exposed to low concentrations of PBDEs present in their households. Based on principal component analysis (PCA), balcony areas and age of the house positively correlate with the PBDE congeners with higher detection frequencies (≥ 50%), namely, with BDE-99, BDE-153, and BDE-183. Statistically significant positive correlation (p < 0.01) was obtained for BDE-99 and the number of household's members. Estimated daily intakes (EDItot) were calculated for ingestion and dermal absorption of dust for two age groups-adults and toddlers. These are the first data on PBDE status in the area of the Western Balkan, and the health risk assessment indicates that PBDE levels obtained in household dust do not pose a risk for human health.
Collapse
Affiliation(s)
- Marija Dvoršćak
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, Zagreb, Croatia
| | - Jelena Živančev
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar cara Lazara 1, 21 000, Novi Sad, Serbia
| | - Karla Jagić
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, Zagreb, Croatia
| | - Maja Buljovčić
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar cara Lazara 1, 21 000, Novi Sad, Serbia
| | - Igor Antić
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar cara Lazara 1, 21 000, Novi Sad, Serbia.
| | - Nataša Đurišić-Mladenović
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar cara Lazara 1, 21 000, Novi Sad, Serbia
| | - Darija Klinčić
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, Zagreb, Croatia
| |
Collapse
|
11
|
Belova L, Roggeman M, Ouden FD, Cleys P, Ait Bamai Y, Yin S, Zhao L, Bombeke J, Peters J, Berghmans P, Gys C, van Nuijs ALN, Poma G, Covaci A. Identification, semi-quantification and risk assessment of contaminants of emerging concern in Flemish indoor dust through high-resolution mass spectrometry. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123475. [PMID: 38331241 DOI: 10.1016/j.envpol.2024.123475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
Indoor dust can contribute substantially to human exposure to known and contaminants of emerging concern (CECs). Novel compounds with high structural variability and different homologues are frequently discovered through screening of the indoor environment, implying that constant monitoring is required. The present study aimed at the identification and semi-quantification of CECs in 46 indoor dust samples collected in Belgium by liquid chromatography high-resolution mass spectrometry. Samples were analyzed applying a targeted and suspect screening approach; the latter based on a suspect list containing >4000 CECs. This allowed the detection of a total of 55 CECs, 34 and 21 of which were identified with confidence level (CL) 1/2 or CL 3, respectively. Besides numerous known contaminants such as di(2-ethylhexyl) phthalate (DEHP), di(2-ethylhexyl) adipate (DEHA) or tris(2-butoxyethyl) phosphate (TBOEP) which were reported with detection frequencies (DFs) > 90%, several novel CECs were annotated. These included phthalates with differing side chains, such as decyl nonyl and decyl undecyl phthalate detected with DFs >80% and identified through the observation of characteristic neutral losses. Additionally, two novel organophosphate flame retardants not previously described in indoor dust, i.e. didecyl butoxyethoxyethyl phosphate (DDeBEEP) and bis(butoxyethyl) butyl phosphate (BBEBP), were identified. The implementation of a dedicated workflow provided semi-quantitative concentrations for a set of suspects. Such data obtained for novel phthalates were in the same order of magnitude as the concentrations observed for legacy phthalates indicating their high relevance for human exposure. From the semi-quantitative data, estimated daily intakes and resulting hazard quotients (HQs) were calculated to estimate the exposure and potential health effects. Neither of the obtained HQ values exceeded the risk threshold, indicating no expected adverse health effects.
Collapse
Affiliation(s)
- Lidia Belova
- Toxicological Centre, University of Antwerp, Antwerp, Belgium.
| | | | | | - Paulien Cleys
- Toxicological Centre, University of Antwerp, Antwerp, Belgium
| | - Yu Ait Bamai
- Toxicological Centre, University of Antwerp, Antwerp, Belgium; Center for Environmental and Health Sciences (CEHS), Hokkaido University, Sapporo, Japan
| | - Shanshan Yin
- Toxicological Centre, University of Antwerp, Antwerp, Belgium; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Lu Zhao
- Toxicological Centre, University of Antwerp, Antwerp, Belgium; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Jasper Bombeke
- Toxicological Centre, University of Antwerp, Antwerp, Belgium
| | - Jan Peters
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Patrick Berghmans
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Celine Gys
- Toxicological Centre, University of Antwerp, Antwerp, Belgium
| | | | - Giulia Poma
- Toxicological Centre, University of Antwerp, Antwerp, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
12
|
Greco M, Al-Enezi E, Amao A, Francescangeli F, Cavaliere M, Bucci C, Toscanesi M, Trifuoggi M, Pawlowski J, Frontalini F. Deciphering the impact of decabromodiphenyl ether (BDE-209) on benthic foraminiferal communities: Insights from Cell-Tracker Green staining and eDNA metabarcoding. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133652. [PMID: 38309158 DOI: 10.1016/j.jhazmat.2024.133652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/11/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
This study investigates the ecotoxicological effects of BDE-209, a persistent organic pollutant (POP) prevalent in Kuwait's coastal-industrial areas, on benthic foraminiferal communities. We conducted a mesocosm experiment in which we exposed benthic foraminiferal communities sampled from the coastal-industrial areas of Kuwait to a gradient of BDE-209 concentrations (0.01 to 20 mg/kg). The impact of exposure was assessed using live-staining and metabarcoding techniques. Despite the significantly different taxonomic compositions detected by the two techniques, our results show that BDE-209 significantly affects foraminiferal communities, with moderately high concentrations leading to reduced α-diversity and considerable taxonomic shifts in both molecular and morphological assemblages. At concentrations of 10 and 20 mg/kg, no living foraminifera were detected after 8 weeks, suggesting a threshold for their survival under BDE-209 exposure. The parallel responses of molecular and morphological communities confirm the reliability of both assessment methods. This study is the first to investigate the reaction of eukaryotic communities, specifically foraminifera, to POPs such as BDE-209, generating valuable insights that have the potential to enhance field studies and aid the refinement of sediment quality guidelines.
Collapse
Affiliation(s)
- Mattia Greco
- Institut de Ciències del Mar, Passeig Marítim de la Barceloneta, 37-49, Barcelona, Spain.
| | - Eqbal Al-Enezi
- Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait.
| | - Abduljamiu Amao
- Center for Integrative Petroleum Research, College of Petroleum Engineering and Geosciences, King Fahd University of Petroleum and Minerals, P.O. Box 5070, 31261 Dhahran, Saudi Arabia.
| | - Fabio Francescangeli
- Department of Geosciences, University of Fribourg, Chemin du Musée 6, 1700 Fribourg/Freiburg, Switzerland.
| | - Marco Cavaliere
- Department of Pure and Applied Sciences, Urbino University, Campus Scientifico, via Ca le Suore 2/4, 61029 Urbino, Italy.
| | - Carla Bucci
- Department of Pure and Applied Sciences, Urbino University, Campus Scientifico, via Ca le Suore 2/4, 61029 Urbino, Italy.
| | - Maria Toscanesi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Naples, Italy.
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Naples, Italy.
| | - Jan Pawlowski
- ID-Gene ecodiagnostics Ltd, 109 ch. du Pont-du-Centenaire, 1228 Plan-les-Ouates, Switzerland; Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, Sopot 81-712, Poland.
| | - Fabrizio Frontalini
- Department of Pure and Applied Sciences, Urbino University, Campus Scientifico, via Ca le Suore 2/4, 61029 Urbino, Italy.
| |
Collapse
|
13
|
Ma Y, Stubbings WA, Jin J, Cline-Cole R, Abdallah MAE, Harrad S. Impact of Legislation on Brominated Flame Retardant Concentrations in UK Indoor and Outdoor Environments: Evidence for Declining Indoor Emissions of Some Legacy BFRs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4237-4246. [PMID: 38386008 PMCID: PMC10919073 DOI: 10.1021/acs.est.3c05286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
Concentrations of polybrominated diphenyl ethers, hexabromocyclododecane (HBCDD), and novel brominated flame retardants (NBFRs) were measured in indoor dust, indoor air, and outdoor air in Birmingham, UK. Concentrations of ΣBFRs ranged from 490 to 89,000 ng/g, 46-14,000 pg/m3, and 22-11,000 pg/m3, respectively, in UK indoor dust, indoor air, and outdoor air. BDE-209 and decabromodiphenyl ethane (DBDPE) were the main contributors. The maximum concentration of DBDPE (10,000 pg/m3) in outdoor air is the highest reported anywhere to date. In contrast with previous studies of outdoor air in Birmingham, we observed significant correlations between concentrations of tri- to hepta-BDEs and HBCDD and temperature. This may suggest that primary emissions from ongoing use of these BFRs have diminished and that secondary emissions (e.g., evaporation from soil) are now a potentially major source of these BFRs in outdoor air. Conversely, the lack of significant correlations between temperature and concentrations of BDE-209 and DBDPE may indicate that ongoing primary emissions from indoor sources remain important for these BFRs. Further research to clarify the relative importance of primary and secondary sources of BFRs to outdoor air is required. Comparison with earlier studies in Birmingham reveals significant (p < 0.05) declines in concentrations of legacy BFRs, but significant increases for NBFRs over the past decade. While there appear minimal health burdens from BFR exposure for UK adults, dust ingestion of BDE-209 may pose a significant risk for UK toddlers.
Collapse
Affiliation(s)
- Yulong Ma
- School
of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
| | - William A. Stubbings
- School
of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Jingxi Jin
- School
of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Reginald Cline-Cole
- Department
of African Studies & Anthropology, School of History and Cultures, University of Birmingham, Birmingham B15 2TT, U.K.
| | | | - Stuart Harrad
- School
of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
| |
Collapse
|
14
|
Cheng R, Sun J, Liu ZT, Wu W, Song M, Lu YT, Hang TJ. Kelp as a biomonitor of persistent organic pollutants in coastal areas of China: Contamination levels and human health risk. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116021. [PMID: 38295738 DOI: 10.1016/j.ecoenv.2024.116021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Kelp, the brown alga distributed in coastal areas all over the world, is also an important medicine food homology product in China. However, the levels and profiles of persistent organic pollutants (POPs) in kelp have not been thoroughly investigated to date. Polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and emerging bromine flame retardants (eBFRs) were evaluated in 41 kelp samples from the main kelp producing areas in China. The concentrations of total PCBs, PBDEs and eBFRs were in the range of 0.321-4.24 ng/g dry weight (dw), 0.255-25.5 ng/g dw and 3.00 × 10-3-47.2 ng/g dw in kelp, respectively. The pollutant pattern was dominated by decabromodiphenyl ethane (DBDPE, 13.0 ± 11.7 ng/g dw) followed in decreasing order by BDE-209 (2.74 ± 4.09 ng/g dw), CB-11 (1.32 ± 1.06 ng/g dw). The tested results showed that kelp could reflect the pollution status of PCBs, PBDEs and eBFRs, indicating the suitability of kelp as a biomonitor of these harmful substances. Finally, the data obtained was used to evaluate human non-cancer and cancer risks of PCBs and PBDEs via kelp consumption for Chinese. Though the calculated risk indices were considered acceptable according to the international standards even in the worst scenarios, the POPs levels in kelp should be monitored continuously as a good environmental indicator.
