1
|
da Silva AS, de Mello TF, Fagá HFE, Knorst JK, Silva FRMB, Leite GAA. Female Mice Exposed to Pyriproxyfen Since Prepuberty Showed Reproductive Impairment During Sexual Maturity and Increased Fetal Death in Their Offspring. ENVIRONMENTAL TOXICOLOGY 2024; 39:5019-5038. [PMID: 39037111 DOI: 10.1002/tox.24374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/26/2024] [Accepted: 06/01/2024] [Indexed: 07/23/2024]
Abstract
Pyriproxyfen (PPF) is an insecticide used in agriculture, which is approved for use in drinking water tanks for human consumption. However, some studies indicate that it may act as an endocrine disruptor and affect nontarget organisms. This study aimed to evaluate the effects of PPF on reproduction and general health status in female mice exposed from pre-puberty to adulthood. In the first experiment, females were treated by gavage from postnatal day (PND) 23 to (PND) 75 and were distributed into three experimental groups: control (vehicle), PPF 0.1 mg/kg, and PPF 1 mg/kg. Female mice were assessed for the age of puberty onset, body mass, water and food consumption, and the estrous cycle. On PDN 75, a subgroup was euthanized, when vital and reproductive organs were collected and weighed. The thyroid, ovary, and uterus were evaluated for histomorphometry. The other subgroup was assessed in relation to reproductive performance and fetal parameters. In a second experiment, the uterotrophic assay was performed with juvenile females (PND 18) using doses of 0.01, 0.1, or 1 mg/kg of PPF. PPF treatment reduced thyroid mass and increased liver mass. Furthermore, there was an increase in ovarian interstitial tissue and, in the uterus, a decrease in the thickness of the endometrial stroma with reduced content of collagen fibers. There was also a reduction of 30% in pregnancy rate in the treated groups and an increase in the frequency of fetal death. This study suggests that, based on this experimental model, the insecticide may pose a reproductive risk for females chronically exposed to the substance from the pre-pubertal period until adulthood. These results raise concerns about prolonged exposure of women to the same compound.
Collapse
Affiliation(s)
- Alice Santos da Silva
- Laboratório de Reprodução e Toxicologia (Laretox), Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
- Programa de Pós-graduação em Biologia Celular e Do Desenvolvimento, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Tainara Fernandes de Mello
- Laboratório de Reprodução e Toxicologia (Laretox), Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
- Programa de Pós-graduação em Biologia Celular e Do Desenvolvimento, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Henrique Frederico Enz Fagá
- Laboratório de Reprodução e Toxicologia (Laretox), Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Jennyfer Karen Knorst
- Laboratório de Reprodução e Toxicologia (Laretox), Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | - Gabriel Adan Araújo Leite
- Laboratório de Reprodução e Toxicologia (Laretox), Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
2
|
Liu H, Li H, Liu Y, Zhao H, Peng R. Toxic effects of microplastic and nanoplastic on the reproduction of teleost fish in aquatic environments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-35434-9. [PMID: 39467868 DOI: 10.1007/s11356-024-35434-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 10/23/2024] [Indexed: 10/30/2024]
Abstract
Microplastics and nanoplastics are widely present in aquatic environments and attract significant scholarly attention due to their toxicity, persistence, and ability to cross biological barriers, which pose substantial risks to various fish species. Microplastics and nanoplastics can enter fish through their digestive tract, gills and skin, causing oxidative damage to the body and adversely affecting their reproductive system. Given that fish constitute a crucial source of high-quality protein for humans, it is necessary to study the impact of microplastics on fish reproduction in order to assess the impact of pollutants on ecology, biodiversity conservation, environmental sustainability, and endocrine disruption. This review explores the reproductive consequences of microplastics and nanoplastics in fish, examining aspects such as fecundity, abnormal offspring, circadian rhythm, gonad index, spermatocyte development, oocyte development, sperm quality, ovarian development, and changes at the molecular and cellular level. These investigations hold significant importance in environmental toxicology.
Collapse
Affiliation(s)
- Huanpeng Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Huiqi Li
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Yinai Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Haiyang Zhao
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
3
|
Xu Z, Zheng Q, Li N, Deng W, Qin T, Lv T, Wang L, Li M, Chen X, Zhang W, Liu B, Peng X. Rational design of a dual-mode fluorescent probe for portable detection of pyriproxyfen in the environment and food. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135364. [PMID: 39111178 DOI: 10.1016/j.jhazmat.2024.135364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/11/2024] [Accepted: 07/27/2024] [Indexed: 08/17/2024]
Abstract
The development of a fluorescent probe for pyriproxyfen (PPF) is crucial due to its potential threat to human health. However, the chemical inertness and low solubility of PPF present significant challenges for the detection of PPF in aqueous solutions using fluorescent probes. Herein, we have originally proposed a complex based on 2-(4-(dimethylamino)phenyl)-3-hydroxy-6,7-dimethoxy-4 H-chromen-4-one (HOF) and serum albumin (SA) as a dual-mode fluorescent probe, HOF@SA. This probe utilizes an indicator displacement assay (IDA) to release the dye HOF from the probe at low PPF concentrations (< 10 µM) and embeds the free dye HOF into the micelle of PPF at high concentrations (> 10 µM). This results in dual-mode fluorescent response characteristics for PPF: a turn-off response at low concentrations and a ratiometric response at high concentrations. An investigation of sensing behavior of HOF@SA for PPF detection exhibits rapid response (< 60 s), high sensitivity (LOD ∼4.7 ppb), high selectivity, and excellent visual detection capability (from cyan to yellow). Moreover, with the aid of a portable device, this method enables to analyze PPF in environmental and food samples. These results promote the advancement of a fluorescent probe approach for PPF analysis in environment and food.
Collapse
Affiliation(s)
- Zhongyong Xu
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qifeng Zheng
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China; Advanced Materials and Devices Laboratory, School of Materials Science and Engineering, Hanshan Normal University, Guangdong 521041, China
| | - Na Li
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Weihua Deng
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Tianyi Qin
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Taoyuze Lv
- School of Physics, The University of Sydney, NSW 2006, Australia
| | - Lei Wang
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Mingle Li
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiaoqiang Chen
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Wenxing Zhang
- Advanced Materials and Devices Laboratory, School of Materials Science and Engineering, Hanshan Normal University, Guangdong 521041, China.
