1
|
Wang R, Xiao H, Xu Y, Long AM, Zhou M, Guan WK, Xiao HY, Xiao HW. Dual isotope analysis reveals the COVID-19 lockdown impact on nitrate aerosol sources and formation pathways in Shanghai. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175839. [PMID: 39218099 DOI: 10.1016/j.scitotenv.2024.175839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Nitrate (NO3-) is an important contributor to PM2.5 which can adversely affect the environment and human health. A noticeable decrease in NOx concentrations has been reported due to the lockdown measures implemented to curb the spread of Corona Virus Disease 2019 (COVID-19). However, questions remain, regarding the nonlinear relationship between NOx and NO3-. Here, we collected PM2.5 samples in two periods, before and during the lockdown of COVID-19 in Shanghai. Dual isotopes (δ18O-NO3- and δ15N-NO3-) of NO3- were measured to investigate the formation pathways and potential sources of NO3-. The results showed that the concentration of NO3- decreased significantly during the lockdown period compared to the period before the lockdown. Additionally, the hydroxyl pathway was the dominant contributor to NO3- production during the lockdown period, while N2O5 hydrolyses dominated the formation of NO3- before the lockdown. This change is largely attributable to alterations in the oxidative potential of the environment. In comparison to the period preceding the lockdown, the relative contributions of each NOx source remained largely unchanged throughout the lockdown periods. Nevertheless, the concentration of NO3- contributed by each NOx source exhibited a notable decline, particularly the mobile sources and coal combustion. Furthermore, the reduction extent of NO3- due to the lockdown period was also greater than the reduction during the Clean Air Actions (2013-2017). Our findings provide evidence that the COVID-19 lockdown led to a decrease in NO3- concentration due to changes in the formation pathway and reductions in NOx emissions from various sources.
Collapse
Affiliation(s)
- Rong Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Xiao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ai-Min Long
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Zhou
- Key Laboratory of the Cause and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai, China
| | - Wen-Kai Guan
- school of Oceanography, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hua-Yun Xiao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong-Wei Xiao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
2
|
Zoran M, Savastru R, Savastru D, Tautan M, Tenciu D. Linkage between Airborne Particulate Matter and Viral Pandemic COVID-19 in Bucharest. Microorganisms 2023; 11:2531. [PMID: 37894189 PMCID: PMC10609195 DOI: 10.3390/microorganisms11102531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
The long-distance spreading and transport of airborne particulate matter (PM) of biogenic or chemical compounds, which are thought to be possible carriers of SARS-CoV-2 virions, can have a negative impact on the incidence and severity of COVID-19 viral disease. Considering the total Aerosol Optical Depth at 550 nm (AOD) as an atmospheric aerosol loading variable, inhalable fine PM with a diameter ≤2.5 µm (PM2.5) or coarse PM with a diameter ≤10 µm (PM10) during 26 February 2020-31 March 2022, and COVID-19's five waves in Romania, the current study investigates the impact of outdoor PM on the COVID-19 pandemic in Bucharest city. Through descriptive statistics analysis applied to average daily time series in situ and satellite data of PM2.5, PM10, and climate parameters, this study found decreased trends of PM2.5 and PM10 concentrations of 24.58% and 18.9%, respectively compared to the pre-pandemic period (2015-2019). Exposure to high levels of PM2.5 and PM10 particles was positively correlated with COVID-19 incidence and mortality. The derived average PM2.5/PM10 ratios during the entire pandemic period are relatively low (<0.44), indicating a dominance of coarse traffic-related particles' fraction. Significant reductions of the averaged AOD levels over Bucharest were recorded during the first and third waves of COVID-19 pandemic and their associated lockdowns (~28.2% and ~16.4%, respectively) compared to pre-pandemic period (2015-2019) average AOD levels. The findings of this research are important for decision-makers implementing COVID-19 safety controls and health measures during viral infections.
Collapse
Affiliation(s)
- Maria Zoran
- C Department, National Institute of R&D for Optoelectronics, 409 Atomistilor Street, MG5, 077125 Magurele, Romania; (R.S.); (D.S.); (M.T.); (D.T.)
| | | | | | | | | |
Collapse
|
3
|
Zoran MA, Savastru RS, Savastru DM, Tautan MN. Peculiar weather patterns effects on air pollution and COVID-19 spread in Tokyo metropolis. ENVIRONMENTAL RESEARCH 2023; 228:115907. [PMID: 37080275 PMCID: PMC10111861 DOI: 10.1016/j.envres.2023.115907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
As a pandemic hotspot in Japan, between March 1, 2020-October 1, 2022, Tokyo metropolis experienced seven COVID-19 waves. Motivated by the high rate of COVID-19 incidence and mortality during the seventh wave, and environmental/health challenges we conducted a time-series analysis to investigate the long-term interaction of air quality and climate variability with viral pandemic in Tokyo. Through daily time series geospatial and observational air pollution/climate data, and COVID-19 incidence and death cases, this study compared the environmental conditions during COVID-19 multiwaves. In spite of five State of Emergency (SOEs) restrictions associated with COVID-19 pandemic, during (2020-2022) period air quality recorded low improvements relative to (2015-2019) average annual values, namely: Aerosol Optical Depth increased by 9.13% in 2020 year, and declined by 6.64% in 2021, and 12.03% in 2022; particulate matter PM2.5 and PM10 decreased during 2020, 2021, and 2022 years by 10.22%, 62.26%, 0.39%, and respectively by 4.42%, 3.95%, 5.76%. For (2021-2022) period the average ratio of PM2.5/PM10 was (0.319 ± 0.1640), showing a higher contribution to aerosol loading of traffic-related coarse particles in comparison with fine particles. The highest rates of the daily recorded COVID-19 incidence and death cases in Tokyo during the seventh COVID-19 wave (1 July 2022-1 October 2022) may be attributed to accumulation near the ground of high levels of air pollutants and viral pathogens due to: 1) peculiar persistent atmospheric anticyclonic circulation with strong positive anomalies of geopotential height at 500 hPa; 2) lower levels of Planetary Boundary Layer (PBL) heights; 3) high daily maximum air temperature and land surface temperature due to the prolonged heat waves (HWs) in summer 2022; 4) no imposed restrictions. Such findings can guide public decision-makers to design proper strategies to curb pandemics under persistent stable anticyclonic weather conditions and summer HWs in large metropolitan areas.
Collapse
Affiliation(s)
- Maria A Zoran
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania.
| | - Roxana S Savastru
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| | - Dan M Savastru
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| | - Marina N Tautan
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| |
Collapse
|
4
|
Rigolon A, Németh J, Anderson-Gregson B, Miller AR, deSouza P, Montague B, Hussain C, Erlandson KM, Rowan SE. The neighborhood built environment and COVID-19 hospitalizations. PLoS One 2023; 18:e0286119. [PMID: 37314984 DOI: 10.1371/journal.pone.0286119] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 05/09/2023] [Indexed: 06/16/2023] Open
Abstract
Research on the associations between the built environment and COVID-19 outcomes has mostly focused on incidence and mortality. Also, few studies on the built environment and COVID-19 have controlled for individual-level characteristics across large samples. In this study, we examine whether neighborhood built environment characteristics are associated with hospitalization in a cohort of 18,042 individuals who tested positive for SARS-CoV-2 between May and December 2020 in the Denver metropolitan area, USA. We use Poisson models with robust standard errors that control for spatial dependence and several individual-level demographic characteristics and comorbidity conditions. In multivariate models, we find that among individuals with SARS-CoV-2 infection, those living in multi-family housing units and/or in places with higher particulate matter (PM2.5) have a higher incident rate ratio (IRR) of hospitalization. We also find that higher walkability, higher bikeability, and lower public transit access are linked to a lower IRR of hospitalization. In multivariate models, we did not find associations between green space measures and the IRR of hospitalization. Results for non-Hispanic white and Latinx individuals highlight substantial differences: higher PM2.5 levels have stronger positive associations with the IRR of hospitalization for Latinx individuals, and density and overcrowding show stronger associations for non-Hispanic white individuals. Our results show that the neighborhood built environment might pose an independent risk for COVID-19 hospitalization. Our results may inform public health and urban planning initiatives to lower the risk of hospitalization linked to COVID-19 and other respiratory pathogens.
Collapse
Affiliation(s)
- Alessandro Rigolon
- Department of City and Metropolitan Planning, The University of Utah, Salt Lake City, Utah, United States of America
| | - Jeremy Németh
- Department of Urban and Regional Planning, University of Colorado Denver, Denver, Colorado, United States of America
| | - Brenn Anderson-Gregson
- Department of Urban and Regional Planning, University of Colorado Denver, Denver, Colorado, United States of America
| | - Ana Rae Miller
- Department of Urban and Regional Planning, University of Colorado Denver, Denver, Colorado, United States of America
| | - Priyanka deSouza
- Department of Urban and Regional Planning, University of Colorado Denver, Denver, Colorado, United States of America
| | - Brian Montague
- Department of Medicine, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Denver, Colorado, United States of America
| | - Cory Hussain
- Department of Medicine, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Denver, Colorado, United States of America
- Division of Infectious Diseases, Denver Health and Hospital Authority, Denver, Colorado, United States of America
| | - Kristine M Erlandson
- Department of Medicine, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Denver, Colorado, United States of America
| | - Sarah E Rowan
- Department of Medicine, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Denver, Colorado, United States of America
- Division of Infectious Diseases, Denver Health and Hospital Authority, Denver, Colorado, United States of America
| |
Collapse
|
5
|
Wang Y, Zhang R, Yang F, Yang L, Li Q, Guo J, Liu X, Song J, Zhang G, Li J, An Z, Alexis NE, Jaspers I, Wu W. Potential mechanisms mediating PM 2.5-induced alterations of H3N2 influenza virus infection and cytokine production in human bronchial epithelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115069. [PMID: 37244199 DOI: 10.1016/j.ecoenv.2023.115069] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023]
Abstract
Exposure to particulate matter (PM) has been associated with increased hospital admissions for influenza. Airway epithelial cells are a primary target for inhaled environmental insults including fine PM (PM2.5) and influenza viruses. The potentiation of PM2.5 exposure on the effects of influenza virus on airway epithelial cells has not been adequately elucidated. In this study, the effects of PM2.5 exposure on influenza virus (H3N2) infection and downstream modulation of inflammation and antiviral immune response were investigated using a human bronchial epithelial cell line, BEAS-2B. The results showed that PM2.5 exposure alone increased the production of pro-inflammatory cytokines including interleukin-6 (IL-6) and IL-8 but decreased the production of the antiviral cytokine interferon-β (IFN-β) in BEAS-2B cells while H3N2 exposure alone increased the production of IL-6, IL-8, and IFN-β. Importantly, prior exposure to PM2.5 enhanced subsequent H3N2 infectivity, expression of viral hemagglutinin protein, as well as upregulation of IL-6 and IL-8, but reduced H3N2-induced IFN-β production. Pre-treatment with a pharmacological inhibitor of nuclear factor-κB (NF-κB) suppressed pro-inflammatory cytokine production induced by PM2.5, H3N2, as well as PM2.5-primed H3N2 infection. Moreover, antibody-mediated neutralization of Toll-like receptor 4 (TLR4) blocked cytokine production triggered by PM2.5 or PM2.5-primed H3N2 infection, but not H3N2 alone. Taken together, exposure to PM2.5 alters H3N2-induced cytokine production and markers of replication in BEAS-2B cells, which in turn are regulated by NF-κB and TLR4.
