1
|
Meadows T, Coats ER, Narum S, Top EM, Ridenhour BJ, Stalder T. Epidemiological model can forecast COVID-19 outbreaks from wastewater-based surveillance in rural communities. WATER RESEARCH 2025; 268:122671. [PMID: 39488168 PMCID: PMC11614685 DOI: 10.1016/j.watres.2024.122671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/28/2024] [Accepted: 10/19/2024] [Indexed: 11/04/2024]
Abstract
Wastewater has emerged as a crucial tool for infectious disease surveillance, offering a valuable means to bridge the equity gap between underserved communities and larger urban municipalities. However, using wastewater surveillance in a predictive manner remains a challenge. In this study, we tested if detecting SARS-CoV-2 in wastewater can forecast outbreaks in rural communities. Under the CDC National Wastewater Surveillance program, we monitored the SARS-CoV-2 in the wastewater of five rural communities and a small city in Idaho (USA). We then used a particle filter method coupled with a stochastic susceptible-exposed-infectious-recovered (SEIR) model to infer active case numbers using quantities of SARS-CoV-2 in wastewater. Our findings revealed that while high daily variations in wastewater viral load made real-time interpretation difficult, the SEIR model successfully factored out this noise, enabling accurate forecasts of the Omicron outbreak in five of the six towns shortly after initial increases in SARS-CoV-2 concentrations were detected in wastewater. The model predicted outbreaks with a lead time of 0 to 11 days (average of 6 days +/- 4) before the surge in reported clinical cases. This study not only underscores the viability of wastewater-based epidemiology (WBE) in rural communities-a demographic often overlooked in WBE research-but also demonstrates the potential of advanced epidemiological modeling to enhance the predictive power of wastewater data. Our work paves the way for more reliable and timely public health guidance, addressing a critical gap in the surveillance of infectious diseases in rural populations.
Collapse
Affiliation(s)
- Tyler Meadows
- Department of Mathematics and Statistics, Queen's University, Kingston, Ontario, Canada; Institute for Modeling Collaboration and Innovation (IMCI), University of Idaho, Moscow, ID, USA
| | - Erik R Coats
- Department of Civil and Environmental Engineering, University of Idaho, Moscow, ID, USA; Institute for Modeling Collaboration and Innovation (IMCI), University of Idaho, Moscow, ID, USA; Bioinformatics and Computational Biology Graduate Program (BCB), Moscow, ID, USA
| | - Solana Narum
- Department of Civil and Environmental Engineering, University of Idaho, Moscow, ID, USA; Bioinformatics and Computational Biology Graduate Program (BCB), Moscow, ID, USA
| | - Eva M Top
- Institute for Modeling Collaboration and Innovation (IMCI), University of Idaho, Moscow, ID, USA; Bioinformatics and Computational Biology Graduate Program (BCB), Moscow, ID, USA; Department of Biological Sciences, University of Idaho, Moscow, ID, USA; Institute for Interdisciplinary Data Sciences (IIDS), University of Idaho, Moscow, ID, USA
| | - Benjamin J Ridenhour
- Institute for Modeling Collaboration and Innovation (IMCI), University of Idaho, Moscow, ID, USA; Bioinformatics and Computational Biology Graduate Program (BCB), Moscow, ID, USA; Institute for Interdisciplinary Data Sciences (IIDS), University of Idaho, Moscow, ID, USA; Department of Mathematics and Statistical Science, University of Idaho, Moscow, ID, USA
| | - Thibault Stalder
- Institute for Modeling Collaboration and Innovation (IMCI), University of Idaho, Moscow, ID, USA; Department of Biological Sciences, University of Idaho, Moscow, ID, USA; Institute for Interdisciplinary Data Sciences (IIDS), University of Idaho, Moscow, ID, USA; INSERM, CHU Limoges, RESINFIT, U1092, Univ. Limoges, F-87000, Limoges, France.
| |
Collapse
|
2
|
Cheshomi N, Alum A, Smith MF, Lim ES, Conroy-Ben O, Abbaszadegan M. Viral concentration method biases in the detection of viral profiles in wastewater. Appl Environ Microbiol 2024:e0133924. [PMID: 39641602 DOI: 10.1128/aem.01339-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Viral detection methodologies used for wastewater-based epidemiology (WBE) studies have a broad range of efficacies. The complex matrix and low viral particle load in wastewater emphasize the importance of the concentration method. This study focused on comparing three commonly used virus concentration methods: polyethylene glycol precipitation (PEG), immuno-magnetic nanoparticles (IMNP), and electronegative membrane filtration (EMF). Influent and effluent wastewater samples were processed by the methods and analyzed by DNA/RNA quantification and sequencing for the detection of human viruses. SARS-COV-2, Astrovirus, and Hepatitis C virus were detected by all the methods in both sample types. PEG precipitation resulted in the detection of 20 types of viruses in influent and 16 types in effluent samples. The corresponding number of virus types detected was 21 and 11 for IMNP, and 16 and 8 for EMF. Certain viruses were unique to only one concentration method. For example, PEG detected three types of viruses in influent and six types in effluent compared to IMNP, which detected seven types in influent and one type in effluent samples. However, the EMF method appeared to be the least effective, detecting three types in influent and none in effluent samples. Rotavirus was detected in influent sample using IMNP method, whereas EMF and PEG methods failed to yield a similar outcome. Consequently, the potential false negative results pose a risk to the credibility of WBE applications. Therefore, implementation of a proper concentration technique is critical to minimize method biases and ensure accurate viral profiling in WBE studies.IMPORTANCEIn recent years, significant research efforts have been focused on the development of viral detection methodology for wastewater-based epidemiology studies, showing a range of variability in detection efficacies. A proper methodology is essential for an appropriate evaluation of disease prevalence and community health in such studies and necessitates designing a concentration method based on the target pathogenic virus. There remains a need for comparative performance evaluations of methods in the context of detection efficiencies. This study highlights the significant impact of sample matrix, viral structure, and nucleic acid composition on the efficacy of viral concentration methods. Assessing WBE techniques to ensure accurate detection and understanding of viral presence within wastewater samples is critical for revealing viral profiles in municipality wastewater samples.
Collapse
Affiliation(s)
- Naeema Cheshomi
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona, USA
- Water and Environmental Technology Center, Arizona State University, Tempe, Arizona, USA
| | - Absar Alum
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona, USA
- Water and Environmental Technology Center, Arizona State University, Tempe, Arizona, USA
| | - Matthew F Smith
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Efrem S Lim
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Otakuye Conroy-Ben
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona, USA
| | - Morteza Abbaszadegan
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona, USA
- Water and Environmental Technology Center, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
3
|
Gonçalves do Amaral C, Pinto André E, Maffud Cilli E, Gomes da Costa V, Ricardo S Sanches P. Viral diseases and the environment relationship. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124845. [PMID: 39265774 DOI: 10.1016/j.envpol.2024.124845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/14/2024]
Abstract
Viral diseases have been present throughout human history, with early examples including influenza (1500 B.C.), smallpox (1000 B.C.), and measles (200 B.C.). The term "virus" was first used in the late 1800s to describe microorganisms smaller than bacteria, and significant milestones include the discovery of the polio virus and the development of its vaccine in the mid-1900s, and the identification of HIV/AIDS in the latter part of the 20th century. The 21st century has seen the emergence of new viral diseases such as West Nile Virus, Zika, SARS, MERS, and COVID-19. Human activities, including crowding, travel, poor sanitation, and environmental changes like deforestation and climate change, significantly influence the spread of these diseases. Conversely, viral diseases can impact the environment by polluting water resources, contributing to deforestation, and reducing biodiversity. These environmental impacts are exacerbated by disruptions in global supply chains and increased demands for resources. This review highlights the intricate relationship between viral diseases and environmental factors, emphasizing how human activities and viral disease progression influence each other. The findings underscore the need for integrated approaches to address the environmental determinants of viral diseases and mitigate their impacts on both health and ecosystems.
Collapse
Affiliation(s)
- Caio Gonçalves do Amaral
- School of Pharmaceutical Sciences, Laboratory of Molecular Virology, Department of Biological Science, São Paulo State University, UNESP, Brazil
| | - Eduardo Pinto André
- School of Pharmaceutical Sciences, Laboratory of Molecular Virology, Department of Biological Science, São Paulo State University, UNESP, Brazil
| | - Eduardo Maffud Cilli
- Institute of Chemistry, Laboratory of Synthesis and Studies of Biomolecules, Department of Biochemistry and Organic Chemistry, São Paulo State University, UNESP, Brazil
| | - Vivaldo Gomes da Costa
- Institute of Biosciences, Letters, and Exact Sciences, São Paulo State University, UNESP, Brazil
| | - Paulo Ricardo S Sanches
- School of Pharmaceutical Sciences, Laboratory of Molecular Virology, Department of Biological Science, São Paulo State University, UNESP, Brazil.
| |
Collapse
|
4
|
Siri Y, Sthapit N, Malla B, Raya S, Haramoto E. Comparative performance of electronegative membrane filtration and automated concentrating pipette for detection of antibiotic resistance genes and microbial markers in river water samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176109. [PMID: 39255938 DOI: 10.1016/j.scitotenv.2024.176109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024]
Abstract
The target viral and bacterial concentrations in river water are essential for environmental monitoring and public health studies. Filtration-based methods are commonly employed, yet challenges arise due to recoverability and filter pore size. This study aimed to compare the performance of electronegative membrane filtration (EMF) and automated Concentrating Pipette (CP) Select (InnovaPrep) methods for quantifying antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and bacterial and viral markers in river water samples. Fifty-four river water samples were collected from upstream and downstream locations in a river in Japan. The CP Select method was modified by adding MgCl2 and using different tips. The recovery efficiencies for total coliforms and Escherichia coli were assessed, and class 1 integron-integrase gene (intI1), 16S rRNA, gene encoding sulfonamide resistance (sul1), cross-assembly phage (crAssphage), pepper mild mottle virus (PMMoV), and Escherichia coli gene (sfmD) were detected. CP Select showed recovery efficiencies of 45 %-63 % for total coliforms and 17 %-35 % for E. coli. The intI1, 16S rRNA, sul1, crAssphage, PMMoV, and sfmD concentrations using the modified CP Select method were 10.1 ± 0.5, 8.7 ± 0.2, 7.7 ± 0.2, 6.7 ± 0.2, 5.4 ± 0.2, and 3.5 ± 0.5 log10 copies/L, respectively. Higher intI1 and sul1 concentrations were observed downstream, with the highest contribution percentage (22 % and 21 %) using CP Select or EMF. The modified CP Select method with 0.05 μm tips yielded more quantifiable results for all target genes and greater PMMoV concentrations (p < 0.05). Positive correlations were found among bacterial, ARG/MGE, and viral markers (Spearman's ρ = 0.71 for 16S rRNA and sfmD, 0.88 for intI1 and sul1, and 0.64 for PMMoV and crAssphage). The modified CP Select method demonstrated effective recovery of bacteria and quantification of ARGs, MGEs, and microbial markers in river water. Further studies are required to validate these methods and confirm their applicability in diverse environmental contexts.
Collapse
Affiliation(s)
- Yadpiroon Siri
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Niva Sthapit
- Department of Civil and Environmental Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Bikash Malla
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Sunayana Raya
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan.
| |
Collapse
|
5
|
Witsø IL, Basson A, Aspholm M, Wasteson Y, Myrmel M. Wastewater-associated plastispheres: A hidden habitat for microbial pathogens? PLoS One 2024; 19:e0312157. [PMID: 39504331 PMCID: PMC11540174 DOI: 10.1371/journal.pone.0312157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024] Open
Abstract
Wastewater treatment plants (WWTPs) receive wastewater from various sources. Despite wastewater treatment aiming to remove contaminants, microplastics persist. Plastic surfaces are quickly colonized by microbial biofilm ("plastispheres"). Plastisphere communities are suggested to promote the spread and survival of potential human pathogens, suggesting that the transfer of plastispheres from wastewater to the environment could pose a risk to human and environmental health. The study aimed to identify pathogens in wastewater plastispheres, specifically food-borne pathogens, in addition to characterizing the taxonomic diversity and composition of the wastewater plastispheres. Plastispheres that accumulated on polypropylene (PP), polyvinyl chloride (PVC), and high-density polyethylene propylene (HDPE) surfaces exposed to raw and treated wastewater were analyzed via cultivation methods, quantitative reverse transcription PCR (RT‒qPCR) and 16S rRNA amplicon sequencing. RT‒qPCR revealed the presence of potential foodborne pathogenic bacteria and viruses, such as Listeria monocytogenes, Escherichia coli, norovirus, and adenovirus. Viable isolates of the emerging pathogenic species Klebsiella pneumoniae and Acinetobacter spp. were identified in the plastispheres from raw and treated wastewater, indicating that potential pathogenic bacteria might survive in the plastispheres during the wastewater treatment. These findings underscore the potential of plastispheres to harbor and disseminate pathogenic species, posing challenges to water reuse initiatives. The taxonomic diversity and composition of the plastispheres, as explored through 16S rRNA amplicon sequencing, were significantly influenced by the wastewater environment and the duration of time the plastic spent in the wastewater. In contrast, the specific plastic material did not influence the bacterial composition, while the bacterial diversity was affected. Without efficient wastewater treatment and proper plastic waste management, wastewater could act as a source of transferring plastic-associated pathogens into the food chain and possibly pose a threat to human health. Continued research and innovation are essential to improve the removal of microplastics and associated pathogenic microorganisms in wastewater.
Collapse
Affiliation(s)
- Ingun Lund Witsø
- Faculty of Veterinary Medicine, Food Safety Unit, Norwegian University of Life Sciences, Ås, Norway
| | - Adelle Basson
- Faculty of Veterinary Medicine, Food Safety Unit, Norwegian University of Life Sciences, Ås, Norway
| | - Marina Aspholm
- Faculty of Veterinary Medicine, Food Safety Unit, Norwegian University of Life Sciences, Ås, Norway
| | - Yngvild Wasteson
- Faculty of Veterinary Medicine, Food Safety Unit, Norwegian University of Life Sciences, Ås, Norway
| | - Mette Myrmel
- Faculty of Veterinary Medicine, Virology Unit, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
6
|
Yang Y, Tan J, Wang F, Sun W, Shi H, Cheng Z, Xie Y, Zhou X. Preconcentration and detection of SARS-CoV-2 in wastewater: A comprehensive review. Biosens Bioelectron 2024; 263:116617. [PMID: 39094290 DOI: 10.1016/j.bios.2024.116617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Severe acute respiratory syndrome coronaviruses 2 (SARS-CoV-2) causing coronavirus disease 2019 (COVID-19) affected the health of human beings and the global economy. The patients with SARS-CoV-2 infection had viral RNA or live infectious viruses in feces. Thus, the possible transmission of SARS-CoV-2 through wastewater received great attentions. Moreover, SARS-CoV-2 in wastewater can serve as an early indicator of the infection within communities. We summarized the preconcentration and detection technology of SARS-CoV-2 in wastewater aiming at the complex matrices of wastewater and low virus concentration and compared their performance characteristics. We described the emerging tests that would be possible to realize the rapid detection of SARS-CoV-2 in fields and encourage academics to advance their technologies beyond conception. We concluded with a brief discussion on the outlook for integrating preconcentration and the detection of SARS-CoV-2 with emerging technologies.