| | - Bin Liu
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Xiaojun Peng
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
4
|
Li B, Ye L, Zhang C, Liu R, Wang C, Zhang X, Ji H, Yu H. Effects of glycerol monolaurate on estradiol and follicle-stimulating hormones, offspring quality, and mRNA expression of reproductive-related genes of zebrafish (Danio rerio) females. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1391-1408. [PMID: 38625478 DOI: 10.1007/s10695-024-01345-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
This study aims to explore whether glycerol monolaurate (GML) can improve reproductive performance of female zebrafish (Danio rerio) and the survival percentage of their offspring. Three kinds of isonitrogenous and isolipid diets, including basal diet (control) and basal diet containing 0.75 g/kg GML (L_GML) and 1.5 g/kg GML (H_GML), were prepared for 4 weeks feeding trial. The results show that GML increased the GSI of female zebrafish. GML also enhanced reproductive performance of female zebrafish. Specifically, GML increased spawning number and hatching rate of female zebrafish. Moreover, GML significantly increased the levels of triglycerides (TG), lauric acid, and estradiol (E2) in the ovary (P < 0.05). Follicle-stimulating hormone (FSH) levels in the ovary and brain also significantly increased in the L_GML group (P < 0.05). Besides, dietary GML regulated the hypothalamus-pituitary-gonad (HPG) axis evidenced by the changed expression levels of HPG axis-related genes in the brain and ovary of the L_GML and H_GML groups compared with the control group. Furthermore, compared with the control group, the expression levels of HPG axis-related genes (kiss2, kiss1r, kiss2r, gnrh3, gnrhr1, gnrhr3, lhβ, and esr2b) in the brain of the L_GML group were significantly increased (P < 0.05), and the expression levels of HPG axis-related genes (kiss1, kiss2, kiss2r, gnrh2, gnrh3, gnrhr4, fshβ, lhβ, esr1, esr2a, and esr2b) in the brain of the H_GML group were significantly increased (P < 0.05). These results suggest that GML may stimulate the expression of gnrh2 and gnrh3 by increasing the expression level of kiss1 and kiss2 genes in the hypothalamus, thus promoting the synthesis of FSH and E2. The expression levels of genes associated with gonadotropin receptors (fshr and lhr) and gonadal steroid hormone synthesis (cyp11a1, cyp17, and cyp19a) in the ovary were also significantly upregulated by dietary GML (P < 0.05). The increasing expression level of cyp19a also may promote the FSH synthesis. Particularly, GML enhanced the richness and diversity and regulated the species composition of intestinal microbiota in female zebrafish. Changes in certain intestinal microorganisms may be related to the expression of certain genes involved in the HPG axis. In addition, L_GML and H_GML both significantly decreased larvae mortality at 96 h post fertilization and their mortality during the first-feeding period (P < 0.05), revealing the enhanced the starvation tolerance of zebrafish larvae. In summary, dietary GML regulated genes related to HPG axis to promote the synthesis of E2 and FSH and altered gut microbiota in female zebrafish, and improved the survival percentage of their offspring.
Collapse
Affiliation(s)
- Boyu Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Limin Ye
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Cheng Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Ruofan Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Chi Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiaotian Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Haibo Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
5
|
Park C, Jeon H, Kho Y, Ji K. The combined effects of preservative chemicals in consumer products: An analysis using embryonic and adult zebrafish. CHEMOSPHERE 2024; 357:141984. [PMID: 38614392 DOI: 10.1016/j.chemosphere.2024.141984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/20/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Benzisothiazolinone (BIT) and propyl paraben (PP) are preservatives in cleaning products; however, their toxicities are not well understood. In this study, zebrafish embryos were exposed to BIT, PP, and mixtures of both for 96 h to investigate the effects on growth hormone (GH), insulin-like growth factor-1 (IGF-1), and the transcription of 19 genes related to the GH/IGFs axis. Concentrations of BIT and PP were measured in the whole body of larvae. Zebrafish pairs were also exposed to BIT, PP, and mixtures for 21 d to evaluate the effects on sex hormones, histology in gonad, and transcription of 22 genes related to the hypothalamus-pituitary-gonad axis and vitellogenin. The mixtures had potentiation effects on development, reproduction, hormones, and gene transcripts than individual exposure. Larvae exposed to 229 μg L-1 BIT, 64.5 μg L-1 PP, and mixtures showed reduced growth. Decreased GH and IGF-1 levels were supported by gene regulation associated with the GH/IGFs axis. In larvae, reactive oxygen species, superoxide dismutase, catalase, and glutathione peroxidase levels were increased under all exposures. The gonadosomatic index in males and number of eggs decreased after mixture exposure. In females exposed to mixtures, the percentage of atretic follicle in ovary was significantly increased. The significant decrease in testosterone in males and significant decrease in 17β-estradiol in females exposed to mixtures suggest anti-estrogenic and anti-androgenic potential. Thus, preservative mixtures in consumer products may be more toxic than the individual substances, which is important for managing the risks of mixing preservatives.
Collapse
Affiliation(s)
- Chaeun Park
- Department of Environmental Health, Graduate School at Yongin University, Yongin, 17092, Republic of Korea
| | - Hyeri Jeon
- Department of Health, Environment and Safety, Eulji University, Seongnam, Gyeonggi, 13135, Republic of Korea
| | - Younglim Kho
- Department of Health, Environment and Safety, Eulji University, Seongnam, Gyeonggi, 13135, Republic of Korea
| | - Kyunghee Ji
- Department of Environmental Health, Graduate School at Yongin University, Yongin, 17092, Republic of Korea; Department of Occupational and Environmental Health, Yongin University, Yongin, 17092, Republic of Korea.
| |
Collapse
|
6
|
Xian H, Li Z, Bai R, Ye R, Feng Y, Zhong Y, Liang B, Huang Y, Guo J, Wang B, Dai M, Tang S, Ren X, Chen X, Chen D, Yang X, Huang Z. From cradle to grave: Deciphering sex-specific disruptions of the nervous and reproductive systems through interactions of 4-methylbenzylidene camphor and nanoplastics in adult zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134298. [PMID: 38626679 DOI: 10.1016/j.jhazmat.2024.134298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 04/18/2024]
Abstract
4-methylbenzylidene camphor (4-MBC) and micro/nanoplastics (MNPs) are common in personal care and cosmetic products (PCCPs) and consumer goods; however, they have become pervasive environmental contaminants. MNPs serve as carriers of 4-MBC in both PCCPs and the environment. Our previous study demonstrated that 4-MBC induces estrogenic effects in zebrafish larvae. However, knowledge gaps remain regarding the sex- and tissue-specific accumulation and potential toxicities of chronic coexposure to 4-MBC and MNPs. Herein, adult zebrafish were exposed to environmentally realistic concentrations of 4-MBC (0, 0.4832, and 4832 μg/L), with or without polystyrene nanoplastics (PS-NPs; 50 nm, 1.0 mg/L) for 21 days. Sex-specific accumulation was observed, with higher concentrations in female brains, while males exhibited comparable accumulation in the liver, testes, and brain. Coexposure to PS-NPs intensified the 4-MBC burden in all tested tissues. Dual-omics analysis (transcriptomics and proteomics) revealed dysfunctions in neuronal differentiation, death, and reproduction. 4-MBC-co-PS-NP exposure disrupted the brain histopathology more severely than exposure to 4-MBC alone, inducing sex-specific neurotoxicity and reproductive disruptions. Female zebrafish exhibited autism spectrum disorder-like behavior and disruption of vitellogenesis and oocyte maturation, while male zebrafish showed Parkinson's-like behavior and spermatogenesis disruption. Our findings highlight that PS-NPs enhance tissue accumulation of 4-MBC, leading to sex-specific impairments in the nervous and reproductive systems of zebrafish.
Collapse
Affiliation(s)
- Hongyi Xian
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhiming Li
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Ruobing Bai
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Rongyi Ye
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yu Feng
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yizhou Zhong
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Boxuan Liang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yuji Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Jie Guo
- Hunter Biotechnology, Inc., Hangzhou 310051, China
| | - Binjie Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Mingzhu Dai
- Hunter Biotechnology, Inc., Hangzhou 310051, China
| | - Shuqin Tang
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Xiaohu Ren
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xueping Chen
- Vitargent (International) Biotechnology Limited, Shatin 999077, Hong Kong, SAR China
| | - Da Chen
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Xingfen Yang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhenlie Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
7
|
Wang F. Reproductive endocrine disruption effect and mechanism in male zebrafish after life cycle exposure to environmental relevant triclosan. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 270:106899. [PMID: 38492288 DOI: 10.1016/j.aquatox.2024.106899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/01/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
Triclosan (TCS) is a wide-spectrum antibacterial agent that is found in various water environments. It has been reported to have estrogenic effects. However, the impact of TCS exposure on the reproductive system of zebrafish (Danio rerio) throughout their life cycle is not well understood. In this study, zebrafish fertilized eggs were exposed to 0, 10, and 50 μg/L TCS for 120 days. The study investigated the effects of TCS exposure on brain and testis coefficients, the expression of genes related to the hypothalamus-pituitary-gonadal (HPG) axis, hormone levels, vitellogenin (VTG) content, histopathological sections, and performed RNA sequencing of male zebrafish. The results revealed that life cycle TCS exposure had significant effects on zebrafish reproductive parameters. It increased the testis coefficient, while decreasing the brain coefficient. TCS exposure also led to a decrease in mature spermatozoa and altered the expression of genes related to the HPG axis. Furthermore, TCS disrupted the balance of sex hormone levels and increased VTG content of male zebrafish. Transcriptome sequencing analysis indicated that TCS affected reproductive endocrine related pathways, including PPAR signaling pathway, cell cycle, GnRH signaling pathway, steroid biosynthesis, cytokine-cytokine receptor interaction, and steroid hormone biosynthesis. Protein-protein interaction (PPI) network analysis confirmed the enrichment of hub genes in these pathways, including bub1bb, ccnb1, cdc20, cdk1, mcm2, mcm5, mcm6, plk1, and ttk in the brain, as well as fabp1b.1, fabp2, fabp6, ccr7, cxcl11.8, hsd11b2, and hsd3b1 in the testis. This study sheds light on the reproductive endocrine-disrupting mechanisms of life cycle exposure to TCS.