Collapse
Affiliation(s)
- Rui Cheng
- Department of Pharmaceutical Analysis, China Pharmaceutical University, No. 24 TongJia Xiang, 210009 Nanjing, Jiangsu, PR China
| | - Jing Sun
- Jiangsu Institute for Food and Drug Control, 210019 Nanjing, Jiangsu, PR China.
| | - Zhi-Tong Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, No. 24 TongJia Xiang, 210009 Nanjing, Jiangsu, PR China
| | - Wei Wu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, No. 24 TongJia Xiang, 210009 Nanjing, Jiangsu, PR China
| | - Min Song
- Department of Pharmaceutical Analysis, China Pharmaceutical University, No. 24 TongJia Xiang, 210009 Nanjing, Jiangsu, PR China
| | - Yu-Ting Lu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, No. 24 TongJia Xiang, 210009 Nanjing, Jiangsu, PR China
| | - Tai-Jun Hang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, No. 24 TongJia Xiang, 210009 Nanjing, Jiangsu, PR China.
| |
Collapse
|
15
|
Shi S, Feng Q, Zhang J, Wang X, Zhao L, Fan Y, Hu P, Wei P, Bu Q, Cao Z. Global patterns of human exposure to flame retardants indoors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169393. [PMID: 38104845 DOI: 10.1016/j.scitotenv.2023.169393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
To fill the knowledge gaps regarding the global patterns of human exposure to flame retardants (FRs) (i.e., brominated flame retardants (BFRs) and organophosphorus flame retardants (OPFRs)), data on the levels and distributions of FRs in external and internal exposure mediums, including indoor dust, indoor air, skin wipe, serum and urine, were summarized and analysed. Comparatively, FR levels were relatively higher in developed regions in all mediums, and significant positive correlations between FR contamination and economic development level were observed in indoor dust and air. Over time, the concentration of BFRs showed a slightly decreasing trend in all mediums worldwide, whereas OPFRs represented an upward tendency in some regions (e.g., the USA and China). The occurrence levels of FRs and their metabolites in all external and internal media were generally correlated, implying a mutual indicative role among them. Dermal absorption generally contributed >60% of the total exposure of most FR monomers, and dust ingestion was dominant for several low volatile compounds, while inhalation was found to be negligible. The high-risk FR monomers (BDE-47, BDE-99 and TCIPP) identified by external exposure assessment showed similarity to the major FRs or metabolites observed in internal exposure mediums, suggesting the feasibility of using these methods to characterize human exposure and the contribution of indoor exposure to the human burden of FRs. This review highlights the significant importance of exposure assessment based on multiple mediums for future studies.
Collapse
Affiliation(s)
- Shiyu Shi
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Qian Feng
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Jiayi Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Xiaoyu Wang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Leicheng Zhao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Yujuan Fan
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Pengtuan Hu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Pengkun Wei
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Qingwei Bu
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
16
|
Lv YZ, Luo XJ, Qi XM, Guan KL, Zeng YH, Mai BX. A comprehensive assessment of external exposure to persistent halogenated organic pollutants for residents in an e-waste recycling site, South China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123120. [PMID: 38072019 DOI: 10.1016/j.envpol.2023.123120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
Human skin wipes from 30 participants, air, dust, and food items were collected from a former electronic waste site in South China to provide a comprehensive understanding of residents' exposure to halogenated flame retardants (HFRs) and polychlorinated biphenyls (PCBs). The total concentration of halogenated organic pollutants (HOPs) in the dust, air, food and skin wipes ranged 240-25000 ng/g, 130-2500 pg/m3, 0.08-590 ng/g wet weight, and 69-28000 ng/m2, respectively. Wild fish, vegetables, and air were dominated by PCBs, whereas dust, livestock, and poultry were dominated by HFRs. The HOP concentrations were several orders of magnitude higher in local foodstuffs than in market foodstuffs. The chemical composition on the forehead was remarkably different from that on the hand. The importance of different exposure routes depends on the residents' food choices, except decabromodiphenyl ethane (DBDPE). For residents who consumed a 100-foot diet (mainly egg) and local wild fish, diet ingestion overwhelmed other exposure routes, and PCBs were mainly contributed by fish and HFRs by egg. For residents who consumed market food, the dermal absorption of most PCB congeners and dust ingestion of highly brominated flame retardants were relatively prominent. Inhalation was found to be a crucial route for pentabromoethylbenzene (PBEB).
Collapse
Affiliation(s)
- Yin-Zhi Lv
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China; Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, 510640, PR China
| | - Xiao-Jun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, PR China.
| | - Xue-Meng Qi
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China
| | - Ke-Lan Guan
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China
| | - Yan-Hong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, PR China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, PR China
| |
Collapse
|
17
|
Liu Y, Lin Q, Zheng J, Fan X, Xu K, Ma Y, He J. Magnetic Fe-doped silicon carbide induced microwave activated persulfate for decabromodiphenyl ether removal: Mechanism and unique degradation pathway. CHEMOSPHERE 2024; 349:140841. [PMID: 38040250 DOI: 10.1016/j.chemosphere.2023.140841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/09/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
In this work, the magnetic nanocomposite Fe@SiC was prepared by a hydrothermal method and determined by SEM, XRD, XPS, FTIR and VNA. Fe3O4 particles were loaded onto SiC with great success, and the synthesized composites had favorable microwave absorption properties. Fe@SiC was used to activate persulfate in a microwave field for the degradation of BDE209 in soil. Specifically, the synergistic interaction between microwaves and Fe@SiC showed excellent catalytic performance in activating PS to degrade BDE209 (90.1% BDE209 degradation in 15 min). The presence of •OH, O2•- and 1O2 was demonstrated based on quench trapping and EPR experiments. LC‒MS was applied to determine the intermediates and propose the possible degradation pathway for BDE209 in the MW/Fe@SiC/PS system, and it was found that BDE209 produced almost no lower brominated diphenyl ethers. Therefore, the toxicity of BDE209 was found to be reduced using toxicity assessment software. Overall, this work provides an effective approach for the degradation of BDE209 in environmental remediation.
Collapse
Affiliation(s)
- Yuxin Liu
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qintie Lin
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Junli Zheng
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xindan Fan
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Kehuan Xu
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yongjie Ma
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jin He
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
18
|
Cui Y, Xiao Q, Wang Z, Zhang Q, Liu Y, Hao W, Jiang J, Meng Q, Wei X. 1,2-bis(2,4,6-tribromophenoxy) ethane, a novel brominated flame retardant, disrupts intestinal barrier function via the IRX3/NOS2 axis in rat small intestine. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132597. [PMID: 37804762 DOI: 10.1016/j.jhazmat.2023.132597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/09/2023]
Abstract
Novel brominated flame retardants are widely used in electronics, textiles, furniture, and other products; they can enter the human body through ingestion and respiration and cause harm to the human body, and have been proven to have potential biological toxicity and accumulation effects. 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE) is a widely used novel brominated flame retardant; however, there is a lack of research on its mechanism of toxicity, particularly that of intestinal toxicity. Currently, studies on the functionality of iroquois homeobox 3 (IRX3) are extremely limited. In our study, BTBPE was administered to Sprague-Dawley (SD) rats and rat small intestinal crypt epithelial cells (IEC6 cells) in vivo and in vitro, respectively, and hematoxylin and eosin (HE), immunohistochemical, Alcian blue-periodic acid-Schiff (AB-PAS), CCK8, acridine orange/ethidium bromide (AO/EB), fluorescent probes, qPCR, western blotting, and immunofluorescence analyses were performed. To explore the damage mechanism of BTBPE, we used siRNA to silence IRX3 and iNOs-IN-1 (yeast extract-peptone-wheat; YPW) to inhibit nitric oxide synthase 2 (NOS2). The results showed that BTBPE exposure caused inflammation and necroptosis in the jejunum and ileum, as well as destruction of the tight junctions and mucus layer. Moreover, BTBPE activated the IRX3/NOS2 axis both in vivo and in vitro. Silencing IRX3 or inhibiting NOS2 inhibits necroptosis and restores tight junctions in IEC6 cells. In conclusion, our study found that in the jejunum, ileum, and IEC6 cells, BTBPE exposure caused necroptosis and tight junction destruction by activating the IRX3/NOS2 axis. Blocking the IRX3/NOS2 axis can effectively inhibit necroptosis and restore tight junction. In addition, BTBPE exposure caused inflammation and loss of the mucous layer in the jejunum and ileum. Our study is the first to explore the mechanism of intestinal damage caused by BTBPE exposure and to discover new biological functions regulated by the IRX3/NOS2 axis, providing new research directions for necroptosis and tight junctions.
Collapse
Affiliation(s)
- Yuan Cui
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Qianqian Xiao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Zhenyu Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Qiong Zhang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Yuetong Liu
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Jianjun Jiang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Qinghe Meng
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Xuetao Wei
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China.
| |
Collapse
|
19
|
Ali N, Ismail IMI, Alamri SH, Alhakamy NA, Summan A, Rehan M, Alshareef BS, Rajeh N, Eqani SAMAS. Toxic trespassers: Uncovering phthalates and organophosphate flame retardants in children's rooms and their health implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166663. [PMID: 37652382 DOI: 10.1016/j.scitotenv.2023.166663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/21/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
Organophosphate flame retardants (OPEs) and phthalates have garnered significant attention due to their widespread presence in indoor environments. Many recent investigations have reported extensive contamination of indoor dust, air, children's toys, and other environmental compartments with these chemicals. This research aimed to analyze OPEs and phthalates in air (PM10) and dust samples collected from the bedrooms of children (N = 30) residing in various households in Jeddah, Saudi Arabia. High mean levels (ng/g) of phthalates namely DEHP (1438600) and DnBP (159200) were found in indoor dust while TPhP (5620) was the major OPEs in indoor dust. Similarly, DEHP and DnBP were the predominant phthalates in PM10 samples, exhibiting mean levels of 560 and 680 ng/m3, respectively. However, TCPP was the main OPEs with average levels of 72 ng/m3 in PM10 samples. The majority of individual phthalates and OPEs were detected in 90-100 % of the dust samples, whereas in PM10 samples, their presence ranged from 25 % to 100 %. The concentrations of OPEs were notably greater than those of PBDEs and other BFRs previously reported in these samples, suggesting their broader use than alternative BFRs. The estimated long-term non-carcinogenic risk, hazardous index (HI) and daily exposure via dust for children was above threshold levels for DEHP. On the other hand, the cumulative risk of cancer was below the concerning levels. Further research is required to explore diverse groups of chemicals in indoor microenvironments particularly significant for children, such as kindergartens, primary schools, and their rooms at home.
