1
|
Chaudhary M, Rawat S, Suthar S. Microplastic in upper Himalayan Ganga river: Occurrence, seasonal dynamics and ecological risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 967:178824. [PMID: 39952209 DOI: 10.1016/j.scitotenv.2025.178824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/27/2025] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
Ganga river supports about 500 million population in the Gangetic Plain. Still, the occurrence of toxic pollutants in the Ganga river is an emerging concern, questioning its ecological health. This study is the first to quantify the microplastic (MP) and its characteristics, seasonal dynamics (pre-monsoon and post-monsoon), and environmental risk in the 19 sites (sample size, n = 228) in the upper Himalayan stretch of Ganga (Devprayag, Zone-I; Rishikesh, Zone-II; Haridwar, Zone-III) with multiples sampling (6 months). Average MP particles were found in the range of 100-1550 particles/L in water and 50-1300 particles/kg in sediment samples. MP flux showed an increased trend (Zone-I < Zone-II < Zone-III) while the river flows from the foothills of the Himalayas to densely populated bank cities. MP-sized 500 μm to 5 mm were dominant in sediment (45.68 %) and water (52.73 %) during pre-monsoon. MP-sized 500 μm to 5 mm, 250 μm to 500 μm, and 50 μm to 250 μm were found to be 45.68 %, 27.57 %, and 26.75 % in water and 52.73 %, 23.03 %, and 24.24 % in sediments, respectively with abundance during post-monsoon. μATR-FTIR analysis revealed polyethylene, polyamides and polystyrene as dominant polymers and no drastic change occurred in polymer types between studied seasons. The fibers were the predominant particle type, followed by fragments and films across the studied stretch of the Ganga river. The pollution load index suggested that Zone-I and Zone-II fall under hazard category 1 while Zone-III in category 2. Polymer hazard index and potential ecological risk index data suggested an extreme pollution level of MP in a studied stretch of the Ganga river. This study emphasizes the adverse impacts of beach activities, tourist accommodations, and open waste disposals on river health, highlighting the urgent action required for effective plastic waste management. We urged a comprehensive study on MPs in the Ganga river basin, which serves as pathways and sinks for these particles into the ocean.
Collapse
Affiliation(s)
- Manish Chaudhary
- School of Environment & Natural Resources, Doon University, Dehradun 248001, India
| | - Suman Rawat
- School of Environment & Natural Resources, Doon University, Dehradun 248001, India
| | - Surindra Suthar
- School of Environment & Natural Resources, Doon University, Dehradun 248001, India.
| |
Collapse
|
2
|
Ma J, Ma M, Li J, Yang Q, Wan Y, Zhao K, Zhang Y, Liu L, Fei X. Distribution and characteristics of Microplastics in leachate and underneath soil of two informal landfills. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 195:155-166. [PMID: 39921969 DOI: 10.1016/j.wasman.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/14/2025] [Accepted: 02/02/2025] [Indexed: 02/10/2025]
Abstract
Microplastics (MPs), an emerging pollutant, have garnered global attention as significant environmental concerns. Landfills are the major sources of MPs. However, research on the distribution and characteristics of MPs in leachate and underneath soil of informal landfills remains limited. This study investigated the abundance, polymer type, size, and morphology of MPs in 6 leachate samples and 18 underneath soil samples at different depths from two informal landfills. The ranges of MPs abundance in leachate and underneath soil from landfills were 4,010-33,213 items/Land 592-870 to 47,819 items/kg, related to the landfilled waste composition. MPs size between 20 and 100 µm accounted for the highest proportion (70 %). The fragmentation coefficient α in the underneath soil was higher than that in the leachate, indicating smaller MPs were more likely to migrate into underneath soil after filtration. The fibrous MPs proportion was below 22 %, while the fragmented MPs was more than 78 %. Large fibrous MPs were detected in the underneath soil in landfill A. Polyethylene Terephthalate (PET), Polyurethane (PU) and Polystyrene (PS) were the predominant MPs polymers types in leachate and underneath soil. Polypropylene (PP) was primarily concentrated in the upper and middle underneath soil layers, and Polyurethane (PU) was predominantly in the middle and lower layers. Principal component analysis (PCA) results indicated that geographical factors significantly influenced the distribution and characteristics of MPs. This study revealed the distribution of MPs in leachate and underneath soil at different depths, providing a valuable reference for the risk assessment of MPs pollution.
Collapse
Affiliation(s)
- Jun Ma
- College of Transportation Engineering, Dalian Maritime University, Dalian 116026, China
| | - Ming Ma
- College of Transportation Engineering, Dalian Maritime University, Dalian 116026, China
| | - Jiangshan Li
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; IRSM-CAS/HK PolyU Joint Laboratory on Solid Waste Science, Wuhan 430071, China; Hubei Province Key Laboratory of Contaminated Sludge and Soil Science and Engineering, Wuhan 430071, China
| | - Qirui Yang
- Houston International Institute, Dalian Maritime University, Dalian 116026, China
| | - Yong Wan
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; IRSM-CAS/HK PolyU Joint Laboratory on Solid Waste Science, Wuhan 430071, China; Hubei Province Key Laboratory of Contaminated Sludge and Soil Science and Engineering, Wuhan 430071, China
| | - Kai Zhao
- Department of Information Science and Technology, Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, 116026 China
| | - Yi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lei Liu
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; IRSM-CAS/HK PolyU Joint Laboratory on Solid Waste Science, Wuhan 430071, China; Hubei Province Key Laboratory of Contaminated Sludge and Soil Science and Engineering, Wuhan 430071, China
| | - Xunchang Fei
- School of Civil and Environmental Engineering, Nanyang Technological University, Nanyang Avenue, 639798, Singapore.
| |
Collapse
|
3
|
Zeng Y, Cai J, Zhu Y, Wang J, Guo R, Jian L, Zheng X, Mai BX. Species-specific accumulation of microplastics in different bird species from South China: A comprehensive analysis. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136607. [PMID: 39591935 DOI: 10.1016/j.jhazmat.2024.136607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/05/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024]
Abstract
Microplastics are widespread in many bird species, but the inter-specific variations of microplastic contamination are still unclear. The present study measured microplastics in 24 bird species from South China and investigated the impacts of bird physiological and ecological traits on microplastic contamination. The median abundances of microplastics ranged between 5-167 particles per individual or 0.023-3.58 particles per g body weight. Approximately 60 % of microplastics were within the size range 20-50 µm, with the primary polymer types of polypropylene (PP) and polyethylene terephthalate (PET). There was no significant correlation between microplastic abundances and bird body weights and trophic levels (δ15N) in different bird species. Insectivorous birds had significantly higher abundances of microplastics smaller than 0.1 mm than granivorous, piscivorous, and carnivorous birds (p < 0.01), which was further supported by the meta-analysis of microplastic contamination in birds. On contrary, meta-analysis results indicate that piscivorous birds tend to accumulate larger microplastics (> 1 mm) than other bird species. Microplastic contamination in different bird species was more influenced by diet source rather than trophic level and body weight. Potential ecotoxicological risks were observed for most insectivorous species in the preliminary risk assessment. Particular concern should be paid on insectivorous birds, which have been scarcely studied for microplastics but were at high exposure risks of microplastics among bird species.
Collapse
Affiliation(s)
- Ying Zeng
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Junjie Cai
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yujing Zhu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jichao Wang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Rui Guo
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Li Jian
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China
| | - Xiaobo Zheng
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| |
Collapse
|
4
|
Yu R, Li P, Shen R. Collaborative removal of microplastics, bacteria, antibiotic resistance genes, and heavy metals in a full-scale wastewater treatment plant. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2025; 91:438-452. [PMID: 40018901 DOI: 10.2166/wst.2025.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/28/2025] [Indexed: 03/01/2025]
Abstract
Plastics are used in large quantities in food packaging and industrial products in China, which results in ecological risks of microplastics (MPs) to the environment. In this study, the MPs' removal efficiency of a full-scale wastewater treatment plant (WWTP) and the internal interaction of microorganisms, antibiotic resistance genes (ARGs), and heavy metals with MPs were investigated. The dominant MPs in urban sewage were polyurethane (PU), acrylate copolymer (ACR), fluororubber, and polyethylene. MPs in wastewater were removed by WWTP with a total efficiency of 76%. The removal efficiencies of ACR, ethylene-vinyl acetate copolymer, polybutadiene, poly(tetrafluoroethylene), polystyrene, and polypropylene reached 100%. The highest concentration of MPs PU in the influent got a removal efficiency of 93.41%. The interactions between MPs, heavy metals, microorganisms, and ARGs involved adsorption, hydrogen bonds, coprecipitation, and polar interaction. Heavy metals and MPs formed larger aggregated particles, which were removed in the primary process. Heavy metals accumulated in sludge pose ecological risks to soil during landfill or compost to fertilizer. The release of MPs from WWTPs leads to accumulation in organisms and soil. It may affect the entire food chain and promote the transmission of ARGs in the environment, posing potential threats to the entire ecosystem.
Collapse
Affiliation(s)
- Ran Yu
- Department of Bioengineering, Beijing Polytechnic, Daxing District, Beijing 100176, China
| | - Peng Li
- Xinkai Environment Investment Co., Ltd, Tongzhou District, Beijing 101101, China; Beijing Zhiyu Tiancheng Design Consulting Co., Ltd, Tongzhou District, Beijing 101101, China E-mail:
| | - Rong Shen
- Department of Bioengineering, Beijing Polytechnic, Daxing District, Beijing 100176, China
| |
Collapse
|
5
|
Shahzad K, Hasan A, Hussain Naqvi SK, Parveen S, Hussain A, Ko KC, Park SH. Recent advances and factors affecting the adsorption of nano/microplastics by magnetic biochar. CHEMOSPHERE 2025; 370:143936. [PMID: 39667528 DOI: 10.1016/j.chemosphere.2024.143936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
The increase in nano/microplastics (NPs/MPs) from various everyday products entering aquatic environments highlights the urgent need to develop mitigation strategies. Biochar (BC), known for its excellent adsorption capabilities, can effectively target various harmful organic and inorganic pollutants. However, traditional methods involving powdered BC necessitate centrifugation and filtration, which can lead to the desorption of pollutants and subsequent secondary pollution. Magnetic biochar (MBC) offers a solution that facilitates straightforward and rapid separation from water through magnetic techniques. This review provides the latest insights into the progress made in MBC applications for the adsorption of NPs/MPs. This review further discusses how external factors such as pH, ionic strength, temperature, competing ions, dissolved organic matter, aging time, and particle size impact the MBC adsorption efficiency of MPs. The use of machine learning (ML) for optimizing the design and properties of BC materials is also briefly addressed. Finally, this review addresses existing challenges and future research directions aimed at improving the large-scale application of MBC for NPs/MPs removal.
Collapse
Affiliation(s)
- Khurram Shahzad
- Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea; Radiation Science, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Areej Hasan
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Syed Kumail Hussain Naqvi
- Graduate School of Integrated Energy-AI, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Saima Parveen
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Abrar Hussain
- Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea; Radiation Science, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Kyong-Cheol Ko
- Korea Preclinical Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34113, Republic of Korea.
| | - Sang Hyun Park
- Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea; Radiation Science, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
6
|
Asadi MJ, Ghayebzadeh M, Maryam Seyed Mousavi S, Taghipour H, Aslani H. Investigating the amount of macro, meso, and microplastics in the surface soil around the landfill of Tabriz and the effect of the prevailing wind on their distribution. Heliyon 2025; 11:e42143. [PMID: 39911420 PMCID: PMC11795091 DOI: 10.1016/j.heliyon.2025.e42143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/12/2025] [Accepted: 01/20/2025] [Indexed: 02/07/2025] Open
Abstract
Environmental pollution with plastic and microplastics (MPs) is a global problem. This study investigates macro, meso, and MPs in the soil around the Tabriz landfill in northwest Iran and the effect of prevailing wind on their distribution. One control sample and one sample from the landfill itself, 20 samples in four directions at regular intervals in the direction of the prevailing wind and against it, and two perpendicular directions (22 samples) were taken and analyzed. The results showed that the landfill is poorly managed, and in fact, it is an unsanitary landfill/dump site. The soil around it is polluted with the average abundance of macro, meso, and MPs equal to 6.5 ± 10.4 item/kg(dw), 15.5 ± 28.3 item/kg(dw), and 470 ± 193 item/kg(dw) respectively. The prevailing wind in the region has had no significant effect on the dispersion and distribution of MPs. The most abundant MPs in the soil of the studied area belonged to fragment and film-shaped particles, respectively, and the most abundant color was white. Indiscriminate use of plastics, especially single-use plastics, lack of attention to the hierarchy of waste management, as well as the lack of proper management of the landfill and turning it into a waste dump, are among the most important reasons for the presence of macro, meso, and MPs in the soil of the studied landfill.
Collapse
Affiliation(s)
- Mohamad Javad Asadi
- Department of Environmental Health Engineering, School of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Ghayebzadeh
- Department of Environmental Health Engineering, School of Health, Zahedan University of Medical Sciences, Zahedan, Iran
- Infectious Diseases and Tropical Medicine Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Seyedeh Maryam Seyed Mousavi
- Department of Environmental Health Engineering, School of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Taghipour
- Health and Environment Research Center, School of Public Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Aslani
- Department of Environmental Health Engineering, School of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Haritwal DK, Singh P, Ramana GV, Datta M. Application of high-resolution site characterisation tools and sampling methods for assessing microplastic migration beneath MSW dumpsites. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137384. [PMID: 39892145 DOI: 10.1016/j.jhazmat.2025.137384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/18/2025] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
The study addresses a significant environmental issue: the accumulation of microplastics (MPs) in municipal solid waste (MSW) dumpsites and their migration into deeper soil and groundwater (GW). Given the global increase in plastic production and limited waste management, this topic is highly relevant. Furthermore, many studies lack robust methodologies for tracking MP movement through complex soil strata. This study presents an innovative approach, employing advanced site characterisation and sampling techniques, including cone penetration test (CPT), hydraulic profiling tool (HPT), continuous soil sampling, and discrete GW sampling. This integrated method facilitates the identification of high-permeability zones, enabling large-depth sampling while reducing cross-contamination risk. Key findings reveal a substantial MSW layer containing plastics, textiles, and metals in specific zones, while natural soils dominate other areas. Unsaturated zones are mainly sandy, with occasional low-compressibility clay layers. MP concentrations are notably high at the MSW-soil interface 6600-8800 items/kg and decrease significantly with depth to 300-700 items/kg in saturated zones. Smaller MPs (<500 µm), mainly polyethylene, polypropylene, polyamide, and polyester, dominate soil samples. In GW, MP levels range from 26 to 171 items/L, with fibers (<250 µm) comprising about 80 % of MPs, highlighting subsurface soils as partial barriers to MP migration.