Collapse
Affiliation(s)
- Fan Wang
- School of Biological Science, Luoyang Normal University, No. 6 Jiqing Road, Yibin District, Luoyang 471022, China.
| |
Collapse
|
8
|
Liu B, Li P, Du RY, Wang CL, Ma YQ, Feng JX, Liu L, Li ZH. Long-term tralopyril exposure results in endocrinological and transgenerational toxicity: A two-generation study of marine medaka (Oryzias melastigma). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169344. [PMID: 38097088 DOI: 10.1016/j.scitotenv.2023.169344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/12/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
This study aims to investigate the impact of tralopyril, a newly developed marine antifouling agent, on the reproductive endocrine system and developmental toxicity of offspring in marine medaka. The results revealed that exposure to tralopyril (0, 1, 20 μg/L) for 42 days resulted in decreased reproductive capacity in marine medaka. Moreover, it disrupted the levels of sex hormones E2 and T, as well as the transcription levels of genes related to the HPG axis, such as cyp19b and star. Sex-dependent differences were observed, with females experiencing more pronounced effects. Furthermore, intergenerational toxicity was observed in F1 offspring, including increased heart rate, changes in retinal morphology and cartilage structure, decreased swimming activity, and downregulation of transcription levels of relevant genes (HPT axis, GH/IGF axis, cox, bmp4, bmp2, runx2, etc.). Notably, the disruption of the F1 endocrine system by tralopyril persisted into adulthood, indicating a transgenerational effect. Molecular docking analysis suggested that tralopyril's RA receptor activity might be one of the key factors contributing to the developmental toxicity observed in offspring. Overall, our study highlights the potential threat posed by tralopyril to the sustainability of fish populations, as it can disrupt the endocrine system and negatively impact aquatic organisms for multiple generations.
Collapse
Affiliation(s)
- Bin Liu
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Ren-Yan Du
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Cun-Long Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Yu-Qing Ma
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Jian-Xue Feng
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| |
Collapse
|
9
|
Salesa B, Torres-Gavilá J, Ferrando-Rodrigo MD, Sancho E. Pyriproxyfen Contamination in Daphnia magna: Identifying Early Warning Biomarkers. J Xenobiot 2024; 14:214-226. [PMID: 38390993 PMCID: PMC10885111 DOI: 10.3390/jox14010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
Pyriproxyfen is an insecticide currently employed in numerous countries for the management of agricultural and indoor pests. Several studies indicate that this insecticide has been detected in multiple rivers, with concentrations reaching as high as 99.59 ng/L in the Júcar River in Spain. Therefore, the determination of some biochemical and genetic effects of this insecticide on aquatic organisms could serve as an early warning mechanism to identify potential disruptions in various biomarkers. Based on this, Daphnia magna organisms were exposed to pyriproxyfen sublethal concentrations for 21 days. Some biochemical parameters, including cholesterol, triglycerides, glucose, lactate, and LDH activity, were determined. Additionally, some genetic biomarkers associated with oxidative stress, heat shock proteins, lipid metabolism, hemoglobin, metallothioneins, and vitellogenin synthesis were evaluated in daphnids exposed to the insecticide for 21 days. LDH activity increased significantly in those daphnids exposed to the highest insecticide concentration (14.02 µg/L), while cholesterol levels decreased significantly. In contrast, glucose, total proteins, and triglycerides remained unaffected in D. magna exposed to pyriproxyfen. On the other hand, exposure to the insecticide led to notable alterations in gene expression among individuals. Specifically, genes associated with lipid metabolism and reproduction exhibited a significant reduction in gene expression. Fabd expression was decreased by approximately 20% in exposed daphnids, while vtg expression was suppressed as much as 80% when compared to control values. Furthermore, it was observed that the hgb1 and hgb2 genes, associated with hemoglobin synthesis, exhibited significant overexpression. Notably, the dysfunction observed in both hemoglobin genes was linked to an increase in pigmentation in Daphnia magna during the course of the experiment. These alterations in gene expression could serve as effective indicators of early contamination even at low pesticide concentrations.
Collapse
Affiliation(s)
- Beatriz Salesa
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - Javier Torres-Gavilá
- Instituto de Investigación en Medio Ambiente y Ciencia Marina (IMEDMAR-UCV), c/Guillem de Castro 94, 46001 Valencia, Spain
| | - María Dolores Ferrando-Rodrigo
- Laboratory of Ecotoxicology, Functional Biology and Physical Anthropology Department, Faculty of Biology, University of Valencia, Dr. Moliner 50, 46100 Valencia, Spain
| | - Encarnación Sancho
- Laboratory of Ecotoxicology, Functional Biology and Physical Anthropology Department, Faculty of Biology, University of Valencia, Dr. Moliner 50, 46100 Valencia, Spain
| |
Collapse
|
10
|
Li G, Li Y, He C, Wei Y, Cai K, Lu Q, Liu X, Zhu Y, Xu K. The promoting effects of pyriproxyfen on autophagy and apoptosis in silk glands of non-target insect silkworm, Bombyx mori. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105586. [PMID: 37945223 DOI: 10.1016/j.pestbp.2023.105586] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/12/2023] [Accepted: 08/23/2023] [Indexed: 11/12/2023]
Abstract
Pyriproxyfen is a juvenile hormone analogue. The physiological effects of its low-concentration drift during the process of controlling agricultural and forestry pests on non-target organisms in the ecological environment are unpredictable, especially the effects on organs that play a key role in biological function are worthy of attention. The silk gland is an important organ for silk-secreting insects. Herein, we studied the effects of trace pyriproxyfen on autophagy and apoptosis of the silk gland in the lepidopteran model insect, Bombyx mori (silkworm). After treating fifth instar silkworm larvae with pyriproxyfen for 24 h, we found significant shrinkage, vacuolization, and fragmentation in the posterior silk gland (PSG). In addition, the results of autophagy-related genes of ATG8 and TUNEL assay also demonstrated that autophagy and apoptosis in the PSG of the silkworm was induced by pyriproxyfen. RNA-Seq results showed that pyriproxyfen treatment resulted in the activation of juvenile hormone signaling pathway genes and inhibition of 20-hydroxyecdysone (20E) signaling pathway genes. Among the 1808 significantly differentially expressed genes, 796 were upregulated and 1012 were downregulated. Among them, 30 genes were identified for autophagy-related signaling pathways, such as NOD-like receptor signaling pathway and mTOR signaling pathway, and 30 genes were identified for apoptosis-related signaling pathways, such as P53 signaling pathway and TNF signaling pathway. Further qRT-PCR and in vitro gland culture studies showed that the autophagy-related genes Atg5, Atg6, Atg12, Atg16 and the apoptosis-related genes Aif, Dronc, Dredd, and Caspase1 were responsive to the treatment of pyriproxyfen, with transcription levels up-regulated from 24 to 72 h. In addition, ATG5, ATG6, and Dronc genes had a more direct response to pyriproxyfen treatment. These results suggested that pyriproxyfen treatment could disrupt the hormone regulation in silkworms, promoting autophagy and apoptosis in the PSG. This study provides more evidence for the research on the damage of juvenile hormone analogues to non-target organisms or organs in the environment, and provides reference information for the scientific and rational use of juvenile hormone pesticides.
