1
|
Zhao W, Ge ZM, Zhu KH, Lyu Q, Liu SX, Chen HY, Li ZF. Impacts of plastic pollution on soil-plant properties and greenhouse gas emissions in wetlands: A meta-analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136167. [PMID: 39413522 DOI: 10.1016/j.jhazmat.2024.136167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/25/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
Plastic pollution in wetlands has recently emerged as an urgent environmental problem. However, the impacts of plastic contamination on soil-plant properties and greenhouse gas (GHG) emissions in wetlands remain unclear. Thus, this study conducted a meta-analysis based on 44 study sites to explore the influence of plastic pollution on soil physicochemical variables, soil microorganisms, enzyme activity, functional genes, plant characteristics, and GHG emissions (CO2, CH4, and N2O) in different wetland types. Based on the collected dataset, the plastic pollution significantly increased soil organic matter and organic carbon by on average 28.9 % and 34.2 %, respectively, while decreased inorganic nutrient elements, bacteria alpha diversity and enzyme activities by an average of 5.9 -14.2 %. The response of bacterial abundance to plastic pollution varied depending on phylum classes. Plant biomass and photosynthetic efficiency were decreased by an average of 12.8 % and 18.4 % due to plastic pollution. The concentration and exposure time of plastics play a key role in influencing the soil and plant properties in wetlands. Furthermore, plastic exposure notably increased the abundance of the functional genes related to C degradation and the ammonia oxidizing microorganisms, and the consequent CO2 and N2O emissions (with effect sizes of 2.10 and 1.94, respectively). We also found that plastic concentrations and exposure duration affected the wetland soil-plant system. Our results might be helpful to design further investigations on plastic effects and develop appropriate measures for mitigating plastic pollution in wetlands.
Collapse
Affiliation(s)
- Wei Zhao
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, Center for Blue Carbon Science and Technology, East China Normal University, Shanghai, China
| | - Zhen-Ming Ge
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, Center for Blue Carbon Science and Technology, East China Normal University, Shanghai, China; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai Science and Technology Committee, Shanghai, China.
| | - Ke-Hua Zhu
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, Center for Blue Carbon Science and Technology, East China Normal University, Shanghai, China
| | - Qing Lyu
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, Center for Blue Carbon Science and Technology, East China Normal University, Shanghai, China
| | - Shi-Xian Liu
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, Center for Blue Carbon Science and Technology, East China Normal University, Shanghai, China
| | - Hua-Yu Chen
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, Center for Blue Carbon Science and Technology, East China Normal University, Shanghai, China
| | - Zeng-Feng Li
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, Center for Blue Carbon Science and Technology, East China Normal University, Shanghai, China
| |
Collapse
|
2
|
Gan CD, Liao YL, Liu HB, Yang JY, Nikitin A. Microplastic-induced changes in Cd and Cr behavior in the agricultural soil-wheat system: Insights into metal bioavailability and phytotoxicity. JOURNAL OF HAZARDOUS MATERIALS 2024; 482:136592. [PMID: 39577288 DOI: 10.1016/j.jhazmat.2024.136592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
Microplastics (MPs) and heavy metals widely coexist in agricultural soils, posing significant risks to soil-plant ecosystems. This study explores the effects of five common MPs-polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polystyrene (PS), and polylactic acid (PLA)-and environmental-simulating microplastics (EMPs), composed based on the composition of local MPs in agricultural soils, on the bioavailability and phytotoxicity of Cd and Cr in soils. Pot experiments demonstrated that MPs, particularly PE and EMPs at a 5 % dosage, markedly decreased soil pH, water-holding capacity, and soil organic carbon content. This decrease in pH led to enhanced Cd and Cr mobility and bioavailability, especially with PE and EMPs increasing Cr bioavailability in 15 cm depth soil by up to 43.9 % and 37.8 %, respectively. In soils with 2.1 mg/kg of Cd and 390 mg/kg of Cr, both 1 % and 5 % doses of MPs inhibited wheat growth while enhancing the uptake and translocation of Cd and Cr in wheat. Notably, PE, PS, PLA, and EMPs exposure significantly elevated levels of oxidative stress markers (SOD, POD, CAT, and MDA) in wheat. These findings highlight the importance of further research on the combined impacts of MPs and heavy metals on soil health and plant safety.
Collapse
Affiliation(s)
- Chun-Dan Gan
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin 644000, China
| | - Yu-Liang Liao
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin 644000, China
| | - Heng-Bo Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sichuan Academy of Environmental Sciences, Chengdu 610041, China
| | - Jin-Yan Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin 644000, China.
| | - Aleksander Nikitin
- Institute of Microbiology of the National Academy of Sciences of Belarus, Acad. Kuprevich str., 2, 220084 Minsk, Belarus
| |
Collapse
|
3
|
Chen ZW, Hua ZL. Eco-environmental responses of Eichhornia crassipes rhizobacteria community to co-stress of per(poly)fluoroalkyl substances and microplastics. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107109. [PMID: 39368209 DOI: 10.1016/j.aquatox.2024.107109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/12/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
The stabilization of rhizobacteria communities plays a crucial role in sustaining healthy macrophyte growth. In light of increasing evidence of combined pollution from microplastics (MPs) and per- and polyfluoroalkyl substances (PFASs), Selecting typical floating macrophyte as a case, this study explored their impacts using hydroponic simulations and 16S rRNA high-throughput sequencing. A total of 31 phyla, 77 classes, 172 orders, 237 families, 332 genera, and 125 rhizobacteria species were identified. Proteobacteria (16.19% to 57.70%) was the dominant phylum, followed by Bacteroidota (12.34% to 44.48%) and Firmicutes (11.31% to 36.36%). In terms of α-diversity, polystyrene (PS) MPs and PFASs significantly impacted community abundance (ACE and PD-tree) rather than evenness (Shannon and Pielou) compared to the control. βMNTD and βNTI analyses revealed that PS MPs enhanced deterministic assembly processes driven by F-53B and GenX, while mitigating those induced by PFOA and PFOS. Contamination treatments narrowed the ecological niche breadths at both the phylum (5% (PS) to 49.91% (PS & PFOA)) and genus levels (8% (PS) to 63.96% (PS & PFOA)). Functionally, MPs and PFASs decreased the anaerobic capacity and ammonia nitrogen utilization of rhizosphere bacteria. This study enhances our understanding of the microecological responses of macrophyte-associated bacteria to combined MP and PFAS contamination and offers insights into ecological restoration strategies and mitigating associated environmental risks.
Collapse
Affiliation(s)
- Zi-Wei Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Zu-Lin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Nanjing 210098, PR China.
| |
Collapse
|
4
|
Li Y, Chen Y, Li P, Huang H, Xue K, Cai S, Liao X, Jin S, Zheng D. Microplastics in soil affect the growth and physiological characteristics of Chinese fir and Phoebe bournei seedlings. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124503. [PMID: 38977122 DOI: 10.1016/j.envpol.2024.124503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Pot experiments were conducted using Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) and Phoebe bournei (Hemsl.) Yang) to investigate whether soil microplastics adversely affect the nurturing and renewal of plantations. Microplastics composed of polyethylene and polypropylene with a size of 48 μm were used. The treatments included a control group (without microplastics) and groups treated with microplastic concentrations of 1% and 2% (w/w). The effects of microplastics on the growth, photosynthetic pigments in leaves, antioxidant systems, and osmotic regulation substances of the seedlings were analysed by measuring the seedling height, ground-line diameter growth, chlorophyll (chlorophyll a, chlorophyll b, and total chlorophyll) contents, antioxidant enzyme (superoxide dismutase, peroxidase, catalase) activities, and malondialdehyde, soluble sugar, and soluble protein levels. The results indicated that treatment with 1% polyethylene microplastics increased the chlorophyll a, total chlorophyll, and soluble protein contents in the leaves of both types of seedlings while inhibiting superoxide dismutase and peroxidase activities in P. bournei seedlings. Treatment with 2% polyethylene or polypropylene microplastics suppressed the chlorophyll a, chlorophyll b, and total chlorophyll contents; superoxide dismutase, peroxidase, and catalase activities; and soluble sugar and soluble protein levels in the leaves of both types of seedlings, resulting in reduced growth in terms of height and ground-line diameter. The physiological effects of polyethylene microplastics were more evident than those of polypropylene at the same concentration. The results demonstrated that microplastics can affect photosynthesis, the antioxidant system, and osmotic regulation in Chinese fir and P. bournei seedlings, thereby inhibiting their normal growth and development. Exposure to 1% (w/w) microplastics triggered stress responses in seedlings, whereas 2% (w/w) microplastics impeded seedling growth.
Collapse
Affiliation(s)
- Yuru Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Yifei Chen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Peiyao Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Haifeng Huang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Kexin Xue
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Siying Cai
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Xiaoli Liao
- Department of Geography, Minjiang University, Fuzhou, 350108, China.
| | - Shaofei Jin
- Department of Geography, Minjiang University, Fuzhou, 350108, China.
| | - Dexiang Zheng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
5
|
Sheng D, Jing S, He X, Klein AM, Köhler HR, Wanger TC. Plastic pollution in agricultural landscapes: an overlooked threat to pollination, biocontrol and food security. Nat Commun 2024; 15:8413. [PMID: 39333509 PMCID: PMC11437009 DOI: 10.1038/s41467-024-52734-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024] Open
Abstract
Ecosystem services such as pollination and biocontrol may be severely affected by emerging nano/micro-plastics (NMP) pollution. Here, we synthesize the little-known effects of NMP on pollinators and biocontrol agents on the organismal, farm and landscape scale. Ingested NMP trigger organismal changes from gene expression, organ damage to behavior modifications. At the farm and landscape level, NMP will likely amplify synergistic effects with other threats such as pathogens, and may alter floral resource distributions in high NMP concentration areas. Understanding exposure pathways of NMP on pollinators and biocontrol agents is critical to evaluate future risks for agricultural ecosystems and food security.
Collapse
Affiliation(s)
- Dong Sheng
- Sustainable Agricultural Systems & Engineering Lab, School of Engineering, Westlake University, Hangzhou, 310030, China
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310024, China
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310030, China
| | - Siyuan Jing
- Sustainable Agricultural Systems & Engineering Lab, School of Engineering, Westlake University, Hangzhou, 310030, China
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310024, China
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China
| | - Xueqing He
- Sustainable Agricultural Systems & Engineering Lab, School of Engineering, Westlake University, Hangzhou, 310030, China
- Department of Health and Environmental Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Alexandra-Maria Klein
- Nature Conservation and Landscape Ecology, University of Freiburg, Freiburg, 79106, Germany
| | - Heinz-R Köhler
- Animal Physiological Ecology, University of Tübingen, Tübingen, 72076, Germany
| | - Thomas C Wanger
- Sustainable Agricultural Systems & Engineering Lab, School of Engineering, Westlake University, Hangzhou, 310030, China.
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310024, China.
- Agroecology, University of Göttingen, Göttingen, 37073, Germany.
| |
Collapse
|
6
|
Gong K, Hu S, Zhang W, Peng C, Tan J. Topic modeling discovers trending topics in global research on the ecosystem impacts of microplastics. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:425. [PMID: 39316202 DOI: 10.1007/s10653-024-02218-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024]
Abstract
The ecological threats of microplastics (MPs) have sparked research worldwide. However, changes in the topics of MP research over time and space have not been evaluated quantitatively, making it difficult to identify the next frontiers. Here, we apply topic modeling to assess global spatiotemporal dynamics of MP research. We identified nine leading topics in current MP research. Over time, MP research topics have switched from aquatic to terrestrial ecosystems, from distribution to fate, from ingestion to toxicology, and from physiological toxicity to cytotoxicity and genotoxicity. In most of the nine leading topics, a disproportionate amount of independent and collaborative research activity was conducted in and between a few developed countries which is detrimental to understanding the environmental fates of MPs in a global context. This review recognizes the urgent need for more attention to emerging topics in MP research, particularly in regions that are heavily impacted but currently overlooked.
Collapse
Affiliation(s)
- Kailin Gong
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shuangqing Hu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Wei Zhang
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Cheng Peng
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Jiaqi Tan
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
7
|
Zhou W, Huang D, Chen S, Wang G, Li R, Xu W, Lei Y, Xiao R, Yin L, Chen H, Li F. Microplastic dilemma: Assessing the unexpected trade-offs between biodegradable and non-biodegradable forms on plant health, cadmium uptake, and sediment microbial ecology. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135240. [PMID: 39079302 DOI: 10.1016/j.jhazmat.2024.135240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/04/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024]
Abstract
Despite extensive substitution of biodegradable plastics (BPs) for conventional plastics (CPs), research on their environmental ecological consequences as microplastics (MPs) is scarce. This study aimed to fill this gap by investigating the impacts of six prototypical MPs (categorized into BMPs and CMPs) on plant growth, cadmium (Cd) translocation, and bacterial communities in contaminated sediments. Results showed both BMPs and CMPs hindered plant development; yet interestingly, BMPs provoked more pronounced physiological and biochemical changes alongside increased oxidative stress due to reactive oxygen species accumulation. Notably, most MP types promoted the absorption of Cd by plant roots potentially via a "dilution effect". BMPs also induced larger shifts in soil microbial metabolic functions compared to CMPs. Ramlibacter was identified as a key biomarker distinguishing BMPs from CMPs, with link to multiple N metabolic pathways and N assimilation. This study offers novel insights into intricate biochemical mechanisms and environmental chemistry behaviors underpinning MP-Cd interactions within the plant-microbe-sediment system, emphasizing BMPs' higher potential ecological risks based on their significant effects on plant health and microbial ecology. This work contributes to enhancing the comprehensive understanding of their ecological implications and potential threats to environmental security.