Collapse
Affiliation(s)
- Yihan Yang
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jisui Tan
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Fan Wang
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Weiming Sun
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Hanchang Shi
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Zhao Cheng
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yangcun Xie
- Chinese Academy of Environmental Planning, Beijing, 100043, China.
| | - Xiaohong Zhou
- School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
7
|
Sanmark E, Marjanen P, Virtanen J, Aaltonen K, Tauriainen S, Österlund P, Mäkelä M, Saari S, Roine A, Rönkkö T, Vartiainen VA. Identifying viral infections through analysis of head space volatile organic compounds. J Breath Res 2024; 19:016004. [PMID: 39437816 DOI: 10.1088/1752-7163/ad89f0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/22/2024] [Indexed: 10/25/2024]
Abstract
Volatile organic compounds (VOCs) produced by human respiratory cells reflect metabolic and pathophysiological processes which can be detected with the use of modern technology. Analysis of exhaled breath or indoor air may potentially play an important role in screening of upper respiratory tract infections such as COVID-19 or influenza in the future. In this experimental study, air samples were collected and analyzed from the headspace of anin vitrocell culture infected by selected pathogens (influenza A H1N1 and seasonal coronaviruses OC43 and NL63). VOCs were measured with a real-time proton-transfer-reaction time-of-flight mass spectrometer and a differential mobility spectrometer. Measurements were performed every 12 h for 7 d. Non-infected cells and cell culture media served as references. In H1N1 and OC43 we observed four different VOCs which peaked during the infection. Different, individual VOCs were also observed in both infections. Activity began to clearly increase after 2 d in all analyses. We did not see increased VOC production in cells infected with NL63. VOC analysis seems to be suitable to differentiate the infected cells from those which are not infected as well as different viruses, from another. In the future, this could have practical value in both individual diagnostics and indoor environment screening.
Collapse
Affiliation(s)
- E Sanmark
- Department of Otorhinolaryngology and Phoniatrics-Head and Neck Surgery, Helsinki University Hospital, Helsinki, Finland
| | - P Marjanen
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - J Virtanen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine And Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - K Aaltonen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine And Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - S Tauriainen
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - P Österlund
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | - M Mäkelä
- Olfactomics Oy, Tampere, Finland
| | - S Saari
- Tampere University of Applied Sciences, Tampere, Finland
| | - A Roine
- Olfactomics Oy, Tampere, Finland
| | - T Rönkkö
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - V A Vartiainen
- Heart and Lung center, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
8
|
Walker DI, Witt J, Rostant W, Burton R, Davison V, Ditchburn J, Evens N, Godwin R, Heywood J, Lowther JA, Peters N, Porter J, Posen P, Wickens T, Wade MJ. Piloting wastewater-based surveillance of norovirus in England. WATER RESEARCH 2024; 263:122152. [PMID: 39096810 DOI: 10.1016/j.watres.2024.122152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/07/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024]
Abstract
Wastewater-based epidemiology (WBE) gained widespread use as a tool for supporting clinical disease surveillance during the COVID-19 pandemic. There is now significant interest in the continued development of WBE for other pathogens of clinical significance. In this study, approximately 3,200 samples of wastewater from across England, previously collected for quantification of SARS-CoV-2, were re-analysed for the quantification of norovirus genogroup I (GI) and II (GII). Overall, GI and GII were detected in 93% and 98% of samples respectively, and at least one of the genogroups was detected in 99% of samples. GI was found at significantly lower concentrations than GII, but the proportion of each genogroup varied over time, with GI becoming more prevalent than GII in some areas towards the end of the study period (May 2021 - March 2022). Using relative strength indices (RSI), it was possible to study the trends of each genogroup, and total norovirus over time. Increases in norovirus levels appeared to coincide with the removal of COVID-19 related lockdown restrictions within England. Local Moran's I analyses indicated several localised outbreaks of both GI and GII across England, notably the possible GI outbreak in the north of England in early 2022. Comparisons of national average norovirus concentrations in wastewater against concomitant norovirus reported case numbers showed a significant linear relationship. This highlights the potential for wastewater-based monitoring of norovirus as a valuable approach to support surveillance of norovirus in communities.
Collapse
Affiliation(s)
- David I Walker
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, Dorset, UK.
| | - Jessica Witt
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, Dorset, UK
| | - Wayne Rostant
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, Dorset, UK
| | - Robert Burton
- Environment Agency, National Monitoring Laboratories, Staplake Mount, Starcross, Devon, UK
| | - Vicki Davison
- Environment Agency, National Monitoring Laboratories, Staplake Mount, Starcross, Devon, UK
| | - Jackie Ditchburn
- Environment Agency, National Monitoring Laboratories, Staplake Mount, Starcross, Devon, UK
| | - Nicholas Evens
- Environment Agency, National Monitoring Laboratories, Staplake Mount, Starcross, Devon, UK
| | - Reg Godwin
- Environment Agency, National Monitoring Laboratories, Staplake Mount, Starcross, Devon, UK
| | - Jane Heywood
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, Dorset, UK
| | - James A Lowther
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, Dorset, UK
| | - Nancy Peters
- Environment Agency, National Monitoring Laboratories, Staplake Mount, Starcross, Devon, UK
| | - Jonathan Porter
- Environment Agency, National Monitoring Laboratories, Staplake Mount, Starcross, Devon, UK
| | - Paulette Posen
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, Dorset, UK
| | - Tyler Wickens
- Environment Agency, National Monitoring Laboratories, Staplake Mount, Starcross, Devon, UK
| | - Matthew J Wade
- Data Analytics & Surveillance Group, UK Health Security Agency, 10 South Colonnade, London, UK
| |
Collapse
|
9
|
Chaqroun A, Bertrand I, Wurtzer S, Moulin L, Boni M, Soubies S, Boudaud N, Gantzer C. Assessing infectivity of emerging enveloped viruses in wastewater and sewage sludge: Relevance and procedures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173648. [PMID: 38825204 DOI: 10.1016/j.scitotenv.2024.173648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
The emergence of SARS-CoV-2 has heightened the need to evaluate the detection of enveloped viruses in the environment, particularly in wastewater, within the context of wastewater-based epidemiology. The studies published over the past 80 years focused primarily on non-enveloped viruses due to their ability to survive longer in environmental matrices such as wastewater or sludge compared to enveloped viruses. However, different enveloped viruses survive in the environment for different lengths of time. Therefore, it is crucial to be prepared to assess the potential infectious risk that may arise from future emerging enveloped viruses. This will require appropriate tools, notably suitable viral concentration methods that do not compromise virus infectivity. This review has a dual purpose: first, to gather all the available literature on the survival of infectious enveloped viruses, specifically at different pH and temperature conditions, and in contact with detergents; second, to select suitable concentration methods for evaluating the infectivity of these viruses in wastewater and sludge. The methodology used in this data collection review followed the systematic approach outlined in the PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analysis) guidelines. Concentration methods cited in the data gathered are more tailored towards detecting the enveloped viruses' genome. There is a lack of suitable methods for detecting infectious enveloped viruses in wastewater and sludge. Ultrafiltration, ultracentrifugation, and polyethylene glycol precipitation methods, under specific/defined conditions, appear to be relevant approaches. Further studies are necessary to validate reliable concentration methods for detecting infectious enveloped viruses. The choice of culture system is also crucial for detection sensitivity. The data also show that the survival of infectious enveloped viruses, though lower than that of non-enveloped ones, may enable environmental transmission. Experimental data on a wide range of enveloped viruses is required due to the variability in virus persistence in the environment.
Collapse
Affiliation(s)
- Ahlam Chaqroun
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | | | | | | | - Mickael Boni
- French Armed Forces Biomedical Research Institute, 91220 Brétigny-sur-Orge, France
| | | | | | | |
Collapse
|
10
|
de la Rosa O, Aguayo-Acosta A, Valenzuela-Amaro HM, Meléndez-Sánchez ER, Sosa-Hernández JE, Parra-Saldívar R. Development of biomaterial composite hydrogel as a passive sampler with potential application in wastewater-based surveillance. Heliyon 2024; 10:e37014. [PMID: 39296035 PMCID: PMC11407980 DOI: 10.1016/j.heliyon.2024.e37014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/08/2024] [Accepted: 08/26/2024] [Indexed: 09/21/2024] Open
Abstract
Nowadays, the need to track fast-spreading infectious diseases has raised due to the recent COVID-19 disease pandemic. As a response, Wastewater-based Surveillance (WBS) has emerged as an early detection and disease tracking method for large populations that enables a comprehensive overview of public health allowing for a faster response from public health sector to prevent large outbreaks. The process to achieve WBS requires a highly intensive sampling strategy with either expensive equipment or trained personnel to continuously sample. The sampling problem can be addressed by passive sampler development. Chitosan-based hydrogels are recognized for their capability to sample and remove various contaminants from wastewater, including metals, dyes, pharmaceuticals, among others. However, chitosan-based hydrogels unique characteristics, can be exploited to develop passive samplers of genetic material that can be a very valuable tool for WBS. This study aimed to develop a novel chitosan hydrogel formulation with enhanced characteristics suitable for use as a passive sampler of genetic material and its application to detect disease-causing pathogens present in wastewater. The study evaluates the effect of the concentration of different components on the formulation of a Chitosan composite hydrogel (Chitosan, Glutaraldehyde, Microcrystalline cellulose (MCC), and Polyethylene glycol (PEG)) on the hydrogel properties using a Box Hunter & Hunter experimental matrix. Hydrogels' weight, thickness, swelling ratio, microscopic morphology (SEM), FTIR assay, and zeta potential were characterized. The resulting hydrogel formulations were shown to be highly porous, positively charged (Zeta potential up to 35.80 ± 1.44 mV at pH 3) and with high water swelling capacity (up to 703.89 ± 15.00 %). Based on the results, a formulation from experimental design was selected and then evaluated its capacity to adsorb genetic material from a control spiked water with Influenza A virus synthetic vector. The adsorption capacity of the selected formulation was 4157.04 ± 64.74 Gene Copies/mL of Influenza A virus synthetic vector. The developed hydrogel showed potential to be used as passive sampler for pathogen detection in wastewater. However, deeper research can be conducted to improve adsorption, desorption and extraction techniques of genetic material from chitosan-hydrogel matrices.
Collapse
Affiliation(s)
- Orlando de la Rosa
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Mexico
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Alberto Aguayo-Acosta
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Mexico
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Hiram Martín Valenzuela-Amaro
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Mexico
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Edgar Ricardo Meléndez-Sánchez
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Mexico
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Mexico
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Mexico
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| |
Collapse
|
11
|
Marcos-Carbajal P, Yareta-Yareta J, Otiniano-Trujillo M, Galarza-Pérez M, Espinoza-Culupu A, Ramirez-Melgar JL, Chambi-Quispe M, Luque-Chipana NA, Gutiérrez Ajalcriña R, Sucñer Cruz V, López Chegne SN, Santillán Ruiz D, Segura Chavez LF, Sias Garay CE, Salazar Granara A, Tsukayama Cisneros P, Tapia Paniagua ST, González-Domenech CM. Detection of SARS-CoV-2 variants in hospital wastewater in Peru, 2022. Rev Peru Med Exp Salud Publica 2024; 41:140-145. [PMID: 39166636 PMCID: PMC11300693 DOI: 10.17843/rpmesp.2024.412.13484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 03/06/2024] [Indexed: 08/23/2024] Open
Abstract
OBJECTIVE. To identify the presence of the SARS-CoV-2 virus in wastewater from hospitals in Peru. MATERIALS AND METHODS. Water samples were collected from the effluents of nine hospitals in Peru during March and September 2022. SARS-CoV-2 was identified by using Illumina sequencing. Variant, lineage and clade assignments were carried out using the Illumina and Nextclado tools. We verified whether the SARS-CoV-2 variants obtained from wastewater were similar to those reported by the National Institute of Health of Peru from patients during the same period and region. RESULTS. Eighteen of the 20 hospital wastewater samples (90%) provided sequences of sufficient quality to be classified as the Omicron variant according to the WHO classification. Among them, six (30%) were assigned by Nextclade to clades 21K lineage BA.1.1 (n=1), 21L lineage BA.2 (n=2), and 22B lineages BA.5.1 (n=2) and BA .5.5 (n=1). CONCLUSIONS. SARS-CoV-2 variants were found in hospital wastewater samples and were similar to those reported by the surveillance system in patients during the same weeks and geographic areas. Wastewater monitoring could provide information on the environmental and temporal variation of viruses such as SARS-CoV-2. Motivation for the study. To contribute to the surveillance of environmental samples from hospital effluents in order to achieve early warning of possible infectious disease outbreaks. Main findings. The Omicron variant of the COVID-19 virus was detected in wastewater from hospitals in Puno, Cuzco and Cajamarca; these results are similar to the reports by the Peruvian National Institute of Health based on nasopharyngeal swab samples. Implications. The presence of the Omicron variant in hospital wastewater during the third wave of the pandemic should raise awareness of the treatment system before wastewater is discharged into the public sewer system.
Collapse
Affiliation(s)
- Pool Marcos-Carbajal
- Universidad Peruana Unión, Escuela Profesional Medicina, Laboratorio de Investigación en Biología Molecular. Lima, Perú
| | - José Yareta-Yareta
- Universidad Peruana Unión, Escuela Profesional Medicina, Laboratorio de Investigación en Biología Molecular. Lima, Perú
| | - Miguel Otiniano-Trujillo
- Universidad Peruana Unión, Escuela Profesional Medicina, Laboratorio de Investigación en Biología Molecular. Lima, Perú
| | - Marco Galarza-Pérez
- Instituto Nacional de Salud, Centro Nacional de Salud Pública, Laboratorio de Biotecnología y Biología molecular. Lima, Perú
| | | | | | | | - Néstor Alejandro Luque-Chipana
- Universidad Peruana Unión, Escuela Profesional Medicina, Laboratorio de Investigación en Biología Molecular. Lima, Perú
- Hospital de Ate Vitarte, Unidad de Cuidados Intensivos. Lima, Perú
| | | | | | | | - Diana Santillán Ruiz
- Hospital de Tarapoto, Departamento de Anatomía Patológica y Patología Clínica. Tarapoto, Perú
| | - Luis Felipe Segura Chavez
- Universidad Peruana Unión, Escuela Profesional Medicina, Laboratorio de Investigación en Biología Molecular. Lima, Perú
| | - Cinthia Esther Sias Garay
- Universidad Peruana Unión, Escuela Profesional Medicina, Laboratorio de Investigación en Biología Molecular. Lima, Perú
| | - Alberto Salazar Granara
- Universidad San Martin de Porres, Centro de Investigación en Medicina Tradicional y Farmacología. Lima, Perú
| | | | | | | |
Collapse
|
12
|
Carmo dos Santos M, Cerqueira Silva AC, dos Reis Teixeira C, Pinheiro Macedo Prazeres F, Fernandes dos Santos R, de Araújo Rolo C, de Souza Santos E, Santos da Fonseca M, Oliveira Valente C, Saraiva Hodel KV, Moraes dos Santos Fonseca L, Sampaio Dotto Fiuza B, de Freitas Bueno R, Bittencourt de Andrade J, Aparecida Souza Machado B. Wastewater surveillance for viral pathogens: A tool for public health. Heliyon 2024; 10:e33873. [PMID: 39071684 PMCID: PMC11279281 DOI: 10.1016/j.heliyon.2024.e33873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/03/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
A focus on water quality has intensified globally, considering its critical role in sustaining life and ecosystems. Wastewater, reflecting societal development, profoundly impacts public health. Wastewater-based epidemiology (WBE) has emerged as a surveillance tool for detecting outbreaks early, monitoring infectious disease trends, and providing real-time insights, particularly in vulnerable communities. WBE aids in tracking pathogens, including viruses, in sewage, offering a comprehensive understanding of community health and lifestyle habits. With the rise in global COVID-19 cases, WBE has gained prominence, aiding in monitoring SARS-CoV-2 levels worldwide. Despite advancements in water treatment, poorly treated wastewater discharge remains a threat, amplifying the spread of water-, sanitation-, and hygiene (WaSH)-related diseases. WBE, serving as complementary surveillance, is pivotal for monitoring community-level viral infections. However, there is untapped potential for WBE to expand its role in public health surveillance. This review emphasizes the importance of WBE in understanding the link between viral surveillance in wastewater and public health, highlighting the need for its further integration into public health management.