Collapse
Affiliation(s)
- Guoli Li
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Yizhe Li
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Chunhui He
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Yuting Wei
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Kunpei Cai
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Qingyu Lu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xuebin Liu
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Yizhou Zhu
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Kaizun Xu
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China; Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China; Sericulture Institute of Guangxi University, Nanning, Guangxi 530004, PR China.
| |
Collapse
|
11
|
Huang CS, Deng HF, Zhou L, Shen P, Ni YH, Wang NN, Li GF, Yue LX, Zhou YQ, Zhou W, Gao Y. Undesirable ER stress induced by bavachin contributed to follicular atresia in zebrafish ovary. Biomed Pharmacother 2023; 166:115322. [PMID: 37586115 DOI: 10.1016/j.biopha.2023.115322] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023] Open
Abstract
Fructus psoraleae (FP) is a commonly used herb with potential reproductive toxicity. Bavachin (BV), one of essential active ingredients of FP, was found to exhibit estrogenic activity, but its effect on female reproductive system remains unknown. In this study, the impact of BV on the female zebrafish reproductive system and underlying molecular mechanism were determined in vivo and ex vivo. The results showed that BV could accumulate in zebrafish ovary, leading to obvious follicular atresia and increase in gonadal index and vitellogenin content. Endoplasmic reticulum (ER) swelling and hypertrophy were observed in the BV-treated zebrafish ovary, accompanied by an increase in the expressions of ER stress and unfolded protein response (UPR) related genes, namely atf6, ire-1α and xbp1s. In the ex vivo study, BV was found to decrease the survival rate and maturation rate of oocytes, while increasing the expression of Ca2+. Additionally, BV led to an elevation in the level of estrogen receptor ESR1 and the expressions of genes involved in ER stress and UPR, including atf6, ire-1α, xbp1s, chop and perk. Moreover, molecular docking revealed that BV could directly bind to immunoglobulin heavy chain binding protein (BiP) and estrogen receptor 1 (ESR1). Besides, the alterations induced by BV could be partially reversed by fulvestrant (FULV) and 4-phenylbutyric acid (4-PBA), respectively. Thus, long-termed BV-containing medicine treatment could generate reproductive toxicity in female zebrafish by causing follicular atresia through BiP- and ESR-mediated ER stress and UPR, providing a potential target for the prevention of reproductive toxicity caused by BV.
Collapse
Affiliation(s)
- Cong-Shu Huang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hui-Fang Deng
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Lei Zhou
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Pan Shen
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yu-Hao Ni
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ning-Ning Wang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Gao-Fu Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Lan-Xin Yue
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yong-Qiang Zhou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Wei Zhou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Yue Gao
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
12
|
Wu G, Gao L, Zhang S, Du D, Xue Y. Effects of copper oxide nanoparticles on reproductive system of zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115252. [PMID: 37467561 DOI: 10.1016/j.ecoenv.2023.115252] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023]
Abstract
Copper oxide nanoparticles (CuO NPs) were regarded as the versatile materials in daily life and the in-depth evaluation of their biological effects is of great concern. Herein the female and male zebrafishes were chosen as the model animals to analyze the reproductive toxicity caused by CuO NPs at low concentration (10, 50 and 100 μg/L) After 20-days exposure, the structure of zebrafish ovary and testis were impaired. Moreover, the contents of 17β-estradiol (E2) in both females and males were increased, while the contents of testosterone (T) were decreased, indicating the imbalanced sex hormones caused by CuO NPs. The expression of genes along the hypothalamic pituitary-gonad (HPG) axis, were examined with quantitative real-time PCR to further evaluate the toxic mechanisms. Meanwhile, the levels of erα/er2β and cyp19a in female zebrafishes and erα/er2β, lhr, hmgra/hmgrb, 3βhsd and 17βhsd in male zebrafishes were obviously up-regulated. While, the level of αr was obviously down-regulated in female and male zebrafishes. Thus, the obtained data uncovered that long-term exposure of CuO NPs with low dose could trigger the endocrine disorder, resulting in the disturbance of E2 and T level, inhibition of gonad development, and alteration of HPG axis genes. In brief, this study enriched the toxicological data of NPs on aquatic vertebrates and provided the theoretical support for assessing the environmental safety of NPs.
Collapse
Affiliation(s)
- Guizhu Wu
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China; Jiangsu Province Engineering Research Center of Green Technology and Contigency Management for Emerging Pollutants, Zhenjiang 212013, China
| | - Lu Gao
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China; Jiangsu Province Engineering Research Center of Green Technology and Contigency Management for Emerging Pollutants, Zhenjiang 212013, China
| | - Shaoming Zhang
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Daolin Du
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China; Jiangsu Province Engineering Research Center of Green Technology and Contigency Management for Emerging Pollutants, Zhenjiang 212013, China.
| | - Yonglai Xue
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China; Jiangsu Province Engineering Research Center of Green Technology and Contigency Management for Emerging Pollutants, Zhenjiang 212013, China.
| |
Collapse
|
13
|
Zhang JG, Shi W, Ma DD, Lu ZJ, Li SY, Long XB, Ying GG. Chronic Paternal/Maternal Exposure to Environmental Concentrations of Imidacloprid and Thiamethoxam Causes Intergenerational Toxicity in Zebrafish Offspring. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13384-13396. [PMID: 37651267 DOI: 10.1021/acs.est.3c04371] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Imidacloprid (IMI) and thiamethoxam (THM) are ubiquitous in aquatic ecosystems. Their negative effects on parental fish are investigated while intergenerational effects at environmentally relevant concentrations remain unclear. In this study, F0 zebrafish exposed to IMI and THM (0, 50, and 500 ng L-1) for 144 days post-fertilization (dpf) was allowed to spawn with two modes (internal mating and cross-mating), resulting in four types of F1 generations to investigate the intergenerational effects. IMI and THM affected F0 zebrafish fecundity, gonadal development, sex hormone and VTG levels, with accumulations found in F0 muscles and ovaries. In F1 generation, paternal or maternal exposure to IMI and THM also influenced sex hormones levels and elevated the heart rate and spontaneous movement rate. LncRNA-mRNA network analysis revealed that cell cycle and oocyte meiosis-related pathways in IMI groups and steroid biosynthesis related pathways in THM groups were significantly enriched in F1 offspring. Similar transcriptional alterations of dmrt1, insl3, cdc20, ccnb1, dnd1, ddx4, cox4i1l, and cox5b2 were observed in gonads of F0 and F1 generations. The findings indicated that prolonged paternal or maternal exposure to IMI and THM could severely cause intergenerational toxicity, resulting in developmental toxicity and endocrine-disrupting effects in zebrafish offspring.