Collapse
Affiliation(s)
- Deepak Kumar Haritwal
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Pranjal Singh
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - G V Ramana
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Manoj Datta
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
8
|
Hess KZ, Forsythe KR, Wang X, Arredondo-Navarro A, Tipling G, Jones J, Mata M, Hughes V, Martin C, Doyle J, Scott J, Minghetti M, Jilling A, Cerrato JM, El Hayek E, Gonzalez-Estrella J. Emerging investigator series: open dumping and burning: an overlooked source of terrestrial microplastics in underserved communities. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:52-62. [PMID: 39492799 PMCID: PMC11533025 DOI: 10.1039/d4em00439f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024]
Abstract
Open dumping and burning of solid waste are widely practiced in underserved communities lacking access to solid waste management facilities; however, the generation of microplastics from these sites has been overlooked. We report elevated concentrations of microplastics (MPs) in soil of three solid waste open dump and burn sites: a single-family site in Tuttle, Oklahoma, USA, and two community-wide sites in Crow Agency and Lodge Grass, Montana, USA. We extracted, quantified, and characterized MPs from two soil depths (0-9 cm and 9-18 cm). The average of abundance of particles found at community-wide sites three sites (18, 460 particles kg-1 soil) equals or exceeds reported concentrations from currently understood sources of MPs including biosolids application and other agricultural practices. Attenuated total reflectance Fourier transformed infrared (ATR-FTIR) identified polyethylene as the dominant polymer across all sites (46.2-84.8%). We also detected rayon (≤11.5%), polystyrene (up to 11.5%), polyethylene terephthalate (≤5.1), polyvinyl chloride (≤4.4%), polyester (≤3.1), and acrylic (≤2.2%). Burned MPs accounted for 76.3 to 96.9% of the MPs found in both community wide dumping sites. These results indicate that solid waste dumping and burning activities are a major source of thermally oxidized MPs for the surrounding terrestrial environment with potential to negatively affect underserved communities.
Collapse
Affiliation(s)
- Kendra Z Hess
- School of Civil & Environmental Engineering, Oklahoma State University, 248 Engineering North, Stillwater 74078, Oklahoma, USA.
| | - Kyle R Forsythe
- School of Civil & Environmental Engineering, Oklahoma State University, 248 Engineering North, Stillwater 74078, Oklahoma, USA.
| | - Xuewen Wang
- School of Civil & Environmental Engineering, Oklahoma State University, 248 Engineering North, Stillwater 74078, Oklahoma, USA.
| | - Andrea Arredondo-Navarro
- School of Civil & Environmental Engineering, Oklahoma State University, 248 Engineering North, Stillwater 74078, Oklahoma, USA.
| | - Gwen Tipling
- School of Civil & Environmental Engineering, Oklahoma State University, 248 Engineering North, Stillwater 74078, Oklahoma, USA.
| | - Jesse Jones
- School of Civil & Environmental Engineering, Oklahoma State University, 248 Engineering North, Stillwater 74078, Oklahoma, USA.
| | - Melissa Mata
- School of Civil & Environmental Engineering, Oklahoma State University, 248 Engineering North, Stillwater 74078, Oklahoma, USA.
| | - Victoria Hughes
- School of Civil & Environmental Engineering, Oklahoma State University, 248 Engineering North, Stillwater 74078, Oklahoma, USA.
| | | | - John Doyle
- Little Bighorn College, Crow Agency, MT 59022, USA
| | - Justin Scott
- School of Civil & Environmental Engineering, Oklahoma State University, 248 Engineering North, Stillwater 74078, Oklahoma, USA.
| | - Matteo Minghetti
- Department of Integrative Biology, Oklahoma State University, Stillwater 74078, Oklahoma, USA
| | - Andrea Jilling
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC 29201, USA
| | - José M Cerrato
- Gerald May Department of Civil, Construction & Environmental Engineering, University of New Mexico, MSC01 1070, Albuquerque, New Mexico 87131, USA
| | - Eliane El Hayek
- Department of Pharmaceutical Sciences, University of New Mexico, College of Pharmacy, MSC09 5360, Albuquerque, New Mexico, 87131, USA
| | - Jorge Gonzalez-Estrella
- School of Civil & Environmental Engineering, Oklahoma State University, 248 Engineering North, Stillwater 74078, Oklahoma, USA.
| |
Collapse
|
9
|
Naidu BC, Xavier KAM, Sahana MD, Landge AT, Jaiswar AK, Shukla SP, Ranjeet K, Nayak BB. Temporal variability of microplastics in shrimp (Litopenaeus vannamei), feed, water and sediments of coastal and inland culture ponds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178173. [PMID: 39709842 DOI: 10.1016/j.scitotenv.2024.178173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
Aquaculture, particularly shrimp farming, is crucial for global food security. However, the increasing presence of microplastics (MPs) in marine environments, shrimp feeds, and atmospheric particles has made MP contamination in shrimp tissues inevitable. This study systematically investigates the abundance, characteristics, and temporal trends (from 15th to the 120th day of culture) of MPs contamination in Litopenaeus vannamei, along with associated feed, water, and sediment across 12 shrimp ponds of two major shrimp-producing regions of India. MPs were detected in 93.7 % of shrimp samples and all environmental matrices, with the highest abundance recorded in coastal culture ponds. The overall average MPs abundance in shrimp was 4.07 items/individual (1.24 MPs items/g). MP sizes ranged from 8 μm to 4.22 mm, with MPs smaller than 100 μm being predominant in shrimp samples, though their prevalence decreased over the culture period. Fragments and fibers were the dominant morphotypes across all matrices, with a shift towards larger MPs and an increased proportion of fibers and films over time. Micro FTIR analyses revealed polyethylene (PE) and polypropylene (PP) were the most common polymers detected, indicating their widespread environmental distribution. Feed was identified as the primary source of MPs contamination in shrimp. The presence of MPs in shrimp raises significant concerns for consumer health, food safety, and trade, as shrimp are among the most widely consumed aquatic food products. This study underscores the dynamics of MP contamination in shrimp aquaculture and highlights the urgent need for targeted strategies to mitigate contamination, ensuring consumer safety and industry sustainability.
Collapse
Affiliation(s)
- Bejawada Chanikya Naidu
- ICAR - Central Institute of Fisheries Education, Versova, Mumbai 400061, Maharashtra, India; ICAR - Central Institute of Fisheries Technology, Kochi 682029, Kerala, India
| | - K A Martin Xavier
- ICAR - Central Institute of Fisheries Education, Versova, Mumbai 400061, Maharashtra, India; ICAR - Central Institute of Fisheries Technology, Kochi 682029, Kerala, India.
| | - M D Sahana
- ICAR - Central Institute of Fisheries Education, Versova, Mumbai 400061, Maharashtra, India
| | - Asha T Landge
- ICAR - Central Institute of Fisheries Education, Versova, Mumbai 400061, Maharashtra, India
| | - Ashok Kumar Jaiswar
- ICAR - Central Institute of Fisheries Education, Versova, Mumbai 400061, Maharashtra, India
| | - Satya Prakash Shukla
- ICAR - Central Institute of Fisheries Education, Versova, Mumbai 400061, Maharashtra, India
| | - K Ranjeet
- Kerala University of Fisheries and Ocean Studies, Kochi 682506, Kerala, India
| | - Binaya Bhusan Nayak
- ICAR - Central Institute of Fisheries Education, Versova, Mumbai 400061, Maharashtra, India
| |
Collapse
|
10
|
Liu W, Wang Y, Gu C, Wang J, Dai Y, Maryam B, Chen X, Yi X, Liu X. Polyethylene microplastics distinctly affect soil microbial community and carbon and nitrogen cycling during plant litter decomposition. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123616. [PMID: 39653617 DOI: 10.1016/j.jenvman.2024.123616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/23/2024] [Accepted: 12/01/2024] [Indexed: 01/15/2025]
Abstract
Plant litter is an important input source of carbon and nitrogen in soil. While microplastics (MPs) and plant litter are ubiquitously present in soil, their combined impact on soil biogeochemical processes remains poorly understood. To address this gap, we examined the soil changes resulting from the coexistence of plant litter (Alfalfa) and polyethylene microplastics (PE). The soil changes included physicochemical properties, composition of soil dissolved organic matter, and structure of the soil microbial community. The results showed that the addition of polyethylene (PE) inhibited the degradation of humus-like substances and decreased the quantity of humic acid-like compounds in soil dissolved organic matter (DOM). PE negatively impacted plant litter decomposition, disrupted soil organic carbon (SOC) breakdown, interfered with the nitrogen cycle, and significantly altered microbial community structures during the process. By day 35, SOC and total nitrogen (TN) levels were reduced by 39.8% and 10.1%, respectively, in the presence of PE. Furthermore, PE significantly decreased the abundance of nitrogen-fixing microbes, including Streptomyces (43.1%) and Bacillus (45.9%), which play key roles in nitrate reduction to ammonium. This study highlights the environmental effects of MPs on plant litter decomposition and their potential implications for soil biogeochemical processes.
Collapse
Affiliation(s)
- Wanxin Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, China
| | - Yi Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, China
| | - Chunbo Gu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, China
| | - Jiao Wang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Yexin Dai
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, China
| | - Bushra Maryam
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, China
| | - Xiaochen Chen
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xianliang Yi
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 116024, China
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, China.
| |
Collapse
|
11
|
Jaafarzadeh N, Reshadatian N, Feyzi Kamareh T, Sabaghan M, Feizi R, Jorfi S. Study of the litter in the urban environment as primary and secondary microplastics sources. Sci Rep 2024; 14:31645. [PMID: 39738160 PMCID: PMC11685766 DOI: 10.1038/s41598-024-80611-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/19/2024] [Indexed: 01/01/2025] Open
Abstract
Microplastic is one of the most important environmental challenges of recent decades. Although the abundance of microplastics in water sources and water bodies such as the marine were investigated in many studies, knowing the sources of microplastics requires more studies. In this study, litter was investigated as one of the challenges of urban management and the sources of primary microplastic and secondary microplastic in the urban environment. For this purpose, Clean Environment Index and Cigarette Butt Pollution Index, were used to interpret the density of litter and estimate the abundance of microplastic resources in Khuzestan province, Iran. The results showed that the density of litter in the studied cities was 0.0001-0.6502 items/m2. The calculated clean environment index and cigarette butt pollution index were 0.211-35.05 and 0.112-12.897, respectively. The density of primary microplastic and secondary microplastic sources in the studied cities was 47,207-62,767 µg/m2 (average = 52782) and 2127-3140 µg/m2 (average = 2570), respectively. The abundance of primary microplastic due to littering in the studied cities was estimated at 150 g/year. Reducing the ratio of littering waste in the urban environment and increasing the efficiency of the urban cleaning service is necessary to manage the most dispersed source of microplastics in the urban environment.
Collapse
Affiliation(s)
- Nematollah Jaafarzadeh
- Environmental Technologies Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Neda Reshadatian
- Environmental Technologies Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Touran Feyzi Kamareh
- Research Assistant, Department of Plant Science, Fresno State University, Fresno, USA
| | | | - Rozhan Feizi
- Behbahan Faculty of Medical Sciences, Behbahan, Iran.
| | - Sahand Jorfi
- Environmental Technologies Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
12
|
Haritwal DK, Singh P, Ramana GV, Datta M. Advanced characterisation of groundwater contamination at a dumpsite: Methodology and assessment - Case study of a municipal solid waste dumpsite in India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177642. [PMID: 39579892 DOI: 10.1016/j.scitotenv.2024.177642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/24/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
Groundwater (GW) contamination due to municipal solid waste (MSW) disposal in open dumpsites is a pressing global issue. Traditional GW assessment studies are limited to single-depth sampling from nearby wells/handpumps, providing limited insights into subsurface soil characteristics and are prone to cross-contamination. The present study introduces an innovative methodology integrating advanced techniques: Cone Penetration Testing (CPT), Hydraulic Profiling Tool (HPT), Continuous Soil Sampling, and Discrete GW Sampling. Conducted at an operational dumpsite in New Delhi, India, from January to February 2023, the site investigation program covered seven distinct locations to incorporate the entire dumpsite area. The investigation proceeded in stages, starting with subsurface soil characterisation using CPT and HPT, followed by extracting soil and GW samples using CPT and HPT data. Due to restrictions in the northeast direction, GW samples were directly extracted from borewells. The results revealed maximum and minimum concentrations of 171 items/l and 26 items/l of MPs, while ionic concentration reached 13,200 ppm for Cl- and 4437 ppm for SO4-2. A maximum of 0.721 ppm, 0.663 ppm and 0.948 ppm concentration was observed for Ni, Cu and Mo in GW samples. Spearman correlation and principal component analysis underscore the influence of Ec, TDS, Na+1 and Cl-1 on GW quality. This integrated approach effectively identifies high-permeability layers, which are crucial for understanding contaminant dispersion, and ensures precise sampling at various depths with minimal cross-contamination. This research demonstrates the proposed methodology's effectiveness in providing more profound and precise insights into GW contamination dynamics and suggests its utility in forming the basis for more effective remediation and regulatory strategies.