Collapse
Affiliation(s)
- Matheus Carmo dos Santos
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Ana Clara Cerqueira Silva
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Carine dos Reis Teixeira
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Filipe Pinheiro Macedo Prazeres
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Rosângela Fernandes dos Santos
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Carolina de Araújo Rolo
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Emanuelle de Souza Santos
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Maísa Santos da Fonseca
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Camila Oliveira Valente
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Katharine Valéria Saraiva Hodel
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Larissa Moraes dos Santos Fonseca
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Bianca Sampaio Dotto Fiuza
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Rodrigo de Freitas Bueno
- Federal University of ABC. Center of Engineering, Modelling and Applied Social Sciences (CECS), Santo Andre, São Paulo, Brazil
| | - Jailson Bittencourt de Andrade
- University Center SENAI CIMATEC, SENAI CIMATEC, Salvador, 41650-010, Bahia, Brazil
- Centro Interdisciplinar de Energia e Ambiente – CIEnAm, Federal University of Bahia, Salvador, 40170-115, Brazil
| | - Bruna Aparecida Souza Machado
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
- University Center SENAI CIMATEC, SENAI CIMATEC, Salvador, 41650-010, Bahia, Brazil
| |
Collapse
|
13
|
Bleotu C, Matei L, Dragu LD, Necula LG, Pitica IM, Chivu-Economescu M, Diaconu CC. Viruses in Wastewater-A Concern for Public Health and the Environment. Microorganisms 2024; 12:1430. [PMID: 39065197 PMCID: PMC11278728 DOI: 10.3390/microorganisms12071430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/07/2024] [Accepted: 07/11/2024] [Indexed: 07/26/2024] Open
Abstract
Wastewater monitoring provides essential information about water quality and the degree of contamination. Monitoring these waters helps identify and manage risks to public health, prevent the spread of disease, and protect the environment. Standardizing the appropriate and most accurate methods for the isolation and identification of viruses in wastewater is necessary. This review aims to present the major classes of viruses in wastewater, as well as the methods of concentration, isolation, and identification of viruses in wastewater to assess public health risks and implement corrective measures to prevent and control viral infections. Last but not least, we propose to evaluate the current strategies in wastewater treatment as well as new alternative methods of water disinfection.
Collapse
Affiliation(s)
- Coralia Bleotu
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 060023 Bucharest, Romania
- The Academy of Romanian Scientist, 050711 Bucharest, Romania
| | - Lilia Matei
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
| | - Laura Denisa Dragu
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
| | - Laura Georgiana Necula
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
| | - Ioana Madalina Pitica
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
| | - Mihaela Chivu-Economescu
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
| | - Carmen Cristina Diaconu
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
| |
Collapse
|
14
|
Singh R, Ryu J, Hyoung Lee W, Kang JH, Park S, Kim K. Wastewater-borne viruses and bacteria, surveillance and biosensors at the interface of academia and field deployment. Crit Rev Biotechnol 2024:1-21. [PMID: 38973015 DOI: 10.1080/07388551.2024.2354709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 04/28/2024] [Indexed: 07/09/2024]
Abstract
Wastewater is a complex, but an ideal, matrix for disease monitoring and surveillance as it represents the entire load of enteric pathogens from a local catchment area. It captures both clinical and community disease burdens. Global interest in wastewater surveillance has been growing rapidly for infectious diseases monitoring and for providing an early warning of potential outbreaks. Although molecular detection methods show high sensitivity and specificity in pathogen monitoring from wastewater, they are strongly limited by challenges, including expensive laboratory settings and prolonged sample processing and analysis. Alternatively, biosensors exhibit a wide range of practical utility in real-time monitoring of biological and chemical markers. However, field deployment of biosensors is primarily challenged by prolonged sample processing and pathogen concentration steps due to complex wastewater matrices. This review summarizes the role of wastewater surveillance and provides an overview of infectious viral and bacterial pathogens with cutting-edge technologies for their detection. It emphasizes the practical utility of biosensors in pathogen monitoring and the major bottlenecks for wastewater surveillance of pathogens, and overcoming approaches to field deployment of biosensors for real-time pathogen detection. Furthermore, the promising potential of novel machine learning algorithms to resolve uncertainties in wastewater data is discussed.
Collapse
Affiliation(s)
- Rajendra Singh
- Department of Biological and Environmental Science, Dongguk University, Goyang, Gyeonggi-do, South Korea
| | - Jaewon Ryu
- Department of Biological and Environmental Science, Dongguk University, Goyang, Gyeonggi-do, South Korea
| | - Woo Hyoung Lee
- Department of Civil, Environmental, and Construction Engineering, University of Central FL, Orlando, FL, USA
| | - Joo-Hyon Kang
- Department of Civil and Environmental Engineering, Dongguk University-Seoul, Seoul, South Korea
| | - Sanghwa Park
- Bacteria Research Team, Freshwater Bacteria Research Department, Nakdonggang National Institute of Biological Resources (NNIBR), Sangju-si, South Korea
| | - Keugtae Kim
- Department of Biological and Environmental Science, Dongguk University, Goyang, Gyeonggi-do, South Korea
| |
Collapse
|
15
|
Yamamoto S, Ogasawara N, Sudo-Yokoyama Y, Sato S, Takata N, Yokota N, Nakano T, Hayashi K, Takasawa A, Endo M, Hinatsu M, Yoshida K, Sato T, Takahashi S, Takano K, Kojima T, Hiraki J, Yokota SI. Bacillaceae serine proteases and Streptomyces epsilon-poly-L-lysine synergistically inactivate Caliciviridae by inhibiting RNA genome release. Sci Rep 2024; 14:15181. [PMID: 38956295 PMCID: PMC11219925 DOI: 10.1038/s41598-024-65963-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
Human norovirus (HuNoV) is an enteric infectious pathogen belonging to the Caliciviridae family that causes occasional epidemics. Circulating alcohol-tolerant viral particles that are readily transmitted via food-borne routes significantly contribute to the global burden of HuNoV-induced gastroenteritis. Moreover, contact with enzymes secreted by other microorganisms in the environment can impact the infectivity of viruses. Hence, understanding the circulation dynamics of Caliciviridae is critical to mitigating epidemics. Accordingly, in this study, we screened whether environmentally abundant secretase components, particularly proteases, affect Caliciviridae infectivity. Results showed that combining Bacillaceae serine proteases with epsilon-poly-L-lysine (EPL) produced by Streptomyces-a natural antimicrobial-elicited anti-Caliciviridae properties, including against the epidemic HuNoV GII.4_Sydney_2012 strain. In vitro and in vivo biochemical and virological analyses revealed that EPL has two unique synergistic viral inactivation functions. First, it maintains an optimal pH to promote viral surface conformational changes to the protease-sensitive structure. Subsequently, it inhibits viral RNA genome release via partial protease digestion at the P2 and S domains in the VP1 capsid. This study provides new insights regarding the high-dimensional environmental interactions between bacteria and Caliciviridae, while promoting the development of protease-based anti-viral disinfectants.
Collapse
Affiliation(s)
- Soh Yamamoto
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Noriko Ogasawara
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan.
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan.
| | - Yuka Sudo-Yokoyama
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Sachiko Sato
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Nozomu Takata
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Nana Yokota
- Yokohama R&D Center, JNC Corporation, Yokohama, 236-8605, Japan
| | - Tomomi Nakano
- Yokohama R&D Center, JNC Corporation, Yokohama, 236-8605, Japan
| | - Kyoko Hayashi
- College of Life and Health Sciences, Chubu University, Kasugai, 487-8501, Japan
| | - Akira Takasawa
- Department of Pathology, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| | - Mayumi Endo
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Masako Hinatsu
- Yokohama R&D Center, JNC Corporation, Yokohama, 236-8605, Japan
| | - Keitaro Yoshida
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Toyotaka Sato
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
- Graduate School of Infectious Diseases, Hokkaido University, Sapporo, 060-0818, Japan
- One Health Research Center, Hokkaido University, Sapporo, 060-0818, Japan
| | - Satoshi Takahashi
- Department of Infection Control and Laboratory Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Kenichi Takano
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Takashi Kojima
- Department of Cell Science, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Jun Hiraki
- Yokohama R&D Center, JNC Corporation, Yokohama, 236-8605, Japan
| | - Shin-Ich Yokota
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| |
Collapse
|
16
|
Subroyen S, Pillay L, Bux F, Kumari S. Evaluating storage conditions and enhancement strategies on viral biomarker recovery for WBE applications. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:213-224. [PMID: 39007315 DOI: 10.2166/wst.2024.203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/31/2024] [Indexed: 07/16/2024]
Abstract
Wastewater-based epidemiology (WBE) is a valuable disease surveillance tool. However, little is known on how factors such as transportation, storage, and wastewater characteristics influence the accuracy of the quantification methods. Hence, this study investigated the impact of storage temperatures and physicochemical characteristics of wastewater on SARS-CoV-2 and influenza A stability using droplet digital PCR. Additionally, strategies to enhance viral recovery were explored. Municipal influent wastewater stored between ±25 and -80 °C was assessed for a period of 84 days to determine viral degradation. Degradation up to 94.1% of influenza A and SARS-CoV-2 was observed in all samples with the highest at ±25 °C. Viral degradation was correlated to the changes in wastewater physicochemical characteristics. The low degradation observed of SARS-CoV-2 in the spiked pellets were indicative of viral adhesion to wastewater solids, which correlated with changes in pH. Ultrasonication frequencies ranging from 4 to 16 kHz, increased SARS-CoV-2 concentrations in the supernatant between 3.30 and 35.65%, indicating viral RNA attachment to wastewater solids. These results highlight the importance of additional pretreatment methods for maximizing RNA recovery from wastewater samples. Based on these findings, it was deduced that wastewater preservation studies are essential, and pretreatment should be included in the WBE methodology.
Collapse
Affiliation(s)
- Sueyanka Subroyen
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Leanne Pillay
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa E-mail:
| |
Collapse
|
17
|
Hamilton KA, Wade MJ, Barnes KG, Street RA, Paterson S. Wastewater-based epidemiology as a public health resource in low- and middle-income settings. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124045. [PMID: 38677460 DOI: 10.1016/j.envpol.2024.124045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/14/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
In the face of emerging and re-emerging diseases, novel and innovative approaches to population scale surveillance are necessary for the early detection and quantification of pathogens. The last decade has seen the rapid development of wastewater and environmental surveillance (WES) to address public health challenges, which has led to establishment of wastewater-based epidemiology (WBE) approaches being deployed to monitor a range of health hazards. WBE exploits the fact that excretions and secretions from urine, and from the gut are discharged in wastewater, particularly sewage, such that sampling sewage systems provides an early warning system for disease outbreaks by providing an early indication of pathogen circulation. While WBE has been mainly used in locations with networked wastewater systems, here we consider its value for less connected populations typical of lower-income settings, and in assess the opportunity afforded by pit latrines to sample communities and localities. We propose that where populations struggle to access health and diagnostic facilities, and despite several additional challenges, sampling unconnected wastewater systems remains an important means to monitor the health of large populations in a relatively cost-effective manner.
Collapse
Affiliation(s)
- K A Hamilton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7ZB, United Kingdom; International Livestock Research Institute, Nairobi, Kenya, PO Box 30709-00100.
| | - M J Wade
- Data, Analytics & Surveillance Group, UK Health Security Agency, London United Kingdom
| | - K G Barnes
- Malawi-Liverpool-Wellcome Programme (MLW), Blantyre, Malawi; Harvard School of Public Health, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - R A Street
- South African Medical Research Council, Cape Town, Western Cape, South Africa
| | - S Paterson
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7ZB, United Kingdom
| |
Collapse
|
18
|
Robbins AA, Gallagher TL, Toledo DM, Hershberger KC, Salmela SM, Barney RE, Szczepiorkowski ZM, Tsongalis GJ, Martin IW, Hubbard JA, Lefferts JA. Analytical validation of a semi-automated methodology for quantitative measurement of SARS-CoV-2 RNA in wastewater collected in northern New England. Microbiol Spectr 2024; 12:e0112223. [PMID: 38747589 PMCID: PMC11323974 DOI: 10.1128/spectrum.01122-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 04/11/2024] [Indexed: 06/06/2024] Open
Abstract
Wastewater-based epidemiology (WBE) can be used to monitor the community presence of infectious disease pathogens of public health concern such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Viral nucleic acid has been detected in the stool of SARS-CoV-2-infected individuals. Asymptomatic SARS-CoV-2 infections make community monitoring difficult without extensive and continuous population screening. In this study, we validated a procedure that includes manual pre-processing, automated SARS-CoV-2 RNA extraction and detection workflows using both reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR) and reverse transcriptase droplet digital PCR (RT-ddPCR). Genomic RNA and calibration materials were used to create known concentrations of viral material to determine the linearity, accuracy, and precision of the wastewater extraction and SARS-CoV-2 RNA detection. Both RT-qPCR and RT-ddPCR perform similarly in all the validation experiments, with a limit of detection of 50 copies/mL. A wastewater sample from a care facility with a known outbreak was assessed for viral content in replicate, and we showed consistent results across both assays. Finally, in a 2-week survey of two New Hampshire cities, we assessed the suitability of our methods for daily surveillance. This paper describes the technical validation of a molecular assay that can be used for long-term monitoring of SARS-CoV-2 in wastewater as a potential tool for community surveillance to assist with public health efforts.IMPORTANCEThis paper describes the technical validation of a molecular assay that can be used for the long-term monitoring of SARS-CoV-2 in wastewater as a potential tool for community surveillance to assist with public health efforts.
Collapse
Affiliation(s)
- Ashlee A. Robbins
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Torrey L. Gallagher
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Diana M. Toledo
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
- The Broad Institute at MIT and Harvard, Cambridge, Massachusetts, USA
| | - K. Chase Hershberger
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Sabrina M. Salmela
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Rachael E. Barney
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Zbigniew M. Szczepiorkowski
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Gregory J. Tsongalis
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Isabella W. Martin
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Jacqueline A. Hubbard
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Joel A. Lefferts
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
19
|
Kadoya SS, Zhu Y, Chen R, Rong C, Li Y, Sano D. A soft-sensor approach for predicting an indicator virus removal efficiency of a pilot-scale anaerobic membrane bioreactor (AnMBR). JOURNAL OF WATER AND HEALTH 2024; 22:967-977. [PMID: 38935449 DOI: 10.2166/wh.2024.251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 05/10/2024] [Indexed: 06/29/2024]
Abstract
The anaerobic membrane bioreactor (AnMBR) is a promising technology for not only water reclamation but also virus removal; however, the virus removal efficiency of AnMBR has not been fully investigated. Additionally, the removal efficiency estimation requires datasets of virus concentration in influent and effluent, but its monitoring is not easy to perform for practical operation because the virus quantification process is generally time-consuming and requires specialized equipment and trained personnel. Therefore, in this study, we aimed to identify the key, monitorable variables in AnMBR and establish the data-driven models using the selected variables to predict virus removal efficiency. We monitored operational and environmental conditions of AnMBR in Sendai, Japan and measured virus concentration once a week for six months. Spearman's rank correlation analysis revealed that the pH values of influent and mixed liquor suspended solids (MLSS) were strongly correlated with the log reduction value of pepper mild mottle virus, indicating that electrostatic interactions played a dominant role in AnMBR virus removal. Among the candidate models, the random forest model using selected variables including influent and MLSS pH outperformed the others. This study has demonstrated the potential of AnMBR as a viable option for municipal wastewater reclamation with high microbial safety.
