1
|
Muhammad A, Qian Z, Li Y, Lei X, Iqbal J, Shen X, He J, Zhang N, Sun C, Shao Y. Enhanced bioaccumulation and toxicity of Fenpropathrin by polystyrene nano(micro)plastics in the model insect, silkworm (Bombyx mori). J Nanobiotechnology 2025; 23:38. [PMID: 39849517 DOI: 10.1186/s12951-025-03120-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/13/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Nano(micro)plastics (NMPs) and agrochemicals are ubiquitous pollutants. The small size and physicochemical properties of NMPs make them potential carriers for pollutants, affecting their bioavailability and impact on living organisms. However, little is known about their interactions in terrestrial ecosystems. This study investigates the adsorption of Fenpropathrin (FPP) onto two different sizes of polystyrene NMPs and examines their impacts on an insect model, silkworm Bombyx mori. We analyzed the systemic effects of acute exposure to NMPs and FPP, individually and combined, at organismal, tissue, cellular, and gut microbiome levels. RESULTS Our results showed that NMPs can adsorb FPP, with smaller particles having higher adsorption capacity, leading to size-dependent increases in the bioaccumulation and toxicity of FPP. These effects led to higher mortality, reduced body weight, delayed development, and decreased cocoon production in silkworms. Additionally, the pollutants caused physical and oxidative damage to the midgut and altered gene expression related to juvenile hormone (JH) and silk protein synthesis. The gut microbiome analysis revealed significant changes and reduced abundance of potentially beneficial bacteria. Thus, the aggravated toxicity induced by NMPs was size-dependent, with smaller particles (NPs) having a greater impact. CONCLUSIONS This study demonstrates the role of NMPs as carriers for contaminants, increasing their bioavailability and toxicity in terrestrial ecosystems. These findings have significant implications for ecosystem health and biodiversity.
Collapse
Affiliation(s)
- Abrar Muhammad
- Max Planck Partner Group, Institute of Sericulture and Apiculture, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Zhaoyi Qian
- Max Planck Partner Group, Institute of Sericulture and Apiculture, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Yu Li
- Max Planck Partner Group, Institute of Sericulture and Apiculture, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoyu Lei
- Max Planck Partner Group, Institute of Sericulture and Apiculture, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Junaid Iqbal
- Max Planck Partner Group, Institute of Sericulture and Apiculture, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoqiang Shen
- Max Planck Partner Group, Institute of Sericulture and Apiculture, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Jintao He
- Max Planck Partner Group, Institute of Sericulture and Apiculture, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Nan Zhang
- Max Planck Partner Group, Institute of Sericulture and Apiculture, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Chao Sun
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Yongqi Shao
- Max Planck Partner Group, Institute of Sericulture and Apiculture, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, China.
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China.
- Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Hangzhou, China.
| |
Collapse
|
2
|
Murugan S, Senthilvelan T, Govindasamy M, Thangavel K. A Comprehensive Review on Exploring the Potential of Phytochemicals and Biogenic Nanoparticles for the Treatment of Antimicrobial-Resistant Pathogenic Bacteria. Curr Microbiol 2025; 82:90. [PMID: 39825917 DOI: 10.1007/s00284-025-04064-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/30/2024] [Indexed: 01/20/2025]
Abstract
Antimicrobial resistance (AMR) is an escalating global health concern that results in approximately 700,000 deaths annually owing to drug-resistant infections. It compromises the effectiveness of conventional antibiotics, as well as fundamental medical procedures, such as surgery and cancer treatment. Phytochemicals, natural plant constituents, and biogenic nanoparticles synthesized through biological processes are pharmacological alternatives for supplementing or replacing traditional antibiotics. These natural compounds exhibit a diverse range of bioactive properties, including antibacterial, anti-inflammatory, and antioxidant activities, and have the potential to overcome bacterial resistance mechanisms. However, their limited solubility, bioavailability, and stability have limited their therapeutic potential. Nanotechnology, particularly the utilization of biogenic nanoparticles, offers the potential to overcome these limitations by enhancing the biosafety, stability, and controlled release of phytochemical compounds, thereby enabling a more effective combination of resistant pathogens. This review examines current research on the combinatorial application of phytochemicals and biogenic nanoparticles, with emphasis on their capacity to address AMR. This study presents a novel perspective on the concurrent utilization of phytochemicals and biogenic nanoparticles, which may enhance antibacterial efficacy while mitigating toxicity. This review provides specific and innovative insights into the novelty, sustainability, and eco-friendly aspects of these approaches to address multidrug-resistant infections, highlighting their role in emerging as a transformative strategy for AMR management through the integration of natural and biogenic resources.
Collapse
Affiliation(s)
- Shibasini Murugan
- Molecular Biology Laboratory, Department of Microbiology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, 630003, India
| | - T Senthilvelan
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, Tamilnadu, 600124, India
| | - Mani Govindasamy
- International Ph.D Program in Innovative Technology of Biomedical Engineering and Medical Devices, Ming Chi University of Science and Technology, New Taipei, 24303, Taiwan
- Research Center for Intelligence Medical Devices, Ming Chi University of Technology, New Taipei City, 243303, Taiwan
| | - Kavitha Thangavel
- Molecular Biology Laboratory, Department of Microbiology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, 630003, India.
| |
Collapse
|
3
|
Luo X, Xing R, Xu M, Jiang HJ, Wang YR, Hu MY, Zhang H, Ge F, Zhang W, Wang HW. Environmentally relevant concentrations of DBDPE (decabromodiphenyl ethane) induce intestinal toxicity in silkworms (Bombyx mori L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125693. [PMID: 39818245 DOI: 10.1016/j.envpol.2025.125693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/28/2024] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
Decabromodiphenyl ethane (DBDPE) is one of the most extensively used novel brominated flame retardants, and it has been frequently detected in the global environment. Although organisms encounter various pollutants through the intestine, the toxicity effects of DBDPE exposure on the intestine and the potential mechanisms remain unclear. Here, by morphological observation, histopathology, high-throughput sequencing, and transcriptomics methods, we evaluated the effects of environmental (0.011 and 0.11 μg/g dw) and extreme DBDPE concentrations (1.1 and 11 μg/g dw) on the intestine of silkworms. Morphological observations revealed that 11 μg/g dw DBDPE significantly inhibited the development of silkworms. After DBDPE exposure, the intestinal tissue structure was significantly damaged. Furthermore, DBDPE exposure had a notably impact on the composition of the intestinal microbiota. Further RNA-seq analysis demonstrated that the transcription profiles of silkworms were markedly altered following DBDPE exposure, which was associated with enriched oxidative stress and protein export processes, downregulated transmembrane transport processes, and a series of disordered metabolic processes. Finally, the significant Spearman's correlation emphasizes the role of intestinal microbiota in the metabolic/immune dysregulation processes of silkworms. Overall, our results are the first to assess the toxic effects of environmentally relevant DBDPE concentrations on the insect intestine.
Collapse
Affiliation(s)
- Xue Luo
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing, 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environmental of China, Nanjing, 210042, China
| | - Rui Xing
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing, 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environmental of China, Nanjing, 210042, China
| | - Man Xu
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing, 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environmental of China, Nanjing, 210042, China
| | - Hui-Jun Jiang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, 210023, China
| | - Yu-Rui Wang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing, 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environmental of China, Nanjing, 210042, China
| | - Ming-Yue Hu
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing, 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environmental of China, Nanjing, 210042, China
| | - Hao Zhang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing, 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environmental of China, Nanjing, 210042, China
| | - Feng Ge
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing, 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environmental of China, Nanjing, 210042, China
| | - Wei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, 210023, China.
| | - Hong-Wei Wang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing, 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environmental of China, Nanjing, 210042, China.
| |
Collapse
|
4
|
Zhu Y, Wu Y, Li X, Li Y, Zheng Z, Gao Q, Ding W, He H, Qiu L, Li Y. Cadmium exposure increases insecticide sensitivity of Sogatella furcifera (Horváth) by decrease the diversity of symbiotic bacteria. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 290:117597. [PMID: 39721427 DOI: 10.1016/j.ecoenv.2024.117597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/10/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Cadmium (Cd) is a prevalent environmental pollutant in agricultural ecosystems, particularly within paddy ecosystems, is readily absorbed by rice and enter herbivorous insects through the food chain, thereby influencing the implementation of integrated pest management strategies. However, the effect and mechanisms of Cd exposure on the sensitivity of pests in paddy to insecticides remain unclear. Therefore, this study investigated the effects of Cd exposure on the fitness, insecticide sensitivity and symbiotic bacteria of Sogatella furcifera (Horváth) (white-backed planthopper, WBPH). Cd exposure did not affect the population growth of WBPH but significantly increased the sensitivity to three insecticides, nitenpyram, dinotefuran and etofenprox. Furthermore, Cd exposure reduced the diversity of symbiotic bacteria in WBPH, particularly decreasing the relative abundance of Acinetobacter, Klebsiella, Chryseobacterium and Pantoea, which were positively correlated with the survival rate of WBPH after Cd exposure and pesticide treatment. This indicates that Cd exposure may enhance insecticide sensitivity by disrupting the symbiotic bacteria equilibrium within WBPH. This study provides new insights into the symbiotic bacteria mediated increase in insecticide sensitivity due to heavy metal exposure, providing a foundation for utilizing compounds that disturb symbiotic bacteria balance in pest for pest control.
Collapse
Affiliation(s)
- Yanfei Zhu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Yu Wu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Xiangjie Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Yujie Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Zichao Zheng
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Qiao Gao
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Wenbing Ding
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Hualiang He
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Lin Qiu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China.
| | - Youzhi Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
5
|
Rong W, Wei Y, Chen Y, Huang L, Huang S, Lv Y, Guan D, Li X. 16S rRNA Sequencing Analysis Uncovers Dose-Dependent Cupric Chloride Effects on Silkworm Gut Microbiome Composition and Diversity. Animals (Basel) 2024; 14:3634. [PMID: 39765538 PMCID: PMC11672621 DOI: 10.3390/ani14243634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/11/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Copper-based pesticides are extensively used in agriculture, yet their impacts on beneficial insects remain poorly understood. Here, we investigate how cupric chloride exposure affects the gut microbiome of Bombyx mori, a model organism crucial for silk production. Using 16S rRNA sequencing, we analyzed the gut bacterial communities of fifth-instar silkworm larvae exposed to different concentrations of cupric chloride (0, 4, and 8 g/kg) in an artificial diet. The high-dose exposure dramatically altered the microbial diversity and community structure, where the Bacteroidota abundance decreased from 50.43% to 23.50%, while Firmicutes increased from 0.93% to 18.92%. A network analysis revealed complex interactions between the bacterial genera, with Proteobacteria and Firmicutes emerging as key players in the community response to copper stress. The functional prediction indicated significant shifts in metabolic pathways and genetic information processing in the high-dose group. Notably, the low-dose treatment induced minimal changes in both the taxonomic composition and predicted functions, suggesting a threshold effect in the microbiome response to copper exposure. Our findings provide novel insights into how agricultural chemicals influence insect gut microbiota and highlight potential implications for silkworm health and silk production. This work contributes to understanding the ecological impacts of copper-based pesticides and may inform evidence-based policies for their use in sericulture regions.
