1
|
Xue Y, Gong X, Yang L, Zhi D, Meng Q, Guo Y, Dong K, Tian Y. Influence of nano-polystyrene on cyfluthrin toxicity in honeybee Apis cerana cerana Fabricius. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117753. [PMID: 39827611 DOI: 10.1016/j.ecoenv.2025.117753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/21/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Plastics and pesticides are commonly used and often coexist in the environment. As pollinating insects, honeybees are simultaneously exposed to both these toxins. However, there has been no study on the toxic effects of nano-polystyrene plastics (nanoPS) and cyfluthrin (Cy) on the Apis cerana cerana Fabricius until now. This study found that nanoPS did not significantly impact the mortality of Apis cerana cerana but could reduce cyfluthrin-induced mortality. Additionally, nanoPS caused damage to the honeybee gut and hindered the development of the hypopharyngeal glands, whereas cyfluthrin did not produce these pathological changes. Concerning the detoxification-related genes, the two toxins alone and in combination significantly promoted the expression of P450 9E2 and Cyp9Q3 genes, and the upregulation trend was found more significant for the combination. Regarding immune gene expression, exposure to a single toxin or both toxins significantly down-regulated the abaecin gene, but only exposure to nanoPS significantly decreased apidaecin expression. The changes in metabolites and metabolic pathways in honeybees after ingesting nanoPS were also studied. This study highlights the toxicity of nano-microplastics and Cy alone and in combination to Apis cerana cerana Fabricius and provides new insights into the potential ecological risks of nanoPS.
Collapse
Affiliation(s)
- Yunfei Xue
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xueyang Gong
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Linfu Yang
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Dandan Zhi
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Qingxin Meng
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yulong Guo
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Kun Dong
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China.
| | - Yakai Tian
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China.
| |
Collapse
|
2
|
Zou R, van Dam R, Smits N, Beij E, Bovee T, de Graaf DC, Guo Y, Peters J. Discovery of multiple bee-hazardous pesticides in ornamental plants via the Bee-Plex multi-target microsphere screening method. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136556. [PMID: 39591785 DOI: 10.1016/j.jhazmat.2024.136556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 11/03/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024]
Abstract
Exposure to pesticides is one of the main drivers of global bee decline. However, the occurrence of pesticides in bee-attracting crops remains underexposed due to the lack of efficient on-site screening approaches for multi-analyte monitoring. Utilizing color-encoded superparamagnetic microspheres, we constructed a portable 8-plex indirect competitive microsphere-based immunoassay for the simultaneous determination of multiple bee-hazardous residues (Bee-Plex). Through a single measurement within 40 min, Bee-Plex exhibited high sensitivities with IC50values of 0.04, 0.08, 0.14, 0.15, 0.78, 0.86, 7.72, and 8.79 ng/mL for imidacloprid, parathion, fipronil, emamectin, carbofuran, chlorpyrifos, fenpropathrin and carbaryl, respectively. Moreover, the implementation of multiple broad-specific antibodies enables a wide-range screening profile for 30 pesticides and pesticide metabolites, detecting 6 neonicotinoids, 6 N-methyl carbamates 6 organophosphates, 5 avermectins, 5 pyrethroids and 2 phenylpyrazoles. The combination of Bee-Plex screening (93 % accuracy) and LC-MS/MS confirmatory analysis revealed contaminations of neonicotinoids (100 %) and avermectins (70 %) in roses, with occurrence frequencies of 79 %, 79 %, 21 %, 21 %, 7 %, and 7 % for imidacloprid, acetamiprid, clothianidin, thiacloprid, imidaclothiz, and nitenpyram, respectively. Above all, this study offers a powerful analytical tool for rapid screening of multiple bee-hazardous pesticides, offering new insights in the occurrence of multi-pesticide contamination in ornamental plants.
Collapse
Affiliation(s)
- Rubing Zou
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands; Institute of Pesticide and Environmental Toxicology, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Ruud van Dam
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| | - Nathalie Smits
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| | - Erik Beij
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| | - Toine Bovee
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| | - Dirk C de Graaf
- Ghent University, Department of Biochemistry and Microbiology, Ghent, Belgium
| | - Yirong Guo
- Institute of Pesticide and Environmental Toxicology, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China.
| | - Jeroen Peters
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands.
| |
Collapse
|
3
|
Albacete S, Azpiazu C, Sancho G, Barnadas M, Alins G, Sgolastra F, Rodrigo A, Bosch J. Sublethal fungicide-insecticide co-exposure affects nest recognition and parental investment in a solitary bee. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125223. [PMID: 39481516 DOI: 10.1016/j.envpol.2024.125223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/01/2024] [Accepted: 10/29/2024] [Indexed: 11/02/2024]
Abstract
Fungicides may interact synergistically with insecticides. However, our understanding of the impacts of sublethal insecticide-fungicide combinations on solitary bees is mostly restricted to laboratory studies, providing no information about potential consequences on behavior and reproductive success. We analyzed the effects of a fungicide application, alone and in combination with sublethal levels of an insecticide, on the nesting behavior and reproductive output of the solitary bee Osmia cornuta. We released individually-marked females into oilseed rape field cages, and subsequently sprayed the plants with four treatments: control (water), fungicide (tebuconazole), insecticide (acetamiprid at a sublethal concentration), and mixture (fungicide + insecticide). We recorded nesting activity before and after the sprays and assessed post-spray individual reproductive success. Bees of the single pesticide treatments were unaffected by the sprays and did not differ from control bees in any of the parameters measured. The longevity of bees of the mixture treatment was unaffected. However, these bees showed reduced foraging activity, shorter in-nest pollen-nectar deposition times, and increased difficulty recognizing their nesting cavity, leading to a decrease in provisioning rate, parental investment, and offspring production. Our study demonstrates that co-exposure to a fungicide with otherwise harmless levels of an insecticide caused behavioral effects with consequences on reproductive success. Because longevity was unaffected, these effects would not have been easily detected in a chronic laboratory test. Our results have important implications for bee risk assessment, which should account for exposure to multiple compounds and address behavioral effects and reproductive output under semi-field and/or field conditions.
Collapse
Affiliation(s)
- Sergio Albacete
- Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Centre for Ecological Research and Forestry Applications (CREAF), 08193, Bellaterra, Spain.
| | - Celeste Azpiazu
- Centre for Ecological Research and Forestry Applications (CREAF), 08193, Bellaterra, Spain; Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Gonzalo Sancho
- Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Centre for Ecological Research and Forestry Applications (CREAF), 08193, Bellaterra, Spain
| | - Marta Barnadas
- Centre for Ecological Research and Forestry Applications (CREAF), 08193, Bellaterra, Spain
| | - Georgina Alins
- Fruit Production Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 25003, Lleida, Spain
| | - Fabio Sgolastra
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum Università di Bologna, 40127, Bologna, Italy
| | - Anselm Rodrigo
- Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Centre for Ecological Research and Forestry Applications (CREAF), 08193, Bellaterra, Spain
| | - Jordi Bosch
- Centre for Ecological Research and Forestry Applications (CREAF), 08193, Bellaterra, Spain
| |
Collapse
|
4
|
Zhang G, Kuesel RW, Olsson R, Reed R, Liu X, Hopkins B. Pesticide exposure patterns in honey bees during migratory pollination. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135910. [PMID: 39321480 DOI: 10.1016/j.jhazmat.2024.135910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Monitoring pesticide exposures in honey bees provides fundamental risk information that informs efforts to improve regulatory policy, pesticide use, and beekeeping management so pollinators are protected in realistic field conditions. We investigated pesticide exposures to bee colonies while colonies moved along commercial migratory routes in 2022 and 2023 to pollinate multiple pollinator-dependent, high-value U.S. specialty crops (e.g., almonds in California and apples and cherries in Washington). We found evident pesticide exposure patterns, including increasing exposures (both levels and number of pesticides) to fungicides during almond pollination, higher exposures to insecticides and persistent exposures to fungicides during springtime fruit pollination, and declining exposures in summer. Exposure risk assessment by risk quotient (RQ) model based on residues in bee bread indicates no concern of acute toxicity to adult honey bees during pollination, however, during colony inspections we found severe brood mortality in fields associated with high exposure to buprofezin, an insect growth regulator (IGR) thought to be safe for adult bees, which is permitted for use any time across the season. Our results suggest a need to improve compliance with insecticide label requirements during tree fruit pollination and a need for further research into the negative impacts of IGR on colony health especially on immature bees to inform potential policy changes.
Collapse
Affiliation(s)
- Ge Zhang
- Department of Entomology, Washington State University, Pullman WA 99164, United States.
| | - Ryan William Kuesel
- Department of Entomology, Washington State University, Pullman WA 99164, United States
| | - Rae Olsson
- Department of Entomology, Washington State University, Pullman WA 99164, United States
| | - Riley Reed
- Department of Entomology, Washington State University, Pullman WA 99164, United States
| | - Xia Liu
- Department of Mathematics and Statistical Science, University of Idaho, Moscow, ID 83844, United States
| | - Brandon Hopkins
- Department of Entomology, Washington State University, Pullman WA 99164, United States
| |
Collapse
|
5
|
Catania R, Bonforte M, Negrini Ferreira LM, Martins GF, Pereira Lima MA, Ricupero M, Zappalà L, Mazzeo G. Insecticides used for controlling cotton mealybug pose a threat to non-target bumble bees. CHEMOSPHERE 2024; 368:143742. [PMID: 39542376 DOI: 10.1016/j.chemosphere.2024.143742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Bumble bees (Bombus spp., Hymenoptera, Apidae) play a crucial role in pollinating greenhouse tomato crops. However, tomato production is constantly threatened by different invasive pests that often lead to the increased use of pesticides, with negative consequences for pollinators. The cotton mealybug Phenacoccus solenopsis has recently been reported in Mediterranean tomatoes and its chemical control raises concerns also regarding bumble bees. In the laboratory, we evaluated the acute toxicity and sublethal effects in B. terrestris workers exposed to the diet contaminated with four insecticides (acetamiprid, pyriproxyfen, sulfoxaflor, and thiamethoxam), potentially used to control P. solenopsis. Sulfoxaflor and thiamethoxam significantly reduced the survival of B. terrestris, while acetamiprid and pyriproxyfen altered its feeding behaviour, and the bumble bees were unable to detect the contaminated solution. Moreover, neurotoxic symptoms were observed in bees exposed to acetamiprid and alterations of the midgut were detected in bees exposed to both acetamiprid and pyriproxyfen. These results show that insecticides with low levels of toxicity to bumble bees (e.g. acetamiprid and pyriproxyfen), can cause sublethal effects on them, increasing concern about the use of these substances. Our findings provide valuable insights as regards optimizing bumble bee pollination services with chemical pest control within the context of Integrated Pest and Pollinator Management.