Collapse
Affiliation(s)
- Deepak Kumar Haritwal
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Pranjal Singh
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Gunturi Venkata Ramana
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Manoj Datta
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
13
|
Chen L, Zhou Q, Wu M, Yuen KF, Huang R, Su R. Investigating the determinants of Singaporean citizens' attitudes toward marine litter pollution control: A policy acceptance model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177566. [PMID: 39566619 DOI: 10.1016/j.scitotenv.2024.177566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024]
Abstract
The problem of marine litter has caused significant threat to marine environment and human health, and has attracted wide attention. It is estimated that the weight of plastic waste in the oceans will exceed that of fish by 2050. Since a large part of marine debris originate from land-based domestic waste, developing relevant policies to manage the disposal of domestic garbage can effectively prevent and control marine litter pollution. Public attitudes toward relevant environmental policies will affect their implementation and final outcomes. However, there is little research on public attitudes toward environmental policies. Therefore, this study draws on the framework of Technology Acceptance Model (TAM) to explore the factors that affect public attitudes toward policy, the affect theory, trust theory and habit are integrated into the model. An online survey for Singaporean residents was conducted, 450 questionnaires were collected and 417 of which were used for data analysis. The results suggest that 13 of the 14 hypotheses presented in the model are accepted. Perceived ease of implementation (β = 0.365), perceived policy effectiveness (β = 0.341) and trust in government policy (β = 0.319) are the main factors that directly affect citizens' attitude toward environmental policy. Perceived policy effectiveness is positively affected by the perceived ease of implementation (β = 0.457), while trust in government policies is positively influenced by both perceived ease of implementation (β = 0.142) and perceived policy effectiveness (β = 0.373). The model showed good explanatory power, explaining 74.6 % of the variance in public attitude toward policy. In this study, a relatively complete model for predicting public acceptance of marine litter prevention policies is proposed for the first time. The model presented in this paper also has the potential to be applied to evaluate policies of various scenarios.
Collapse
Affiliation(s)
- Liren Chen
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, PR China; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Qingji Zhou
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, PR China; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore.
| | - Min Wu
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Kum Fai Yuen
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Renliang Huang
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, PR China.
| | - Rongxin Su
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China.
| |
Collapse
|
14
|
Rosa GP, da Silva da Costa M, de Moura Monteiro S. Export of macro plastics over a tidal cycle by through small urban rivers in the amazon. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125279. [PMID: 39532250 DOI: 10.1016/j.envpol.2024.125279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Plastic pollution in rivers has increased over the years and contributes to the pollution of the oceans. But knowledge of macroplastic flows in small, tidal-influenced urban rivers in the Amazon is still unclear, mainly due to a lack of understanding of the processes that control transport in rivers. Here, we provide the first estimate of the floating macroplastic flows in two tidally influenced urban rivers, based on continuous observations over a 12-h period. This period includes a tidal cycle (high and low tide), and the observation took place from a fixed bridge located on both rivers. A total of 8682 items of solid waste were observed in urban rivers, of which 80% were plastic. We found a bidirectional transport of waste throughout the tidal cycle, with maximum amounts of -198.5 items.hour-1 during high tide and 498.6 items.hour-1 during low tide. The largest quantities (1046.89) of items occurred during the ebb tide. These rivers in an Amazonian metropolis can contribute around 25.84 kg of macroplastic items per day. The results demonstrate the importance of tidal dynamics in the transport of waste in Amazonian rivers and indicate that urban rivers act as plastic exporters in the region.
Collapse
Affiliation(s)
- Gabriel Pompeu Rosa
- Laboratório de Pesquisa em Monitoramento Ambiental Marinho LAPMAR, Universidade Federal do Pará, Av. Augusto Corrêa s/n, Guamá, Belém, PA, 66075-110, Brazil.
| | - Mauricio da Silva da Costa
- Laboratório de Pesquisa em Monitoramento Ambiental Marinho LAPMAR, Universidade Federal do Pará, Av. Augusto Corrêa s/n, Guamá, Belém, PA, 66075-110, Brazil
| | - Sury de Moura Monteiro
- Laboratório de Pesquisa em Monitoramento Ambiental Marinho LAPMAR, Universidade Federal do Pará, Av. Augusto Corrêa s/n, Guamá, Belém, PA, 66075-110, Brazil
| |
Collapse
|
15
|
Páez-Osuna F, Valencia-Castañeda G, Bernot-Simon D, Arreguin-Rebolledo U. A critical review of microplastics in the shrimp farming environment: Incidence, characteristics, effects, and a first mass balance model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176976. [PMID: 39461520 DOI: 10.1016/j.scitotenv.2024.176976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024]
Abstract
This review provides a critical overview of the sources, incidence, accumulation, effects, and interactions of microplastics (MPs) with other contaminants in the shrimp aquaculture environment, emphasizing this sector's challenges and future implications. A first and novel mass MPs balance model was developed to explore the fate and fluxes of MPs within shrimp farming systems. Two literature searches were conducted: one focused on MPs, crustaceans, and shrimp in aquaculture, and other on the effects of MPs in crustaceans, emphasizing shrimp. A total of 78 and 461 peer-reviewed papers were retrieved, respectively. This review details aspects of MPs in the shrimp farming environment, including water, sediments, food, zooplankton, and shrimp tissues. MPs can act as vectors for contaminants, including biological and chemical substances commonly used in shrimp aquaculture. A primary concern is the interaction between MPs and pathogens; thus MPs can facilitate the transport and retention of disease-causing agents. Key questions involve identifying which pathogen groups are most efficiently transported by MPs and how this may exacerbate disease outbreaks in aquaculture. This suggests that microorganisms can establish on MPs surfaces to disseminate an infection. Therefore, the possibility of disease outbreaks and epidemics is expected to rise as MP abundance increases. The mass balance shows that the primary source of MPs is associated with water during the filled (19.3 %) and water exchange (77.2 %) of shrimp ponds, indicating that MPs in the water input play a critical role in the MP dynamic in the shrimp farming environment. However, this initial mass balance model has several weaknesses, including liming, atmospheric deposition, and natural food, which must be addressed as other MPs suppliers. Macrofauna that incidentally enters shrimp ponds may also constitute a significant part of the MPs inventory. Future research should focus on the impact of polystyrene and polyethylene fibers commonly found in crustacean tissues.
Collapse
Affiliation(s)
- Federico Páez-Osuna
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Unidad Académica Mazatlán, Calle Joel Montes Camarena s/n, Mazatlán, Sinaloa 82000, Mexico; Miembro de El Colegio de Sinaloa, Antonio Rosales 435, Culiacán 80000, Sinaloa, Mexico.
| | - Gladys Valencia-Castañeda
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Unidad Académica Mazatlán, Calle Joel Montes Camarena s/n, Mazatlán, Sinaloa 82000, Mexico
| | | | - Uriel Arreguin-Rebolledo
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Unidad Académica Mazatlán, Calle Joel Montes Camarena s/n, Mazatlán, Sinaloa 82000, Mexico; Programa de Estancias de Investigación DGAPA, UNAM, Mexico
| |
Collapse
|
16
|
Sima J, Song J, Du X, Lou F, Zhu Y, Lei J, Huang Q. Complete degradation of polystyrene microplastics through non-thermal plasma-assisted catalytic oxidation. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136313. [PMID: 39515143 DOI: 10.1016/j.jhazmat.2024.136313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/27/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
In this study, a two-stage system, involving plasma degradation coupled with plasma-assisted catalytic oxidation, was developed for the degradation of polystyrene microplastics (PS-MPs) at low temperatures. The dielectric barrier discharge (DBD) plasma contributed reactive oxygen species (ROS) for the degradation of PS-MPs, and the plasma-assisted Hopcalite catalyst selectively facilitated the final oxidation of by-products to CO2. Within 60 min, the conversion rate of PS-MPs to CO2, α(CO2), reached an impressive 98.4 %, indicating nearly complete and harmless degradation. It was found that relying solely on the thermal activation induced by plasma heating was insufficient for achieving complete conversion, emphasizing the multifaceted synergy of plasma-catalysis. Subsequently, the cycling experiments revealed that the assistance of plasma enhanced the deactivation resistance and stability of the catalyst. When dealing with PS-MPs at a concentration of 5 wt%, the plasma-assisted Hopcalite still exhibited 93.2 % α(COx) and 99.5 % relative CO2 content after 10 cycles. Additionally, characterization of the plasma-modified Hopcalite using various techniques suggested an enhancement in surface-adsorbed oxygen species. On the other hand, the packed catalyst improved the uniformity of the discharge plasma, while micro-discharges within the pores could further facilitate the oxidation reaction. This work provides new insights into the comprehensive treatment of MP pollution.
Collapse
Affiliation(s)
- Jingyuan Sima
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiaxing Song
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xudong Du
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
| | - Fangfang Lou
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
| | - Youqi Zhu
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiahui Lei
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qunxing Huang
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
17
|
Chen J, Huo L, Yuan Y, Jiang Y, Wang H, Hui K, Li Y, Huang Z, Xi B. Interactions between microplastics and heavy metals in leachate: Implications for landfill stabilization process. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135830. [PMID: 39276746 DOI: 10.1016/j.jhazmat.2024.135830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/30/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
The emission of microplastics and heavy metals in landfills has attracted widespread attention for its stabilization process. Microplastics have become carriers of heavy metals due to their adsorption properties, affecting their environmental behavior. However, the effects of landfill stabilization on the interaction between microplastics and heavy metals in leachate are ambiguous. This work explored the abundance characteristics of microplastics and heavy metals in leachate from 10 landfills in Beijing. Overall, the average abundance of microplastics was 196.3 items/L, dominated by small particle size (20-50 µm) and film microplastics. The levels of Cr and As were much higher than other heavy metals. The average abundance of microplastics and polymer types tended to decrease as the landfill stabilization proceeded, and the surface composition of microplastics became more complex. Statistical analysis revealed that the correlations between microplastics and heavy metals in the leachate of landfill stabilization presented significant parabolic characteristics, and Cr and As were more susceptible to landfill stabilization with significant positive correlation with a wide range of microplastics such as 20-30 µm. These results were intended to provide a scientific basis for the treatment and disposal of waste leachate and the synergistic prevention and control of new and traditional pollutants.
Collapse
Affiliation(s)
- Jiabao Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Lin Huo
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Swiss Federal Institute of Technology (ETH) Zurich, Universitaetstrasse 16, 8092 Zurich, Switzerland
| | - Ying Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yu Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hui Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Kunlong Hui
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yanjiao Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zekai Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
18
|
Giustra M, Sinesi G, Spena F, De Santes B, Morelli L, Barbieri L, Garbujo S, Galli P, Prosperi D, Colombo M. Microplastics in Cosmetics: Open Questions and Sustainable Opportunities. CHEMSUSCHEM 2024; 17:e202401065. [PMID: 39222323 PMCID: PMC11587687 DOI: 10.1002/cssc.202401065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/18/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
The cosmetic industry is now changing or rather having an ecological transition in which formulations such as creams, lotions, and powders for make-up, skin and hair care must not contain microplastics, now a taboo word in this field. Nowadays, many companies are intensifying their research and development (R&D) work to align with recent and future legislation that provides for their elimination to safeguard the ecosystem. The production of new eco-sustainable materials is currently a hot topic which finds its place in a market worth above 350 billion dollars which will reach more than 700 billion dollars in a very short time. This review offers an overview of the main advantages and adverse issues relating to the use of microplastics in cosmetics and of their impact, providing an insight into the properties of the polymeric materials that are currently exploited to improve the sensorial characteristics of cosmetic products. In addition, the various regulatory restrictions in the different geographical areas of the world are also described, which is matter for reflection on future direction. Finally, a prospective vision of possible solutions to replace microplastics with sustainable alternatives complete the picture of the next generation personal care products to support decision-making in the cosmetic marketplace.