Collapse
Affiliation(s)
- Yinbiao Wang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Rui Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Fuyun Yang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Lin Yang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Qingmei Li
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, PR China
| | - Junqing Guo
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, PR China
| | - Xiao Liu
- School of Laboratory Medicine, Henan Medical College, Zhengzhou 451191, PR China
| | - Jie Song
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Guofu Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Juan Li
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Zhen An
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Neil E Alexis
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ilona Jaspers
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, PR China.
| |
Collapse
|
6
|
Bhaskar A, Chandra J, Hashemi H, Butler K, Bennett L, Cellini J, Braun D, Dominici F. A Literature Review of the Effects of Air Pollution on COVID-19 Health Outcomes Worldwide: Statistical Challenges and Data Visualization. Annu Rev Public Health 2023; 44:1-20. [PMID: 36542771 DOI: 10.1146/annurev-publhealth-071521-120424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Several peer-reviewed papers and reviews have examined the relationship between exposure to air pollution and COVID-19 spread and severity. However, many of the existing reviews on this topic do not extensively present the statistical challenges associated with this field, do not provide comprehensive guidelines for future researchers, and review only the results of a relatively small number of papers. We reviewed 139 papers, 127 of which reported a statistically significant positive association between air pollution and adverse COVID-19 health outcomes. Here, we summarize the evidence, describe the statistical challenges, and make recommendations for future research. To summarize the 139 papers with data from geographical locations around the world, we also present anopen-source data visualization tool that summarizes these studies and allows the research community to contribute evidence as new research papers are published.
Collapse
Affiliation(s)
- A Bhaskar
- Department of Government, Harvard University, Cambridge, Massachusetts, USA
| | - J Chandra
- Harvard Medical School, Harvard University, Boston, Massachusetts, USA
| | - H Hashemi
- Environmental Systems Research Institute, Redlands, California, USA
| | - K Butler
- Environmental Systems Research Institute, Redlands, California, USA
| | - L Bennett
- Environmental Systems Research Institute, Redlands, California, USA
| | - Jacqueline Cellini
- Countway Library of Medicine, Harvard Medical School, Harvard University, Boston, Massachusetts, USA
| | - Danielle Braun
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA;
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Francesca Dominici
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA;
| |
Collapse
|
7
|
Huang J, Kwan MP. Associations between COVID-19 risk, multiple environmental exposures, and housing conditions: A study using individual-level GPS-based real-time sensing data. APPLIED GEOGRAPHY (SEVENOAKS, ENGLAND) 2023; 153:102904. [PMID: 36816398 PMCID: PMC9928735 DOI: 10.1016/j.apgeog.2023.102904] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Few studies have used individual-level data to explore the association between COVID-19 risk with multiple environmental exposures and housing conditions. Using individual-level data collected with GPS-tracking smartphones, mobile air-pollutant and noise sensors, an activity-travel diary, and a questionnaire from two typical neighborhoods in a dense and well-developed city (i.e., Hong Kong), this study seeks to examine 1) the associations between multiple environmental exposures (i.e., different types of greenspace, PM2.5, and noise) and housing conditions (i.e., housing types, ownership, and overcrowding) with individuals' COVID-19 risk both in residential neighborhoods and along daily mobility trajectories; 2) which social groups are disadvantaged in COVID-19 risk through the perspective of the neighborhood effect averaging problem (NEAP). Using separate multiple linear regression and logistical regression models, we found a significant negative association between COVID-19 risk with greenspace (i.e., NDVI) both in residential areas and along people's daily mobility trajectories. Meanwhile, we also found that high open space and recreational land exposure and poor housing conditions were positively associated with COVID-19 risk in high-risk neighborhoods, and noise exposure was positively associated with COVID-19 risk in low-risk neighborhoods. Further, people with work places in high-risk areas and poor housing conditions were disadvantaged in COVID-19 risk.
Collapse
Affiliation(s)
- Jianwei Huang
- Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Mei-Po Kwan
- Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
8
|
Monoson A, Schott E, Ard K, Kilburg-Basnyat B, Tighe RM, Pannu S, Gowdy KM. Air pollution and respiratory infections: the past, present, and future. Toxicol Sci 2023; 192:3-14. [PMID: 36622042 PMCID: PMC10025881 DOI: 10.1093/toxsci/kfad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Air pollution levels across the globe continue to rise despite government regulations. The increase in global air pollution levels drives detrimental human health effects, including 7 million premature deaths every year. Many of these deaths are attributable to increased incidence of respiratory infections. Considering the COVID-19 pandemic, an unprecedented public health crisis that has claimed the lives of over 6.5 million people globally, respiratory infections as a driver of human mortality is a pressing concern. Therefore, it is more important than ever to understand the relationship between air pollution and respiratory infections so that public health measures can be implemented to ameliorate further morbidity and mortality. This article aims to review the current epidemiologic and basic science research on interactions between air pollution exposure and respiratory infections. The first section will present epidemiologic studies organized by pathogen, followed by a review of basic science research investigating the mechanisms of infection, and then conclude with a discussion of areas that require future investigation.
Collapse
Affiliation(s)
- Alexys Monoson
- Department of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA
| | - Evangeline Schott
- Department of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA
| | - Kerry Ard
- School of Environment and Natural Resources, The Ohio State University, Columbus, Ohio 43210, USA
| | - Brita Kilburg-Basnyat
- Department of Pharmacology and Toxicology, East Carolina University, Greenville, North Carolina 27834, USA
| | - Robert M Tighe
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Sonal Pannu
- Department of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA
| | - Kymberly M Gowdy
- Department of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA
| |
Collapse
|
9
|
Mishra A, Pervez S, Verma M, Candeias C, Pervez YF, Dugga P, Verma SR, Karbhal I, Ghosh KK, Deb MK, Satnami ML, Shrivas K, Tamrakar A. Chemical fractionation of particulate-bound metal(loid)s to evaluate their bioavailability, sources and associated cancer risk in India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159516. [PMID: 36270356 DOI: 10.1016/j.scitotenv.2022.159516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Eleven potentially toxic metal(loid)s (Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn), proven source markers of mineral based coal-fired industrial emissions and vehicular exhausts, were analysed using the four steps sequential extraction method to evaluate metal(loid)s concentration, in total and fractions of bioavailable and non-bioavailable for fine (PM2.5) and coarse (PM10-2.5) particulate modes. A total of 26-day-wise samples with three replications (total number of samples = 78) were collected in January-December 2019 for each PM10 and PM2.5 at an urban-residential site in India. In both the coarse and fine particulate modes, Pb and Cr have respectively shown the highest and lowest total concentrations of the measured metal(loid)s, indicating the presence of coal-fired power plants and heavy vehicular activities near to study area. In addition, Mn has shown highest bioavailable fraction for both coarse and fine particulate modes. More than 50 % of metal(loid)s concentration, in total to a bioavailable fraction (BAF) were observed in case of As, Cd, Cr, Co, Mn, Ni, and Pb of PM2.5. Mn and Zn have shown similar behaviour in the case of coarse particulate mode. Source apportionment of metal(loid)s bioavailable fractions using positive matrix factorization (PMF 5.0) has found three significant sources: crustal and natural dust (30.04 and 39 %), road traffic (49.57 and 20 %), and industrial emission (20.39 and 41 %) for coarse and fine particulate mode, respectively. Cancer risk through the inhalation pathway was high in total concentration but lower in BAF concentration in both age groups (children and adults).
Collapse
Affiliation(s)
- Archi Mishra
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Shamsh Pervez
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India.
| | - Madhuri Verma
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Carla Candeias
- GeoBioTec Research Centre, Department of Geosciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | - Princy Dugga
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Sushant Ranjan Verma
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Indrapal Karbhal
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Kallol K Ghosh
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Manas Kanti Deb
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Manmohan L Satnami
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Kamlesh Shrivas
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Aishwaryashri Tamrakar
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| |
Collapse
|
10
|
Environmental Pollutants PM2.5, PM10, Nitrogen Dioxide (NO 2), and Ozone (O 3) Association with the Incidence of Monkeypox Cases in European Countries. J Trop Med 2023; 2023:9075358. [PMID: 36687338 PMCID: PMC9859703 DOI: 10.1155/2023/9075358] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/28/2022] [Accepted: 12/14/2022] [Indexed: 01/15/2023] Open
Abstract
Background Monkeypox, also known as monkeypox disease, is caused by the monkeypox virus (MPXV), which is a zoonotic infection. The swift spread of human monkeypox cases has caused an alarming situation worldwide. This novel study aimed to investigate the association of particulate matter air pollutants PM2.5, PM10, Nitrogen dioxide (NO2), and Ozone (O3) on the incidence of monkeypox cases from May 1, 2022, to July 15, 2022. Methods The data on air pollutants PM2.5, PM10, NO2, and O3 and monkeypox cases were recorded from the date of occurrence of the first case of monkeypox in the United Kingdom, Spain, France, Germany, Italy, the Netherlands, Switzerland, and Portugal from May 1, 2022, to July 15, 2022. The daily concentrations of PM2.5, PM10, NO2, and O3 were recorded from the metrological website "Air Quality Index-AQI," and daily human monkeypox cases were recorded from the official website of "Our World in Data." The mean values along with simple, multiple, and Spearman Rho correlations were performed to investigate the relationship and strength of association between the concentrations of air pollutants and cases of monkeypox. Results The environmental pollutants PM2.5, PM10, NO2, and O3 were positively associated with monkeypox cases in the United Kingdom, Spain, France, Germany, Italy, the Netherlands, Switzerland, and Portugal. The analysis further revealed that for each 10-unit increase in PM2.5, PM10, and NO2, levels, the number of monkeypox cases was significantly augmented by 29.6%, 9.7%, 13%, and 80.6%, respectively. Conclusions Environmental pollutants PM2.5, PM10, NO2, and O3 have been positively linked to the number of daily monkeypox cases in European countries. Environmental pollution is a risk factor for the increasing incidence of monkeypox daily cases. The regional and international authorities must implement policies to curtail air pollution to combat the cases of monkeypox in European countries and worldwide.