Collapse
Affiliation(s)
- Nadeem Ali
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Iqbal M I Ismail
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sultan H Alamri
- Department of Family Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia; Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Summan
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Rehan
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Nisreen Rajeh
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | | |
Collapse
|
20
|
Cao M, Xu T, Song Y, Wang H, Wei S, Yin D. 2,2',4,4'-tetrabromodiphenyl ether causes depigmentation in zebrafish larvae via a light-mediated pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165382. [PMID: 37422226 DOI: 10.1016/j.scitotenv.2023.165382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are organic pollutants widely detected in various environmental media due to their high persistence and bioaccumulation. PBDE-induced visual impairment and neurotoxicity were previously demonstrated using zebrafish (Danio rerio) models, and recent research reported the phenotypic depigmentation effect of PBDEs at high concentrations on zebrafish, but whether those effects are still present at environment-relevant levels is still unclear. Herein, we performed both phenotypic examination and mechanism investigation in zebrafish embryos (48 hpf) and larvae (5 dpf) about their pigmentation status when exposing to PBDE congener BDE-47 (2,2',4,4'-tetrabrominated diphenyl ether) at levels from 0.25 to 25 μg/L. Results showed that low-level BDE-47 can restrain the relative melanin abundance of zebrafish larvae to 70.47% (p < 0.05) and 61.54% (p < 0.01) respectively under 2.5 and 25 μg/L BDE-47 compared with control, and the thickness of retinal pigment epithelium (RPE) remarkably reduced from 571.4 nm to 350.3 nm (p < 0.001) under 25 μg/L BDE-47 exposure. We also observed disrupted expressions of melanin synthesis genes and disorganized mitfa differentiation patterns based on Tg(mifta:EGFP), as well as visual impairment resulting from thinner RPE. Considering both processes of visual development and melanin synthesis are highly sensitive to ambient light conditions, we prolonged the light regime of maintaining zebrafish larvae from 14 hours light versus 10 hours dark (14L:10D) to 18 hours light versus 6 hours dark (18L:6D). Lengthening photoperiod successfully rescued the fluorescent level of mitfa in zebrafish epidermis and most gene expressions associated with melanin synthesis under 25 μg/L BDE-47 exposure to the normal level. In conclusion, our work reported the effects of low-level PBDEs on melanin production using zebrafish embryos and larvae, and identified the potential role of a light-mediated pathway in the neurotoxic mechanism of PBDEs.
Collapse
Affiliation(s)
- Miao Cao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yiqun Song
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Huan Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Sheng Wei
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
21
|
Chen W, Oh JS, Lim JE, Moon HB. Occurrence, time trends, and human exposure of siloxanes and synthetic musk compounds in indoor dust from Korean homes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115538. [PMID: 37806134 DOI: 10.1016/j.ecoenv.2023.115538] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/10/2023]
Abstract
Siloxanes and synthetic musk compounds (SMCs) have been widely used as additives in household and personal care products. Humans are easily exposed to siloxanes and SMCs originating from these products through ingestion and dermal absorption of indoor dust. In the present study, indoor dust samples were analyzed for 19 siloxanes (cyclic and linear) and 12 SMCs (polycyclic, macrocyclic, and nitro musks) to assess their occurrence, time trends over time, source, and health risks. A total of 18 siloxanes and 10 SMCs were detected in all indoor dust samples obtained from 2011⎯2021, indicating widespread and long-term contamination. Higher detection frequencies and concentrations were associated with siloxanes and SMCs with higher use and strong resistance against degradation processes. Indoor dust samples were dominated by linear siloxanes (L11-L13), 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-(g)-2-benzopyran (HHCB), musk ketone (MK), and 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene (AHTN). The frequent use of household and personal care products is likely an important source of siloxane and SMC contamination in indoor environments. The concentrations of siloxanes and SMCs in indoor dust increased from 2011 to 2021, particularly, those of linear siloxanes, reflecting the impact of regulatory actions addressing cyclic siloxanes. The profiles of siloxanes remained stable throughout the study period, whereas those of SMCs shifted from nitro to polycyclic musks. The estimated daily intakes (EDIs) of siloxanes and SMCs arising from ingestion were greater than from dermal absorption of indoor dust. The EDIs of siloxanes and SMCs associated with indoor dust indicated that children are exposed to these pollutants.
Collapse
Affiliation(s)
- Wenming Chen
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan 571158, China
| | - Jin-Su Oh
- Department of Marine Science and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Jae-Eun Lim
- Department of Marine Science and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea.
| |
Collapse
|
22
|
Lim JE, Kang H, Lee J, Kim S, Bae M, Moon HB, Choi K, Kim C, Kim KT. Urinary concentrations of organophosphate esters and associated health outcomes in Korean firefighters. CHEMOSPHERE 2023; 339:139641. [PMID: 37495049 DOI: 10.1016/j.chemosphere.2023.139641] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/17/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023]
Abstract
Although firefighters are at an increased risk of occupational exposure to chemicals, such as flame retardants, research on the exposure of Korean firefighters to organophosphate esters (OPEs)-a group of emerging flame retardants-remains limited. Therefore, in the present study, OPE metabolite concentrations in the urine samples of 149 former and current Korean firefighters were measured. Based on the data obtained, the estimated daily intakes (EDIs) of OPEs were calculated. Subsequently, the association between the urinary concentrations of OPE metabolites and the potential determinants of OPE exposure and health outcomes (e.g., obesity and serum lipids) was investigated. We found that bis(1-chloro-2-propyl) phosphate (BCIPP) and bis(2-chloroethyl) phosphate (BCEP) were the most prevalent urinary OPE metabolites, with median concentrations of 2.33 and 1.80 ng/mL, respectively; these concentrations were higher than those reported previously in other countries, such as the USA and China. Moreover, their parent compounds-tris(1-chloro-2-propyl) phosphate (TCIPP) and tris(2-chloroethyl) phosphate (TCEP)-exhibited EDIs of 126 and 94.8 ng/kg bw/day, respectively. Unlike the high detection rate of bis(1,3-dichloro-2-propyl) phosphate (BDCIPP) in other populations, its detection rate in this study was low (6.7%), suggesting regional differences in the exposure pattern of OPEs among countries. Furthermore, occupational characteristics, such as recent participation in firefighting activity, were identified as determinants of the urinary concentrations of OPE metabolites. Total OPE metabolites were inversely associated with body mass index and positively associated with high-density lipoprotein cholesterol. Overall, our findings demonstrate that Korean firefighters are highly exposed to several occupation-related OPEs. Further prospective studies will help elucidate the potential health implications of occupational exposure to OPEs among firefighters.
Collapse
Affiliation(s)
- Jae-Eun Lim
- Department of Marine Sciences and Convergent Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea.
| | - Habyeong Kang
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea; Institute of Health Sciences, College of Health Science, Korea University, Seoul, 02841, Republic of Korea
| | - Jiwon Lee
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Sunmi Kim
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea; Chemical Analysis Center, Chemical Platform Technology Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Munjoo Bae
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Sciences and Convergent Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Kyungho Choi
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Changsoo Kim
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Ki-Tae Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea.
| |
Collapse
|
23
|
Niu D, Xiao Y, Chen S, Du X, Qiu Y, Zhu Z, Yin D. Evaluation of the oral bioaccessibility of legacy and emerging brominated flame retardants in indoor dust. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:99735-99747. [PMID: 37620695 DOI: 10.1007/s11356-023-29304-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023]
Abstract
Indoor dust is the main source of human exposure to brominated flame retardants (BFRs). In this study, in vitro colon-extended physiologically-based extraction test (CE-PBET) with Tenax as a sorptive sink was applied to evaluate the oral bioaccessibility of twenty-two polybrominated diphenyl ethers (PBDEs) and seven novel BFRs (NBFRs) via indoor dust ingestion. The mean bioaccessibilities of two NBFRs pentabromotoluene (PBT) and 1,2-Bis(2,4,6-tribromophenoxy) ethane (BTBPE) were first proposed, reaching 36.0% and 26.7%, respectively. In order to maintain homeostasis of the gastrointestinal tract, 0.4 g Tenax was added in CE-PEBT, which increased BFRs bioaccessibility by up to a factor of 1.4-1.9. The highest bioaccessibility of legacy PBDEs was tri-BDEs (73.3%), while 2-ethylhexyl-tetrabromo-benzoate (EHTBB), one of penta-BDE alternatives, showed the highest (62.2%) among NBFRs. The influence of food nutrients, liquid to solid (L/S) ratio, and octanol-water partition coefficient (Kow) on bioaccessibility was assessed. The oral bioaccessibility of BFRs increased with existence of protein or carbohydrate while lipid did the opposite. The bioaccessibilities of PBDEs and NBFRs were relatively higher with 200:1 L/S ratio. PBDEs bioaccessibility generally decreased with increasing LogKow. No significant correlation was observed between NBFRs bioaccessibility and LogKow. This study comprehensively evaluated the bioaccessibilities of legacy and emerging BFRs via dust ingestion using Tenax-assisted CE-PBET, and highlighted the significance to fully consider potential influencing factors on BFRs bioaccessibility in further human exposure estimation.
Collapse
Affiliation(s)
- Dong Niu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Yao Xiao
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Shiyan Chen
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Xinyu Du
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201206, China
| | - Yanling Qiu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Zhiliang Zhu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| |
Collapse
|
24
|
Liu C, Hou HS. Physical exercise and persistent organic pollutants. Heliyon 2023; 9:e19661. [PMID: 37809764 PMCID: PMC10558913 DOI: 10.1016/j.heliyon.2023.e19661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023] Open
Abstract
Exposure to the legacy and emerging persistent organic pollutants (POPs) incessantly has become an important threat to individual health, which is closely related to neurodevelopment, endocrine and cardiovascular homeostasis. Exercise, on the other hand, has been consistently shown to improve physical fitness. Whereas associations between traditional air pollutants, exercise and lung function have been thoroughly reviewed, reviews on associations between persistent organic pollutants and exercise are scarce. Hence, a literature review focused on exercise, exposure to POPs, and health risk assessment was performed for studies published from 2004 to 2022. The purpose of this review is to provide an overview of exposure pathways and levels of POPs during exercise, as well as the impact of exercise on health concerns attributable to the redistribution, metabolism, and excretion of POPs in vivo. Therein lies a broader array of exercise benefits, including insulin sensitizing, mitochondrial DNA repair, lipid metabolism and intestinal microecological balance. Physical exercise is conducive to reduce POPs body burden and resistant to health hazards of POPs generally. Besides, individual lipid metabolism condition is a critical factor in evaluating potential link in exercise, POPs and health effects.