Collapse
Affiliation(s)
- Wei Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Sha Chen
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, PR China
| | - Guangfu Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Ruijin Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Wenbo Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yang Lei
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Ruihao Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Lingshi Yin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Haojie Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Fei Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
8
|
Song T, Liu J, Han S, Li Y, Xu T, Xi J, Hou L, Lin Y. Effect of conventional and biodegradable microplastics on the soil-soybean system: A perspective on rhizosphere microbial community and soil element cycling. ENVIRONMENT INTERNATIONAL 2024; 190:108781. [PMID: 38880060 DOI: 10.1016/j.envint.2024.108781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/30/2024] [Accepted: 05/26/2024] [Indexed: 06/18/2024]
Abstract
As an exogenous carbon input, microplastics (MPs), especially biodegradable MPs, may significantly disrupt soil microbial communities and soil element cycling (CNPS cycling), but few studies have focused on this. Here, we focused on assessing the effects of conventional low-density polyethylene (LDPE), biodegradable polybutylene adipate terephthalate (PBAT), and polylactic acid (PLA) MPs on rhizosphere microbial communities and CNPS cycling in a soil-soybean system. The results showed that PBAT-MPs and PLA-MPs were more detrimental to soybean growth than LDPE-MPs, resulting in a reduction in shoot nitrogen (14.05% and 11.84%) and shoot biomass (33.80% and 28.09%) at the podding stage. In addition, dissolved organic carbon (DOC) increased by 20.91% and 66.59%, while nitrate nitrogen (NO3--N) significantly decreased by 56.91% and 69.65% in soils treated with PBAT-MPs and PLA-MPs, respectively. PBAT-MPs and PLA-MPs mainly enhanced copiotrophic bacteria (Proteobacteria) and suppressed oligotrophic bacteria (Verrucomicrobiota, Gemmatimonadota, etc.), increasing the abundance of CNPS cycling-related functional genes. LDPE-MPs tended to enrich oligotrophic bacteria (Verrucomicrobiota, etc.) and decrease the abundance of CNPS cycling-related functional genes. Correlation analysis revealed that MPs with different degradation properties selectively affected the composition and function of the bacterial community, resulting in changes in the availability of soil nutrients (especially NO3--N). Redundancy analysis further indicated that NO3--N was the primary constraining factor for soybean growth. This study provides a new perspective for revealing the underlying ecological effects of MPs on soil-plant systems.
Collapse
Affiliation(s)
- Tianjiao Song
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiaxi Liu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Siqi Han
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yan Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tengqi Xu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiao Xi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lijun Hou
- Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Yanbing Lin
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
9
|
Singh P, Varshney G, Kaur R. Primary Microplastics in the Ecosystem: Ecological Effects, Risks, and Comprehensive Perspectives on Toxicology and Detection Methods. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2024; 42:314-365. [PMID: 38967482 DOI: 10.1080/26896583.2024.2370715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Recent discoveries of microplastics in cities, suburbs, and even remote locations, far from microplastic source regions, have raised the possibility of long-distance transmission of microplastics in many ecosystems. A little is known scientifically about the threat that it posed to the environment by microplastics. The problem's apparent size necessitates the rapid development of reliable scientific advice regarding the ecological risks of microplastics. These concerns are brought on by the lack of consistent sample and identification techniques, as well as the limited physical analysis and understanding of microplastic pollution. This review provides insight regarding some unaddressed issues about the occurrence, fate, movement, and impact of microplastics, in general, with special emphasis on primary microplastics. The approaches taken in the earlier investigations have been analyzed and different recommendations for future research have been suggested.
Collapse
Affiliation(s)
- Pooja Singh
- Discipline of Polymer Science and Chemical Technology, Department of Applied Chemistry, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Gunjan Varshney
- Discipline of Polymer Science and Chemical Technology, Department of Applied Chemistry, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Raminder Kaur
- Discipline of Polymer Science and Chemical Technology, Department of Applied Chemistry, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| |
Collapse
|
10
|
Zhou S, Song J, Sun H, Jiang Y, Jia H, Wang J, Yin X. Transport of polyethylene and polypropylene microplastics under the action of agricultural chemicals: Role of pesticide adjuvants and neonicotinoid active ingredients. ENVIRONMENTAL RESEARCH 2024; 252:118975. [PMID: 38649018 DOI: 10.1016/j.envres.2024.118975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Understanding the impact of various agricultural chemical components on the fate and transport of microplastics (MPs) in the subsurface is essential. In this study, column experiments on saturated porous media were conducted to explore the influence of the coexistence environment of pesticide adjuvants (surfactants) and active ingredients (neonicotinoids) on the transport of polyethylene (PE) and polypropylene (PP) MPs. An anionic surfactant (sodium dodecyl sulfate (SDS)), a nonionic surfactant (nonylphenol ethoxylate (NP-40)), and three neonicotinoid insecticides (acetamiprid, dinotefuran, and nitenpyram) could independently increase MP migration by 9.31%-61.01% by improving the hydrophilicity. Acetamiprid or dinotefuran reduced the adhesion work of the binary system by competing with SDS for adsorption sites, thereby inhibiting PE mobility. However, nitenpyram in the mixture was not easily adsorbed on the surface of PE MPs together with SDS because of nitenpyram's high hydrophilicity. Neonicotinoid molecules could not reduce the hydrophilic modification of SDS on PP MPs by competing for adsorption sites. Owing to their weak charge and adhesion work of nonionic surfactants (-4.80 mV and 28.45 kT for PE and -8.21 mV and 17.64 kT for PP), neonicotinoids tended to occupy the adsorption sites originally belonging to NP-40. The long molecular chain of NP-40 made it difficult for high-concentration neonicotinoids to affect the adhesion on MPs. In addition, NP-40 was harder to peel off from the MP surface than SDS, leading to a larger MP transport ability in the sand column.
Collapse
Affiliation(s)
- Shi Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Jie Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Huimin Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Yanji Jiang
- School of Environment, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Hongtao Jia
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, Xinjiang, 830052, PR China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Tai'an, Shandong, 271000, PR China
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
11
|
Cao Y, Ma Y, Han Y, Bian J, Yu X, Wang Z, Liu J, Feng W, Deng Y, Miao Q. Effect and environmental behaviour of microplastics in soil. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2024; 42:511-519. [PMID: 37555586 DOI: 10.1177/0734242x231190811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Soil microplastic pollution is currently a worldwide concern. Microplastics are organic pollutants that are abundant in the natural environment, are persistent and difficult to degrade and may endanger human health while harming the environment. This article offers a bibliometric analysis of the environmental behaviour of microplastics in soils, as well as a thorough statistical analysis of research goals and trends in this field. We conducted a thorough search of all relevant literature from 2012 to 2022 in the Web of Science core database. The data analysis shows that, starting in 2012, there has been an upward trend in the number of articles about soil microplastic pollution. It can also be seen that China is relatively ahead of the curve in this area of research, followed by the United Kingdom and the United States. This article also systematically describes the research hotspots in this field. The results show that the current research on soil microplastics is mainly focused on their identification, enrichment and toxicity, whereas studies on the migration and transformation of soil microplastics and the mechanism of interaction with other pollutants are still lacking. Our results provide ideas and prospects for future research in this field.
Collapse
Affiliation(s)
- Yingnan Cao
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Resources and Environmental engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia, PR China
| | - Yuping Ma
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Resources and Environmental engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia, PR China
| | - Yunping Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Jing Bian
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Resources and Environmental engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia, PR China
| | - Xuezheng Yu
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Resources and Environmental engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia, PR China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, PR China
| | - Zixuan Wang
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Resources and Environmental engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia, PR China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, PR China
| | - Jianguo Liu
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Resources and Environmental engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia, PR China
| | - Weiying Feng
- School of Space and Environment, Beihang University, Beijing, China
| | - Yuxin Deng
- School of Space and Environment, Beihang University, Beijing, China
| | - Qingfeng Miao
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
12
|
Yu H, Pu Z, Wang S, Chen Y, Wang C, Wan Y, Dong Y, Wang J, Wan S, Wang D, Xie Z. Mitigating microplastic stress on peanuts: The role of biochar-based synthetic community in the preservation of soil physicochemical properties and microbial diversity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172927. [PMID: 38719057 DOI: 10.1016/j.scitotenv.2024.172927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Tire-derived rubber crumbs (RC), as a new type of microplastics (MPs), harms both the environment and human health. Excessive use of plastic, the decomposition of which generates microplastic particles, in current agricultural practices poses a significant threat to the sustainability of agricultural ecosystems, worldwide food security and human health. In this study, the application of biochar, a carbon-rich material, to soil was explored, especially in the evaluation of synthetic biochar-based community (SynCom) to alleviate RC-MP-induced stress on plant growth and soil physicochemical properties and soil microbial communities in peanuts. The results revealed that RC-MPs significantly reduced peanut shoot dry weight, root vigor, nodule quantity, plant enzyme activity, soil urease and dehydrogenase activity, as well as soil available potassium, and bacterial abundance. Moreover, the study led to the identification highly effective plant growth-promoting rhizobacteria (PGPR) from the peanut rhizosphere, which were then integrated into a SynCom and immobilized within biochar. Application of biochar-based SynCom in RC-MPs contaminated soil significantly increased peanut biomass, root vigor, nodule number, and antioxidant enzyme activity, alongside enhancing soil enzyme activity and rhizosphere bacterial abundance. Interestingly, under high-dose RC-MPs treatment, the relative abundance of rhizosphere bacteria decreased significantly, but their diversity increased significantly and exhibited distinct clustering phenomenon. In summary, the investigated biochar-based SynCom proved to be a potential soil amendment to mitigate the deleterious effects of RC-MPs on peanuts and preserve soil microbial functionality. This presents a promising solution to the challenges posed by contaminated soil, offering new avenues for remediation.
Collapse
Affiliation(s)
- Hong Yu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian 271018, China
| | - Zitian Pu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian 271018, China
| | - Shuaibing Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian 271018, China
| | - Yinglong Chen
- The UWA Institute of Agriculture, School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
| | - Chao Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian 271018, China
| | - Yongshan Wan
- College of Agronomy, Shandong Agricultural University, Taian 271018, China
| | - Yuanjie Dong
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian 271018, China
| | - Jianguo Wang
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shubo Wan
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Dandan Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian 271018, China.
| | - Zhihong Xie
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
13
|
Roy R, Hossain A, Sultana S, Deb B, Ahmod MM, Sarker T. Microplastics increase cadmium absorption and impair nutrient uptake and growth in red amaranth (Amaranthus tricolor L.) in the presence of cadmium and biochar. BMC PLANT BIOLOGY 2024; 24:608. [PMID: 38926861 PMCID: PMC11202365 DOI: 10.1186/s12870-024-05312-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Microplastic (MP) pollution in terrestrial ecosystems is gaining attention, but there is limited research on its effects on leafy vegetables when combined with heavy metals. This study examines the impact of three MP types-polyethylene (PE), polyethylene terephthalate (PET), and polystyrene (PS)-at concentrations of 0.02, 0.05, and 0.1% w/w, along with cadmium (Cd) and biochar (B), on germination, growth, nutrient absorption, and heavy metal uptake in red amaranth (Amaranthus tricolor L.). We found that different MP types and concentrations did not negatively affect germination parameters like germination rate, relative germination rate, germination vigor, relative germination vigor, and germination speed. However, they increased phytotoxicity and decreased stress tolerance compared to an untreated control (CK1). The presence of MPs, particularly the PS type, reduced phosphorus and potassium uptake while enhancing Cd uptake. For example, treatments PS0.02CdB, PS0.05CdB, and PS0.1CdB increased Cd content in A. tricolor seedlings by 158%, 126%, and 44%, respectively, compared to the treatment CdB (CK2). Additionally, MP contamination led to reduced plant height, leaf dry matter content, and fresh and dry weights, indicating adverse effects on plant growth. Moreover, the presence of MPs increased bioconcentration factors and translocation factors for Cd, suggesting that MPs might act as carriers for heavy metal absorption in plants. On the positive side, the addition of biochar improved several root parameters, including root length, volume, surface area, and the number of root tips in the presence of MPs, indicating potential benefits for plant growth. Our study shows that the combination of MPs and Cd reduces plant growth and increases the risk of heavy metal contamination in food crops. Further research is needed to understand how different MP types and concentrations affect various plant species, which will aid in developing targeted mitigation strategies and in exploring the mechanisms through which MPs impact plant growth and heavy metal uptake. Finally, investigating the potential of biochar application in conjunction with other amendments in mitigating these effects could be key to addressing MP and heavy metal contamination in agricultural systems.
Collapse
Affiliation(s)
- Rana Roy
- Institute of Plant Nutrition and Soil Science, Christian-Albrechts-Universität zu Kiel, 24118, Kiel, Germany.
- Department of Agroforestry and Environmental Science, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.
| | - Akram Hossain
- Department of Agroforestry and Environmental Science, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Shirin Sultana
- Open School, Bangladesh Open University, Gazipur, 1705, Bangladesh
| | - Biplob Deb
- Department of Agricultural Extension Education, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Md Moudud Ahmod
- Department of Crop Botany & Tea Production Technology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Tanwne Sarker
- Department of Sociology and Rural Development, Khulna Agricultural University, Khulna, 9100, Bangladesh
| |
Collapse
|
14
|
Li Y, Tang Y, Qiang W, Xiao W, Lian X, Yuan S, Yuan Y, Wang Q, Liu Z, Chen Y. Effect of tire wear particle accumulation on nitrogen removal and greenhouse gases abatement in bioretention systems: Soil characteristics, microbial community, and functional genes. ENVIRONMENTAL RESEARCH 2024; 251:118574. [PMID: 38452911 DOI: 10.1016/j.envres.2024.118574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
Tire wear particles (TWPs), as predominant microplastics (MPs) in road runoff, can be captured and retained by bioretention systems (BRS). This study aimed to investigate the effect of TWPs accumulation on nitrogen processes, focusing on soil characteristics, microbial community, and functional genes. Two groups of lab-scale bioretention columns containing TWPs (0 and 100 mg g-1) were established. The removal efficiencies of NH4+-N and TN in BRS significantly decreased by 7.60%-24.79% and 1.98%-11.09%, respectively, during the 101 days of TWPs exposure. Interestingly, the emission fluxes of N2O and CO2 were significantly decreased, while the emission flux of CH4 was substantially increased. Furthermore, prolonged TWPs exposure significantly influenced the contents of soil organic matter (increased by 27.07%) and NH4+-N (decreased by 42.15%) in the planting layer. TWPs exposure also significantly increased dehydrogenase activity and substrate-induced respiration rate, thereby promoting microbial metabolism. Microbial sequencing results revealed that TWPs decreased the relative abundance of nitrifying bacteria (Nitrospira and Nitrosomonas) and denitrifying bacteria (Dechloromonas and Thauera), reducing the nitrification rate by 42.24%. PICRUSt2 analysis further indicated that TWPs changed the relative abundance of functional genes related to nitrogen and enzyme-coding genes.