Collapse
|
11
|
Jiang B, Yang Y, Chen L, Liu X, Wu X, Chen B, Webster C, Sullivan WC, Larsen L, Wang J, Lu Y. Green spaces, especially nearby forest, may reduce the SARS-CoV-2 infection rate: A nationwide study in the United States. LANDSCAPE AND URBAN PLANNING 2022; 228:104583. [PMID: 36158763 PMCID: PMC9485427 DOI: 10.1016/j.landurbplan.2022.104583] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 05/10/2023]
Abstract
The coronavirus pandemic is an ongoing global crisis that has profoundly harmed public health. Although studies found exposure to green spaces can provide multiple health benefits, the relationship between exposure to green spaces and the SARS-CoV-2 infection rate is unclear. This is a critical knowledge gap for research and practice. In this study, we examined the relationship between total green space, seven types of green space, and a year of SARS-CoV-2 infection data across 3,108 counties in the contiguous United States, after controlling for spatial autocorrelation and multiple types of covariates. First, we examined the association between total green space and SARS-CoV-2 infection rate. Next, we examined the association between different types of green space and SARS-CoV-2 infection rate. Then, we examined forest-infection rate association across five time periods and five urbanicity levels. Lastly, we examined the association between infection rate and population-weighted exposure to forest at varying buffer distances (100 m to 4 km). We found that total green space was negative associated with the SARS-CoV-2 infection rate. Furthermore, two forest variables (forest outside park and forest inside park) had the strongest negative association with the infection rate, while open space variables had mixed associations with the infection rate. Forest outside park was more effective than forest inside park. The optimal buffer distances associated with lowest infection rate are within 1,200 m for forest outside park and within 600 m for forest inside park. Altogether, the findings suggest that green spaces, especially nearby forest, may significantly mitigate risk of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Bin Jiang
- Urban Environments and Human Health Lab, HKUrbanLabs, Faculty of Architecture, The University of Hong Kong, Hong Kong Special Administrative Region
- Division of Landscape Architecture, Department of Architecture, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Yuwen Yang
- Urban Environments and Human Health Lab, HKUrbanLabs, Faculty of Architecture, The University of Hong Kong, Hong Kong Special Administrative Region
- Division of Landscape Architecture, Department of Architecture, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Long Chen
- Department of Architecture and Civil Engineering, College of Engineering, City University of Hong Kong, Hong Kong Special Administrative Region
| | - Xueming Liu
- Urban Environments and Human Health Lab, HKUrbanLabs, Faculty of Architecture, The University of Hong Kong, Hong Kong Special Administrative Region
- Division of Landscape Architecture, Department of Architecture, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Xueying Wu
- Department of Architecture and Civil Engineering, College of Engineering, City University of Hong Kong, Hong Kong Special Administrative Region
| | - Bin Chen
- Future Urbanity & Sustainable Environment (FUSE) Lab, Division of Landscape Architecture, Department of Architecture, Faculty of Architecture, The University of Hong Kong, Hong Kong Special Administrative Region
- Urban Systems Institute, The University of Hong Kong, Hong Kong Special Administrative Region
- HKU Musketeers Foundation Institute of Data Science, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Chris Webster
- HKUrbanLabs, Faculty of Architecture, The University of Hong Kong, Hong Kong Special Administrative Region
| | - William C Sullivan
- Smart, Healthy Communities Initiative, University of Illinois at Urbana-Champaign, USA
- Department of Landscape Architecture, University of Illinois at Urbana-Champaign, USA
| | - Linda Larsen
- Smart Energy Design Assistance Center, University of Illinois at Urbana-Champaign, USA
| | - Jingjing Wang
- Department of Architecture and Civil Engineering, City University of Hong Kong, Hong Kong Special Administrative Region
| | - Yi Lu
- Department of Architecture and Civil Engineering, City University of Hong Kong, Hong Kong Special Administrative Region
| |
Collapse
|
12
|
Hernandez Carballo I, Bakola M, Stuckler D. The impact of air pollution on COVID-19 incidence, severity, and mortality: A systematic review of studies in Europe and North America. ENVIRONMENTAL RESEARCH 2022; 215:114155. [PMID: 36030916 PMCID: PMC9420033 DOI: 10.1016/j.envres.2022.114155] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 05/29/2023]
Abstract
BACKGROUND Air pollution is speculated to increase the risks of COVID-19 spread, severity, and mortality. OBJECTIVES We systematically reviewed studies investigating the relationship between air pollution and COVID-19 cases, non-fatal severity, and mortality in North America and Europe. METHODS We searched PubMed, Web of Science, and Scopus for studies investigating the effects of harmful pollutants, including particulate matter with diameter ≤2.5 or 10 μm (PM2.5 or PM10), ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2) and carbon monoxide (CO), on COVID-19 cases, severity, and deaths in Europe and North America through to June 19, 2021. Articles were included if they quantitatively measured the relationship between exposure to air pollution and COVID-19 health outcomes. RESULTS From 2,482 articles screened, we included 116 studies reporting 355 separate pollutant-COVID-19 estimates. Approximately half of all evaluations on incidence were positive and significant associations (52.7%); for mortality the corresponding figure was similar (48.1%), while for non-fatal severity this figure was lower (41.2%). Longer-term exposure to pollutants appeared more likely to be positively associated with COVID-19 incidence (63.8%). PM2.5, PM10, O3, NO2, and CO were most strongly positively associated with COVID-19 incidence, while PM2.5 and NO2 with COVID-19 deaths. All studies were observational and most exhibited high risk of confounding and outcome measurement bias. DISCUSSION Air pollution may be associated with worse COVID-19 outcomes. Future research is needed to better test the air pollution-COVID-19 hypothesis, particularly using more robust study designs and COVID-19 measures that are less prone to measurement error and by considering co-pollutant interactions.
Collapse
Affiliation(s)
- Ireri Hernandez Carballo
- Department of Social and Political Sciences, Bocconi University, Milan, Lombardy, Italy; RFF-CMCC European Institute of Economics and the Environment, Centro Euro-Mediterraneo Sui Cambiamenti Climatici, Milan, Lombardy, Italy.
| | - Maria Bakola
- Research Unit for General Medicine and Primary Health Care, Faculty of Medicine, School of Health Science, University of Ioannina, Ioannina, Greece
| | - David Stuckler
- Department of Social and Political Sciences, Bocconi University, Milan, Lombardy, Italy; DONDENA Centre for Research on Social Dynamics and Public Policy, Bocconi University, Milan, Lombardy, Italy
| |
Collapse
|
13
|
Wang Y, Reyes L, Greenfield EA, Allred SR. Municipal Ethnic Composition and Disparities in COVID-19 Infections in New Jersey: A Blinder-Oaxaca Decomposition Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13963. [PMID: 36360847 PMCID: PMC9656431 DOI: 10.3390/ijerph192113963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/30/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
COVID-19 has disproportionally impacted Latinx and Black communities in the US. Our study aimed to extend the understanding of ethnic disparities in COVID-19 case rates by using a unique dataset of municipal case rates across New Jersey (NJ) during the first 17 months of the pandemic. We examined the extent to which there were municipal-level ethnic disparities in COVID-19 infection rates during three distinct spikes in case rates over this period. Furthermore, we used the Blinder-Oaxaca decomposition analysis to identify municipal-level exposure and vulnerability factors that contributed to ethnic disparities and how the contributions of these factors changed across the three initial waves of infection. Two clear results emerged. First, in NJ, the COVID-19 infection risk disproportionally affected Latinx communities across all three waves during the first 17 months of the pandemic. Second, the exposure and vulnerability factors that most strongly contributed to higher rates of infection in Latinx and Black communities changed over time as the virus, alongside medical and societal responses to it, also changed. These findings suggest that understanding and addressing ethnicity-based COVID-19 disparities will require sustained attention to the systemic and structural factors that disproportionately place historically marginalized ethnic communities at greater risk of contracting COVID-19.
Collapse
Affiliation(s)
- Yuqi Wang
- Department of Social Work, China Youth University of Political Studies, Beijing 100089, China
| | - Laurent Reyes
- School of Social Welfare, University of California, Berkeley, CA 94720, USA
| | | | - Sarah R. Allred
- Department of Psychology, Rutgers University, Camden, NJ 08102, USA
| |
Collapse
|
14
|
Zoran MA, Savastru RS, Savastru DM, Tautan MN. Cumulative effects of air pollution and climate drivers on COVID-19 multiwaves in Bucharest, Romania. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION : TRANSACTIONS OF THE INSTITUTION OF CHEMICAL ENGINEERS, PART B 2022; 166:368-383. [PMID: 36034108 PMCID: PMC9391082 DOI: 10.1016/j.psep.2022.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Over more than two years of global health crisis due to ongoing COVID-19 pandemic, Romania experienced a five-wave pattern. This study aims to assess the potential impact of environmental drivers on COVID-19 transmission in Bucharest, capital of Romania during the analyzed epidemic period. Through descriptive statistics and cross-correlation tests applied to time series of daily observational and geospatial data of major outdoor inhalable particulate matter with aerodynamic diameter ≤ 2.5 µm (PM2.5) or ≤ 10 µm (PM10), nitrogen dioxide (NO2), ozone (O3), sulfur dioxide (SO2), carbon monoxide (CO), Aerosol Optical Depth at 550 nm (AOD) and radon (222Rn), we investigated the COVID-19 waves patterns under different meteorological conditions. This study examined the contribution of individual climate variables on the ground level air pollutants concentrations and COVID-19 disease severity. As compared to the long-term average AOD over Bucharest from 2015 to 2019, for the same year periods, this study revealed major AOD level reduction by ~28 % during the spring lockdown of the first COVID-19 wave (15 March 2020-15 May 2020), and ~16 % during the third COVID-19 wave (1 February 2021-1 June 2021). This study found positive correlations between exposure to air pollutants PM2.5, PM10, NO2, SO2, CO and 222Rn, and significant negative correlations, especially for spring-summer periods between ground O3 levels, air temperature, Planetary Boundary Layer height, and surface solar irradiance with COVID-19 incidence and deaths. For the analyzed time period 1 January 2020-1 April 2022, before and during each COVID-19 wave were recorded stagnant synoptic anticyclonic conditions favorable for SARS-CoV-2 virus spreading, with positive Omega surface charts composite average (Pa/s) at 850 mb during fall- winter seasons, clearly evidenced for the second, the fourth and the fifth waves. These findings are relevant for viral infections controls and health safety strategies design in highly polluted urban environments.