Collapse
Affiliation(s)
- Jin-Ge Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Wenjun Shi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Dong-Dong Ma
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Zhi-Jie Lu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Si-Ying Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xiao-Bing Long
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|
14
|
Salesa B, Torres-Gavilá J, Sancho E, Ferrando MD. Multigenerational effects of the insecticide Pyriproxyfen and recovery in Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 886:164013. [PMID: 37164084 DOI: 10.1016/j.scitotenv.2023.164013] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023]
Abstract
In the present study, an ecotoxicological approach to the evaluation of the insecticide Pyriproxifen in the crustacean Daphnia magna was done. Acute toxicity tests (48 h), feeding behavior test (5 h) and chronic toxicity test (21 days) were carried out on a parental daphnid generation (F0). Pyriproxifen D. magna EC50 value in our experimental conditions was 336.47 μg/L. Based on this result, sublethal test concentrations were selected for the feeding study and the F0 chronic experiment. Filtration and ingestion rates of D. magna exposed animals did not show any significant difference respect to control daphnids. However, daphnids from the parental F0 generation when exposed to the insecticide during 21 days showed a decreased in all the reproductive parameters tested (mean total neonates per female, mean brood size, time to first brood, and mean number of broods per female) as well as in the population statistic growth rate (r), although survival was not affected. On the other hand, offspring from F0 females exposed to the highest Pyriproxifen concentration (14.02 μg/L) were separated in two F1 generation experiments. One group was transferred during 21 days to a medium free of toxicant (F1 generation-TC group) while the other group was exposed during 21 days to the same insecticide concentration as their mothers (14.02 μg/L) (F1 generation-TT group). Results from both experiments determined a decreased in most of the reproductive parameters which was higher in the F1-TT group, although some of them were recovered in the F1-TC group. On the other hand, the morphological analysis of the daphnids showed that the coloration pattern was altered in the daphnids exposed to the insecticide, together with a significant size decreased, and neonates from F0 progeny with the same morphological abnormality. Finally, we determined that the insecticide caused the appearance of males among the offspring generated by the F0.
Collapse
Affiliation(s)
- Beatriz Salesa
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001, Valencia, Spain.
| | - Javier Torres-Gavilá
- Instituto de Investigación en Medio Ambiente y Ciencia Marina (IMEDMAR-UCV), c/Guillem de Castro 94, 46001, Valencia, Spain
| | - Encarnación Sancho
- Laboratory of Ecotoxicology, Dept. Functional Biology and Physical Anthropology, Faculty of Biology, University of Valencia, Dr. Moliner 50, E-46100 Burjassot, Valencia, Spain
| | - María Dolores Ferrando
- Laboratory of Ecotoxicology, Dept. Functional Biology and Physical Anthropology, Faculty of Biology, University of Valencia, Dr. Moliner 50, E-46100 Burjassot, Valencia, Spain
| |
Collapse
|
15
|
Yun K, Ji K. Effects of di-(2-ethylhexyl) terephthalate on hypothalamus-pituitary-gonad axis in adult zebrafish. Reprod Toxicol 2023; 119:108408. [PMID: 37211339 DOI: 10.1016/j.reprotox.2023.108408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
Di-(2-ethylhexyl) terephthalate (DEHTP) is frequently used in food packaging and medical devices as an alternative to di-(2-ethylhexyl) phthalate (DEHP). In this study, zebrafish pairs were exposed to DEHTP for 21 d and the effects on fertility, sex hormone levels, vitellogenin levels, and transcription of genes along the hypothalamic-pituitary-gonad axis were evaluated. Results showed that mean egg numbers were significantly reduced in the 30 and 300 μg/L DEHTP groups. The adverse effects of DEHTP on hormones and gene transcripts were more prominent in males than in females. In male fish, the gonadosomatic index, hepatosomatic index, and vitellogenin concentration were significantly increased. The results of a significant decrease in testosterone (T) and an increase in the 17β-estradiol (E2)/T ratio in males exposed to 3-300 μg/L DEHTP suggest that the endocrine potential of DEHTP is similar that of DEHP. In females, genes related to gonadotropin-releasing hormone and gonadotropin were up-regulated while E2 was significantly down-regulated. These findings suggest that positive E2 feedback mechanisms in the hypothalamus and pituitary gland are activated to balance sex hormones. The effects of chronic exposure to DEHTP on the neuroendocrine system require further investigation.
Collapse
Affiliation(s)
- Kijeong Yun
- Department of Environmental Health, Graduate School at Yongin University, Yongin 17092, Republic of Korea
| | - Kyunghee Ji
- Department of Environmental Health, Graduate School at Yongin University, Yongin 17092, Republic of Korea.
| |
Collapse
|
16
|
Yan W, Li G, Lu Q, Hou J, Pan M, Peng M, Peng X, Wan H, Liu X, Wu Q. Molecular Mechanisms of Tebuconazole Affecting the Social Behavior and Reproduction of Zebrafish. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3928. [PMID: 36900939 PMCID: PMC10002025 DOI: 10.3390/ijerph20053928] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
The aim of this study was to explore the underlying mechanism of adverse effects caused by tebuconazole (TEB) on the reproduction of aquatic organisms In the present study, in order to explore the effects of TEB on reproduction, four-month-old zebrafish were exposed to TEB (0, DMSO, 0.4 mg/L, 0.8 mg/L, and 1.6 mg/L) for 21 days. After exposure, the accumulations of TEB in gonads were observed and the cumulative egg production was evidently decreased. The decline of fertilization rate in F1 embryos was also observed. Then the changes in sperm motility and histomorphology of gonads were discovered, evaluating that TEB had adverse effects on gonadal development. Additionally, we also found the alternations of social behavior, 17β-estradiol (E2) level, and testosterone (T) level. Furthermore, the expression levels of genes involved in the hypothalamic-pituitary-gonadal (HPG) axis and social behavior were remarkably altered. Taken together, it could be concluded that TEB affected the egg production and fertilization rate by interfering with gonadal development, sex hormone secretion, and social behavior, which were eventually attributed to the disruption of the expressions of genes associated with the HPG axis and social behavior. This study provides a new perspective to understanding the mechanism of TEB-induced reproductive toxicity.
Collapse
Affiliation(s)
- Wei Yan
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiqi Lu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi 435002, China
- Huangshi Key Laboratory of Lake Biodiversity and Environmental Conservation, Hubei Normal University, Huangshi 435002, China
- Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, Huangshi 435002, China
| | - Jianjun Hou
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi 435002, China
- Huangshi Key Laboratory of Lake Biodiversity and Environmental Conservation, Hubei Normal University, Huangshi 435002, China
- Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, Huangshi 435002, China
| | - Meiqi Pan
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Maomin Peng
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xitian Peng
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Hui Wan
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi 435002, China
- Huangshi Key Laboratory of Lake Biodiversity and Environmental Conservation, Hubei Normal University, Huangshi 435002, China
- Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, Huangshi 435002, China
| | - Xixia Liu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi 435002, China
- Huangshi Key Laboratory of Lake Biodiversity and Environmental Conservation, Hubei Normal University, Huangshi 435002, China
- Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, Huangshi 435002, China
| | - Qin Wu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi 435002, China
- Huangshi Key Laboratory of Lake Biodiversity and Environmental Conservation, Hubei Normal University, Huangshi 435002, China
- Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, Huangshi 435002, China
| |
Collapse
|
17
|
Ali Abd El-Rahman H, Omar AR. Ameliorative effect of avocado oil against lufenuron induced testicular damage and infertility in male rats. Andrologia 2022; 54:e14580. [PMID: 36068645 DOI: 10.1111/and.14580] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/24/2022] [Accepted: 08/22/2022] [Indexed: 01/25/2023] Open
Abstract
Lufenuron is a benzoylurea pesticide that causes significant histological and histochemical damage in mammals. Avocado is a common food in the human diet that contains antioxidant and antitumor properties. In male rats, avocado oil's protection against lufenuron-induced reproductive deterioration, oxidative stress, and DNA damages was investigated. Twenty-eight mature male rats were selected and distributed into four groups: Group 1, control group were administered distilled water orally; Group 2 received 4 ml/kg avocado; Group 3 was given lufenuron (1.6 mg/kg), and Group 4 was given avocado oil/lufenuron. The findings show that lufenuron treatment reduces reproductive hormone levels, sperm count, motility, viability and causes negative histopathological changes in testicular tissue, such as decreased epithelial height and increased luminal diameter degenerated spermatogenesis. Furthermore, lufenuron reduced the content of antioxidant enzymes while increasing the level of malondialdehyde, nitric oxide and corresponding DNA damage. Results showed that lufenuron is associated with testicular function impairment, which leads to infertility. Treatment with avocado oil improved reproductive hormone secretions, enzymatic activity, histological and DNA damage parameters in testis tissues, reducing the negative effects of lufenuron, proving that it may have a therapeutic role against lufenuron-mediated testicular toxicity.