Collapse
Affiliation(s)
- Yunqing Li
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Yinghui Tang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China; School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Weibo Qiang
- Central & Southern China Municipal Engineering Design and Research Institute Co., Ltd., Wuhan, 430010, China
| | - Wenyu Xiao
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Xiaoke Lian
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Shaochun Yuan
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China; Engineering Laboratory of Environmental Hydraulic Engineering of Chongqing Municipal Development and Reform Commission, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Ying Yuan
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Qinyi Wang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Zhen Liu
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China; Engineering Laboratory of Environmental Hydraulic Engineering of Chongqing Municipal Development and Reform Commission, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Yao Chen
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China; Engineering Laboratory of Environmental Hydraulic Engineering of Chongqing Municipal Development and Reform Commission, Chongqing Jiaotong University, Chongqing, 400074, China.
| |
Collapse
|
15
|
Xu S, Zhao R, Sun J, Sun Y, Xu G, Wang F. Microplastics change soil properties, plant performance, and bacterial communities in salt-affected soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134333. [PMID: 38643581 DOI: 10.1016/j.jhazmat.2024.134333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Microplastics (MPs) are emerging contaminants found globally. However, their effects on soil-plant systems in salt-affected habitats remain unknown. Here, we examined the effects of polyethylene (PE) and polylactic acid (PLA) on soil properties, maize performance, and bacterial communities in soils with different salinity levels. Overall, MPs decreased soil electrical conductivity and increased NH4+-N and NO3--N contents. Adding NaCl alone had promoting and inhibitive effects on plant growth in a concentration-dependent manner. Overall, the addition of 0.2% PLA increased shoot biomass, while 2% PLA decreased it. Salinity increased Na content and decreased K/Na ratio in plant tissues (particularly roots), which were further modified by MPs. NaCl and MPs singly and jointly regulated the expression of functional genes related to salt tolerance in leaves, including ZMSOS1, ZMHKT1, and ZMHAK1. Exposure to NaCl alone had a slight effect on soil bacterial α-diversity, but in most cases, MPs increased ACE, Chao1, and Shannon indexes. Both MPs and NaCl altered bacterial community composition, although the specific effects varied depending on the type and concentration of MPs and the salinity level. Overall, PLA had more pronounced effects on soil-plant systems compared to PE. These findings bridge knowledge gaps in the risks of MPs in salt-affected habitats.
Collapse
Affiliation(s)
- Shuang Xu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| | - Rong Zhao
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| | - Jiao Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China; Shandong Vocational College of Science and Technology, Weifang, Shandong 261000, PR China
| | - Yuhuan Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| | - Guangjian Xu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China.
| |
Collapse
|
16
|
Zhang T, Luo XS, Kumar A, Liu X, Tong X, Yao X, Fan J, Chen Z, Chaturvedi S. Effects of micro-nano plastics on the environmental biogeochemical cycle of nitrogen: A comprehensive review. CHEMOSPHERE 2024; 357:142079. [PMID: 38642771 DOI: 10.1016/j.chemosphere.2024.142079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/03/2024] [Accepted: 04/18/2024] [Indexed: 04/22/2024]
Abstract
Micro-nano plastics (MNPs; size <5 mm), ubiquitous and emerging pollutants, accumulated in the natural environment through various sources, and are likely to interact with nutrients, thereby influencing their biogeochemical cycle. Increasing scientific evidences reveal that MNPs can affect nitrogen (N) cycle processes by affecting biotopes and organisms in the environmental matrix and MNPs biofilms, thus plays a crucial role in nitrous oxide (N2O) and ammonia (NH3) emission. Yet, the mechanism and key processes behind this have not been systematically reviewed in natural environments. In this review, we systematically summarize the effects of MNPs on N transformation in terrestrial, aquatic, and atmospheric ecosystems. The effects of MNPs properties on N content, composition, and function of the microbial community, enzyme activity, gene abundance and plant N uptake in different environmental conditions has been briefly discussed. The review highlights the significant potential of MNPs to alter the properties of the environmental matrix, microbes and plant or animal physiology, resulting in changes in N uptake and metabolic efficiency in plants, thereby inhibiting organic nitrogen (ON) formation and reducing N bioavailability, or altering NH3 emissions from animal sources. The faster the decomposition of plastics, the more intense the perturbation of MNPs to organisms in the natural ecosystem. Findings of this provide a more comprehensive analysis and research directions to the environmentalists, policy makers, water resources planners & managers, biologists, and biotechnologists to do integrate approaches to reach the practical engineering solutions which will further diminish the long-term ecological and climatic risks.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of Agricultural Resources and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Xiao-San Luo
- Department of Agricultural Resources and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Amit Kumar
- School of Hydrology and Water Resources, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Xin Liu
- Department of Agricultural Resources and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Xin Tong
- Department of Agricultural Resources and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Xuewen Yao
- Department of Agricultural Resources and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Jiayi Fan
- Department of Agricultural Resources and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Zhihuai Chen
- Department of Agricultural Resources and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Sadashiv Chaturvedi
- School of Hydrology and Water Resources, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| |
Collapse
|
17
|
Fu B, Zhou W, Chen Y, Wu Y, Gan W, She N, Ma Y. A bibliometric perspective on the occurrence and migration of microplastics in soils amended with sewage sludge. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11054. [PMID: 38828755 DOI: 10.1002/wer.11054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 06/05/2024]
Abstract
The land application of sewage sludge from wastewater treatment plants has been recognized as a major source of microplastic contamination in soil. Nevertheless, the fate and behavior of microplastics in soil remain uncertain, particularly their distribution and transport, which are poorly understood. This study does a bibliometric analysis and visualization of relevant research publications using the CiteSpace software. It explores the limited research available on the topic, highlighting the potential for it to emerge as a research hotspot in the future. Chinese researchers and institutions are paying great attention to this field and are promoting close academic cooperation among international organizations. Current research hot topics mainly involve microplastic pollution caused by the land application of sewage sludge, as well as the detection, environmental fate, and removal of microplastics in soil. The presence of microplastics in sludge, typically ranging from tens of thousands to hundreds of thousands of particles (p)/kg, inevitably leads to their introduction into soil upon land application. In China, the estimated annual accumulation of microplastics in the soil due to sludge use is approximately 1.7 × 1013 p. In European countries, the accumulation ranges from 8.6 to 71 × 1013 p. Sludge application has significantly elevated soil microplastic concentrations, with higher application rates and frequencies resulting in up to several-fold increases. The primary forms of microplastics found in soils treated with sludge are fragments and fibers, primarily in white color. These microplastics consist primarily of components such as polyamide, polyethylene, and polypropylene. The vertical transport behavior of microplastics is influenced by factors such as tillage, wind, rainfall, bioturbation, microplastic characteristics (e.g., fraction, particle size, and shape), and soil physicochemical properties (e.g., organic matter, porosity, electrical conductivity, and pH). Research indicates that microplastics can penetrate up to 90 cm into the soil profile and persist for decades. Microplastics in sewage sludge-amended soils pose potential long-term threats to soil ecosystems and even human health. Future research should focus on expanding the theoretical understanding of microplastic behavior in these soils, enabling the development of comprehensive risk assessments and informed decision-making for sludge management practices. PRACTITIONER POINTS: Microplastics in sewage sludge range from tens to hundreds of thousands per kilogram. Sludge land application contributes significantly to soil microplastic pollution. The main forms of microplastics in sludge-amended soils are fragments and fibers. Microplastics are mainly composed of polyamide, polyethylene, and polypropylene. Microplastics can penetrate up to 90 cm into the soil profile and persist for decades.
Collapse
Affiliation(s)
- Bomin Fu
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao SAR, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Weimin Zhou
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao SAR, China
| | - Yucai Chen
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao SAR, China
| | - Yang Wu
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao SAR, China
| | - Wenhui Gan
- School of Civil Engineering, Sun Yat-sen University, Guangzhou, China
| | - Nian She
- Smart Water Utility Research Institute, Tsinghua University Innovation Center in Zhuhai, Zhuhai, China
| | - Yibing Ma
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao SAR, China
| |
Collapse
|
18
|
Li F, Huang D, Wang G, Cheng M, Chen H, Zhou W, Xiao R, Li R, Du L, Xu W. Microplastics/nanoplastics in porous media: Key factors controlling their transport and retention behaviors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171658. [PMID: 38490411 DOI: 10.1016/j.scitotenv.2024.171658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/05/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
Till now, microplastics/nano-plastics(M/NPs) have received a lot of attention as emerging contaminant. As a typical but complex porous medium, soil is not only a large reservoir of M/NPs but also a gateway for M/NPs to enter groundwater. Therefore, the review of the factors controlling the transport behavior of M/NPs in porous media can provide important guidance for the risk assessment of M/NPs in soil and groundwater. In this study, the key factors controlling the transport behavior of M/NPs in porous media are systematically divided into three groups: (1) nature of M/NPs affecting M/NPs transport in porous media, (2) nature of flow affecting M/NPs transport in porous media, (3) nature of porous media affecting M/NPs transport. In each group, the specific control factors for M/NPs transport in porous media are discussed in detail. In addition to the above factors, some substances (colloids or pollutants) present in natural porous media (such as soil or sediments) will co-transport with M/NPs and affect its mobility. According to the different properties of co-transported substances, the mechanism of promoting or inhibiting the migration behavior of M/NPs in porous media was discussed. Finally, the limitations and future research directions of M/NPs transport in porous media are pointed out. This review can provide a useful reference for predicting the transport of M/NPs in natural porous media.
Collapse
Affiliation(s)
- Fei Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| | - Guangfu Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Haojie Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Wei Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Ruihao Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Ruijin Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Li Du
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Wenbo Xu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| |
Collapse
|
19
|
Yu H, Liu X, Qiu X, Sun T, Cao J, Lv M, Sui Z, Wang Z, Jiao S, Xu Y, Wang F. Discrepant soil microbial community and C cycling function responses to conventional and biodegradable microplastics. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134176. [PMID: 38569347 DOI: 10.1016/j.jhazmat.2024.134176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/14/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Biodegradable microplastics (MPs) are promising alternatives to conventional MPs and are of high global concern. However, their discrepant effects on soil microorganisms and functions are poorly understood. In this study, polyethylene (PE) and polylactic acid (PLA) MPs were selected to investigate the different effects on soil microbiome and C-cycling genes using high-throughput sequencing and real-time quantitative PCR, as well as the morphology and functional group changes of MPs, using scanning electron microscopy and Fourier transform infrared spectroscopy, and the driving factors were identified. The results showed that distinct taxa with potential for MP degradation and nitrogen cycling were enriched in soils with PLA and PE, respectively. PLA, smaller size (150-180 µm), and 5% (w/w) of MPs enhanced the network complexity compared with PE, larger size (250-300 µm), and 1% (w/w) of MPs, respectively. PLA increased β-glucosidase by up to 2.53 times, while PE (150-180 µm) reduced by 38.26-44.01% and PE (250-300 µm) increased by 19.00-22.51% at 30 days. Amylase was increased by up to 5.83 times by PLA (150-180 µm) but reduced by 40.26-62.96% by PLA (250-300 µm) and 16.11-43.92% by PE. The genes cbbL, cbhI, abfA, and Lac were enhanced by 37.16%- 1.99 times, 46.35%- 26.46 times, 8.41%- 69.04%, and 90.81%- 5.85 times by PLA except for PLA1B/5B at 30 days. These effects were associated with soil pH, NO3--N, and MP biodegradability. These findings systematically provide an understanding of the impact of biodegradable MPs on the potential for global climate change.
Collapse
Affiliation(s)
- Hui Yu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Xin Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Xiaoguo Qiu
- Shandong Provincial Eco-Environment Monitoring Center, Jinan 250101, China
| | - Tao Sun
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Jianfeng Cao
- Taian Ecological Environment Monitoring Center of Shandong Province, Taian 271000, China
| | - Ming Lv
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Zhiyuan Sui
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Zhizheng Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Shuying Jiao
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Yuxin Xu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong, China.
| | - Fenghua Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong, China.
| |
Collapse
|
20
|
Zhou Y, Zhang Z, Bao F, Du Y, Dong H, Wan C, Huang Y, Zhang H. Considering microplastic characteristics in ecological risk assessment: A case study for China. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134111. [PMID: 38581870 DOI: 10.1016/j.jhazmat.2024.134111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/08/2024]
Abstract
Microplastics (MPs) pose a significant global concern, requiring a multifaceted approach to their risk assessment procedures, especially concerning their characteristics in the environment. The Horqin Left Middle Banner in Northeast China was chosen for the research region to investigate the abundance, composition, distribution, and ecological impact of MPs in surface agricultural soils. The concentrations of MPs ranged from 300 to 12800 items/kg, with a median concentration of 1550 items/kg (average = 1994 items/kg). The normal-sized MPs (500-5000 µm) had a higher relative abundance than small MPs (<500 µm). MPs were mainly derived from textiles and packaging and were affected by atmospheric transportation. Rayon and PET fibers were the main polymers identified. Furthermore, the potential environmental risks posed by the fundamental characteristics (abundance, chemical composition, and size) of MPs were quantified using multiple risk assessment models. The conditional fragmentation model indicated a propensity for MPs to degrade into smaller particles. Ecological risk assessments using pollution load index, pollution hazard index, and potential ecological risk index models revealed varying levels of risk. This study conducted a comprehensive assessment of the ecological risks of MPs based on their environmental characteristics, emphasizing the importance of considering multiple factors in the risk assessment process. ENVIRONMENT IMPLICATION: This study investigates the occurrence, distribution, and ecological risk of microplastics (MPs) in agricultural soils of the Northeast Plain of China, a major food production area. MPs are persistent organic pollutants that can pose threats to soil health, crop quality, and food security. By analyzing the composition, size, and source of MPs, as well as their fragmentation and stability in soil, this study provides valuable data for assessing the environmental risk of MPs in agricultural regions. The study also suggests strategies for mitigating MPs pollution and protecting soil ecosystems.