Collapse
Key Words
- 222Rn
- 222Rn, Radon
- AOD, Total Aerosol Optical Depth at 550 nm
- Aerosol Optical Depth (AOD)
- CAMS, Copernicus Atmosphere Monitoring Service
- CO, Carbon monoxide
- COVID, 19 Coronavirus Disease 2019
- COVID-19 disease
- Climate variables
- DNC, Daily New COVID-19 positive cases
- DND, Daily New COVID-19 Deaths
- MERS, CoV Middle East respiratory syndrome coronavirus
- NO2, Nitrogen dioxide
- NOAA, National Oceanic and Atmospheric Administration U.S.A.
- O3, Ozone
- Outdoor air pollutants
- PBL, Planetary Boundary Layer height
- PM, Particulate Matter: PM1(1 µm), PM2.5 (2.5 µm) and PM10(10.0 µm) diameter
- RH, Air relative humidity
- SARS, CoV Severe Outdoor Respiratory Syndrome Coronavirus
- SARS, CoV-2 Severe Outdoor Respiratory Syndrome Coronavirus 2
- SI, Surface solar global irradiance
- SO2, Sulfur dioxide
- Synoptic meteorological circulation
- T, Air temperature at 2 m height
- p, Air pressure
- w, Wind speed intensity
Collapse
Affiliation(s)
- Maria A Zoran
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele, Bucharest 077125, Romania
| | - Roxana S Savastru
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele, Bucharest 077125, Romania
| | - Dan M Savastru
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele, Bucharest 077125, Romania
| | - Marina N Tautan
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele, Bucharest 077125, Romania
| |
Collapse
|
15
|
Chakraborty S, Dey T, Jun Y, Lim CY, Mukherjee A, Dominici F. A Spatiotemporal Analytical Outlook of the Exposure to Air Pollution and COVID-19 Mortality in the USA. JOURNAL OF AGRICULTURAL, BIOLOGICAL AND ENVIRONMENTAL STATISTICS 2022; 27:419-439. [PMID: 35106052 PMCID: PMC8795746 DOI: 10.1007/s13253-022-00487-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 11/30/2022]
Abstract
The world is experiencing a pandemic due to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), also known as COVID-19. The USA is also suffering from a catastrophic death toll from COVID-19. Several studies are providing preliminary evidence that short- and long-term exposure to air pollution might increase the severity of COVID-19 outcomes, including a higher risk of death. In this study, we develop a spatiotemporal model to estimate the association between exposure to fine particulate matter PM2.5 and mortality accounting for several social and environmental factors. More specifically, we implement a Bayesian zero-inflated negative binomial regression model with random effects that vary in time and space. Our goal is to estimate the association between air pollution and mortality accounting for the spatiotemporal variability that remained unexplained by the measured confounders. We applied our model to four regions of the USA with weekly data available for each county within each region. We analyze the data separately for each region because each region shows a different disease spread pattern. We found a positive association between long-term exposure to PM2.5 and the mortality from the COVID-19 disease for all four regions with three of four being statistically significant. Data and code are available at our GitHub repository. Supplementary materials accompanying this paper appear on-line.
Collapse
Affiliation(s)
| | - Tanujit Dey
- Center for Surgery and Public Health, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Yoonbae Jun
- Department of Statistics, Seoul National University, Gwanak-gu, Korea
| | - Chae Young Lim
- Department of Statistics, Seoul National University, Gwanak-gu, Korea
| | - Anish Mukherjee
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY USA
| | - Francesca Dominici
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA USA
| |
Collapse
|
16
|
Zoran MA, Savastru RS, Savastru DM, Tautan MN. Impacts of exposure to air pollution, radon and climate drivers on the COVID-19 pandemic in Bucharest, Romania: A time series study. ENVIRONMENTAL RESEARCH 2022; 212:113437. [PMID: 35594963 PMCID: PMC9113773 DOI: 10.1016/j.envres.2022.113437] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 05/05/2023]
Abstract
During the ongoing global COVID-19 pandemic disease, like several countries, Romania experienced a multiwaves pattern over more than two years. The spreading pattern of SARS-CoV-2 pathogens in the Bucharest, capital of Romania is a multi-factorial process involving among other factors outdoor environmental variables and viral inactivation. Through descriptive statistics and cross-correlation analysis applied to daily time series of observational and geospatial data, this study aims to evaluate the synergy of COVID-19 incidence and lethality with air pollution and radon under different climate conditions, which may exacerbate the coronavirus' effect on human health. During the entire analyzed period 1 January 2020-21 December 2021, for each of the four COVID-19 waves were recorded different anomalous anticyclonic synoptic meteorological patterns in the mid-troposphere, and favorable stability conditions during fall-early winter seasons for COVID-19 disease fast-spreading, mostly during the second, and the fourth waves. As the temporal pattern of airborne SARS-CoV-2 and its mutagen variants is affected by seasonal variability of the main air pollutants and climate parameters, this paper found: 1) the daily outdoor exposures to air pollutants (particulate matter PM2.5 and PM10, nitrogen dioxide-NO2, sulfur dioxide-SO2, carbon monoxide-CO) and radon - 222Rn, are directly correlated with the daily COVID-19 incidence and mortality, and may contribute to the spread and the severity of the pandemic; 2) the daily ground ozone-O3 levels, air temperature, Planetary Boundary Layer height, and surface solar irradiance are anticorrelated with the daily new COVID-19 incidence and deaths, averageingful for spring-summer periods. Outdoor exposure to ambient air pollution associated with radon is a non-negligible driver of COVID-19 transmission in large metropolitan areas, and climate variables are risk factors in spreading the viral infection. The findings of this study provide useful information for public health authorities and decision-makers to develop future pandemic diseases strategies in high polluted metropolitan environments.
Collapse
Affiliation(s)
- Maria A Zoran
- National Institute of R&D for Optoelectronics, Bucharest, Magurele, Romania.
| | - Roxana S Savastru
- National Institute of R&D for Optoelectronics, Bucharest, Magurele, Romania
| | - Dan M Savastru
- National Institute of R&D for Optoelectronics, Bucharest, Magurele, Romania
| | - Marina N Tautan
- National Institute of R&D for Optoelectronics, Bucharest, Magurele, Romania
| |
Collapse
|
17
|
Taylor BM, Ash M, King LP. Initially High Correlation between Air Pollution and COVID-19 Mortality Declined to Zero as the Pandemic Progressed: There Is No Evidence for a Causal Link between Air Pollution and COVID-19 Vulnerability. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10000. [PMID: 36011633 PMCID: PMC9408300 DOI: 10.3390/ijerph191610000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Wu et al. found a strong positive association between cumulative daily county-level COVID-19 mortality and long-term average PM2.5 concentrations for data up until September 2020. We replicated the results of Wu et al. and extended the analysis up until May 2022. The association between PM2.5 concentration and cumulative COVID-19 mortality fell sharply after September 2020. Using the data available from Wu et al.'s "updated_data" branch up until May 2022, we found that the effect of a 1 μg/m3 increase in PM2.5 was associated with only a +0.603% mortality difference. The 95% CI of this difference was between -0.560% and +1.78%, narrow bounds that include zero, with the upper bound far below the Wu et al. estimate. Short-term trends in the initial spread of COVID-19, not a long-term epidemiologic association, caused an early correlation between air pollution and COVID-19 mortality.
Collapse
|
18
|
Hashemi F, Hoepner L, Hamidinejad FS, Abbasi A, Afrashteh S, Hoseini M. A survey on the correlation between PM 2.5 concentration and the incidence of suspected and positive cases of COVID-19 referred to medical centers: A case study of Tehran. CHEMOSPHERE 2022; 301:134650. [PMID: 35452646 PMCID: PMC9016534 DOI: 10.1016/j.chemosphere.2022.134650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/01/2022] [Accepted: 04/15/2022] [Indexed: 05/26/2023]
Abstract
COVID-19, one of the greatest health challenges of the present century, has infected millions of people and caused more than 6 million deaths worldwide. The causative agent of this disease is the new virus SARS-CoV-2; which continues to spread globally and sometimes with new and more complex aspects than before. The present study is an observational study aimed to investigate the role of AQI; PM2.5 and its relationship with the incidence of suspected cases (SC) and positive cases (PC) of COVID-19 at different levels of the air quality index (AQI) in Tehran, the capital of Iran in the period from Feb 20th, 2020 to Feb 22nd, 2021. Data on AQI were collected online from the air monitoring website of Air Quality Control Company under the supervision of Tehran Municipality. The data on suspected and positive cases were obtained from the Iranian Ministry of Health. The results and statistical analysis (Pearson correlation test) showed that with the increase of AQI level, the number of suspected cases (SC) and positive cases (PC), also increased (P-value<0.01). The average daily number of suspected and positive COVID-19 cases referred to medical centers, at different levels of the AQI was as follows: level II: yellow, moderate (SC: Nave = 466; PC: Nave = 223), level III: orange, unhealthy for sensitive groups (SC: Nave = 564; PC: Nave = 275), and Level IV: red, unhealthy (SC: Nave = 558; PC: Nave = 294). The results of the GEE for seasonal comparison (winter as reference season), showed that there is an epidemiological pattern in autumn with colder weather compared to other seasons in both suspected (Cl: %95, B = 408.94) and positive (Cl: %95, B = 83.42) cases of COVID-19. The results of this study will serve policymakers as an informative tool for guidance on the importance of the role of air pollution in viral epidemics.
Collapse
Affiliation(s)
- Fallah Hashemi
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Lori Hoepner
- Department of Environmental and Occupational Health Sciences, School of Public Health, SUNY Downstate Health Sciences Center, Brooklyn, New York, USA.
| | - Farahnaz Soleimani Hamidinejad
- Department of Medicine, O.O. Bogomolets National Medical University, Kyiv, Ukraine; Department of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Alireza Abbasi
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Sima Afrashteh
- Department of Epidemiology, Faculty of Public Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad Hoseini
- Research Center for Health Sciences, Institute of Health, Department of Environmental Health, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
19
|
Data-Driven Prediction of COVID-19 Daily New Cases through a Hybrid Approach of Machine Learning Unsupervised and Deep Learning. ATMOSPHERE 2022. [DOI: 10.3390/atmos13081205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Air pollution is associated with respiratory diseases and the transmission of infectious diseases. In this context, the association between meteorological factors and poor air quality possibly contributes to the transmission of COVID-19. Therefore, analyzing historical data of particulate matter (PM2.5, and PM10) and meteorological factors in indoor and outdoor environments to discover patterns that allow predicting future confirmed cases of COVID-19 is a challenge within a long pandemic. In this study, a hybrid approach based on machine learning and deep learning is proposed to predict confirmed cases of COVID-19. On the one hand, a clustering algorithm based on K-means allows the discovery of behavior patterns by forming groups with high cohesion. On the other hand, multivariate linear regression is implemented through a long short-term memory (LSTM) neural network, building a reliable predictive model in the training stage. The LSTM prediction model is evaluated through error metrics, achieving the highest performance and accuracy in predicting confirmed cases of COVID-19, using data of PM2.5 and PM10 concentrations and meteorological factors of the outdoor environment. The predictive model obtains a root-mean-square error (RMSE) of 0.0897, mean absolute error (MAE) of 0.0837, and mean absolute percentage error (MAPE) of 0.4229 in the testing stage. When using a dataset of PM2.5, PM10, and meteorological parameters collected inside 20 households from 27 May to 13 October 2021, the highest performance is obtained with an RMSE of 0.0892, MAE of 0.0592, and MAPE of 0.2061 in the testing stage. Moreover, in the validation stage, the predictive model obtains a very acceptable performance with values between 0.4152 and 3.9084 for RMSE, and a MAPE of less than 4.1%, using three different datasets with indoor environment values.