Collapse
Affiliation(s)
- Marco Giustra
- NanoBioLab, Department of Biotechnology and BioscienceUniversity of Milano-BicoccaPiazza della Scienza, 220126MilanoItaly
- Nanobiotechnologies for Health Center, NANOMIBUniversity of Milano-BicoccaVia Raoul Follereau, 320854Vedano al Lambro, MBItaly
| | - Giulia Sinesi
- NanoBioLab, Department of Biotechnology and BioscienceUniversity of Milano-BicoccaPiazza della Scienza, 220126MilanoItaly
| | - Francesca Spena
- NanoBioLab, Department of Biotechnology and BioscienceUniversity of Milano-BicoccaPiazza della Scienza, 220126MilanoItaly
| | - Beatrice De Santes
- NanoBioLab, Department of Biotechnology and BioscienceUniversity of Milano-BicoccaPiazza della Scienza, 220126MilanoItaly
| | - Lucia Morelli
- NanoBioLab, Department of Biotechnology and BioscienceUniversity of Milano-BicoccaPiazza della Scienza, 220126MilanoItaly
| | - Linda Barbieri
- NanoBioLab, Department of Biotechnology and BioscienceUniversity of Milano-BicoccaPiazza della Scienza, 220126MilanoItaly
| | - Stefania Garbujo
- NanoBioLab, Department of Biotechnology and BioscienceUniversity of Milano-BicoccaPiazza della Scienza, 220126MilanoItaly
- Nanobiotechnologies for Health Center, NANOMIBUniversity of Milano-BicoccaVia Raoul Follereau, 320854Vedano al Lambro, MBItaly
| | - Paolo Galli
- Department of Earth and Environmental SciencesUniversity of Milano-BicoccaPiazza della Scienza, 120126MilanoItaly
- Dubai Business SchoolUniversity of Dubai, United Arab Emirates GoumbookRas Al Khaimah500001United Arab Emirates
- MaRHE Centre (Marine Research and High Education Center)Magoodhoo Island12030Maldives
| | - Davide Prosperi
- NanoBioLab, Department of Biotechnology and BioscienceUniversity of Milano-BicoccaPiazza della Scienza, 220126MilanoItaly
- Nanobiotechnologies for Health Center, NANOMIBUniversity of Milano-BicoccaVia Raoul Follereau, 320854Vedano al Lambro, MBItaly
| | - Miriam Colombo
- NanoBioLab, Department of Biotechnology and BioscienceUniversity of Milano-BicoccaPiazza della Scienza, 220126MilanoItaly
- Nanobiotechnologies for Health Center, NANOMIBUniversity of Milano-BicoccaVia Raoul Follereau, 320854Vedano al Lambro, MBItaly
| |
Collapse
|
19
|
Xuan Y, Shen D, Long Y, Shentu J, Lu L, Zhu M. Enlarging effects of microplastics on adsorption, desorption and bioaccessibility of chlorinated organophosphorus flame retardants in landfill soil particle-size fractions. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135717. [PMID: 39241362 DOI: 10.1016/j.jhazmat.2024.135717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
Chlorinated organophosphorus flame retardants (Cl-OPFRs) and microplastics (MPs) are emerging pollutants in landfills, but their synergistic behaviors and triggering risks were rarely focused on, impeding the resource utilization of landfill soils. This study systematically investigated the adsorption/desorption behaviors, bioaccessibility and human health risks of Cl-OPFRs in landfill soil particle-size fractions coexisted with MPs under simulated gastrointestinal conditions. The results showed that the adsorption capacity and bioaccessibility of Cl-OPFRs in humus soil were higher than that in subsoil. MPs promoted the adsorption of tris(1-chloro-2-methylethyl) phosphate (TCPP) and tris(1,3-dichloro-2-propyl) phosphate (TDCPP) in landfill soils by up to 34.6 % and 34.1 % respectively, but inhibited the adsorption of tris(2-chloroethyl) phosphate (TCEP) by up to 43.6 %. The bioaccessibility of Cl-OPFRs in landfill soils was positively correlated with MPs addition ratio but negatively correlated with the KOW of Cl-OPFRs, soil organic matter and particle size. MPs addition increased the residual concentration of Cl-OPFRs and significantly increased the bioaccessibility of TCEP and TDCPP by up to 33.1 % in landfill soils, resulting in higher carcinogenic and noncarcinogenic risks. The study presents the first series of the combined behavior and effects of MPs and Cl-OPFRs in landfill soils, and provides a theoretical reference for landfill risk management.
Collapse
Affiliation(s)
- Yujie Xuan
- School of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Dongsheng Shen
- School of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Yuyang Long
- School of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Jiali Shentu
- School of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Li Lu
- School of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Min Zhu
- School of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, Zhejiang Gongshang University, Hangzhou 310012, China; Key Laboratory of Environment Remediation and Ecological Health (Zhejiang University), Ministry of Education, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, China.
| |
Collapse
|
20
|
Jambhulkar R, Sharma N, Kundu D, Kumar S. Unveiling the composition of bio-earth from landfill mining and microplastic pollution. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1121. [PMID: 39472313 DOI: 10.1007/s10661-024-13229-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/10/2024] [Indexed: 11/14/2024]
Abstract
Landfill mining is the prominent solution for the recovery of resources from legacy waste. The bio-earth recovered from landfill mining is being utilized for a variety of applications like application as fertilizer. The presence of microplastic in the recovered bio-earth disrupts its usefulness. This study investigated the composition and microplastic pollution in bio-earth derived from landfill mining at the Bhandewadi landfill, Nagpur, India. Results provided insights into its characterization and presence of microplastic. The average moisture content of the bio-earth was 25.2 ± 1.1% with total organic carbon of 14.3 ± 0.6%. The bio-earth exhibited a C:N ratio of 16.9 ± 5.0, volatile solid content of 24.6 ± 1.0%, and ash content of 75.4 ± 1.0%. Bulk density was 434.3 ± 37.2 kg/m3, pH value 6.91 ± 0.28, and electrical conductivity 4.6 ± 0.7 dS/m. Total nitrogen content was 0.9 ± 0.3%, available phosphorus 2.1 ± 0.3 g/kg, and potassium and sodium contents of 12.7 ± 0.4 g/kg and 3.9 ± 0.3 g/kg, respectively. Heavy metals detected included Fe, Zn, Mn, Cu, Pb, Ni, Cr, and Cd. Microplastics in the bio-earth samples were assessed using attenuated total reflectance-Fourier-transform infrared spectroscopy (ATR-FTIR). The amount of microplastics averaged 100,150 ± 29,286 items per kg (dry basis). Additionally, five specific polymer types were prominent as microplastics. Further research and mitigation strategies are necessary to ensure the safe and sustainable use of bio-earth in agriculture and horticulture.
Collapse
Affiliation(s)
- Rohit Jambhulkar
- Waste Re-Processing Division (WRD), CSIR - National Environmental Engineering Research Institute (CSIR - NEERI), Nehru Marg, Nagpur, 440 020, Maharashtra, India
| | - Nidhi Sharma
- Waste Re-Processing Division (WRD), CSIR - National Environmental Engineering Research Institute (CSIR - NEERI), Nehru Marg, Nagpur, 440 020, Maharashtra, India
- Institute of Environment and Sustainable Development (IESD), Banaras Hindu University (BHU), Varanasi, 221 005, Uttar Pradesh, India
| | - Debajyoti Kundu
- Waste Re-Processing Division (WRD), CSIR - National Environmental Engineering Research Institute (CSIR - NEERI), Nehru Marg, Nagpur, 440 020, Maharashtra, India
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh, 522240, India
| | - Sunil Kumar
- Waste Re-Processing Division (WRD), CSIR - National Environmental Engineering Research Institute (CSIR - NEERI), Nehru Marg, Nagpur, 440 020, Maharashtra, India.
| |
Collapse
|
21
|
Garai S, Bhattacharjee C, Sarkar S, Moulick D, Dey S, Jana S, Dhar A, Roy A, Mondal K, Mondal M, Mukherjee S, Ghosh S, Singh P, Ramteke P, Manna D, Hazra S, Malakar P, Banerjee H, Brahmachari K, Hossain A. Microplastics in the soil-water-food nexus: Inclusive insight into global research findings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:173891. [PMID: 38885699 DOI: 10.1016/j.scitotenv.2024.173891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024]
Abstract
Nuisance imposed by biotic and abiotic stressors on diverse agroecosystems remains an area of focus for the scientific fraternity. However, emerging contaminants such as microplastics (MP) have imposed additional dimension (alone or in combinations with other stressors) in agroecosystems and keep escalating the challenges to achieve sustainability. MP are recognized as persistent anthropogenic contaminants, fetch global attention due to their unique chemical features that keeps themselves unresponsive to the decaying process. This review has been theorized to assess the current research trends (along with possible gap areas), widespread use of MP, enhancement of the harshness of heavy metals (HMs), complex interactions with physico-chemical constituents of arable soil, accumulation in the edible parts of field crops, dairy products, and other sources to penetrate the food web. So far, the available review articles are oriented to a certain aspect of MP and lack a totality when considered from in soil-water-food perspective. In short, a comprehensive perspective of the adverse effects of MP on human health has been assessed. Moreover, an agro-techno-socio-health prospective-oriented critical assessment of policies and remedial measures linked with MP has provided an extra edge over other similar articles in influential future courses of research.
Collapse
Affiliation(s)
- Sourav Garai
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Chandrima Bhattacharjee
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Sukamal Sarkar
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India.
| | - Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal -741235, India
| | - Saikat Dey
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Soujanya Jana
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Anannya Dhar
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Anirban Roy
- Division of Genetics and Plant Breeding, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Krishnendu Mondal
- Dhaanyaganga Krishi Vigyan Kendra, Ramakrishna Mission Vivekananda Educational and Research Institute, Sargachhi, West Bengal, India
| | - Mousumi Mondal
- School of Agriculture and Allied Sciences, The Neotia University, Sarisha, West Bengal, India
| | - Siddhartha Mukherjee
- Division of Agriculture, Faculty Centre for Agriculture, Rural and Tribal Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Morabadi, Ranchi, Jharkhand, India
| | - Samrat Ghosh
- Emergent Ventures India, Gurugram, Haryana, India
| | - Puja Singh
- Department of Soil Science and Agricultural Chemistry, Natural Resource Management, Horticultural College, Birsa Agricultural University, Khuntpani, Chaibasa, Jharkhand, India
| | - Pratik Ramteke
- Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, MS 444104, India
| | - Dipak Manna
- School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Shreyasee Hazra
- School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Pushkar Malakar
- School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Hirak Banerjee
- Regional Research Station (CSZ), Bidhan Chandra Krishi Viswavidyalaya, Kakdwip, West Bengal, India
| | - Koushik Brahmachari
- Department of Agronomy, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal, India
| | - Akbar Hossain
- Division of Soil Science, Bangladesh Wheat and Maize Research Institute, Dinajpur 5200, Bangladesh
| |
Collapse
|
22
|
Hu T, Lü F, Zhang H, Yuan Z, He P. Wet oxidation technology can significantly reduce both microplastics and nanoplastics. WATER RESEARCH 2024; 263:122177. [PMID: 39111211 DOI: 10.1016/j.watres.2024.122177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/05/2024] [Accepted: 07/28/2024] [Indexed: 08/26/2024]
Abstract
For the resource recovery of biomass waste, it is a challenge to simultaneously remove micro-/nano-plastics pollution but preserve organic resources. Wet oxidation is a promising technology for valorization of organic wastes through thermal hydrolysis and oxidation. This might in turn result in the degradation of microplastics in the presence of oxygen and high temperatures. Based on this hypothesis, this study quantified both microplastics and nanoplastics in an industrial-scale wet oxidation reactor from a full-size coverage perspective. Wet oxidation significantly reduced the size and mass of individual microplastics, and decreased total mass concentration of microplastics and nanoplastics by 94.8 % to 98.6 %. This technology also reduced the micro- and nanoplastic shapes and polymer types, resulting in a complete removal of fibers, clusters, polypropylene (PP) and poly(methyl methacrylate) (PMMA). The present study confirms that wet oxidation technology is effective in removing microplastics and nanoplastics while recovering organic waste.
Collapse
Affiliation(s)
- Tian Hu
- Institute of Waste Treatment and Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Fan Lü
- Institute of Waste Treatment and Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Hua Zhang
- Institute of Waste Treatment and Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Zhiwen Yuan
- Ningbo Kaseen Ecology Technology Co., Ltd., Ningbo 315000, PR China
| | - Pinjing He
- Institute of Waste Treatment and Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
23
|
Yamen SNM, Samsudin MS, Azid A, Norizan MN, Suradee APK, Rosli MIFM. First Evidence of Microplastic Ingestion by Riverine Fish From the Freshwater of Northwest Peninsular Malaysia. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2189-2198. [PMID: 39119975 DOI: 10.1002/etc.5971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024]
Abstract
In a baseline study, we investigated microplastic contamination in fish from the Pinang and Kerian Rivers in Northwest Peninsular Malaysia. In recognition of the growing concern over microplastic pollution in aquatic environments, we aimed to assess the abundance and characteristics of microplastics ingested by various fish species. Fish samples were collected from local fishermen, followed by a digestion process using 10% potassium hydroxide (KOH). Microplastics were isolated and analyzed through visual examination and attenuated total reflectance Fourier transform infrared spectroscopy. The results revealed a high prevalence of microplastics, with Johnius borneensis and Oreochromis sp. exhibiting the highest abundance, averaging 48.6 and 42.8 microplastics/g, respectively. The predominant shapes were fibers (55.6%) and fragments (25.9%), with colors primarily transparent (48.19%) and black (30.12%). Our results indicate significant contamination levels in freshwater fish, emphasizing the need for further research and effective mitigation strategies. These findings provide crucial baseline data on microplastics in Malaysian freshwater ecosystems. Environ Toxicol Chem 2024;43:2189-2198. © 2024 SETAC.
Collapse
Affiliation(s)
| | - Mohd Saiful Samsudin
- Environmental Technology Division, School of Industrial Technology, University Sains Malaysia, Penang, Malaysia
| | - Azman Azid
- Faculty of Bioresources and Food Industry, University Sultan Zainal Abidin, Besut Campus, Besut, Terengganu, Malaysia
| | - Mohd Nurazzi Norizan
- Bioresource Technology Division, School of Industrial Technology, University Sains Malaysia, Penang, Malaysia
| | - Aidee Putera Kamal Suradee
- Environmental Technology Division, School of Industrial Technology, University Sains Malaysia, Penang, Malaysia
| | | |
Collapse
|
24
|
Chen L, Tu M, Mao C, Wang J, Shao H, Wang H, Gu J, Xu G. Electron beam synergetic removal of microplastics and hexavalent chromium: Synergetic removal process and mechanism. CHEMOSPHERE 2024; 364:143093. [PMID: 39173834 DOI: 10.1016/j.chemosphere.2024.143093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
Microplastics are ubiquitous in the environment and aged microplastics are highly susceptible to absorbing pollutants from the environment. In this study, electron beam was innovatively used to treat PVC composite Cr(VI) pollutants (Composite contaminant formed by polyvinyl chloride microplastics with the heavy metal hexavalent chromium). Experiments showed that electron beam was able to achieve synergistic removal of PVC composite Cr(VI) pollutants compared to degrading the pollutants alone. During the electron beam removal of PVC composite Cr(VI) pollutants, the reduction efficiency of Cr(VI) increased from 57% to 92%, Cl- concentration increased from 3.52 to 12.41 mg L-1, and TOC concentration increased from 16.72 to 26.60 mg L-1. The research confirmed that electron beam can effectively promote the aging degradation of PVC, alter the physicochemical properties of microplastics, and generate oxygen-containing functional groups on the surface of microplastics. Aged microplastics enhanced the adsorption capacity for Cr(VI) through electrostatic and chelation interactions, and the adsorption process followed second-order kinetics and the Freundlich model. Theoretical calculations and experiments demonstrated that PVC consumed oxidizing free radical through dechlorination and decarboxylation processes, generating inorganic ions and small organic molecules. These inorganic ions and small organic molecules further reacted with oxidizing free radical to produce reducing free radicals, facilitating the reduction of Cr(VI). Cr(VI) continuously consumed the educing free radicals to transform into Cr (Ⅲ), enhancing the system oxidative atmosphere and promoting the oxidation degradation of PVC. This study investigated the formation and synergistic removal processes of PVC composite pollutants, offering new insights for controlling microplastics composite pollution.