Collapse
Affiliation(s)
- Roberto Catania
- Dipartimento di Agricoltura, Alimentazione e Ambiente, sez. Entomologia applicata. Università degli Studi di Catania. Via S. Sofia 100 - 95123 Catania, Italy; Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil; Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil; Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil.
| | - Marta Bonforte
- Dipartimento di Agricoltura, Alimentazione e Ambiente, sez. Entomologia applicata. Università degli Studi di Catania. Via S. Sofia 100 - 95123 Catania, Italy
| | - Lívia Maria Negrini Ferreira
- Dipartimento di Agricoltura, Alimentazione e Ambiente, sez. Entomologia applicata. Università degli Studi di Catania. Via S. Sofia 100 - 95123 Catania, Italy; Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Gustavo Ferreira Martins
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Maria Augusta Pereira Lima
- Dipartimento di Agricoltura, Alimentazione e Ambiente, sez. Entomologia applicata. Università degli Studi di Catania. Via S. Sofia 100 - 95123 Catania, Italy; Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Michele Ricupero
- Dipartimento di Agricoltura, Alimentazione e Ambiente, sez. Entomologia applicata. Università degli Studi di Catania. Via S. Sofia 100 - 95123 Catania, Italy
| | - Lucia Zappalà
- Dipartimento di Agricoltura, Alimentazione e Ambiente, sez. Entomologia applicata. Università degli Studi di Catania. Via S. Sofia 100 - 95123 Catania, Italy
| | - Gaetana Mazzeo
- Dipartimento di Agricoltura, Alimentazione e Ambiente, sez. Entomologia applicata. Università degli Studi di Catania. Via S. Sofia 100 - 95123 Catania, Italy
| |
Collapse
|
6
|
Oliveira GR, Gallas-Lopes M, Chitolina R, Bastos LM, Portela SM, Stahlhofer-Buss T, Gusso D, Gomez R, Wyse ATS, Herrmann AP, Piato A. Evaluation of behavioral and neurochemical changes induced by carbofuran in zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2024; 283:109969. [PMID: 38925284 DOI: 10.1016/j.cbpc.2024.109969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/17/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Carbofuran (CF) is a carbamate class pesticide, widely used in agriculture for pest control in crops. This pesticide has high toxicity in non-target organisms, and its presence in the environment poses a threat to the ecosystem. Research has revealed that this pesticide acts as an inhibitor of acetylcholinesterase (AChE), inducing an accumulation of acetylcholine in the brain. Nonetheless, our understanding of CF impact on the central nervous system remains elusive. Therefore, this study explored how CF influences behavioral and neurochemical outcomes in adult zebrafish. The animals underwent a 96-hour exposure protocol to different concentrations of CF (5, 50, and 500 μg/L) and were subjected to the novel tank (NTT) and social preference tests (SPT). Subsequently, they were euthanized, and their brains were extracted to evaluate neurochemical markers associated with oxidative stress and AChE levels. In the NTT and SPT, CF did not alter the evaluated behavioral parameters. Furthermore, CF did not affect the levels of AChE, non-protein sulfhydryl groups, and thiobarbituric acid reactive species in the zebrafish brain. Nevertheless, further investigation is required to explore the effects of environmental exposure to this compound on non-target organisms.
Collapse
Affiliation(s)
- Giovana R Oliveira
- Programa de Pós-graduação em Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Matheus Gallas-Lopes
- Programa de Pós-graduação em Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Rafael Chitolina
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Leonardo M Bastos
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Stefani M Portela
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Thailana Stahlhofer-Buss
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Darlan Gusso
- Programa de Pós-graduação em Ciências Biológicas, Bioquímica, Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Rosane Gomez
- Programa de Pós-graduação em Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Angela T S Wyse
- Programa de Pós-graduação em Ciências Biológicas, Bioquímica, Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Ana P Herrmann
- Programa de Pós-graduação em Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Angelo Piato
- Programa de Pós-graduação em Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
7
|
Albacete S, Sancho G, Azpiazu C, Sgolastra F, Rodrigo A, Bosch J. Exposure to sublethal levels of insecticide-fungicide mixtures affect reproductive success and population growth rates in the solitary bee Osmia cornuta. ENVIRONMENT INTERNATIONAL 2024; 190:108919. [PMID: 39094406 DOI: 10.1016/j.envint.2024.108919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
In agricultural environments, bees are routinely exposed to combinations of pesticides. For the most part, exposure to these pesticide mixtures does not result in acute lethal effects, but we know very little about potential sublethal effects and their consequences on reproductive success and population dynamics. In this study, we orally exposed newly emerged females of the solitary bee Osmia cornuta to environmentally-relevant levels of acetamiprid (a cyano-substituted neonicotinoid insecticide) singly and in combination with tebuconazole (a sterol-biosynthesis inhibitor (SBI) fungicide). The amount of feeding solution consumed during the exposure phase was lowest in bees exposed to the pesticide mixture. Following exposure, females were individually marked and released into oilseed rape field cages to monitor their nesting performance and assess their reproductive success. The nesting performance and reproductive success of bees exposed to the fungicide or the insecticide alone were similar to those of control bees and resulted in a 1.3-1.7 net population increases. By contrast, bees exposed to the pesticide mixture showed lower establishment, shortened nesting period, and reduced fecundity. Together, these effects led to a 0.5-0.6 population decrease. Female establishment and shortened nesting period were the main population bottlenecks. We found no effects of the pesticide mixture on nest provisioning rate, offspring body weight or sex ratio. Our study shows how sublethal pesticide exposure may affect several components of bee reproductive success and, ultimately, population growth. Our results calls for a rethinking of pollinator risk assessment schemes, which should target not only single compounds but also combinations of compounds likely to co-occur in agricultural environments.
Collapse
Affiliation(s)
- Sergio Albacete
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Centre for Ecological Research and Forestry Applications (CREAF), 08193 Bellaterra, Spain.
| | - Gonzalo Sancho
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Centre for Ecological Research and Forestry Applications (CREAF), 08193 Bellaterra, Spain
| | - Celeste Azpiazu
- Centre for Ecological Research and Forestry Applications (CREAF), 08193 Bellaterra, Spain; Institute of Evolutionary Biology (CSIC - Universitat Pompeu Fabra), 08034 Barcelona, Spain; Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Fabio Sgolastra
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum Università di Bologna, 40127 Bologna, Italy
| | - Anselm Rodrigo
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Centre for Ecological Research and Forestry Applications (CREAF), 08193 Bellaterra, Spain
| | - Jordi Bosch
- Centre for Ecological Research and Forestry Applications (CREAF), 08193 Bellaterra, Spain
| |
Collapse
|
8
|
Drummond FA, Averill AL, Eitzer BD. Pesticide Contamination in Native North American Crops, Part II-Comparison of Flower, Honey Bee Workers, and Native Bee Residues in Lowbush Blueberry. INSECTS 2024; 15:567. [PMID: 39194772 DOI: 10.3390/insects15080567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
In lowbush blueberry fields, we conducted residue analysis comparing flowers, trapped pollen (honey bee and Osmia spp.), and collected bees (honey bee workers, bumble bee queens, and non-Bombus spp. wild native bees). The study was conducted from 2012 to 2014. The number of pesticide residues, total concentrations, and risk to honey bees (Risk Quotient) on flowers were not significantly different from those determined for trapped honey bee pollen (except in one study year when residues detected in flower samples were significantly lower than residue numbers detected in trapped pollen). The compositions of residues were similar on flowers and trapped pollen. The number of residues detected in honey bee pollen was significantly greater than the number detected in Osmia spp. pollen, while the total concentration of residue was not different between the two types of pollen. The risk to honey bees was higher in trapped honey bee pollen than in trapped Osmia spp. pollen. The analysis of honey bee workers, native bumble bee queens, and native solitary bees showed that although more pesticide residues were detected on honey bee workers, there were no differences among the bee taxa in total residue concentrations or risk (as estimated in terms of risk to honey bees).
Collapse
Affiliation(s)
- Francis A Drummond
- School of Biology and Ecology, and Cooperative Extension, University of Maine, Orono, ME 04469, USA
| | - Anne L Averill
- Department of Environmental Conservation, University of Massachusetts, Amherst, MA 01003, USA
| | - Brian D Eitzer
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, USA
| |
Collapse
|
9
|
Peng W, Xu Z, Yi C, Zhang Y, Liao Q. Silver coated PS microsphere array SERS microfluidic chip for pesticide detection. Heliyon 2024; 10:e33647. [PMID: 39055796 PMCID: PMC11269829 DOI: 10.1016/j.heliyon.2024.e33647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Carbendazim and acetamidine are pesticides that widely used to control pests and diseases in oilseed rape. In this paper, a rapid, accurate and reliable method was proposed for the detection of carbendazim and acetamidine with SERS microfluidic chip technology. Ag-ps(Polystyrene microspheres) microsphere SERS substrate was prepared by spin coating and magnetron sputtering deposition of Ag. The enhancement factor of prepared SERS substrate was 2.4 × 1010. The SERS detection working curves were well fitted and the linear parameters R2 were 0.987 and 0.994, respectively. The limit of detection was 0.01 mg/mL. The use of SERS microfluidic chip to detect carbendazim and acetamidine is expected to provide a way for the detection of pesticide residues in crops, which has broad application prospects in the field of food safety.
Collapse
Affiliation(s)
- Wang Peng
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Agricultural Equipment in Mid-Lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhihan Xu
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chao Yi
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuankai Zhang
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qingxi Liao
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Agricultural Equipment in Mid-Lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| |
Collapse
|
10
|
Chen X, Wang Y, Zhou Y, Wang F, Wang J, Yao X, Imran M, Luo S. Imidacloprid reduces the mating success of males in bumblebees. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172525. [PMID: 38631635 DOI: 10.1016/j.scitotenv.2024.172525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/14/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
Bumblebees play a vital role in both natural and agricultural environments, but there has been a noticeable decline in their populations. Pesticides, particularly neonicotinoids, are widely regarded as a substantial contributing factor to the decline in bumblebee populations, as evidenced by the detrimental impacts documented across many stages of their life cycle. Mating is vital for the population maintenance of bumblebees. Nevertheless, there is a scarcity of research conducted on the effects of pesticides on the mating process. In this study, we individually examined the impact of imidacloprid on the mating behavior of bumblebee males and queens. A competitive mating experiment was conducted to evaluate the effect on the competitive prowess of male individuals and the mate selection behavior of female individuals. The study revealed that the mating rate of bumblebees exposed to a concentration of 10 ppb of imidacloprid was 3 %. This finding demonstrated a statistically significant impact when compared to the control group, which exhibited a mating rate of 58 % in the normal mating experiment. Furthermore, in the competitive mating experiment, we found that the competitive mating success rate of treated males (1 %) was significantly lower than that of untreated males (35 %). Hence, it provides evidence that neonicotinoid imidacloprid negatively affects bumblebee mating success and cautions us to protect bumblebees from pesticide exposure to prevent a severe impact on their populations.