Collapse
Affiliation(s)
- Wantao Rong
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546399, China; (W.R.); (Y.W.); (Y.C.); (L.H.); (S.H.); (Y.L.)
- Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546399, China
| | - Yanqi Wei
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546399, China; (W.R.); (Y.W.); (Y.C.); (L.H.); (S.H.); (Y.L.)
- Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546399, China
| | - Yazhen Chen
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546399, China; (W.R.); (Y.W.); (Y.C.); (L.H.); (S.H.); (Y.L.)
- Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546399, China
| | - Lida Huang
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546399, China; (W.R.); (Y.W.); (Y.C.); (L.H.); (S.H.); (Y.L.)
| | - Shuiwang Huang
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546399, China; (W.R.); (Y.W.); (Y.C.); (L.H.); (S.H.); (Y.L.)
| | - Yiwei Lv
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546399, China; (W.R.); (Y.W.); (Y.C.); (L.H.); (S.H.); (Y.L.)
| | - Delong Guan
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546399, China; (W.R.); (Y.W.); (Y.C.); (L.H.); (S.H.); (Y.L.)
- Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546399, China
| | - Xiaodong Li
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546399, China; (W.R.); (Y.W.); (Y.C.); (L.H.); (S.H.); (Y.L.)
- Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546399, China
| |
Collapse
|
6
|
Ouwehand J, Peijnenburg WJGM, Vijver MG. Microbial function matters: Microbiome-aware nano-ecotoxicology needs functional endpoints besides compositional data. CHEMOSPHERE 2024; 369:143905. [PMID: 39643017 DOI: 10.1016/j.chemosphere.2024.143905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
The microbiome provides an active barrier to the external environment and aids in the metabolism of the host. Nanomaterials are known to interact with this microbiome host plane. Given the recent advances in techniques to study the microbiome, there has been a vast increase in studies trying to find causality in host response via the microbiome in nano-ecotoxicology. Our review integrates the latest advancements in understanding the microbiome's role in elucidating host health related to nanomaterial exposure, thereby explicitly emphasizing the gap between compositional and functional studies. Both the techniques used to interfere and the current understanding of microbiome-host relationships in nano-ecotoxicology are discussed. To further highlight the functional side of the microbiome, we performed an explorative meta-analysis to bridge the gap between top-down and bottom-up studies. This review gives a perspective on generalising microbiome-aware nano-ecotoxicology and discusses methodologies to enhance the interpretation of nanomaterial or chemical exposure to host-microbiome interactions. The current study discloses that correlations built on compositional data are not a good proxy for host outcome and more in-depth analysis coupled with functional analysis should be explored more in microbiome-aware nano-ecotoxicology.
Collapse
Affiliation(s)
- Jesse Ouwehand
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, Leiden, 2300, RA, the Netherlands.
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, Leiden, 2300, RA, the Netherlands; National Institute of Public Health and the Environment (RIVM), P.O. Box 1, Bilthoven, the Netherlands
| | - Martina G Vijver
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, Leiden, 2300, RA, the Netherlands
| |
Collapse
|
7
|
Montali A, Berini F, Gamberoni F, Armenia I, Saviane A, Cappellozza S, Gornati R, Bernardini G, Marinelli F, Tettamanti G. In Vivo Efficacy of a Nanoconjugated Glycopeptide Antibiotic in Silkworm Larvae Infected by Staphylococcus aureus. INSECTS 2024; 15:886. [PMID: 39590485 PMCID: PMC11595181 DOI: 10.3390/insects15110886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/04/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024]
Abstract
To contrast the rapid spread of antibiotic resistance in bacteria, new alternative therapeutic options are urgently needed. The use of nanoparticles as carriers for clinically relevant antibiotics represents a promising solution to potentiate their efficacy. In this study, we used Bombyx mori larvae for the first time as an animal model for testing a nanoconjugated glycopeptide antibiotic (teicoplanin) against Staphylococcus aureus infection. B. mori larvae might thus replace the use of mammalian models for preclinical tests, in agreement with the European Parliament Directive 2010/63/EU. The curative effect of teicoplanin (a last resort antibiotic against Gram-positive bacterial pathogens) conjugated to iron oxide nanoparticles was assessed by monitoring the survival rate of the larvae and some immunological markers (i.e., hemocyte viability, phenoloxidase system activation, and lysozyme activity). Human physiological conditions of infection were reproduced by performing the experiments at 37 °C. In this condition, nanoconjugated teicoplanin cured the bacterial infection at the same antibiotic concentration of the free counterpart, blocking the insect immune response without causing mortality of silkworm larvae. These results demonstrate the value and robustness of the silkworm as an infection model for testing the in vivo efficacy of nanoconjugated antimicrobial molecules.
Collapse
Affiliation(s)
- Aurora Montali
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (A.M.); (F.B.); (F.G.); (I.A.); (R.G.); (G.B.)
| | - Francesca Berini
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (A.M.); (F.B.); (F.G.); (I.A.); (R.G.); (G.B.)
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Napoli Federico II, Portici, 80055 Naples, Italy
| | - Federica Gamberoni
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (A.M.); (F.B.); (F.G.); (I.A.); (R.G.); (G.B.)
| | - Ilaria Armenia
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (A.M.); (F.B.); (F.G.); (I.A.); (R.G.); (G.B.)
| | - Alessio Saviane
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment (CREA-AA), 35143 Padova, Italy; (A.S.); (S.C.)
| | - Silvia Cappellozza
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment (CREA-AA), 35143 Padova, Italy; (A.S.); (S.C.)
| | - Rosalba Gornati
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (A.M.); (F.B.); (F.G.); (I.A.); (R.G.); (G.B.)
| | - Giovanni Bernardini
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (A.M.); (F.B.); (F.G.); (I.A.); (R.G.); (G.B.)
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (A.M.); (F.B.); (F.G.); (I.A.); (R.G.); (G.B.)
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Napoli Federico II, Portici, 80055 Naples, Italy
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (A.M.); (F.B.); (F.G.); (I.A.); (R.G.); (G.B.)
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Napoli Federico II, Portici, 80055 Naples, Italy
| |
Collapse
|
8
|
Babczyńska A, Tarnawska M, Czaja K, Flasz B, Ajay AK, Napora-Rutkowski Ł, Rozpędek K, Świerczek E, Kędziorski A, Augustyniak M. Adult young as the fragile ontogenetic stage of the house crickets dietary exposed to GO nanoparticles - digestive enzymes perspective. CHEMOSPHERE 2024; 367:143641. [PMID: 39490427 DOI: 10.1016/j.chemosphere.2024.143641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/02/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Graphene oxide nanoparticles (GO) (have promising properties for, electronics, energy, medicine, water purification, agriculture and food production industry. However, their potentially hazardous effects are still not satisfactorily recognized, so they are often included in the group of contaminants of emerging concern. Therefore, the aim of this investigation was to assess the potentially harmful effects of orally administered GO on the digestive enzyme activities of the house crickets Acheta domesticus. The activity of digestive enzymes was measured using the API®ZYM test and the results were compared in relation to the insect age group (Larvae, Adult Young and Adult Mature) and previous selection towards longevity ('long living' vs 'wild' strains). General analysis, encompassing all digestive enzymes simultaneously, as well as an analysis performed for individual enzyme subgroups, revealed that both factors and their interactions significantly modified the activity of digestive enzymes of A. domesticus. The most pronounced effect was connected with the age factor. The study revealed that the Adult Young age group was the most sensitive; in this group, the activity of digestive enzymes was, in general, decreased in comparison with the control group, while the remaining group did not respond to GO with a similar intensity. In turn, the inter-strain comparisons demonstrated different response patterns to the GO. The control enzymatic activity of the insects from long living' strain was, in general, higher than in the 'wild strain'; however, it was significantly decreased in the GO-exposed groups, while in the 'wild' strain, the activity remained relatively homogenous. Additionally, the tendency was more pronounced in Adult Young than in the remaining age groups. The potential toxicity of GO requires further investigation, mainly with a focus on the composition and functioning of gut microbiotas.
Collapse
Affiliation(s)
- Agnieszka Babczyńska
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland.
| | - Monika Tarnawska
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland.
| | - Klaudia Czaja
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland.
| | - Barbara Flasz
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland.
| | - Amrendra K Ajay
- Department of Medicine, Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Łukasz Napora-Rutkowski
- Polish Academy of Sciences, Institute of Ichthyobiology and Aquaculture in Gołysz, 43-520, Chybie, Poland.
| | - Katarzyna Rozpędek
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland.
| | - Ewa Świerczek
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland.
| | - Andrzej Kędziorski
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland.
| | - Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland.
| |
Collapse
|
9
|
Qasim M, Islam W, Rizwan M, Hussain D, Noman A, Khan KA, Ghramh HA, Han X. Impact of plant monoterpenes on insect pest management and insect-associated microbes. Heliyon 2024; 10:e39120. [PMID: 39498017 PMCID: PMC11532279 DOI: 10.1016/j.heliyon.2024.e39120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 11/07/2024] Open
Abstract
The fight against insect pests primarily relies on the utilization of synthetic insecticides. However, improper application of these chemicals can lead to detrimental effects on both the environment and human health, as well as foster the development of insect resistance. Consequently, novel strategies must be implemented to address the challenges stemming from the prolonged use of synthetic insecticides in agricultural and public health environments. Certain strategies involve the combination of crop protectants, which not only enhance insecticidal effectiveness but also reduce application rates. Plant-based natural products emerge as promising alternatives for insect management. Monoterpenes, which are abundant plant compounds produced through the activation of various enzymes, have attracted significant attention for their effectiveness in insect control. Notably, they are prolific in fragrance-producing plants. This review explores the plant defense, insecticidal, and antimicrobial characteristics of monoterpenes against insect pests, shedding light on their potential modes of action and possibilities for commercialization. Emphasizing their role as targeted and environmentally safer, the review highlights the practical viability of monoterpenes within integrated pest management programs.