Collapse
Affiliation(s)
- Yang Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Zhengyu Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Feifei Bao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Yuhan Du
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Huiying Dong
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Chengrui Wan
- College of Land Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Yuanfang Huang
- College of Land Science and Technology, China Agricultural University, Beijing 100193, PR China.
| | - Hongyan Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
21
|
Li G, Pei Z, Li Y, Yang R, Wang P, Liang Y, Zhang J, Zhang Q, Jiang G. A high-precision, effective method for extraction and identification of small-sized microplastics from soil. Talanta 2024; 272:125802. [PMID: 38368834 DOI: 10.1016/j.talanta.2024.125802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/06/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
A growing evidence showed that the terrestrial ecosystem was a greater sink for microplastics (MPs) compared with ocean. Owing to the limitation of pretreatment methods, there are few reports on the identification of small-sized MPs(<60 μm) in soil currently, which may led to an underestimation of the environmental risk of MPs in soil system. In this study, we established an efficient pretreatment method for MPs in soils by developing a novel device, Plastic Flotation and Separator system (PFSS). The device integrated the suspension, digestion and filtration procedures into one system, reducing the losses of pretreatment process. It was shown that the recovery of MPs with size of 45 μm was 90%, significantly surpassing that of the traditional pretreatment methods in this particle size range. Combined with the SEM-Raman technique, MPs with small size were accurately determined. This work provides an effective method for the extraction and determination of MPs in soils and is of significance for the risk assessment of MPs in soil system.
Collapse
Affiliation(s)
- Gang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Taishan Institute for Eco-Environment, Jinan, 250100, China
| | - Zhiguo Pei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ruiqiang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Taishan Institute for Eco-Environment, Jinan, 250100, China
| | - Pu Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Jilong Zhang
- State Nuclear Security Technology Center, Beijing, 102445, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
22
|
Aralappanavar VK, Mukhopadhyay R, Yu Y, Liu J, Bhatnagar A, Praveena SM, Li Y, Paller M, Adyel TM, Rinklebe J, Bolan NS, Sarkar B. Effects of microplastics on soil microorganisms and microbial functions in nutrients and carbon cycling - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171435. [PMID: 38438042 DOI: 10.1016/j.scitotenv.2024.171435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
The harmful effects of microplastics (MPs) pollution in the soil ecosystem have drawn global attention in recent years. This paper critically reviews the effects of MPs on soil microbial diversity and functions in relation to nutrients and carbon cycling. Reports suggested that both plastisphere (MP-microbe consortium) and MP-contaminated soils had distinct and lower microbial diversity than that of non-contaminated soils. Alteration in soil physicochemical properties and microbial interactions within the plastisphere facilitated the enrichment of plastic-degrading microorganisms, including those involved in carbon (C) and nutrient cycling. MPs conferred a significant increase in the relative abundance of soil nitrogen (N)-fixing and phosphorus (P)-solubilizing bacteria, while decreased the abundance of soil nitrifiers and ammonia oxidisers. Depending on soil types, MPs increased bioavailable N and P contents and nitrous oxide emission in some instances. Furthermore, MPs regulated soil microbial functional activities owing to the combined toxicity of organic and inorganic contaminants derived from MPs and contaminants frequently encountered in the soil environment. However, a thorough understanding of the interactions among soil microorganisms, MPs and other contaminants still needs to develop. Since currently available reports are mostly based on short-term laboratory experiments, field investigations are needed to assess the long-term impact of MPs (at environmentally relevant concentration) on soil microorganisms and their functions under different soil types and agro-climatic conditions.
Collapse
Affiliation(s)
| | - Raj Mukhopadhyay
- Department of Chemistry, Mellon College of Science, Carnegie Mellon University, Pittsburgh 15213, United States
| | - Yongxiang Yu
- Research Center for Environmental Ecology and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jingnan Liu
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland
| | - Sarva Mangala Praveena
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Yang Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Mike Paller
- Aquatic Biology Consultants, Inc., 35 Bungalow Ct., Aiken, SC 29803, USA
| | - Tanveer M Adyel
- STEM, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Nanthi S Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6001, Australia
| | - Binoy Sarkar
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia.
| |
Collapse
|
23
|
Ranauda MA, Zuzolo D, Maisto M, Tartaglia M, Scarano P, Prigioniero A, Sciarrillo R, Guarino C. Microplastics affect soil-plant system: Implications for rhizosphere biology and fitness of sage (Salvia officinalis L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123656. [PMID: 38408506 DOI: 10.1016/j.envpol.2024.123656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 02/28/2024]
Abstract
A mesocosm experiment was set-up to investigate the effects of low-density polyethylene (LDPE) fragments deriving from plastic film on soil ecology, rhizosphere and plant (Salvia officinalis L.) fitness. The internal transcribed spacer (ITS) and 16S metagenomic analysis was adopted to evaluate taxonomic and functional shifts of both soil and rhizosphere under the influence of microplastics (MPs). Photosynthetic parameters and enzymes involved in oxidative stress were assessed to unveil the plant physiological state. MP fragments were analysed by scanning electron microscope (SEM) and metagenomics to investigate the plastisphere. Microbial biomarkers of MPs pollution were identified in soil and rhizosphere, reinforcing the concept of molecular biomonitoring. Overall, Bacillus, Nocardioides and Streptomyces genera are bacterial biomarkers of MPs pollution in soil whereas Aspergillus, Fusarium and Trichoderma genera, and Nectriaceae family are fungal biomarkers of MPs polluted soil. The data show that the presence of MPs promotes the abundance of taxa involved in the soil N cycle, but simultaneously reduces the endophytic interaction capability and enhances pathogen related functions at the rhizosphere level. A significant decrease in chlorophyll levels and increase of oxidative stress enzymes was observed in plants grown in MPs-polluted soil. The SEM observations of MPs fragments revealed a complex colonisation, where bacteria (Bacillus in MPSo and Microvirga in MPRz) and fungi (Aspergillus in MPSo and Trichoderma in MPRz) represent the main colonisers. The results demonstrate that the presence of MPs causes changes in the soil and rhizosphere microbial community and functions leading to negative effects on plant fitness.
Collapse
Affiliation(s)
- Maria Antonietta Ranauda
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100, Benevento, Italy
| | - Daniela Zuzolo
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100, Benevento, Italy.
| | - Maria Maisto
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100, Benevento, Italy
| | - Maria Tartaglia
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100, Benevento, Italy
| | - Pierpaolo Scarano
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100, Benevento, Italy
| | - Antonello Prigioniero
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100, Benevento, Italy
| | - Rosaria Sciarrillo
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100, Benevento, Italy
| | - Carmine Guarino
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100, Benevento, Italy
| |
Collapse
|
24
|
Khan Z, Shah T, Haider G, Adnan F, Sheikh Z, El-Sheikh MA, Bhatti MF, Ahmad P. Mycorrhizosphere bacteria inhibit greenhouse gas emissions from microplastics contaminated soil by regulating soil enzyme activities and microbial community structure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120673. [PMID: 38508003 DOI: 10.1016/j.jenvman.2024.120673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/25/2024] [Accepted: 03/12/2024] [Indexed: 03/22/2024]
Abstract
Microplastics (MPs) accumulation in terrestrial ecosystems can affect greenhouse gases (GHGs) production by altering microbial and soil structure. Presently, research on the MPs effect on plants is not consistent, and underlying molecular mechanisms associated with GHGs are yet unknown. For the first time, we conducted a microcosm study to explore the impact of MPs addition (Raw vs. aged) and Trichoderma longibrachiatum and Bacillus subtilis inoculation (Sole vs. combination) on GHGs emission, soil community structure, physiochemical properties, and enzyme activities. Our results indicated that the addition of aged MPs considerably enhanced the GHGs emissions (N2O (+16%) and CO2 (+21%), respectively), C and N cycling gene expression, microbial biomass carbon, and soil physiochemical properties than raw MPs. However, the soil microbial community structure and enzyme activities were enhanced in raw MPs added treatments, irrespective of the MPs type added to soil. However, microbial inoculation significantly reduced GHGs emission by altering the expression of C and N cycling genes in both types of MPs added treatments. The soil microbial community structure, enzymes activities, physiochemical properties and microbial biomass carbon were enhanced in the presence of microbial inoculation in both type of MPs. Among sole and combined inoculation of Trichoderma and Bacillus subtilis, the co-applied Trichoderma and Bacillus subtilis considerably reduced the GHGs emission (N2O (-64%) and CO2 (-61%), respectively) by altering the expression of C and N cycling genes regardless of MPs type used. The combined inoculation also enhanced soil enzyme activities, microbial community structure, physiochemical properties and microbial biomass carbon in both types of MPs treatment. Our findings provide evidence that polyethylene MPs likely pose a high risk of GHGs emission while combined application of Trichoderma and Bacillus subtilis significantly reduced GHGs emission by altering C and N cycling gene expression, soil microbial community structure, and enzyme activities under MPs pollution in a terrestrial ecosystem.
Collapse
Affiliation(s)
- Zeeshan Khan
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Tariq Shah
- Plant Science Research Unit United States Department for Agriculture -Agricultural Research Service, Raleigh, NC, USA
| | - Ghulam Haider
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Fazal Adnan
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Zeshan Sheikh
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Science and Technology (NUST), Islamabad 44000, Pakistan
| | - Mohamed A El-Sheikh
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Faraz Bhatti
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan.
| | - Parvaiz Ahmad
- Department of Botany, GDC Pulwama-192301, Jammu and Kashmir, India
| |
Collapse
|
25
|
Jansen MAK, Andrady AL, Bornman JF, Aucamp PJ, Bais AF, Banaszak AT, Barnes PW, Bernhard GH, Bruckman LS, Busquets R, Häder DP, Hanson ML, Heikkilä AM, Hylander S, Lucas RM, Mackenzie R, Madronich S, Neale PJ, Neale RE, Olsen CM, Ossola R, Pandey KK, Petropavlovskikh I, Revell LE, Robinson SA, Robson TM, Rose KC, Solomon KR, Andersen MPS, Sulzberger B, Wallington TJ, Wang QW, Wängberg SÅ, White CC, Young AR, Zepp RG, Zhu L. Plastics in the environment in the context of UV radiation, climate change and the Montreal Protocol: UNEP Environmental Effects Assessment Panel, Update 2023. Photochem Photobiol Sci 2024; 23:629-650. [PMID: 38512633 DOI: 10.1007/s43630-024-00552-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 03/23/2024]
Abstract
This Assessment Update by the Environmental Effects Assessment Panel (EEAP) of the United Nations Environment Programme (UNEP) considers the interactive effects of solar UV radiation, global warming, and other weathering factors on plastics. The Assessment illustrates the significance of solar UV radiation in decreasing the durability of plastic materials, degradation of plastic debris, formation of micro- and nanoplastic particles and accompanying leaching of potential toxic compounds. Micro- and nanoplastics have been found in all ecosystems, the atmosphere, and in humans. While the potential biological risks are not yet well-established, the widespread and increasing occurrence of plastic pollution is reason for continuing research and monitoring. Plastic debris persists after its intended life in soils, water bodies and the atmosphere as well as in living organisms. To counteract accumulation of plastics in the environment, the lifetime of novel plastics or plastic alternatives should better match the functional life of products, with eventual breakdown releasing harmless substances to the environment.
Collapse
Affiliation(s)
- Marcel A K Jansen
- School of Biological, Earth and Environmental Sciences, University College, Cork, Ireland.
| | - Anthony L Andrady
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Janet F Bornman
- Food Futures Institute, Murdoch University, Perth, Australia.