Collapse
Affiliation(s)
- Syun-Suke Kadoya
- Department of Urban Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yifan Zhu
- Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Rong Chen
- Key Laboratory of Northwest Water Resource, Ecology and Environment, Ministry of Education, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Chao Rong
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yuyou Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Daisuke Sano
- Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan E-mail:
| |
Collapse
|
20
|
Itarte M, Calvo M, Martínez-Frago L, Mejías-Molina C, Martínez-Puchol S, Girones R, Medema G, Bofill-Mas S, Rusiñol M. Assessing environmental exposure to viruses in wastewater treatment plant and swine farm scenarios with next-generation sequencing and occupational risk approaches. Int J Hyg Environ Health 2024; 259:114360. [PMID: 38555823 DOI: 10.1016/j.ijheh.2024.114360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/21/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024]
Abstract
Occupational exposure to pathogens can pose health risks. This study investigates the viral exposure of workers in a wastewater treatment plant (WWTP) and a swine farm by analyzing aerosol and surfaces samples. Viral contamination was evaluated using quantitative polymerase chain reaction (qPCR) assays, and target enrichment sequencing (TES) was performed to identify the vertebrate viruses to which workers might be exposed. Additionally, Quantitative Microbial Risk Assessment (QMRA) was conducted to estimate the occupational risk associated with viral exposure for WWTP workers, choosing Human Adenovirus (HAdV) as the reference pathogen. In the swine farm, QMRA was performed as an extrapolation, considering a hypothetical zoonotic virus with characteristics similar to Porcine Adenovirus (PAdV). The modelled exposure routes included aerosol inhalation and oral ingestion through contaminated surfaces and hand-to-mouth contact. HAdV and PAdV were widespread viruses in the WWTP and the swine farm, respectively, by qPCR assays. TES identified human and other vertebrate viruses WWTP samples, including viruses from families such as Adenoviridae, Circoviridae, Orthoherpesviridae, Papillomaviridae, and Parvoviridae. In the swine farm, most of the identified vertebrate viruses were porcine viruses belonging to Adenoviridae, Astroviridae, Circoviridae, Herpesviridae, Papillomaviridae, Parvoviridae, Picornaviridae, and Retroviridae. QMRA analysis revealed noteworthy risks of viral infections for WWTP workers if safety measures are not taken. The probability of illness due to HAdV inhalation was higher in summer compared to winter, while the greatest risk from oral ingestion was observed in workspaces during winter. Swine farm QMRA simulation suggested a potential occupational risk in the case of exposure to a hypothetical zoonotic virus. This study provides valuable insights into WWTP and swine farm worker's occupational exposure to human and other vertebrate viruses. QMRA and NGS analyses conducted in this study will assist managers in making evidence-based decisions, facilitating the implementation of protection measures, and risk mitigation practices for workers.
Collapse
Affiliation(s)
- Marta Itarte
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain.
| | - Miquel Calvo
- Secció d'Estadística, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - Lola Martínez-Frago
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - Cristina Mejías-Molina
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain
| | - Sandra Martínez-Puchol
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - Rosina Girones
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain
| | | | - Sílvia Bofill-Mas
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain
| | - Marta Rusiñol
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
21
|
Hadi M, Kheiri R, Baghban M, Sayahi A, Nasseri S, Alimohammadi M, Khastoo H, Aminabad MS, Vaghefi KA, Vakili B, Tashauoei H, Borji SH, Iravani E. The occurrence of SARS-CoV-2 in Tehran's municipal wastewater: performance of treatment systems and feasibility of wastewater-based epidemiology. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2024; 22:281-293. [PMID: 38887767 PMCID: PMC11180145 DOI: 10.1007/s40201-024-00897-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/29/2024] [Indexed: 06/20/2024]
Abstract
Analyzing municipal wastewater for the presence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) helps to evaluate the efficacy of treatment systems in mitigating virus-related health risks. This research investigates wastewater treatment plants' (WWTPs) performance in the reduction of SARS-CoV-2 from municipal wastewater in Tehran, Iran. SARS-CoV-2 RNA was measured within sewers, at the inlets, and after the primary and secondary treatment stages of three main WWTPs. Within sewers, the average virus titer stood at 58,600 gc/L, while at WWTP inlets, it measured 38,136 gc/L. A substantial 67% reduction in virus titer was observed at the inlets, accompanied by a 2-log reduction post-primary treatment. Remarkably, the biological treatment process resulted in complete virus elimination across all plants. Additionally, a notable positive correlation (r > 0.8) was observed between temperature and virus titer in wastewater. Using wastewater-based epidemiology (WBE) technique and the estimated SARS-CoV-2 RNA shedding rates, the infection prevalence among populations served by WWTPs found to be between 0.128% to 0.577%. In conclusion, this research not only advances our understanding of SARS-CoV-2 dynamics within wastewater treatment systems but also provides practical insights for enhancing treatment efficiency and implementing the feasibility of WBE strategies in Tehran. These implications contribute to the broader efforts to protect public health and mitigate the impact of future viral outbreaks. Graphical abstract
Collapse
Affiliation(s)
- Mahdi Hadi
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Roohollah Kheiri
- Water Quality Control Office, Alborz Province Water and Wastewater Company, Karaj, Iran
| | - Mahtab Baghban
- Reference Laboratory of Water and Wastewater, Tehran Province Water and Wastewater Company, Tehran, Iran
| | - Ahmad Sayahi
- Office of R&D and Industrial Relations of Water and Wastewater Engineering Company, Tehran, Iran
| | - Simin Nasseri
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Alimohammadi
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Khastoo
- Office of R&D and Industrial Relations of Water and Wastewater Engineering Company, Tehran, Iran
| | - Mehri Solaimany Aminabad
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Kooshiar Azam Vaghefi
- Manager of Water Quality Control Bureau, National Water and Wastewater Engineering Company, Tehran, Iran
| | - Behnam Vakili
- Office of Improvement on Wastewater Operation Procedures, National Water and Wastewater Engineering Company, Tehran, Iran
| | - Hamidreza Tashauoei
- Department of Environmental Health Engineering, School of Health, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | - Saeedeh Hemmati Borji
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Elnaz Iravani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Zhang J, Tang A, Jin T, Sun D, Guo F, Lei H, Lin L, Shu W, Yu P, Li X, Li B. A panoramic view of the virosphere in three wastewater treatment plants by integrating viral-like particle-concentrated and traditional non-concentrated metagenomic approaches. IMETA 2024; 3:e188. [PMID: 38898980 PMCID: PMC11183165 DOI: 10.1002/imt2.188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 06/21/2024]
Abstract
Wastewater biotreatment systems harbor a rich diversity of microorganisms, and the effectiveness of biotreatment systems largely depends on the activity of these microorganisms. Specifically, viruses play a crucial role in altering microbial behavior and metabolic processes throughout their infection phases, an aspect that has recently attracted considerable interest. Two metagenomic approaches, viral-like particle-concentrated (VPC, representing free viral-like particles) and non-concentrated (NC, representing the cellular fraction), were employed to assess their efficacy in revealing virome characteristics, including taxonomy, diversity, host interactions, lifestyle, dynamics, and functional genes across processing units of three wastewater treatment plants (WWTPs). Our findings indicate that each approach offers unique insights into the viral community and functional composition. Their combined use proved effective in elucidating WWTP viromes. We identified nearly 50,000 viral contigs, with Cressdnaviricota and Uroviricota being the predominant phyla in the VPC and NC fractions, respectively. Notably, two pathogenic viral families, Asfarviridae and Adenoviridae, were commonly found in these WWTPs. We also observed significant differences in the viromes of WWTPs processing different types of wastewater. Additionally, various phage-derived auxiliary metabolic genes (AMGs) were active at the RNA level, contributing to the metabolism of the microbial community, particularly in carbon, sulfur, and phosphorus cycling. Moreover, we identified 29 virus-carried antibiotic resistance genes (ARGs) with potential for host transfer, highlighting the role of viruses in spreading ARGs in the environment. Overall, this study provides a detailed and integrated view of the virosphere in three WWTPs through the application of VPC and NC metagenomic approaches. Our findings enhance the understanding of viral communities, offering valuable insights for optimizing the operation and regulation of wastewater treatment systems.
Collapse
Affiliation(s)
- Jiayu Zhang
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
- Research Center for Eco‐Environmental EngineeringDongguan University of TechnologyDongguanChina
| | - Aixi Tang
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
| | - Tao Jin
- Guangdong Magigene Biotechnology Co., Ltd.ShenzhenChina
| | - Deshou Sun
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
- Shenzhen Tongchen Biotechnology Co., LimitedShenzhenChina
| | - Fangliang Guo
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
| | - Huaxin Lei
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
| | - Lin Lin
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
| | - Wensheng Shu
- Guangdong Magigene Biotechnology Co., Ltd.ShenzhenChina
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life SciencesSouth China Normal UniversityGuangzhouChina
| | - Pingfeng Yu
- College of Environmental and Resource SciencesZhejiang UniversityHangzhouChina
| | - Xiaoyan Li
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
| | - Bing Li
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
| |
Collapse
|
23
|
Starke JC, Bell NS, Martinez CM, Friberg IK, Lawley C, Sriskantharajah V, Hirschberg DL. Measuring SARS-CoV-2 RNA concentrations in neighborhood wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172021. [PMID: 38552966 DOI: 10.1016/j.scitotenv.2024.172021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
Longitudinal wastewater sampling during the COVID-19 pandemic was an important aspect of disease surveillance, adding to a more complete understanding of infection dynamics and providing important data for community public health monitoring and intervention planning. This was largely accomplished by testing SARS-CoV-2 RNA concentrations in samples from municipal wastewater treatment plants (WWTPs). We evaluated the utility of testing for virus levels upstream from WWTP within the residential neighborhoods that feed into the WWTP. We propose that monitoring virus dynamics across residential neighborhoods could reveal important public health-relevant information about community sub-group heterogeneity in virus concentrations. PRINCIPAL RESULTS: Virus concentration patterns display heterogeneity within neighborhoods and between neighborhoods over time. Sewage SARS-CoV-2 RNA concentrations as measured by RT-qPCR also corresponded closely to verified COVID-19 infection counts within individual neighborhoods. More importantly, our data suggest the loss of disease-relevant public health information when sampling occurs only at the level of WWTP instead of upstream in neighborhoods. Spikes in SARS-CoV-2 RNA concentrations in neighborhoods are often masked by dilution from other neighborhoods in the WWTP samples. MAJOR CONCLUSIONS: Wastewater-based epidemiology (WBE) employed at WWTP reliably detects SARS-CoV-2 in a city-sized population but provides less actionable public health information about neighborhoods experiencing greater viral infection and disease. Neighborhood sewershed sampling reveals important population-based information about local virus dynamics and improves opportunities for public health intervention. Longitudinally employed, neighborhood sewershed surveillance may provide a 3-6 day early warning of SARS-CoV-2 infection spikes and, importantly, highly specific information on subpopulations in a community particularly at higher risk at different points in time. Sampling in neighborhoods may thus provide timely and cost-saving information for targeted interventions within communities.
Collapse
Affiliation(s)
| | - Nicole S Bell
- RAIN Incubator, Tacoma, WA, USA; Squally Creek, LLC, Tacoma, WA, USA
| | - Chloe Mae Martinez
- RAIN Incubator, Tacoma, WA, USA; University of Washington-Tacoma, Tacoma, WA, USA
| | | | | | | | - David L Hirschberg
- RAIN Incubator, Tacoma, WA, USA; School of Engineering and Technology, University of Washington-Tacoma, Tacoma, WA, USA
| |
Collapse
|
24
|
Sadare OO, Oke D, Olawuni OA, Olayiwola IA, Moothi K. Modelling and optimization of membrane process for removal of biologics (pathogens) from water and wastewater: Current perspectives and challenges. Heliyon 2024; 10:e29864. [PMID: 38698993 PMCID: PMC11064141 DOI: 10.1016/j.heliyon.2024.e29864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/30/2024] [Accepted: 04/16/2024] [Indexed: 05/05/2024] Open
Abstract
As one of the 17 sustainable development goals, the United Nations (UN) has prioritized "clean water and sanitation" (Goal 6) to reduce the discharge of emerging pollutants and disease-causing agents into the environment. Contamination of water by pathogenic microorganisms and their existence in treated water is a global public health concern. Under natural conditions, water is frequently prone to contamination by invasive microorganisms, such as bacteria, viruses, and protozoa. This circumstance has therefore highlighted the critical need for research techniques to prevent, treat, and get rid of pathogens in wastewater. Membrane systems have emerged as one of the effective ways of removing contaminants from water and wastewater However, few research studies have examined the synergistic or conflicting effects of operating conditions on newly developing contaminants found in wastewater. Therefore, the efficient, dependable, and expeditious examination of the pathogens in the intricate wastewater matrix remains a significant obstacle. As far as it can be ascertained, much attention has not recently been given to optimizing membrane processes to develop optimal operation design as related to pathogen removal from water and wastewater. Therefore, this state-of-the-art review aims to discuss the current trends in removing pathogens from wastewater by membrane techniques. In addition, conventional techniques of treating pathogenic-containing water and wastewater and their shortcomings were briefly discussed. Furthermore, derived mathematical models suitable for modelling, simulation, and control of membrane technologies for pathogens removal are highlighted. In conclusion, the challenges facing membrane technologies for removing pathogens were extensively discussed, and future outlooks/perspectives on optimizing and modelling membrane processes are recommended.
Collapse
Affiliation(s)
- Olawumi O. Sadare
- School of Chemical and Minerals Engineering, Faculty of Engineering, North-West University, Potchefstroom, 2520, South Africa
| | - Doris Oke
- Northwestern-Argonne Institute of Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Oluwagbenga A. Olawuni
- Department of Chemical Engineering, Faculty of Engineering and the Built Environment, Doornfontein Campus, University of Johannesburg, P.O. Box 17011, Johannesburg, 2028, South Africa
| | - Idris A. Olayiwola
- UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology College of Graduates Studies, University of South Africa, Pretoria 392, South Africa
| | - Kapil Moothi
- School of Chemical and Minerals Engineering, Faculty of Engineering, North-West University, Potchefstroom, 2520, South Africa
| |
Collapse
|
25
|
Girón-Guzmán I, Cuevas-Ferrando E, Barranquero R, Díaz-Reolid A, Puchades-Colera P, Falcó I, Pérez-Cataluña A, Sánchez G. Urban wastewater-based epidemiology for multi-viral pathogen surveillance in the Valencian region, Spain. WATER RESEARCH 2024; 255:121463. [PMID: 38537489 DOI: 10.1016/j.watres.2024.121463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 04/24/2024]
Abstract
Wastewater-based epidemiology (WBE) has lately arised as a promising tool for monitoring and tracking viral pathogens in communities. In this study, we analysed WBE's role as a multi-pathogen surveillance strategy to detect the presence of several viral illness causative agents. Thus, an epidemiological study was conducted from October 2021 to February 2023 to estimate the weekly levels of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Respiratory Syncytial virus (RSV), and Influenza A virus (IAV) in influent wastewater samples (n = 69). In parallel, a one-year study (October 2021 to October 2022) was performed to assess the presence of pathogenic human enteric viruses. Besides, monitoring of proposed viral fecal contamination indicators crAssphage and Pepper mild mottle virus (PMMoV) was also assessed, along with plaque counting of somatic coliphages. Genetic material of rotavirus (RV), human astrovirus (HAStV), and norovirus genogroup I (GI) and GII was found in almost all samples, while hepatitis A and E viruses (HAV and HEV) only tested positive in 3.77 % and 22.64 % of the samples, respectively. No seasonal patterns were overall found for enteric viruses, although RVs had a peak prevalence in the winter months. All samples tested positive for SARS-CoV-2 RNA, with a mean concentration of 5.43 log genome copies per liter (log GC/L). The tracking of the circulating SARS-CoV-2 variants of concern (VOCs) was performed by both duplex RT-qPCR and next generation sequencing (NGS). Both techniques reliably showed how the dominant VOC transitioned from Delta to Omicron during two weeks in Spain in December 2021. RSV and IAV viruses peaked in winter months with mean concentrations 6.40 and 4.10 log GC/L, respectively. Moreover, the three selected respiratory viruses strongly correlated with reported clinical data when normalised by wastewater physico-chemical parameters and presented weaker correlations when normalising sewage concentration levels with crAssphage or somatic coliphages titers. Finally, predictive models were generated for each respiratory virus, confirming high reliability on WBE data as an early-warning system and communities illness monitoring system. Overall, this study presents WBE as an optimal tool for multi-pathogen tracking reflecting viral circulation and diseases trends within a selected area, its value as a multi-pathogen early-warning tool stands out due to its public health interest.