Collapse
Affiliation(s)
- Xing Chen
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Western Research Institute, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Yuhao Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Western Research Institute, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Yao Zhou
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Western Research Institute, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Feiran Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832061, China
| | - Jian Wang
- Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832061, China
| | - Xudong Yao
- Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832061, China
| | - Muhammad Imran
- Department of Entomology, University of Poonch Rawalakot, AJK 12350, Pakistan
| | - Shudong Luo
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Western Research Institute, Chinese Academy of Agricultural Sciences, Changji 831100, China; Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832061, China.
| |
Collapse
|
11
|
Ma C, Gu G, Chen S, Shi X, Li Z, Li-Byarlay H, Bai L. Impact of chronic exposure to field level glyphosate on the food consumption, survival, gene expression, gut microbiota, and metabolomic profiles of honeybees. ENVIRONMENTAL RESEARCH 2024; 250:118509. [PMID: 38408628 DOI: 10.1016/j.envres.2024.118509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/25/2024] [Accepted: 02/15/2024] [Indexed: 02/28/2024]
Abstract
Glyphosate (GLY) is among the most widely used pesticides in the world. However, there are a lot of unknowns about chronic exposure to GLY's effects on Honeybee (HB) behavior and physiology. To address this, we carried out five experiments to study the impact of chronic exposure to 5 mg/kg GLY on sugar consumption, survival, gene expression, gut microbiota, and metabolites of HB workers. Our results find a significant decrease in sugar consumption and survival probability of HB after chronic exposure to GLY. Further, genes associated with immune response, energy metabolism, and longevity were conspicuously altered. In addition, a total of seven metabolites were found to be differentially expressed in the metabolomic profiles, mainly related the sucrose metabolism. There was no significant difference in the gut microbiota. Results suggest that chronic exposure to field-level GLY altered the health of HB and the intricate toxic mechanisms. Our data provided insights into the chronic effects of GLY on HB behavior in food intake and health, which represents the field conditions where HB are exposed to pesticides over extended periods.
Collapse
Affiliation(s)
- Changsheng Ma
- Longping Branch Graduate School, College of Biology, Hunan University, Changsha 410125, China; Key laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Gaoying Gu
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Science, Kunming, Yunnan Province 650223, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sihao Chen
- Department of Earth, Ocean and Ecological Sciences, School of Environmental Sciences, University of Liverpool, Liverpool L69 3BX, UK; Department of Health and Environmental Sciences, Xi'an-Jiaotong Liverpool University, Suzhou 215123, China
| | - Xiaoyu Shi
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zuren Li
- Key laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Hongmei Li-Byarlay
- Agricultural Research and Development Program, Central State University, Wilberforce, OH 45384, USA.
| | - Lianyang Bai
- Longping Branch Graduate School, College of Biology, Hunan University, Changsha 410125, China; Key laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| |
Collapse
|
12
|
Laurent M, Bougeard S, Caradec L, Ghestem F, Albrecht M, Brown MJF, DE Miranda J, Karise R, Knapp J, Serrano J, Potts SG, Rundlöf M, Schwarz J, Attridge E, Babin A, Bottero I, Cini E, DE LA Rúa P, DI Prisco G, Dominik C, Dzul D, García Reina A, Hodge S, Klein AM, Knauer A, Mand M, Martínez López V, Serra G, Pereira-Peixoto H, Raimets R, Schweiger O, Senapathi D, Stout JC, Tamburini G, Costa C, Kiljanek T, Martel AC, LE S, Chauzat MP. Novel indices reveal that pollinator exposure to pesticides varies across biological compartments and crop surroundings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172118. [PMID: 38569959 DOI: 10.1016/j.scitotenv.2024.172118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Declines in insect pollinators have been linked to a range of causative factors such as disease, loss of habitats, the quality and availability of food, and exposure to pesticides. Here, we analysed an extensive dataset generated from pesticide screening of foraging insects, pollen-nectar stores/beebread, pollen and ingested nectar across three species of bees collected at 128 European sites set in two types of crop. In this paper, we aimed to (i) derive a new index to summarise key aspects of complex pesticide exposure data and (ii) understand the links between pesticide exposures depicted by the different matrices, bee species and apple orchards versus oilseed rape crops. We found that summary indices were highly correlated with the number of pesticides detected in the related matrix but not with which pesticides were present. Matrices collected from apple orchards generally contained a higher number of pesticides (7.6 pesticides per site) than matrices from sites collected from oilseed rape crops (3.5 pesticides), with fungicides being highly represented in apple crops. A greater number of pesticides were found in pollen-nectar stores/beebread and pollen matrices compared with nectar and bee body matrices. Our results show that for a complete assessment of pollinator pesticide exposure, it is necessary to consider several different exposure routes and multiple species of bees across different agricultural systems.
Collapse
Affiliation(s)
- Marion Laurent
- Anses, Sophia Antipolis laboratory, Unit of Honeybee Pathology, France
| | - Stéphanie Bougeard
- Anses, Ploufragan-Plouzané-Niort Laboratory, Epidemiology and welfare of pork, France
| | - Lucile Caradec
- CNRS, Statistics and Computer Science Department, L'Institut Agro Rennes-Angers, UMR 6625 IRMAR CNRS, 35042 Rennes Cedex, France
| | - Florence Ghestem
- CNRS, Statistics and Computer Science Department, L'Institut Agro Rennes-Angers, UMR 6625 IRMAR CNRS, 35042 Rennes Cedex, France
| | - Matthias Albrecht
- Agroscope, Agroecology and Environment, Reckenholzstrasse 191, 8046 Zurich, Switzerland
| | - Mark J F Brown
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, UK
| | | | - Reet Karise
- Chair of Plant Health, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 1a, 51006 Tartu, Estonia
| | - Jessica Knapp
- Department of Biology, Lund University, Lund, Sweden; Department of Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - José Serrano
- Department of Zoology and Physical Anthropology, Faculty of Veterinary, University of Murcia, 30100 Murcia, Spain
| | - Simon G Potts
- School of Agriculture, Policy and Development, Reading University, RG6 6AR, UK
| | - Maj Rundlöf
- Department of Biology, Lund University, Lund, Sweden
| | - Janine Schwarz
- Agroscope, Agroecology and Environment, Reckenholzstrasse 191, 8046 Zurich, Switzerland
| | | | - Aurélie Babin
- Anses, Sophia Antipolis laboratory, Unit of Honeybee Pathology, France
| | - Irene Bottero
- Department of Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Elena Cini
- School of Agriculture, Policy and Development, Reading University, RG6 6AR, UK
| | - Pilar DE LA Rúa
- Department of Zoology and Physical Anthropology, Faculty of Veterinary, University of Murcia, 30100 Murcia, Spain
| | - Gennaro DI Prisco
- CREA - Research Centre for Agriculture and Environment, Bologna, Italy; Institute for Sustainable Plant Protection, The Italian National Research Council, Napoli, Italy
| | - Christophe Dominik
- Helmholtz Centre for Environmental Research - UFZ, Dep. Community Ecology, Theodor-Lieser-Strasse 4, 06120 Halle, Germany
| | - Daniel Dzul
- Department of Zoology and Physical Anthropology, Faculty of Veterinary, University of Murcia, 30100 Murcia, Spain
| | - Andrés García Reina
- Department of Zoology and Physical Anthropology, Faculty of Veterinary, University of Murcia, 30100 Murcia, Spain
| | - Simon Hodge
- Department of Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Alexandra M Klein
- Nature Conservation and Landscape Ecology, University of Freiburg, Germany
| | - Anina Knauer
- Agroscope, Agroecology and Environment, Reckenholzstrasse 191, 8046 Zurich, Switzerland
| | - Marika Mand
- Chair of Plant Health, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 1a, 51006 Tartu, Estonia
| | - Vicente Martínez López
- Department of Zoology and Physical Anthropology, Faculty of Veterinary, University of Murcia, 30100 Murcia, Spain
| | - Giorgia Serra
- CREA - Research Centre for Agriculture and Environment, Bologna, Italy
| | | | - Risto Raimets
- Chair of Plant Health, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 1a, 51006 Tartu, Estonia
| | - Oliver Schweiger
- Helmholtz Centre for Environmental Research - UFZ, Dep. Community Ecology, Theodor-Lieser-Strasse 4, 06120 Halle, Germany
| | - Deepa Senapathi
- School of Agriculture, Policy and Development, Reading University, RG6 6AR, UK
| | - Jane C Stout
- Department of Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Giovanni Tamburini
- Nature Conservation and Landscape Ecology, University of Freiburg, Germany
| | - Cecilia Costa
- CREA - Research Centre for Agriculture and Environment, Bologna, Italy
| | - Tomasz Kiljanek
- PIWET, Department of Pharmacology and Toxicology, National Veterinary Research Institute, Puławy, Poland
| | | | - Sébastien LE
- CNRS, Statistics and Computer Science Department, L'Institut Agro Rennes-Angers, UMR 6625 IRMAR CNRS, 35042 Rennes Cedex, France
| | - Marie-Pierre Chauzat
- Anses, Sophia Antipolis laboratory, Unit of Honeybee Pathology, France; Paris-Est University, Anses, Laboratory for Animal Health, Maisons-Alfort, France.
| |
Collapse
|
13
|
French SK, Pepinelli M, Conflitti IM, Jamieson A, Higo H, Common J, Walsh EM, Bixby M, Guarna MM, Pernal SF, Hoover SE, Currie RW, Giovenazzo P, Guzman-Novoa E, Borges D, Foster LJ, Zayed A. Honey bee stressor networks are complex and dependent on crop and region. Curr Biol 2024; 34:1893-1903.e3. [PMID: 38636513 DOI: 10.1016/j.cub.2024.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/23/2023] [Accepted: 03/20/2024] [Indexed: 04/20/2024]
Abstract
Honey bees play a major role in crop pollination but have experienced declining health throughout most of the globe. Despite decades of research on key honey bee stressors (e.g., parasitic Varroa destructor mites and viruses), researchers cannot fully explain or predict colony mortality, potentially because it is caused by exposure to multiple interacting stressors in the field. Understanding which honey bee stressors co-occur and have the potential to interact is therefore of profound importance. Here, we used the emerging field of systems theory to characterize the stressor networks found in honey bee colonies after they were placed in fields containing economically valuable crops across Canada. Honey bee stressor networks were often highly complex, with hundreds of potential interactions between stressors. Their placement in crops for the pollination season generally exposed colonies to more complex stressor networks, with an average of 23 stressors and 307 interactions. We discovered that the most influential stressors in a network-those that substantively impacted network architecture-are not currently addressed by beekeepers. Finally, the stressor networks showed substantial divergence among crop systems from different regions, which is consistent with the knowledge that some crops (e.g., highbush blueberry) are traditionally riskier to honey bees than others. Our approach sheds light on the stressor networks that honey bees encounter in the field and underscores the importance of considering interactions among stressors. Clearly, addressing and managing these issues will require solutions that are tailored to specific crops and regions and their associated stressor networks.