| | | | - Alkiviadis F Bais
- Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anastazia T Banaszak
- Unidad Académica Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, Mexico
| | - Paul W Barnes
- Department of Biological Sciences and Environment Program, Loyola University New Orleans, New Orleans, LA, USA
| | | | - Laura S Bruckman
- Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Rosa Busquets
- Chemical and Pharmaceutical Sciences, Kingston University London, Kingston Upon Thames, UK
| | | | - Mark L Hanson
- Department of Environment and Geography, University of Manitoba, Winnipeg, MB, Canada
| | | | - Samuel Hylander
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Robyn M Lucas
- National Centre for Epidemiology and Population Health, College of Health and Medicine, Australian National University, Canberra, Australia
| | - Roy Mackenzie
- Centro Universitario Cabo de Hornos, Universidad de Magallanes, Puerto Williams, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems BASE, Santiago, Chile
- Cape Horn International Center CHIC, Puerto Williams, Chile
| | - Sasha Madronich
- UV-B Monitoring and Research Program, Colorado State University, Fort Collins, CO, USA
| | - Patrick J Neale
- Smithsonian Environmental Research Center, Edgewater, MD, USA
| | - Rachel E Neale
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- School of Public Health, University of Queensland, Brisbane, Australia
| | - Catherine M Olsen
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Frazer Institute, University of Queensland, Brisbane, Australia
| | - Rachele Ossola
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | | - Irina Petropavlovskikh
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
- Ozone and Water Vapor Division, NOAA ESRL Global Monitoring Laboratory, Boulder, CO, USA
| | - Laura E Revell
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | - Sharon A Robinson
- Securing Antarctica's Environmental Future, University of Wollongong, Wollongong, Australia
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, Australia
| | - T Matthew Robson
- UK National School of Forestry, University of Cumbria, Ambleside Campus, Ambleside, UK
- Organismal & Evolutionary Ecology, Viikki Plant Science Centre, Faculty of Biological & Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Kevin C Rose
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Keith R Solomon
- School of Environmental Sciences, University of Guelph, Guelph, Canada
| | - Mads P Sulbæk Andersen
- Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA, USA
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Barbara Sulzberger
- Retired From Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dubendorf, Switzerland
| | - Timothy J Wallington
- Center for Sustainable Systems, School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
| | - Qing-Wei Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Sten-Åke Wängberg
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | | | | | - Richard G Zepp
- ORD/CEMM, US Environmental Protection Agency, Athens, GA, USA
| | - Liping Zhu
- State Key Lab for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| |
Collapse
|
26
|
Chen YT, Ding DS, Lim YC, Dong CD, Hsieh SL. Combined toxicity of microplastics and copper on Goniopora columns. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123515. [PMID: 38346639 DOI: 10.1016/j.envpol.2024.123515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/21/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
As microplastics (MP) become ubiquitous, their interactions with heavy metals threatens the coral ecosystem. This study aimed to assess the combined toxicity of MP and copper (Cu) in the environment of coral. Goniopora columna was exposed to polyethylene microplastics (PE-MP) combined with Cu2+ at 10, 20, 50, 100, and 300 μg/L for 7 days. Polyp length and adaptability were recorded daily, and coral samples were collected at 1, 3, 5, and 7 days to analyse zooxanthellae density and antioxidant activity. Tissue observations and the analysis of MP and Cu2+ accumulation were conducted on the 7th day. After 1 day of exposure, PE-MP combined with different concentrations of Cu2+ significantly decreased polyp length and adaptability compared with PE-MP alone. Simultaneously, a significant increase in malondialdehyde (MDA) content, lead to coral oxidative stress, which was a combined effect with PE-MP. After 3 days of exposure, PE-MP combined with Cu2+ at >50 μg/L significantly reduced zooxanthellae density, damaging the coral's symbiotic relationship. In antioxidant enzyme activity, superoxide dismutase (SOD) activity decreased significantly after 1 day of exposure. After 3 days of exposure, glutathione peroxidase (GPx) activity significantly increased with Cu2+ at >20 μg/L. After 5 days of exposure, PE-MP combined with different concentrations of Cu2+ significantly reduced catalase (CAT), glutathione (GSH), and glutathione transferase (GST) activity, disrupting the antioxidant enzyme system, and acting antagonistically to PE-MP alone. Tissue observations revealed that the PE-MP combined with Cu2+ at >50 μg/L caused severe mesenteric atrophy, vacuolar, and Cu2+ accumulation in the coral mesenteric compared with PE-MP alone. The results suggest that combined exposure of PE-MP and copper leads to more severe oxidative stress, disruption antioxidant enzyme system, tissue damage, and Cu2+ accumulation, resulting in a significant maladaptation of corals to the environment.
Collapse
Affiliation(s)
- Ya-Ting Chen
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - De-Sing Ding
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Yee Cheng Lim
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan.
| |
Collapse
|
27
|
Xiong S, He J, Qiu H, van Gestel CAM, He E, Qiao Z, Cao L, Li J, Chen G. Maternal exposure to polystyrene nanoplastics causes defective retinal development and function in progeny mice by disturbing metabolic profiles. CHEMOSPHERE 2024; 352:141513. [PMID: 38387657 DOI: 10.1016/j.chemosphere.2024.141513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/23/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Microplastics (MPs) and nanoplastics (NPs) are widely spreading in our living environment, accumulating in the human body and potentially threating human health. The retina, which is a terminally differentiated extension of the central nervous system, is essential for the visual system. However, the effects and molecular mechanisms of MPs/NPs on retina development and function are still unclear. Here, we investigated the effects and modes of action of polystyrene NPs (PS-NPs) on the retina using mice as a mammalian model species. Maternal PS-NP exposure (100 nm) at an environmentally realistic concentration of 10 mg L-1 (or 2.07 *1010 particles mL-1) via drinking water from the first day of pregnancy till the end of lactation (21 days after birth) caused defective neural retinal development in the neonatal mice, by depositing in the retinal tissue and reducing the number of retinal ganglion cells and bipolar cells. Exposure to PS-NPs retarded retinal vascular development, while abnormal electroretinogram (ERG) responses and an increased level of oxidative stress were also observed in the retina of the progeny mice after maternal PS-NP exposure. Metabolomics showed significant dysregulation of amino acids that are pivotal to neuron retinal function, such as glutamate, aspartate, alanine, glycine, serine, threonine, taurine, and serotonin. Transcriptomics identified significantly dysregulated genes, which were enriched in processes of angiogenesis, visual system development and lens development. Regulatory analysis showed that Fos gene mediated pathways could be a potential key target for PS-NP exposure in retinal development and function. Our study revealed that maternal exposure to PS-NPs generated detrimental effects on retinal development and function in progeny mice, offering new insights into the visual toxicity of PS-NPs.
Collapse
Affiliation(s)
- Shiyi Xiong
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 201204, China
| | - Jincan He
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Cornelis A M van Gestel
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands
| | - ErKai He
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Zhengdong Qiao
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Liang Cao
- Department of Ophthalmology, Shanghai International Medical Center, Shanghai, China
| | - Jing Li
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Guangquan Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 201204, China.
| |
Collapse
|
28
|
Liu Y, Huang W, Wang Y, Wen Q, Zhou J, Wu S, Liu H, Chen G, Qiu R. Effects of naturally aged microplastics on the distribution and bioavailability of arsenic in soil aggregates and its accumulation in lettuce. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169964. [PMID: 38211862 DOI: 10.1016/j.scitotenv.2024.169964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Naturally aged microplastics (NAMPs) and arsenic (As) have been reported to coexist in and threaten potentially to soil-plant ecosystem. The research explored the combined toxic effects of NAMPs and As to lettuce (Lactuca sativa L.) growth, and the distribution, accumulation and bioavailability of As in soil aggregates. The As contaminated soil with low, medium and high concentrations (L-As, M-As, H-As) were treated with or without NAMPs, and a total of six treatments. The results displayed that, in comparison to separate treatments of L-As and M-As, the presence of NAMPs increased the total biomass of lettuce grown at these two As concentrations by 68.9 % and 55.4 %, respectively. Simultaneous exposure of NAMPs and L-As or M-As led to a decrease in As content in shoot (0.45-2.17 mg kg-1) and root (5.68-14.66 mg kg-1) of lettuce, indicating an antagonistic effect between them. In contrast, co-exposure to H-As and NAMPs showed synergistic toxicity, and the leaf chlorophyll and nutritional quality of lettuce were also reduced. NAMPs altered the ratio of different soil aggregate fractions and the distribution of bioavailable As within them, which influenced the absorption of As by lettuce. In conclusion, these direct observations assist us in enhancing the comprehend of the As migration and enrichment characteristics in soil-plant system under the influence of NAMPs.
Collapse
Affiliation(s)
- Yanwei Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Weigang Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yujue Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Qian Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Juanjuan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Shengze Wu
- Guangdong Testing Institute of Product Quality Supervision, Foshan 528300, China
| | - Hui Liu
- Guangdong Testing Institute of Product Quality Supervision, Foshan 528300, China
| | - Guikui Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
29
|
Grifoni M, Pellegrino E, Arrighetti L, Bronco S, Pezzarossa B, Ercoli L. Interactive impacts of microplastics and arsenic on agricultural soil and plant traits. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169058. [PMID: 38070573 DOI: 10.1016/j.scitotenv.2023.169058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/22/2023]
Abstract
The ability of microplastics (MPs) to interact with environmental pollutants is currently of great concern due to the increasing use of plastic. Agricultural soils are sinks for multipollutants and the safety of biodegradable MPs in field conditions is questioned. However, still few studies have investigated the interactive effects between MPs and metals on the soil-plant system with agricultural soil and testing crops for human consumption. In this work, we tested the effect on soil and plant parameters of two common MPs, non-degradable plastic low-density polyethylene and biodegradable polymer polylactic acid at two different sizes (<250 μm and 250-300 μm) in association with arsenic (As). Lettuce (Lactuca sativa L.) was used as a model plant in a small-scale experiment lasting 60 days. Microplastics and As explained 12 % and 47 % of total variance, respectively, while their interaction explained 21 %, suggesting a higher toxic impact of As than MPs. Plant growth was promoted by MPs alone, especially when biodegradable MPs were added (+22 %). However, MPs did not affect nutrient concentrations in roots and leaves. The effect of MPs on enzyme activities was variable depending on the time of exposure (with larger effects immediately after exposure), the type and size of the MPs. On the contrary, the co-application of MP and As, although it did not change the amount of bioavailable As in soil in the short and medium term, it resulted in a significant decrease in lettuce biomass (-19 %) and root nutrient concentrations, especially when polylactic acid was applied. Generally, MPs in association with As determined the plant-soil toxicity. This work provides insights into the risk of copollution of MPs and As in agricultural soil and its phytotoxic effect for agricultural crops. However, the mechanisms of the joint effect of MP and As on plant toxicity need further investigation, especially under field conditions and in long-term experiments.
Collapse
Affiliation(s)
- Martina Grifoni
- Crop Science Research Center (CSRC), Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Elisa Pellegrino
- Crop Science Research Center (CSRC), Scuola Superiore Sant'Anna, 56127 Pisa, Italy.
| | - Leonardo Arrighetti
- Institute for Chemical and Physical Processes, Consiglio Nazionale delle Ricerche, CNR-IPCF, 56127 Pisa, Italy
| | - Simona Bronco
- Institute for Chemical and Physical Processes, Consiglio Nazionale delle Ricerche, CNR-IPCF, 56127 Pisa, Italy
| | - Beatrice Pezzarossa
- Research Institute on Terrestrial Ecosystems, Consiglio Nazionale delle Ricerche, CNR-IRET, 56127 Pisa, Italy
| | - Laura Ercoli
- Crop Science Research Center (CSRC), Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| |
Collapse
|
30
|
Han Y, Teng Y, Wang X, Wen D, Gao P, Yan D, Yang N. Biodegradable PBAT microplastics adversely affect pakchoi (Brassica chinensis L.) growth and the rhizosphere ecology: Focusing on rhizosphere microbial community composition, element metabolic potential, and root exudates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169048. [PMID: 38061654 DOI: 10.1016/j.scitotenv.2023.169048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/18/2024]
Abstract
Biodegradable plastics (BPs) have gained increased attention as a promising solution to plastics pollution problem. However, BPs often exhibited limited in situ biodegradation in the soil environment, so they may also release microplastics (MPs) into soils just like conventional non-degradable plastics. Therefore, it is necessary to evaluate the impacts of biodegradable MPs (BMPs) on soil ecosystem. Here, we explored the effects of biodegradable poly(butylene adipate-co-terephthalate) (PBAT) MPs and conventional polyethylene (PE) MPs on soil-plant (pakchoi) system at three doses (0.02 %, 0.2 %, and 2 %, w/w). Results showed that PBAT MPs reduced plant growth in a dose-dependent pattern, while PE MPs exhibited no significant phytotoxicity. High-dose PBAT MPs negatively affected the rhizosphere soil nutrient availability, e.g., decreased available phosphorus and available potassium. Metagenomics analysis revealed that PBAT MPs caused more serious interference with the rhizosphere microbial community composition and function than PE MPs. In particular, compared with PE MPs, PBAT MPs induced greater changes in functional potential of carbon, nitrogen, phosphorus, and sulfur cycles, which may lead to alterations in soil biogeochemical processes and ecological functions. Moreover, untargeted metabolomics showed that PBAT MPs and PE MPs differentially affect plant root exudates. Mantel tests, correlation analysis, and partial least squares path model analysis showed that changes in plant growth and root exudates were significantly correlated with soil properties and rhizosphere microbiome driven by the MPs-rhizosphere interactions. This work improves our knowledge of how biodegradable and conventional non-degradable MPs affect plant growth and the rhizosphere ecology, highlighting that BMPs might pose greater threat to soil ecosystems than non-degradable MPs.
Collapse
Affiliation(s)
- Yujuan Han
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiao Wang
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Dan Wen
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Peixin Gao
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Dong Yan
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Ning Yang
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| |
Collapse
|
31
|
Ziajahromi S, Slynkova N, Dwyer J, Griffith M, Fernandes M, Jaeger JE, Leusch FDL. Comprehensive assessment of microplastics in Australian biosolids: Abundance, seasonal variation and potential transport to agroecosystems. WATER RESEARCH 2024; 250:121071. [PMID: 38171181 DOI: 10.1016/j.watres.2023.121071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/01/2023] [Accepted: 12/24/2023] [Indexed: 01/05/2024]
Abstract
Striving towards a circular economy, the application of treated sewage sludge (biosolids) to land is an opportunity to improve the condition of the soil and add essential nutrients, in turn reducing the need for fertilisers. However, there is an increasing concern about microplastic (MP) contamination of biosolids and their transport to terrestrial ecosystems. In Australia, agriculture is the largest biosolids end-user, however, there is limited understanding of MPs in Australian biosolids. Also, while the method to isolate MPs from biosolid is established, a need to extract and analyse MPs more efficiently is still pressing. In this study, we comprehensively quantified and characterised MPs in 146 biosolids samples collected from thirteen wastewater treatment plants (WWTPs) including different seasons. We have optimised an oxidative-enzymatic purification method to overcome current limitations for MP identification in complex samples and accurately report MPs in biosolids. This method enabled removal of >93 % of dry weight of organic material and greatly facilitated the MPs instrumental analysis. The concentration of MPs (>20 µm) in all biosolids samples ranged from 11 to 150 MPs/g dry weight. Abundance of MPs was affected by seasons with higher abundance of MPs usually found during cold and wet seasons. Despite seasonal variations, polyethylene terephthalate, polyurethane and polymethyl methacrylate were the most abundant polymers. Smaller MPs (20 to 200 µm) comprised >70 % of all detected MPs with a clear negative linear relationship observed between MP size and abundance. Per capita concentration of MPs in biosolids across all studied WWTPs was 0.7 to 21 g MPs per person per year. Therefore, biosolids are an important sink and source of MPs to agroecosystems, emphasising the need to more comprehensively understand the fate, impact and risks associated with MPs on agricultural soils.