Collapse
Affiliation(s)
- Chang Liu
- College of P.E, Minzu University of China, # 27, South Street Zhongguancun, Beijing, 100081, China
| | - Hui sheng Hou
- College of P.E, Minzu University of China, # 27, South Street Zhongguancun, Beijing, 100081, China
| |
Collapse
|
25
|
Abdulrahman N, Honda TJ, Ali A, Abdulrahman N, Vrinceanu D, Shishodia S. Impacts of Indoor Dust Exposure on Human Colonic Cell Viability, Cytotoxicity and Apoptosis. TOXICS 2023; 11:633. [PMID: 37505597 PMCID: PMC10383473 DOI: 10.3390/toxics11070633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/09/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
INTRODUCTION Environmental exposure to indoor dust is known to be associated with myriad health conditions, especially among children. Established routes of exposure include inhalation and non-dietary ingestion, which result in the direct exposure of gastrointestinal epithelia to indoor dust. Despite this, little prior research is available on the impacts of indoor dust on the health of human gastrointestinal tissue. METHODS Cultured human colonic (CCD841) cells were exposed for 24 h to standard trace metal dust (TMD) and organic contaminant dust (OD) samples at the following concentrations: 0, 10, 25, 50, 75, 100, 250, and 500 µg/mL. Cell viability was assessed using an MTT assay and protease analysis (glycyl-phenylalanyl-aminofluorocoumarin (GF-AFC)); cytotoxicity was assessed with a lactate dehydrogenase release assay, and apoptosis was assessed using a Caspase-Glo 3/7 activation assay. RESULTS TMD and OD decreased cellular metabolic and protease activity and increased apoptosis and biomarkers of cell membrane damage (LDH) in CCD841 human colonic epithelial cells. Patterns appeared to be, in general, dose-dependent, with the highest TMD and OD exposures associated with the largest increases in apoptosis and LDH, as well as with the largest decrements in metabolic and protease activities. CONCLUSIONS TMD and OD exposure were associated with markers of reduced viability and increased cytotoxicity and apoptosis in human colonic cells. These findings add important information to the understanding of the physiologic effects of indoor dust exposure on human health. The doses used in our study represent a range of potential exposure levels, and the effects observed at the higher doses may not necessarily occur under typical exposure conditions. The effects of long-term, low-dose exposure to indoor dust are still not fully understood and warrant further investigation. Future research should explore these physiological mechanisms to further our understanding and inform public health interventions.
Collapse
Affiliation(s)
- Noura Abdulrahman
- Department of Environmental and Interdisciplinary Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Trenton J Honda
- School of Clinical and Rehabilitation Sciences, Northeastern University, Boston, MA 02115, USA
| | - Ayat Ali
- Department of Environmental and Interdisciplinary Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Nabras Abdulrahman
- Department of Environmental and Interdisciplinary Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Daniel Vrinceanu
- Department of Physics, Texas Southern University, Houston, TX 77004, USA
| | - Shishir Shishodia
- Department of Environmental and Interdisciplinary Sciences, Texas Southern University, Houston, TX 77004, USA
| |
Collapse
|
26
|
Hoang MTT, Le GT, Kiwao K, Duong HT, Nguyen TQ, Phan TQ, Bui MQ, Truong DA, Trinh HT. Occurrence and risk of human exposure to organophosphate flame retardants in indoor air and dust in Hanoi, Vietnam. CHEMOSPHERE 2023; 328:138597. [PMID: 37028719 DOI: 10.1016/j.chemosphere.2023.138597] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 03/07/2023] [Accepted: 04/02/2023] [Indexed: 06/19/2023]
Abstract
The presence and distribution of thirteen organophosphate flame retardants (OPFRs) were investigated in indoor air and dust samples collected in Hanoi, Vietnam. The total OPFRs (ƩOPFRs) concentrations in indoor air and dust samples were 42.3-358 ng m-3 (median 101 ng m-3) and 1290-17,500 ng g-1 (median 7580 ng g-1), respectively. The profile of OPFRs in both indoor air and dust indicated that tris(1-chloro-2-propyl) phosphate (TCIPP) was the most dominant compound with a median concentration of 75.3 ng m-3 and 3620 ng g-1, contributing 75.2% and 46.1% to ƩOPFRs concentrations in indoor air and dust, respectively, followed by tris(2-butoxyethyl) phosphate (TBOEP), with a median concentration of 16.3 ng m-3 and 2500 ng g-1, contributing 14.1% and 33.6% to ƩOPFRs concentrations in indoor air and dust, respectively. The levels of OPFRs in the indoor air samples and corresponding indoor dust samples showed a strong positive correlation. The total estimated daily intakes (EDItotal) of ƩOPFRs (via air inhalation, dust ingestion, and dermal absorption) for adults and toddlers under the median and high exposure scenarios were 36.7 and 160 ng kg-1 d-1, and 266 and 1270 ng kg-1 d-1, respectively. Among the investigated exposure pathways, dermal absorption was a primary exposure pathway to OPFRs for both toddlers and adults. The hazard quotients (HQ) ranged from 5.31 × 10-8 to 6.47 × 10-2 (<1), and the lifetime cancer risks (LCR) were from 2.05 × 10-11 to 7.37 × 10-8 (<10-6), indicating that human health risks from exposure to OPFRs in indoor environments are not significant.
Collapse
Affiliation(s)
- Minh Tue Thi Hoang
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Viet Nam; Le Quy Don Technical University, 236 Hoang Quoc Viet, Hanoi, 10000, Viet Nam
| | - Giang Truong Le
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Viet Nam
| | - Kadokami Kiwao
- The University of Kitakyushu, 1-1 Hibikino, Kitakyushu, 808-0135, Japan
| | - Hanh Thi Duong
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Viet Nam
| | - Trung Quang Nguyen
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Viet Nam
| | - Thang Quang Phan
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Viet Nam
| | - Minh Quang Bui
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Viet Nam
| | - Dung Anh Truong
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Viet Nam
| | - Ha Thu Trinh
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Viet Nam.
| |
Collapse
|
27
|
Choo G, Ekpe OD, Kim DH, Oh JE. Human exposure to short-chain chlorinated paraffins and organophosphate flame retardants in relation to paired multiple sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162681. [PMID: 36889397 DOI: 10.1016/j.scitotenv.2023.162681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
In this study, the levels and distributions of short chain chlorinated paraffins (SCCPs) and organophosphate flame retardants (OPFRs) were determined in 10-88 aged human serum/hair and their paired multiple exposure sources, including one-day composite food, drinking water, and house dust. The average concentration of SCCPs and OPFRs were respectively 6313 and 176 ng/g lipid weight (lw) in serum, 1008 and 108 ng/g dry weight (dw) in hair, 1131 and 27.2 ng/g dw in food, not detected and 45.1 ng/L in drinking water, and 2405 and 864 ng/g in house dust. The levels of SCCPs in serum of adults were significantly higher than those of juvenile (Mann-Whitney U test, p < 0.05), whereas gender showed no statistically significant difference in SCCPs and OPFRs levels. In addition, there were significant relationships of OPFR concentrations between serum and drinking water as well as hair and food using the multiple linear regression analysis, whereas no correlation was observed for SCCPs. Based on the estimated daily intake, the major exposure pathway for SCCPs was food, while for OPFRs, it was food and drinking water with three order magnitude safety margin.
Collapse
Affiliation(s)
- Gyojin Choo
- School of Natural Resources and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Okon Dominic Ekpe
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Da-Hye Kim
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Jeong-Eun Oh
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea; Institute for Environment and Energy, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
28
|
Zhu L, Hajeb P, Fauser P, Vorkamp K. Endocrine disrupting chemicals in indoor dust: A review of temporal and spatial trends, and human exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162374. [PMID: 36828075 DOI: 10.1016/j.scitotenv.2023.162374] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/19/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Several chemicals with widespread consumer uses have been identified as endocrine-disrupting chemicals (EDCs), with a potential risk to humans. The occurrence in indoor dust and resulting human exposure have been reviewed for six groups of known and suspected EDCs, including phthalates and non-phthalate plasticizers, flame retardants, bisphenols, per- and polyfluoroalkyl substances (PFAS), biocides and personal care product additives (PCPs). Some banned or restricted EDCs, such as polybrominated diphenyl ethers (PBDEs), di-(2-ethylhexyl) phthalate (DEHP), bisphenol A (BPA), perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), are still widely detected in indoor dust in most countries, even as the predominating compounds of their group, but generally with decreasing trends. Meanwhile, alternatives that are also potential EDCs, such as bisphenol S (BPS), bisphenol F (BPF), decabromodiphenyl ethane (DBDPE) and organophosphate flame retardants (OPFRs), and PFAS precursors, such as fluorotelomer alcohols, have been detected in indoor dust with increasing frequencies and concentrations. Associations between some known and suspected EDCs, such as phthalate and non-phthalate plasticizers, FRs and BPs, in indoor dust and paired human samples indicate indoor dust as an important human exposure pathway. Although the estimated daily intake (EDI) of most of the investigated compounds was mostly below reference values, the co-exposure to a multitude of known or suspected EDCs requires a better understanding of mixture effects.
Collapse
Affiliation(s)
- Linyan Zhu
- Aarhus University, Department of Environmental Science, Roskilde, Denmark.
| | - Parvaneh Hajeb
- Aarhus University, Department of Environmental Science, Roskilde, Denmark
| | - Patrik Fauser
- Aarhus University, Department of Environmental Science, Roskilde, Denmark
| | - Katrin Vorkamp
- Aarhus University, Department of Environmental Science, Roskilde, Denmark
| |
Collapse
|
29
|
Tian Z, Li J, Song L, Xie L, Li D, Xia T, Wang A. PBDE-47 induces impairment of mitochondrial biogenesis and subsequent neurotoxicity through miR-128-3p/PGC-1α axis. Toxicol Sci 2023; 191:123-134. [PMID: 36269211 DOI: 10.1093/toxsci/kfac110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The potential adverse effects of 2,2',4,4'-tetrabromodiphenyl ether (PBDE-47) on neurons are extensively studied, and mitochondria are identified as critical targets. This study aimed to investigate whether PBDE-47 impairs mitochondrial biogenesis via the miR-128-3p/PGC-1α axis to trigger mitochondrial dysfunction-related neuronal damage. In vitro neuroendocrine pheochromocytoma (PC12) cells and in vivo Sprague Dawley rat model were adopted. In this study, biochemical methods were used to examine mitochondrial ATP content, cell viability, and expressions of key mitochondrial biogenesis regulators, including peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α), nuclear respiratory factor 1 (NRF1), and mitochondrial transcription factor A (TFAM). Mimics and inhibitors of miR-128-3p were employed to explore its role in PBDE-47-induced neurotoxicity. Both in vivo and in vitro evidences suggested that PBDE-47 suppressed PGC-1α/NRF1/TFAM signaling pathways and mitochondrial DNA (mtDNA) encoding proteins synthesis. PBDE-47 also suppressed the relative mtDNA content, mRNA levels of mtDNA-encoded subunits, and mitochondrial ATP levels in vitro. Specifically, 2-(4-tert-butylphenyl) benzimidazole (ZLN005) alleviated PBDE-47-induced neuronal death through the improvement of mitochondrial function by activating PGC-1α/NRF1/TFAM signaling pathways. Mechanistically, PBDE-47 dramatically upregulated miR-128-3p expression. Furthermore, miR-128-3p inhibition enhanced PGC-1α/NRF1/TFAM signaling and abolished PBDE-47-induced impairment of mitochondrial biogenesis. In summary, this study provides in vitro evidence to reveal the role of mitochondrial biogenesis in PBDE-47-induced mitochondrial dysfunction and related neurotoxicity and suggests that miR-128-3p/PGC-1α axis may be a therapeutic target for PBDE-47 neurotoxicity.