Collapse
|
20
|
Borna M, Woloshynowych M, Schiano-Phan R, Volpi EV, Usman M. A correlational analysis of COVID-19 incidence and mortality and urban determinants of vitamin D status across the London boroughs. Sci Rep 2022; 12:11741. [PMID: 35817805 PMCID: PMC9272647 DOI: 10.1038/s41598-022-15664-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
One of the biggest challenges of the COVID-19 pandemic is the heterogeneity in disease severity exhibited amongst patients. Among multiple factors, latest studies suggest vitamin D deficiency and pre-existing health conditions to be major contributors to death from COVID-19. It is known that certain urban form attributes can impact sun exposure and vitamin D synthesis. Also, long-term exposure to air pollution can play an independent role in vitamin D deficiency. We conducted a correlational analysis of urban form and air quality in relation to the demographics and COVID-19 incidence and mortality across 32 London boroughs between March 2020 and January 2021. We found total population, number of residents of Asian ethnicity, 4-year average PM10 levels and road length to be positively correlated with COVID-19 cases and deaths. We also found percentage of households with access to total open space to be negatively correlated with COVID-19 deaths. Our findings link COVID-19 incidence and mortality across London with environmental variables linked to vitamin D status. Our study is entirely based on publicly available data and provides a reference framework for further research as more data are gathered and the syndemic dimension of COVID-19 becomes increasingly relevant in connection to health inequalities within large urban areas.
Collapse
Affiliation(s)
- Mehrdad Borna
- School of Architecture and Cities, University of Westminster, 35 Marylebone Road, London, NW1 5LS, UK.
| | | | - Rosa Schiano-Phan
- School of Architecture and Cities, University of Westminster, 35 Marylebone Road, London, NW1 5LS, UK
| | | | - Moonisah Usman
- Centre for Education and Teaching Innovation, University of Westminster, London, UK
| |
Collapse
|
21
|
Ruidas D, Pal SC. Potential hotspot modeling and monitoring of PM 2.5 concentration for sustainable environmental health in Maharashtra, India. SUSTAINABLE WATER RESOURCES MANAGEMENT 2022; 8:98. [PMID: 35789862 PMCID: PMC9244079 DOI: 10.1007/s40899-022-00682-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 06/04/2022] [Indexed: 05/13/2023]
Abstract
Modern human civilization has suffered from the disastrous impact of COVID-19, but it teaches us the lesson that the environment can restore its stability without human activity. The Government of India (GOI) has launched many strategies to prevent the situation of COVID-19, including a lockdown that has a great impact on the environment. The present study focuses on the analysis of Particulate Matter 2.5 (PM2.5) concentration levels in pre-locking, lockdown, and unlocking phases across ten major cities of Maharashtra (MH) that were the COVID hotspot of India during the COVID-19 outbreak; phase-wise and year-wise (2018-2020) hotspot analysis, box diagram and line graph methods were used to assess spatial variation in PM2.5 across MH cities. Our study showed that the PM2.5 concentration level was severe at pre-lockdown stage (January-March) and it decreased dramatically at the lockdown stage, later it also increased in its previous position at the unlocking stages, i.e., PM2.5 decreased dramatically (59%) during the lockdown period compared to the pre-lockdown period due to the shutdown of outdoor activities. It returns to its previous position due to the unlocking situation and increases (70%) compared to the lockdown period which illustrated the ups and downs of PM2.5 and ensures the position of different cities in the Air Quality Index (AQI) categories at different times. In the pre-lockdown phase, maximum PM2.5 concentration was in Navi Mumbai (NAV) (358) and Mumbai (MUM) (338), and Pune (PUN) (335) and Nashik NAS (325) subsequently, whereas at the last of the lockdown phase, it becomes Chandrapur (CHN) (82), Nagpur (NAG) (76), and Solapur (SOL) (45) subsequently. Hence, the restoration of the environment during the lockdown phase was temporary rather than permanent. Therefore, our findings propose that several effective policies of government such as relocation of polluting industries, short-term lockdown, odd-even vehicle number, installation of air purifier, and government strict initiatives are needed in making a sustainable environment.
Collapse
Affiliation(s)
- Dipankar Ruidas
- Department of Geography, The University of Burdwan, Bardhaman, West Bengal 713104 India
| | - Subodh Chandra Pal
- Department of Geography, The University of Burdwan, Bardhaman, West Bengal 713104 India
| |
Collapse
|
22
|
Bontempi E. A global assessment of COVID-19 diffusion based on a single indicator: Some considerations about air pollution and COVID-19 spread. ENVIRONMENTAL RESEARCH 2022; 204:112098. [PMID: 34582799 PMCID: PMC8464397 DOI: 10.1016/j.envres.2021.112098] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/02/2021] [Accepted: 09/19/2021] [Indexed: 05/20/2023]
Abstract
The extraordinariness of COVID-19 occurred in a world that was completely unprepared to face it. To justify this, sometimes literature proposes positive associations between concentrations of some air pollutants and SARS-CoV-2 mortality and infectivity. However, several of these studies are affected by incomplete data analysis and/or incorrect accounts of spread dynamics that can be attributed to respiratory viruses. Based on separate analyses involving all the USA states and globally all the world countries suffering from the pandemic, this communication shows that commercial trade seems to be a good indicator of virus spread, being proposed as a surrogate of human-to-human interactions. The results of this study strongly support the conclusion that this new indicator could result fundamental to model (and avoid) possible future pandemics, strongly suggesting dedicated studies devoted to better investigate its significance.
Collapse
Affiliation(s)
- Elza Bontempi
- INSTM and Chemistry for Technologies, University of Brescia, via Branze 38, 25123, Brescia, Italy.
| |
Collapse
|
23
|
Cortes-Ramirez J, Michael RN, Knibbs LD, Bambrick H, Haswell MR, Wraith D. The association of wildfire air pollution with COVID-19 incidence in New South Wales, Australia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151158. [PMID: 34695471 PMCID: PMC8532327 DOI: 10.1016/j.scitotenv.2021.151158] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 06/11/2023]
Abstract
The 2020 COVID-19 outbreak in New South Wales (NSW), Australia, followed an unprecedented wildfire season that exposed large populations to wildfire smoke. Wildfires release particulate matter (PM), toxic gases and organic and non-organic chemicals that may be associated with increased incidence of COVID-19. This study estimated the association of wildfire smoke exposure with the incidence of COVID-19 in NSW. A Bayesian mixed-effect regression was used to estimate the association of either the average PM10 level or the proportion of wildfire burned area as proxies of wildfire smoke exposure with COVID-19 incidence in NSW, adjusting for sociodemographic risk factors. The analysis followed an ecological design using the 129 NSW Local Government Areas (LGA) as the ecological units. A random effects model and a model including the LGA spatial distribution (spatial model) were compared. A higher proportional wildfire burned area was associated with higher COVID-19 incidence in both the random effects and spatial models after adjustment for sociodemographic factors (posterior mean = 1.32 (99% credible interval: 1.05-1.67) and 1.31 (99% credible interval: 1.03-1.65), respectively). No evidence of an association between the average PM10 level and the COVID-19 incidence was found. LGAs in the greater Sydney and Hunter regions had the highest increase in the risk of COVID-19. This study identified wildfire smoke exposures were associated with increased risk of COVID-19 in NSW. Research on individual responses to specific wildfire airborne particles and pollutants needs to be conducted to further identify the causal links between SARS-Cov-2 infection and wildfire smoke. The identification of LGAs with the highest risk of COVID-19 associated with wildfire smoke exposure can be useful for public health prevention and or mitigation strategies.
Collapse
Affiliation(s)
- J Cortes-Ramirez
- School of Public Health and Social Work, Queensland University of Technology, Australia; Centre for Data Science, Queensland University of Technology, Australia.
| | - R N Michael
- School of Engineering and Built Environment, Griffith University, Australia; Cities Research Institute, Griffith University, Australia
| | - L D Knibbs
- School of Public Health, The University of Sydney, Australia
| | - H Bambrick
- School of Public Health and Social Work, Queensland University of Technology, Australia
| | - M R Haswell
- School of Public Health and Social Work, Queensland University of Technology, Australia; Office of the Deputy Vice Chancellor (Indigenous Strategy and Services), The University of Sydney, Australia; School of Geosciences, Faculty of Science, The University of Sydney, Australia
| | - D Wraith
- School of Public Health and Social Work, Queensland University of Technology, Australia
| |
Collapse
|
24
|
Shao L, Cao Y, Jones T, Santosh M, Silva LFO, Ge S, da Boit K, Feng X, Zhang M, BéruBé K. COVID-19 mortality and exposure to airborne PM 2.5: A lag time correlation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151286. [PMID: 34743816 PMCID: PMC8553633 DOI: 10.1016/j.scitotenv.2021.151286] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/07/2021] [Accepted: 10/23/2021] [Indexed: 05/05/2023]
Abstract
COVID-19 has escalated into one of the most serious crises in the 21st Century. Given the rapid spread of SARS-CoV-2 and its high mortality rate, here we investigate the impact and relationship of airborne PM2.5 to COVID-19 mortality. Previous studies have indicated that PM2.5 has a positive relationship with the spread of COVID-19. To gain insights into the delayed effect of PM2.5 concentration (μgm-3) on mortality, we focused on the role of PM2.5 in Wuhan City in China and COVID-19 during the period December 27, 2019 to April 7, 2020. We also considered the possible impact of various meteorological factors such as temperature, precipitation, wind speed, atmospheric pressure and precipitation on pollutant levels. The results from the Pearson's correlation coefficient analyses reveal that the population exposed to higher levels of PM2.5 pollution are susceptible to COVID-19 mortality with a lag time of >18 days. By establishing a generalized additive model, the delayed effect of PM2.5 on the death toll of COVID-19 was verified. A negative correction was identified between temperature and number of COVID-19 deaths, whereas atmospheric pressure exhibits a positive correlation with deaths, both with a significant lag effect. The results from our study suggest that these epidemiological relationships may contribute to the understanding of the COVID-19 pandemic and provide insights for public health strategies.