Collapse
Affiliation(s)
| | - Amel Ramadan Omar
- Faculty of Science, Department of Zoology, Cairo University, Giza, Egypt
| |
Collapse
|
18
|
Song W, Gan W, Xie Z, Chen J, Wang L. Small RNA sequencing reveals sex-related miRNAs in Collichthys lucidus. Front Genet 2022; 13:955645. [PMID: 36092867 PMCID: PMC9458855 DOI: 10.3389/fgene.2022.955645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
Collichthys lucidus (C. lucidus) is an economically important fish species, exhibiting sexual dimorphism in its growth rate. However, there is a lack of research on its underlying sex-related mechanisms. Therefore, small RNA sequencing was performed to better comprehend these sex-related molecular mechanisms. In total, 171 differentially expressed miRNAs (DE-miRNAs) were identified between the ovaries and testes. Functional enrichment analysis revealed that the target genes of DE-miRNAs were considerably enriched in the p53 signaling, PI3K–Akt signaling, and TGF-beta signaling pathways. In addition, sex-related miRNAs were identified, and the expression of miR-430c-3p and miR-430f-3p was specifically observed in the gonads compared with other organs and their expression was markedly upregulated in the testes relative to the ovaries. Bmp15 was a target of miR-430c-3p and was greatly expressed in the ovaries compared with the testes. Importantly, miR-430c-3p and bmp15 co-expressed in the ovaries and testes. This research provides the first detailed miRNA profiles for C. lucidus concerning sex, likely laying the basis for further studies on sex differentiation in C. lucidus.
Collapse
Affiliation(s)
- Wei Song
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Wu Gan
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Zhengli Xie
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Jia Chen
- State Key Laboratory of Large Yellow Croaker Breeding, Fuding Seagull Fishing Food Co. Ltd., Ningde, China
| | - Lumin Wang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
- *Correspondence: Lumin Wang,
| |
Collapse
|
19
|
Tong Z, Yang T, Sun M, Dong X, Chu Y, Meng D, Wang M, Gao T, Duan J. Systemic assessment of the chiral insecticide pyriproxyfen in a citrus nectar source system: Stereoselective degradation, biological effect and exposure risk. PEST MANAGEMENT SCIENCE 2022; 78:3012-3018. [PMID: 35426212 DOI: 10.1002/ps.6926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/02/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Balancing the safety and efficiency of chiral pesticides can help protect pollinators. We evaluated the stereoselective behavior, bioactivity, toxicity and exposure risk of the chiral insecticide pyriproxyfen in a citrus nectar system. RESULTS Density functional theory (DFT) and ultra-performance liquid chromatography tandem mass spectroscopy (UPLC-MS/MS) were applied for absolute configuration appraisal and chiral analysis validation, respectively. The recoveries ranged from 72.3% to 100.5% with an relative standard deviation (RSD) ranging from 1.2% to 9.7%. In a field trial, we determined insecticide half-lives in citrus leaves and flowers, which were 7.0 and 8.6 days for R-(+)-pyriproxyfen, and 11.7 and 14.7 days for S-(-)-pyriproxyfen, respectively. We found that the bioactivity of R-(+)-pyriproxyfen was 3.39 and 2.37 times higher than S-(-)-pyriproxyfen against Unaspis yanonensis and Diaphorina citri nymphs, respectively. S-(-)-pyriproxyfen had 3.8 times higher acute toxicity than R-(+)-pyriproxyfen on Apis mellifera L., and its exposure risk was moderate based on the hazard quotient. CONCLUSION The phenomenon of stereoselective degradation and biological effect demonstrated that the high-risk stereoisomer of S-(-)-pyriproxyfen degraded more slowly than R-(+)-pyriproxyfen, but R-(+)-pyriproxyfen with better efficiency for target. Therefore, an increased duration of R-(+)-pyriproxyfen activity on citrus was beneficial for efficacy. Our results could guide the scientific application and evaluation of chiral pesticides on nectar plants. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhou Tong
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei, China
- Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei, China
| | - Tingmi Yang
- Guangxi Academy of Specialty Crops, Guilin, China
| | - Mingna Sun
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei, China
- Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei, China
| | - Xu Dong
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei, China
- Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei, China
| | - Yue Chu
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei, China
- Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei, China
| | - Dandan Meng
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei, China
- Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei, China
| | - Mei Wang
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei, China
- Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei, China
| | - Tongchun Gao
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei, China
- Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei, China
| | - Jinsheng Duan
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei, China
- Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei, China
| |
Collapse
|
20
|
Gong G, Kam H, Chen H, Chen Y, Cheang WS, Giesy JP, Zhou Q, Lee SMY. Role of endocrine disruption in toxicity of 6-benzylaminopurine (6-BA) to early-life stages of Zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113287. [PMID: 35149407 DOI: 10.1016/j.ecoenv.2022.113287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/20/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
6-benzylaminopurine (6-BA), classified as a "plant hormone", is an important ingredient in production of "toxic bean sprouts". Although there is no direct evidence of adverse effects, its hazardous effects have received some attention and aroused furious debate between proponents and environmental regulators. In this study, potential adverse effects of 6-BA were investigated by exposing zebrafish in vivo to 0.2 - 25 mg 6-BA/L. Results indicated that, when exposure was limited to early-life stage (4-36 hpf), 20 mg 6-BA/L caused early hatching, abnormal spontaneous movement, and precocious hyperactivity in zebrafish embryos/larvae. While under a continuous exposure regime, 6-BA at 0.2 mg/L was able to cause hyperactive locomotion and transcription of genes related to neurogenesis (gnrh3 and nestin) and endocrine systems (cyp19a and fshb) in 5 dpf larvae. Quantification by use of LC/MS indicated bioaccumulation of 6-BA in zebrafish increased when exposed to 0.2 or 20 mg 6-BA/L. These results suggested that 6-BA could accumulate in aquatic organisms and disrupt neuro-endocrine systems. Accordingly, exposure to 0.2 mg 6-BA/L increased production of estradiol (E2) and consequently E2/T ratio in zebrafish larvae, which directly indicated 6-BA is estrogenic. In silico simulations demonstrated potential for binding of 6-BA to estrogen receptor alpha (ERa) and cytochrome P450 aromatase (CYP19A). Therefore, induction of estrogenic effects, via potential interactions with hormone receptors or disturbance of downstream transcription signaling, was possible mechanism underlying the toxicity of 6-BA. Taken together, these findings demonstrate endocrine disrupting properties of 6-BA, which suggest concerns about risks posed to endocrine systems.