Collapse
Affiliation(s)
- Zhiyuan Tian
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Jing Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Li Song
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Li Xie
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Dongjie Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Tao Xia
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Aiguo Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| |
Collapse
|
30
|
Leão-Buchir J, de Souza TL, de Souza C, Fávaro LF, Brito PM, Carneiro MC, Marcon BH, Esquivel L, de Oliveira Ribeiro CA, Prodocimo MM. BDE-99 (2,2',4,4',5 - pentain polybrominated diphenyl ether) induces toxic effects in Oreochromis niloticus after sub-chronic and oral exposure. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 97:104034. [PMID: 36496183 DOI: 10.1016/j.etap.2022.104034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 10/27/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
PBDEs are toxic, lipophilic, hydrophobic, and persistent artificial chemicals, characterized by high physical and chemical stability. Although PBDEs are known to disturb hormone signaling, many effects of 2,2',4,4',5 - pentain polybrominated diphenyl ethers (BDE-99) in fish remain unclear. The current study investigates the effects of BDE-99 in Oreochromis niloticus where sixty-four juvenile fish were orally exposed to 0.294, 2.94, 29.4 ng g-1 of BDE-99, every 10 days, during 80 days. The results showed histopathological findings in liver and kidney, increasing acetylcholinesterase activity in muscle, disturbs in the antioxidant system in liver and brain and decreasing the plasmatic levels of vitellogenin in females. According to multivariate analysis (IBR), the higher doses are related to the interaction of oxidative and non-oxidative enzymes. The present study provided evidence of deleterious effects after sub-chronic exposure of BDE 99 to O. niloticus, increasing the knowledge about its risk of exposure in fish.
Collapse
Affiliation(s)
- Joelma Leão-Buchir
- Departamento de Biologia Celular, Universidade Federal do Paraná, Curitiba, Brazil; Departamento de Toxicologia Molecular e Ambiente, Centro de Biotecnologia, Universidade Eduardo Mondlane, Maputo, Mozambique
| | | | - Claudemir de Souza
- Departamento de Biologia Celular, Universidade Federal do Paraná, Curitiba, Brazil
| | - Luís Fernando Fávaro
- Departamento de Biologia Celular, Universidade Federal do Paraná, Curitiba, Brazil
| | | | - Milena Carvalho Carneiro
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
31
|
Song W, Li M, Xu S, Wang Z, Li J, Zhang X, Qiu W, Wang Z, Song Q, Bhatt K, Fu C. Performance and mechanisms for tetrabromobisphenol A efficient degradation in a novel homogeneous advanced treatment based on S 2O 42- activated by Fe 3. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120579. [PMID: 36336186 DOI: 10.1016/j.envpol.2022.120579] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/24/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Tetrabromobisphenol A (TBBPA), a representative brominated flame retardant (BFR), generally could be debrominated and degraded effectively in photolysis systems with the high energy consumption. In this study, the novel sulfate radical (SO4•-) generation resource of dithionite (S2O42-), activated by the common transition metal of Fe3+, has been applied for establishing an innovative homogeneous advance treatment system for BFR treatment in water. When coupling Fe3+ with S2O42-, TBBPA degradation efficiency could be remarkably improved from 38.7% to 93.8% with the debromination and mineralization efficiency of 83.9% and 18.5% in 60 min, respectively. The primary reactive species also have been identified as SO3•-, SO4•- and •OH responsible for TBBPA treatment and the contributions of SO4•- and •OH have been calculated as 43.8% and 28.4% for TBBPA degradation, respectively. In Fe3+/S2O42- system, TBBPA was effectively degraded in a wide initial pH range (3.0-9.0), whose activation energy was calculated as 32.01 kJ mol-1. Due to the only operation of reagents dosing, the energy consumption and cost could be decreasing significantly without any light energy input and reaction conditions (e.g., pH and dissolved oxygen) adjustment compared with the general photolysis process. Moreover, some possible degradation approaches of TBBPA also have been proposed via GC-MS including debromination, hydroxylation, methylation, and mineralization in Fe3+/S2O42- system. And these probable degradation pathways also have been confirmed with the decreased Gibbs free energy (ΔG) based on density functional theory (DFT). This study has revealed that it was promising of Fe3+/S2O42- system for BFRs degradation and detoxification efficiently through the simple operation and mild condtions.
Collapse
Affiliation(s)
- Wei Song
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Mu Li
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; Shenzhen Environmental Science and New Energy Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Sen Xu
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Zhuoyue Wang
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ji Li
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Xiaolei Zhang
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Wenhui Qiu
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhihong Wang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Qi Song
- Henan Medscience Pharmaceuticals Co., Ltd., Zhumadian, 463000, China
| | - Kalpana Bhatt
- Department of Food Science, Purdue University, West Lafayette, IN, 47907, USA
| | - Caixia Fu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
32
|
Zhou Y, Li Z, Zhu Y, Chang Z, Hu Y, Tao L, Zheng T, Xiang M, Yu Y. Legacy and alternative flame retardants in indoor dust from e-waste industrial parks and adjacent residential houses in South China: Variations, sources, and health implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157307. [PMID: 35839871 DOI: 10.1016/j.scitotenv.2022.157307] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Many studies have elucidated health concerns of informal e-waste recycling activities, yet few has evaluated the effectiveness of the regulations as well as the human exposure risks to adjacent residents. Herein, legacy polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCDs), and alternative organophosphate esters (OPEs) were investigated in indoor dust collected from three e-waste industrial parks and five adjacent villages located in south China. The levels and composition patterns varied significantly between workshop and home dust. BDE209 showed much higher (p < 0.01) concentrations in workshop dust versus home dust, while relatively comparable levels were found for OPEs and HBCDs. Principal component analysis revealed that OPEs and PBDEs were mainly related to home and workshop dust, respectively. Results strongly indicated that e-waste dismantling activities still contribute to a high burden of BDE209 to surrounding residents, whilst the sources of OPEs may also originated from household products, especially for TCEP. The estimated daily intakes (EDIs) via dust ingestion and dermal absorption for occupational worker and nearby toddlers were below available reference dose (RfD) values even at worst case scenario. This study highlights the significance of deca-BDEs rather than alternative OPEs in e-waste generated in China, which could provide scientific suggestions for policy formulation.
Collapse
Affiliation(s)
- Ying Zhou
- The Postgraduate Training Base of Jinzhou Medical University (South China Institute of Environmental Sciences, Ministry of Ecology and Environment), Guangzhou 510530, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Zongrui Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Yu Zhu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Zhaofeng Chang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Yongxia Hu
- West Center, Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Chongqing 400714, China
| | - Lin Tao
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Tong Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Yunjiang Yu
- The Postgraduate Training Base of Jinzhou Medical University (South China Institute of Environmental Sciences, Ministry of Ecology and Environment), Guangzhou 510530, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China.
| |
Collapse
|
33
|
Hoang AQ, Karyu R, Tue NM, Goto A, Tuyen LH, Matsukami H, Suzuki G, Takahashi S, Viet PH, Kunisue T. Comprehensive characterization of halogenated flame retardants and organophosphate esters in settled dust from informal e-waste and end-of-life vehicle processing sites in Vietnam: Occurrence, source estimation, and risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119809. [PMID: 35931384 DOI: 10.1016/j.envpol.2022.119809] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/04/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Information about the co-occurrence of halogenated flame retardants (HFRs) and organophosphate esters (OPEs) in the environment of informal waste processing areas is still limited, especially in emerging and developing countries. In this study, OPEs and HFRs including polybrominated diphenyl ethers (PBDEs), novel brominated flame retardants (NBFRs), and chlorinated flame retardants (CFRs) were determined in settled dust from Vietnamese e-waste recycling (WR) and vehicle processing (VP) workshops. Pollutant concentrations decreased in the order: OPEs (median 1500; range 230-410,000 ng/g) ≈ PBDEs (1200; 58-250,000) > NBFRs (140; not detected - 250,000) > CFRs (13; 0.39-2200). HFR and OPE levels in the WR workshops for e-waste and obsolete plastic were significantly higher than in the VP workshops. Decabromodiphenyl ether and decabromodiphenyl ethane are major HFRs, accounting for 60 ± 26% and 25 ± 29% of total HFRs, respectively. Triphenyl phosphate, tris(2-chloroisopropyl) phosphate, and tris(1,3-dichloroisopropyl) phosphate dominated the OPE profiles, accounting for 30 ± 25%, 25 ± 16%, and 24 ± 18% of total OPEs, respectively. The OPE profiles differed between WR and VP dust samples, implying different usage patterns of these substances in polymer materials for electric/electronic appliance and automotive industries. Human health risk related to dust-bound HFRs and OPEs in the study areas was low.
Collapse
Affiliation(s)
- Anh Quoc Hoang
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, 11000, Viet Nam
| | - Ryogo Karyu
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Nguyen Minh Tue
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan; Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, 11400, Viet Nam
| | - Akitoshi Goto
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Le Huu Tuyen
- University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, 11400, Viet Nam
| | - Hidenori Matsukami
- Material Cycles Division, National Institute for Environmental Studies, Tsukuba, 305- 8506, Japan
| | - Go Suzuki
- Material Cycles Division, National Institute for Environmental Studies, Tsukuba, 305- 8506, Japan
| | - Shin Takahashi
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan
| | - Pham Hung Viet
- Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, 11400, Viet Nam
| | - Tatsuya Kunisue
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan.
| |
Collapse
|
34
|
Cecinato A, Bacaloni A, Romagnoli P, Perilli M, Balducci C. Molecular signatures of organic particulates as tracers of emission sources. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:65904-65923. [PMID: 35876994 PMCID: PMC9492597 DOI: 10.1007/s11356-022-21531-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Chemical signature of airborne particulates and deposition dusts is subject of study since decades. Usually, three complementary composition markers are investigated, namely, (i) specific organic compounds; (ii) concentration ratios between congeners, and (iii) percent distributions of homologs. Due to its intrinsic limits (e.g., variability depending on decomposition and gas/particle equilibrium), the identification of pollution sources based on molecular signatures results overall restricted to qualitative purposes. Nevertheless, chemical fingerprints allow drawing preliminary information, suitable for successfully approaching multivariate analysis and valuing the relative importance of sources. Here, the state-of-the-art is presented about the molecular fingerprints of non-polar aliphatic, polyaromatic (PAHs, nitro-PAHs), and polar (fatty acids, organic halides, polysaccharides) compounds in emissions. Special concern was addressed to alkenes and alkanes with carbon numbers ranging from 12 to 23 and ≥ 24, which displayed distinct relative abundances in petrol-derived spills and exhausts, emissions from microorganisms, high vegetation, and sediments. Long-chain alkanes associated with tobacco smoke were characterized by a peculiar iso/anteiso/normal homolog fingerprint and by n-hentriacontane percentages higher than elsewhere. Several concentration ratios of PAHs were identified as diagnostic of the type of emission, and the sources of uncertainty were elucidated. Despite extensive investigations conducted so far, the origin of uncommon molecular fingerprints, e.g., alkane/alkene relationships in deposition dusts and airborne particles, remains quite unclear. Polar organics resulted scarcely investigated for pollution apportioning purposes, though they looked as indicative of the nature of sources. Finally, the role of humans and living organisms as actual emitters of chemicals seems to need concern in the future.