Collapse
Affiliation(s)
- Sarah K French
- York University, Department of Biology, 4700 Keele Street, Toronto, ON M3J1P3, Canada
| | - Mateus Pepinelli
- York University, Department of Biology, 4700 Keele Street, Toronto, ON M3J1P3, Canada
| | - Ida M Conflitti
- York University, Department of Biology, 4700 Keele Street, Toronto, ON M3J1P3, Canada
| | - Aidan Jamieson
- York University, Department of Biology, 4700 Keele Street, Toronto, ON M3J1P3, Canada
| | - Heather Higo
- University of British Columbia, Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, 2185 East Mall, Vancouver, BC V6T1Z4, Canada
| | - Julia Common
- University of British Columbia, Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, 2185 East Mall, Vancouver, BC V6T1Z4, Canada
| | - Elizabeth M Walsh
- Agriculture and Agri-Food Canada, Beaverlodge Research Farm, 100038 Township Road 720, Beaverlodge, AB T0H0C0, Canada
| | - Miriam Bixby
- University of British Columbia, Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, 2185 East Mall, Vancouver, BC V6T1Z4, Canada
| | - M Marta Guarna
- Agriculture and Agri-Food Canada, Beaverlodge Research Farm, 100038 Township Road 720, Beaverlodge, AB T0H0C0, Canada; University of Victoria, Department of Computer Science, 3800 Finnerty Road, Victoria, BC V8P5C2, Canada
| | - Stephen F Pernal
- Agriculture and Agri-Food Canada, Beaverlodge Research Farm, 100038 Township Road 720, Beaverlodge, AB T0H0C0, Canada
| | - Shelley E Hoover
- University of Lethbridge, Department of Biological Sciences, 4401 University Drive, Lethbridge, AB T1K3M4, Canada
| | - Robert W Currie
- University of Manitoba, Department of Entomology, 12 Dafoe Road, Winnipeg, MB R3T2N2, Canada
| | - Pierre Giovenazzo
- Université Laval, Département de biologie, 1045, avenue de la Médecine, Québec, QC G1V0A6, Canada
| | - Ernesto Guzman-Novoa
- University of Guelph, School of Environmental Sciences, 50 Stone Road East, Guelph, ON N1G2W1, Canada
| | - Daniel Borges
- Ontario Beekeepers' Association, Technology Transfer Program, 185-5420 Highway 6 North, Guelph, ON N1H6J2, Canada
| | - Leonard J Foster
- University of British Columbia, Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, 2185 East Mall, Vancouver, BC V6T1Z4, Canada
| | - Amro Zayed
- York University, Department of Biology, 4700 Keele Street, Toronto, ON M3J1P3, Canada.
| |
Collapse
|
14
|
Shi J, Wang X, Chen Z, Mao D, Luo Y. Spatial distribution of two acaricides and five neonicotinoids in beehives and surrounding environments in China. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133892. [PMID: 38461662 DOI: 10.1016/j.jhazmat.2024.133892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/12/2024]
Abstract
Managed bees commonly suffer from cross-contamination with acaricides and neonicotinoids, posing robust threats to bee population health. However, their residual characteristics and spatial distribution in beehives and surrounding environments are poorly understood. This study detected two common acaricides and five neonicotinoids in 240 beehive samples and 44 surrounding environmental samples collected from 25 Chinese provinces. The results showed that 40.0% of the honey samples contained acaricides and 83.1% contained neonicotinoids. Neonicotinoid concentrations in honey were geographically distinguished by the "Hu Huanyong line", and concentrations of neonicotinoids in honey from eastern areas were 2.65-fold higher than those in honey from western areas. Compared to the approved acaricide amitraz, the banned acaricide coumaphos was detected more frequently in honey and was positively correlated with that quantified in the paired pollen samples. Although coumaphos was identified in only three soil samples, lower coumaphos residues in honey might be associated with persistent pollution in the surrounding environment. Conversely, neonicotinoids were detected at higher levels in honey than in the pollen and soil, demonstrating that the neonicotinoid residues in honey have a cumulative effect. This study contributes to a better understanding of the pesticide contamination scenarios that underlie the exposure risks of bees.
Collapse
Affiliation(s)
- Jingliang Shi
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaolong Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China.
| | - Zeyou Chen
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Daqing Mao
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yi Luo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
15
|
Ma C, Shi X, Chen S, Han J, Bai H, Li Z, Li-Byarlay H, Bai L. Combined pesticides in field doses weaken honey bee (Apis cerana F.) flight ability and analyses of transcriptomics and metabolomics. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105793. [PMID: 38685207 DOI: 10.1016/j.pestbp.2024.105793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/07/2024] [Accepted: 01/15/2024] [Indexed: 05/02/2024]
Abstract
Imidacloprid, chlorpyrifos, and glyphosate rank among the most extensively employed pesticides worldwide. The effects of these pesticides and their combined on the flight capability of Apis cerana, and the potential underlying mechanisms remain uncertain. To investigate these effects, we carried out flight mill, transcriptome, and metabolome experiments. Our findings reveal that individual acute oral treatments with pesticides, specifically 20 μL of 10 ng/g imidacloprid (0.2 ng per bee), 30 ng/g chlorpyrifos (0.6 ng per bee), and 60 ng/g glyphosate (1.2 ng per bee), did not impact the flight capability of the bees. However, when bees were exposed to a combination of two or three pesticides, a notable reduction in flight duration and distance was observed. In the transcriptomic and metabolomic analyses, we identified 307 transcripts and 17 metabolites that exhibited differential expression following exposure to combined pesticides, primarily associated with metabolic pathways involved in energy regulation. Our results illuminate the intricate effects and potential hazards posed by combined pesticide exposures on bee behavior. These findings offer valuable insights into the synergistic potential of pesticide combinations and their capacity to impair bee behavior. Understanding these complex interactions is essential for comprehending the broader consequences of pesticide formulations on honey bee populations.
Collapse
Affiliation(s)
- Changsheng Ma
- Longping Branch Graduate School, College of Biology, Hunan University, Changsha 410125, China; Key laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xiaoyu Shi
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Sihao Chen
- University of Liverpool, Department of Earth, Ocean and Ecological Sciences, School of Environmental Sciences, Liverpool L69 3BX, UK; Department of Health and Environmental Sciences, Xi'an-Jiaotong Liverpool University, Suzhou 215123, China
| | - Jincai Han
- Longping Branch Graduate School, College of Biology, Hunan University, Changsha 410125, China; Key laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Haodong Bai
- Key laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Zuren Li
- Key laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Hongmei Li-Byarlay
- Agriculture Research and Development Program, Central State University, Wilberforce OH, 45384, USA.
| | - Lianyang Bai
- Longping Branch Graduate School, College of Biology, Hunan University, Changsha 410125, China; Key laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| |
Collapse
|
16
|
Zhang J, Wang Y, Wurjihu S, Ruan H, Huang Y, Guo M, Kong D, Luo J, Yang M. Comprehensive analysis of neonicotinoids in Chinese commercial honey and pollen: A corresponding health risk assessment for non-targeted organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170937. [PMID: 38360305 DOI: 10.1016/j.scitotenv.2024.170937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 02/17/2024]
Abstract
Neonicotinoids are broad-spectrum and highly effective insecticides that work by affecting neural activity in insects. Neonicotinoids are systemic pesticides that are absorbed by plants, transported, and accumulated in plant tissues, including nectar and pollen. Currently, there is a lack of a comprehensive assessment of the level of neonicotinoid contamination and the associated health risks to non-targeted organisms in commercial honey and pollen produced in China. This study collected 160 batches of honey and 26 batches of pollen from different regions and plant sources in China, analyzed the residue patterns of neonicotinoid pesticides, and comprehensively evaluated the exposure risks to non-targeted organisms including bees (adults and larvae) and humans. Furthermore, this study addresses this imperative by establishing a high-throughput, rapid, and ultra-sensitive indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) based on broad-spectrum monoclonal antibodies to detect and quantify neonicotinoids, with validation conducted using the LC-MS/MS method. The findings indicated that 59.4 % of honey samples contained at least one of eight neonicotinoids, and the ic-ELISA rapid detection and calculation method could detect all the samples containing neonicotinoids. Additionally, the dietary risk assessment for humans and honeybees indicates that the consumption of a specific quantity of honey may not pose a health risk to human due to neonicotinoid intake. However, the Risk Quotient values for imidacloprid to adult bees and bee larvae, as well as clothianidin to bee larvae, were determined to be 2.22, 5.03, and 1.01, respectively-each exceeding 1. This highlights the elevated risk of acute toxicity posed by imidacloprid and clothianidin residues to honey bees. The study bears significant implications for the safety evaluation of non-targeted organisms in the natural food chain. Moreover, it provides scientific guidance for protecting the diversity and health of the ecosystem.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yunyun Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Shanbaga Wurjihu
- Plastic Surgery Hospital and Institute, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100144, China
| | - Haonan Ruan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Ying Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Mengyue Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Dandan Kong
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jiaoyang Luo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Meihua Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, China.
| |
Collapse
|
17
|
Hotchkiss MZ, Forrest JRK, Poulain AJ. Exposure to a fungicide for a field-realistic duration does not alter bumble bee fecal microbiota structure. Appl Environ Microbiol 2024; 90:e0173923. [PMID: 38240563 PMCID: PMC10880609 DOI: 10.1128/aem.01739-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/25/2023] [Indexed: 02/22/2024] Open
Abstract
Social bees are frequently exposed to pesticides when foraging on nectar and pollen. Recent research has shown that pesticide exposure not only impacts social bee host health but can also alter the community structure of social bee gut microbiotas. However, most research on pesticide-bee gut microbiota interactions has been conducted in honey bees; bumble bees, native North American pollinators, have received less attention and, due to differences in their ecology, may be exposed to certain pesticides for shorter durations than honey bees. Here, we examine how exposure to the fungicide chlorothalonil for a short, field-realistic duration alters bumble bee fecal microbiotas (used as a proxy for gut microbiotas) and host performance. We expose small groups of Bombus impatiens workers (microcolonies) to field-realistic chlorothalonil concentrations for 5 days, track changes in fecal microbiotas during the exposure period and a recovery period, and compare microcolony offspring production between treatments at the end of the experiment. We also assess the use of fecal microbiotas as a gut microbiota proxy by comparing community structures of fecal and gut microbiotas. We find that chlorothalonil exposure for a short duration does not alter bumble bee fecal microbiota structure or affect microcolony production at any concentration but that fecal and gut microbiotas differ significantly in community structure. Our results show that, at least when exposure durations are brief and unaccompanied by other stressors, bumble bee microbiotas are resilient to fungicide exposure. Additionally, our work highlights the importance of sampling gut microbiotas directly, when possible.IMPORTANCEWith global pesticide use expected to increase in the coming decades, studies on how pesticides affect the health and performance of animals, including and perhaps especially pollinators, will be crucial to minimize negative environmental impacts of pesticides in agriculture. Here, we find no effect of exposure to chlorothalonil for a short, field-realistic period on bumble bee fecal microbiota community structure or microcolony production regardless of pesticide concentration. Our results can help inform pesticide use practices to minimize negative environmental impacts on the health and fitness of bumble bees, which are key native, commercial pollinators in North America. We also find that concurrently sampled bumble bee fecal and gut microbiotas contain similar microbes but differ from one another in community structure and consequently suggest that using fecal microbiotas as a proxy for gut microbiotas be done cautiously; this result contributes to our understanding of proxy use in gut microbiota research.