Collapse
Affiliation(s)
- Lei Chen
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Mengxin Tu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Chengkai Mao
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Jun Wang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Haiyang Shao
- School of Future Membrane Technology, Fuzhou University, Fuzhou, 350108, PR China.
| | - Hongyong Wang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Jianzhong Gu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Gang Xu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China; Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai, 200444, PR China.
| |
Collapse
|
25
|
Li M, Wang Z, Zhu L, Zhu Y, Yi J, Fu X. Research advances on microplastics contamination in terrestrial geoenvironment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173259. [PMID: 38761947 DOI: 10.1016/j.scitotenv.2024.173259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
The contamination of microplastics in terrestrial geoenvironment (CMTG) is widespread and severe and has, received considerable attention. However, studies on CMTG are in their initial stages. The literature on CMTG published in the past decade was analyzed through bibliometric analysis, such as the annual publications, countries with the highest contributions, prolific authors, and author keywords. The sources, compositions, migrations and environmental impacts of CMTG are summarized, and possible future directions are proposed. This study analyzed the annual publications, countries with the highest contributions, prolific authors, and author keywords related to microplastics. The results demonstrated that 15,306 articles were published between 2014 and 2023. China is the leading country in terms of the total number of publications. The main sources of CMTG include landfills, agricultural non-point sources, sewage treatment systems and transportation systems. The composition of the CMTG exhibits significantly temporal and spatial variability from different sources. The migration paths of the CMTG were within the soil, groundwater seepage and wind transportation of suspended particles. Microplastics increase soil cohesion, decrease porosity, reduce pore scale, decrease air circulation, and increase water retention capacity, and the exudation of highly water-soluble additives in microplastics can cause secondary contamination of geological entities. Microplastics have an adverse effect on plant growth, animal digestion, microbial activity, energy and lipid metabolism, oxidative stress, and respiratory diseases in humans. It is recommended to develop more efficient and convenient quantitative testing methods for microplastics, formulate globally harmonized testing and evaluation standards, include microplastic testing in testing programs for contaminated soils, and develop efficient methods for the remediation of microplastic contaminated geological bodies.
Collapse
Affiliation(s)
- Mingdong Li
- School of Civil and Architectural Engineering, East China University of Technology, Nanchang 330013, China; State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China.
| | - Zhicheng Wang
- School of Civil and Architectural Engineering, East China University of Technology, Nanchang 330013, China
| | - Liping Zhu
- School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang 330013, China; State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China
| | - Yating Zhu
- School of Civil and Architectural Engineering, East China University of Technology, Nanchang 330013, China
| | - Jinxiang Yi
- School of Civil and Architectural Engineering, East China University of Technology, Nanchang 330013, China
| | - Xiaojie Fu
- School of Civil and Architectural Engineering, East China University of Technology, Nanchang 330013, China
| |
Collapse
|
26
|
Rani A, Negi S, Fan C, Lam SS, Kim H, Pan SY. Revitalizing plastic wastes employing bio-circular-green economy principles for carbon neutrality. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134394. [PMID: 38703690 DOI: 10.1016/j.jhazmat.2024.134394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/09/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
The use of plastics has become deeply ingrained in our society, and there are no indications that its prevalence will decrease in the foreseeable future. This article provides a comprehensive overview of the global plastic waste disposal landscape, examining it through regional perspectives, various management technologies (dumping or landfilling, incineration, and reuse and recycling), and across different sectors including agriculture and food, textile, tourism, and healthcare. Notably, this study compiles the findings on life-cycle carbon footprints associated with various plastic waste management practices as documented in the literature. Employing the bio-circular-green economy model, we advocate for the adoption of streamlined and sustainable approaches to plastic management. Unique management measures are also discussed including the utilization of bioplastics combined with smart and efficient collection processes that facilitate recycling, industrial composting, or anaerobic digestion. Moreover, the integration of advanced recycling methods for conventional plastics with renewable energy, the establishment of plastic tax and credits, and the establishment of extended producer responsibility are reviewed. The success of these initiatives relies on collaboration and support from peers, industries, and consumers, ultimately contributing to informed decision-making and fostering sustainable practices in plastic waste management.
Collapse
Affiliation(s)
- Aishwarya Rani
- Department of Bioenvironmental Systems Engineering, College of Bioresources and Agriculture, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Suraj Negi
- Department of Bioenvironmental Systems Engineering, College of Bioresources and Agriculture, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Chihhao Fan
- Department of Bioenvironmental Systems Engineering, College of Bioresources and Agriculture, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia; Center for Global Health Research (CGHR), Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Hyunook Kim
- Water‑Energy Nexus Laboratory, Department of Environmental Engineering, University of Seoul, Seoul 02504, South Korea
| | - Shu-Yuan Pan
- Department of Bioenvironmental Systems Engineering, College of Bioresources and Agriculture, National Taiwan University, Taipei 10617, Taiwan, ROC; Agricultural Net-Zero Carbon Technology and Management Innovation Research Center, College of Bioresources and Agriculture, National Taiwan University, Taipei 10617, Taiwan, ROC.
| |
Collapse
|
27
|
Glorio Patrucco S, Rivoira L, Bruzzoniti MC, Barbera S, Tassone S. Development and application of a novel extraction protocol for the monitoring of microplastic contamination in widely consumed ruminant feeds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174493. [PMID: 38969126 DOI: 10.1016/j.scitotenv.2024.174493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/21/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Plastics and, in particular, microplastics (MPs) (< 5 mm) are emerging environmental pollutants responsible for interconnected risks to environmental, human, and animal health. The livestock sector is highly affected by these contaminants, with 50-60 % of the foreign bodies found in slaughtered domestic cattle being recognized as plastic-based materials. Additionally, microplastics were recently detected inside ruminant bodies and in their feces. MPs presence in ruminants could be explained by the intensive usage of plastic materials on farms, in particular to store feeds (i.e. to cover horizontal silos and to wrap hay bales). Although feed could be one of the main sources of plastics, especially of microplastics, a specific protocol to detect them in ruminant feeds is not actually present. Hence, the aim of this study was to optimize a specific protocol for the extraction, quantification, and identification of five microplastic polymers (high-density polyethylene, low-density polyethylene, polyamide fibers/particles, polyethylene terephthalate and polystyrene) from feeds typically used in ruminant diets (corn silage, hay, high protein feedstuff and total mixed ration). Several combinations of Fenton reactions and KOH digestion were tested. The final extraction protocol involved a KOH digestion (60 °C for 24 h), followed by two/three cycles of Fenton reactions. The extraction recoveries were of 100 % for high-density, low-density polyethylene, polyamide particles, and polystyrene and higher than 85 % for polyethylene terephthalate and polyamide fibers. Finally, the optimized protocol was successfully applied in the extraction of microplastics from real feed samples. All the feeds contained microplastics, particularly polyethylene, thus confirming the exposure of ruminants to MPs.
Collapse
Affiliation(s)
- Sara Glorio Patrucco
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo P. Braccini 2, 10095 Grugliasco, Italy
| | - Luca Rivoira
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Turin, Italy.
| | | | - Salvatore Barbera
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo P. Braccini 2, 10095 Grugliasco, Italy
| | - Sonia Tassone
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo P. Braccini 2, 10095 Grugliasco, Italy
| |
Collapse
|
28
|
Rizvi NB, Sarwar A, Waheed S, Iqbal ZF, Imran M, Javaid A, Kim TH, Khan MS. Nano-based remediation strategies for micro and nanoplastic pollution. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 265:104380. [PMID: 38875891 DOI: 10.1016/j.jconhyd.2024.104380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/02/2024] [Accepted: 06/02/2024] [Indexed: 06/16/2024]
Abstract
Due to rapid urbanization, there have been continuous environmental threats from different pollutants, especially from microplastics. Plastic products rapidly proliferate significantly contributing to the occurrence of micro-plastics, which poses a significant environmental risk. These microplastics originated from diverse sources and are characterized by their persistent and widespread occurrence; human health and the entire ecosystem are adversely affected by them. The removal of microplastics not only requires innovative technologies but also efficient materials capable of effectively eliminating them from our environment. The progress made so far has highlighted the advantages of utilizing the dimensional and structural properties of nanomaterials to increase the effectiveness of existing methods for micro-plastic treatment, aiming for a more sustainable approach to their removal. In the current review, we demonstrate a thorough overview of the sources, occurrences, and potential harmful effects of microplastics, followed by a further discussion of promising technologies used for their removal. An in-depth examination of both advantages and a few limitations of all these given technologies, including physical, chemical, and biological approaches, has been discussed. Additionally, the review explores the use of nanomaterials as an effective means to overcome obstacles and improve the efficiency of microplastic elimination methods. n conclusion, this review addresses, current challenges in this field and outlines the future perspectives for further research in this domain.
Collapse
Affiliation(s)
- Nayab Batool Rizvi
- Centre for Clinical and Nutritional Chemistry, University of the Punjab, Lahore 54000, Pakistan
| | - Adnan Sarwar
- Centre for Clinical and Nutritional Chemistry, University of the Punjab, Lahore 54000, Pakistan
| | - Saba Waheed
- Centre for Clinical and Nutritional Chemistry, University of the Punjab, Lahore 54000, Pakistan
| | - Zeenat Fatima Iqbal
- Department of Chemistry, University of Engineering and Technology, Lahore-54000, Pakistan
| | - Muhammad Imran
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore 54000, Pakistan.
| | - Ayesha Javaid
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore 54000, Pakistan
| | - Tak H Kim
- School of Environment and Science, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Muhammad Shahzeb Khan
- Sulaiman Bin Abdullah Aba Al-Khail Centre for Interdisciplinary Research in Basic Sciences (SA-CIRBS), Faculty of Basic and Applied Sciences, International Islamic University Islamabad, Islamabad, Pakistan.
| |
Collapse
|
29
|
Dagwar PP, Dutta D. Landfill leachate a potential challenge towards sustainable environmental management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171668. [PMID: 38485011 DOI: 10.1016/j.scitotenv.2024.171668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/06/2024] [Accepted: 03/10/2024] [Indexed: 04/06/2024]
Abstract
The increasing amount of waste globally has led to a rise in the use of landfills, causing more pollutants to be released through landfill leachate. This leachate is a harmful mix formed from various types of waste at a specific site, and careful disposal is crucial to prevent harm to the environment. Understanding the physical and chemical properties, age differences, and types of landfills is essential to grasp how landfill leachate behaves in the environment. The use of Sustainable Development Goals (SDGs) in managing leachate is noticeable, as applying these goals directly is crucial in reducing the negative effects of landfill leachate. This detailed review explores the origin of landfill leachate, its characteristics, global classification by age, composition analysis, consequences of mismanagement, and the important role of SDGs in achieving sustainable landfill leachate management. The aim is to provide a perspective on the various aspects of landfill leachate, covering its origin, key features, global distribution, environmental impacts from poor management, and importance of SDGs which can guide for sustainable mitigation within a concise framework.
Collapse
Affiliation(s)
- Pranav Prashant Dagwar
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522 240, India
| | - Deblina Dutta
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522 240, India.
| |
Collapse
|
30
|
Zhang L, Zhao W, Yan R, Yu X, Barceló D, Sui Q. Microplastics in different municipal solid waste treatment and disposal systems: Do they pose environmental risks? WATER RESEARCH 2024; 255:121443. [PMID: 38492313 DOI: 10.1016/j.watres.2024.121443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/18/2024]
Abstract
Microplastic (MP) pollution is a significant worldwide environmental and health challenge. Municipal solid waste (MSW) can be an important source of MPs in the environment if treated and disposed of inappropriately, causing potential ecological risks. MSW treatment and disposal methods have been gradually shifting from landfilling/dumping to more sustainable approaches, such as incineration or composting. However, previous studies on MP characteristics in different MSW treatment and disposal systems have mainly focused either on landfills/dumpsites or composts. The lack of knowledge of multiple MSW treatment and disposal systems makes it difficult to ensure effective MP pollution control during MSW treatment and disposal. Therefore, this study systematically summarizes the occurrence of MPs in different MSW treatment and disposal systems (landfill/dumpsite, compost, and incineration) on the Eurasian scale, and discusses the factors that influence MPs in individual MSW treatment and disposal systems. In addition, the paper assesses the occurrence of MPs in the surrounding environment of MSW treatment and disposal systems and their ecological risks using the species sensitivity distribution approach. The study also highlights recommendations for future research, to more comprehensively describe the occurrence and fate of MPs during MSW treatment and disposal processes, and to develop appropriate pollution control measures to minimize MP pollution.