Collapse
Affiliation(s)
- Muhammad Qasim
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Waqar Islam
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, China
| | - Muhammad Rizwan
- Department of Entomology, University of Agriculture, Faisalabad, Sub-campus Depalpur, Okara, 56300, Pakistan
| | - Dilbar Hussain
- Department of Entomology, Ayub Agricultural Research Institute, Faisalabad, 38850, Pakistan
| | - Ali Noman
- Department of Botany, Government College University Faisalabad, Faisalabad, 38040, Pakistan
| | - Khalid Ali Khan
- Applied College, Center of Bee Research and its Products, Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Hamed A. Ghramh
- Applied College, Center of Bee Research and its Products, Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Xiaoqiang Han
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, 832002, Xinjiang, China
| |
Collapse
|
10
|
Wang Z, Fan N, Li X, Yue L, Wang X, Liao H, Xiao Z. Trophic Transfer of Metal Oxide Nanoparticles in the Tomato- Helicoverpa armigera Food Chain: Effects on Phyllosphere Microbiota, Insect Oxidative Stress, and Gut Microbiome. ACS NANO 2024; 18:26631-26642. [PMID: 39297401 DOI: 10.1021/acsnano.4c05063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Understanding the trophic transfer and ecological cascade effects of nanofertilizers and nanopesticides in terrestrial food chains is crucial for assessing their nanotoxicity and environmental risks. Herein, the trophic transfer of La2O3 (nLa2O3) and CuO (nCuO) nanoparticles from tomato leaves to Helicoverpa armigera (Lepidoptera: Noctuidae) caterpillars and their subsequent effects on caterpillar growth and intestinal health were investigated. We found that 50 mg/L foliar nLa2O3 and nCuO were transferred from tomato leaves to H. armigera, with particulate trophic transfer factors of 1.47 and 0.99, respectively. While nCuO exposure reduced larval weight gain more (34.7%) than nLa2O3 (11.3%), owing to higher oxidative stress (e.g., MDA and H2O2) and more serious intestinal pathological damage (i.e., crumpled columnar cell and disintegrated goblet cell) by nCuO. Moreover, nCuO exposure led to a more compact antagonism between the phyllosphere and gut microbiomes compared to nLa2O3. Specifically, nCuO exposure resulted in a greater increase in pathogenic bacteria (e.g., Mycobacterium, Bacillus, and Ralstonia) and a more significant decrease in probiotics (e.g., Streptomyces and Arthrobacter) than nLa2O3, ultimately destroying larval intestinal immunity. Altogether, our findings systematically revealed the cascade effect of metal oxide nanomaterials on higher trophic consumers through alteration in the phyllosphere and insect gut microbiome interaction, thus providing insights into nanotoxicity and environmental risk assessment of nanomaterials applied in agroecosystems.
Collapse
Affiliation(s)
- Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Ningke Fan
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Xie Wang
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Huimin Liao
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Zhenggao Xiao
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
11
|
Muhammad A, Sun C, Shao Y. The humoral immune response of the lepidopteran model insect, silkworm Bombyx mori L., to microbial pathogens. CURRENT RESEARCH IN INSECT SCIENCE 2024; 6:100097. [PMID: 39364346 PMCID: PMC11447326 DOI: 10.1016/j.cris.2024.100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/10/2024] [Accepted: 09/16/2024] [Indexed: 10/05/2024]
Abstract
Insects are valuable models for studying innate immunity and its role in combating infections. The silkworm Bombyx mori L., a well-studied insect model, is susceptible to a range of pathogens, including bacteria, fungi, viruses, and microsporidia. Their susceptibility makes it a suitable model for investigating host-pathogen interactions and immune responses against infections and diseases. This review focuses on the humoral immune response and the production of antimicrobial peptides (AMPs), the phenoloxidase (PO) system, and other soluble factors that constitute the primary defense of silkworms against microbial pathogens. The innate immune system of silkworms relies on pattern recognition receptors (PRRs) to recognize pathogen-associated molecular patterns (PAMPs), which then activate various immune pathways including Imd, Toll, JAK/STAT, and RNA interference (RNAi). Their activation triggers the secretion of AMPs, enzymatic defenses (lysozyme and PO), and the generation of reactive oxygen species (ROS). Collectively, these pathways work together to neutralize and eliminate pathogens, thereby contributing to the defense mechanism of silkworms. Understanding the innate immunity of silkworms can uncover conserved molecular pathways and key immune components shared between insects and vertebrates. Additionally, it can provide valuable insights for improving sericulture practices, developing strategies to control diseases affecting silk production, and providing a theoretical foundation for developing pest control measures.
Collapse
Affiliation(s)
- Abrar Muhammad
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Chao Sun
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Yongqi Shao
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
- Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| |
Collapse
|
12
|
Li W, Zhan M, Wen Y, Chen Y, Zhang Z, Wang S, Tian D, Tian S. Recent Progress of Oral Functional Nanomaterials for Intestinal Microbiota Regulation. Pharmaceutics 2024; 16:921. [PMID: 39065618 PMCID: PMC11280463 DOI: 10.3390/pharmaceutics16070921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
The gut microbiota is closely associated with human health, and alterations in gut microbiota can influence various physiological and pathological activities in the human body. Therefore, microbiota regulation has become an important strategy in current disease treatment, albeit facing numerous challenges. Nanomaterials, owing to their excellent protective properties, drug release capabilities, targeting abilities, and good biocompatibility, have been widely developed and utilized in pharmaceuticals and dietary fields. In recent years, significant progress has been made in research on utilizing nanomaterials to assist in regulating gut microbiota for disease intervention. This review explores the latest advancements in the application of nanomaterials for microbiota regulation and offers insights into the future development of nanomaterials in modulating gut microbiota.
Collapse
Affiliation(s)
- Wanneng Li
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (W.L.); (Y.W.); (Y.C.); (Z.Z.); (S.W.)
| | - Minle Zhan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Yue Wen
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (W.L.); (Y.W.); (Y.C.); (Z.Z.); (S.W.)
| | - Yu Chen
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (W.L.); (Y.W.); (Y.C.); (Z.Z.); (S.W.)
| | - Zhongchao Zhang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (W.L.); (Y.W.); (Y.C.); (Z.Z.); (S.W.)
| | - Shuhui Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (W.L.); (Y.W.); (Y.C.); (Z.Z.); (S.W.)
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (W.L.); (Y.W.); (Y.C.); (Z.Z.); (S.W.)
| | - Sidan Tian
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
13
|
Wen H, Wang Y, Ji Y, Chen J, Xiao Y, Lu Q, Jiang C, Sheng Q, Nie Z, You Z. Effect of acute exposure of Hg on physiological parameters and transcriptome expression in silkworms ( Bombyx mori). Front Vet Sci 2024; 11:1405541. [PMID: 38919158 PMCID: PMC11196819 DOI: 10.3389/fvets.2024.1405541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024] Open
Abstract
Mercury (Hg) contamination poses a global threat to the environment, given its elevated ecotoxicity. Herein, we employed the lepidopteran model insect, silkworm (Bombyx mori), to systematically investigate the toxic effects of Hg-stress across its growth and development, histomorphology, antioxidant enzyme activities, and transcriptome responses. High doses of Hg exposure induced evident poisoning symptoms, markedly impeding the growth of silkworm larvae and escalating mortality in a dose-dependent manner. Under Hg exposure, the histomorphology of both the midgut and fat body exhibited impairments. Carboxylesterase (CarE) activity was increased in both midgut and fat body tissues responding to Hg treatment. Conversely, glutathione S-transferase (GST) levels increased in the fat body but decreased in the midgut. The transcriptomic analysis revealed that the response induced by Hg stress involved multiple metabolism processes. Significantly differently expressed genes (DEGs) exhibited strong associations with oxidative phosphorylation, nutrient metabolisms, insect hormone biosynthesis, lysosome, ribosome biogenesis in eukaryotes, and ribosome pathways in the midgut or the fat body. The findings implied that exposure to Hg might induce the oxidative stress response, attempting to compensate for impaired metabolism. Concurrently, disruptions in nutrient metabolism and insect hormone activity might hinder growth and development, leading to immune dysfunction in silkworms. These insights significantly advance our theoretical understanding of the potential mechanisms underlying Hg toxicity in invertebrate organisms.
Collapse
Affiliation(s)
- Huanhuan Wen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yanan Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yongqiang Ji
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jing Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yao Xiao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qixiang Lu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Caiying Jiang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qing Sheng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zuoming Nie
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhengying You
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
14
|
Gwenzi W, Gufe C, Alufasi R, Makuvara Z, Marumure J, Shanmugam SR, Selvasembian R, Halabowski D. Insects to the rescue? Insights into applications, mechanisms, and prospects of insect-driven remediation of organic contaminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171116. [PMID: 38382596 DOI: 10.1016/j.scitotenv.2024.171116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
Traditional and emerging contaminants pose significant human and environmental health risks. Conventional physical, chemical, and bioremediation techniques have been extensively studied for contaminant remediation. However, entomo- or insect-driven remediation has received limited research and public attention. Entomo-remediation refers to the use of insects, their associated gut microbiota, and enzymes to remove or mitigate organic contaminants. This novel approach shows potential as an eco-friendly method for mitigating contaminated media. However, a comprehensive review of the status, applications, and challenges of entomo-remediation is lacking. This paper addresses this research gap by examining and discussing the evidence on entomo-remediation of various legacy and emerging organic contaminants. The results demonstrate the successful application of entomo-remediation to remove legacy organic contaminants such as persistent organic pollutants. Moreover, entomo-remediation shows promise in removing various groups of emerging contaminants, including microplastics, persistent and emerging organic micropollutants (e.g., antibiotics, pesticides), and nanomaterials. Entomo-remediation involves several insect-mediated processes, including bio-uptake, biotransfer, bioaccumulation, and biotransformation of contaminants. The mechanisms underlying the biotransformation of contaminants are complex and rely on the insect gut microbiota and associated enzymes. Notably, while insects facilitate the remediation of contaminants, they may also be exposed to the ecotoxicological effects of these substances, which is often overlooked in research. As an emerging field of research, entomo-remediation has several knowledge gaps. Therefore, this review proposes ten key research questions to guide future perspectives and advance the field. These questions address areas such as process optimization, assessment of ecotoxicological effects on insects, and evaluation of potential human exposure and health risks.