Collapse
Affiliation(s)
- Shima Ziajahromi
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport QLD 4222, Australia.
| | | | | | | | - Milena Fernandes
- South Australian Water Corporation, SA 5000, Australia; College of Science and Engineering, Flinders University, SA 5001, Australia
| | - Julia E Jaeger
- Eurofins Environment Testing Australia, VIC 3175, Australia
| | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport QLD 4222, Australia
| |
Collapse
|
32
|
Tariq M, Iqbal B, Khan I, Khan AR, Jho EH, Salam A, Zhou H, Zhao X, Li G, Du D. Microplastic contamination in the agricultural soil-mitigation strategies, heavy metals contamination, and impact on human health: a review. PLANT CELL REPORTS 2024; 43:65. [PMID: 38341396 DOI: 10.1007/s00299-024-03162-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/17/2024] [Indexed: 02/12/2024]
Abstract
Microplastic pollution has emerged as a critical global environmental issue due to its widespread distribution, persistence, and potential adverse effects on ecosystems and human health. Although research on microplastic pollution in aquatic environments has gained significant attention. However, a limited literature has summarized the impacts of microplastic pollution the agricultural land and human health. Therefore, In the current review, we have discussed how microplastic(s) affect the microorganisms by ingesting the microplastic present in the soil, alternatively affecting the belowground biotic and abiotic components, which further elucidates the negative effects on the above-ground properties of the crops. In addition, the consumption of these crops in the food chain revealed a potential risk to human health throughout the food chain. Moreover, microplastic pollution has the potential to induce a negative impact on agricultural production and food security by altering the physiochemical properties of the soil, microbial population, nutrient cycling, and plant growth and development. Therefore, we discussed in detail the potential hazards caused by microplastic contamination in the soil and through the consumption of food and water by humans in daily intake. Furthermore, further study is urgently required to comprehend how microplastic pollution negatively affects terrestrial ecosystems, particularly agroecosystems which drastically reduces the productivity of the crops. Our review highlights the urgent need for greater awareness, policy interventions, and technological solutions to address the emerging threat of microplastic pollution in soil and plant systems and mitigation strategies to overcome its potential impacts on human health. Based on existing studies, we have pointed out the research gaps and proposed different directions for future research.
Collapse
Affiliation(s)
- Muhammad Tariq
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Babar Iqbal
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
- Jiangsu Collaborative Innovation Centre of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China.
| | - Ismail Khan
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Ali Raza Khan
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Eun Hea Jho
- Department of Agricultural and Biological Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Abdul Salam
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Huan Zhou
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang, 212013, People's Republic of China
- Zhenjiang New District Environmental Monitoring Station Co. Ltd, Zhenjiang, 212132, People's Republic of China
| | - Xin Zhao
- Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Guanlin Li
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
- Jiangsu Collaborative Innovation Centre of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China.
| | - Daolin Du
- Jingjiang College, Institute of Environment and Ecology, School of Emergency Management, School of Environment and Safety Engineering, School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
33
|
Li K, Xiu X, Hao W. Microplastics in soils: Production, behavior process, impact on soil organisms, and related toxicity mechanisms. CHEMOSPHERE 2024; 350:141060. [PMID: 38159733 DOI: 10.1016/j.chemosphere.2023.141060] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
In recent years, microplastics (MPs) pollution has become a hot ecological issue of global concern and MP pollution in soil is becoming increasingly serious. Studies have shown that MPs have adverse effects on soil biology and ecological functions. Although MPs are evident in soils, identifying their source, abundance, and types is difficult because of the complexity and variability of soil components. In addition, the effects of MPs on soil physicochemical properties (PCP), including direct effects such as direct interaction with soil particles and indirect effects such as the impact on soil organisms, have not been reported in a differentiated manner. Furthermore, at present, the soil ecological effects of MPs are mostly based on biological toxicity reports of their exudate or size effects, whereas the impact of their surface-specific properties (such as environmentally persistent free radicals, surface functional groups, charge, and curvature) on soil ecological functions is not fully understood. Considering this, this paper reviews the latest research findings on the production and behavioral processes of MPs in soil, the effects on soil PCP, the impacts on different soil organisms, and the related toxic mechanisms. The above discussion will enhance further understanding of the behavioral characteristics and risks of MPs in soil ecosystems and provide some theoretical basis for further clarification of the molecular mechanisms of the effects of MPs on soil organisms.
Collapse
Affiliation(s)
- Kun Li
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China.
| | - Xiaojia Xiu
- Changwang School of Honors, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Wanqi Hao
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China
| |
Collapse
|
34
|
Yang L, Shen P, Liang H, Wu Q. Biochar relieves the toxic effects of microplastics on the root-rhizosphere soil system by altering root expression profiles and microbial diversity and functions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115935. [PMID: 38211514 DOI: 10.1016/j.ecoenv.2024.115935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/25/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
The accumulation of microplastics in agricultural soil brings unexpected adverse effects on crop growth and soil quality, which is threatening the sustainability of agriculture. Biochar is an emerging soil amendment material of interest as it can remediate soil pollutants. However, the mechanisms underlying biochar alleviated the toxic effects of microplastics in crops and soil were largely unknown. Using a common economic crop, peanut as targeted species, the present study evaluated the plant physiologica and molecular response and rhizosphere microbiome when facing microplastic contamination and biochar amendment. Transcriptome and microbiome analyses were conducted on peanut root and rhizosphere soil treated with CK (no microplastic and no biochar addition), MP (1.5% polystyrene microplastic addition) and MB (1.5% polystyrene microplastic+2% peanut shell biochar addition). The results indicated that microplastics had inhibitory effects on plant root development and rhizosphere bacterial diversity and function. However, biochar application could significantly promote the expressions of key genes associated with antioxidant activities, lignin synthesis, nitrogen transport and energy metabolism to alleviate the reactive oxygen species stress, root structure damage, nutrient transport limitation, and energy metabolism inhibition induced by microplastic contamination on the root. In addition, the peanut rhizosphere microbiome results showed that biochar application could restore the diversity and richness of microbial communities inhibited by microplastic contamination and promote nutrient availability of rhizosphere soil by regulating the abundance of nitrogen cycling-related and organic matter decomposition-related microbial communities. Consequently, the application of biochar could enhance root development by promoting oxidative stress resistance, nitrogen transport and energy metabolism and benefit the rhizosphere microecological environment for root development, thereby improved the plant-soil system health of microplastic-contaminated agroecosystem.
Collapse
Affiliation(s)
- Liyu Yang
- Chinese National Peanut Engineering Research Center, Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, China
| | - Pu Shen
- Chinese National Peanut Engineering Research Center, Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, China
| | - Haiyan Liang
- Chinese National Peanut Engineering Research Center, Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, China
| | - Qi Wu
- Chinese National Peanut Engineering Research Center, Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, China.
| |
Collapse
|
35
|
Li Y, Shi X, Qin P, Zeng M, Fu M, Chen Y, Qin Z, Wu Y, Liang J, Chen S, Yu F. Effects of polyethylene microplastics and heavy metals on soil-plant microbial dynamics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:123000. [PMID: 38000728 DOI: 10.1016/j.envpol.2023.123000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
Polyethylene (PE) microplastics are emerging pollutants that pose a significant threat to the environment and human health. However, little is known about the effects of PEs on soil‒plant interactions, especially in heavy metal (HM)-contaminated soil. In this study, the effects of PE on rhizosphere soil enzyme activities, microbial interactions and nutrient cycling processes were analyzed from ecological network and functional gene perspectives for the first time. The results indicated that PE-MP addition significantly reduced the biomass of Bidens pilosa L. In addition, the partial increase in carbon, nitrogen, and phosphorus enzyme activities suggested that the effects of PE as a carbon source on microbial functions in HM-contaminated soil should not be ignored. The average path length of bacterial network nodes was found to be higher than that of fungal network nodes, demonstrating that the bacterial ecological network in PE-MP and HM cocontaminated environments has good buffering capacity against changes in external environmental conditions. Furthermore, structural equation modeling demonstrated that particle size and dosage affect soil nutrient cycling processes and that cycling processes are acutely aware of changes in any factor, such as soil moisture, soil pH and soil nitrogen nutrients. Hence, PE-MP addition in HM-contaminated soil has the potential to alter soil ecological functions and nutrient cycles.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China; Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin, China
| | - Xinwei Shi
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Peiqing Qin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Meng Zeng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Mingyue Fu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Yuyuan Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Zhongkai Qin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Yamei Wu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Jialiang Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Shuairen Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Fangming Yu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China; Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin, China.
| |
Collapse
|
36
|
Owusu SM, Adomako MO, Qiao H. Organic amendment in climate change mitigation: Challenges in an era of micro- and nanoplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168035. [PMID: 37907110 DOI: 10.1016/j.scitotenv.2023.168035] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/02/2023]
Abstract
As a global strategy for mitigating climate change, organic amendments play critical roles in restoring stocks in carbon (C) depleted soils, preserving existing stocks to prevent further soil organic carbon (SOC) loss, and enhancing C sequestration. However, recent emerging evidence of a significant proportion of micro- and nanoplastics (M/NPs) occurrence in most organic substrates (e.g., compost manure, farmyard manure, and sewage sludge) compromises its role in climate change mitigation. Given the predicted surge of soil M/NPs proliferation in the coming years, we argued whether organic amendment remains a reliable climate change mitigation strategy. Toxicity effects of M/NPs influx within the soil matrix disrupt plants and their associated key microbial taxa responsible for crucial biogeochemical processes and restructuring of SOC, leading to increasing emissions of potent greenhouse gases (GHGs, e.g., CO2, CH4, and N2O) that feedback to aggravate the rapidly changing climate. Here, we summarize evidence based on literature that the discovery of M/NPs in organic substrates compromises its role in the climate change mitigation strategy. We briefly discuss the overview of synthetic fertilizers and their impact on SOC and atmospheric emissions. We discuss the role of organic amends in climate change mitigation and the emergence of M/NPs in it. We discuss M/NPs-induced damages to SOC and subsequent emissions of GHGs. We briefly highlight management approaches to clean organic substrates of M/NPs to improve their use in agrosystems and provide recommendations for future research studies. We found that organic amendment plays pivotal role in modulating the biotic and abiotic drivers responsible for climate mitigation. However, M/NPs in organic amendments weaken the regulatory mechanisms of organic amendments in plant-soil systems. We conclude that organic amendments of soils are critical for restoring SOC and mitigating the rapidly changing climate; yet, the discovery of M/NPs in organic substrates put their usage in a dilemma.
Collapse
Affiliation(s)
- Samuel Mensah Owusu
- Schoo of Business, Jinggangshan University, Qingyuan District, Ji'an City 343009, Jiangxi, China.
| | - Michael Opoku Adomako
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Hu Qiao
- Schoo of Business, Jinggangshan University, Qingyuan District, Ji'an City 343009, Jiangxi, China
| |
Collapse
|
37
|
Yu Z, Xu X, Guo L, Jin R, Lu Y. Uptake and transport of micro/nanoplastics in terrestrial plants: Detection, mechanisms, and influencing factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168155. [PMID: 37898208 DOI: 10.1016/j.scitotenv.2023.168155] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
The pervasive dispersion of micro/nanoplastics in various environmental matrices has raised concerns regarding their potential intrusion into terrestrial ecosystems and, notably, plants. In this comprehensive review, we focus on the interaction between these minute plastic particles and plants. We delve into the current methodologies available for detecting micro/nanoplastics in plant tissues, assess the accumulation and distribution of these particles within roots, stems, and leaves, and elucidate the specific uptake and transport mechanisms, including endocytosis, apoplastic transport, crack-entry mode, and stomatal entry. Moreover, uptake and transport of micro/nanoplastics are complex processes influenced by multiple factors, including particle size, surface charge, mechanical properties, and physiological characteristics of plants, as well as external environmental conditions. In conclusion, this review paper provided valuable insights into the current understanding of these mechanisms, highlighting the complexity of the processes and the multitude of factors that can influence them. Further research in this area is warranted to fully comprehend the fate of micro/nanoplastics in plants and their implications for environmental sustainability.
Collapse
Affiliation(s)
- Zhefu Yu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environment Engineering, Zhejiang Shuren University, Hangzhou 310015, China; College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xiaolu Xu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environment Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Liang Guo
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environment Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Rong Jin
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yin Lu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environment Engineering, Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
38
|
Zeb A, Liu W, Ali N, Shi R, Wang Q, Wang J, Li J, Yin C, Liu J, Yu M, Liu J. Microplastic pollution in terrestrial ecosystems: Global implications and sustainable solutions. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132636. [PMID: 37778309 DOI: 10.1016/j.jhazmat.2023.132636] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Microplastic (MPs) pollution has become a global environmental concern with significant impacts on ecosystems and human health. Although MPs have been widely detected in aquatic environments, their presence in terrestrial ecosystems remains largely unexplored. This review examines the multifaceted issues of MPs pollution in terrestrial ecosystem, covering various aspects from additives in plastics to global legislation and sustainable solutions. The study explores the widespread distribution of MPs worldwide and their potential antagonistic interactions with co-occurring contaminants, emphasizing the need for a holistic understanding of their environmental implications. The influence of MPs on soil and plants is discussed, shedding light on the potential consequences for terrestrial ecosystems and agricultural productivity. The aging mechanisms of MPs, including photo and thermal aging, are elucidated, along with the factors influencing their aging process. Furthermore, the review provides an overview of global legislation addressing plastic waste, including bans on specific plastic items and levies on single-use plastics. Sustainable solutions for MPs pollution are proposed, encompassing upstream approaches such as bioplastics, improved waste management practices, and wastewater treatment technologies, as well as downstream methods like physical and biological removal of MPs. The importance of international collaboration, comprehensive legislation, and global agreements is underscored as crucial in tackling this pervasive environmental challenge. This review may serve as a valuable resource for researchers, policymakers, and stakeholders, providing a comprehensive assessment of the environmental impact and potential risks associated with MPs.