Collapse
Affiliation(s)
- Inés Girón-Guzmán
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - Enric Cuevas-Ferrando
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain.
| | - Regino Barranquero
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - Azahara Díaz-Reolid
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - Pablo Puchades-Colera
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - Irene Falcó
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain; Department of Microbiology and Ecology, University of Valencia, Valencia, Spain
| | - Alba Pérez-Cataluña
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - Gloria Sánchez
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain.
| |
Collapse
|
26
|
Ahuja S, Tallur S, Kondabagil K. Simultaneous microbial capture and nucleic acid extraction from wastewater with minimal pre-processing and high recovery efficiency. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170347. [PMID: 38336063 DOI: 10.1016/j.scitotenv.2024.170347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/22/2023] [Accepted: 01/19/2024] [Indexed: 02/12/2024]
Abstract
The COVID-19 pandemic accelerated research towards developing low-cost assays for automated urban wastewater monitoring assay that can be integrated into an environmental surveillance system for early warning of frequent disease outbreaks and future pandemics. Microbial concentration is one of the most challenging steps in wastewater surveillance, due to the sample heterogeneity and low pathogen load. Keeping in mind the requirements of large-scale testing in densely populated low- or middle-income countries (LMICs), such assays would need to be low-cost and have rapid turnaround time with high recovery efficiency. In this study, two such methods are presented and evaluated against commercially available kits for pathogen detection in wastewater. The first method utilizes paper dipsticks while the second method comprises of a PTFE membrane filter (PMF) integrated with a peristaltic pump. Both methods were used to concentrate and isolate nucleic acids from different microbes such as SARS-CoV-2, pepper mild mottle virus (PMMoV), bacteriophage Phi6, and E. coli from wastewater samples with minimal or no sample pre-processing. While the paper dipstick method is suitable for sub-milliliter sample volume, the PMF method can be used with larger volumes of wastewater sample (40 mL) and can detect multiple microbes with recovery efficiency comparable to commercially available kits.
Collapse
Affiliation(s)
- Shruti Ahuja
- Centre for Research in Nanotechnology & Science (CRNTS), IIT Bombay, Powai, Mumbai 400076, Maharashtra, India.
| | - Siddharth Tallur
- Department of Electrical Engineering, IIT Bombay, Powai, Mumbai 400076, Maharashtra, India.
| | - Kiran Kondabagil
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, Maharashtra, India.
| |
Collapse
|
27
|
Dong T, Ai J, Zong Y, Zhang Y, Li L, Zhou H, Peng S, He H, Zhang Z, Wang Q. Novel multiplexed alkali enzyme lysis coupled with EDTA pretreatment for RNA virus extraction from wastewater sludge: Optimization, recovery, and detection. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120102. [PMID: 38228046 DOI: 10.1016/j.jenvman.2024.120102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 01/18/2024]
Abstract
RNA viruses are readily enriched in wastewater sludge owing to adsorption by extracellular polymeric substances (EPS) during wastewater treatment, causing pathogenicity. However, conventional wastewater extraction methods often fail to fully extract these viruses from sludge. In this study, three methods: enzymatic (ENP), alkaline (ALP), and ethylenediaminetetraacetic acid (EDTA) pretreatments were applied to sludges and promote the RNA virus extraction from sludge. Our results show that the total recovery rate of RNA viruses increased by 87.73% after ENP pretreatment, whereas ALP pretreatment inhibited virus extraction. The highest recovery rate of viruses from sludge, reaching 296.80%, was achieved with EDTA pretreatment (EDP) coupled with ENP. Notably, the most significant increase was observed in the abundance of Astroviruses, which increased from 7.60 × 107 to 7.86 × 108 copies/g TSS after EDP + ENP treatment. Our investigations revealed that virus extraction was affected by a class of short-wavelength protein substances, as opposed to tryptophan or tyrosine, which were eluted by proteins with beef paste buffer by substitution after EDP + ENP treatment. The results of this study provide essential insights for sludge-based epidemiology with the required sensitivity for managing the extraction of RNA epidemic viruses to control viral transmission.
Collapse
Affiliation(s)
- Tianyi Dong
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, Hubei, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Jing Ai
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| | - Yuxi Zong
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, Hubei, China
| | - Yibo Zhang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lanfeng Li
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, Hubei, China
| | - Hao Zhou
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, Hubei, China
| | - Sainan Peng
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, Hubei, China
| | - Hang He
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, Hubei, China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
| | - Zhengxuan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| |
Collapse
|
28
|
Meadows T, Coats ER, Narum S, Top E, Ridenhour BJ, Stalder T. Epidemiological model can forecast COVID-19 outbreaks from wastewater-based surveillance in rural communities. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.01.24302131. [PMID: 38352372 PMCID: PMC10862977 DOI: 10.1101/2024.02.01.24302131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Wastewater can play a vital role in infectious disease surveillance, especially in underserved communities where it can reduce the equity gap to larger municipalities. However, using wastewater surveillance in a predictive manner remains a challenge. We tested if detecting SARS-CoV-2 in wastewater can predict outbreaks in rural communities. Under the CDC National Wastewater Surveillance program, we monitored several rural communities in Idaho (USA). While high daily variations in wastewater viral load made real-time interpretation difficult, a SEIR model could factor out the data noise and forecast the start of the Omicron outbreak in five of the six cities that were sampled soon after SARS-CoV-2 quantities increased in wastewater. For one city, the model could predict an outbreak 11 days before reported clinical cases began to increase. An epidemiological modeling approach can transform how epidemiologists use wastewater data to provide public health guidance on infectious diseases in rural communities.
Collapse
|
29
|
Corrin T, Rabeenthira P, Young KM, Mathiyalagan G, Baumeister A, Pussegoda K, Waddell LA. A scoping review of human pathogens detected in untreated human wastewater and sludge. JOURNAL OF WATER AND HEALTH 2024; 22:436-449. [PMID: 38421635 PMCID: wh_2024_326 DOI: 10.2166/wh.2024.326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Wastewater monitoring is an approach to identify the presence or abundance of pathogens within a population. The objective of this scoping review (ScR) was to identify and characterize research on human pathogens and antimicrobial resistance detected in untreated human wastewater and sludge. A search was conducted up to March 2023 and standard ScR methodology was followed. This ScR included 1,722 articles, of which 56.5% were published after the emergence of COVID-19. Viruses and bacteria were commonly investigated, while research on protozoa, helminths, and fungi was infrequent. Articles prior to 2019 were dominated by research on pathogens transmitted through fecal-oral or waterborne pathways, whereas more recent articles have explored the detection of pathogens transmitted through other pathways such as respiratory and vector-borne. There was variation in sampling, samples, and sample processing across studies. The current evidence suggests that wastewater monitoring could be applied to a range of pathogens as a public health tool to detect an emerging pathogen and understand the burden and spread of disease to inform decision-making. Further development and refinement of the methods to identify and interpret wastewater signals for different prioritized pathogens are needed to develop standards on when, why, and how to monitor effectively.
Collapse
Affiliation(s)
- Tricia Corrin
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, 370 Speedvale Avenue West, Guelph, Ontario N1H 7M7, Canada E-mail:
| | - Prakathesh Rabeenthira
- One Health Division, National Microbiology Laboratory, Public Health Agency of Canada, 110 Stone Road, Guelph, Ontario N1G 3W4, Canada
| | - Kaitlin M Young
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, 370 Speedvale Avenue West, Guelph, Ontario N1H 7M7, Canada
| | - Gajuna Mathiyalagan
- One Health Division, National Microbiology Laboratory, Public Health Agency of Canada, 110 Stone Road, Guelph, Ontario N1G 3W4, Canada
| | - Austyn Baumeister
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, 370 Speedvale Avenue West, Guelph, Ontario N1H 7M7, Canada
| | - Kusala Pussegoda
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, 370 Speedvale Avenue West, Guelph, Ontario N1H 7M7, Canada
| | - Lisa A Waddell
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, 370 Speedvale Avenue West, Guelph, Ontario N1H 7M7, Canada
| |
Collapse
|
30
|
Germano ER, Flores T, Freed GS, Kim K, Tulinsky GH, Yang A, Rose OJ, Ray CA, Autry A, Catallozzi M, Mailloux BJ, Miranda JJL. Building-level wastewater surveillance localizes interseasonal influenza variation. mSphere 2024; 9:e0060023. [PMID: 38168676 PMCID: PMC10826355 DOI: 10.1128/msphere.00600-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024] Open
Abstract
Influenza virus poses a recurring threat to public health and infects many populations in annual waves of generally unpredictable magnitude and timing. We aimed to detect the arrival and estimate the case magnitude of seasonal influenza A in urban New York City college dormitory buildings. Our wastewater-based surveillance (WBS) program measured viral RNA in the sewage outflow of three dormitories at Barnard College in 2021 and 2022. Wastewater test positivity strongly correlated with New York County clinical cases (Kendall's τ = 0.58). Positive wastewater samples are also associated with campus clinical cases. The 2022 data stand in stark contrast to the 2021 results by revealing the more frequent and earlier presence of influenza A. The increase in positive tests is significant (P < 0.01). It is further noteworthy that positive samples were not evenly distributed among buildings. Surveillance additionally identified the influenza A H3 subtype but did not detect any influenza B. We also systematically analyzed our viral purification protocol to identify in which fraction influenza can be found. While virus can be found in solid fractions, a substantial quantity remains in the final liquid fraction. Our work focuses on individual buildings rather than larger sewersheds because buildings may localize interseasonal influenza variation to specific subpopulations. Our results highlight the potential value of building-level WBS in measuring influenza incidence to help guide public health intervention.IMPORTANCESeasonal influenza remains a major public health burden. We monitored influenza A in dormitory wastewater of a New York City college in 2021 and 2022. Longitudinal samples acquired over consecutive years allowed measurement of individual buildings between seasons. We uncovered building-level changes in the magnitude and timing of test positivity concordant with clinical cases. Surveillance also localized the heterogeneity of influenza variation during the large 2022 seasonal surge. The ability to detect such changes could be leveraged as part of a public health response.
Collapse
Affiliation(s)
- Emma R. Germano
- Department of Biology, Barnard College, Columbia University, New York, New York, USA
| | - Tiffany Flores
- Department of Biology, Barnard College, Columbia University, New York, New York, USA
| | - Grace S. Freed
- Department of Biology, Barnard College, Columbia University, New York, New York, USA
| | - Kang Kim
- Department of Biology, Barnard College, Columbia University, New York, New York, USA
| | - Grace H. Tulinsky
- Environmental Science Department, Barnard College, Columbia University, New York, New York, USA
| | - Annie Yang
- Environmental Science Department, Barnard College, Columbia University, New York, New York, USA
| | - Oliver J. Rose
- Office of Facilities Services, Barnard College, Columbia University, New York, New York, USA
| | - Caroline A. Ray
- Office of Health and Wellness, Barnard College, Columbia University, New York, New York, USA
| | - April Autry
- Office of Health and Wellness, Barnard College, Columbia University, New York, New York, USA
- Heilbrunn Department of Population and Family Health, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Marina Catallozzi
- Office of Health and Wellness, Barnard College, Columbia University, New York, New York, USA
- Heilbrunn Department of Population and Family Health, Mailman School of Public Health, Columbia University, New York, New York, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Brian J. Mailloux
- Environmental Science Department, Barnard College, Columbia University, New York, New York, USA
| | - JJ L. Miranda
- Department of Biology, Barnard College, Columbia University, New York, New York, USA
| |
Collapse
|
31
|
Gogoi G, Singh SD, Kalyan E, Koch D, Gogoi P, Kshattry S, Mahanta HJ, Imran M, Pandey R, Bharali P. An interpretative review of the wastewater-based surveillance of the SARS-CoV-2: where do we stand on its presence and concern? Front Microbiol 2024; 15:1338100. [PMID: 38318336 PMCID: PMC10839012 DOI: 10.3389/fmicb.2024.1338100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024] Open
Abstract
Wastewater-based epidemiology (WBE) has been used for monitoring infectious diseases like polio, hepatitis, etc. since the 1940s. It is also being used for tracking the SARS-CoV-2 at the population level. This article aims to compile and assess the information for the qualitative and quantitative detection of the SARS-CoV-2 in wastewater. Based on the globally published studies, we highlight the importance of monitoring SARS-CoV-2 presence/detection in the wastewater and concurrently emphasize the development of early surveillance techniques. SARS-CoV-2 RNA sheds in the human feces, saliva, sputum and mucus that ultimately reaches to the wastewater and brings viral RNA into it. For the detection of the virus in the wastewater, different detection techniques have been optimized and are in use. These are based on serological, biosensor, targeted PCR, and next generation sequencing for whole genome sequencing or targeted amplicon sequencing. The presence of the SARS-CoV-2 RNA in wastewater could be used as a potential tool for early detection and devising the strategies for eradication of the virus before it is spread in the community. Additionally, with the right and timely understanding of viral behavior in the environment, an accurate and instructive model that leverages WBE-derived data may be created. This might help with the creation of technological tools and doable plans of action to lessen the negative effects of current viral epidemics or future potential outbreaks on public health and the economy. Further work toward whether presence of viral load correlates with its ability to induce infection, still needs evidence. The current increasing incidences of JN.1 variant is a case in point for continued early detection and surveillance, including wastewater.
Collapse
Affiliation(s)
- Gayatri Gogoi
- Center for Infectious Diseases, Biological Science and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sarangthem Dinamani Singh
- Center for Infectious Diseases, Biological Science and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
| | - Emon Kalyan
- Center for Infectious Diseases, Biological Science and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
| | - Devpratim Koch
- Center for Infectious Diseases, Biological Science and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pronami Gogoi
- Center for Infectious Diseases, Biological Science and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
| | - Suman Kshattry
- Center for Infectious Diseases, Biological Science and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
| | - Hridoy Jyoti Mahanta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Advanced Computation and Data Sciences Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
| | - Md Imran
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
| | - Rajesh Pandey
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
| | - Pankaj Bharali
- Center for Infectious Diseases, Biological Science and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
32
|
Clark EC, Neumann S, Hopkins S, Kostopoulos A, Hagerman L, Dobbins M. Changes to Public Health Surveillance Methods Due to the COVID-19 Pandemic: Scoping Review. JMIR Public Health Surveill 2024; 10:e49185. [PMID: 38241067 PMCID: PMC10837764 DOI: 10.2196/49185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/06/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Public health surveillance plays a vital role in informing public health decision-making. The onset of the COVID-19 pandemic in early 2020 caused a widespread shift in public health priorities. Global efforts focused on COVID-19 monitoring and contact tracing. Existing public health programs were interrupted due to physical distancing measures and reallocation of resources. The onset of the COVID-19 pandemic intersected with advancements in technologies that have the potential to support public health surveillance efforts. OBJECTIVE This scoping review aims to explore emergent public health surveillance methods during the early COVID-19 pandemic to characterize the impact of the pandemic on surveillance methods. METHODS A scoping search was conducted in multiple databases and by scanning key government and public health organization websites from March 2020 to January 2022. Published papers and gray literature that described the application of new or revised approaches to public health surveillance were included. Papers that discussed the implications of novel public health surveillance approaches from ethical, legal, security, and equity perspectives were also included. The surveillance subject, method, location, and setting were extracted from each paper to identify trends in surveillance practices. Two public health epidemiologists were invited to provide their perspectives as peer reviewers. RESULTS Of the 14,238 unique papers, a total of 241 papers describing novel surveillance methods and changes to surveillance methods are included. Eighty papers were review papers and 161 were single studies. Overall, the literature heavily featured papers detailing surveillance of COVID-19 transmission (n=187). Surveillance of other infectious diseases was also described, including other pathogens (n=12). Other public health topics included vaccines (n=9), mental health (n=11), substance use (n=4), healthy nutrition (n=1), maternal and child health (n=3), antimicrobial resistance (n=2), and misinformation (n=6). The literature was dominated by applications of digital surveillance, for example, by using big data through mobility tracking and infodemiology (n=163). Wastewater surveillance was also heavily represented (n=48). Other papers described adaptations to programs or methods that existed prior to the COVID-19 pandemic (n=9). The scoping search also found 109 papers that discuss the ethical, legal, security, and equity implications of emerging surveillance methods. The peer reviewer public health epidemiologists noted that additional changes likely exist, beyond what has been reported and available for evidence syntheses. CONCLUSIONS The COVID-19 pandemic accelerated advancements in surveillance and the adoption of new technologies, especially for digital and wastewater surveillance methods. Given the investments in these systems, further applications for public health surveillance are likely. The literature for surveillance methods was dominated by surveillance of infectious diseases, particularly COVID-19. A substantial amount of literature on the ethical, legal, security, and equity implications of these emerging surveillance methods also points to a need for cautious consideration of potential harm.