Collapse
Affiliation(s)
- Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, 380 New Adylin, Marlborough, Harare, Zimbabwe; Alexander von Humboldt Fellow and Guest Professor, Grassland Science and Renewable Plant Resources, Faculty of Organic Agricultural Sciences, Universität Kassel, Steinstraße 19, D-37213 Witzenhausen, Germany; Alexander von Humboldt Fellow and Guest Professor, Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB), Max-Eyth-Allee 100, D-14469 Potsdam, Germany.
| | - Claudious Gufe
- Department of Veterinary Technical Services, Central Veterinary Laboratories, 18A Bevan Building, Borrowdale Road, Harare, Zimbabwe
| | - Richwell Alufasi
- Biological Sciences Department, Bindura University of Science Education, 741 Chimurenga Road, Off Trojan Road, P. Bag 1020, Bindura, Zimbabwe
| | - Zakio Makuvara
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe; Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, South Africa
| | - Jerikias Marumure
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe; Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, South Africa
| | | | - Rangabhashiyam Selvasembian
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| | - Dariusz Halabowski
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Ecology and Vertebrate Zoology, Lodz, Poland
| |
Collapse
|
15
|
Muhammad A, Zhang N, He J, Shen X, Zhu X, Xiao J, Qian Z, Sun C, Shao Y. Multiomics analysis reveals the molecular basis for increased body weight in silkworms (Bombyx mori) exposed to environmental concentrations of polystyrene micro- and nanoplastics. J Adv Res 2024; 57:43-57. [PMID: 37741508 PMCID: PMC10918344 DOI: 10.1016/j.jare.2023.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/12/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023] Open
Abstract
INTRODUCTION Micro- and nanoplastics (MNPs) are emerging environmental pollutants that have raised serious concerns about their potential impact on ecosystem and organism health. Despite increasing efforts to investigate the impacts of micro- and nanoplastics (MNPs) on biota little is known about their potential impacts on terrestrial organisms, especially insects, at environmental concentrations. OBJECTIVES To address this gap, we used an insect model, silkworm Bombyx mori to examine the potential long-term impacts of different sizes of polystyrene (PS) MNPs at environmentally realistic concentrations (0.25 to 1.0 μg/mL). METHODS After exposure to PS-MNPs over most of the larval lifetime (from second to last instar), the endpoints were examined by an integrated physiological (growth and survival) and multiomics approach (metabolomics, 16S rRNA, and transcriptomics). RESULTS Our results indicated that dietary exposures to PS-MNPs had no lethal effect on survivorship, but interestingly, increased host body weight. Multiomics analysis revealed that PS-MNPs exposure significantly altered multiple pathways, particularly lipid metabolism, leading to enriched energy reserves. Furthermore, the exposure changed the structure and composition of the gut microbiome and increased the abundance of gut bacteria Acinetobacter and Enterococcus. Notably, the predicted functional profiles and metabolite expressions were significantly correlated with bacterial abundance. Importantly, these observed effects were particle size-dependent and were ranked as PS-S (91.92 nm) > PS-M (5.69 µm) > PS-L (9.7 µm). CONCLUSION Overall, PS-MNPs at environmentally realistic concentrations exerted stimulatory effects on energy metabolism that subsequently enhanced body weight in silkworms, suggesting that chronic PS-MNPs exposure might trigger weight gain in animals and humans by influencing host energy and microbiota homeostasis.
Collapse
Affiliation(s)
- Abrar Muhammad
- Max Planck Partner Group, Institute of Sericulture and Apiculture, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Nan Zhang
- Max Planck Partner Group, Institute of Sericulture and Apiculture, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Jintao He
- Max Planck Partner Group, Institute of Sericulture and Apiculture, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoqiang Shen
- Max Planck Partner Group, Institute of Sericulture and Apiculture, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Xinyue Zhu
- Max Planck Partner Group, Institute of Sericulture and Apiculture, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Jian Xiao
- Max Planck Partner Group, Institute of Sericulture and Apiculture, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Zhaoyi Qian
- Max Planck Partner Group, Institute of Sericulture and Apiculture, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Chao Sun
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Yongqi Shao
- Max Planck Partner Group, Institute of Sericulture and Apiculture, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China; Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Hangzhou, China.
| |
Collapse
|
16
|
Liu S, Zhan Z, Zhang X, Chen X, Xu J, Wang Q, Zhang M, Liu Y. Per- and polyfluoroalkyl substance (PFAS) mixtures induce gut microbiota dysbiosis and metabolic disruption in silkworm (Bombyx mori L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169782. [PMID: 38176555 DOI: 10.1016/j.scitotenv.2023.169782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
Mixed legacy and emerging per- and polyfluoroalkyl substances (PFASs) are commonly found in soil and dust; however, the potential toxicity of PFAS mixtures (mPFASs) in insects is unknown. Using 16S rRNA gene sequencing and transcriptome sequencing (RNA-Seq), we evaluated the adverse effects of mPFASs on silkworms, a typical lepidopteran insect. After exposure to mPFASs, the silkworm midgut was enriched with high levels of PFASs, which induced histopathological changes. The composition of the midgut microbiota was significantly affected by mPFAS exposure, and functional predictions revealed significant disruption of some metabolic pathways. RNA-seq analysis revealed that mPFASs significantly changed the transcription profiles. Functional enrichment analysis of the differentially expressed genes also revealed that biological processes related to metabolic pathways and the digestive system were significantly affected, similar to the results of the gut microbiota analysis, suggesting that mPFAS exposure had an adverse effect on the metabolic function of silkworms and may further affect their normal growth. Finally, the significant correlation between abundance changes in the gut microbiota and metabolism/digestion-related genes further highlighted the role of the gut microbiota in mPFAS-related processes affecting the metabolic functions of silkworms. To our knowledge, this study is the first to evaluate the toxic effects of mPFASs in insects and provide basic data for further PFAS toxicity investigations in insects and comprehensive ecological risk assessments of mPFASs.
Collapse
Affiliation(s)
- Shuai Liu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Zhigao Zhan
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Xinghui Zhang
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Xi Chen
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China; College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Jiaojiao Xu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Qiyu Wang
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Miao Zhang
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Yu Liu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China.
| |
Collapse
|
17
|
Augustyniak M, Ajay AK, Kędziorski A, Tarnawska M, Rost-Roszkowska M, Flasz B, Babczyńska A, Mazur B, Rozpędek K, Alian RS, Skowronek M, Świerczek E, Wiśniewska K, Ziętara P. Survival, growth and digestive functions after exposure to nanodiamonds - Transgenerational effects beyond contact time in house cricket strains. CHEMOSPHERE 2024; 349:140809. [PMID: 38036229 DOI: 10.1016/j.chemosphere.2023.140809] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
The long-term exposure effects of nanodiamonds (NDs), spanning an organism's entire lifespan and continuing for subsequent generation, remain understudied. Most research has focused on evaluating their biological impacts on cell lines and selected organisms, typically over short exposure durations lasting hours or days. The study aimed to assess growth, mortality, and digestive functions in wild (H) and long-lived (D) strains of Acheta domesticus (Insecta: Orthoptera) after two-generational exposure to NDs in concentrations of 0.2 or 2 mg kg-1 of food, followed by their elimination in the third generation. NDs induced subtle stimulating effect that depended on the strain and generation. In the first generation, more such responses occurred in the H than in the D strain. In the first generation of H strain insects, contact with NDs increased survival, stimulated the growth of young larvae, and the activity of most digestive enzymes in mature adults. The same doses and exposure time did not cause similar effects in the D strain. In the first generation of D strain insects, survival and growth were unaffected by NDs, whereas, in the second generation, significant stimulation of those parameters was visible. Selection towards longevity appears to support higher resistance of the insects to exposure to additional stressor, at least in the first generation. The cessation of ND exposure in the third generation caused potentially harmful changes, which included, e.g., decreased survival probability in H strain insects, slowed growth of both strains, as well as changes in heterochromatin density and distribution in nuclei of the gut cells in both strains. Such a reaction may suggest the involvement of epigenetic inheritance mechanisms, which may become inadequate after the stress factor is removed.
Collapse
Affiliation(s)
- Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland.
| | - Amrendra K Ajay
- Department of Medicine, Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Andrzej Kędziorski
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Monika Tarnawska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Magdalena Rost-Roszkowska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Barbara Flasz
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Agnieszka Babczyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Beata Mazur
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Katarzyna Rozpędek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Reyhaneh Seyed Alian
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Magdalena Skowronek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Ewa Świerczek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Klaudia Wiśniewska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Patrycja Ziętara
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| |
Collapse
|
18
|
Seyed Alian R, Flasz B, Kędziorski A, Majchrzycki Ł, Augustyniak M. Concentration- and Time-Dependent Dietary Exposure to Graphene Oxide and Silver Nanoparticles: Effects on Food Consumption and Assimilation, Digestive Enzyme Activities, and Body Mass in Acheta domesticus. INSECTS 2024; 15:89. [PMID: 38392509 PMCID: PMC10888715 DOI: 10.3390/insects15020089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024]
Abstract
The advancement of nanotechnology poses a real risk of insect exposure to nanoparticles (NPs) that can enter the digestive system through contaminated food or nanopesticides. This study examines whether the exposure of model insect species-Acheta domesticus-to increasing graphene oxide (GO) and silver nanoparticle (AgNP) concentrations (2, 20, and 200 ppm and 4, 40, and 400 ppm, respectively) could change its digestive functions: enzymes' activities, food consumption, and assimilation. We noticed more pronounced alterations following exposure to AgNPs than to GO. They included increased activity of α-amylase, α-glucosidase, and lipase but inhibited protease activity. Prolonged exposure to higher concentrations of AgNPs resulted in a significantly decreased food consumption and changed assimilation compared with the control in adult crickets. A increase in body weight was observed in the insects from the Ag4 group and a decrease in body weight or no effects were observed in crickets from the Ag40 and Ag400 groups (i.e., 4, 40, or 400 ppm of AgNPs, respectively), suggesting that even a moderate disturbance in nutrient and energy availability may affect the body weight of an organism and its overall condition. This study underscores the intricate interplay between NPs and digestive enzymes, emphasizing the need for further investigation to comprehend the underlying mechanisms and consequences of these interactions.