Collapse
Affiliation(s)
- Guiyi Gong
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang 524045, China; State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Hiotong Kam
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Hanbin Chen
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yan Chen
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon Saskatchewan S7N 5B3, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon Saskatchewan S7N 5B4, Canada; Department of Environmental Sciences, Baylor University, Waco, TX 76706, United States
| | - Qiaohong Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
21
|
Sun Y, Zhu B, Ling S, Yan B, Wang X, Jia S, Martyniuk CJ, Zhang W, Yang L, Zhou B. Decabromodiphenyl Ethane Mainly Affected the Muscle Contraction and Reproductive Endocrine System in Female Adult Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:470-479. [PMID: 34919388 DOI: 10.1021/acs.est.1c06679] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The novel brominated flame retardant decabromodiphenyl ethane (DBDPE) has become a widespread environmental pollutant. However, the target tissue and toxicity of DBDPE are still not clear. In the current study, female zebrafish were exposed to 1 and 100 nM DBDPE for 28 days. Chemical analysis revealed that DBDPE tended to accumulate in the brain other than the liver and gonad. Subsequently, tandem mass tag-based quantitative proteomics and parallel reaction monitoring verification were performed to screen the differentially expressed proteins in the brain. Bioinformatics analysis revealed that DBDPE mainly affected the biological process related to muscle contraction and estrogenic response. Therefore, the neurotoxicity and reproductive disruptions were validated via multilevel toxicological endpoints. Specifically, locomotor behavioral changes proved the potency of neurotoxicity, which may be caused by disturbance of muscular proteins and calcium homeostasis; decreases of sex hormone levels and transcriptional changes of genes related to the hypothalamic-pituitary-gonad-liver axis confirmed reproductive disruptions upon DBDPE exposure. In summary, our results suggested that DBDPE primarily accumulated in the brain and evoked neurotoxicity and reproductive disruptions in female zebrafish. These findings can provide important clues for a further mechanism study and risk assessment of DBDPE.
Collapse
Affiliation(s)
- Yumiao Sun
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Biran Zhu
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Siyuan Ling
- Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Biao Yan
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiulin Wang
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuzhao Jia
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32611 United States
| | - Wei Zhang
- Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lihua Yang
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Bingsheng Zhou
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
22
|
Meador JP. The fish early-life stage sublethal toxicity syndrome - A high-dose baseline toxicity response. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118201. [PMID: 34740289 DOI: 10.1016/j.envpol.2021.118201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/31/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
A large number of toxicity studies report abnormalities in early life-stage (ELS) fish that are described here as a sublethal toxicity syndrome (TxSnFELS) and generally include a reduced heart rate, edemas (yolk sac and cardiac), and a variety of morphological abnormalities. The TxSnFELS is very common and not diagnostic for any chemical or class of chemicals. This sublethal toxicity syndrome is mostly observed at high exposure concentrations and appears to be a baseline, non-specific toxicity response; however, it can also occur at low doses by specific action. Toxicity metrics for this syndrome generally occur at concentrations just below those causing mortality and have been reported for a large number of diverse chemicals. Predictions based on tissue concentrations or quantitative-structure activity relationship (QSAR) models support the designation of baseline toxicity for many of the tested chemicals, which is confirmed by observed values. Given the sheer number of disparate chemicals causing the TxSnFELS and correlation with QSAR derived partitioning; the only logical conclusion for these high-dose responses is baseline toxicity by nonspecific action and not a lock and key type receptor response. It is important to recognize that many chemicals can act both as baseline toxicants and specific acting toxicants likely via receptor interaction and it is not possible to predict those threshold doses from baseline toxicity. We should search out these specific low-dose responses for ecological risk assessment and not rely on high-concentration toxicity responses to guide environmental protection. The goal for toxicity assessment should not be to characterize toxic responses at baseline toxicity concentrations, but to evaluate chemicals for their most toxic potential. Additional aspects of this review evaluated the fish ELS teratogenic responses in relation to mammalian oral LD50s and explored potential key events responsible for baseline toxicity.
Collapse
Affiliation(s)
- James P Meador
- Ecotoxicology Program, Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA, 98112, USA.
| |
Collapse
|
23
|
Li X, Ru S, Tian H, Zhang S, Lin Z, Gao M, Wang J. Combined exposure to environmentally relevant copper and 2,2'-dithiobis-pyridine induces significant reproductive toxicity in male guppy (Poecilia reticulata). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149131. [PMID: 34346372 DOI: 10.1016/j.scitotenv.2021.149131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Metal pyrithiones (MePTs), the most widely used biocides in antifouling paints (AFs) coated on the hulls, are usually used in combination with Cu-containing substances. In the aquatic environment, 2,2'-dithiobis-pyridine ((PS)2), the main degradation product of MePTs, and Cu usually coexist. However, their combined impacts on aquatic organisms are unclear. This study exposed male guppy (Poecilia reticulata) to an environmentally realistic concentration of Cu (10 μg/L) alone or Cu (10 μg/L) combined with 20, 200, and 2000 ng/L (PS)2 to explore their combined reproductive toxicity. The results showed that co-exposure to Cu and (PS)2 increased Cu accumulation in the fish body in a dose-dependent manner and induced obvious spermatozoon apoptosis and necrosis, which was mediated by the peroxidation and caspase activation. Compared to Cu alone, co-exposure to Cu and 200, 2000 ng/L (PS)2 significantly decreased the testosterone level and collapsed spermatogenesis, and depressed male's sexual interest and mating behavior were observed in three co-exposure groups. Moreover, co-exposure to Cu and (PS)2 increased the disturbance on cyp19a and cyp19b transcription and suppressed the "display" reproductive behavior. Eventually, co-exposure to Cu and (PS)2 caused male reproductive failure. Therefore, the concurrence of Cu and (PS)2 induced significant reproductive toxicity in male guppies and would threaten the sustainability of fish populations. Considering the extensive usage of MePTs products in the AFs, their ecological risk warrants more evaluation.
Collapse
Affiliation(s)
- Xuefu Li
- Colleges of Marine Life Sciences, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Shaoguo Ru
- Colleges of Marine Life Sciences, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Hua Tian
- Colleges of Marine Life Sciences, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Suqiu Zhang
- Colleges of Marine Life Sciences, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Zhenxian Lin
- School of Biology and Brewing Engineering, Taishan University, 525 Dongyue Street, Tai'an 271000, Shandong Province, China
| | - Ming Gao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu Province, China
| | - Jun Wang
- Colleges of Marine Life Sciences, Ocean University of China, Qingdao 266003, Shandong Province, China.
| |
Collapse
|
24
|
Integration of miRNA-mRNA co-expression network reveals potential regulation of miRNAs in hypothalamus from sterile triploid crucian carp. REPRODUCTION AND BREEDING 2021. [DOI: 10.1016/j.repbre.2021.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
25
|
Hao Y, Xing M, Gu X. Research Progress on Oxidative Stress and Its Nutritional Regulation Strategies in Pigs. Animals (Basel) 2021; 11:1384. [PMID: 34068057 PMCID: PMC8152462 DOI: 10.3390/ani11051384] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress refers to the dramatic increase in the production of free radicals in human and animal bodies or the decrease in the ability to scavenging free radicals, thus breaking the antioxidation-oxidation balance. Various factors can induce oxidative stress in pig production. Oxidative stress has an important effect on pig performance and healthy growth, and has become one of the important factors restricting pig production. Based on the overview of the generation of oxidative stress, its effects on pigs, and signal transduction pathways, this paper discussed the nutritional measures to alleviate oxidative stress in pigs, in order to provide ideas for the nutritional research of anti-oxidative stress in pigs.