Collapse
Affiliation(s)
- Lei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wentao Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Ruiqi Yan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xia Yu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, Spanish Council for Scientific Research (IDAEA-CSIC), Barcelona 08034, Spain
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
31
|
Shokunbi OS, Idowu GA, Aiyesanmi AF, Davidson CM. Assessment of Microplastics and Potentially Toxic Elements in Surface Sediments of the River Kelvin, Central Scotland, United Kingdom. ENVIRONMENTAL MANAGEMENT 2024; 73:932-945. [PMID: 38367028 DOI: 10.1007/s00267-024-01947-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/01/2024] [Indexed: 02/19/2024]
Abstract
Contamination of the environment by microplastics (MPs), polymer particles of <5 mm in diameter, is an emerging concern globally due to their ubiquitous nature, interactions with pollutants, and adverse effects on aquatic organisms. The majority of studies have focused on marine environments, with freshwater systems only recently attracting attention. The current study investigated the presence, abundance, and distribution of MPs and potentially toxic elements (PTEs) in sediments of the River Kelvin, Scotland, UK. Sediment samples were collected from eight sampling points along the river and were extracted by density separation with NaCl solution. Extracted microplastics were characterised for shape and colour, and the polymer types were determined through attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. Pollution status and ecological risks were assessed for both the microplastics and PTEs. Abundance of MPs generally increased from the most upstream location (Queenzieburn, 50.0 ± 17.3 particles/kg) to the most downstream sampling point (Kelvingrove Museum, 244 ± 19.2 particles/kg). Fibres were most abundant at all sampling locations, with red, blue, and black being the predominant colours found. Larger polymer fragments were identified as polypropylene and polyethylene. Concentrations of Cr, Cu, Ni, Pb and Zn exceeded Scottish background soil values at some locations. Principal component and Pearson's correlation analyses suggest that As, Cr, Pb and Zn emanated from the same anthropogenic sources. Potential ecological risk assessment indicates that Cd presents a moderate risk to organisms at one location. This study constitutes the first co-investigation of MPs and PTEs in a river system in Scotland.
Collapse
Affiliation(s)
- Oluwatosin Sarah Shokunbi
- Department of Chemistry, School of Physical Sciences, Federal University of Technology Akure, P.M. B. 704, Akure, Ondo State, Nigeria
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, Scotland, United Kingdom
- Department of Basic Sciences, Babcock University, P. M. B. 4003, Ilishan Remo, Ogun State, Nigeria
| | - Gideon Aina Idowu
- Department of Chemistry, School of Physical Sciences, Federal University of Technology Akure, P.M. B. 704, Akure, Ondo State, Nigeria.
| | - Ademola Festus Aiyesanmi
- Department of Chemistry, School of Physical Sciences, Federal University of Technology Akure, P.M. B. 704, Akure, Ondo State, Nigeria
| | - Christine Margaret Davidson
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, Scotland, United Kingdom
| |
Collapse
|
32
|
Wei Z, Wei T, Chen Y, Zhou R, Zhang L, Zhong S. Seasonal dynamics and typology of microplastic pollution in Huixian karst wetland groundwater: Implications for ecosystem health. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120882. [PMID: 38663080 DOI: 10.1016/j.jenvman.2024.120882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 05/04/2024]
Abstract
This study offers an insightful and detailed examination of microplastic pollution in the Huixian karst wetland's groundwater, providing novel insights into the complex interplay of microplastic characteristics and their seasonal dynamics. We meticulously quantified microplastic concentrations, observing significant seasonal variation with values ranging from 4.9 to 13.4 n·L-1 in the wet season and 0.53-49.4 n·L-1 in the dry season. Our analysis pinpoints human activities and atmospheric deposition as key contributors to this contamination. A critical finding of our research is the pronounced disparity in microplastic levels between open wells and covered artesian wells, highlighting the vulnerability of open wells to higher pollution levels. Through correlation analysis, we unearthed the crucial influence of the karst region's unique hydrogeological characteristics on microplastic migration, distinctively different from non-karst areas. The karst terrain, characterized by its caves and subterranean rivers, facilitates the downward movement of microplastics from surface to groundwater, exacerbating pollution levels. Our investigation identifies agricultural runoff and domestic wastewater as primary pollution sources. These findings not only underscore the urgent need for environmental stewardship in karst regions but also provide a crucial foundation for formulating effective strategies to mitigate microplastic pollution in karst groundwater. The implications of this study extend beyond the Huixian karst wetland, offering a template for addressing microplastic pollution in similar ecosystems globally.
Collapse
Affiliation(s)
- Zengxian Wei
- College of Life Sciences, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Tao Wei
- School of Automobile Engineering, Guilin University of Aerospace Technology, Guilin, 541004, China
| | - Yan Chen
- College of Life Sciences, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Ruyue Zhou
- College of Life Sciences, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Lishan Zhang
- College of Life Sciences, Guilin University of Electronic Technology, Guilin, 541004, China.
| | - Shan Zhong
- College of Life Sciences, Guilin University of Electronic Technology, Guilin, 541004, China
| |
Collapse
|
33
|
Sima J, Wang J, Song J, Du X, Lou F, Zhu Y, Lei J, Huang Q. Efficient degradation of polystyrene microplastic pollutants in soil by dielectric barrier discharge plasma. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133754. [PMID: 38394892 DOI: 10.1016/j.jhazmat.2024.133754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024]
Abstract
In this study, the atmospheric dielectric barrier discharge (DBD) plasma was proposed for the degradation of polystyrene microplastics (PS-MPs) for the first time, due to its ability to generate reactive oxygen species (ROS). The local temperature in plasma was found to play a crucial role, as it enhanced the degradation reaction induced by ROS when it exceeded the melting temperature of PS-MPs. Factors including applied voltage, air flow rate, and PS-MPs concentration were investigated, and the degradation products were analyzed. High plasma energy and adequate supply of ROS were pivotal in promoting degradation. At 20.1 kV, the degradation efficiency of PS-MPs reached 98.7% after 60 min treatment, with gases (mainly COx, accounting for 96.4%) as the main degradation products. At a concentration of 1 wt%, the PS-MPs exhibited a remarkable conversion rate of 90.6% to COx, showcasing the degradation performance and oxidation degree of this technology. Finally, the degradation mechanism of PS-MPs combined with the detection results of ROS was suggested. This work demonstrates that DBD plasma is a promising strategy for PS-MPs degradation, with high energy efficiency (8.80 mg/kJ) and degradation performance (98.7% within 1 h), providing direct evidence for the rapid and comprehensive treatment of MP pollutants.
Collapse
Affiliation(s)
- Jingyuan Sima
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jun Wang
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China; Jiaxing Research Institute, Zhejiang University, Jiaxing 314000, China
| | - Jiaxing Song
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xudong Du
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
| | - Fangfang Lou
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
| | - Youqi Zhu
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiahui Lei
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qunxing Huang
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
34
|
Estoppey N, Castro G, Slinde GA, Hansen CB, Løseth ME, Krahn KM, Demmer V, Svenni J, Tran TVAT, Asimakopoulos AG, Arp HPH, Cornelissen G. Exposure assessment of plastics, phthalate plasticizers and their transformation products in diverse bio-based fertilizers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170501. [PMID: 38307289 DOI: 10.1016/j.scitotenv.2024.170501] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/12/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
Bio-based fertilizers (BBFs) produced from organic waste have the potential to reduce societal dependence on limited and energy-intensive mineral fertilizers. BBFs, thereby, contribute to a circular economy for fertilizers. However, BBFs can contain plastic fragments and hazardous additives such as phthalate plasticizers, which could constitute a risk for agricultural soils and the environment. This study assessed the exposure associated with plastic and phthalates in BBFs from three types of organic wastes: agricultural and food industry waste (AgriFoodInduWaste), sewage sludge (SewSludge), and biowaste (i.e., garden, park, food and kitchen waste). The wastes were associated with various treatments like drying, anaerobic digestion, and vermicomposting. The number of microplastics (0.045-5 mm) increased from AgriFoodInduWaste-BBFs (15-258 particles g-1), to SewSludge-BBFs (59-1456 particles g-1) and then to Biowaste-BBFs (828-2912 particles g-1). Biowaste-BBFs mostly contained packaging plastics (e.g., polyethylene terephthalate), with the mass of plastic (>10 g kg-1) exceeding the EU threshold (3 g kg-1, plastics >2 mm). Other BBFs mostly contained small (< 1 mm) non-packaging plastics in amounts below the EU limit. The calculated numbers of microplastics entering agricultural soils via BBF application was high (107-1010 microplastics ha-1y-1), but the mass of plastic released from AgriFoodInduWaste-BBFs and SewSludge-BBFs was limited (< 1 and <7 kg ha-1y-1) compared to Biowaste-BBFs (95-156 kg ha-1y-1). The concentrations of di(2-ethylhexyl)phthalate (DEHP; < 2.5 mg kg-1) and phthalate transformation products (< 8 mg kg-1) were low (< benchmark of 50 mg kg-1 for DEHP), attributable to both the current phase-out of DEHP as well as phthalate degradation during waste treatment. The Biowaste-BBF exposed to vermicomposting indicated that worms accumulated phthalate transformation products (4 mg kg-1). These results are overall positive for the implementation of the studied AgriFoodInduWaste-BBFs and SewSludge-BBFs. However, the safe use of the studied Biowaste-BBFs requires reducing plastic use and improving sorting methods to minimize plastic contamination, in order to protect agricultural soils and reduce the environmental impact of Biowaste-BBFs.
Collapse
Affiliation(s)
- Nicolas Estoppey
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway.
| | - Gabriela Castro
- Norwegian University of Science and Technology (NTNU), 7024 Trondheim, Norway; Department of Analytical Chemistry, Nutrition and Food Sciences, Institute for Research in Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Gøril Aasen Slinde
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway
| | - Caroline Berge Hansen
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway
| | - Mari Engvig Løseth
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway
| | | | - Viona Demmer
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway
| | - Jørgen Svenni
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway; Department of Mechanical, Electrical and Chemical Engineering, Faculty of Technology, Art and Design, OsloMet, 0176 Oslo, Norway
| | - Teresa-Van-Anh Thi Tran
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway; Department of Mechanical, Electrical and Chemical Engineering, Faculty of Technology, Art and Design, OsloMet, 0176 Oslo, Norway
| | | | - Hans Peter H Arp
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway; Norwegian University of Science and Technology (NTNU), 7024 Trondheim, Norway
| | - Gerard Cornelissen
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway; Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway
| |
Collapse
|
35
|
Wang W, Zhang Z, Gao J, Wu H. The impacts of microplastics on the cycling of carbon and nitrogen in terrestrial soil ecosystems: Progress and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169977. [PMID: 38215847 DOI: 10.1016/j.scitotenv.2024.169977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
As contaminants of emerging concern, microplastics (MPs) are ubiquitously present in almost all environmental compartments of the earth, with terrestrial soil ecosystems as the major sink for these contaminants. The accumulation of MPs in the soil can trigger a wide range of effects on soil physical, chemical, and microbial properties, which may in turn cause alterations in the biogeochemical processes of some key elements, such as carbon and nitrogen. Until recently, the effects of MPs on the cycling of carbon and nitrogen in terrestrial soil ecosystems have yet to be fully understood, which necessitates a review to summarize the current research progress and propose suggestions for future studies. The presence of MPs can affect the contents and forms of soil carbon and nitrogen nutrients (e.g., total and dissolved organic carbon, dissolved organic nitrogen, NH4+-N, and NO3--N) and the emissions of CH4, CO2, and N2O by altering soil microbial communities, functional gene expressions, and enzyme activities. Exposure to MPs can also affect plant growth and physiological processes, consequently influencing carbon fixation and nitrogen uptake. Specific effects of MPs on carbon and nitrogen cycling and the associated microbial parameters can vary considerably with MP properties (e.g., dose, polymer type, size, shape, and aging status) and soil types, while the mechanisms of interaction between MPs and soil microbes remain unclear. More comprehensive studies are needed to narrow the current knowledge gaps.
Collapse
Affiliation(s)
- Wenfeng Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China
| | - Zhiyu Zhang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China; Jilin Normal University, 1301 Haifeng Street, Siping 136000, China
| | - Jie Gao
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haitao Wu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China.
| |
Collapse
|
36
|
Sun H, Hu J, Wu Y, Gong H, Zhu N, Yuan H. Leachate from municipal solid waste landfills: A neglected source of microplastics in the environment. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133144. [PMID: 38056251 DOI: 10.1016/j.jhazmat.2023.133144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
Over the past decade or so, microplastics (MPs) have received increasing attention due to their ubiquity and potential risk to the environment. Waste plastics usually end up in landfills. These plastics in landfills undergo physical compression, chemical oxidation, and biological decomposition, breaking down into MPs. As a result, landfill leachate stores large amounts of MPs, which can negatively impact the surrounding soil and water environment. However, not enough attention has been given to the occurrence and removal of MPs in landfill leachate. This lack of knowledge has led to landfills being an underestimated source of microplastics. In order to fill this knowledge gap, this paper collects relevant literature on MPs in landfill leachate from domestic and international sources, systematically summarizes their presence within Asia and Europe, assesses the impacts of landfill leachate on MPs in the adjacent environment, and particularly discusses the possible ecotoxicological effects of MPs in leachate. We found high levels of MPs in the soil and water around informal landfills, and the MPs themselves and the toxic substances they carry can have toxic effects on organisms. In addition, this paper summarizes the potential impact of MPs on the biochemical treatment stage of leachate, finds that the effects of MPs on the biochemical treatment stage and membrane filtration are more significant, and proposes some novel processes for MPs removal from leachate. This analysis contributes to the removal of MPs from leachate. This study is the first comprehensive review of the occurrence, environmental impact, and removal of MPs in leachate from landfills in Asia and Europe. It offers a comprehensive theoretical reference for the field, providing invaluable insights.
Collapse
Affiliation(s)
- Haoyu Sun
- Shanghai Engineering Research Center of Solid Waste Treatment and Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinwen Hu
- Shanghai Engineering Research Center of Solid Waste Treatment and Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - You Wu
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Huabo Gong
- Shanghai Engineering Research Center of Solid Waste Treatment and Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nanwen Zhu
- Shanghai Engineering Research Center of Solid Waste Treatment and Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haiping Yuan
- Shanghai Engineering Research Center of Solid Waste Treatment and Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
37
|
Pajura R. Composting municipal solid waste and animal manure in response to the current fertilizer crisis - a recent review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169221. [PMID: 38101643 DOI: 10.1016/j.scitotenv.2023.169221] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
The dynamic price increases of fertilizers and the generation of organic waste are currently global issues. The growth of the population has led to increased production of solid municipal waste and a higher demand for food. Food production is inherently related to agriculture and, to achieve higher yields, it is necessary to replenish the soil with essential minerals. A synergistic approach that addresses both problems is the implementation of the composting process, which aligns with the principles of a circular economy. Food waste, green waste, paper waste, cardboard waste, and animal manure are promising feedstock materials for the extraction of valuable compounds. This review discusses key factors that influence the composting process and compares them with the input materials' parameters. It also considers methods for optimizing the process, such as the use of biochar and inoculation, which result in the production of the final product in a significantly shorter time and at lower financial costs. The applications of composts produced from various materials are described along with associated risks. In addition, innovative composting technologies are presented.