Collapse
|
18
|
Cecchetto F, Villalba A, Vazquez ND, Ramirez CL, Maggi MD, Miglioranza KSB. Occurrence of chlorpyrifos and organochlorine pesticides in a native bumblebee (Bombus pauloensis) living under different land uses in the southeastern Pampas, Argentina. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167117. [PMID: 37717766 DOI: 10.1016/j.scitotenv.2023.167117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Pollinators such as Apidae bees are vital for ecosystems and food security. Unfortunately, their populations have declined due to several factors including pesticide use. Among them, the organophosphate insecticide chlorpyrifos, poses a global threat, while legacy compounds like organochlorine pesticides (OCPs) easily bioaccumulate, increasing the concern. Bombus pauloensis, a widely distributed native bee in Argentina, is used for commercial pollination; however, information regarding their health status is scarce. This study assessed chlorpyrifos and OCP levels in B. pauloensis (workers and males) and related environmental matrices living from three different land uses schemes, by means of GC-ECD and GC-MS. The ornamental horticulture field (OP) showed the highest total pesticide concentrations in workers (13.1 ng/g), flowers and soils, whereas the organic agriculture field (OA) exhibited the lowest. Chlorpyrifos was the most abundant compound, accounting for at least 20 % of pesticide load across all matrices. The food production horticulture field (FH) had the highest chlorpyrifos concentration in workers, males and soils (5.0, 4.4 and 3.3 ng/g, respectively), suggesting a local greater usage, whereas OA showed the lowest. Regarding OCPs groups, Drins and DDTs were predominant in most matrices, with FH males registering the highest levels (4.0 and 2.5 ng/g, respectively), closely followed by OP. However, metabolites' contribution indicated historical use and atmospheric inputs in all sites. Multivariate analyses confirmed the significance of site and bumblebee sex to explain pesticide composition. Males from all sites exhibited higher chlorpyrifos levels than workers and this trend was similar for some OCP groups. Overall, OA differed from FH and OP, indicating a correlation between production modes and pesticide profiles. This study demonstrates the value of B. pauloensis as a pesticide biomonitor but also offers insights into its populations' health in the area. In this sense, this information could be useful towards the preservation of this crucial pollinator.
Collapse
Affiliation(s)
- Franco Cecchetto
- Laboratorio de Ecotoxicología y Contaminación Ambiental, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Mar del Plata, Argentina; Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Funes 3350, Mar del Plata, Argentina.
| | - Agustina Villalba
- Laboratorio de Ecotoxicología y Contaminación Ambiental, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Mar del Plata, Argentina; Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Funes 3350, Mar del Plata, Argentina; Centro de Investigación en Abejas Sociales (CIAS), Laboratorio de Artrópodos - Grupo Acarología y Entomología, FCEyN, UNMdP, Funes 3350, Mar del Plata, Argentina; Instituto de Investigación en Sanidad, Producción y Ambiente (IIPROSAM), Funes 3350, Mar del Plata, Argentina
| | - Nicolas D Vazquez
- Laboratorio de Ecotoxicología y Contaminación Ambiental, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Mar del Plata, Argentina; Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Funes 3350, Mar del Plata, Argentina; Laboratorio de Biología de Cnidarios, FCEyN, UNMdP, Funes 3350, Mar del Plata, Argentina
| | - Cristina L Ramirez
- Departamento de Química, FCEyN, UNMdP, Funes 3350, Mar del Plata, Argentina; Química Analítica y Modelado Molecular (QUIAMM), Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC), CONICET, Funes 3350, Mar del Plata, Argentina
| | - Matias D Maggi
- Centro de Investigación en Abejas Sociales (CIAS), Laboratorio de Artrópodos - Grupo Acarología y Entomología, FCEyN, UNMdP, Funes 3350, Mar del Plata, Argentina; Instituto de Investigación en Sanidad, Producción y Ambiente (IIPROSAM), Funes 3350, Mar del Plata, Argentina
| | - Karina S B Miglioranza
- Laboratorio de Ecotoxicología y Contaminación Ambiental, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Mar del Plata, Argentina; Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Funes 3350, Mar del Plata, Argentina
| |
Collapse
|
19
|
Liu Y, Jiang S, Xiang Y, Lin F, Yue X, Li M, Xiao J, Cao H, Shi Y. In vivo-in vitro correlations (IVIVC) for the assessment of pyrethroid bioavailability in honey. Food Chem 2023; 429:136873. [PMID: 37459714 DOI: 10.1016/j.foodchem.2023.136873] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/14/2023] [Accepted: 07/10/2023] [Indexed: 08/24/2023]
Abstract
Bioaccessibility/bioavailability is an important factor in assessing the potential human health risk via oral exposure. However, methods for accurately predicting the bioaccessibility/bioavailability of pesticide residues are still limited, preventing accurate measurements of actual exposure to pesticide residues. In this study, pyrethroid bioavailability in honey were analysed using a mouse bioassay and bioaccessibility via in vitro methods with Tenax extraction. The results demonstrated that the combined liver plus kidney data served as an appropriate biomarker to estimate the relative bioavailability. Notably, significant in vivo-in vitro correlations (IVIVC) were observed between bioavailability and bioaccessibility (R2 = 0.7898-0.9793). Estimation of the bioavailability of honey from different nectar plants using derived IVIVC confirmed that different contents and physicochemical properties might affect its bioavailability. The findings provide insight into assessing human exposure to pesticides based on bioavailability and can decrease the uncertainty about the assessment of the risk of dietary exposure to pesticides.
Collapse
Affiliation(s)
- Yuying Liu
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Siyuan Jiang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Yuxin Xiang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Fengxiang Lin
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Xingyu Yue
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Minkun Li
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Jinjing Xiao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Haiqun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Yanhong Shi
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China.
| |
Collapse
|
20
|
Wang L, Jiang J, Lu J, Long T, Guo Y, Dong S, Wu H. The Developmental Toxicity and Endocrine-Disrupting Effects of Fenpropathrin on Gobiocypris rarus during the Early Life Stage. TOXICS 2023; 11:1003. [PMID: 38133404 PMCID: PMC10747009 DOI: 10.3390/toxics11121003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
In the present study, the developmental toxicity and endocrine-disrupting effects of fenpropathrin on Gobiocypris rarus during the early life stage were studied using a semi-static water exposure method. The results showed that the LOEC (lowest observed effect concentration) of fenpropathrin on the incubation of rare minnow embryos was above 2.5 μg·L-1. The LOEC and NOEC (no observed effect concentration) of fenpropathrin on the developmental malformations and death indicators were 2.0 and 1.5 μg·L-1, respectively. After exposure to 1.5 μg·L-1 of fenpropathrin for 31 days, the expressions of androgen receptor genes (AR) and sex hormone-synthesis-related genes (CYP17 and CYP19a) were significantly decreased and the expressions of thyroid hormone receptor genes (TRβ) and aryl hydrocarbon receptor genes (AhR1a and AhR2) were significantly increased in juvenile Gobiocypris rarus. The expression levels of the androgen receptor gene (AR), estrogen receptor gene (ER1), and the sex hormone-synthesis-related genes (HMGR, CYP17, and CYP19a) were significantly decreased, while the estrogen receptor gene (ER2a), thyroid hormone receptor gene (TRβ), and aromatic hydrocarbon receptor genes (AhR1a and AhR2) were upregulated in juvenile Gobiocypris rarus under exposure to 2.0 μg·L-1 of fenpropathrin. Relatively low concentrations of fenpropathrin can affect the expression of sex hormone receptor genes, genes related to sex hormone synthesis, thyroid hormone receptor genes, and aromatic hydrocarbon receptor genes, thus interfering with the reproductive system, thyroid system, and metabolic level in Gobiocypris rarus. Therefore, more attention should be paid to the endocrine-disrupting effect caused by the pyrethroid insecticides in the water environment. Furthermore, studies on the internal mechanism of the endocrine-disrupting effect of pyrethroid insecticides on fish is needed in the future.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Jinlin Jiang
- Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Jianwei Lu
- Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Tao Long
- Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yang Guo
- Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Shunan Dong
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Huiyi Wu
- Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| |
Collapse
|
21
|
Misiewicz A, Mikołajczyk Ł, Bednarska AJ. Floral resources,energetic value and pesticide residues in provisions collected by Osmia bicornis along a gradient of oilseed rape coverage. Sci Rep 2023; 13:13372. [PMID: 37591888 PMCID: PMC10435552 DOI: 10.1038/s41598-023-39950-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023] Open
Abstract
Pollinators in agricultural landscapes are facing global decline and the main pressures include food scarcity and pesticide usage. Intensive agricultural landscapes may provide important food resources for wild pollinators via mass flowering crops. However, these are monofloral, short-term, and may contain pesticide residues. We explored how the landscape composition with a different proportion of oilseed rape (6-65%) around Osmia bicornis nests affects floral diversity, contamination with pesticides, and energetic value of provisions collected by this species of wild bees as food for their offspring. Altogether, the bees collected pollen from 28 plant taxa (6-15 per nest) and provisions were dominated by Brassica napus (6.0-54.2%, median 44.4%, 12 nests), Quercus sp. (1.2-19.4%, median 5.2%, 12 nests), Ranunculus sp. (0.4-42.7%, median 4.7%, 12 nests), Poaceae (1.2-59.9%, median 5.8%, 11 nests) and Acer sp. (0.6-42%, median 18.0%, 8 nests). Residues of 12 pesticides were found in provisions, with acetamiprid, azoxystrobin, boscalid, and dimethoate being the most frequently detected at concentrations up to 1.2, 198.4, 16.9 and 17.8 ng/g (median 0.3, 10.6, 11.3, 4.4 ng/g), respectively. Floral diversity and energetic value of provisions, but not the Pesticide Risk Index depended on landscape structure. Moreover, pollen diversity decreased, and energetic value increased with landscape diversity. Thus, even a structurally simple landscape may provide diverse food for O. bicornis if the nest is located close to a single but resource-diverse patch. Both B. napus and non-crop pollen were correlated with pesticide concentrations.