Collapse
Affiliation(s)
- Longyi Shao
- State Key Laboratory of Coal Resources and Safe Mining, College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China.
| | - Yaxin Cao
- State Key Laboratory of Coal Resources and Safe Mining, College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Tim Jones
- School of Earth and Environmental Sciences, Cardiff University, Park Place, Cardiff CF10 3AT, UK
| | - M Santosh
- School of Earth Sciences and Resources, China University of Geoscience Beijing, Beijing 100083, China; Department of Earth Science, University of Adelaide, Adelaide, SA 5005, Australia
| | - Luis F O Silva
- Department of Civil and Environmental, Universidad de la Costa, Calle 58 #55-66, 080002 Barranquilla, Atlántico, Colombia
| | - Shuoyi Ge
- State Key Laboratory of Coal Resources and Safe Mining, College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Kátia da Boit
- Department of Civil and Environmental, Universidad de la Costa, Calle 58 #55-66, 080002 Barranquilla, Atlántico, Colombia
| | - Xiaolei Feng
- State Key Laboratory of Coal Resources and Safe Mining, College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Mengyuan Zhang
- State Key Laboratory of Coal Resources and Safe Mining, College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Kelly BéruBé
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, Wales, UK
| |
Collapse
|
25
|
Kalashnikov DA, Schnell JL, Abatzoglou JT, Swain DL, Singh D. Increasing co-occurrence of fine particulate matter and ground-level ozone extremes in the western United States. SCIENCE ADVANCES 2022; 8:eabi9386. [PMID: 34985958 PMCID: PMC8730618 DOI: 10.1126/sciadv.abi9386] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 11/11/2021] [Indexed: 06/14/2023]
Abstract
Wildfires and meteorological conditions influence the co-occurrence of multiple harmful air pollutants including fine particulate matter (PM2.5) and ground-level ozone. We examine the spatiotemporal characteristics of PM2.5/ozone co-occurrences and associated population exposure in the western United States (US). The frequency, spatial extent, and temporal persistence of extreme PM2.5/ozone co-occurrences have increased significantly between 2001 and 2020, increasing annual population exposure to multiple harmful air pollutants by ~25 million person-days/year. Using a clustering methodology to characterize daily weather patterns, we identify significant increases in atmospheric ridging patterns conducive to widespread PM2.5/ozone co-occurrences and population exposure. We further link the spatial extent of co-occurrence to the extent of extreme heat and wildfires. Our results suggest an increasing potential for co-occurring air pollution episodes in the western US with continued climate change.
Collapse
Affiliation(s)
- Dmitri A. Kalashnikov
- School of the Environment, Washington State University Vancouver, Vancouver, WA, USA
| | - Jordan L. Schnell
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, NOAA/Global Systems Laboratory, Boulder, CO, USA
| | - John T. Abatzoglou
- Management of Complex Systems Department, University of California, Merced, Merced, CA, USA
| | - Daniel L. Swain
- Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA, USA
- Capacity Center for Climate and Weather Extremes, National Center for Atmospheric Research, Boulder, CO, USA
- The Nature Conservancy of California, San Francisco, CA, USA
| | - Deepti Singh
- School of the Environment, Washington State University Vancouver, Vancouver, WA, USA
| |
Collapse
|
26
|
Meo SA, Ahmed Alqahtani S, Saad Binmeather F, Abdulrhman AlRasheed R, Mohammed Aljedaie G, Mohammed Albarrak R. Effect of environmental pollutants PM2.5, CO, O 3 and NO 2, on the incidence and mortality of SARS-COV-2 in largest metropolitan cities, Delhi, Mumbai and Kolkata, India. JOURNAL OF KING SAUD UNIVERSITY. SCIENCE 2022; 34:101687. [PMID: 34744393 PMCID: PMC8564952 DOI: 10.1016/j.jksus.2021.101687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/12/2021] [Accepted: 10/30/2021] [Indexed: 05/28/2023]
Abstract
OBJECTIVES The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has developed a challenging situation worldwide. In India, the SARS-CoV-2 cases and deaths have markedly increased. This study aims to evaluate the impact of environmental pollutants "particulate matter (PM 2.5 μm), carbon monoxide (CO), Ozone (O3), and Nitrogen Dioxide (NO2) on daily cases and deaths due to SARS-CoV-2 infection" in Delhi, Mumbai, and Kolkata, India. METHODS The day-to-day air pollutants PM2.5, CO, O3, and NO2 were recorded from the metrological web "Real-time Air Quality Index (AQI)." SARS-COV-2 everyday cases and deaths were obtained from the "Coronavirus outbreak in India Web". The PM 2.5, CO, O3, NO2, and daily cases, deaths were documented for more than one year, from March 2, 2020, to March 15, 2021. RESULTS Environmental pollutants CO, O3, and NO2, were positively related to SARS-COV-2 cases and deaths. The findings further described that for each one-unit increase in CO, O3, and NO2 levels, the number of cases was significantly augmented by 0.77%, 0.45%, and 4.33%. CONCLUSIONS Environmental pollution is a risk factor to SARS-CoV-2 daily cases and deaths. The regional and international authorities must implement the policies to reduce air pollution and the COVID-19 pandemic. The findings can inform health policymakers' verdicts about battling the COVID-19 pandemic in India and globally by minimizing environmental pollution.
Collapse
Affiliation(s)
- Sultan Ayoub Meo
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Sara Ahmed Alqahtani
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | | | | | | |
Collapse
|
27
|
Lym Y, Kim KJ. Exploring the effects of PM 2.5 and temperature on COVID-19 transmission in Seoul, South Korea. ENVIRONMENTAL RESEARCH 2022; 203:111810. [PMID: 34343550 PMCID: PMC8324501 DOI: 10.1016/j.envres.2021.111810] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 05/11/2023]
Abstract
With a recent surge of the new severe acute respiratory syndrome-coronavirus 2 (SARS-Cov-2, COVID-19) in South Korea, this study attempts to investigate the effects of environmental conditions such as air pollutants (PM2.5) and meteorological covariate (Temperature) on COVID-19 transmission in Seoul. To account for unobserved heterogeneity in the daily confirmed cases of COVID-19 across 25 contiguous districts within Seoul, we adopt a full Bayesian hierarchical approach for the generalized linear mixed models. A formal statistical analysis suggests that there exists a positive correlation between a 7-day lagged effect of PM2.5 concentration and the number of confirmed COVID-19 cases, which implies an elevated risk of the infectious disease. Conversely, temperature has shown a negative correlation with the number of COVID-19 cases, leading to reduction in relative risks. In addition, we clarify that the random fluctuation in the relative risks of COVID-19 mainly originates from temporal aspects, whereas no significant evidence of variability in relative risks is observed in terms of spatial alignment of the 25 districts. Nevertheless, this study provides empirical evidence using model-based formal assessments regarding COVID-19 infection risks in 25 districts of Seoul from a different perspective.
Collapse
Affiliation(s)
- Youngbin Lym
- Center for Innovation Strategy and Policy, KAIST, South Korea
| | - Ki-Jung Kim
- Department of Smart Car Engineering, Doowon Technical University, South Korea.
| |
Collapse
|
28
|
Marquès M, Domingo JL. Positive association between outdoor air pollution and the incidence and severity of COVID-19. A review of the recent scientific evidences. ENVIRONMENTAL RESEARCH 2022; 203:111930. [PMID: 34425111 PMCID: PMC8378989 DOI: 10.1016/j.envres.2021.111930] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 08/19/2021] [Indexed: 05/04/2023]
Abstract
In June 2020, we published a review focused on assessing the influence of various air pollutants on the transmission of SARS-CoV-2, and the severity of COVID-19 in patients infected by the coronavirus. The results of most of those reviewed studies suggested that chronic exposure to certain air pollutants might lead to more severe and lethal forms of COVID-19, as well as delays/complications in the recovery of the patients. Since then, a notable number of studies on this topic have been published, including also various reviews. Given the importance of this issue, we have updated the information published since our previous review. Taking together the previous results and those of most investigations now reviewed, we have concluded that there is a significant association between chronic exposure to various outdoor air pollutants: PM2.5, PM10, O3, NO2, SO2 and CO, and the incidence/risk of COVID-19 cases, as well as the severity/mortality of the disease. Unfortunately, studies on the potential influence of other important air pollutants such as VOCs, dioxins and furans, or metals, are not available in the scientific literature. In relation to the influence of outdoor air pollutants on the transmission of SARS-CoV-2, although the scientific evidence is much more limited, some studies point to PM2.5 and PM10 as potential airborne transmitters of the virus. Anyhow, it is clear that environmental air pollution plays an important negative role in COVID-19, increasing its incidence and mortality.
Collapse
Affiliation(s)
- Montse Marquès
- Laboratory of Toxicology and Environmental Health, Universitat Rovira i Virgili, School of Medicine, Sant Llorens 21, 43201, Reus, Catalonia, Spain.
| | - José L Domingo
- Laboratory of Toxicology and Environmental Health, Universitat Rovira i Virgili, School of Medicine, Sant Llorens 21, 43201, Reus, Catalonia, Spain
| |
Collapse
|
29
|
Konduracka E, Rostoff P. Links between chronic exposure to outdoor air pollution and cardiovascular diseases: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2022; 20:2971-2988. [PMID: 35496466 PMCID: PMC9036845 DOI: 10.1007/s10311-022-01450-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/04/2022] [Indexed: 05/10/2023]
Abstract
Acute exposure to air pollution is associated with an increasing risk of death and cardiovascular disorders. Nonetheless, the impact of chronic exposure to air pollution on the circulatory system is still debated. Here, we review the links of chronic exposure to outdoor air pollution with mortality and most common cardiovascular diseases, in particular during the coronavirus disease 2019 event (COVID-19). We found that recent studies provide robust evidence for a causal effect of chronic exposure to air pollution and cardiovascular mortality. In terms of mortality, the strongest relationship was noted for fine particulate matter, nitrogen dioxide, and ozone. There is also increasing evidence showing that exposure to air pollution, mainly fine particulate matter and nitrogen dioxide, is associated with the development of atherosclerosis, hypertension, stroke, and heart failure. However, available scientific evidence is not strong enough to support associations with cardiac arrhythmias and coagulation disturbances. Noteworthy, for some pollutants, the risk of negative health effects is high for concentrations lower than the limit values recommended by the European Union and Word Health Organization. Efforts to diminish exposure to air pollution and to design optimal methods of air pollution reduction should be urgently intensified and supported by effective legislation and interdisciplinary cooperation.