Collapse
Affiliation(s)
- Emily C Clark
- National Collaborating Centre for Methods and Tools, Hamilton, ON, Canada
| | - Sophie Neumann
- National Collaborating Centre for Methods and Tools, Hamilton, ON, Canada
| | - Stephanie Hopkins
- National Collaborating Centre for Methods and Tools, Hamilton, ON, Canada
| | - Alyssa Kostopoulos
- National Collaborating Centre for Methods and Tools, Hamilton, ON, Canada
| | - Leah Hagerman
- National Collaborating Centre for Methods and Tools, Hamilton, ON, Canada
| | - Maureen Dobbins
- National Collaborating Centre for Methods and Tools, Hamilton, ON, Canada
- School of Nursing, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
33
|
Zhang H, Zhang H, Du H, Yu X, Xu Y. The insights into the phage communities of fermented foods in the age of viral metagenomics. Crit Rev Food Sci Nutr 2024:1-13. [PMID: 38214674 DOI: 10.1080/10408398.2023.2299323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Phages play a critical role in the assembly and regulation of fermented food microbiome through lysis and lysogenic lifestyle, which in turn affects the yield and quality of fermented foods. Therefore, it is important to investigate and characterize the diversity and function of phages under complex microbial communities and nutrient substrate conditions to provide novel insights into the regulation of traditional spontaneous fermentation. Viral metagenomics has gradually garnered increasing attention in fermented food research to elucidate phage functions and characterize the interactions between phages and the microbial community. Advances in this technology have uncovered a wide range of phages associated with the production of traditional fermented foods and beverages. This paper reviews the common methods of viral metagenomics applied in fermented food research, and summarizes the ecological functions of phages in traditional fermented foods. In the future, combining viral metagenomics with culturable methods and metagenomics will broaden the scope of research on fermented food systems, revealing the complex role of phages and intricate phage-bacterium interactions.
Collapse
Affiliation(s)
- Huadong Zhang
- Laboratory of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hongxia Zhang
- College of Life Sciences, Shanxi Normal University, Taiyuan, Shanxi, China
| | - Hai Du
- Laboratory of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaowei Yu
- Laboratory of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
34
|
Zamora-Figueroa A, Rosales RE, Fernández R, Ramírez V, Bastardo M, Farías A, Vizzi E. Detection and diversity of gastrointestinal viruses in wastewater from Caracas, Venezuela, 2021-2022. Virology 2024; 589:109913. [PMID: 37924728 DOI: 10.1016/j.virol.2023.109913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023]
Abstract
Gastrointestinal viruses (GIV) are an important cause of childhood morbidity and mortality, particularly in developing countries. Their epidemiological impact in Venezuela during the COVID-19 pandemic remains unclear. GIV can also be detected in domestic sewage. Ninety-one wastewater samples from urban areas of Caracas collected over 12 months and concentrated by polyethylene-glycol-precipitation, were analyzed by multiplex reverse-transcription-PCR for rotavirus/calicivirus/astrovirus and enterovirus/klassevirus/cosavirus, and monoplex-PCR for adenovirus and Aichi virus. The overall frequency of virus detection was 46.2%, fluctuating over months, and peaking in the rainy season. Adenoviruses circulated throughout the year, especially type F41, and predominated (52.7%) over caliciviruses (29.1%) that peaked in the rainy months, rotaviruses (9.1%), cosaviruses (5.5%), astroviruses and enteroviruses (1.8%). Aichi-virus and klassevirus were absent. Rotavirus G9/G12, and P[4]/P[8]/P[14] predominated. The occurrence of GIV in wastewater reflects transmission within the population of Caracas and the persistence of a potential public health risk that needs to be adequately monitored.
Collapse
Affiliation(s)
- Alejandra Zamora-Figueroa
- Laboratorio de Ecología de Microorganismos, Centro de Ecología Aplicada. Instituto de Zoología y Ecología Tropical. Universidad Central de Venezuela, Caracas, Venezuela
| | - Rita E Rosales
- Laboratorio de Biología de Virus, Centro de Microbiología y Biología Celular. Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | - Rixio Fernández
- Laboratorio de Biología de Virus, Centro de Microbiología y Biología Celular. Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | - Viviana Ramírez
- Laboratorio de Biología de Virus, Centro de Microbiología y Biología Celular. Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | - Marjorie Bastardo
- Laboratorio de Ecología de Microorganismos, Centro de Ecología Aplicada. Instituto de Zoología y Ecología Tropical. Universidad Central de Venezuela, Caracas, Venezuela
| | - Alba Farías
- Laboratorio de Ecología de Microorganismos, Centro de Ecología Aplicada. Instituto de Zoología y Ecología Tropical. Universidad Central de Venezuela, Caracas, Venezuela
| | - Esmeralda Vizzi
- Laboratorio de Biología de Virus, Centro de Microbiología y Biología Celular. Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela.
| |
Collapse
|
35
|
Yan C, Hu YN, Gui ZC, Lai TN, Ali W, Wan NH, He SS, Liu S, Li X, Jin TX, Nasir ZA, Alcega SG, Coulon F. Quantitative SARS-CoV-2 exposure assessment for workers in wastewater treatment plants using Monte-Carlo simulation. WATER RESEARCH 2024; 248:120845. [PMID: 37976948 DOI: 10.1016/j.watres.2023.120845] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/17/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
Several studies on COVID-19 pandemic have shown that the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) originating from human stool are detected in raw sewage for several days, leading to potential health risks for workers due to the production of bioaerosols and droplets during wastewater treatment process. In this study, data of SARS-CoV-2 concentrations in wastewater were gathered from literatures, and a quantitative microbial risk assessment with Monte Carlo simulation was used to estimate the daily probability of infection risk through exposure to viable infectious viral airborne particles of the workers during four seasons and under six environmental conditions. Inhalation of bioaerosols and direct ingestion of wastewater droplets were selected as exposure pathways. Spearman rank correlation coefficients were used for sensitivity analysis to identify the variables with the greatest influence on the infection risk probability. It was found that the daily probability of infection risk decreased with temperature (T) and relative humidity (RH) increase. The probability of direct droplet ingestion exposure pathway was higher than that of the bioaerosol inhalation pathway. The sensitivity analysis indicated that the most sensitive variable for both exposure pathways was the concentration of SARS-CoV-2 in stool. So, appropriate aeration systems, covering facilities, and effective ventilation are suggested to implement in wastewater treatment plants (WWTPs) to reduce emission concentration. Further to this, the exposure time (t) had a larger variance contribution than T and RH for the bioaerosol inhalation pathway. Implementing measures such as adding more work shifts, mandating personal protective equipment for all workers, and implementing coverage for treatment processes can significantly reduce the risk of infection among workers at WWTPs. These measures are particularly effective during environmental conditions with low temperatures and humidity levels.
Collapse
Affiliation(s)
- Cheng Yan
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China; Hubei Key Laboratory of Environmental Water Science in the Yangtze River Basin, China University of Geosciences, Wuhan 430074, PR China.
| | - Yi-Ning Hu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Zi-Cheng Gui
- CCDI (Suzhou) exploration and design consultant Co., Ltd., Suzhou 215123, PR China
| | - Tian-Nuo Lai
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Wajid Ali
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Nian-Hong Wan
- Central & Southern China Municipal Engineering Design and Research Institute Co, Ltd., Wuhan 430010, PR China
| | - Shan-Shan He
- Central & Southern China Municipal Engineering Design and Research Institute Co, Ltd., Wuhan 430010, PR China
| | - Sai Liu
- CITIC Treated Water into River Engineering Investment Co., Ltd., Wuhan 430200, PR China
| | - Xiang Li
- Three Gorges Base Development Co., Ltd., Yichang 443002, PR China
| | - Ting-Xu Jin
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, PR China; School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, PR China
| | - Zaheer Ahmad Nasir
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Sonia Garcia Alcega
- School of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK6 7AA, UK
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| |
Collapse
|
36
|
Schmiege D, Kraiselburd I, Haselhoff T, Thomas A, Doerr A, Gosch J, Schoth J, Teichgräber B, Moebus S, Meyer F. Analyzing community wastewater in sub-sewersheds for the small-scale detection of SARS-CoV-2 variants in a German metropolitan area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165458. [PMID: 37454854 DOI: 10.1016/j.scitotenv.2023.165458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/09/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
Wastewater surveillance of SARS-CoV-2 proved useful, including for identifying the local appearance of newly identified virus variants. Previous studies focused on wastewater treatment plants (WWTP) with sewersheds of several hundred thousand people or at single building level, representing only a small number of people. Both approaches may prove inadequate for small-scale intra-urban inferences for early detection of emerging or novel virus variants. Our study aims (i) to analyze SARS-CoV-2 single nucleotide variants (SNVs) in wastewater of sub-sewersheds and WWTP using whole genome sequencing in order to (ii) investigate the potential of small-scale detection of novel known SARS-CoV-2 variants of concern (VOC) within a metropolitan wastewater system. We selected three sub-sewershed sampling sites, based on estimated population- and built environment-related indicators, and the inlet of the receiving WWTP in the Ruhr region, Germany. Untreated wastewater was sampled weekly between October and December 2021, with a total of 22 samples collected. SARS-CoV-2 RNA was analyzed by RT-qPCR and whole genome sequencing. For all samples, genome sequences were obtained, while only 13 samples were positive for RT-qPCR. We identified multiple specific SARS-CoV-2 SNVs in the wastewater samples of the sub-sewersheds and the WWTP. Identified SNVs reflected the dominance of VOC Delta at the time of sampling. Interestingly, we could identify an Omicron-specific SNV in one sub-sewershed. A concurrent wastewater study sampling the same WWTP detected the VOC Omicron one week later. Our observations suggest that the small-scale approach may prove particularly useful for the detection and description of spatially confined emerging or existing virus variants circulating in populations. Future studies applying small-scale sampling strategies taking into account the specific features of the wastewater system will be useful to analyze temporal and spatial variance in more detail.
Collapse
Affiliation(s)
- Dennis Schmiege
- Institute for Urban Public Health (InUPH), University Hospital Essen, University of Duisburg-Essen, 45130 Essen, Germany.
| | - Ivana Kraiselburd
- Institute for Artificial Intelligence in Medicine (IKIM), University Hospital Essen, University of Duisburg-Essen, 45131 Essen, Germany
| | - Timo Haselhoff
- Institute for Urban Public Health (InUPH), University Hospital Essen, University of Duisburg-Essen, 45130 Essen, Germany
| | - Alexander Thomas
- Institute for Artificial Intelligence in Medicine (IKIM), University Hospital Essen, University of Duisburg-Essen, 45131 Essen, Germany
| | - Adrian Doerr
- Institute for Artificial Intelligence in Medicine (IKIM), University Hospital Essen, University of Duisburg-Essen, 45131 Essen, Germany
| | - Jule Gosch
- Institute for Artificial Intelligence in Medicine (IKIM), University Hospital Essen, University of Duisburg-Essen, 45131 Essen, Germany
| | - Jens Schoth
- Emschergenossenschaft/Lippeverband, Kronprinzenstraße 24, 45128 Essen, Germany
| | | | - Susanne Moebus
- Institute for Urban Public Health (InUPH), University Hospital Essen, University of Duisburg-Essen, 45130 Essen, Germany
| | - Folker Meyer
- Institute for Artificial Intelligence in Medicine (IKIM), University Hospital Essen, University of Duisburg-Essen, 45131 Essen, Germany
| |
Collapse
|
37
|
Andrianjakarivony FH, Bettarel Y, Cecchi P, Bouchard S, Chase E, Desnues C. Decoding the DNA and RNA viromes of a tropical urban lagoon. Environ Microbiol 2023; 25:2368-2387. [PMID: 37431274 DOI: 10.1111/1462-2920.16463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/19/2023] [Indexed: 07/12/2023]
Abstract
Human and livestock sewage is one of the major causes of excess nutrients, leading to the eutrophication of aquatic ecosystems and potentially to the emergence or spread of pathogenic viruses. This study aimed to investigate the composition and diversity of aquatic viromes in a highly anthropized lagoon, to identify the presence of pathogenic taxa and to explore their use as possible viral indicators of faecal contamination. For this, water and sediment samples were collected in the Ebrié Lagoon (Ivory Coast) at seven stations with contrasting levels of eutrophication. The DNA viromes of the planktonic and the benthic compartments were highly divergent, but were not influenced by the level of eutrophication. Conversely, the RNA viromes in the water column were comparable to those found in sediment, but showed significant differences between the stations. We detected the presence of viral DNA and RNA sequences we had assigned as indicators of faecal contamination (smacovirus, pecovirus and pepper mild mottle virus) as well as human pathogens (human cyclovirus, coxsackie B virus and picobirnavirus), which were all enriched in the most eutrophicated sites. These findings suggest that the examination of viromes represents a promising tool for assessing the state of human-induced contamination of aquatic ecosystems.
Collapse
Affiliation(s)
- Felana Harilanto Andrianjakarivony
- Microbes, Evolution, Phylogeny, and Infection (MEФI), IHU - Méditerranée Infection, Marseille, France
- Microbiologie Environnementale Biotechnologie (MEB), Mediterranean Institute of Oceanography (MIO), Marseille, France
| | - Yvan Bettarel
- Marine Biodiversity, Exploitation & Conservation (MARBEC), University of Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Philippe Cecchi
- Marine Biodiversity, Exploitation & Conservation (MARBEC), University of Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Sonia Bouchard
- Microbes, Evolution, Phylogeny, and Infection (MEФI), IHU - Méditerranée Infection, Marseille, France
- Microbiologie Environnementale Biotechnologie (MEB), Mediterranean Institute of Oceanography (MIO), Marseille, France
| | - Emily Chase
- Microbiologie Environnementale Biotechnologie (MEB), Mediterranean Institute of Oceanography (MIO), Marseille, France
| | - Christelle Desnues
- Microbes, Evolution, Phylogeny, and Infection (MEФI), IHU - Méditerranée Infection, Marseille, France
- Microbiologie Environnementale Biotechnologie (MEB), Mediterranean Institute of Oceanography (MIO), Marseille, France
| |
Collapse
|
38
|
Song X, Fredj Z, Zheng Y, Zhang H, Rong G, Bian S, Sawan M. Biosensors for waterborne virus detection: Challenges and strategies. J Pharm Anal 2023; 13:1252-1268. [PMID: 38174120 PMCID: PMC10759259 DOI: 10.1016/j.jpha.2023.08.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/20/2023] [Accepted: 08/29/2023] [Indexed: 01/05/2024] Open
Abstract
Waterborne viruses that can be harmful to human health pose significant challenges globally, affecting health care systems and the economy. Identifying these waterborne pathogens is essential for preventing diseases and protecting public health. However, handling complex samples such as human and wastewater can be challenging due to their dynamic and complex composition and the ultralow concentration of target analytes. This review presents a comprehensive overview of the latest breakthroughs in waterborne virus biosensors. It begins by highlighting several promising strategies that enhance the sensing performance of optical and electrochemical biosensors in human samples. These strategies include optimizing bioreceptor selection, transduction elements, signal amplification, and integrated sensing systems. Furthermore, the insights gained from biosensing waterborne viruses in human samples are applied to improve biosensing in wastewater, with a particular focus on sampling and sample pretreatment due to the dispersion characteristics of waterborne viruses in wastewater. This review suggests that implementing a comprehensive system that integrates the entire waterborne virus detection process with high-accuracy analysis could enhance virus monitoring. These findings provide valuable insights for improving the effectiveness of waterborne virus detection, which could have significant implications for public health and environmental management.