Collapse
Affiliation(s)
- Reyhaneh Seyed Alian
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Barbara Flasz
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Andrzej Kędziorski
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Łukasz Majchrzycki
- Institute of Physics, Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland
| | - Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| |
Collapse
|
19
|
Xi O, Guo W, Hu H. Analysis of Genes Associated with Feeding Preference and Detoxification in Various Developmental Stages of Aglais urticae. INSECTS 2024; 15:30. [PMID: 38249036 PMCID: PMC10816842 DOI: 10.3390/insects15010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024]
Abstract
Herbivorous insects and host plants have developed a close and complex relationship over a long period of co-evolution. Some plants provide nutrients for insects, but plants' secondary metabolites also influence their growth and development. Urtica cannabina roots and leaves are poisonous, yet Aglais urticae larvae feed on them, so we aimed to clarify the mechanism enabling this interaction. At present, studies on the detoxification mechanism of the A. urticae are rare. In our study, first, we used the A. urticae larval odor selection behavior bioassay and choice feeding preference assay to analyze the feeding preferences of A. urticae on its host plant, U. cannabina. Next, we used transcriptome sequencing to obtain the unigenes annotated and classified by various databases, such as KEGG and GO. In this study, we found that U. cannabina could attract A. urticae larvae to feed via scent, and the feeding preference assay confirmed that larvae preferred U. cannabina leaves over three other plants: Cirsium japonicum, Cannabis sativa, and Arctium lappa. The activity of detoxifying enzymes GST and CarE changed in larvae that had consumed U. cannabina. Furthermore, through transcriptomic sequencing analysis, 77,624 unigenes were assembled from raw reads. The numbers of differentially expressed genes were calculated using pairwise comparisons of all life stages; the expression of detoxification enzyme genes was substantially higher in larvae than in the pupal and adult stages. Finally, we identified and summarized 34 genes associated with detoxification enzymes, such as UDP-glucose 4-epimerase gene, 5 Glutathione S-transferase genes, 4 Carboxylesterase genes, 4 Cytochrome P450 genes, 10 ATP-binding cassette genes, 4 Superoxide dismutase, and Peroxidase. Moreover, we identified 28 genes associated with the development of A. urticae. The qRT-PCR results were nearly consistent with the transcriptomic data, showing an increased expression level of four genes in larvae. Taken together, this study examines the correlation between A. urticae and host plants U. cannabina, uncovering a pronounced preference for A. urticae larvae toward host plants. Consistent with RNA-seq, we investigated the mechanism of A. urticae's interaction with host plants and identified detoxification-related genes. The present study provides theoretical support for studying insect adaptation mechanisms and biological control.
Collapse
Affiliation(s)
- Ouyan Xi
- College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (O.X.); (W.G.)
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830046, China
| | - Wentao Guo
- College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (O.X.); (W.G.)
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830046, China
| | - Hongying Hu
- College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (O.X.); (W.G.)
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830046, China
| |
Collapse
|
20
|
Pei X, Tang S, Jiang H, Zhang W, Xu G, Zuo Z, Ren Z, Chen C, Shen Y, Li C, Li D. Paeoniflorin recued hepatotoxicity under zinc oxide nanoparticles exposure via regulation on gut-liver axis and reversal of pyroptosis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166885. [PMID: 37678520 DOI: 10.1016/j.scitotenv.2023.166885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
The risks of Zinc oxide nanoparticles (ZnO NPs) applications in biological medicine, food processing industry, agricultural production and the biotoxicity brought by environmental invasion of ZnO NPs both gradually troubled the public due to the lack of research on detoxification strategies. TFEB-regulated autophagy-pyroptosis pathways were found as the crux of the hepatotoxicity induced by ZnO NPs in our latest study. Here, our study served as a connecting link between preceding toxic target and the following protection mechanism of Paeoniflorin (PF). According to a combined analysis of network pharmacology/molecular docking-intestinal microbiota-metabolomics first developed in our study, PF alleviated the hepatotoxicity of ZnO NPs from multiple aspects. The hepatic inflammatory injury and hepatocyte pyroptosis in mice liver exposed to ZnO NPs was significantly inhibited by PF. And the intestinal microbiota disorder and liver metabolic disturbance were rescued. The targets predicted by bioinformatics and the signal trend in subacute toxicological model exhibited the protectiveness of PF related to the SIRT1-mTOR-TFEB pathway. These evidences clarified multiple protective mechanisms of PF which provided a novel detoxification approach against ZnO NPs, and further provided a strategy for the medicinal value development of PF.
Collapse
Affiliation(s)
- Xingyao Pei
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China; Department of Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, Beijing 100193, China
| | - Shusheng Tang
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, Beijing 100193, China
| | - Haiyang Jiang
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, Beijing 100193, China
| | - Wenjuan Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Gang Xu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Zonghui Zuo
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Zhenhui Ren
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Chun Chen
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Yao Shen
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Cun Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Daowen Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China; State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Molecular Drug Research, College of Pharmacy, Nankai University, Haihe Education Park, Tongyan Road No.38, Tianjin 300353, China; Tianjin Key Laboratory of Biological Feed Additive Enterprise, S&E Burgeoning Biotechnology (Tianjin) Co., Ltd, Tianjin 300383, China.
| |
Collapse
|
21
|
Wang B, Huang D, Cao C, Gong Y. Insect α-Amylases and Their Application in Pest Management. Molecules 2023; 28:7888. [PMID: 38067617 PMCID: PMC10708458 DOI: 10.3390/molecules28237888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Amylase is an indispensable hydrolase in insect growth and development. Its varied enzymatic parameters cause insects to have strong stress resistance. Amylase gene replication is a very common phenomenon in insects, and different copies of amylase genes enable changes in its location and function. In addition, the classification, structure, and interaction between insect amylase inhibitors and amylases have also invoked the attention of researchers. Some plant-derived amylase inhibitors have inhibitory activities against insect amylases and even mammalian amylases. In recent years, an increasing number of studies have clarified the effects of pesticides on the amylase activity of target and non-target pests, which provides a theoretical basis for exploring safe and efficient pesticides, while the exact lethal mechanisms and safety in field applications remain unclear. Here, we summarize the most recent advances in insect amylase studies, including its sequence and characteristics and the regulation of amylase inhibitors (α-AIs). Importantly, the application of amylases as the nanocide trigger, RNAi, or other kinds of pesticide targets will be discussed. A comprehensive foundation will be provided for applying insect amylases to the development of new-generation insect management tools and improving the specificity, stability, and safety of pesticides.
Collapse
Affiliation(s)
| | | | - Chunxia Cao
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (B.W.)
| | - Yan Gong
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (B.W.)
| |
Collapse
|
22
|
Chen YZ, Rong WT, Qin YC, Lu LY, Liu J, Li MJ, Xin L, Li XD, Guan DL. Integrative analysis of microbiota and metabolomics in chromium-exposed silkworm ( Bombyx mori) midguts based on 16S rDNA sequencing and LC/MS metabolomics. Front Microbiol 2023; 14:1278271. [PMID: 37954243 PMCID: PMC10635416 DOI: 10.3389/fmicb.2023.1278271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/27/2023] [Indexed: 11/14/2023] Open
Abstract
The gut microbiota, a complex ecosystem integral to host wellbeing, is modulated by environmental triggers, including exposure to heavy metals such as chromium. This study aims to comprehensively explore chromium-induced gut microbiota and metabolomic shifts in the quintessential lepidopteran model organism, the silkworm (Bombyx mori). The research deployed 16S rDNA sequence analysis and LC/MS metabolomics in its experimental design, encompassing a control group alongside low (12 g/kg) and high (24 g/kg) feeding chromium dosing regimens. Considerable heterogeneity in microbial diversity resulted between groups. Weissella emerged as potentially resilient to chromium stress, while elevated Propionibacterium was noted in the high chromium treatment group. Differential analysis tools LEfSe and random forest estimation identified key species like like Cupriavidus and unspecified Myxococcales, offering potential avenues for bioremediation. An examination of gut functionality revealed alterations in the KEGG pathways correlated with biosynthesis and degradation, suggesting an adaptive metabolic response to chromium-mediated stress. Further results indicated consequential fallout in the context of metabolomic alterations. These included an uptick in histidine and dihydropyrimidine levels under moderate-dose exposure and a surge of gentisic acid with high-dose chromium exposure. These are critical players in diverse biological processes ranging from energy metabolism and stress response to immune regulation and antioxidative mechanisms. Correlative analyses between bacterial abundance and metabolites mapped noteworthy relationships between marker bacterial species, such as Weissella and Pelomonas, and specific metabolites, emphasizing their roles in enzyme regulation, synaptic processes, and lipid metabolism. Probiotic bacteria showed robust correlations with metabolites implicated in stress response, lipid metabolism, and antioxidant processes. Our study reaffirms the intricate ties between gut microbiota and metabolite profiles and decodes some systemic adaptations under heavy-metal stress. It provides valuable insights into ecological and toxicological aspects of chromium exposure that can potentially influence silkworm resilience.
Collapse
Affiliation(s)
- Ya-Zhen Chen
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi, China
- Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi, China
| | - Wan-Tao Rong
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi, China
- Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi, China
| | - Ying-Can Qin
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi, China
- Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi, China
| | - Lin-Yuan Lu
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi, China
- Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi, China
| | - Jing Liu
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi, China
- Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi, China
| | - Ming-Jie Li
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi, China
- Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi, China
| | - Lei Xin
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi, China
- Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi, China
| | - Xiao-Dong Li
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi, China
- Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi, China
| | - De-Long Guan
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi, China
- Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi, China
| |
Collapse
|
23
|
Wu X, Zhang X, Chen X, Ye A, Cao J, Hu X, Zhou W. The effects of polylactic acid bioplastic exposure on midgut microbiota and metabolite profiles in silkworm (Bombyx mori): An integrated multi-omics analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122210. [PMID: 37454715 DOI: 10.1016/j.envpol.2023.122210] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 07/18/2023]
Abstract
Polylactic acid (PLA) is a highly common biodegradable plastic and a potential threat to health and the environment. However, limited data are available on the effects of PLA exposure in the silkworm (Bombyx mori), a model organism used in toxicity studies. In this study, silkworms with or without PLA exposure (P1: 1 mg/L, P5: 5 mg/L, P25: 25 mg/L, and P0: 0 mg/L) for the entire 5th instar period were used to investigate the impact of PLA exposure on midgut morphology, larvae growth, and survival. Mitochondrial damage was observed in the P5 and P25 groups. The weights of the P25 posterior silk gland (5th day in the 5th instar), mature larvae and pupae were all significantly lower than those of the controls (P < 0.05). Dead worm cocoon rates and larva-pupa to 5th instar larvae ratios showed a positive and negative dose-dependent manner with respect to PLA concentrations, respectively. Additionally, reactive oxygen species levels and superoxide dismutase activity of the P25 midgut were significantly higher and lower when compared with controls, respectively (P < 0.05). The molecular mechanisms underlying the effects of PLA and associated physiological responses were also investigated. In the midgut metabolome, 127 significantly different metabolites (variable importance projection >1 and P < 0.05) were identified between the P0 and P25 groups and were mainly enriched for amino acid metabolism and energy supply pathways. The 16 S rDNA data showed that PLA altered microbial richness and structural composition. Microbiota, classified into 34 genera and 63 species, were significantly altered after 25 mg/L PLA exposure (P < 0.05). Spearman's correlation results showed that Bifidobacterium catenulatum and Schaalia odontolytica played potentially vital roles during exposure, as they demonstrated stronger correlations with the significantly different metabolites than other bacterial species. In sum, PLA induced toxic effects on silkworms, especially on energy- and protein-relevant metabolism, but at high concentrations (25 mg/L). This prospective mechanistic investigation on the effects of PLA on larval toxicity provides novel insight regarding the ecological risks of biodegradable plastics in the environment.