Collapse
Affiliation(s)
- Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| | - Nouman Ali
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Qi Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jianling Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jiantao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Chuan Yin
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jinzheng Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Miao Yu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jianv Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| |
Collapse
|
39
|
Zhang G, Cui J, Song J, Ji Y, Zuo Y, Jia H, Yin X. Transport of polystyrene nanoplastics with different functional groups in goethite-coated saturated porous media: Effects of low molecular weight organic acids and physicochemical properties. J Colloid Interface Sci 2024; 653:423-433. [PMID: 37722171 DOI: 10.1016/j.jcis.2023.09.090] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 09/20/2023]
Abstract
The influence of low molecular weight organic acids (LMWOAs) and goethite on the migration of nanoplastics in the soil environment remains poorly understood. To elucidate the mechanism of influence, the study investigated the impact of LMWOAs on the migration ability of functionalized polystyrene nanoplastics (PSNPs-NH2/COOH) in quartz sand (QS) and goethite (α-FeOOH)-coated quartz sand (FOS). We investigated the effect of changes in iron valence induced by LMWOAs on the migration of PSNPs. The results revealed that the migration ability of polystyrene nanoplastics (PSNPs) declined as the ionic strength (IS) increased and the pH decreased, primarily due to the compression of the double layer and protonation reactions. The migration of PSNPs is facilitated by LMWOAs through distinct mechanisms in the two media. Specifically, LMWOAs were adsorbed on the FOS and QS surfaces through complexation and hydrogen bonding, respectively. At pH 4.0, LMWOAs exhibit redox activity, resulting in the generation of additional Fe(III). This redox process enhances the electrostatic attraction between the media and PSNPs, thereby reducing the competition at specific points and spatial resistance associated with LMWOAs. In contrast to FOS, LMWOAs at pH 4.0 reduced the migration ability of PSNPs in QS, following the trend of MA > TA > CA. This difference was attributed to the pKa of LMWOAs and the weak hydrogen bonding on the QS surface. The relevant mathematical models effectively validate the migration results. The above conclusions suggest that LMWOAs can alter the valence state of iron on the surface of goethite, thereby influencing the migration of plastic particles in environmental media.
Collapse
Affiliation(s)
- Guangcai Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Jiahao Cui
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Jie Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yantian Ji
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yajie Zuo
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Hongtao Jia
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China.
| |
Collapse
|
40
|
Liu Z, Wen J, Liu Z, Wei H, Zhang J. Polyethylene microplastics alter soil microbial community assembly and ecosystem multifunctionality. ENVIRONMENT INTERNATIONAL 2024; 183:108360. [PMID: 38128384 DOI: 10.1016/j.envint.2023.108360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
Although pervasive microplastics (MPs) pollution in terrestrial ecosystems invites increasing global concern, impact of MPs on soil microbial community assembly and ecosystem multifunctionality received relatively little attention. Here, we manipulated a mesocosm experiment to investigate how polyethylene MPs (PE MPs; 0, 1%, and 5%, w/w) influence ecosystem functions including plant production, soil quality, microbial community diversity and assembly, enzyme activities in carbon (C), nitrogen (N) and phosphorus (P) cycling, and multifunctionality in the maize-soil continuum. Results showed that PE MPs exerted negligible effect on plant biomass (dry weight). The treatment of 5% PE MPs caused declines in the availability of soil water, C and P, whereas enhanced soil pH and C storage. The activity of C-cycling enzymes (α/β-1, 4-glucosidase and β-D-cellobiohydrolase) was promoted by 1% PE MPs, while that of β-1, 4-glucosidase was inhibited by 5% PE MPs. The 5% PE MPs reduced the activity of N-cycling enzymes (protease and urease), whereas increased that of the P-cycling enzyme (alkaline phosphatase). The 5% PE MPs shifted soil microbial community composition, and increased the number of specialist species, microbial community stability and networks resistance. Moreover, PE MPs altered microbial community assembly, with 5% treatment decreasing dispersal limitation proportion (from 13.66% to 9.96%). Overall, ecosystem multifunctionality was improved by 1% concentration, while reduced by 5% concentration of PE MPs. The activity of α/β-1, 4-glucosidase, urease and protease, and ammonium-N content were the most important predictors of ecosystem multifunctionality. These results underscore that PE MPs can alter soil microbial community assembly and ecosystem multifunctionality, and thus development and implementation of practicable solutions to control soil MPs pollution become increasingly imperative in sustainable agricultural production.
Collapse
Affiliation(s)
- Ziqiang Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jiahao Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zhenxiu Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Hui Wei
- Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Jiaen Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
41
|
L E, Wilfred N, S K, Halder G, Haldar D, Patel AK, Singhania RR, Pandey A. Biodegradation of microplastics: Advancement in the strategic approaches towards prevention of its accumulation and harmful effects. CHEMOSPHERE 2024; 346:140661. [PMID: 37951399 DOI: 10.1016/j.chemosphere.2023.140661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Microplastics (MPs) are plastic particles in a size ranging from 1 mm to 5 mm in diameter, and are formed by the breakdown of plastics from different sources. They are emerging environmental pollutants, and pose a great threat to living organisms. Improper disposal, inadequate recycling, and excessive use of plastic led to the accumulation of MP in the environment. The degradation of MP can be done either biotically or abiotically. In view of that, this article discusses the molecular mechanisms that involve bacteria, fungi, and enzymes to degrade the MP polymers as the primary objective. As per as abiotic degradation is concerned, two different modes of MP degradation were discussed in order to justify the effectiveness of biotic degradation. Finally, this review is concluded with the challenges and future perspectives of MP biodegradation based on the existing research gaps. The main objective of this article is to provide the readers with clear insight, and ideas about the recent advancements in MP biodegradation.
Collapse
Affiliation(s)
- Emisha L
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641114, India
| | - Nishitha Wilfred
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641114, India
| | - Kavitha S
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641114, India
| | - Gopinath Halder
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, 713209, West Bengal, India
| | - Dibyajyoti Haldar
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641114, India.
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow, 226029, India
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| | - Ashok Pandey
- Centre for Energy and Environmental Sustainability, Lucknow, 226029, India; Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India; Kyung Hee University, Kyung Hee Dae Ro 26, Seoul, 02447, Republic of Korea; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248 007, Uttarakhand, India
| |
Collapse
|
42
|
Chen X, Zheng X, Fu W, Liu A, Wang W, Wang G, Ji J, Guan C. Microplastics reduced bioavailability and altered toxicity of phenanthrene to maize (Zea mays L.) through modulating rhizosphere microbial community and maize growth. CHEMOSPHERE 2023; 345:140444. [PMID: 37839745 DOI: 10.1016/j.chemosphere.2023.140444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/25/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Due to its large specific surface area and great hydrophobicity, microplastics can adsorb polycyclic aromatic hydrocarbons (PAHs), affecting the bioavailability and the toxicity of PAHs to plants. This study aimed to evaluate the effects of D550 and D250 (with diameters of 550 μm and 250 μm) microplastics on phenanthrene (PHE) removal from soil and PHE accumulation in maize (Zea mays L.). Moreover, the effects of microplastics on rhizosphere microbial community of maize grown in PHE-contaminated soil would also be determined. The results showed that D550 and D250 microplastics decreased the removal of PHE from soil by 6.5% and 2.7% and significantly reduced the accumulation of PHE in maize leaves by 64.9% and 88.5%. Interestingly, D550 microplastics promoted the growth of maize and enhanced the activities of soil protease and alkaline phosphatase, while D250 microplastics significantly inhibited the growth of maize and decreased the activities of soil invertase, alkaline phosphatase and catalase, in comparison with PHE treatment. In addition, microplastics changed the rhizosphere soil microbial community and reduced the relative abundance of PAHs degrading bacteria (Pseudomonas, Massilia, Proteobacteria), which might further inhibit the removal of PHE from soil. This study provided a new perspective for evaluating the role of microplastics on the bioavailability of PHE to plants and revealing the combined toxicity of microplastics and PHE to soil microcosm and plant growth.
Collapse
Affiliation(s)
- Xiancao Chen
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| | - Xiaoyan Zheng
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| | - Wenting Fu
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| | - Anran Liu
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| | - Wenjing Wang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| | - Gang Wang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| | - Jing Ji
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| | - Chunfeng Guan
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| |
Collapse
|
43
|
Pastorino P, Barceló D. Microplastics and their environmental effects. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 104:104324. [PMID: 38000685 DOI: 10.1016/j.etap.2023.104324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023]
Abstract
Microplastics (MPs) are acknowledged as emerging contaminants that pose a substantial threat to the environment. The adverse impacts of MP pollution extend across marine, freshwater, and terrestrial ecosystems, covering regions from the Tropics to the Poles. Although our comprehension of MP behavior has progressed in recent years, it is still difficult to predict exposure hotspots or exposure scenarios. Despite a noteworthy increase in data concerning MP occurrence in different environmental compartments and species, there is a noticeable scarcity of experimental data on MP uptake, accumulation, and effects. This Virtual Special Issue (VSI) received a total of 19 contributions from 11 countries, with a significant majority originating from Italy, India, Spain, and China. These contributions were categorized into three main themes: the occurrence and effects of MPs on aquatic and terrestrial organisms, the presence of chemical additives in plastics, and review articles summarizing previously published research on MPs.
Collapse
Affiliation(s)
- Paolo Pastorino
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, 10154 Torino, Italy.
| | - Damià Barceló
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain.
| |
Collapse
|
44
|
Xiang Y, Peñuelas J, Sardans J, Liu Y, Yao B, Li Y. Effects of microplastics exposure on soil inorganic nitrogen: A comprehensive synthesis. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132514. [PMID: 37708652 DOI: 10.1016/j.jhazmat.2023.132514] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
Microplastics, a growing environmental concern, impact soil inorganic nitrogen (N) transformation, specifically affecting water-extractable nitrate N (NO3--N) and ammonium N (NH4+-N). However, inconsistencies among relevant findings necessitate a systematic analysis. Accordingly, the present meta-analysis addresses these discrepancies by evaluating the effects of microplastics on soil inorganic N and identifying key influencing factors. Our meta-analysis of 216 paired observations from 47 studies demonstrates microplastics exposure causes an overall significant reduction of 7.89% in soil NO3--N concentration, but has no significant impact on NH4+-N concentration. Subgroup analysis further revealed effects of microplastics on soil inorganic N were modulated by microplastics characteristics, experimental conditions (exposure time, experimental temperature, plant effects), and soil properties (soil texture, initial soil pH, initial soil organic carbon, soil total N concentration). We found that microplastics exposure above 27 ℃ enhances soil NO3--N concentration, a finding linked to specific soil properties and conditions, underscoring the impacts of global warming. Importantly, the microplastics polymer type was the most influential predictor of effects on soil NO3--N concentration, while soil NH4+-N concentration was primarily affected by soil texture and microplastics type. These findings illuminate the complex effects of microplastics on soil inorganic N, informing soil management amid increasing microplastics pollution.
Collapse
Affiliation(s)
- Yangzhou Xiang
- School of Geography and Resources, Guizhou Education University, Guiyang 550018, China
| | - Josep Peñuelas
- CSIC Global Ecology Unit, CREAF-CSIC-UAB, 08193 Bellaterra, Catalonia, Spain; CREAF - Ecological and Forestry Applications Research Centre, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - Jordi Sardans
- CSIC Global Ecology Unit, CREAF-CSIC-UAB, 08193 Bellaterra, Catalonia, Spain; CREAF - Ecological and Forestry Applications Research Centre, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - Ying Liu
- School of Biological Sciences, Guizhou Education University, Guiyang 550018, China
| | - Bin Yao
- State Key Laboratory of Tree Genetics and Breeding, Institute of Ecology Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China.
| | - Yuan Li
- The State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems of Lanzhou University, National Field Scientific Observation and Research Station of Grassland Agro-Ecosystems in Gansu Qingyang, College of Pastoral Agriculture Science and Technology, Lanzhou 730020, China.
| |
Collapse
|
45
|
Cordova MR, Ulumuddin YI, Lubis AA, Kaisupy MT, Wibowo SPA, Subandi R, Yogaswara D, Purbonegoro T, Renyaan J, Nurdiansah D, Sugiharto U, Shintianata D, Meiliastri SS, Andini FP, Suratno, Ilman M, Anggoro AW, Basir, Cragg SM. Microplastics leaving a trace in mangrove sediments ever since they were first manufactured: A study from Indonesia mangroves. MARINE POLLUTION BULLETIN 2023; 195:115517. [PMID: 37690405 DOI: 10.1016/j.marpolbul.2023.115517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Mangrove environments have been well recognized as marine litter traps. However, it is unclear whether mangrove sediments sink microplastics more effectively than other marine sediments due to active sedimentation. Furthermore, microplastics archives in mangrove sediments may provide quantitative data on the impact of human activities on environmental pollution throughout history. Microplastic abundance varied markedly between high and low anthropogenic activities. Both mangrove and adjacent mudflats sediments act as microplastic sequesters, despite having similar microplastic abundances and depth profiles. The decreasing trend of microplastics was observed until the sediment layers dated to the first-time plastic was manufactured in Indonesia, in the early 1950s, but microplastics remained present beneath those layers, indicating the downward movements. This discovery highlighted the significance of mangrove sediments as microplastic sinks. More research is needed to understand the mechanisms of microplastic deposition in sediments, as well as their fate and potential impact on mangrove sediment dwellers.