Collapse
Affiliation(s)
- Rebeka Pajura
- Department of Chemistry and Environmental Engineering, Faculty of Civil and Environmental Engineering and Architecture Rzeszow University of Technology, 35-959 Rzeszów, Ave Powstańców Warszawy 6, Poland.
| |
Collapse
|
38
|
Gunarathne V, Phillips AJ, Zanoletti A, Rajapaksha AU, Vithanage M, Di Maria F, Pivato A, Korzeniewska E, Bontempi E. Environmental pitfalls and associated human health risks and ecological impacts from landfill leachate contaminants: Current evidence, recommended interventions and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169026. [PMID: 38056656 DOI: 10.1016/j.scitotenv.2023.169026] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/17/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
The improper management of solid waste, particularly the dumping of untreated municipal solid waste, poses a growing global challenge in both developed and developing nations. The generation of leachate is one of the significant issues that arise from this practice, and it can have harmful impacts on both the environment and public health. This paper presents an overview of the primary waste types that generate landfill leachate and their characteristics. This includes examining the distribution of waste types in landfills globally and how they have changed over time, which can provide valuable insights into potential pollutants in a given area and their trends. With a lack of specific regulations and growing concerns regarding environmental and health impacts, the paper also focuses on emerging contaminants. Furthermore, the environmental and ecological impacts of leachate, along with associated health risks, are analyzed. The potential applications of landfill leachate, suggested interventions and future directions are also discussed in the manuscript. Finally, this work addresses future research directions in landfill leachate studies, with attention, for the first time to the potentialities that artificial intelligence can offer for landfill leachate management, studies, and applications.
Collapse
Affiliation(s)
- Viraj Gunarathne
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, CO 10250, Sri Lanka; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Ankur J Phillips
- Department of Microbiology, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Alessandra Zanoletti
- INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123 Brescia, Italy
| | - Anushka Upamali Rajapaksha
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, CO 10250, Sri Lanka; Instrument Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, CO 10250, Sri Lanka
| | - Francesco Di Maria
- LAR5 Laboratory, Dipartimento di Ingegneria, University of Perugia, via G. Duranti 93, 06125 Perugia, Italy
| | - Alberto Pivato
- DICEA - Department of Civil, Environmental and Architectural Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| | - Ewa Korzeniewska
- Department of Water Protection Engineering and Environmental Microbiology, The Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-719 Olsztyn, Poland
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123 Brescia, Italy.
| |
Collapse
|
39
|
Zhu Y, Che R, Zong X, Wang J, Li J, Zhang C, Wang F. A comprehensive review on the source, ingestion route, attachment and toxicity of microplastics/nanoplastics in human systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120039. [PMID: 38218169 DOI: 10.1016/j.jenvman.2024.120039] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/04/2023] [Accepted: 12/25/2023] [Indexed: 01/15/2024]
Abstract
Microplastics (MPs)/nanoplastics (NPs) are widely found in the natural environment, including soil, water and the atmosphere, which are essential for human survival. In the recent years, there has been a growing concern about the potential impact of MPs/NPs on human health. Due to the increasing interest in this research and the limited number of studies related to the health effects of MPs/NPs on humans, it is necessary to conduct a systematic assessment and review of their potentially toxic effects on human organs and tissues. Humans can be exposed to microplastics through ingestion, inhalation and dermal contact, however, ingestion and inhalation are considered as the primary routes. The ingested MPs/NPs mainly consist of plastic particles with a particle size ranging from 0.1 to 1 μm, that distribute across various tissues and organs within the body, which in turn have a certain impact on the nine major systems of the human body, especially the digestive system and respiratory system, which are closely related to the intake pathway of MPs/NPs. The harmful effects caused by MPs/NPs primarily occur through potential toxic mechanisms such as induction of oxidative stress, generation of inflammatory responses, alteration of lipid metabolism or energy metabolism or expression of related functional factors. This review can help people to systematically understand the hazards of MPs/NPs and related toxicity mechanisms from the level of nine biological systems. It allows MPs/NPs pollution to be emphasized, and it is also hoped that research on their toxic effects will be strengthened in the future.
Collapse
Affiliation(s)
- Yining Zhu
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Ruijie Che
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Xinyan Zong
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Jinhan Wang
- School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Jining Li
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Chaofeng Zhang
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Fenghe Wang
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China.
| |
Collapse
|
40
|
Li T, Cui L, Xu Z, Liu H, Cui X, Fantke P. Micro- and nanoplastics in soil: Linking sources to damage on soil ecosystem services in life cycle assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166925. [PMID: 37689210 DOI: 10.1016/j.scitotenv.2023.166925] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/15/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Soil ecosystems are crucial for providing vital ecosystem services (ES), and are increasingly pressured by the intensification and expansion of human activities, leading to potentially harmful consequences for their related ES provision. Micro- and nanoplastics (MNPs), associated with releases from various human activities, have become prevalent in various soil ecosystems and pose a global threat. Life Cycle Assessment (LCA), a tool for evaluating environmental performance of product and technology life cycles, has yet to adequately include MNPs-related damage to soil ES, owing to factors like uncertainties in MNPs environmental fate and ecotoxicological effects, and characterizing related damage on soil species loss, functional diversity, and ES. This study aims to address this gap by providing as a first step an overview of the current understanding of MNPs in soil ecosystems and proposing a conceptual approach to link MNPs impacts to soil ES damage. We find that MNPs pervade soil ecosystems worldwide, introduced through various pathways, including wastewater discharge, urban runoff, atmospheric deposition, and degradation of larger plastic debris. MNPs can inflict a range of ecotoxicity effects on soil species, including physical harm, chemical toxicity, and pollutants bioaccumulation. Methods to translate these impacts into damage on ES are under development and typically focus on discrete, yet not fully integrated aspects along the impact-to-damage pathway. We propose a conceptual framework for linking different MNPs effects on soil organisms to damage on soil species loss, functional diversity loss and loss of ES, and elaborate on each link. Proposed underlying approaches include the Threshold Indicator Taxa Analysis (TITAN) for translating ecotoxicological effects associated with MNPs into quantitative measures of soil species diversity damage; trait-based approaches for linking soil species loss to functional diversity loss; and ecological networks and Bayesian Belief Networks for linking functional diversity loss to soil ES damage. With the proposed conceptual framework, our study constitutes a starting point for including the characterization of MNPs-related damage on soil ES in LCA.
Collapse
Affiliation(s)
- Tong Li
- Quantitative Sustainability Assessment, Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kgs. Lyngby, Denmark; School of Environment and Science, Centre for Planetary Health and Food Security, Griffith University, Nathan, Brisbane, QLD 4111, Australia
| | - Lizhen Cui
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihong Xu
- School of Environment and Science, Centre for Planetary Health and Food Security, Griffith University, Nathan, Brisbane, QLD 4111, Australia
| | - Hongdou Liu
- School of Environment and Science, Centre for Planetary Health and Food Security, Griffith University, Nathan, Brisbane, QLD 4111, Australia.
| | - Xiaoyong Cui
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peter Fantke
- Quantitative Sustainability Assessment, Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
41
|
Kauts S, Shabir S, Yousuf S, Mishra Y, Bhardwaj R, Milibari AA, Singh SK, Singh MP. The evidence of in-vivo and in-vitro studies on microplastic and nano plastic toxicity in mammals: A possible threat for an upcoming generation? PHYSICS AND CHEMISTRY OF THE EARTH, PARTS A/B/C 2023; 132:103511. [DOI: 10.1016/j.pce.2023.103511] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
42
|
Li B, Li T, Wu P, Yang L, Long J, Liu P, Li T. Transport of pollutants in groundwater of domestic waste landfills in karst regions and its engineering control technologies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119245. [PMID: 37826957 DOI: 10.1016/j.jenvman.2023.119245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/15/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023]
Abstract
Domestic waste produces leachate with a high concentration of pollutants in the landfill process due to biochemical degradation stages like compaction and fermentation. A large number of cases show that anti-seepage membranes widely used in refuse landfills tend to rupture under long-term tension and corrosion, causing leachate to enter the groundwater system and pollute the environment. To reveal the phenomenon of groundwater contamination in refuse landfills, typical domestic waste landfills in karst regions were examined, on the basis of a summary of hydrogeological conditions and hydrochemical characteristics, a three-dimensional groundwater flow model and solute transport model were constructed to analyze the pattern of pollutant diffusion, and its controlling factors, under the current conditions and massive rupture of anti-seepage membrane. The results show that with a minor rupture of the anti-seepage membrane, the area of the low pollution region increases first and then decreases while that of the slight pollution region continuously increases; When a massive rupture of the anti-seepage membrane appears, the ranges of heavy pollution region and total pollution regions continue to grow; Pollutant migrates along the same direction as the groundwater flow and diffuse from high concentration region to low concentration regions under the differential concentration effect. Based on the temporal-spatial distribution characteristics of groundwater pollutants, two engineering control schemes, namely, curtain grouting blocking and group well pumping, were established. A comparison of the two control schemes shows that group well pumping stably maintains water quality safety over the long term, pollutants overflow from both sides of the curtain after they have accumulated to a certain point of concentration, causing damage to the groundwater environment in the conservation area.
Collapse
Affiliation(s)
- Bo Li
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Teng Li
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Pan Wu
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China.
| | - Lei Yang
- College of Earth Science and Surveying and Mapping Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Jie Long
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Pu Liu
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Tao Li
- College of Mines and Civil Engineering, Liupanshui Normal University, Liupanshui, 553004, China
| |
Collapse
|
43
|
Tang Y, Fan K, Herath I, Gustave W, Lin C, Qin J, Qiu R. Contribution of free hydroxyl radical to the formation of micro(nano)plastics and release of additives during polyethylene degradation in water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122590. [PMID: 37734629 DOI: 10.1016/j.envpol.2023.122590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/24/2023] [Accepted: 09/19/2023] [Indexed: 09/23/2023]
Abstract
The omnipresence of secondary microplastics (MPs) in aquatic ecosystems has become an increasingly alarming public health concern. Hydrogen peroxide (H2O2) is an important oxidant in nature and the most stable reactive oxygen species occurred in natural water. In order to explore the contribution of free ˙OH generated from H2O2-driven Fenton-like reactions on the degradation of polyethylene (PE) and generation of micro- and nano-scale plastics in water, a batch experiment was conducted over a period of 620 days in water treated with micromolar H2O2. The incorporation of H2O2 in water induced the formation of flake-like micro(nano)-sized particles due to intensified oxidative degradation of PE films. The presence of ˙OH significantly enhanced the generation of both micro- and nano-scale plastics exhibiting a higher proportion of particles in the range of 200-500 nm compared to the Control. Total organic carbon in the H2O2 treated solution was nearly 174-fold higher than that of the Control indicating a substantial liberation of organic compounds due to the oxidative degradation of native carbon chain of PE and subsequent decomposition of its additives. The highly toxic butylated hydroxytoluene detected from the gas chromatography-mass spectrometry (GC-MS) analysis implied the toxicological behavior of secondary micro(nano)plastics influenced by the oxidation and decomposition processes The findings from this study further expand our understanding of the role of ˙OH in degrading PE micro-scale plastics into nanoparticles as an implication of naturally occurring H2O2 in aquatic environments. In the future, further attention should be drawn to the underlying mechanisms of H2O2-driven in-situ Fenton reaction mediated by natural environmental conditions targeting the alternation of light and darkness on the oxidative degradation of plastics.
Collapse
Affiliation(s)
- Yu Tang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Kaiqing Fan
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Indika Herath
- Centre for Regional and Rural Futures, Faculty of Science, Engineering and Built Environment, Deakin University, Waurn Ponds, VIC, 3216, Australia
| | - Williamson Gustave
- The School of Chemistry, Environmental & Life Sciences, University of The Bahamas, Nassau, Bahamas
| | - Chuxia Lin
- Centre for Regional and Rural Futures, Faculty of Science, Engineering and Built Environment, Deakin University, Burwood, VIC, 3125, Australia
| | - Junhao Qin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
44
|
Amesho KTT, Chinglenthoiba C, Samsudin MSAB, Lani MN, Pandey A, Desa MNM, Suresh V. Microplastics in the environment: An urgent need for coordinated waste management policies and strategies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118713. [PMID: 37567004 DOI: 10.1016/j.jenvman.2023.118713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/11/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023]
Abstract
Microplastics (MPs) have become a prevalent environmental concern, exerting detrimental effects on marine and terrestrial ecosystems, as well as human health. Addressing this urgent issue necessitates the implementation of coordinated waste management policies and strategies. In this study, we present a comprehensive review focusing on key results and the underlying mechanisms associated with microplastics. We examine their sources and pathways, elucidate their ecological and human health impacts, and evaluate the current state of waste management policies. By drawing upon recent research and pertinent case studies, we propose a range of practical solutions, encompassing enhanced recycling and waste reduction measures, product redesign, and innovative technological interventions. Moreover, we emphasize the imperative for collaboration and cooperation across sectors and jurisdictions to effectively tackle this pressing environmental challenge. The findings of this study contribute to the broader understanding of microplastics and provide valuable insights for policymakers, researchers, and stakeholders alike.