Collapse
Affiliation(s)
- Xuehui Wu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xing Zhang
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xuedong Chen
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Aihong Ye
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jinru Cao
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiaolong Hu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Wenlin Zhou
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
24
|
Santos CF, Andrade SM, Mil-Homens D, Montemor MF, Alves MM. Antibacterial Activity of ZnO Nanoparticles in a Staphylococcus- aureus-Infected Galleria mellonella Model Is Tuned by Different Apple-Derived Phytocargos. J Funct Biomater 2023; 14:463. [PMID: 37754877 PMCID: PMC10532052 DOI: 10.3390/jfb14090463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/24/2023] [Accepted: 09/03/2023] [Indexed: 09/28/2023] Open
Abstract
This research investigates pH changes during the green synthesis of ZnO nanoparticles (NPs) and emphasises its importance in their physicochemical, antibacterial, and biological properties. Varying the synthesis pH from 8 to 12 using "Bravo de Esmolfe" apple extracts neither affected the morphology nor crystallinity of ZnO but impacted NP phytochemical loads. This difference is because alkaline hydrolysis of phytochemicals occurred with increasing pH, resulting in BE-ZnO with distinct phytocargos. To determine the toxicity of BE-ZnO NPs, Galleria mellonella was used as an alternative to non-rodent models. These assays showed no adverse effects on larvae up to a concentration of 200 mg/kg and that NPs excess was relieved by faeces and silk fibres. This was evaluated by utilising fluorescence-lifetime imaging microscopy (FLIM) to track NPs' intrinsic fluorescence. The antibacterial efficacy against Staphylococcus aureus was higher for BE-ZnO12 than for BE-ZnO8; however, a different trend was attained in an in vivo infection model. This result may be related to NPs' residence in larvae haemocytes, modulated by their phytocargos. This research demonstrates, for the first time, the potential of green synthesis to modulate the biosafety and antibacterial activity of NPs in an advanced G. mellonella infection model. These findings support future strategies to overcome antimicrobial resistance by utilizing distinct phytocargos to modulate NPs' action over time.
Collapse
Affiliation(s)
- Catarina F. Santos
- EST Setúbal, CDP2T, Instituto Politécnico de Setúbal, Campus IPS, 2910-761 Setúbal, Portugal
- Centro de Química Estrutural (CQE), Departamento de Engenharia Química (DEQ), Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (S.M.A.); (M.F.M.)
| | - Suzana M. Andrade
- Centro de Química Estrutural (CQE), Departamento de Engenharia Química (DEQ), Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (S.M.A.); (M.F.M.)
- Departamento de Engenharia Química (DEQ), Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Dalila Mil-Homens
- iBB-Institute for Bioengineering and Biosciences, i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - M. Fátima Montemor
- Centro de Química Estrutural (CQE), Departamento de Engenharia Química (DEQ), Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (S.M.A.); (M.F.M.)
- Departamento de Engenharia Química (DEQ), Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Marta M. Alves
- Centro de Química Estrutural (CQE), Departamento de Engenharia Química (DEQ), Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (S.M.A.); (M.F.M.)
- Departamento de Engenharia Química (DEQ), Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
25
|
Rong W, Chen Y, Lu J, Huang S, Xin L, Guan D, Li X. Effects of Chromium Exposure on the Gene Expression of the Midgut in Silkworms, Bombyx mori. Genes (Basel) 2023; 14:1616. [PMID: 37628667 PMCID: PMC10454352 DOI: 10.3390/genes14081616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Chromium is a severe heavy metal pollutant with significant environmental risks. The effects of Chromium on the digestion of Bombyx mori (silkworms) are of particular importance due to their ecological and economic significance. Herein, RNA sequencing was conducted on nine midgut samples from silkworms exposed to control, 12 g/kg and 24 g/kg Chromium chemical diets. Comparative transcriptomics revealed that under moderate Chromium exposure, there was a significant increase in up-regulated genes (1268 up-regulated to 857 down-regulated), indicating a stimulation response. At higher stress levels, a weakened survival response was observed, with a decrease in up-regulated genes and an increase in down-regulated genes (374 up-regulated to 399 down-regulated). A notable shift in cellular responses under medium chromium exposure was exposed, signifying the activation of crucial metabolic and transport systems and an elevation in cellular stress and toxicity mechanisms. The observation of up-regulated gene expression within xenobiotic metabolism pathways suggests a heightened defense against Chromium-induced oxidative stress, which was primarily through the involvement of antioxidant enzymes. Conversely, high-dose Chromium exposure down-regulates the folate biosynthesis pathway, indicating biological toxicity. Two novel genes responsive to pressure were identified, which could facilitate future stress adaptation understanding. The findings provide insights into the molecular mechanisms underlying silkworms' digestion response to Chromium exposure and could inform its biological toxicity.
Collapse
Affiliation(s)
- Wantao Rong
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China; (W.R.)
| | - Yazhen Chen
- Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546300, China; (Y.C.)
| | - Jieyou Lu
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China; (W.R.)
| | - Shuiwang Huang
- Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546300, China; (Y.C.)
| | - Lei Xin
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China; (W.R.)
| | - Delong Guan
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China; (W.R.)
- Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546300, China; (Y.C.)
| | - Xiaodong Li
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China; (W.R.)
- Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546300, China; (Y.C.)
| |
Collapse
|
26
|
Zhu Q, Li F, Shu Q, Feng P, Wang Y, Dai M, Mao T, Sun H, Wei J, Li B. Disruption of peritrophic matrix chitin metabolism and gut immune by chlorantraniliprole results in pathogenic bacterial infection in Bombyx mori. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 193:105430. [PMID: 37248008 DOI: 10.1016/j.pestbp.2023.105430] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/31/2023]
Abstract
Chlorantraniliprole (CAP) is widely used in pest control, and its environmental residues affect the disease resistance of non-target insect silkworms. Studies have demonstrated that changes in gut microbial communities of insects are associated with susceptibility to pathogens. In the present study, we examined the effects of CAP exposure on the immune system and gut microbial community structure of silkworms. The results showed that after 96 h of exposure to low-concentration CAP, the peritrophic matrix (PM) of silkworm larvae was disrupted, and pathogenic bacteria invaded hemolymph. The trehalase activity in the midgut was significantly decreased, while the activities of chitinase, β-N-acetylglucosaminidase, and chitin deacetylase were increased considerably, resulting in decreased chitin content in PM. In addition, exposure to CAP reduced the expressions of key genes in the Toll, IMD, and JAK/STAT pathways, ultimately leading to the downregulation of antimicrobial peptides (AMPs) genes and alterations in the structure of the gut microbial community. Therefore, after infection with the conditional pathogen Enterobacter cloacae (E. cloacae), CAP-exposed individuals exhibited significantly lower body weight and higher mortality. These findings showed that exposure to low-concentration CAP impacted the biological defense system of silkworms, changed the gut microbial community structure, and increased silkworms' susceptibility to bacterial diseases. Collectively, these findings provided a new perspective for the safety evaluation of low-concentration CAP exposure in sericulture.
Collapse
Affiliation(s)
- Qingyu Zhu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Fanchi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China; Sericulture Institute of Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Qilong Shu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Piao Feng
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Yuanfei Wang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Minli Dai
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Tingting Mao
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Haina Sun
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China; Sericulture Institute of Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Jing Wei
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China; Sericulture Institute of Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China; Sericulture Institute of Soochow University, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
27
|
Zhang X, Shao W, Huo Y, Kong Y, Zhang W, Li S, Zhou W, Wu X, Qin F, Hu X. The effects of short-term dietary exposure to SiO 2 nanoparticle on the domesticated lepidopteran insect model silkworm (Bombyx mori): Evidence from the perspective of multi-omics. CHEMOSPHERE 2023; 323:138257. [PMID: 36868417 DOI: 10.1016/j.chemosphere.2023.138257] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/25/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Silicon dioxide nanoparticles (nSiO2) are one of the widely utilized nanoparticle (NPSs) materials, and exposure to nSiO2 is ubiquitous. With the increasing commercialization of nSiO2, the potential risk of nSiO2 release to the health and the ecological environment have been attracted more attention. In this study, the domesticated lepidopteran insect model silkworm (Bombyx mori) was utilized to evaluate the biological effects of dietary exposure to nSiO2. Histological investigations showed that nSiO2 exposure resulted in midgut tissue injury in a dose-dependent manner. Larval body mass and cocoon production were reduced by nSiO2 exposure. ROS burst was not triggered, and the activities of antioxidant enzymes were induced in the midgut of silkworm exposure to nSiO2. RNA-sequencing revealed that the differentially expressed genes induced by nSiO2 exposure were predominantly enriched into xenobiotics biodegradation and metabolism, lipid, and amino acid metabolism pathways. 16 S rDNA sequencing revealed that nSiO2 exposure altered the microbial diversity in the gut of the silkworm. Metabolomics analysis showed that the combined uni- and multivariate analysis identified 28 significant differential metabolites from the OPLS-DA model. These significant differential metabolites were predominantly enriched into the metabolic pathways, including purine metabolism and tyrosine metabolism and so. Spearman correlation analysis and the Sankey diagram established the relationship between microbe and metabolites, and some genera may play crucial and pleiotropic functions in the interaction between microbiome and host. These findings indicated that nSiO2 exposure could impact the dysregulation of genes related to xenobiotics metabolism, gut dysbiosis, and metabolic pathways and provided a valuable reference for assessing nSiO2 toxicity from a multi-dimensional perspective.