Collapse
Affiliation(s)
- Angelo Cecinato
- National Research Council of Italy, Institute of Atmospheric Pollution Research (CNR-IIA), 00015 Monterotondo, RM Italy
- Dept. of Chemistry, University Roma-1 “Sapienza”, Rome, Italy
| | | | - Paola Romagnoli
- National Research Council of Italy, Institute of Atmospheric Pollution Research (CNR-IIA), 00015 Monterotondo, RM Italy
| | - Mattia Perilli
- National Research Council of Italy, Institute of Atmospheric Pollution Research (CNR-IIA), 00015 Monterotondo, RM Italy
| | - Catia Balducci
- National Research Council of Italy, Institute of Atmospheric Pollution Research (CNR-IIA), 00015 Monterotondo, RM Italy
| |
Collapse
|
35
|
Liu S, He B, Li H. Comprehensive analysis of emerging flame retardants, a risk factor to prostate cancer? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113627. [PMID: 35588625 DOI: 10.1016/j.ecoenv.2022.113627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/29/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Among man-made chemicals, flame retardants have caused great environmental concerns. Several studies in recent years have investigated potential sources of flame retardants, environmental distribution, exposure to wild animals and humans and toxicity. However, studies focusing on the prediction of toxicity of flame retardants are limited. Herein, toxicological and tumor databases were applied to evaluate the potential correlation between emerging flame retardants (EFRs) and tumors. Further analysis also showed that EFRs may be associated with prostate cancer (PCa). After constructing an EFR-related prognostic prediction model, it was established that EFR-related genes showed a strong prognostic predictive value among PCa patients. In addition, compared with the clinical characteristics model (including age, Gleason score, prostate-specific antigen level, T stage and N stage), a prognostic predictive model-based risk score demonstrated a better predictive value of PCa. The AUC of the 31-gene prognostic signature at 1, 3 and 5 years was 0.843, 0.824 and 0.819, respectively. In addition, the AUC of the risk score, Gleason score, age, PSA level, T stage and N stage were 0.843, 0.637, 0.414, 0.490, 0.668 and 0.517, respectively. Our analysis provides a comprehensive map of EFR interaction genes and demonstrated a new direction for environmentally hazardous materials and diseases.
Collapse
Affiliation(s)
- Shengdi Liu
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bin He
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hua Li
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
36
|
Sonego E, Simonetti G, Di Filippo P, Riccardi C, Buiarelli F, Fresta A, Olivastri M, Pomata D. Characterization of organophosphate esters (OPEs) and polyfluoralkyl substances (PFASs) in settled dust in specific workplaces. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:52302-52316. [PMID: 35258734 DOI: 10.1007/s11356-022-19486-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
An analytical method for detecting flame retardants was slightly modified and optimized for the simultaneous determination of 11 organophosphate esters (OPEs) and 26 polyfluoralkyl substances (PFASs) contained in dust. All the analytes were determined in HPLC/MS-MS, and OPEs were also analyzed in GC/MS, and the results were compared. The study was conducted through the investigation of the Standard Reference Material SRM 2585 of the National Institute of Standard and Technology (NIST). The results were compared with the available reference mass fraction reported in the NIST certificate. The mass fraction obtained for the other OPEs and PFASs was compared to available data in the literature. After verifying the reliability of the results, the method was applied to environmental samples of settled dust, collected in four workplaces, where OPE and PFAS content is expected to be higher than in house dust: a mechanical workshop, an electronic repair center, a disassembly site, and a shredding site of two electronic waste recycling plants. By analyzing both PFASs and OPEs in the same samples, the present work demonstrated that the selected working places were more polluted in OPEs than houses; on the contrary, PFAS content in house dust proved to be more than ten times higher than that in workplaces. Additional research is necessary to confirm these data. Nevertheless, because this preliminary study showed not negligible concentrations of OPEs in some workplaces and of PFASs in houses, their monitoring should be extended to other domestic and selected working sites.
Collapse
Affiliation(s)
- Elisa Sonego
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy
| | - Giulia Simonetti
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy
| | | | | | - Francesca Buiarelli
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy
| | - Alice Fresta
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy
| | - Matteo Olivastri
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy
| | | |
Collapse
|
37
|
Kim D, Park JY, Lee DH, Lim JE, Moon HB, Kim S, Lee K. Simultaneous assessment of organophosphate flame retardants, plasticizers, trace metals, and house dust mite allergens in settled house dust. INDOOR AIR 2022; 32:e13071. [PMID: 35904395 DOI: 10.1111/ina.13071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/18/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Settled house dust (SHD) is a reservoir for various contaminants, including endocrine-disrupting chemicals (EDCs), trace metals, and house dust mite allergens. This study aimed to characterize various chemical and biological contaminants in SHD and identify determinants governing the indoor contaminants. In total, 106 SHD samples were collected from 106 houses in Seoul and Gyeonggi Province, Korea, in 2021. Bedding dust samples were collected from 30 of these 106 houses. All participants completed a questionnaire comprised of housing and lifestyle-related factors. The samples were analyzed for 18 organophosphate flame retardants (OPFRs), 16 phthalates, five alternative plasticizers (APs), seven trace metals, and two house dust mite allergens (Dermatophagoides farinae type 1 [Der f1] and Dermatophagoides pteronyssinus type 1 [Der p1]). A multiple regression analysis was conducted to identify the determinants governing the concentrations and profiles of various contaminants. OPFRs, phthalates, APs, and trace metals were detected in all SHD samples, indicating ubiquitous contamination in indoor environments. Among the three EDC groups, APs were detected at the highest concentrations (geometric mean [GM] (geometric standard deviation, [GSD]): 1452 (1.6) μg/g in total), followed by phthalates (GM (GSD): 676 (1.4) μg/g in total) and OPFRs (GM (GSD): 10 (1.4) μg/g in total). Der f1 was detected in all bedding dust samples with significantly higher levels than Der p1 (GM (GSD): 0.1 (1.8) μg/g vs. 1.4 × 10-3 (2.3) μg/g). The concentrations of OPFRs, plasticizers, and trace metals in SHD were significantly associated with the type and number of electronic appliances and combustion activities. Der f1 was significantly associated with the number of occupants and water penetration. Ventilation, vacuum cleaning, and wet cleaning or dry mopping significantly reduced the levels of most contaminants in SHD. As residents are persistently exposed to a wide array of pollutants, comprehensive and adequate measures are required to prevent potential exposures.
Collapse
Affiliation(s)
- Donghyun Kim
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea
| | - Ji Young Park
- Institute of Health and Environment, Seoul National University, Seoul, South Korea
| | - Dong Hyun Lee
- Consulting & Technology for Environment Health and Safety, Seoul, South Korea
| | - Jae-Eun Lim
- Department of Marine Science and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan, South Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan, South Korea
| | - Sungkyoon Kim
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea
- Institute of Health and Environment, Seoul National University, Seoul, South Korea
| | - Kiyoung Lee
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea
- Institute of Health and Environment, Seoul National University, Seoul, South Korea
| |
Collapse
|
38
|
Yang Y, Yang L, Chen H, Tan H, Yang J, Sun F, Sun J, Gong X, Tao L, Huang Y. Low-level alternative halogenated flame retardants (AHFRs) in indoor dust from Adelaide, South Australia decades since national legislative control on polybrominated diphenyl ethers (PBDEs). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154123. [PMID: 35219667 DOI: 10.1016/j.scitotenv.2022.154123] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/23/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Since commercial polybrominated diphenyl ethers (PBDEs) have been globally banned or restricted in 2000s, alternative halogenated flame retardants (AHFRs) appear increasingly dominant over PBDEs in many countries/regions. In this study, low levels of AHFRs were unexpectedly observed in the indoor dust from Adelaide, South Australia. Anti-dechlorane plus (anti-DP) was the most frequently detected AHFR with a median concentration of 1.28 ng/g, while other AFHRs were less detected (detection frequency < 50%). The levels of ΣPBDEs (496 ng/g, median) and ΣAHFRs (160 ng/g) and the ratio of ΣAHFRs/ΣPBDEs (0.32) were much lower than those investigated in Australian indoor dust previously. The findings were different to the trend for PBDEs and AHFRs from other countries over the past two decades. No significant correlation was determined between DP and PBDE congeners, indicating their different sources in dust. The human exposure assessment suggested that dust ingestion was the predominant pathway of PBDEs and AHFRs exposure for toddlers, while dermal absorption may be the dominant pathway for adults. The estimated daily intake (EDI) suggested low health risks via dust ingestion and dermal contact for general populations in Adelaide. This study contributes to the knowledge on region-specific FR contamination in indoor environments and related human exposure risk.
Collapse
Affiliation(s)
- Yan Yang
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Synergy Innovation Institute of GDUT, Shantou 515041, China; Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515041, Guangdong, China
| | - Liu Yang
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Haojia Chen
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Synergy Innovation Institute of GDUT, Shantou 515041, China
| | - Hongli Tan
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Jing Yang
- State Environmental Protection Key Laboratory of Quality Control in Environmental, Monitoring, China National Environmental Monitoring Center, Beijing 100012, China
| | - Fengjiang Sun
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Jiachen Sun
- College of Marine Life Science, Ocean University of China, Qingdao 266000, China
| | - Xue Gong
- School of Agriculture, Food & Wine, the University of Adelaide, Adelaide, SA 5000, Australia
| | - Lin Tao
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| | - Yichao Huang
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China; School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
39
|
Lee HK, Bak G, Lim JE, Lee JW, Lee S, Moon HB. Historical record of legacy and alternative halogenated flame retardants in dated sediment from a highly industrialized saltwater lake in Korea. CHEMOSPHERE 2022; 297:134264. [PMID: 35271898 DOI: 10.1016/j.chemosphere.2022.134264] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Legacy and alternative halogenated flame retardants (HFRs), such as polybrominated diphenyl ethers (PBDEs), novel brominated flame retardants (NBFRs), and dechlorane plus (DP), were measured in dated sediments from a highly industrialized lake in Korea. All HFRs were detected in almost all of the sediment depth layers for more than 70 years, indicating a history of long-term contamination. Similar historical trends in PBDEs, 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), and DP were observed in dated sediments, whereas decabromodiphenylethane (DBDPE), and 2-ethylhexyl-2,3,4,5-octabromo-1,3,3-trimethyl-1-phenylindane (OBIND) concentrations sharply increased since the 1990s. Moreover, the concentration ratios of DBDPE/BDE 209 increased from the early 1990s to the present. Our findings suggest that DBDPE and OBIND have been used as HFR alternatives. The historical record of the concentrations and profiles of legacy and alternative HFRs corresponded with industrial activities, consumption of FRs, and coastal development activities. Inventories of legacy and alternative HFRs were similar to those reported for highly industrialized regions around the globe.