Collapse
Affiliation(s)
- Muhammad Reza Cordova
- Research Center for Oceanography, The Indonesian National Research and Innovation Agency, BRIN Kawasan Ancol Jl Pasir Putih 1, Jakarta 14430, Indonesia.
| | - Yaya Ihya Ulumuddin
- Research Center for Oceanography, The Indonesian National Research and Innovation Agency, BRIN Kawasan Ancol Jl Pasir Putih 1, Jakarta 14430, Indonesia
| | - Ali Arman Lubis
- Research Center for Radiation Process Technology, The Indonesian National Research and Innovation Agency, Jl. Lebak Bulus Raya No.49, Jakarta 12630, Indonesia
| | - Muhammad Taufik Kaisupy
- Research Center for Oceanography, The Indonesian National Research and Innovation Agency, BRIN Kawasan Ancol Jl Pasir Putih 1, Jakarta 14430, Indonesia
| | - Singgih Prasetyo Adi Wibowo
- Research Center for Oceanography, The Indonesian National Research and Innovation Agency, BRIN Kawasan Ancol Jl Pasir Putih 1, Jakarta 14430, Indonesia
| | - Riyana Subandi
- Research Center for Oceanography, The Indonesian National Research and Innovation Agency, BRIN Kawasan Ancol Jl Pasir Putih 1, Jakarta 14430, Indonesia
| | - Deny Yogaswara
- Research Center for Oceanography, The Indonesian National Research and Innovation Agency, BRIN Kawasan Ancol Jl Pasir Putih 1, Jakarta 14430, Indonesia
| | - Triyoni Purbonegoro
- Research Center for Oceanography, The Indonesian National Research and Innovation Agency, BRIN Kawasan Ancol Jl Pasir Putih 1, Jakarta 14430, Indonesia
| | - Jeverson Renyaan
- Research Center for Oceanography, The Indonesian National Research and Innovation Agency, BRIN Kawasan Ancol Jl Pasir Putih 1, Jakarta 14430, Indonesia
| | - Doni Nurdiansah
- Research Center for Oceanography, The Indonesian National Research and Innovation Agency, BRIN Kawasan Ancol Jl Pasir Putih 1, Jakarta 14430, Indonesia
| | - Untung Sugiharto
- Research Center for Radiation Process Technology, The Indonesian National Research and Innovation Agency, Jl. Lebak Bulus Raya No.49, Jakarta 12630, Indonesia
| | - Dienda Shintianata
- Research Center for Radiation Process Technology, The Indonesian National Research and Innovation Agency, Jl. Lebak Bulus Raya No.49, Jakarta 12630, Indonesia
| | - Sonia Saraswati Meiliastri
- Research Center for Radiation Process Technology, The Indonesian National Research and Innovation Agency, Jl. Lebak Bulus Raya No.49, Jakarta 12630, Indonesia
| | - Faza Putri Andini
- Research Center for Radiation Process Technology, The Indonesian National Research and Innovation Agency, Jl. Lebak Bulus Raya No.49, Jakarta 12630, Indonesia
| | - Suratno
- Research Center for Food Technology and Processing, The Indonesian National Research and Innovation Agency, Gading IV Playen Gunung Kidul, Yogyakarta 55861, Indonesia
| | - Muhammad Ilman
- Yayasan Konservasi Alam Nusantara, Jl. Iskandarsyah Raya No.66C, Jakarta 12160, Indonesia
| | - Aji Wahyu Anggoro
- Yayasan Konservasi Alam Nusantara, Jl. Iskandarsyah Raya No.66C, Jakarta 12160, Indonesia
| | - Basir
- Yayasan Konservasi Alam Nusantara, Jl. Iskandarsyah Raya No.66C, Jakarta 12160, Indonesia
| | - Simon M Cragg
- Institute of Marine Sciences, University of Portsmouth, Portsmouth, United Kingdom; Centre for Blue Governance, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
46
|
Li Y, Feng H, Xian S, Wang J, Zheng X, Song X. Phytotoxic effects of polyethylene microplastics combined with cadmium on the photosynthetic performance of maize (Zea mays L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108065. [PMID: 37797385 DOI: 10.1016/j.plaphy.2023.108065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
Microplastics (MPs) and cadmium (Cd) has attracted increasing attention due to their combined toxicity to terrestrial vegetation. Photosynthesis which utilizes light energy to synthesize organic substances is crucial for crop production. However, the plant photosynthetic response to the joint toxicity of MPs and Cd is still unknown. Here, we studied the effects of polyethylene (PE) MPs on the photosynthetic performance of two maize cultivars Xianyu 335 (XY) and Zhengdan 958 (ZD) grown in a Cd contaminated soil. Results showed that the leaf Cd concentration in XY and ZD reached 26.1 and 31.9 μg g-1, respectively. PE-MPs did not influence the leaf Cd content, but posed direct and negative effects on photosynthesis by increasing the malondialdehyde content, reducing the chlorophyll content, inhibiting photosynthetic capacity, disrupting the PSII donor side, blocking electron transfer in different photosystems, and suppressing the oxidation and reduction states of PSI. Transcriptomic analysis revealed that the inhibitory effect of combined PE-MPs and Cd on maize photosynthesis was attributed to suppressed expression of the genes encoding PSII, PSI, F-type ATPase, cytochrome b6/f complex, and electron transport between PSII and PSI. Using WGCNA, we identified a MEturquoise module highly correlated with photosynthetic traits. Hub genes bridging carbohydrate metabolism, amino acid metabolism, lipid metabolism, and translation provided the molecular mechanisms of PE-MPs and Cd tolerance in maize plants. The comprehensive information on the phytotoxicity mechanisms of Cd stress in the presence or absence of PE-MPs on the photosynthesis of maize is helpful for cloning Cd and PE-MP resistance genes in the future.
Collapse
Affiliation(s)
- Yan Li
- College of Life Sciences, Dezhou University, De'zhou, 253023, China
| | - Hongyu Feng
- College of Life Sciences, Dezhou University, De'zhou, 253023, China
| | - Shutong Xian
- College of Life Sciences, Dezhou University, De'zhou, 253023, China
| | - Jiawei Wang
- College of Life Sciences, Dezhou University, De'zhou, 253023, China
| | - Xuebo Zheng
- Institute of Tobacco Research of CAAS, Qingdao, 266101, China.
| | - Xiliang Song
- College of Life Sciences, Dezhou University, De'zhou, 253023, China.
| |
Collapse
|
47
|
Hasan MM, Jho EH. Effect of different types and shapes of microplastics on the growth of lettuce. CHEMOSPHERE 2023; 339:139660. [PMID: 37506887 DOI: 10.1016/j.chemosphere.2023.139660] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/12/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
The presence of microplastics in agricultural soils has emerged as a significant environmental concern due to their persistent nature. Microplastics of different properties (i.e., types, shapes, size, concentration) are present in the environment, but the studies on the effect of microplastics having different properties are limited. Thus, this study investigated the effects of different microplastics (low-density polyethylene (LDPE) fragments, polyvinyl chloride (PVC) fragments, and LDPE fiber) in soil on the growth of lettuce (Lactuca sativa L.). Pot tests were carried out to study the effect of a range of microplastic concentrations and different shapes and types of microplastics in soil on the lettuce growth. The different growth parameters such as lettuce weight, lengths, and chlorophyll contents were measured and compared. The results showed that the adverse effects of the microplastics on the lettuce growth increased with increasing microplastic concentration. The effects of LDPE fragments and fibers on the root weights and the chlorophyll contents were microplastic shape-dependent. Also, the effects of LDPE fragments and PVC fragments on the shoot and root weights and the chlorophyll contents were microplastic type-dependent. Among the three microplastics studied, LDPE fragments tend to have greater effects on the lettuce growth than the other microplastics. Overall, the results show that the effects of microplastics on different growth parameters of lettuce can be shape- and/or type-dependent. The presence of microplastics having different properties make the understanding the effects of microplastics on plants difficult, and this necessitates further studies.
Collapse
Affiliation(s)
- Md Mehedee Hasan
- Department of Agricultural Chemistry, Chonnam National University, Gwangju, 61186, South Korea.
| | - Eun Hea Jho
- Department of Agricultural Chemistry, Chonnam National University, Gwangju, 61186, South Korea; Department of Agricultural and Biological Chemistry, Chonnam National University, Gwangju, 61186, South Korea.
| |
Collapse
|
48
|
Wang B, Wang P, Zhao S, Shi H, Zhu Y, Teng Y, Jiang G, Liu S. Combined effects of microplastics and cadmium on the soil-plant system: Phytotoxicity, Cd accumulation and microbial activity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:121960. [PMID: 37271366 DOI: 10.1016/j.envpol.2023.121960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/06/2023]
Abstract
Microplastics (MPs), an emerging pollutant of concern, widely cooccurred with heavy metals in soil, however, little is known about the combined effects of the interactions of MPs and cadmium (Cd) on the soil-plant system. In this study, the combined effects of several types of MPs and soil Cd contamination on Brassica juncea growth, Cd uptake, and soil microbial carbon metabolism were investigated in a 50-day pot experiment. Aged polyethylene (PE), aged polypropylene (PP), biodegradable polybutylene adipate terephthalate (PBAT) and polylactic acid (PLA) displayed moderate phytotoxicity, with reductions in leaf chlorophyll content and shoot biomass. Compared with the control treatment without MPs or B. juncea, B. juncea growth significantly increased the soil pH by 0.3 pH units, and the growth of B. juncea in the presence of biodegradable PBAT or PLA MPs increased the soil pH by an additional 0.4 or 0.6 pH units, respectively. The presence of PBAT or PLA MPs greatly reduced soil diethylenetriamine pentaacetic acid (DTPA)-extractable Cd concentrations and plant Cd accumulation. The Cd bioconcentration factor was higher in roots than shoots in all treatments except the treatment containing PBAT MPs. The average well color development (AWCD), an indicator of metabolic activity, was highest in the treatment with B. juncea alone and was reduced by both biodegradable and conventional MPs. The microbial utilization efficiency of esters and alcohols was enhanced in the treatment with PBAT MPs, whereas carboxylic acids were preferentially utilized in the treatment with PLA MPs. These findings indicate that co-exposure to MPs and Cd may alter soil microenvironmental characteristics such as soil pH, leading to changes in Cd bioavailability, plant growth and Cd accumulation, and the microbial community's capacity to metabolize carbon. These effects of MPs in soil warrant further exploration.
Collapse
Affiliation(s)
- Beibei Wang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Peiheng Wang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, China
| | - Shibo Zhao
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, China
| | - Huanhuan Shi
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Yaru Zhu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Guiying Jiang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, China
| | - Shiliang Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
49
|
Tran TV, Jalil AA, Nguyen TM, Nguyen TTT, Nabgan W, Nguyen DTC. A review on the occurrence, analytical methods, and impact of microplastics in the environment. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104248. [PMID: 37598982 DOI: 10.1016/j.etap.2023.104248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/08/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
Nowadays, microplastic pollution is one of the globally urgent concerns as a result of discharging plastic products into the atmosphere, aquatic and soil environments. Microplastics have average size of less than 5 mm, are non-biodegradable, accumulative, and highly persistent substances. Thousands of tons of microplastics are still accumulated in various environments, posing an enormous threat to human health and living creatures. Here, we review the occurrence and analytical methods, and impact of microplastics in the environments including soil, aquatic media, and atmosphere. Analytical methods including visual observation, Fourier-transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy, and pyrolysis-gas chromatography-mass spectrometry were evaluated. We elucidated the environmental and human health impacts of microplastics with emphasis on life malfunction, immune disruption, neurotoxicity, diseases and other tangible health risks. This review also found some shortages of analytical equivalence and/or standardization, inconsistence in sampling collection and limited knowledge of microplastic toxicity. It is hopeful that the present work not only affords a more insight into the potential dangers of microplastics on human health but also urges future researches to establish new standardizations in analytical methods.
Collapse
Affiliation(s)
- Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam.
| | - A A Jalil
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Tung M Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam
| | - Thuy Thi Thanh Nguyen
- Faculty of Science, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Walid Nabgan
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av Països Catalans 26, 43007 Tarragona, Spain.
| | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam.
| |
Collapse
|
50
|
Zhou W, Wang Q, Wei Z, Jiang J, Deng J. Effects of microplastic type on growth and physiology of soil crops: Implications for farmland yield and food quality. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 326:121512. [PMID: 36967010 DOI: 10.1016/j.envpol.2023.121512] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 06/18/2023]
Abstract
Microplastic residues pose one of the most serious environmental problems in areas where plastic mulch is used extensively. Microplastic pollution has potentially serious consequences for ecosystems and human health. Several studies have analyzed microplastics in greenhouses or laboratory climate-controlled chambers; however, field studies evaluating the effects of different microplastics on different crops in extensive farming are limited. Therefore, we selected three major crops, Zea mays (ZM, monocotyledon), Glycine max (GM, dicotyledon, aboveground-bearing), and Arachis hypogaea (AH, dicotyledon, belowground-bearing) and investigated the effect of adding polyester microplastics (PES-MPs) and polypropylene microplastics (PP-MPs). Our results demonstrate that PP-MPs and PES-MPs decreased the soil bulk density of ZM, GM, and AH. Regarding soil pH, PES-MPs increased the soil pH of AH and ZM, whereas PP-MPs decreased the soil pH of ZM, GM, and AH compared to controls. Intriguingly, different coordinated trait responses to PP-MPs and PES-MPs were observed in all crops. In general, commonly measured parameters of AH, such as plant height, culm diameter, total biomass, root biomass, PSII maximum photochemical quantum yield (Fv/Fm), hundred-gain weight, and soluble sugar tended to decrease under PP-MPs exposure; however, some indicators of ZM and GM increased under PP-MPs exposure. PES-MPs had no obviously adverse influence on the three crops, except for the biomass of GM, and even significantly increased the chlorophyll content of AH, specific leaf area, and soluble sugar of GM. Compared with PES-MPs, PP-MPs have serious negative effects on crop growth and quality, especially AH. The findings of the present study provides evidence for evaluating the impact of soil microplastic pollution on crop yield and quality in farmland and lay a foundation for future investigations on the exploration of MP toxicity mechanisms and adaptability of different crops to microplastics.
Collapse
Affiliation(s)
- Wangming Zhou
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Qingwei Wang
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Zhanbo Wei
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; CAS Engineering Laboratory for Green Fertilizers, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Juntao Jiang
- College of Life Science and Bioengineering, Shenyang University, Shenyang 110003, China
| | - Jiaojiao Deng
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| |
Collapse
|