Collapse
Affiliation(s)
- Xing Zhang
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Wenjing Shao
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yiming Huo
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yifei Kong
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Wenxue Zhang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Song Li
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Wenlin Zhou
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xuehui Wu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Fenju Qin
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Xiaolong Hu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
28
|
Ibrahim AMA, Thabet MA, Ali AM. Physiological and developmental dysfunctions in the dengue vector Culex pipiens (Diptera: Culicidae) immature stages following treatment with zinc oxide nanoparticles. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 192:105395. [PMID: 37105619 DOI: 10.1016/j.pestbp.2023.105395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 01/19/2023] [Accepted: 03/18/2023] [Indexed: 06/19/2023]
Abstract
The medical value of mosquitoes attracted researchers worldwide to search for a valuable way to control such serious insects. The continuous development of resistance against chemical insecticides pushed toward looking for novel and promising compounds against mosquitoes. In this study, the toxicity and physio-developmental effects of 10-30 nm spherical zinc oxide nanoparticles (ZnONPs) in aqueous suspension was addressed against the first larval instar of Culex pipiens mosquito. The calculated value of LC50 was about 0.892 g/L while the sub lethal concentration LC20 recorded about 0.246 g/L. Larvae treated with ZnONPs suffered reduced growth rate, longer developmental period and malformations in the breathing tube. Furthermore, the treated larvae showed clear abnormal appearance of the gastric caeca and midgut epithelia under transmission electron microscope (TEM). These abnormalities appeared as condensation of the nuclear chromatin, abnormal shape or absence of microvilli, highly increased amount of smooth endoplasmic reticulum in the cytoplasm and appearance of numerous vacuoles. Additionally, ZnONPs interfered with several biochemical pathways such as induction of oxidative stress which appeared in the form of increased levels of hydrogen peroxide and inability to activate the detoxifying enzymes alkaline phosphatase (ALP), catalase and glutathione peroxidase (GPX). On the contrary, the activity of the antioxidant enzyme superoxide dismutase (SOD) increased in treated larvae. Furthermore, LC20 and LC50 of ZnONPs inhibited the growth rate of the larval gut fauna in vitro. These results clearly show that ZnONPs target several tissues leading to serious alteration in the physiological and developmental processes in C. pipiens mosquito larvae.
Collapse
Affiliation(s)
- Ahmed M A Ibrahim
- Department of Zoology and Entomology, Faculty of Science, Assiut University, Assiut 71516, Egypt.
| | - Marwa Adel Thabet
- Department of Zoology and Entomology, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Ali M Ali
- Department of Zoology and Entomology, Faculty of Science, Assiut University, Assiut 71516, Egypt
| |
Collapse
|
29
|
Zhang F, Wang Z, Peijnenburg WJGM, Vijver MG. Review and Prospects on the Ecotoxicity of Mixtures of Nanoparticles and Hybrid Nanomaterials. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15238-15250. [PMID: 36196869 PMCID: PMC9671040 DOI: 10.1021/acs.est.2c03333] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The rapid development of nanomaterials (NMs) and the emergence of new multicomponent NMs will inevitably lead to simultaneous exposure of organisms to multiple engineered nanoparticles (ENPs) at varying exposure levels. Understanding the joint impacts of multiple ENPs and predicting the toxicity of mixtures of ENPs are therefore evidently of importance. We reviewed the toxicity of mixtures of ENPs to a variety of different species, covering algae, bacteria, daphnia, fish, fungi, insects, and plants. Most studies used the independent-action (IA)-based model to assess the type of joint effects. Using co-occurrence networks, it was revealed that 53% of the cases with specific joint response showed antagonistic, 25% synergistic, and 22% additive effects. The combination of nCuO and nZnO exhibited the strongest interactions in each type of joint interaction. Compared with other species, plants exposed to multiple ENPs were more likely to experience antagonistic effects. The main factors influencing the joint response type of the mixtures were (1) the chemical composition of individual components in mixtures, (2) the stability of suspensions of mixed ENPs, (3) the type and trophic level of the individual organisms tested, (4) the biological level of organization (population, communities, ecosystems), (5) the exposure concentrations and time, (6) the endpoint of toxicity, and (7) the abiotic field conditions (e.g., pH, ionic strength, natural organic matter). This knowledge is critical in developing efficient strategies for the assessment of the hazards induced by combined exposure to multiple ENPs in complex environments. In addition, this knowledge of the joint effects of multiple ENPs assists in the effective prediction of hybrid NMs.
Collapse
Affiliation(s)
- Fan Zhang
- Institute
of Environmental Sciences (CML), Leiden
University, Leiden2300 RA, The Netherlands
| | - Zhuang Wang
- Collaborative
Innovation Center of Atmospheric Environment and Equipment Technology,
Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution
Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing210044, People’s Republic of China
| | - Willie J. G. M. Peijnenburg
- Institute
of Environmental Sciences (CML), Leiden
University, Leiden2300 RA, The Netherlands
- Centre
for Safety of Substances and Products, National
Institute of Public Health and the Environment (RIVM), Bilthoven3720 BA, The Netherlands
- Email for W.J.G.M.P.:
| | - Martina G. Vijver
- Institute
of Environmental Sciences (CML), Leiden
University, Leiden2300 RA, The Netherlands
| |
Collapse
|
30
|
Xu X, De Mandal S, Wu H, Zhu S, Kong J, Lin S, Jin F. Effect of Diet on the Midgut Microbial Composition and Host Immunity of the Fall Armyworm, Spodoptera frugiperda. BIOLOGY 2022; 11:1602. [PMID: 36358303 PMCID: PMC9687563 DOI: 10.3390/biology11111602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/22/2022] [Accepted: 10/22/2022] [Indexed: 09/08/2024]
Abstract
The fall armyworm (Spodoptera frugiperda, J.E. Smith) is one of the most important agricultural pests in the world and causes serious damage to many significant crops. Insect gut microbiota plays a vital role in host immunity, digestion, and development, helping the higher organism colonize in a new environment. However, the effects of different diets on midgut microbial composition and host immunity in S. frugiperda remain unclear. So far, no reports have compared the gut microbiota of fall armyworm reared using an artificial diet compared to corn leaf in Guangzhou, China. High-throughput 16S rRNA sequencing technology was applied to gain insight into the composition of the gut microbiota of S. frugiperda feeding on corn leaf (field diet) and on a starch-rich artificial diet (lab diet). The fall armyworm gut microbiota was dominated by the bacterial phyla Firmicutes and Proteobacteria. Despite the difference in diet, the core bacterial community was represented by the genus Enterococcus. However, the bacterial community is dominated by a few phylotypes, namely operational taxonomical units 1 (OTU1) (Enterococcus casseliflavus), OTU3 (Enterobacteriaceae), OTU2 (Weissella), and OTU4 (Clostridium), accounting for 97.43% of the total OTUs in the complete dataset. A significant difference was identified in the bacterial communities between the "lab diet" and the "field diet" groups. OTU1 and OTU2 were significantly higher in the "field diet" group, whereas OTU3 and OTU4 were higher in the "lab diet" group. A phylogenetic investigation of the communities by reconstruction of unobserved states (PICRUSt) predicted functional analysis indicates the presence of several genes associated with plant biomass degradation. Importantly, antibiotic-mediated perturbation of the midgut microbial community significantly impacts the expression profile of the important immune genes of the host. Furthermore, the oral reintroduction of gut bacterial isolates (E. mundtii and E. gallinarum) significantly enhances host resistance to AcMNPV infection. Taken together, our results indicate that diet composition is an important driver in shaping insect gut microbiome and immune gene expression, ultimately playing an important role in the pest defense system.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fengliang Jin
- Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
31
|
He J, Shen X, Zhang N, Sun C, Shao Y. Smartphones as an Ecological Niche of Microorganisms: Microbial Activities, Assembly, and Opportunistic Pathogens. Microbiol Spectr 2022; 10:e0150822. [PMID: 36040152 PMCID: PMC9603676 DOI: 10.1128/spectrum.01508-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/11/2022] [Indexed: 12/31/2022] Open
Abstract
Smartphone usage and contact frequency are unprecedentedly high in this era, and they affect humans mentally and physically. However, the characteristics of the microorganisms associated with smartphones and smartphone hygiene habits remain unclear. In this study, using various culture-independent techniques, including high-throughput sequencing, real-time quantitative PCR (RT-qPCR), the ATP bioluminescence system, and electron microscopy, we investigated the structure, assembly, quantity, and dynamic metabolic activity of the bacterial community on smartphone surfaces and the user's dominant and nondominant hands. We found that smartphone microbiotas are more similar to the nondominant hand microbiotas than the dominant hand microbiotas and show significantly decreased phylogenetic diversity and stronger deterministic processes than the hand microbiota. Significant interindividual microbiota differences were observed, contributing to an average owner identification accuracy of 70.6% using smartphone microbiota. Furthermore, it is estimated that approximately 1.75 × 106 bacteria (2.24 × 104/cm2) exist on the touchscreen of a single smartphone, and microbial activities remain stable for at least 48 h. Scanning electron microscopy detected large fragments harboring microorganisms, suggesting that smartphone microbiotas live on the secreta or other substances, e.g., human cell debris and food debris. Fortunately, simple smartphone cleaning/hygiene could significantly reduce the bacterial load. Taken together, our results demonstrate that smartphone surfaces not only are a reservoir of microbes but also provide an ecological niche in which microbiotas, particularly opportunistic pathogens, can survive, be active, and even grow. IMPORTANCE Currently, people spend an average of 4.2 h per day on their smartphones. Due to the COVID-19 pandemic, this figure may still be increasing. The high frequency of smartphone usage may allow microbes, particularly pathogens, to attach to-and even survive on-phone surfaces, potentially causing adverse effects on humans. We employed various culture-independent techniques in this study to evaluate the microbiological features and hygiene of smartphones, including community assembly, bacterial load, and activity. Our data showed that deterministic processes drive smartphone microbiota assembly and that approximately 1.75 × 106 bacteria exist on a single smartphone touchscreen, with activities being stable for at least 48 h. Fortunately, simple smartphone cleaning/hygiene could significantly reduce the bacterial load. This work expands our understanding of the microbial ecology of smartphone surfaces and might facilitate the development of electronic device cleaning/hygiene guidelines to support public health.