Collapse
Affiliation(s)
- Xixi Song
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Zina Fredj
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Yuqiao Zheng
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Hongyong Zhang
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Guoguang Rong
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Sumin Bian
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Mohamad Sawan
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou, 310030, China
| |
Collapse
|
39
|
Panizzolo M, Gea M, Carraro E, Gilli G, Bonetta S, Pignata C. Occurrence of human pathogenic viruses in drinking water and in its sources: A review. J Environ Sci (China) 2023; 132:145-161. [PMID: 37336605 DOI: 10.1016/j.jes.2022.07.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 06/21/2023]
Abstract
Since many waterborne diseases are caused by human pathogenic viruses, virus monitoring of drinking water (DW) and DW sources is crucial for public health. Therefore, the aim of this review was to describe the occurrence of human pathogenic viruses in DW and DW sources; the occurrence of two viruses proposed as novel indicators of human faecal contamination (Pepper mild mottle virus and Tobacco mosaic virus) was also reported. This research was focused on articles that assessed viral occurrence using molecular methods in the surface water used for DW production (SW-D), groundwater used for DW production (GW-D), DW and bottled-DW (BW). A total of 1544 studies published in the last 10 years were analysed, and 79 were ultimately included. In considering the detection methods, filtration is the most common concentration technique, while quantitative polymerase chain reaction is the most common quantification technique. Regarding virus occurrence in SW-D, GW-D, and DW, high percentages of positive samples were reported for adenovirus, polyomavirus and Pepper mild mottle virus. Viral genomes were frequently detected in SW-D and rarely in GW-D, suggesting that GW-D may be a safe DW source. Viral genomes were also detected in DW, posing a possible threat to human health. The lowest percentages of positive samples were found in Europe, while the highest were found in Asia and South America. Only three articles assessed viral occurrence in BW. This review highlights the lack of method standardization and the need for legislation updates.
Collapse
Affiliation(s)
- Marco Panizzolo
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy
| | - Marta Gea
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy.
| | - Elisabetta Carraro
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy
| | - Giorgio Gilli
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy
| | - Silvia Bonetta
- Department of Life Sciences and Systems Biology, University of Torino, via Accademia Albertina 13, 10123, Torino, Italy
| | - Cristina Pignata
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy
| |
Collapse
|
40
|
Ahmed W, Smith WJM, Sirikanchana K, Kitajima M, Bivins A, Simpson SL. Influence of membrane pore-size on the recovery of endogenous viruses from wastewater using an adsorption-extraction method. J Virol Methods 2023; 317:114732. [PMID: 37080396 PMCID: PMC10111872 DOI: 10.1016/j.jviromet.2023.114732] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/22/2023] [Accepted: 04/14/2023] [Indexed: 04/22/2023]
Abstract
The ongoing COVID-19 pandemic has emphasized the significance of wastewater surveillance in monitoring and tracking the spread of infectious diseases, including SARS-CoV-2. The wastewater surveillance approach detects genetic fragments from viruses in wastewater, which could provide an early warning of outbreaks in communities. In this study, we determined the concentrations of four types of endogenous viruses, including non-enveloped DNA (crAssphage and human adenovirus 40/41), non-enveloped RNA (enterovirus), and enveloped RNA (SARS-CoV-2) viruses, from wastewater samples using the adsorption-extraction (AE) method with electronegative HA membranes of different pore sizes (0.22, 0.45, and 0.80 µm). Our findings showed that the membrane with a pore size of 0.80 µm performed comparably to the membrane with a pore size of 0.45 µm for virus detection/quantitation (repeated measurement one-way ANOVA; p > 0.05). We also determined the recovery efficiencies of indigenous crAssphage and pepper mild mottle virus, which showed recovery efficiencies ranging from 50% to 94% and from 20% to 62%, respectively. Our results suggest that the use of larger pore size membranes may be beneficial for processing larger sample volumes, particularly for environmental waters containing low concentrations of viruses. This study offers valuable insights into the application of the AE method for virus recovery from wastewater, which is essential for monitoring and tracking infectious diseases in communities.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia.
| | - Wendy J M Smith
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, 54 Kampangpetch 6 Road, Laksi, Bangkok 10210, Thailand
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060 -8628, Japan
| | - Aaron Bivins
- Department of Civil and Environmental Engineering, Louisiana State University, 3255 Patrick F. Taylor Hall, Baton Rouge, LA 70803, USA
| | | |
Collapse
|
41
|
Stockdale SR, Blanchard AM, Nayak A, Husain A, Nashine R, Dudani H, McClure CP, Tarr AW, Nag A, Meena E, Sinha V, Shrivastava SK, Hill C, Singer AC, Gomes RL, Acheampong E, Chidambaram SB, Bhatnagar T, Vetrivel U, Arora S, Kashyap RS, Monaghan TM. RNA-Seq of untreated wastewater to assess COVID-19 and emerging and endemic viruses for public health surveillance. THE LANCET REGIONAL HEALTH. SOUTHEAST ASIA 2023; 14:100205. [PMID: 37193348 PMCID: PMC10150210 DOI: 10.1016/j.lansea.2023.100205] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/10/2023] [Accepted: 04/24/2023] [Indexed: 05/18/2023]
Abstract
Background The COVID-19 pandemic showcased the power of genomic sequencing to tackle the emergence and spread of infectious diseases. However, metagenomic sequencing of total microbial RNAs in wastewater has the potential to assess multiple infectious diseases simultaneously and has yet to be explored. Methods A retrospective RNA-Seq epidemiological survey of 140 untreated composite wastewater samples was performed across urban (n = 112) and rural (n = 28) areas of Nagpur, Central India. Composite wastewater samples were prepared by pooling 422 individual grab samples collected prospectively from sewer lines of urban municipality zones and open drains of rural areas from 3rd February to 3rd April 2021, during the second COVID-19 wave in India. Samples were pre-processed and total RNA was extracted prior to genomic sequencing. Findings This is the first study that has utilised culture and/or probe-independent unbiased RNA-Seq to examine Indian wastewater samples. Our findings reveal the detection of zoonotic viruses including chikungunya, Jingmen tick and rabies viruses, which have not previously been reported in wastewater. SARS-CoV-2 was detectable in 83 locations (59%), with stark abundance variations observed between sampling sites. Hepatitis C virus was the most frequently detected infectious virus, identified in 113 locations and co-occurring 77 times with SARS-CoV-2; and both were more abundantly detected in rural areas than urban zones. Concurrent identification of segmented virus genomic fragments of influenza A virus, norovirus, and rotavirus was observed. Geographical differences were also observed for astrovirus, saffold virus, husavirus, and aichi virus that were more prevalent in urban samples, while the zoonotic viruses chikungunya and rabies, were more abundant in rural environments. Interpretation RNA-Seq can effectively detect multiple infectious diseases simultaneously, facilitating geographical and epidemiological surveys of endemic viruses that could help direct healthcare interventions against emergent and pre-existent infectious diseases as well as cost-effectively and qualitatively characterising the health status of the population over time. Funding UK Research and Innovation (UKRI) Global Challenges Research Fund (GCRF) grant number H54810, as supported by Research England.
Collapse
Affiliation(s)
| | - Adam M. Blanchard
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Amit Nayak
- Research Centre, Dr G.M. Taori Central India Institute of Medical Sciences (CIIMS), Nagpur, Maharashtra, India
| | - Aliabbas Husain
- Research Centre, Dr G.M. Taori Central India Institute of Medical Sciences (CIIMS), Nagpur, Maharashtra, India
| | - Rupam Nashine
- Research Centre, Dr G.M. Taori Central India Institute of Medical Sciences (CIIMS), Nagpur, Maharashtra, India
| | - Hemanshi Dudani
- Research Centre, Dr G.M. Taori Central India Institute of Medical Sciences (CIIMS), Nagpur, Maharashtra, India
| | - C. Patrick McClure
- National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham University Hospitals National Health Service Trust, Nottingham, United Kingdom
- Wolfson Centre for Global Virus Research, University of Nottingham, Nottingham, United Kingdom
| | - Alexander W. Tarr
- National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham University Hospitals National Health Service Trust, Nottingham, United Kingdom
- Wolfson Centre for Global Virus Research, University of Nottingham, Nottingham, United Kingdom
- Queen's Medical Centre, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Aditi Nag
- Dr. B. Lal Institute of Biotechnology, 6-E, Malviya Industrial Area, Malviya Nagar, Jaipur, India
| | - Ekta Meena
- Dr. B. Lal Institute of Biotechnology, 6-E, Malviya Industrial Area, Malviya Nagar, Jaipur, India
| | - Vikky Sinha
- Dr. B. Lal Institute of Biotechnology, 6-E, Malviya Industrial Area, Malviya Nagar, Jaipur, India
| | - Sandeep K. Shrivastava
- Centre for Innovation, Research & Development, Dr. B. Lal Clinical Laboratory Pvt. Ltd., Malviya Industrial Area, Malviya Nagar, Jaipur, India
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
| | - Andrew C. Singer
- UK Centre for Ecology and Hydrology, Wallingford, United Kingdom
| | - Rachel L. Gomes
- Food Water Waste Research Group, Faculty of Engineering, University of Nottingham, United Kingdom
| | - Edward Acheampong
- Food Water Waste Research Group, Faculty of Engineering, University of Nottingham, United Kingdom
- Department of Statistics and Actuarial Science, University of Ghana, P.O. Box, LG 115, Legon, Ghana
| | - Saravana B. Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, KA, India
| | - Tarun Bhatnagar
- ICMR-National Institute of Epidemiology, Chennai, Tamil Nadu, India
| | - Umashankar Vetrivel
- National Institute of Traditional Medicine, Indian Council of Medical Research, Belagavi, 590010, India
- Virology and Biotechnology Division, ICMR-National Institute for Research in Tuberculosis, Chennai, 600031, India
| | - Sudipti Arora
- Dr. B. Lal Institute of Biotechnology, 6-E, Malviya Industrial Area, Malviya Nagar, Jaipur, India
| | - Rajpal Singh Kashyap
- Research Centre, Dr G.M. Taori Central India Institute of Medical Sciences (CIIMS), Nagpur, Maharashtra, India
| | - Tanya M. Monaghan
- National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham University Hospitals National Health Service Trust, Nottingham, United Kingdom
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
42
|
Ahmed W, Payyappat S, Cassidy M, Harrison N, Besley C. Microbial source tracking of untreated human wastewater and animal scats in urbanized estuarine waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162764. [PMID: 36907409 DOI: 10.1016/j.scitotenv.2023.162764] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 05/06/2023]
Abstract
The study assessed the performance characteristics of host sensitivity, host specificity and concentration for seven human wastewater- and six animal scat-associated marker genes by analysing human wastewater and animal scat samples from urban catchments of the mega-coastal city of Sydney, Australia. Absolute host sensitivity was exhibited across three criteria used to assess seven human wastewater-associated marker genes of cross-assembly phage (CrAssphage), human adenovirus (HAdV), Bacteroides HF183 (HF183), human polyomavirus (HPyV), Lachnospiraceae (Lachno3), Methnobrevibacter smithii nifH (nifH) and pepper mild mottle virus (PMMoV). In contrast, only the horse scat-associated marker gene Bacteroides HoF597 (HoF597) exhibited absolute host sensitivity. The absolute host specificity value of 1.0 was returned for the wastewater-associated marker genes of HAdV, HPyV, nifH and PMMoV for each of the three applied host specificity calculation criteria, while values of >0.9 were returned for CrAssphage and Lachno3. Ruminants and cow scat-associated marker genes of BacR and CowM2, respectively exhibited the absolute host specificity value of 1.0. Concentrations of Lachno3 were greater in most human wastewater samples followed by CrAssphage, HF183, nifH, HPyV, PMMoV and HAdV. Human wastewater marker genes were detected in several scat samples from cats and dogs, and this suggests concordant sampling of animal scat-associated marker genes and at least two human wastewater-associated marker genes will be required to assist in interpretation of fecal sources in environmental waters. A greater prevalence, together with several samples with greater concentrations of human wastewater-associated marker genes PMMoV and CrAssphage warrant consideration by water quality managers for the detection of diluted human fecal pollution in estuarine waters.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia.
| | - Sudhi Payyappat
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| | - Michele Cassidy
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| | - Nathan Harrison
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| | - Colin Besley
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| |
Collapse
|
43
|
Pasalari H, Ataei-Pirkooh A, Gholami M, Azhar IR, Yan C, Kachooei A, Farzadkia M. Is SARS-CoV-2 a concern in the largest wastewater treatment plant in middle east? Heliyon 2023; 9:e16607. [PMID: 37251481 PMCID: PMC10207840 DOI: 10.1016/j.heliyon.2023.e16607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023] Open
Abstract
The surveillance of wastewater treatment plant (WWTP) as the end point of SARS-CoV-2 shed from infected people arise a speculation on transmission of this virus of concern from WWTP in epidemic period. To this end, the present study was developed to comprehensively investigate the presence of SARS-CoV-2 in raw wastewater, effluent and air inhaled by workers and employee in the largest WWTP in Tehran for one-year study period. The monthly raw wastewater, effluent and air samples of WWTP were taken and the SARS-CoV-2 RNA were detected using QIAamp Viral RNA Mini Kit and real-time RT-PCR assay. According to results, the speculation on the presence of SARS-CoV-2 was proved in WWTP by detection this virus in raw wastewater. However, no SARS-CoV-2 was found in both effluent and air of WWTP; this presents the low or no infection for workers and employee in WWTP. Furthermore, further research are needed for detection the SARS-CoV-2 in solid and biomass produced from WWTP processes due to flaks formation, followed by sedimentation in order to better understand the wastewater-based epidemiology and preventive measurement for other epidemics probably encountered in the future.
Collapse
Affiliation(s)
- Hasan Pasalari
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Angila Ataei-Pirkooh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mitra Gholami
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Iman Rezaei Azhar
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Cheng Yan
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Atefeh Kachooei
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Farzadkia
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
44
|
Yang K, Guo J, Møhlenberg M, Zhou H. SARS-CoV-2 surveillance in medical and industrial wastewater-a global perspective: a narrative review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:63323-63334. [PMID: 36988799 PMCID: PMC10049894 DOI: 10.1007/s11356-023-26571-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/16/2023] [Indexed: 05/11/2023]
Abstract
The novel coronavirus SARS-CoV-2 has spread at an unprecedented rate since late 2019, leading to the global COVID-19 pandemic. During the pandemic, being able to detect SARS-CoV-2 in human populations with high coverage quickly is a huge challenge. As SARS-CoV-2 is excreted in human excreta and thus exposed to the aqueous environment through sewers, the goal is to develop an ideal, non-invasive, cost-effective epidemiological method for detecting SARS-CoV-2. Wastewater surveillance has gained widespread interest and is increasingly being investigated as an effective early warning tool for monitoring the spread and evolution of the virus. This review emphasizes important findings on SARS-CoV-2 wastewater-based epidemiology (WBE) in different continents and techniques used to detect SARS-CoV-2 in wastewater during the period 2020-2022. The results show that WBE is a valuable population-level method for monitoring SARS-CoV-2 and is a valuable early warning alert. It can assist policymakers in formulating relevant policies to avoid the negative impacts of early or delayed action. Such strategy can also help avoid unnecessary wastage of medical resources, rationalize vaccine distribution, assist early detection, and contain large-scale outbreaks.