Collapse
Affiliation(s)
- Ewa Konduracka
- Department of Coronary Disease and Heart Failure, Jagiellonian University Medical College, John Paul II Hospital, Prądnicka 80, 31-202 Kraków, Poland
| | - Paweł Rostoff
- Department of Coronary Disease and Heart Failure, Jagiellonian University Medical College, John Paul II Hospital, Prądnicka 80, 31-202 Kraków, Poland
| |
Collapse
|
30
|
Meo SA, Almutairi FJ, Abukhalaf AA, Usmani AM. Effect of Green Space Environment on Air Pollutants PM2.5, PM10, CO, O 3, and Incidence and Mortality of SARS-CoV-2 in Highly Green and Less-Green Countries. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182413151. [PMID: 34948761 PMCID: PMC8700925 DOI: 10.3390/ijerph182413151] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/27/2021] [Accepted: 12/08/2021] [Indexed: 12/23/2022]
Abstract
Worldwide, over half of the global population is living in urban areas. The metropolitan areas are highly populated and environmentally non-green regions on the planet. In green space regions, plants, grass, and green vegetation prevent soil erosion, absorb air pollutants, provide fresh and clean air, and minimize the burden of diseases. Presently, the entire world is facing a turmoil situation due to the COVID-19 pandemic. This study investigates the effect of the green space environment on air pollutants particulate matter PM2.5, PM10, carbon monoxide (CO), ozone (O3), incidence and mortality of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) in environmentally highly green and less-green countries. We randomly selected 17 countries based on the Environmental Performance Index (EPI) data. The 60% of the EPI score is based on seven categories: "biodiversity and habitat, ecosystem, fisheries, climate change, pollution emissions, agriculture, and water resources". However, 40% of the score is based on four categories: "air quality, sanitation and drinking water, heavy metals, and waste management". The air pollutants and SARS-CoV-2 cases and deaths were recorded from 25 January 2020, to 11 July 2021. The air pollutants "PM2.5, PM10, CO, and O3" were recorded from the metrological websites, Air Quality Index-AQI, 2021. The COVID-19 daily cases and deaths were obtained from the World Health Organization. The result reveals that air pollutants mean values for PM2.5 110.73 ± 1.09 vs. 31.35 ± 0.29; PM10 80.43 ± 1.11 vs. 17.78 ± 0.15; CO 7.92 ± 0.14 vs. 2.35 ± 0.03 were significantly decreased (p < 0.0001) in environmentally highly green space countries compared to less-green countries. Moreover, SARS-CoV-2 cases 15,713.61 ± 702.42 vs. 3445.59 ± 108.09; and deaths 297.56 ± 11.27 vs. 72.54 ± 2.61 were also significantly decreased in highly green countries compared to less-green countries. The green environment positively impacts human wellbeing. The policymakers must implement policies to keep the living areas, surroundings, towns, and cities clean and green to minimize air pollution and combat the present pandemic of COVID-19.
Collapse
Affiliation(s)
- Sultan Ayoub Meo
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (F.J.A.); (A.A.A.)
- Correspondence: or
| | - Faris Jamal Almutairi
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (F.J.A.); (A.A.A.)
| | - Abdulelah Adnan Abukhalaf
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (F.J.A.); (A.A.A.)
| | - Adnan Mahmood Usmani
- Diabetic Unit, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia;
| |
Collapse
|
31
|
Goren AY, Genisoglu M, Okten HE, Sofuoglu SC. Effect of COVID-19 pandemic on ambient air quality and excess risk of particulate matter in Turkey. ENVIRONMENTAL CHALLENGES (AMSTERDAM, NETHERLANDS) 2021; 5:100239. [PMID: 38620652 PMCID: PMC8427552 DOI: 10.1016/j.envc.2021.100239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 05/30/2023]
Abstract
The COVID-19 pandemic, which has reached 4 million global cases as of March 10, 2020, has become a worldwide problem. Turkey is one of the most affected (9th in the world) country with 139 771 cases. An intermittent curfew policy that differ for three age groups, and an intercity travel ban varying within the country have been implemented. The effects of changes in social life and industrial activity in terms of environmental pollution are not yet known. The short-term effects on PM2.5, PM10, SO2, NO2, NO, NOx, O3 and CO concentrations measured at 51 air quality measurement stations (AQMS) in 11 cities in March - April period of 2020 were statistically compared with that of the previous year. While PM2.5 (9/14 AQMS) and PM10 (29/35 AQMS) concentrations were not significantly affected, NO (12/24 AQMS), NO2 (20/29 AQMS), NOX (17/25 AQMS) concentrations were decreased, SO2 concentrations at half of the AQMSs (11/25) did not show a significant change. There were stations at which higher pollutant concentrations were measured in the study period in 2020 compared to that of 2019. Excess risks associated with PM2.5 and PM10 were estimated to be variable, albeit with a small difference. In conclusion, the heterogeneous actions taken in response to the COVID-19 pandemic resulted in mixed effects on ambient air quality.
Collapse
Affiliation(s)
| | - Mesut Genisoglu
- Izmir Institute of Technology, Department of Environmental Engineering
| | - Hatice Eser Okten
- Izmir Institute of Technology, Department of Environmental Engineering
| | | |
Collapse
|
32
|
Campbell PC, Tong D, Tang Y, Baker B, Lee P, Saylor R, Stein A, Ma S, Lamsal L, Qu Z. Impacts of the COVID-19 economic slowdown on ozone pollution in the U.S. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2021; 264:118713. [PMID: 34522157 PMCID: PMC8430042 DOI: 10.1016/j.atmosenv.2021.118713] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/02/2021] [Accepted: 09/02/2021] [Indexed: 05/06/2023]
Abstract
In this work, we use observations and experimental emissions in a version of NOAA's National Air Quality Forecasting Capability to show that the COVID-19 economic slowdown led to disproportionate impacts on near-surface ozone concentrations across the contiguous U.S. (CONUS). The data-fusion methodology used here includes both U.S. EPA Air Quality System ground and the NASA Aura satellite Ozone Monitoring Instrument (OMI) NO2 observations to infer the representative emissions changes due to the COVID-19 economic slowdown in the U.S. Results show that there were widespread decreases in anthropogenic (e.g., NOx) emissions in the U.S. during March-June 2020, which led to widespread decreases in ozone concentrations in the rural regions that are NOx-limited, but also some localized increases near urban centers that are VOC-limited. Later in June-September, there were smaller decreases, and potentially some relative increases in NOx emissions for many areas of the U.S. (e.g., south-southeast) that led to more extensive increases in ozone concentrations that are partly in agreement with observations. The widespread NOx emissions changes also alters the O3 photochemical formation regimes, most notably the NOx emissions decreases in March-April, which can enhance (mitigate) the NOx-limited (VOC-limited) regimes in different regions of CONUS. The average of all AirNow hourly O3 changes for 2020-2019 range from about +1 to -4 ppb during March-September, and are associated with predominantly urban monitoring sites that demonstrate considerable spatiotemporal variability for the 2020 ozone changes compared to the previous five years individually (2015-2019). The simulated maximum values of the average O3 changes for March-September range from about +8 to -4 ppb (or +40 to -10%). Results of this work have implications for the use of widespread controls of anthropogenic emissions, particularly those from mobile sources, used to curb ozone pollution under the current meteorological and climate conditions in the U.S.
Collapse
Affiliation(s)
- Patrick C Campbell
- Center for Spatial Information Science and Systems, Cooperative Institute for Satellite Earth System Studies, George Mason University, Fairfax, VA, USA
- Office of Oceanic and Atmospheric Research, Air Resources Laboratory, National Oceanic and Atmospheric Administration, College Park, MD, USA
| | - Daniel Tong
- Center for Spatial Information Science and Systems, Cooperative Institute for Satellite Earth System Studies, George Mason University, Fairfax, VA, USA
- Office of Oceanic and Atmospheric Research, Air Resources Laboratory, National Oceanic and Atmospheric Administration, College Park, MD, USA
- Department of Atmospheric, Oceanic and Earth Sciences, George Mason University, Fairfax, VA, USA
| | - Youhua Tang
- Center for Spatial Information Science and Systems, Cooperative Institute for Satellite Earth System Studies, George Mason University, Fairfax, VA, USA
- Office of Oceanic and Atmospheric Research, Air Resources Laboratory, National Oceanic and Atmospheric Administration, College Park, MD, USA
- Department of Atmospheric, Oceanic and Earth Sciences, George Mason University, Fairfax, VA, USA
| | - Barry Baker
- Center for Spatial Information Science and Systems, Cooperative Institute for Satellite Earth System Studies, George Mason University, Fairfax, VA, USA
- Office of Oceanic and Atmospheric Research, Air Resources Laboratory, National Oceanic and Atmospheric Administration, College Park, MD, USA
| | - Pius Lee
- Office of Oceanic and Atmospheric Research, Air Resources Laboratory, National Oceanic and Atmospheric Administration, College Park, MD, USA
| | - Rick Saylor
- Office of Oceanic and Atmospheric Research, Air Resources Laboratory, National Oceanic and Atmospheric Administration, College Park, MD, USA
| | - Ariel Stein
- Office of Oceanic and Atmospheric Research, Air Resources Laboratory, National Oceanic and Atmospheric Administration, College Park, MD, USA
| | - Siqi Ma
- Department of Atmospheric, Oceanic and Earth Sciences, George Mason University, Fairfax, VA, USA
| | - Lok Lamsal
- Universities Space Research Association, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - Zhen Qu
- Harvard University, Department of Engineering and Applied Science, Cambridge, MA, USA
| |
Collapse
|
33
|
Curtis L. PM 2.5, NO 2, wildfires, and other environmental exposures are linked to higher Covid 19 incidence, severity, and death rates. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:54429-54447. [PMID: 34410599 PMCID: PMC8374108 DOI: 10.1007/s11356-021-15556-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/17/2021] [Indexed: 05/09/2023]
Abstract
Numerous studies have linked outdoor levels of PM2.5, PM10, NO2, O3, SO2, and other air pollutants to significantly higher rates of Covid 19 morbidity and mortality, although the rate in which specific concentrations of pollutants increase Covid 19 morbidity and mortality varies widely by specific country and study. As little as a 1-μg/m3 increase in outdoor PM2.5 is estimated to increase rates of Covid 19 by as much as 0.22 to 8%. Two California studies have strongly linked heavy wildfire burning periods with significantly higher outdoor levels of PM2.5 and CO as well as significantly higher rates of Covid 19 cases and deaths. Active smoking has also been strongly linked significantly increased risk of Covid 19 severity and death. Other exposures possibly related to greater risk of Covid 19 morbidity and mortality include incense, pesticides, heavy metals, dust/sand, toxic waste sites, and volcanic emissions. The exact mechanisms in which air pollutants increase Covid 19 infections are not fully understood, but are probably related to pollutant-related oxidation and inflammation of the lungs and other tissues and to the pollutant-driven alternation of the angiotensin-converting enzyme 2 in respiratory and other cells.