Collapse
Affiliation(s)
- Jintao He
- Max Planck Partner Group, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoqiang Shen
- Max Planck Partner Group, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Nan Zhang
- Max Planck Partner Group, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Chao Sun
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Yongqi Shao
- Max Planck Partner Group, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Beijing, China
| |
Collapse
|
32
|
He J, Zhang N, Shen X, Muhammad A, Shao Y. Deciphering environmental resistome and mobilome risks on the stone monument: A reservoir of antimicrobial resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156443. [PMID: 35660621 DOI: 10.1016/j.scitotenv.2022.156443] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Antimicrobial resistance (AMR) in the environment has attracted increasing attention as an emerging global threat to public health. Stone is an essential ecosystem in nature and also an important material for human society, having architectural and aesthetic values. However, little is known about the AMR in stone ecosystems, particularly in the stone monument, where antimicrobials are often applied against biodeterioration. Here, we provide the first detailed metagenomic study of AMR genes across different types of biodeteriorated stone monuments, which revealed abundant and diverse AMR genes conferring resistance to drugs (antibiotics), biocides, and metals. Totally, 132 AMR subtypes belonging to 27 AMR types were detected including copper-, rifampin-, and aminocoumarins-resistance genes, of which diversity was mainly explained by the spatial turnover (replacement of genes between samples) rather than nestedness (loss of nested genes between samples). Source track analysis confirms that stone resistomes are likely driven by anthropogenic activities across stone heritage areas. We also detected various mobile genetic elements (namely mobilome, e.g., prophages, plasmids, and insertion sequences) that could accelerate replication and horizontal transfer of AMR genes. Host-tracking analysis further identified multiple biodeterioration-related bacterial genera such as Pseudonocardia, Sphingmonas, and Streptomyces as the major hosts of resistome. Taken together, these findings highlight that stone microbiota is one of the natural reservoirs of antimicrobial-resistant hazards, and the diverse resistome and mobilome carried by active biodeteriogens may improve their adaptation on stone and even deactivate the antimicrobials applied against biodeterioration. This enhanced knowledge may also provide novel and specific avenues for environmental management and stone heritage protection.
Collapse
Affiliation(s)
- Jintao He
- Max Planck Partner Group, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, China
| | - Nan Zhang
- Max Planck Partner Group, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, China
| | - Xiaoqiang Shen
- Max Planck Partner Group, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, China
| | - Abrar Muhammad
- Max Planck Partner Group, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, China
| | - Yongqi Shao
- Max Planck Partner Group, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, China; Key Laboratory for Molecular Animal Nutrition, Ministry of Education, China.
| |
Collapse
|
33
|
Antonelli P, Duval P, Luis P, Minard G, Valiente Moro C. Reciprocal interactions between anthropogenic stressors and insect microbiota. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:64469-64488. [PMID: 35864395 DOI: 10.1007/s11356-022-21857-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Insects play many important roles in nature due to their diversity, ecological role, and impact on agriculture or human health. They are directly influenced by environmental changes and in particular anthropic activities that constitute an important driver of change in the environmental characteristics. Insects face numerous anthropogenic stressors and have evolved various detoxication mechanisms to survive and/or resist to these compounds. Recent studies highligted the pressure exerted by xenobiotics on insect life-cycle and the important role of insect-associated bacterial microbiota in the insect responses to environmental changes. Stressor exposure can have various impacts on the composition and structure of insect microbiota that in turn may influence insect biology. Moreover, bacterial communities associated with insects can be directly or indirectly involved in detoxification processes with the selection of certain microorganisms capable of degrading xenobiotics. Further studies are needed to assess the role of insect-associated microbiota as key contributor to the xenobiotic metabolism and thus as a driver for insect adaptation to polluted habitats.
Collapse
Affiliation(s)
- Pierre Antonelli
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, 69622, Villeurbanne, France
| | - Pénélope Duval
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, 69622, Villeurbanne, France
| | - Patricia Luis
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, 69622, Villeurbanne, France
| | - Guillaume Minard
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, 69622, Villeurbanne, France
| | - Claire Valiente Moro
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, 69622, Villeurbanne, France.
| |
Collapse
|
34
|
Li DD, Li JY, Hu ZQ, Liu TX, Zhang SZ. Fall Armyworm Gut Bacterial Diversity Associated with Different Developmental Stages, Environmental Habitats, and Diets. INSECTS 2022; 13:insects13090762. [PMID: 36135463 PMCID: PMC9503601 DOI: 10.3390/insects13090762] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 05/12/2023]
Abstract
The fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), is a major invasive pest that seriously threatens world agricultural production and food security. Microorganisms play a crucial role in the growth and development of insects. However, the diversity and dynamics of gut microbes with different developmental stages, environmental habitats, and diets in S. frugiperda remain unclear. In this study, we found the changes of the microbiome of S. frugiperda across their life stages, and the bacteria were dominated by Firmicutes and Proteobacteria. The community composition of the egg stage was quite different from other developmental stages, which had the highest community diversity and community richness, and was dominated by Proteobacteria. The bacterial community compositions of male and female adults were similar to those of early larvae stage (L1-L2), and operational taxonomic units (OTUs) with abundant content were Enterococcus and Enterobacteriaceae bacteria, including Enterobacteria, Klebsiella, Pantoea, and Escherichia. The third instar larvae (L3) mainly consist of Enterococcus. The late stage larvae (L4-L6) harbored high proportions of Enterococcus, Rhodococcus, and Ralstonia. There was no significant difference in gut microbial composition between field populations and laboratory populations in a short period of rearing time. However, after long-term laboratory feeding, the gut microbial diversity of S. frugiperda was significantly reduced. Enterococcus and Rhodococccus of S. frugiperda feeding on maize showed higher relative proportion, while the microbial community of S. frugiperda feeding on artificial diet was composed mainly of Enterococcus, with a total of 98% of the gut microbiota. The gene functions such as metabolism, cell growth and death, transport and catabolism, and environmental adaptation were more active in S. frugiperda feeding on corn than those feeding on artificial diet. In short, these results indicate that developmental stage, habitat, and diet can alter the gut bacteria of S. frugiperda, and suggest a vertical transmission route of bacteria in S. frugiperda. A comprehensive understanding of gut microbiome of S. frugiperda will help develop novel pest control strategies to manage this pest.
Collapse
|
35
|
Plant-derived tormentic acid alters the gut microbiota of the silkworm (Bombyx mori). Sci Rep 2022; 12:13005. [PMID: 35906393 PMCID: PMC9338012 DOI: 10.1038/s41598-022-17478-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/26/2022] [Indexed: 11/09/2022] Open
Abstract
In recent years, phytochemicals have started to attract more attention due to their contribution to health and bioactivity. Microorganisms in the intestines of organisms contribute to the processing, function, and biotransformation of these substances. The silkworm (Bombyx mori) is one of the organisms used for the biotransformation of phytochemicals due to its controlled reproduction and liability to microbial manipulation. In this study, a bioactive compound, tormentic acid (TA), extracted from Sarcopoterium spinosum was used in the silkworm diet, and the alterations of intestinal microbiota of the silkworm were assessed. To do this, silkworms were fed on a diet with various tormentic acid content, and 16S metagenomic analysis was performed to determine the alterations in the gut microbiota profile of these organisms. Diet with different TA content did not cause a change in the bacterial diversity of the samples. A more detailed comparison between different feeding groups indicated increased abundance of bacteria associated with health, i.e., Intestinibacter spp., Flavonifractor spp., Senegalimassilia spp., through the utilization of bioactive substances such as flavonoids. In conclusion, it might be said that using TA as a supplementary product might help ameliorate the infected gut, promote the healthy gut, and relieve the undesirable effects of medicines on the gastrointestinal system.
Collapse
|
36
|
Zhen Y, Ge L, Chen Q, Xu J, Duan Z, Loor JJ, Wang M. Latent Benefits and Toxicity Risks Transmission Chain of High Dietary Copper along the Livestock-Environment-Plant-Human Health Axis and Microbial Homeostasis: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6943-6962. [PMID: 35666880 DOI: 10.1021/acs.jafc.2c01367] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The extensive use of high-concentration copper (Cu) in feed additives, fertilizers, pesticides, and nanoparticles (NPs) inevitably causes significant pollution in the ecological environment. This type of chain pollution begins with animal husbandry: first, Cu accumulation in animals poisons them; second, high Cu enters the soil and water sources with the feces and urine to cause toxicity, which may further lead to crop and plant pollution; third, this process ultimately endangers human health through consumption of livestock products, aquatic foods, plants, and even drinking water. High Cu potentially alters the antibiotic resistance of soil and water sources and further aggravates human disease risks. Thus, it is necessary to formulate reasonable Cu emission regulations because the benefits of Cu for livestock and plants cannot be ignored. The present review evaluates the potential hazards and benefits of high Cu in livestock, the environment, the plant industry, and human health. We also discuss aspects related to bacterial and fungal resistance and homeostasis and perspectives on the application of Cu-NPs and microbial high-Cu removal technology to reduce the spread of toxicity risks to humans.
Collapse
Affiliation(s)
- Yongkang Zhen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, Xinjiang 832000, China
| | - Ling Ge
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qiaoqing Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jun Xu
- Institute for Quality and Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330000, China
| | - Zhenyu Duan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, Xinjiang 832000, China
| | - Juan J Loor
- Mammalian Nutrition Physiology Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, Illinois 61801, United States
| | - Mengzhi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, Xinjiang 832000, China
| |
Collapse
|
37
|
Anand U, Carpena M, Kowalska-Góralska M, Garcia-Perez P, Sunita K, Bontempi E, Dey A, Prieto MA, Proćków J, Simal-Gandara J. Safer plant-based nanoparticles for combating antibiotic resistance in bacteria: A comprehensive review on its potential applications, recent advances, and future perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153472. [PMID: 35093375 DOI: 10.1016/j.scitotenv.2022.153472] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Antibiotic resistance is one of the current threats to human health, forcing the use of drugs that are more noxious, costlier, and with low efficiency. There are several causes behind antibiotic resistance, including over-prescription of antibiotics in both humans and livestock. In this scenario, researchers are shifting to new alternatives to fight back this concerning situation. SCOPE AND APPROACH Nanoparticles have emerged as new tools that can be used to combat deadly bacterial infections directly or indirectly to overcome antibiotic resistance. Although nanoparticles are being used in the pharmaceutical industry, there is a constant concern about their toxicity toward human health because of the involvement of well-known toxic chemicals (i.e., sodium/potassium borohydride) making their use very risky for eukaryotic cells. KEY FINDINGS AND CONCLUSIONS Multiple nanoparticle-based approaches to counter bacterial infections, providing crucial insight into the design of elements that play critical roles in the creation of antimicrobial nanotherapeutic drugs, are currently underway. In this context, plant-based nanoparticles will be less toxic than many other forms, which constitute promising candidates to avoid widespread damage to the microbiome associated with current practices. This article aims to review the actual knowledge on plant-based nanoparticle products for antibiotic resistance and the possible replacement of antibiotics to treat multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| | - M Carpena
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain.
| | - Monika Kowalska-Góralska
- Department of Limnology and Fisheries, Institute of Animal Husbandry and Breeding, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland.
| | - P Garcia-Perez
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain.
| | - Kumari Sunita
- Department of Botany, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh 273009, India
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123 Brescia, Italy.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India.
| | - Miguel A Prieto
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain.
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, ul. Kożuchowska 7a, 51-631 Wrocław, Poland.
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain.
| |
Collapse
|