Collapse
Affiliation(s)
- Anna Misiewicz
- Institute of Nature Conservation, Polish Academy of Sciences, A. Mickiewicza 33, 31-120, Kraków, Poland.
| | - Łukasz Mikołajczyk
- Institute of Nature Conservation, Polish Academy of Sciences, A. Mickiewicza 33, 31-120, Kraków, Poland
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Agnieszka J Bednarska
- Institute of Nature Conservation, Polish Academy of Sciences, A. Mickiewicza 33, 31-120, Kraków, Poland
| |
Collapse
|
22
|
Jiang P, Zhang S, Chai Y, He Q, Gao Q, Xiao J, Yu L, Cao H. Digestion dynamics of acetamiprid during royal jelly formation and exposure risk assessment to honeybee larva based on processing factor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93044-93053. [PMID: 37498429 DOI: 10.1007/s11356-023-28954-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
Previous studies to the exposure effects of acetamiprid on honeybees were based on the analysis of bee pollen and honey sacs from field trials or of beebread and honey in the hive, which overestimate or underestimate the risk of exposure to pesticide residues. It was believed that the processing factor (PF) is an important variable to determine the final pesticide residue during royal jelly formation and the actual risk to honeybee larva. Hence, a QuEChERS method to determine acetamiprid contents in honeybee samples was established in this study. Then, the PFs for acetamiprid in beebread fermentation, honey brewing, and royal jelly formation were determined to be 0.85, 0.76, and 0.16, respectively. The PF for royal jelly formation was 0.04 when acetamiprid was detected in beebread alone, and it was 0.12 when acetamiprid was only detected in honey. Finally, the predicted exposure concentration of acetamiprid in royal jelly was calculated to be 2.05 µg/kg using the PF without significant difference with the 90th percentile value (3.64 µg/kg) in the actual sample. However, the value was 16.62 µg/kg without considering the PF. This study establishes a methodology for the correct evaluation of the risk to bee larva of acetamiprid residues in bee pollen and honey sac contents and the residual levels in royal jelly.
Collapse
Affiliation(s)
- Peng Jiang
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Shiyu Zhang
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Yuhao Chai
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Qibao He
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Quan Gao
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Jinjing Xiao
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Linsheng Yu
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Haiqun Cao
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China.
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
23
|
He L, Zhang J, Shen L, Ji X, Li R. Occurrence of pesticide residues in honey from apiaries with incidents of honeybee poisoning in East China and a corresponding risk assessment for honeybees and Chinese consumers. J Food Sci 2023. [PMID: 37326343 DOI: 10.1111/1750-3841.16668] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/10/2023] [Accepted: 05/24/2023] [Indexed: 06/17/2023]
Abstract
We investigated the occurrence of 80 pesticide residues in 96 honey samples from apiaries with honeybee poisoning incidences by liquid chromatography-tandem mass spectrometry and subsequently conducted risk assessments of exposure for in-hive honeybees and Chinese consumers. Six pesticides were detected with residue concentrations ranging from 0.5 to 130.9 µg/kg. The mean concentrations of acetamiprid, dinotefuran, hexythiazox, propargite, semiamitraz, and carbendazim in positive samples were 7.9 ± 9.1, 5.9 ± 1.7, 3.0 ± 1.6, 44.2 ± 50.0, 9.0 ± 9.4, and 5.5 ± 4.1 µg/kg, respectively. Carbendazim, semiamitraz, and acetamiprid were the major contaminants in honey, with incidences of 99.0%, 93.8%, and 49.0%, respectively. The cooccurrence of pesticides (≥2 pesticides) was detected in 95.9% of the samples, with up to six residual pesticides found in one sample. The HQ (hazard quotient) values of the six pesticides to in-hive honeybees were from 4.7 × 10-8 to 0.021, less than 1, indicating their acceptable exposure risk to honeybees. In terms of the representative-case and worst-case scenarios, the sum of separate HQs of each pesticide yielding an HI (hazard index) ranged from 0.012 to 0.016 for in-hive worker honeybees and from 0.015 to 0.021 for in-hive larva honeybees, indicating an overall acceptable potential cumulative risk of multiple pesticides to in-hive honeybees. Both the %ARfD (acute reference dose) value (0.0001-0.075) and %ADI (acceptable daily intake) value (0.00002-0.0046) of risky pesticides were much less than 100, revealing acceptable risk exposure to risky pesticides via honey consumption for human health. Thus, our results showed that multipesticide residual honey from apiaries with honeybee poisoning incidents in East China was safe for humans and in-hive honeybees. PRACTICAL APPLICATION: This analytical approach will be used in detecting multiple pesticide residues in honey and risk assessment for dietary exposure to pesticide residues. It can support various surveillance programs about honey safety and in-hive honeybee health evaluation.
Collapse
Affiliation(s)
- Liang He
- Animal Experiment Center; The Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| | - Jie Zhang
- Tongxiang Institute of Agricultural Sciences, Jiaxing Academy of Agricultural Sciences, Jiaxing, P. R. China
| | - Leiding Shen
- Agricultural Economic Service Center, Jiaxing, P. R. China
| | - Xiaofeng Ji
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, P. R. China
| | - Rui Li
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, P. R. China
| |
Collapse
|
24
|
Tong Z, Shen Y, Meng D, Yi X, Sun M, Dong X, Chu Y, Duan J. Ecological threat caused by malathion and its chiral metabolite in a honey bee-rape system: Stereoselective exposure risk and the mechanism revealed by proteome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162585. [PMID: 36870510 DOI: 10.1016/j.scitotenv.2023.162585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Honey bees play an important role in the ecological environment. Regrettably, a decline in honey bee colonies caused by chemical insecticides has occurred throughout the world. Potential stereoselective toxicity of chiral insecticides may be a hidden source of danger to bee colonies. In this study, the stereoselective exposure risk and mechanism of malathion and its chiral metabolite malaoxon were investigated. The absolute configurations were identified using an electron circular dichroism (ECD) model. Ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used for chiral separation. In pollen, the initial residues of malathion and malaoxon enantiomers were 3571-3619 and 397-402 μg/kg, respectively, and R-malathion degraded relatively slowly. The oral LD50 values of R-malathion and S-malathion were 0.187 and 0.912 μg/bee with 5 times difference, respectively, and the malaoxon values were 0.633 and 0.766 μg/bee. The Pollen Hazard Quotient (PHQ) was used to evaluate exposure risk. R-malathion showed a higher risk. An analysis of the proteome, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and subcellular localization, indicated that energy metabolism and neurotransmitter transport were the main affected pathways. Our results provide a new scheme for the evaluation of the stereoselective exposure risk of chiral pesticides to honey bees.
Collapse
Affiliation(s)
- Zhou Tong
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - Yan Shen
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - DanDan Meng
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - XiaoTong Yi
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - MingNa Sun
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - Xu Dong
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China; Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yue Chu
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - JinSheng Duan
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China.
| |
Collapse
|
25
|
Odemer R, Friedrich E, Illies I, Berg S, Pistorius J, Bischoff G. Potential Risk of Residues From Neonicotinoid-Treated Sugar Beet Flowering Weeds to Honey Bees (Apis mellifera L.). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1167-1177. [PMID: 36861216 DOI: 10.1002/etc.5602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/20/2022] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
In 2018 the European Union (EU) banned the three neonicotinoid insecticides imidacloprid, clothianidin (CLO), and thiamethoxam (TMX), but they can still be used if an EU Member State issues an emergency approval. Such an approval went into effect in 2021 for TMX-coated sugar beet seeds in Germany. Usually, this crop is harvested before flowering without exposing non-target organisms to the active ingredient or its metabolites. In addition to the approval, strict mitigation measures were imposed by the EU and the German federal states. One of the measures was to monitor the drilling of sugar beet and its impact on the environment. Hence we took residue samples from different bee and plant matrices and at different dates to fully map beet growth in the German states of Lower Saxony, Bavaria, and Baden-Württemberg. A total of four treated and three untreated plots were surveyed, resulting in 189 samples. Residue data were evaluated using the US Environmental Protection Agency BeeREX model to assess acute and chronic risk to honey bees from the samples, because oral toxicity data are widely available for both TMX and CLO. Within treated plots, we found no residues either in pools of nectar and honey crop samples (n = 24) or dead bee samples (n = 21). Although 13% of beebread and pollen samples and 88% of weed and sugar beet shoot samples were positive, the BeeREX model found no evidence of acute or chronic risk. We also detected neonicotinoid residues in the nesting material of the solitary bee Osmia bicornis, probably from contaminated soil of a treated plot. All control plots were free of residues. Currently, there are insufficient data on wild bee species to allow for an individual risk assessment. In terms of the future use of these highly potent insecticides, therefore, it must be ensured that all regulatory requirements are complied with to mitigate any unintentional exposure. Environ Toxicol Chem 2023;42:1167-1177. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Richard Odemer
- Institute for Bee Protection, Julius Kühn-Institut-Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | - Elsa Friedrich
- Apicultural State Institute, University of Hohenheim, Stuttgart, Germany
| | - Ingrid Illies
- Institute for Bee Research and Beekeeping, Bavarian State Institute for Viticulture and Horticulture, Veitshöchheim, Germany
| | - Stefan Berg
- Institute for Bee Research and Beekeeping, Bavarian State Institute for Viticulture and Horticulture, Veitshöchheim, Germany
| | - Jens Pistorius
- Institute for Bee Protection, Julius Kühn-Institut-Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | - Gabriela Bischoff
- Institute for Bee Protection, Julius Kühn-Institut-Federal Research Centre for Cultivated Plants, Berlin, Germany
| |
Collapse
|
26
|
Végh R, Csóka M, Mednyánszky Z, Sipos L. Pesticide residues in bee bread, propolis, beeswax and royal jelly - A review of the literature and dietary risk assessment. Food Chem Toxicol 2023; 176:113806. [PMID: 37121430 DOI: 10.1016/j.fct.2023.113806] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
Due to pollinator decline observed worldwide, many studies have been conducted on the pesticide residue content of apicultural products including bee bread, propolis, beeswax and royal jelly. These products are consumed for their nutraceutical properties, although, little information is available on the human health risk posed by pesticides present in them. In our research, studies dealing with the pesticide contamination of the above-mentioned hive products are reviewed. Dietary exposures were calculated based on the recommended daily intake values and concentration data reported by scientific studies. Potential acute and chronic health risk of consumers were evaluated by comparing the exposure values with health-based guidance values. Available data indicate that a wide range of pesticide residues, especially acaricides may accumulate in bee bread, propolis and beeswax, up to concentration levels of more thousand μg/kg. Based on our observations, tau-fluvalinate, coumaphos, chlorfenvinphos, chlorpyrifos and amitraz are commonly detected pesticide active substances in beehive products. Our estimates suggest that coumaphos and chlorfenvinphos can accumulate in beeswax to an extent that pose a potential health risk to the consumers of comb honey. However, it appears that pesticide residues do not transfer to royal jelly, presumably due to the filtering activity of nurse bees during secretion.