Collapse
Affiliation(s)
- Hyun-Kyung Lee
- Department of Marine Sciences and Convergent Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Geunhan Bak
- Department of Marine Sciences and Convergent Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Jae-Eun Lim
- Department of Marine Sciences and Convergent Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Jae-Won Lee
- Department of Marine Sciences and Convergent Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Sunggyu Lee
- Department of Marine Sciences and Convergent Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Sciences and Convergent Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea.
| |
Collapse
|
40
|
Song M, Wang Y, Chen Z, Gao H, Yang Z, Yu H, Liu Y. Human CYP enzyme-activated genotoxicity of 2,2',4,4'-tetrabromobiphenyl ether in mammalian cells. CHEMOSPHERE 2022; 291:132784. [PMID: 34742755 DOI: 10.1016/j.chemosphere.2021.132784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Polybrominated biphenyl ethers (PBDEs) are a group of persistent organic pollutants with endocrine-disrupting, neurotoxic, tumorigenic and DNA-damaging activities. They are hydroxylated by human liver microsomal CYP enzymes, however, their mutagenicity remains unknown. In this study, 2,2',4,4'-tetrabromobiphenyl ether (BDE-47, relatively abundant in human tissues) was investigated for micronuclei induction and DNA damage in mammalian cells. The results indicated that BDE-47 up to 80 μM under a 6 h/18 h (exposure/recovery, covering 2 cell cycles) regime did not induce micronuclei in V79-Mz and V79-derived cell lines expressing human CYP1A1 or 1A2, while it was moderately positive in human CYP2B6-, 2E1-and 3A4-expressing cell lines (V79-hCYP2B6, V79-hCYP2E1-hSULT1A1 and V79-hCYP3A4-hOR, respectively). Following 24 h exposure, BDE-47 induced micronuclei in V79-hCYP2E1-hSULT1A1 and V79-hCYP3A4 cells at increased potencies. In the human hepatoma (HepG2) cells BDE-47 (48 h exposure) was inactive up to 40 μM, however, pretreatment of the cells with ethanol (0.2%, v:v, inducer of CYP2E1) or rifampicin (10 μM, inducer of CYP3A4) led to significant micronuclei formation by BDE-47; pretreatment with bisphenol AF (100 nM) also potentiated BDE-47-induced micronuclei formation (which was blocked by a CYP2E1 inhibitor trans-1,2-dichloroethylene or a CYP3A inhibitor (ketoconazole). Immunofluorescent staining of centromere protein B with the micronuclei formed by BDE-47 in HepG2 cells pretreated with ethanol or rifampicin demonstrated selective formation of centromere-containing micronuclei. The increased phosphorylation of both histones H2AX and H3 in HepG2 by BDE-47 also indicated an aneugenic potential. Therefore, this study suggests that BDE-47 is an aneugen activated by several human CYP enzymes.
Collapse
Affiliation(s)
- Meiqi Song
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Yujian Wang
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Zhihong Chen
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Hongbin Gao
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China; Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510663, China
| | - Zongying Yang
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Hang Yu
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Yungang Liu
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China.
| |
Collapse
|
41
|
Deng Y, Xu W, Zeng Q, Sun F, Wang F, Li Y. Effects of temperature and relative humidity on soil-air partition coefficients of organophosphate flame retardants and polybrominated diphenyl ethers. CHEMOSPHERE 2022; 291:132716. [PMID: 34718008 DOI: 10.1016/j.chemosphere.2021.132716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
The soil-air partition coefficients (KSA) of polybrominated diphenyl ethers (PBDEs) and organophosphate flame retardants (OPFRs) is important for determining their fate in soil and air media. However, KSA values of OPFRs and PBDEs are not available from the current literature, and the effects of environmental factors such as temperature and relative humidity (RH) on KSA values are not clear. In this study, a solid-phase fugacity meter was used to measure the KSA values of PBDEs and OPFRs at different temperatures (25, 30, 35, 40, and 45 °C) and relative humidity (RH) conditions (<3 and 100% RH), the relationships between KSA and octanol-air partition coefficients (KOA) for OPFRs and PBDEs were analyzed. The results showed that an increase in temperature and RH resulted in a decrease of all KSA values for PBDEs and OPFRs. Furthermore, the effects of RH on the soil-air partitioning behavior of PBDEs were larger than that of OPFRs. In addition, a significant correlation (p < 0.0001) was observed between log KSA and log KOA. The experimental KSA values of OPFRs and PBDEs were quite different from the predicted KSA, when calculated with their KOA values. Overall, this study provides a better understanding for predicting the behavior and fate of OPFRs and PBDEs in soil-air systems.
Collapse
Affiliation(s)
- Yun Deng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Wang Xu
- Shenzhen Environmental Monitoring Center, Shenzhen, 518049, China
| | - Qinghuai Zeng
- Shenzhen Environmental Monitoring Center, Shenzhen, 518049, China
| | - Feiyun Sun
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Fei Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China.
| | - Yanjie Li
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| |
Collapse
|
42
|
Fan Y, Chen Q, Wang Z, Zhang X, Zhao J, Huang X, Wei P, Hu P, Cao Z. Identifying dermal exposure as the dominant pathway of children's exposure to flame retardants in kindergartens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152004. [PMID: 34856272 DOI: 10.1016/j.scitotenv.2021.152004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Exploration of multiple sources of brominated (BFRs) and organophosphate flame retardants (OPFRs) for children promotes the understanding of exposure pathways and health risk. 10 BFRs and 9 OPFRs were measured in skin wipes from hands, forehead, and arms of 30 children, and surface wipe samples from sills, toys, desks and floors, and indoor air samples of kindergartens from Xinxiang, China. Higher ∑9OPFRs concentrations were observed in the forehead (1840 ng/m2), followed by hand (1420 ng/m2) and arm wipes (1130 ng/m2), and the ∑8BFRs concentrations in forehead, hand and arm wipes were 116, 315 and 165 ng/m2, respectively. The total concentration of OPFRs and BFRs in floor wipes (66.1 and 24.5 ng/m2) were lower than those in toy (205 and 535 ng/m2), sill (227 and 30.1 ng/m2) and desk (84.4 and 139 ng/m2) wipes. Concentrations of FRs in forehead wipes were significantly correlated with those in gaseous air (p < 0.05), moderate correlations were found between the hand wipes and surface wipes (p = 0.054). We estimated the daily average dosages (DADs) of children exposure to FRs via multiple pathways. Compared to DADs via inhalation and hand-to-mouth transfer, dermal exposure was determined to be the predominant exposure pathway to ∑9OPFRs and ∑8BFRs.
Collapse
Affiliation(s)
- Yujuan Fan
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Qiaoying Chen
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Zhen Wang
- Kindergarden of Henan Normal University, Xinxiang 453007, China
| | - Xiaoxiao Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Jiaxin Zhao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Xinyu Huang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Pengkun Wei
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Pengtuan Hu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
43
|
Bhatt P, Ganesan S, Santhose I, Durairaj T. Phytoremediation as an effective tool to handle emerging contaminants. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2021-0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Phytoremediation is a process which effectively uses plants as a tool to remove, detoxify or immobilize contaminants. It has been an eco-friendly and cost-effective technique to clean contaminated environments. The contaminants from various sources have caused an irreversible damage to all the biotic factors in the biosphere. Bioremediation has become an indispensable strategy in reclaiming or rehabilitating the environment that was damaged by the contaminants. The process of bioremediation has been extensively used for the past few decades to neutralize toxic contaminants, but the results have not been satisfactory due to the lack of cost-effectiveness, production of byproducts that are toxic and requirement of large landscape. Phytoremediation helps in treating chemical pollutants on two broad categories namely, emerging organic pollutants (EOPs) and emerging inorganic pollutants (EIOPs) under in situ conditions. The EOPs are produced from pharmaceutical, chemical and synthetic polymer industries, which have potential to pollute water and soil environments. Similarly, EIOPs are generated during mining operations, transportations and industries involved in urban development. Among the EIOPs, it has been noticed that there is pollution due to heavy metals, radioactive waste production and electronic waste in urban centers. Moreover, in recent times phytoremediation has been recognized as a feasible method to treat biological contaminants. Since remediation of soil and water is very important to preserve natural habitats and ecosystems, it is necessary to devise new strategies in using plants as a tool for remediation. In this review, we focus on recent advancements in phytoremediation strategies that could be utilized to mitigate the adverse effects of emerging contaminants without affecting the environment.
Collapse
Affiliation(s)
- Prasanth Bhatt
- Department of Biotechnology , College of Science and Humanities, SRM Institute of Science and Technology , SRM Nagar , Kattankulathur – 603203 , Kanchipuram , Chennai , TN , India
| | - Swamynathan Ganesan
- Department of Biotechnology , College of Science and Humanities, SRM Institute of Science and Technology , SRM Nagar , Kattankulathur – 603203 , Kanchipuram , Chennai , TN , India
| | - Infant Santhose
- Department of Biotechnology , College of Science and Humanities, SRM Institute of Science and Technology , SRM Nagar , Kattankulathur – 603203 , Kanchipuram , Chennai , TN , India
| | - Thirumurugan Durairaj
- Department of Biotechnology , College of Science and Humanities, SRM Institute of Science and Technology , SRM Nagar , Kattankulathur – 603203 , Kanchipuram , Chennai , TN , India
| |
Collapse
|
44
|
Zhang Y, Xi B, Tan W. Release, transformation, and risk factors of polybrominated diphenyl ethers from landfills to the surrounding environments: A review. ENVIRONMENT INTERNATIONAL 2021; 157:106780. [PMID: 34314982 DOI: 10.1016/j.envint.2021.106780] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/05/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) serve as brominated flame retardants when added to various products. When these products reach their end of life, a large amount of domestic waste containing PBDEs enters the landfills. Given their weak chemical bonds, they are easily affected by physical, chemical, and biological processes. These processes result in their release and the subsequent contamination of the surrounding soil, groundwater, and atmosphere, causing harm to humans and ecosystems. However, despite the progress made in the research of PBDEs over the years, understanding of the environmental behavior and fate of pollutants is still limited. With the development of cities, the release of PBDEs in old landfills will gradually increase the risk to the surrounding environment. Here we review the biological and nonbiological transformation of PBDEs and their derivatives in landfills and surrounding areas, as well as their distribution in soil, groundwater, and atmosphere. Specifically, this review aims to provide insights into the following aspects: 1) the biological (plant, animal, and microbial) and nonbiological (metal catalysis and photodegradation) conversion of PBDEs and their derivatives in landfills and surrounding areas; 2) the distribution of landfill-sourced PBDEs in the soil, groundwater, atmosphere and cross-media migration; and 3) suggestions and future research directions for the management and control of PBDEs in landfills.