Collapse
Affiliation(s)
- Kaiwen Yang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Liutai Road 1166, Wenjiang, Chengdu, 610000, China
| | - Jinlin Guo
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Liutai Road 1166, Wenjiang, Chengdu, 610000, China
| | - Michelle Møhlenberg
- Department of Biomedicine, Høegh-Guldbergs Gade 10, Building 1115, DK-8000, Aarhus C, Denmark
| | - Hao Zhou
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Liutai Road 1166, Wenjiang, Chengdu, 610000, China.
| |
Collapse
|
45
|
Schaeffer J, Desdouits M, Besnard A, Le Guyader FS. Looking into sewage: how far can metagenomics help to detect human enteric viruses? Front Microbiol 2023; 14:1161674. [PMID: 37180249 PMCID: PMC10166864 DOI: 10.3389/fmicb.2023.1161674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
The impact of human sewage on environmental and food contamination constitutes an important safety issue. Indeed, human sewage reflects the microbiome of the local population, and a variety of human viruses can be detected in wastewater samples. Being able to describe the diversity of viruses present in sewage will provide information on the health of the surrounding population health and will help to prevent further transmission. Metagenomic developments, allowing the description of all the different genomes present in a sample, are very promising tools for virome analysis. However, looking for human enteric viruses with short RNA genomes which are present at low concentrations is challenging. In this study we demonstrate the benefits of performing technical replicates to improve viral identification by increasing contig length, and the set-up of quality criteria to increase confidence in results. Our approach was able to effectively identify some virus sequences and successfully describe the viral diversity. The method yielded full genomes either for norovirus, enterovirus and rotavirus, even if, for these segmented genomes, combining genes remain a difficult issue. Developing reliable viromic methods is important as wastewater sample analysis provides an important tool to prevent further virus transmission by raising alerts in case of viral outbreaks or emergence.
Collapse
Affiliation(s)
| | | | | | - Françoise S. Le Guyader
- Ifremer, Laboratoire de Microbiologie, U. Microbiologie Aliment Santé et Environnement, Nantes, France
| |
Collapse
|
46
|
Lessa CLS, Hodel KVS, Gonçalves MDS, Machado BAS. Dengue as a Disease Threatening Global Health: A Narrative Review Focusing on Latin America and Brazil. Trop Med Infect Dis 2023; 8:241. [PMID: 37235289 PMCID: PMC10221906 DOI: 10.3390/tropicalmed8050241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Arboviruses constitute the largest known group of viruses. These viruses are the etiological agents of pathologies known as arboviruses, with dengue being one of the most prevalent. Dengue has resulted in important socioeconomic burdens placed on different countries around the world, including those in Latin America, especially Brazil. Thus, this work intends to carry out a narrative-based review of the literature, conducted using a study of the secondary data developed through a survey of scientific literature databases, and to present the situation of dengue, particularly its distribution in these localities. Our findings from the literature demonstrate the difficulties that managers face in controlling the spread of and planning a response against dengue, pointing to the high cost of the disease for public coffers, rendering the resources that are already limited even scarcer. This can be associated with the different factors that affect the spread of the disease, including ecological, environmental, and social factors. Thus, in order to combat the disease, it is expected that targeted and properly coordinated public policies need to be adopted not only in specific localities, but also globally.
Collapse
Affiliation(s)
- Carlos Letacio Silveira Lessa
- Postgraduate Program in Industrial Management and Technology, SENAI CIMATEC University Center, Salvador 41650-010, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, Brazil
| | - Katharine Valéria Saraiva Hodel
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CIMATEC University Center, Salvador 41650-010, Brazil
| | - Marilda de Souza Gonçalves
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, Brazil
- Anemia Research Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Bahia, Salvador 40170-115, Brazil
| | - Bruna Aparecida Souza Machado
- Postgraduate Program in Industrial Management and Technology, SENAI CIMATEC University Center, Salvador 41650-010, Brazil
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CIMATEC University Center, Salvador 41650-010, Brazil
| |
Collapse
|
47
|
Qamsari EM, Mohammadi P. Evaluation of SARS-CoV-2 RNA Presence in Treated and Untreated Hospital Sewage. WATER, AIR, AND SOIL POLLUTION 2023; 234:273. [PMID: 37073306 PMCID: PMC10090750 DOI: 10.1007/s11270-023-06273-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Wastewater-based epidemiology (WBE) is a potential approach for determining the viral prevalence in a community. In the wake of the COVID-19 pandemic, researchers have begun to pay close attention to the presence of SARS-COV-2 RNA in various wastewaters. The potential for detecting SARS-CoV-2 RNA in hospital sewage could make it an invaluable resource for epidemiological studies. In this regard, two specialized hospitals dedicated to COVID-19 patients were chosen for this investigation. Both hospitals utilize the same wastewater treatment systems. The influent and effluents of the two hospitals were sampled in May and June of 2021, and the samples were evaluated for their chemical properties. According to the findings of this study, the wastewater qualities of the two studied hospitals were within the standard ranges. The sewage samples were concentrated using ultrafiltration and PEG precipitation techniques. The E and S genes were studied with RT-qPCR commercial kits. We found E gene of SARS-CoV-2 in 83.3% (5/6) and 66.6% (4/6) of wastewater samples from hospital 1 and hospital 2, respectively, using ultrafiltration concentration method. Wastewater samples taken after chlorine treatment accounted for 16.6% of all positive results. In addition, due to the small sample size, there was no significant correlation (p > 0.05) between the presence of SARS-CoV-2 in wastewater and the number of COVID-19 cases. Hospitals may be a source of SARS-CoV-2 pollution, thus it is important to monitor and enhance wastewater treatment systems to prevent the spread of the virus and safeguard the surrounding environment.
Collapse
Affiliation(s)
- Elahe Mobarak Qamsari
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Parisa Mohammadi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
- Research Center for Applied Microbiology and Microbial Biotechnology, Alzahra University, Tehran, Iran
| |
Collapse
|
48
|
Napit R, Manandhar P, Chaudhary A, Shrestha B, Poudel A, Raut R, Pradhan S, Raut S, Rajbhandari PG, Gurung A, Rajbhandari RM, Dixit SM, Schwind JS, Johnson CK, Mazet JK, Karmacharya DB. Rapid genomic surveillance of SARS-CoV-2 in a dense urban community of Kathmandu Valley using sewage samples. PLoS One 2023; 18:e0283664. [PMID: 36996055 PMCID: PMC10062583 DOI: 10.1371/journal.pone.0283664] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
Understanding disease burden and transmission dynamics in resource-limited, low-income countries like Nepal are often challenging due to inadequate surveillance systems. These issues are exacerbated by limited access to diagnostic and research facilities throughout the country. Nepal has one of the highest COVID-19 case rates (915 cases per 100,000 people) in South Asia, with densely-populated Kathmandu experiencing the highest number of cases. Swiftly identifying case clusters (hotspots) and introducing effective intervention programs is crucial to mounting an effective containment strategy. The rapid identification of circulating SARS-CoV-2 variants can also provide important information on viral evolution and epidemiology. Genomic-based environmental surveillance can help in the early detection of outbreaks before clinical cases are recognized and identify viral micro-diversity that can be used for designing real-time risk-based interventions. This research aimed to develop a genomic-based environmental surveillance system by detecting and characterizing SARS-CoV-2 in sewage samples of Kathmandu using portable next-generation DNA sequencing devices. Out of 22 sites in the Kathmandu Valley from June to August 2020, sewage samples from 16 (80%) sites had detectable SARS-CoV-2. A heatmap was created to visualize the presence of SARS-CoV-2 infection in the community based on viral load intensity and corresponding geospatial data. Further, 47 mutations were observed in the SARS-CoV-2 genome. Some detected mutations (n = 9, 22%) were novel at the time of data analysis and yet to be reported in the global database, with one indicating a frameshift deletion in the spike gene. SNP analysis revealed possibility of assessing circulating major/minor variant diversity on environmental samples based on key mutations. Our study demonstrated the feasibility of rapidly obtaining vital information on community transmission and disease dynamics of SARS-CoV-2 using genomic-based environmental surveillance.
Collapse
Affiliation(s)
- Rajindra Napit
- One Health Research Division, Center for Molecular Dynamics Nepal, Thapathali-11, Kathmandu, Nepal
- Virology Division, BIOVAC Nepal Pvt. Ltd., Nala, Banepa, Nepal
| | - Prajwol Manandhar
- One Health Research Division, Center for Molecular Dynamics Nepal, Thapathali-11, Kathmandu, Nepal
- Virology Division, BIOVAC Nepal Pvt. Ltd., Nala, Banepa, Nepal
| | - Ashok Chaudhary
- One Health Research Division, Center for Molecular Dynamics Nepal, Thapathali-11, Kathmandu, Nepal
| | - Bishwo Shrestha
- One Health Research Division, Center for Molecular Dynamics Nepal, Thapathali-11, Kathmandu, Nepal
| | - Ajit Poudel
- One Health Research Division, Center for Molecular Dynamics Nepal, Thapathali-11, Kathmandu, Nepal
- Virology Division, BIOVAC Nepal Pvt. Ltd., Nala, Banepa, Nepal
| | - Roji Raut
- One Health Research Division, Center for Molecular Dynamics Nepal, Thapathali-11, Kathmandu, Nepal
| | - Saman Pradhan
- One Health Research Division, Center for Molecular Dynamics Nepal, Thapathali-11, Kathmandu, Nepal
- Virology Division, BIOVAC Nepal Pvt. Ltd., Nala, Banepa, Nepal
| | - Samita Raut
- One Health Research Division, Center for Molecular Dynamics Nepal, Thapathali-11, Kathmandu, Nepal
| | - Pragun G. Rajbhandari
- One Health Research Division, Center for Molecular Dynamics Nepal, Thapathali-11, Kathmandu, Nepal
| | - Anupama Gurung
- One Health Research Division, Center for Molecular Dynamics Nepal, Thapathali-11, Kathmandu, Nepal
| | - Rajesh M. Rajbhandari
- One Health Research Division, Center for Molecular Dynamics Nepal, Thapathali-11, Kathmandu, Nepal
- Virology Division, BIOVAC Nepal Pvt. Ltd., Nala, Banepa, Nepal
| | - Sameer M. Dixit
- One Health Research Division, Center for Molecular Dynamics Nepal, Thapathali-11, Kathmandu, Nepal
| | - Jessica S. Schwind
- Institute for Health Logistics & Analytics, Georgia Southern University, Statesboro, GA, United States of America
| | - Christine K. Johnson
- One Health Institute, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States of America
| | - Jonna K. Mazet
- One Health Institute, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States of America
| | - Dibesh B. Karmacharya
- One Health Research Division, Center for Molecular Dynamics Nepal, Thapathali-11, Kathmandu, Nepal
- Virology Division, BIOVAC Nepal Pvt. Ltd., Nala, Banepa, Nepal
- The School of Biological Sciences, University of Queensland, Brisbane, Australia
| |
Collapse
|
49
|
Davis A, Keely SP, Brinkman NE, Bohrer Z, Ai Y, Mou X, Chattopadhyay S, Hershey O, Senko J, Hull N, Lytmer E, Quintero A, Lee J. Evaluation of intra- and inter-lab variability in quantifying SARS-CoV-2 in a state-wide wastewater monitoring network. ENVIRONMENTAL SCIENCE : WATER RESEARCH & TECHNOLOGY 2023; 9:1053-1068. [PMID: 37701755 PMCID: PMC10494892 DOI: 10.1039/d2ew00737a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
In December 2019, SARS-CoV-2, the virus that causes coronavirus disease 2019, was first reported and subsequently triggered a global pandemic. Wastewater monitoring, a strategy for quantifying viral gene concentrations from wastewater influents within a community, has served as an early warning and management tool for the spread of SARS-CoV-2 in a community. Ohio built a collaborative statewide wastewater monitoring network that is supported by eight labs (university, government, and commercial laboratories) with unique sample processing workflows. Consequently, we sought to characterize the variability in wastewater monitoring results for network labs. Across seven trials between October 2020 and November 2021, eight participating labs successfully quantified two SARS-CoV-2 RNA targets and human fecal indicator virus targets in wastewater sample aliquots with reproducible results, although recovery efficiencies of spiked surrogates ranged from 3 to 75%. When SARS-CoV-2 gene fragment concentrations were adjusted for recovery efficiency and flow, the proportion of variance between laboratories was minimized, serving as the best model to account for between-lab variance. Another adjustment factor (alone and in different combinations with the above factors) considered to account for sample and measurement variability includes fecal marker normalization. Genetic quantification variability can be attributed to many factors, including the methods, individual samples, and water quality parameters. In addition, statistically significant correlations were observed between SARS-CoV-2 RNA and COVID-19 case numbers, supporting the notion that wastewater surveillance continues to serve as an effective monitoring tool. This study serves as a real-time example of multi-laboratory collaboration for public health preparedness for infectious diseases.
Collapse
Affiliation(s)
- Angela Davis
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, 1841 Neil Avenue, Columbus, OH 43210, USA
| | - Scott P Keely
- United States Environmental Protection Agency, Office of Research and Development, USA
| | - Nichole E Brinkman
- United States Environmental Protection Agency, Office of Research and Development, USA
| | | | - Yuehan Ai
- Department of Food Science & Technology, The Ohio State University, USA
| | - Xiaozhen Mou
- Department of Biological Sciences, Kent State University, USA
| | - Saurabh Chattopadhyay
- Department of Medical Microbiology and Immunology, College of Medicine and Life Sciences, Department of Biology and Department of Geosciences, University of Toledo, USA
| | - Olivia Hershey
- Department of Geosciences and Biology, University of Akron, USA
| | - John Senko
- Department of Geosciences and Biology, University of Akron, USA
| | - Natalie Hull
- Department of Civil, Environmental and Geodetic Engineering and Sustainability Institute, The Ohio State University, USA
| | - Eva Lytmer
- Department of Biological Sciences, Bowling Green State University, USA
| | | | - Jiyoung Lee
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, 1841 Neil Avenue, Columbus, OH 43210, USA
- Department of Food Science & Technology, The Ohio State University, USA
- Infectious Diseases Institute, The Ohio State University, USA
| |
Collapse
|
50
|
Alegbeleye O, Sant'Ana AS. Microbiological quality of irrigation water for cultivation of fruits and vegetables: An overview of available guidelines, water testing strategies and some factors that influence compliance. ENVIRONMENTAL RESEARCH 2023; 220:114771. [PMID: 36586712 DOI: 10.1016/j.envres.2022.114771] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Contaminated irrigation water is among many potential vehicles of human pathogens to food plants, constituting significant public health risks especially for the fresh produce category. This review discusses some available guidelines or regulations for microbiological safety of irrigation water, and provides a summary of some common methods used for characterizing microbial contamination. The goal of such exploration is to understand some of the considerations that influence formulation of water testing guidelines, describe priority microbial parameters particularly with respect to food safety risks, and attempt to determine what methods are most suitable for their screening. Furthermore, the review discusses factors that influence the potential for microbiologically polluted irrigation water to pose substantial risks of pathogenic contamination to produce items. Some of these factors include type of water source exploited, irrigation methods, other agro ecosystem features/practices, as well as pathogen traits such as die-off rates. Additionally, the review examines factors such as food safety knowledge, other farmer attitudes or inclinations, level of social exposure and financial circumstances that influence adherence to water testing guidelines and other safe water application practices. A thorough understanding of relevant risk metrics for the application and management of irrigation water is necessary for the development of water testing criteria. To determine sampling and analytical approach for water testing, factors such as agricultural practices (which differ among farms and regionally), as well as environmental factors that modulate how water quality may affect the microbiological safety of produce should be considered. Research and technological advancements that can improve testing approach and the determination of target levels for hazard characterization or description for the many different pollution contexts as well as farmer adherence to testing requirements, are desirable.
Collapse
Affiliation(s)
- Oluwadara Alegbeleye
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|