Collapse
Affiliation(s)
- Rita Végh
- Hungarian University of Agriculture and Life Sciences, Institute of Food Science and Technology, Department of Nutrition, 1118, Budapest, Somlói út 14-16., Hungary
| | - Mariann Csóka
- Hungarian University of Agriculture and Life Sciences, Institute of Food Science and Technology, Department of Nutrition, 1118, Budapest, Somlói út 14-16., Hungary
| | - Zsuzsanna Mednyánszky
- Hungarian University of Agriculture and Life Sciences, Institute of Food Science and Technology, Department of Nutrition, 1118, Budapest, Somlói út 14-16., Hungary
| | - László Sipos
- Hungarian University of Agriculture and Life Sciences, Institute of Food Science and Technology, Department of Postharvest, Commercial and Sensory Science, 1118, Budapest, Villányi út 29-43., Hungary; Institute of Economics, Centre of Economic and Regional Studies, Lóránd Eötvös Research Network, 1097, Budapest, Tóth Kálmán utca 4., Hungary.
| |
Collapse
|
27
|
Ke L, Chen X, Dai P, Liu YJ. Chronic larval exposure to thiacloprid impairs honeybee antennal selectivity, learning and memory performances. Front Physiol 2023; 14:1114488. [PMID: 37153228 PMCID: PMC10157261 DOI: 10.3389/fphys.2023.1114488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/31/2023] [Indexed: 05/09/2023] Open
Abstract
The use of agricultural neonicotinoid insecticides has sub-lethal chronic effects on bees that are more prevalent than acute toxicity. Among these insecticides, thiacloprid, a commonly used compound with low toxicity, has attracted significant attention due to its potential impact on the olfactory and learning abilities of honeybees. The effect of sub-lethal larval exposure to thiacloprid on the antennal activity of adult honeybees (Apis mellifera L.) is not yet fully understood. To address this knowledge gap, laboratory-based experiments were conducted in which honeybee larvae were administered thiacloprid (0.5 mg/L and 1.0 mg/L). Using electroantennography (EAG), the impacts of thiacloprid exposure on the antennal selectivity to common floral volatiles were evaluated. Additionally, the effects of sub-lethal exposure on odor-related learning and memory were also assessed. The results of this study reveal, for the first time, that sub-lethal larval exposure to thiacloprid decreased honeybee antenna EAG responses to floral scents, leading to increased olfactory selectivity in the high-dose (1.0 mg/L) group compared to the control group (0 mg/L vs. 1.0 mg/L: p = 0.042). The results also suggest that thiacloprid negatively affected odor-associated paired learning acquisition, as well as medium-term (1 h) (0 mg/L vs. 1.0 mg/L: p = 0.019) and long-term memory (24 h) (0 mg/L vs. 1.0 mg/L: p = 0.037) in adult honeybees. EAG amplitudes were dramatically reduced following R-linalool paired olfactory training (0 mg/L vs. 1.0 mg/L: p = 0.001; 0 mg/L vs. 0.5 mg/L: p = 0.027), while antennal activities only differed significantly in the control between paired and unpaired groups. Our results indicated that exposure to sub-lethal concentrations of thiacloprid may affect olfactory perception and learning and memory behaviors in honeybees. These findings have important implications for the safe use of agrochemicals in the environment.
Collapse
Affiliation(s)
- Li Ke
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiasang Chen
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pingli Dai
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yong-Jun Liu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
28
|
Li Z, Li M, Niu S. A Modeling Approach for Assessing Ecological Risks of Neonicotinoid Insecticides from Emission to Nontarget Organisms: A Case Study of Cotton Plant. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:928-938. [PMID: 36779656 DOI: 10.1002/etc.5583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/07/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The use of neonicotinoid insecticides in agriculture has posed threats to ecological systems, and there is a need to assess the ecological risks of neonicotinoids from emission to nontarget organisms. We introduced a modeling approach to assess the ecological risks of neonicotinoids using honeybee and earthworm as model organisms, and the simulation was flexible under different environmental conditions. Using the cotton plant as an example, the simulation results demonstrated that under current recommended application rates, the use of common neonicotinoid insecticides posed no threat to earthworms, with the simulated risk quotients (RQs) much lower than 1. However, the simulation for some neonicotinoid insecticides (e.g., acetamiprid) indicated that using these insecticides on cotton plants could threaten honeybees, with simulated RQs higher than 1. The variability analysis showed that in high-latitude regions, the unacceptable risk to honeybees posed by insecticide application can be further elevated due to cold, wet weather that results in relatively high insecticide levels in pollen and nectar. The model evaluation showed large overlaps of simulated risk intervals between the proposed and existing (BeeREX) models. Because the proposed and existing models have different simulation mechanisms, we recommend that these two models be used together to complement each other in future studies. Environ Toxicol Chem 2023;42:928-938. © 2023 SETAC.
Collapse
Affiliation(s)
- Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, PR China
| | - Minmin Li
- Key Laboratory of Agroproducts Quality and Safety Control in the Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Shan Niu
- Department of Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
29
|
Fuente-Ballesteros A, Augé C, Bernal J, Ares AM. Development and Validation of a Gas Chromatography-Mass Spectrometry Method for Determining Acaricides in Bee Pollen. Molecules 2023; 28:molecules28062497. [PMID: 36985469 PMCID: PMC10056623 DOI: 10.3390/molecules28062497] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Pesticides can be found in beehives for several reasons, including contamination from surrounding crops or for their use by beekeepers, which poses a risk to bee ecosystems and consumers. Therefore, efficient and sensitive methods are needed for determining pesticide residues in bee products. In this study, a new analytical method has been developed and validated to determine seven acaricides (atrazine, chlorpyrifos, chlorfenvinphos, α-endosulfan, bromopropylate, coumaphos, and τ-fluvalinate) in bee pollen using gas chromatography coupled to mass spectrometry. After an optimization study, the best sample treatment was obtained when using a modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) method employing an ethyl acetate and cyclohexane as the extractant mixture, and a mixture of salts for the clean-up step. A chromatographic analysis (<21 min) was performed in an Agilent DB-5MS column, and it was operated under programmed temperature conditions. The method was fully validated in terms of selectivity, limits of detection (0.2–3.1 µg kg−1) and quantification (0.6–9.7 µg kg−1), linearity, matrix effect (<20% in all cases), trueness (recoveries between 80% and 108%), and precision. Finally, the proposed method was applied to analyze commercial bee pollen samples, and some of the target pesticides (chlorfenvinphos, α-endosulfan, coumaphos, and τ-fluvalinate) were detected.
Collapse
Affiliation(s)
- Adrián Fuente-Ballesteros
- Analytical Chemistry Group (TESEA), I.U. CINQUIMA, Faculty of Sciences, University of Valladolid, 47011 Valladolid, Spain
| | - Camille Augé
- SIGMA Clermont, Clermont-Ferrand Campus, 63178 Aubiere, France
| | - José Bernal
- Analytical Chemistry Group (TESEA), I.U. CINQUIMA, Faculty of Sciences, University of Valladolid, 47011 Valladolid, Spain
| | - Ana M. Ares
- Analytical Chemistry Group (TESEA), I.U. CINQUIMA, Faculty of Sciences, University of Valladolid, 47011 Valladolid, Spain
- Correspondence: ; Tel.: +34-983184249
| |
Collapse
|
30
|
Abbou M, Chabbi M, Benicha M. Assessment of phytosanitary practices on the environment: case study potato of Loukkos (northwest Morocco). ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:352. [PMID: 36723690 DOI: 10.1007/s10661-023-10949-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Loukkos perimeter is among the most important irrigated agricultural areas in Morocco. It covers horticulture and market garden production, including potato. This crop is characterized by the intensive use of pesticides that could lead to health and ecological risks, via the food chain and contamination of natural resources, including groundwater. This study is aimed at assessing the use of pesticides in potato cultivation and their impacts on the environment and human health. Here, pesticide use was characterized by the number of treatments (NT), quantity of active substances indicator (QASI), and the treatment frequency indicator (TFI), through field surveys carried out on 50 Loukkos potato producers. The results showed that farmers use heavy pesticide treatments, mainly against late blight. We determined NT = 19 treatments, total TFI = 28.10, and QASI = 14.86 kg/ha. These values reflect a massive use of pesticides on this crop, which could therefore constitute a challenge and a major constraint for the development of sustainable agriculture in this zone, due to their negative environmental and health effects. It is, therefore, necessary to react quickly to make changes in phytosanitary practices with the aim to monitoring pesticide use via the agro-environmental indicators to reduce health and environmental impact of intensive pesticide use.
Collapse
Affiliation(s)
- Mohamed Abbou
- Laboratory of Pesticides Residues, UR Research On Nuclear Techniques, Environment and Quality, National Institute for Agricultural Research, Tangier, Morocco.
- Laboratory of Physical-Chemistry of Materials, Natural Substances and Environment, Department of Chemistry, Faculty of Sciences and Technics, Abdelmalek Essâadi University, Tangier, Morocco.
| | - Mohamed Chabbi
- Laboratory of Physical-Chemistry of Materials, Natural Substances and Environment, Department of Chemistry, Faculty of Sciences and Technics, Abdelmalek Essâadi University, Tangier, Morocco
| | - Mohamed Benicha
- Laboratory of Pesticides Residues, UR Research On Nuclear Techniques, Environment and Quality, National Institute for Agricultural Research, Tangier, Morocco
| |
Collapse
|
31
|
Tang QH, Li WL, Wang JP, Li XJ, Li D, Cao Z, Huang Q, Li JL, Zhang J, Wang ZW, Guo J, Li JL. Effects of spinetoram and glyphosate on physiological biomarkers and gut microbes in Bombus terrestris. Front Physiol 2023; 13:1054742. [PMID: 36699673 PMCID: PMC9868390 DOI: 10.3389/fphys.2022.1054742] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
The sublethal effects of pesticide poisoning will have significant negative impacts on the foraging and learning of bees and bumblebees, so it has received widespread attention. However, little is known about the physiological effects of sublethal spinetoram and glyphosate exposure on bumblebees. We continuously exposed Bombus terrestris to sublethal (2.5 mg/L) spinetoram or glyphosate under controlled conditions for 10 days. The superoxide dismutase, glutathione-S-transferase, carboxylesterase, prophenoloxidase, α-amylase and protease activities, and changes in gut microbes were measured to understand the effects of sublethal pesticide exposure on the physiology and gut microbes of bumblebees. Sublethal pesticide exposure to significantly increased superoxide dismutase activity and significantly decreased gut α-amylase activity in bumblebees but had no significant effect on glutathione-S-transferase, carboxylesterase or gut protease activities. In addition, glyphosate increased the activity of prophenoloxidase. Interestingly, we observed that neither of the two pesticides had a significant effect on dominant gut bacteria, but glyphosate significantly altered the structure of the dominant gut fungal community, and reduced the relative abundance of Zygosaccharomyces associated with fat accumulation. These results suggest that sublethal spinetoram and glyphosate do not significantly affect the detoxification system of bumblebees, but may affect bumblebee health by inhibiting energy acquisition. Our results provide information on the sublethal effects of exposure to low concentrations of glyphosate and spinetoram on bumblebees in terms of physiology and gut microbes.