Collapse
Affiliation(s)
- Yifan Zhang
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
| | - Beidou Xi
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China.
| | - Wenbing Tan
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
45
|
Yuan J, Sun X, Che S, Zhang L, Ruan Z, Li X, Yang J. AhR-mediated CYP1A1 and ROS overexpression are involved in hepatotoxicity of decabromodiphenyl ether (BDE-209). Toxicol Lett 2021; 352:26-33. [PMID: 34571075 DOI: 10.1016/j.toxlet.2021.09.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 01/18/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are persistent organic pollutants. They are constantly detected in terrestrial, ocean, and atmospheric systems, and it is of particular concern that these fat-soluble xenobiotics may have a negative impact on human health. This study aimed to evaluate the toxic effect and underlying mechanism of decabromodiphenyl ether (BDE-209) on human liver in a HepG2 cell model. The results showed that BDE-209 significantly induced HepG2 cells apoptosis, increased intracellular reactive oxygen species (ROS), disturbed [Ca 2+] homeostasis and mitochondrial membrane potential (MMP), and caused nuclear shrinkage and DNA double-strand breaks. BDE-209 also significantly decreased the activities of antioxidant parameters, superoxide dismutase (SOD), total antioxygenic capacity (T-AOC), glutathione (GSH), and total glutathione (T-GSH). The up-regulation of the Aryl hydrocarbon receptor (AhR)/cytochrome P4501A1 (CYP1A1) signaling pathway indicates that after long-term and high-dose exposure, BDE-209 may be a liver carcinogen. Interestingly, HepG2 cells attempt to metabolize BDE-209 through the Nrf2-mediated antioxidant pathway. These findings help elucidate the mechanisms of BDE-209-induced hepatotoxicity in humans.
Collapse
Affiliation(s)
- Jinwen Yuan
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, 330047, China
| | - Xiaoming Sun
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, 330047, China
| | - Siyan Che
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, 330047, China
| | - Li Zhang
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, 330047, China
| | - Zheng Ruan
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, 330047, China.
| | - Xiaomin Li
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Junhua Yang
- Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| |
Collapse
|
46
|
Leão-Buchir J, Folle NMT, Lima de Souza T, Brito PM, de Oliveira EC, de Almeida Roque A, Ramsdorf WA, Fávaro LF, Garcia JRE, Esquivel L, Filipak Neto F, de Oliveira Ribeiro CA, Mela Prodocimo M. Effects of trophic 2,2', 4,4'-tetrabromodiphenyl ether (BDE-47) exposure in Oreochromis niloticus: A multiple biomarkers analysis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 87:103693. [PMID: 34166789 DOI: 10.1016/j.etap.2021.103693] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Polybrominated diphenyl esters are emerging environmental contaminants with few toxicological data, being a concern for the scientific community. This study evaluated the effects of BDE-47 on the health of Oreochromis niloticus fish. The animals were exposed to three doses of BDE-47 (0, 0.253, 2.53, 25.3 ng g-1) every 10 days, for 80 days. The BDE-47 affected the hepatosomatic and gonadosomatic index in female and the condition factor by intermediate dose in both sexes. The levels of estradiol decreased and the T4 are increased, but the vitellogenin production was not modulated in male individuals. Changes in AChE, GST, LPO and histopathology were observed while the integrated biomarker response index suggests that the lowest dose of BDE-47 compromised the activity of antioxidant enzymes. The oral exposure to BDE-47 in environmental concentrations is toxic to O. niloticus and the use of multiple biomarkers is an attribution in ecotoxicology studies and biomonitoring programs.
Collapse
Affiliation(s)
- Joelma Leão-Buchir
- Departamento de Biologia Celular, Universidade Federal do Paraná, Caixa Postal 19031, CEP 81531-970, Curitiba, PR, Brazil; Departamento de Toxicologia Molecular e Ambiente, Centro de Biotecnologia, Universidade Eduardo Mondlane (CB-UEM), Maputo, Mozambique
| | - Nilce Mary Turcatti Folle
- Departamento de Biologia Celular, Universidade Federal do Paraná, Caixa Postal 19031, CEP 81531-970, Curitiba, PR, Brazil
| | - Tugstênio Lima de Souza
- Departamento de Biologia Celular, Universidade Federal do Paraná, Caixa Postal 19031, CEP 81531-970, Curitiba, PR, Brazil
| | - Patricia Manuitt Brito
- Departamento de Biologia Celular, Universidade Federal do Paraná, Caixa Postal 19031, CEP 81531-970, Curitiba, PR, Brazil
| | - Elton Celton de Oliveira
- Programa de Pós-graduação em Agroecossistemas, Universidade Tecnológica Federal do Paraná, Campus Dois Vizinhos, CEP 82660-000, Dois Vizinhos, PR, Brazil
| | - Aliciane de Almeida Roque
- Departamento de Biologia Celular, Universidade Federal do Paraná, Caixa Postal 19031, CEP 81531-970, Curitiba, PR, Brazil
| | - Wanessa Algarte Ramsdorf
- Programa de Pós-graduação em Ecotoxicologia, Universidade Tecnológica Federal do Paraná, Campus Curitiba, CEP 81280-340, Curitiba, PR, Brazil
| | - Luis Fernando Fávaro
- Departamento de Biologia Celular, Universidade Federal do Paraná, Caixa Postal 19031, CEP 81531-970, Curitiba, PR, Brazil
| | | | - Luíse Esquivel
- Estação de Piscicultura Panamá, Est. Geral Bom Retiro, Paulo Lopes, SC, CEP 88490-000, Brazil
| | - Francisco Filipak Neto
- Departamento de Biologia Celular, Universidade Federal do Paraná, Caixa Postal 19031, CEP 81531-970, Curitiba, PR, Brazil
| | | | - Maritana Mela Prodocimo
- Departamento de Biologia Celular, Universidade Federal do Paraná, Caixa Postal 19031, CEP 81531-970, Curitiba, PR, Brazil.
| |
Collapse
|
47
|
Li YW, Ma WL. Photocatalytic oxidation technology for indoor air pollutants elimination: A review. CHEMOSPHERE 2021; 280:130667. [PMID: 34162075 DOI: 10.1016/j.chemosphere.2021.130667] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 06/13/2023]
Abstract
As more people are spending the majority of their daily lives indoors, indoor air quality has been acknowledged as an important factor influencing human health, with increasing research attention in recent decades. Indoor air pollutants (IAPs), such as volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs), can cause acute irritation and chronic diseases. Photocatalytic oxidation (PCO) technology is an efficient approach for eliminating IAPs. In this review, the development of PCO technology was explained and discussed to promote future development of PCO technology for IAP elimination. First, the health effects and the measured concentrations of typical VOCs and SVOCs in indoor environments worldwide were briefly introduced. Subsequently, the development and limitations of some typical photocatalytic reactors (including packed-bed reactors, monolithic reactors, optical fiber reactors, and microreactors) were summarized and compared. Then, the influences of operating parameters (including initial concentration of contaminants, relative humidity, space velocity, light source and intensity, catalyst support materials, and immobilization method) and the degradation pathways as well as intermediates of PCO technology were elucidated. Finally, the possible challenges and future development directions regarding PCO technology for IAP elimination were critically proposed and addressed.
Collapse
Affiliation(s)
- Yu-Wei Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
48
|
Li L, Wang H, Hua F, Wang M, Zhang Y, Xi H, Yang J, Yang Z, Lei Z. Flame Retardancy of Epoxy Resin Improved by Graphene Hybrid Containing Phosphorous, Boron, Nitrogen and Silicon Elements. Macromol Res 2021. [DOI: 10.1007/s13233-021-9074-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Lee S, Ra K, Moon HB. Severe contamination and time trends of legacy and novel halogenated flame retardants in multiple environmental media from Lake Shihwa, Korea: Effectiveness of regulatory action. CHEMOSPHERE 2021; 279:130620. [PMID: 34134417 DOI: 10.1016/j.chemosphere.2021.130620] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/12/2021] [Accepted: 04/17/2021] [Indexed: 06/12/2023]
Abstract
Novel halogenated flame retardants (HFRs) were introduced to industrial markets as alternatives to legacy brominated FRs (BFRs), such as polybrominated diphenyl ethers (PBDEs). In the present study, PBDEs and their brominated and chlorinated alternatives, novel BFRs (NBFRs) and dechlorane plus (DP), were measured in multiple environmental matrices in a highly industrialized lake in Korea. Legacy and novel HFRs were detected in multiple samples, indicating ubiquitous contamination. Concentrations of HFRs in water and sediment observed in creeks running through machine, textiles, and automobile industrial complexes were significantly higher than those observed in inside and outside of the lake. Higher bioaccumulation levels of HFRs were observed in inshore compared with offshore waters. Results suggest that multi-matrix distribution of legacy and novel HFRs was dependent on the geographical proximity to industrial sources. Compared with previous studies, the highest levels of PBDEs and NBFRs were recorded in water samples on a global scale, implying on-going emissions from industrial activities. Decabromodiphenyl ethane (DBDPE) was a dominant compound in water samples, whereas the concentrations of PBDEs, NBFRs, and DP in sediment were similar to each other. This suggests a shift in consumption from legacy to novel HFRs, preferentially in water environments. A significant declining trend in PBDEs was observed in water and sediment collected between 2008 and 2015, indicating the effectiveness of regulatory actions. Based on their environmental occurrence and bioaccumulation potential, pentabromoethylbenzene and bis(2-ethylhexyl) tetrabromophthalate may pose emerging concerns regarding contamination of aquatic environments.
Collapse
Affiliation(s)
- Sunggyu Lee
- Department of Marine Sciences and Convergent Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Kongtae Ra
- Marine Environmental Research Center, Korea Institute of Ocean Science and Technology (KIOST), Busan 49111, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Sciences and Convergent Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea.
| |
Collapse
|
50
|
Paliya S, Mandpe A, Bombaywala S, Kumar MS, Kumar S, Morya VK. Polybrominated diphenyl ethers in the environment: a wake-up call for concerted action in India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:44693-44715. [PMID: 34227009 DOI: 10.1007/s11356-021-15204-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are a class of persistent organic pollutants (POPs) used as flame retardants in the products utilized in day-to-day life. Their bioaccumulation, low volatility, and high persistence in the environment have led to their global spread even to remote and distant regions. The present study identifies gaps in the investigation of the neurotoxic potential of PBDEs, their effects on brain development, toxicokinetic, and their potential as a carcinogen. In India, to date, only human breast milk was assessed for levels of PBDEs, and it is suggested that other human tissues can also be explored. No data on the reproductive toxicity of PBDEs are reported from Indian cohorts. Long-range transport and deposition of PBDEs in colder regions necessitates monitoring of Himalayan regions in India. An inventory of PBDEs is required to be made for addressing the worrisome situation of the unregulated import of E-waste from the developed countries in India. The study also emphasizes providing guidelines for the articulation of policies regarding sound surveillance and management of PBDE production, consumption, and release in the Indian context. It is recommended that a separate cell for monitoring and follow-up of PBDEs should be established in India. Also, the development of better alternatives and environment-friendly remediation technologies for PBDEs is the need of the hour.
Collapse
Affiliation(s)
- Sonam Paliya
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India
| | - Ashootosh Mandpe
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India
| | - Sakina Bombaywala
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India
| | - Manukonda Suresh Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India
| | - Sunil Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India.
| | - Vivek Kumar Morya
- Adhita Biosciences Pvt. Ltd, SIIC Extension, IIT Kanpur, Kanpur, 208 016, India
| |
Collapse
|