Collapse
Affiliation(s)
| | | | - Xianhong Gu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.H.); (M.X.)
| |
Collapse
|
26
|
Kayukawa T, Furuta K, Yonesu K, Okabe T. Identification of novel juvenile-hormone signaling activators via high-throughput screening with a chemical library. JOURNAL OF PESTICIDE SCIENCE 2021; 46:53-59. [PMID: 33746546 PMCID: PMC7953030 DOI: 10.1584/jpestics.d20-070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Juvenile hormone (JH) is an insect-specific hormone that regulates molting and metamorphosis. Hence, JH signaling inhibitors (JHSIs) and activators (JHSAs) can be used as effective insect growth regulators (IGRs) for pest management. In our previous study, we established a high-throughput screening (HTS) system for exploration of novel JHSIs and JHSAs using a Bombyx mori cell line (BmN_JF&AR cells) and succeeded in identifying novel JHSIs from a chemical library. Here, we searched for novel JHSAs using this system. The four-step HTS yielded 10 compounds as candidate JHSAs; some of these compounds showed novel basic structures, whereas the others were composed of a 4-phenoxyphenoxymethyl skeleton, the basic structure of several existing JH analogs (pyriproxyfen and fenoxycarb). Topical application of seven compounds to B. mori larvae significantly prolonged the larval period, suggesting that the identified JHSAs may be promising IGRs targeting the JH signaling pathway.
Collapse
Affiliation(s)
- Takumi Kayukawa
- Institute of Agrobiological Sciences National Agriculture and Food Research Organization, Ohwashi 1-2, Tsukuba, Ibaraki 305-8634, Japan
| | - Kenjiro Furuta
- Institute of Agrobiological Sciences National Agriculture and Food Research Organization, Ohwashi 1-2, Tsukuba, Ibaraki 305-8634, Japan
| | - Kiyoaki Yonesu
- Drug Discovery Initiative, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayoshi Okabe
- Drug Discovery Initiative, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
27
|
Lu J, Wu Q, Yang Q, Li G, Wang R, Liu Y, Duan C, Duan S, He X, Huang Z, Peng X, Yan W, Jiang J. Molecular mechanism of reproductive toxicity induced by beta-cypermethrin in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2021; 239:108894. [PMID: 32949816 DOI: 10.1016/j.cbpc.2020.108894] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/31/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022]
Abstract
Beta-cypermethrin, a type II synthetic pyrethroid insecticide, is widely used in pest control. Several studies have demonstrated that beta-cypermethrin can affect the reproductive system of mammals. However, there is still a scarcity of information about the reproductive toxicity to fish induced by beta-cypermethrin and its molecular mechanism. Therefore, this study was conducted to address this scientific question, in which the adult zebrafish were exposed to 0 (blank control), 0 (acetone solvent control), 0.1, 0.5, and 2.5 μg/L of beta-cypermethrin for 21 days. A decrease in cumulative egg production of zebrafish was observed, indicating that beta-cypermethrin had a negative impact on reproductive capacity of zebrafish. Regarding the histomorphological analysis of gonads, the delay of gonadal development was observed after exposure for 21 days. In addition, significant changes in plasma 17β-estradiol (E2) and testosterone (T) were found in zebrafish. Further exploration showed that the transcription levels of hypothalamic-pituitary-gonadal (HPG) axis-related genes were remarkably changed, which corresponded well with the alterations of hormone levels. These results demonstrated that beta-cypermethrin might have an adverse effect on the reproduction system of zebrafish through delaying gonadal development, disturbing sex hormone secretion, and affecting HPG axis gene expression. This study suggests that beta-cypermethrin poses a potential threat to the reproduction of fish populations, and the toxicity assessment of beta-cypermethrin plays a vital role in the environmental risk assessment of pesticides.
Collapse
Affiliation(s)
- Juanli Lu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qin Wu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Cihu Road, Huangshigang District, Huangshi 435002, China
| | - Qing Yang
- Key Laboratory of Ecological Impacts of Hydraulic-Projects and Restoration of Aquatic Ecosystem of Ministry of Water Resources, Institute of Hydroecology, Ministry of Water Resources and Chinese Academy of Sciences, Wuhan 430079, China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruiqi Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingxin Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Cunyu Duan
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Shiyun Duan
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuanyi He
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhuo Huang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xitian Peng
- Institute of Agricultural Quality Standards & Testing Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Wei Yan
- Institute of Agricultural Quality Standards & Testing Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Jinhua Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China.
| |
Collapse
|
28
|
Robea MA, Jijie R, Nicoara M, Plavan G, Ciobica AS, Solcan C, Audira G, Hsiao CD, Strungaru SA. Vitamin C Attenuates Oxidative Stress and Behavioral Abnormalities Triggered by Fipronil and Pyriproxyfen Insecticide Chronic Exposure on Zebrafish Juvenile. Antioxidants (Basel) 2020; 9:E944. [PMID: 33019596 PMCID: PMC7600883 DOI: 10.3390/antiox9100944] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/30/2022] Open
Abstract
Chronic exposure to synthetic insecticides in the early life of a child can lead to a series of disorders. Several causes as parental age, maternal smoking, birth complications, and exposure to toxins such as insecticides on childhood can lead to Autism spectrum disorder (ASD) occurrence. The aim of this study was to evaluate the potential protective role of vitamin C (Vit. C) from children's supplements after 14 days chronic exposure to insecticide mixture fipronil (Fip) + pyriproxyfen (Pyr) on juvenile zebrafish for swimming performances, social behavior and oxidative stress associated with ASD model. Juvenile (14-17 mm) wild-type AB zebrafish (Danio rerio) (45 days) were exposed to relevant concentrations: vit. C (25 µg L-1), Fip (600 µg L-1/1.372 μM) + Pyr (600 µg L-1/1.89 μM), and [Fip (600 µg L-1/1.372 μM) + Pyr (600 µg L-1 /1.89 μM)] + vit. C (25 µg L-1). Our results showed that insecticides can disturb the social behavior of zebrafish during 14 days of the administration, decreased the swimming performances, and elevated the oxidative stress biomarkers of SOD (superoxide dismutase), GPx (glutathione peroxidase), and MDA (malondialdehyde). The vitamin C supplement significantly attenuated the neurotoxicity of insecticide mixture and oxidative stress. This study provides possible in vivo evidence to show that vitamin C supplements could attenuate oxidative stress and brain damage of fipronil and pyriproxyfen insecticide chronic exposure on zebrafish juvenile.
Collapse
Affiliation(s)
- Madalina Andreea Robea
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, 20A, 700505 Iasi, Romania; (M.A.R.); (M.N.); (G.P.)
| | - Roxana Jijie
- Marine Biological Station “Prof. dr. I. Borcea”, “Alexandru Ioan Cuza” University of Iasi, Nicolae Titulescu Street, No. 163, 907018 Agigea, Constanta, Romania;
| | - Mircea Nicoara
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, 20A, 700505 Iasi, Romania; (M.A.R.); (M.N.); (G.P.)
| | - Gabriel Plavan
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, 20A, 700505 Iasi, Romania; (M.A.R.); (M.N.); (G.P.)
| | - Alin Stelian Ciobica
- Marine Biological Station “Prof. dr. I. Borcea”, “Alexandru Ioan Cuza” University of Iasi, Nicolae Titulescu Street, No. 163, 907018 Agigea, Constanta, Romania;
| | - Carmen Solcan
- Department of Molecular Biology, Histology and Embryology, Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine Ion Ionescu de la Brad, 8, Mihail Sadoveanu Alley, 700489 Iasi, Romania;
| | - Gilbert Audira
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan;
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| | - Chung-Der Hsiao
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan;
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| | - Stefan-Adrian Strungaru
- Institute for Interdisciplinary Research, Science Research Department, Alexandru Ioan Cuza University of Iasi, Lascar Catargi Str. 54, 700107 Iasi, Romania;
| |
Collapse
|