Collapse
Affiliation(s)
- Qi-He Tang
- Key Laboratory for Insect-Pollinator Biology, Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China,Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Wan-Li Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Jie-Ping Wang
- ChongQing Academy of Animal Sciences, Chongqing, China
| | - Xi-Jie Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Dan Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Zhe Cao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Qi Huang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Jia-Li Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Jun Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Zheng-Wei Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Jinghong, China,*Correspondence: Zheng-Wei Wang, ; Jun Guo, ; Ji-Lian Li,
| | - Jun Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China,*Correspondence: Zheng-Wei Wang, ; Jun Guo, ; Ji-Lian Li,
| | - Ji-Lian Li
- Key Laboratory for Insect-Pollinator Biology, Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China,*Correspondence: Zheng-Wei Wang, ; Jun Guo, ; Ji-Lian Li,
| |
Collapse
|
32
|
Wang F, Wang Y, Li Y, Zhang S, Shi P, Li-Byarlay H, Luo S. Pesticide residues in beebread and honey in Apis cerana cerana and their hazards to honey bees and human. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113574. [PMID: 35512473 DOI: 10.1016/j.ecoenv.2022.113574] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
The residue of pesticides in bee products such as beebread and honey threaten the survival of pollinators and human health. Apis cerana cerana is one of the leading managed honey bees in China. However, little is known about the residues of pesticides in hive products of A. c. cerana in China. Here, we investigated the pesticide residues in beebread and honey. The risk of detected residues of pesticides to honey bees was evaluated with hazard quotient (HQ) and BeeREX. Furthermore, we assessed the chronic and acute risks to humans according to the dietary exposure. Our results suggest that the pesticide residues detection ratio (25.4% for beebread and 2.8% for honey) and the concentrations of these residues is lower than previously reported. Additional risk assessments indicate that the residue levels of pesticides in tested honey of A. c. cerana do not pose a risk for human consumers. Among all identified pesticides, only thiamethoxam raises the concern for further risk assessment in the risk evaluation of honey bee colonies and thiamethoxam was safe for colonies in higer tier studies.
Collapse
Affiliation(s)
- Feiran Wang
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Yuhao Wang
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Yong Li
- Guyuan Beekeeping Experimental Station, Guyuan 756099, China
| | - Shiwen Zhang
- Gansu Institute of Apicultural Research, Tianshui 741022, China
| | - Pengzhen Shi
- Gansu Institute of Apicultural Research, Tianshui 741022, China
| | - Hongmei Li-Byarlay
- Agricultural Research and Development Program, Central State University, Wilberforce 45384, USA
| | - Shudong Luo
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China.
| |
Collapse
|
33
|
Zhang Y, Zeng D, Li L, Hong X, Li-Byarlay H, Luo S. Assessing the toxicological interaction effects of imidacloprid, thiamethoxam, and chlorpyrifos on Bombus terrestris based on the combination index. Sci Rep 2022; 12:6301. [PMID: 35428747 PMCID: PMC9012744 DOI: 10.1038/s41598-022-09808-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/15/2022] [Indexed: 11/22/2022] Open
Abstract
In modern agricultural production, a variety of pesticides are widely used to protect crops against pests. However, extensive residues of these pesticides in the soil, water, and pollen have negatively affected the health of nontarget organisms, especially among pollinators such as bumblebees. As an important pollinator, the bumblebee plays a vital role in agricultural production and the maintenance of ecosystem diversity. Previous research has focused on the effects of a single pesticide on pollinating insects; however, the synergistic effects of multiple agents on bumblebees have been not studied in detail. Imidacloprid, thiamethoxam, and chlorpyrifos are three of common pesticides known for severe effects on bumblebee health. It is still unknown what synergistic effects of these pesticides on pollinators. In our test, the individual and combined toxicities of chlorpyrifos, thiamethoxam, and imidacloprid to bumblebees after 48 h of oral administration were documented by the equivalent linear equation method. Our results showed that the toxicity of each single pesticide exposure, from high to low, was imidacloprid, thiamethoxam, and chlorpyrifos. All binary and ternary combinations showed synergistic or additive effects. Therefore, our research not only shows that the mixed toxicity of insecticides has a significant effect on bumblebees, but also provides scientific guidelines for assessing the safety risks to bumblebees of these three insecticide compounds. In assessing the risk to pollinating insects, the toxicity levels of laboratory experiments are much lower than the actual toxicity in the field.
Collapse
Affiliation(s)
- Yongkui Zhang
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Guangxi University, Nanning, China.,Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Dongqiang Zeng
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Guangxi University, Nanning, China
| | - Lu Li
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Xiuchun Hong
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Hongmei Li-Byarlay
- Agricultural Research and Development Program, Department of Agriculture and Life Sciences, Central State University, 1400 Brush Row Road, Wilberforce, OH, USA.
| | - Shudong Luo
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China. .,Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China.
| |
Collapse
|
34
|
Démares FJ, Schmehl D, Bloomquist JR, Cabrera AR, Huang ZY, Lau P, Rangel J, Sullivan J, Xie X, Ellis JD. Honey Bee (Apis mellifera) Exposure to Pesticide Residues in Nectar and Pollen in Urban and Suburban Environments from Four Regions of the United States. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:991-1003. [PMID: 35262221 DOI: 10.1002/etc.5298] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/17/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
The risk of honey bee (Apis mellifera L.) exposure to pesticide residues while foraging for nectar and pollen is commonly explored in the context of agroecosystems. However, pesticides are also used in urban and suburban areas for vegetation management, vector control, and the management of ornamental plants in public and private landscapes. The extent to which pesticides pose a health risk to honey bees in these settings remains unclear. We addressed this at a landscape scale by conducting pesticide residue screening analyses on 768 nectar and 862 pollen samples collected monthly over 2 years from honey bee colonies located in urban and suburban areas in eight medium to large cities in California, Florida, Michigan, and Texas (USA). A risk assessment was performed using the US Environmental Protection Agency's BeeREX model whenever an oral toxicity value was available for a compound. Chemical analyses detected 17 pesticides in nectar and 60 in pollen samples during the survey. Approximately 73% of all samples contained no detectable pesticide residues. Although the number of detections varied among the sampled regions, fewer pesticides were detected in nectar than in pollen. Per BeeREX, four insecticides showed a potential acute risk to honey bees: imidacloprid, chlorpyrifos, and esfenvalerate in nectar, and deltamethrin in nectar and pollen. In general, exposure of honey bees to pesticides via nectar and pollen collection was low in urban and suburban areas across the United States, and no seasonal or spatial trends were evident. Our data suggest that honey bees are exposed to fewer pesticides in developed areas than in agricultural ones. Environ Toxicol Chem 2022;41:991-1003. © 2022 SETAC.
Collapse
Affiliation(s)
- Fabien J Démares
- Entomology and Nematology Department, Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Centre d'Écologie Fonctionnelle et Évolutive, Université de Montpellier, Centre National de la Recherche Scientifique, Ecole Pratique des Hautes Etudes, Institut de Recherche pour le Développement, Montpellier, France
| | - Daniel Schmehl
- Bayer CropScience, Chesterfield, Missouri, USA
- Honey Bee Research and Extension Laboratory, Entomology and Nematology Department, University of Florida, Gainesville, Florida, USA
| | - Jeffrey R Bloomquist
- Entomology and Nematology Department, Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | | | - Zachary Y Huang
- Department of Entomology, Michigan State University, East Lansing, Michigan, USA
| | - Pierre Lau
- Department of Entomology, Texas A&M University, College Station, Texas, USA
- US Department of Agriculture, Stoneville, Mississippi, USA
| | - Juliana Rangel
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | | | - Xianbing Xie
- Department of Entomology, Michigan State University, East Lansing, Michigan, USA
- Department of Laboratory Animal Science, Nanchang University, Nanchang, Jiangxi, China
| | - James D Ellis
- Honey Bee Research and Extension Laboratory, Entomology and Nematology Department, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
35
|
Cheng X, Zhang S, Shao S, Zheng R, Yu Z, Ye Q. Translocation and metabolism of the chiral neonicotinoid cycloxaprid in oilseed rape (Brassica napus L.). JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128125. [PMID: 34971988 DOI: 10.1016/j.jhazmat.2021.128125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Neonicotinoids have been banned in some countries because of increased nontarget resistance and ecological toxicity. Cycloxaprid is a potentially promising substitute, but its metabolism in plants is still poorly understood. The study aims to clarify the translocation of cycloxaprid, identify its metabolites, propose possible metabolic pathways and compare differences between enantiomers in oilseed rape via 14C tracing technology and HPLC-QTOF-MS. The results showed that most cycloxaprid remained in the treated leaves, and only a small amount translocated to the anthers. Seven metabolites were identified, and the possible metabolic pathway was divided into two phases. Phase Ⅰ metabolism included two metabolites obtained via cleavage of the oxa-bridged seven-membered ring. Phase II metabolism was responsible for glucose conjugate formation. The possible metabolic pathways revealed that the proportion of phase I metabolites gradually decreased over time, and the phase II metabolites transformed from monosaccharide and disaccharide conjugates to trisaccharide and tetrasaccharide conjugates. The levels of metabolites were significantly different between the enantiomers. In particular, the main metabolite was M4, which has confirmed biological toxicity. M2 was the only metabolite detected in rapeseed. The results will promote the scientific application of cycloxaprid in agriculture and could have implications for assessing environmental risk.
Collapse
Affiliation(s)
- Xi Cheng
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China.
| | - Sufen Zhang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China.
| | - Siyao Shao
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China.
| | - Ruonan Zheng
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China.
| | - Zhiyang Yu
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China.
| | - Qingfu Ye
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
36
|
Végh R, Sörös C, Majercsik N, Sipos L. Determination of Pesticides in Bee Pollen: Validation of a Multiresidue High-Performance Liquid Chromatography-Mass Spectrometry/Mass Spectrometry Method and Testing Pollen Samples of Selected Botanical Origin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1507-1515. [PMID: 35080874 DOI: 10.1021/acs.jafc.1c06864] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pollen is a source of nutrients for honeybees (Apis mellifera L.) and suitable for human consumption as well. In our research, a multiresidue method for pesticide determination was developed and validated for the bee pollen matrix. 247 components met the validation criteria for limit of detection, limit of quantification, linearity, and interday repeatability. Average recoveries varied between 70 and 120% except for 14 analytes, which were corrected during on-going validation. The matrix effect was strong for certain analytes, which required the use of matrix-matched calibration. The pesticide residue profiles of 21 pollen samples of different botanical origins were identified by the developed method. The most common active substances were chlorpyrifos, thiacloprid, and acetamiprid. Some products contained pesticides that are already banned. According to our estimates, the tested samples do not pose an acute risk on honeybees, although the combination of pesticides may cause synergistic toxicity.
Collapse
Affiliation(s)
- Rita Végh
- Institute of Food Science and Technology, Department of Nutrition, Hungarian University of Agriculture and Life Sciences, Somlói út 14-16, 1118 Budapest, Hungary
| | - Csilla Sörös
- Institute of Food Science and Technology, Department of Food Chemistry and Analytical Chemistry, Hungarian University of Agriculture and Life Sciences, Villányi út 29-43., 1118 Budapest, Hungary
| | - Nándor Majercsik
- Institute of Food Science and Technology, Department of Food Chemistry and Analytical Chemistry, Hungarian University of Agriculture and Life Sciences, Villányi út 29-43., 1118 Budapest, Hungary
| | - László Sipos
- Institute of Food Science and Technology, Department of Postharvest, Commercial and Sensory Science, Hungarian University of Agriculture and Life Sciences, Villányi út 29-43., 1118 Budapest, Hungary
| |
Collapse
|