Collapse
Affiliation(s)
- Kassian T T Amesho
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan; The International University of Management, Centre for Environmental Studies, Main Campus, Dorado Park Ext 1, Windhoek, Namibia; Destinies Biomass Energy and Farming Pty Ltd, P.O. Box 7387, Swakopmund, Namibia.
| | - Chingakham Chinglenthoiba
- School of Materials Science and Engineering, National Institute of Technology Calicut, Kozhikode, India; Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Mohd S A B Samsudin
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Microplastic Research Interest Group (MRIG), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Mohd Nizam Lani
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Microplastic Research Interest Group (MRIG), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| | - Ashutosh Pandey
- Institute for Water and Wastewater Technology, Durban University of Technology, 19 Steve Biko Road, Durban 4000, South Africa; Department of Biotechnology, Faculty of Life Science and Technology, AKS University, Satna, Madhya Pradesh, 485001, India.
| | - Mohd Nasir Mohd Desa
- Halal Products Research Institute, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Valiyaveettil Suresh
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore.
| |
Collapse
|
45
|
Qi H, Liu M, Ye J, Wang J, Cui Y, Zhou Y, Chen P, Ke H, Wang C, Cai M. Microplastics in the Taiwan Strait and adjacent sea: Spatial variations and lateral transport. MARINE ENVIRONMENTAL RESEARCH 2023; 191:106182. [PMID: 37729853 DOI: 10.1016/j.marenvres.2023.106182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/22/2023]
Abstract
This study investigates the distribution, structural properties, and potential impacts of oceanic processes on microplastics (MPs) in the Taiwan Strait (TWS) and surrounding seas. With an average of 174 particles/m3, the MP abundance in surface seawater ranged from 84 to 389 particles/m3. MP abundance ranged from 16 to 382 particles/kg in sediments, with a median of 121 particles/kg. Fragment and fiber were the two most frequently detected shapes. These MPs were found to be composed primarily of carbon and oxygen elements at 70-90% levels using energy-dispersive X-ray spectroscopy. Additionally, several examples had trace levels of metallic components. Black was the color that MPs saw the most often out of all the hues. The two main types of polymers are polyester and rayon, and their production is influenced by home sewage discharge and synthetic fiber production. The main routes of MP transport were land source input, riverine input, and oceanic currents. This study showed that salinity affects the distribution of MPs, with high-salinity seawater serving to saturate their presence. On the other hand, upwelling raises MP concentrations by bringing nutrients from the deep to the surface. Furthermore, it has been discovered that the dilution of the Pearl River plume increases the MP prevalence in the region. The South China Sea Warm Current had the highest lateral MPs transport flux (2.1 × 1014 particles/y), which was followed by the Taiwan Strait Current area (1.0 × 1014 particles/y) and the Guangdong coastal areas (8.6 × 1013 particles/y). In sediments, the MP prevalence was inversely correlated with particle size. Flocculation processes probably made it easier for MPs to travel down the water column and deposit themselves on the aquatic substrate. Although the relationship between MPs, total organic carbon, and total organic nitrogen was not correlated, a favorable trend showed that MPs may discreetly contribute to carbon storage in coastal sediment.
Collapse
Affiliation(s)
- Huaiyuan Qi
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Mengyang Liu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, 999077, China
| | - Jiandong Ye
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Junge Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Yaozong Cui
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Yang Zhou
- College of Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Piao Chen
- Coastal and Ocean Management Institute, Xiamen University, Xiamen, 361102, China; College of Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Hongwei Ke
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Chunhui Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Minggang Cai
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; Department of Biological Technology, Xiamen Ocean Vocational College, Xiamen, 361102, China; Coastal and Ocean Management Institute, Xiamen University, Xiamen, 361102, China; College of Environment and Ecology, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
46
|
Kabir MS, Wang H, Luster-Teasley S, Zhang L, Zhao R. Microplastics in landfill leachate: Sources, detection, occurrence, and removal. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 16:100256. [PMID: 36941884 PMCID: PMC10024173 DOI: 10.1016/j.ese.2023.100256] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 06/01/2023]
Abstract
Due to the accumulation of an enormous amount of plastic waste from municipal and industrial sources in landfills, landfill leachate is becoming a significant reservoir of microplastics. The release of microplastics from landfill leachate into the environment can have undesirable effects on humans and biota. This study provides the state of the science regarding the source, detection, occurrence, and remediation of microplastics in landfill leachate based on a comprehensive review of the scientific literature, mostly in the recent decade. Solid waste and wastewater treatment residue are the primary sources of microplastics in landfill leachate. Microplastic concentration in raw and treated landfill leachate varied between 0-382 and 0-2.7 items L-1. Microplastics in raw landfill leachate are largely attributable to local plastic waste production and solid waste management practices. Polyethylene, polystyrene, and polypropylene are the most prevalent microplastic polymers in landfill leachate. Even though the colors of microplastics are primarily determined by their parent plastic waste, the predominance of light-colored microplastics in landfill leachate indicates long-term degradation. The identified morphologies of microplastics in leachate from all published sources contain fiber and fragments the most. Depending on the treatment method, leachate treatment processes can achieve microplastic removal rates between 3% and 100%. The review also provides unique perspectives on microplastics in landfill leachate in terms of remediation, final disposal, fate and transport among engineering systems, and source reduction, etc. The landfill-wastewater treatment plant loop and bioreactor landfills present unique difficulties and opportunities for managing microplastics induced by landfill leachate.
Collapse
Affiliation(s)
- Mosarrat Samiha Kabir
- Department of Nanoengineering, North Carolina Agricultural and Technical State University, Greensboro, NC, 27411, USA
| | - Hong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Stephanie Luster-Teasley
- Civil, Architectural and Environmental Engineering Department, North Carolina Agricultural and Technical State University, Greensboro, NC, 27411, USA
| | - Lifeng Zhang
- Department of Nanoengineering, North Carolina Agricultural and Technical State University, Greensboro, NC, 27411, USA
| | - Renzun Zhao
- Civil, Architectural and Environmental Engineering Department, North Carolina Agricultural and Technical State University, Greensboro, NC, 27411, USA
| |
Collapse
|
47
|
Tian X, Weixie L, Wang S, Zhang Y, Xiang Q, Yu X, Zhao K, Zhang L, Penttinen P, Gu Y. Effect of polylactic acid microplastics and lead on the growth and physiological characteristics of buckwheat. CHEMOSPHERE 2023; 337:139356. [PMID: 37379973 DOI: 10.1016/j.chemosphere.2023.139356] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/17/2023] [Accepted: 06/25/2023] [Indexed: 06/30/2023]
Abstract
Microplastics (MPs) and heavy metals are common, often co-existing pollutants, that threaten crop growth and productivity worldwide. We analysed the adsorption of lead ions (Pb2+) to polylactic acid MPs (PLA-MPs) and their single factor and combined effects on tartary buckwheat (Fagopyrum tataricum L. Gaertn.) in hydroponics by measuring changes in the growth characteristics, antioxidant enzyme activities and Pb2+ uptake of buckwheat in response to PLA-MPs and Pb2+. PLA-MPs adsorbed Pb2+, and the better fitting second-order adsorption model implied that Pb2+ was adsorbed by chemisorption. However, the similar Pb2+ contents in the plants treated with Pb2+ only and those treated with the combined PLA-MPs-Pb2+ suggested that the adsorption played no role in the uptake of Pb2+. Low concentrations of PLA-MPs promoted shoot length. At high concentrations of both PLA-MPs and Pb2+, buckwheat growth was inhibited, and leaf peroxidase (POD), superoxide dismutase (SOD) and catalase (CAT) activities and malondialdehyde (MDA) contents were higher than in the control. No significant differences were observed in seedling growth between exposure to Pb2+ only and combined exposure to PLA-MPs with Pb2+, implying that PLA-MPs did not increase the toxicity of Pb2+ at macroscopic level. POD activity was higher and chlorophyll content was lower with PLA-MPs in the low Pb2+ dose treatments, suggesting that PLA-MPs may increase the toxicity of naturally occurring Pb2+. However, the conclusions must be verified in controlled experiments in natural soil conditions over the whole cultivation period of buckwheat.
Collapse
Affiliation(s)
- Xianrui Tian
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Luyao Weixie
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shuya Wang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yanyan Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Quanju Xiang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiumei Yu
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ke Zhao
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lingzi Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Petri Penttinen
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yunfu Gu
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
48
|
Rafiq A, Xu JL. Microplastics in waste management systems: A review of analytical methods, challenges and prospects. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 171:54-70. [PMID: 37647726 DOI: 10.1016/j.wasman.2023.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/10/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023]
Abstract
Numerous studies have reported the presence of microplastics (MPs) in waste collection and disposal systems. However, current scientific studies on measuring MP occurrence in a waste management context are not comparable due to a lack of standardized methodologies. Consequently, the impact of MPs on ecosystems and human health remains largely unclear. To address the inconsistencies, present in published studies, this review thoroughly examines sample preparation techniques for transfer stations, landfill leachate, recycling, compost, and incineration ash samples. Furthermore, various analytical approaches such as flotation, filtration, and organic matter digestion, as well as morphological categorization, identification, and quantification, are subsequently rigorously assessed. The benefits and limitations of each methodology are evaluated to facilitate the development of accurate and effective methods for detecting and characterizing nanoplastics. Recent research suggests that plastic recycling and composting facilities are the primary environmental sources of microplastic pollution among different waste treatment methods. The most prevalent microplastic types discovered in waste management were polyethylene (PE) and polypropylene (PP), with fragment and fiber being the most frequently reported morphologies. The review highlights a number of tactics that could be integrated into the methodology development for detecting microplastics in waste management systems (WMS), ultimately leading to better consistency and reliability of data across different studies. In essence, this will advance our comprehension of potential risks associated with microplastics.
Collapse
Affiliation(s)
- Adeel Rafiq
- The Joint Graduate School of Energy and Environment, King Mongkut's University of Technology Thonburi, Thailand
| | - Jun-Li Xu
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
49
|
Chamanee G, Sewwandi M, Wijesekara H, Vithanage M. Global perspective on microplastics in landfill leachate; Occurrence, abundance, characteristics, and environmental impact. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 171:10-25. [PMID: 37634255 DOI: 10.1016/j.wasman.2023.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 08/29/2023]
Abstract
Plastic wastes deposited in landfills eventually break down and degrade into microplastics by physical, chemical, and biological forces. Though microplastics in leachate pose significant threats to the environment, the leachate generated from landfills has not received much attention as a possible source of environmental microplastics. A descriptive and systematic investigationof the global distribution of microplastics in landfill leachate does not exist to date. Therefore, this attempt is to provide a concise scientometric review of the studies on the presence of microplastics in landfill leachate. The present review revealed that the global trend in research on microplastics in leachate has increased exponentially after 2018 and China is the leading country. Different geographical regions have reported different microplastic abundances with the highest of 291.0 ± 91.0 items/L from a landfill in Shanghai. The use of novel sampling techniques to detect small microplastics (20-100 µm) has led to the high abundance of microplastics in landfill leachate in Shanghai. Due to its widespread usage, polyethylene is the most typically encountered polymer type in landfill leachate around the world. However, it is quite challengingto compare the results among studies due to the use of different size categories and extraction techniques. The removal of microplastics by the current leachate treatment facilities is still mostly unexplored, thus it is crucial to develop novel technologies to treat the microplastics in landfill leachate. Further investigations on the transport of microplastics in landfill leachate are urgently required to have a better understanding of potential human exposure and health implications.
Collapse
Affiliation(s)
- Gayathri Chamanee
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka; Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka
| | - Madushika Sewwandi
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Hasintha Wijesekara
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka
| | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India; Institute of Agriculture, University of Western Australia, Perth, WA 6009, Australia.
| |
Collapse
|
50
|
Teng F, Tan G, Liu T, Zhang T, Liu Y, Li S, Lei C, Peng X, Yin H, Meng D. Inoculation with thermophiles enhanced the food waste bio-drying and complicated interdomain ecological networks between bacterial and fungal communities. ENVIRONMENTAL RESEARCH 2023; 231:116299. [PMID: 37268211 DOI: 10.1016/j.envres.2023.116299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/23/2023] [Accepted: 05/31/2023] [Indexed: 06/04/2023]
Abstract
Bio-drying is a practical approach for treating food waste (FW). However, microbial ecological processes during treatment are essential for improving the dry efficiency, and have not been stressed enough. This study analyzed the microbial community succession and two critical periods of interdomain ecological networks (IDENs) during FW bio-drying inoculated with thermophiles (TB), to determine how TB affects FW bio-drying efficiency. The results showed that TB could rapidly colonize in the FW bio-drying, with the highest relative abundance of 5.13%. Inoculating TB increased the maximum temperature, temperature integrated index and moisture removal rate of FW bio-drying (55.7 °C, 219.5 °C, and 86.11% vs. 52.1 °C, 159.1 °C, and 56.02%), thereby accelerating the FW bio-drying efficiency by altering the succession of microbial communities. The structural equation model and IDEN analysis demonstrated that TB inoculation complicated the IDENs between bacterial and fungal communities by significantly and positively affecting bacterial communities (b = 0.39, p < 0.001) and fungal communities (b = 0.32, p < 0.01), thereby enhancing interdomain interactions between bacteria and fungi. Additionally, inoculation TB significantly increased the relative abundance of keystone taxa, including Clostridium sensu stricto, Ochrobactrum, Phenylobacterium, Microvirga and Candida. In conclusion, the inoculation of TB could effectively improve FW bio-drying, which is a promising technology for rapidly reducing FW with high moisture content and recovering resources from it.
Collapse
Affiliation(s)
- Fucheng Teng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Ge Tan
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; China Tobacco Hunan Industrial Co., Ltd., Changsha, 410014, China
| | - Tianbo Liu
- China Tobacco Research Institute of Hunan Province, Changsha, 410004, China
| | - Teng Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Hunan Urban and Rural Environmental Construction Co., Ltd, Changsha, 410118, China
| | - Yongjun Liu
- China Tobacco Research Institute of Hunan Province, Changsha, 410004, China
| | - Sheng Li
- College of Resources & Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Can Lei
- Changsha Leibang Environmental Protection Technology Co., Ltd, Changsha, 410199, China
| | - Xing Peng
- Hunan Renhe Environment Co., Ltd, Changsha, 410022, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China.
| |
Collapse
|