Collapse
Affiliation(s)
- Luke Curtis
- East Carolina University, Greenville, NC, 5371 Knollwood Parkway Court #F, Hazelwood, MO, 63042, USA.
| |
Collapse
|
34
|
Mishra R, Chauhan A, Singh RP, Mishra NC, Mishra R. Improvement of atmospheric pollution in the capital cities of US during COVID-19. ACTA ACUST UNITED AC 2021; 8:3159-3176. [PMID: 34514080 PMCID: PMC8421195 DOI: 10.1007/s40808-021-01269-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/27/2021] [Indexed: 12/28/2022]
Abstract
The spread of COVID-19 during 2020 impacted the whole world and still affecting the lives of people living in some parts of the world. The spread of this epidemic started in the US in late March 2020 and became a major issue in April due to an outburst of COVID-19 cases. Most of the countries in the world imposed complete to partial lockdown, but in the US, few states imposed lockdowns. Even after the advisory of the various Government department, the mobility data suggest that there was an enhancement (10–15%) in mobility during March 2020. Later sudden drop in mobility was observed during April 2020. The fall in aerosols optical depth (AOD), particulate matter concentration, NO2, and Ozone are observed along with the positive shifts in the SO2. In some of the states, AOD shows pronounced decline during May and June (5–40.90%), in the month of May more than 80% decline was observed compared to the month of June 2020. In the month of April 2020, up to 73.64% decline was observed in NO2, and 70–99% in the months of May and June 2020. We found a good relationship between the mobility data and improvement in the air quality of the US. The changes were not significant compared to other countries in the world due to scattered lockdown policy, but in the US a pronounced change is observed during April month compared to March and May.
Collapse
Affiliation(s)
- Ritvik Mishra
- Cosumnes Oak High School, 8350 Lotz Parkway, Elk Grove, CA 95757 USA
| | - Akshansha Chauhan
- Center for Space and Remote Sensing Research, National Central University, Taoyuan, 32001 Taiwan
| | - Ramesh P Singh
- School of Life and Environmental Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA-92866 USA
| | - N C Mishra
- Trinity Technology Group, Suite 105, 2015 J Street, Sacramento, CA 95757 USA
| | - Rozalin Mishra
- Pacific Gas & Electric, 3136 Boeing Way, Stockton, CA 95204 USA
| |
Collapse
|
35
|
Effect of Environmental Pollutants PM2.5, CO, NO 2, and O 3 on the Incidence and Mortality of SARS-CoV-2 Infection in Five Regions of the USA. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18157810. [PMID: 34360104 PMCID: PMC8345586 DOI: 10.3390/ijerph18157810] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/12/2021] [Accepted: 07/13/2021] [Indexed: 11/22/2022]
Abstract
In recent decades, environmental pollution has become a significant international public problem in developing and developed nations. Various regions of the USA are experiencing illnesses related to environmental pollution. This study aims to investigate the association of four environmental pollutants, including particulate matter (PM2.5), carbon monoxide (CO), Nitrogen dioxide (NO2), and Ozone (O3), with daily cases and deaths resulting from SARS-CoV-2 infection in five regions of the USA, Los Angeles, New Mexico, New York, Ohio, and Florida. The daily basis concentrations of PM2.5, CO, NO2, and O3 were documented from two metrological websites. Data were obtained from the date of the appearance of the first case of (SARS-CoV-2) in the five regions of the USA from 13 March to 31 December 2020. Regionally (Los Angeles, New Mexico, New York, Ohio, and Florida), the number of cases and deaths increased significantly along with increasing levels of PM2.5, CO, NO2 and O3 (p < 0.05), respectively. The Poisson regression results further depicted that, for each 1 unit increase in PM2.5, CO, NO2 and O3 levels, the number of SARS-CoV-2 infections significantly increased by 0.1%, 14.8%, 1.1%, and 0.1%, respectively; for each 1 unit increase in CO, NO2, and O3 levels, the number of deaths significantly increased by 4.2%, 3.4%, and 1.5%, respectively. These empirical estimates demonstrate an association between the environmental pollutants PM2.5, CO, NO2, and O3 and SARS-CoV-2 infections, showing that they contribute to the incidence of daily cases and daily deaths in the five different regions of the USA. These findings can inform health policy decisions about combatting the COVID-19 pandemic outbreak in these USA regions and internationally by supporting a reduction in environmental pollution.
Collapse
|
36
|
Meo SA, Abukhalaf AA, Alomar AA, Alessa OM, Sami W, Klonoff DC. Effect of environmental pollutants PM-2.5, carbon monoxide, and ozone on the incidence and mortality of SARS-COV-2 infection in ten wildfire affected counties in California. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021. [PMID: 33321340 DOI: 10.1016/j.scitotenv.2020.1439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Various regions of California have experienced a large number of wildfires this year, at the same time the state has been experiencing a large number of cases of and deaths from Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The present study aimed to investigate the relationship of wildfire allied pollutants, including particulate matter (PM-2.5 μm), carbon monoxide (CO), and Ozone (O3) with the dynamics of new daily cases and deaths due to SARS-COV 2 infection in 10 counties, which were affected by wildfire in California. The data on COVID-19 pertaining to daily new cases and deaths was recorded from Worldometer Web. The daily PM-2.5 μm, CO, and O3 concentrations were recorded from three metrological websites: BAAQMD- Air Quality Data; California Air Quality Index-AQI; and Environmental Protection Agency- EPA. The data recorded from the date of the appearance of first case of (SARS-CoV-2) in California region to the onset of wildfire, and from the onset of wildfire to September 22, 2020. After the wildfire, the PM2.5 concentration increased by 220.71%; O3 by 19.56%; and the CO concentration increased by 151.05%. After the wildfire, the numbers of cases and deaths due to COVID-19 both increased respectively by 56.9% and 148.2%. The California wildfire caused an increase in ambient concentrations of toxic pollutants which were temporally associated with an increase in the incidence and mortality of COVID-19.
Collapse
Affiliation(s)
- Sultan Ayoub Meo
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | | | - Ali Abdullah Alomar
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Omar Mohammed Alessa
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Waqas Sami
- Department of Community Medicine and Public Health, College of Medicine, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - David C Klonoff
- Diabetes Research Institute, Mills-Peninsula Medical Center, San Mateo, CA, USA
| |
Collapse
|
37
|
Meo SA, Abukhalaf AA, Alomar AA, Alessa OM, Sami W, Klonoff DC. Effect of environmental pollutants PM-2.5, carbon monoxide, and ozone on the incidence and mortality of SARS-COV-2 infection in ten wildfire affected counties in California. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143948. [PMID: 33321340 PMCID: PMC7685934 DOI: 10.1016/j.scitotenv.2020.143948] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/15/2020] [Accepted: 11/15/2020] [Indexed: 05/07/2023]
Abstract
Various regions of California have experienced a large number of wildfires this year, at the same time the state has been experiencing a large number of cases of and deaths from Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The present study aimed to investigate the relationship of wildfire allied pollutants, including particulate matter (PM-2.5 μm), carbon monoxide (CO), and Ozone (O3) with the dynamics of new daily cases and deaths due to SARS-COV 2 infection in 10 counties, which were affected by wildfire in California. The data on COVID-19 pertaining to daily new cases and deaths was recorded from Worldometer Web. The daily PM-2.5 μm, CO, and O3 concentrations were recorded from three metrological websites: BAAQMD- Air Quality Data; California Air Quality Index-AQI; and Environmental Protection Agency- EPA. The data recorded from the date of the appearance of first case of (SARS-CoV-2) in California region to the onset of wildfire, and from the onset of wildfire to September 22, 2020. After the wildfire, the PM2.5 concentration increased by 220.71%; O3 by 19.56%; and the CO concentration increased by 151.05%. After the wildfire, the numbers of cases and deaths due to COVID-19 both increased respectively by 56.9% and 148.2%. The California wildfire caused an increase in ambient concentrations of toxic pollutants which were temporally associated with an increase in the incidence and mortality of COVID-19.
Collapse
Affiliation(s)
- Sultan Ayoub Meo
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | | | - Ali Abdullah Alomar
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Omar Mohammed Alessa
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Waqas Sami
- Department of Community Medicine and Public Health, College of Medicine, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - David C Klonoff
- Diabetes Research Institute, Mills-Peninsula Medical Center, San Mateo, CA, USA
| |
Collapse
|
38
|
Barceló MA, Saez M. Methodological limitations in studies assessing the effects of environmental and socioeconomic variables on the spread of COVID-19: a systematic review. ENVIRONMENTAL SCIENCES EUROPE 2021; 33:108. [PMID: 34522574 PMCID: PMC8432444 DOI: 10.1186/s12302-021-00550-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/03/2021] [Indexed: 05/08/2023]
Abstract
BACKGROUND While numerous studies have assessed the effects of environmental (meteorological variables and air pollutants) and socioeconomic variables on the spread of the COVID-19 pandemic, many of them, however, have significant methodological limitations and errors that could call their results into question. Our main objective in this paper is to assess the methodological limitations in studies that evaluated the effects of environmental and socioeconomic variables on the spread of COVID-19. MAIN BODY We carried out a systematic review by conducting searches in the online databases PubMed, Web of Science and Scopus up to December 31, 2020. We first excluded those studies that did not deal with SAR-CoV-2 or COVID-19, preprints, comments, opinion or purely narrative papers, reviews and systematic literature reviews. Among the eligible full-text articles, we then excluded articles that were purely descriptive and those that did not include any type of regression model. We evaluated the risk of bias in six domains: confounding bias, control for population, control of spatial and/or temporal dependence, control of non-linearities, measurement errors and statistical model. Of the 5631 abstracts initially identified, we were left with 132 studies on which to carry out the qualitative synthesis. Of the 132 eligible studies, we evaluated 63.64% of the studies as high risk of bias, 19.70% as moderate risk of bias and 16.67% as low risk of bias. CONCLUSIONS All the studies we have reviewed, to a greater or lesser extent, have methodological limitations. These limitations prevent conclusions being drawn concerning the effects environmental (meteorological and air pollutants) and socioeconomic variables have had on COVID-19 outcomes. However, we dare to argue that the effects of these variables, if they exist, would be indirect, based on their relationship with social contact. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1186/s12302-021-00550-7.
Collapse
Affiliation(s)
- Maria A. Barceló
- Research Group On Statistics, Econometrics and Health (GRECS), and CIBER of Epidemiology and Public Health (CIBERESP), University of Girona, Carrer de la Universitat de Girona 10, Campus de Montilivi, 17003 Girona, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Marc Saez
- Research Group On Statistics, Econometrics and Health (GRECS), and CIBER of Epidemiology and Public Health (CIBERESP), University of Girona, Carrer de la Universitat de Girona 10, Campus de Montilivi, 17003 Girona, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|