1
|
Li Z, Hafeez F, Zhang J, Chen K, Zeng B, Qi F, Yang L, Zhu H. Effect of anaerobic digested sludge biochar on soil quality improvement: An insight into mechanisms, microbial composition, and toxicity risk assessment. CHEMOSPHERE 2025; 370:143948. [PMID: 39674414 DOI: 10.1016/j.chemosphere.2024.143948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/29/2024] [Accepted: 12/12/2024] [Indexed: 12/16/2024]
Abstract
Biochar is widely acknowledged for its remarkable impact on soil conditioning. However, the influence of different sources of biochar, particularly anaerobic digested sludge biochar (ADBC) derived from anaerobic digested sludge and biochar derived from waste activated sludge, on alkaline soil remains largely unexplored. To address this knowledge gap, a comprehensive field experiment was conducted over a period of 180 days to investigate the effects of ADBC on slightly alkaline soil. This study evaluated various aspects, including soil properties, nutrient content, microbial composition, and soil toxicity. The results demonstrated significant improvements in the quality of alkaline soil following the application of ADBC. Notably, soil pH decreased from 8.24 to 7.5, while conductivity increased from 56.7 μs/cm to 249.0 μs/cm, total organic carbon from 13.5 g/kg to 19.9 g/kg, available nitrogen from 45.5 g/kg to 237.5 g/kg, and available phosphorus from 549.5 g/kg to 1396.7 g/kg. Moreover, ADBC substantially increased the relative abundance of functional bacteria associated with nutrient cycling, such as Proteobacteria, Actinobacteriota, and Bacteroidota. Conversely, the assessment of biotoxicity revealed a decrease in toxicity with increasing preparation temperature and particle size. These findings highlight the promising potential of ADBC for improving the key properties of alkaline and nutrient-poor soils crucial for overall soil productivity.
Collapse
Affiliation(s)
- Zhuo Li
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China; Offshore Environmental Technology & Services Limited, Beijing 100020, China
| | - Farhan Hafeez
- Department of Environmental Sciences, COMSATS University Islamabad (CUI), Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Jing Zhang
- China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Kai Chen
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China
| | - Bizhen Zeng
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China
| | - Feilan Qi
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Lan Yang
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China
| | - Hongtao Zhu
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
2
|
Mahmudiono T, Fakhri Y, Daraei H, Mehri F, Einolghozati M, Mohamadi S, Mousavi Khaneghah A. The concentration of Lithium in water resources: A systematic review, meta-analysis and health risk assessment. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:667-677. [PMID: 37261955 DOI: 10.1515/reveh-2023-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/08/2023] [Indexed: 06/03/2023]
Abstract
The presence of trace elements such as lithium (Li) in water resources in the long term can endanger consumers' health. Several studies have been conducted on Li concentration in water sources; hence, this study attempted to retrieve studies using a systematic search. The search was conducted in Web of Sciences, Embase, PubMed, and Scopus databases from 1 January 2010 to 15 January 2023. Li concentration was meta-analyzed based on the type of water resources and countries subgroups in the random effects model (REM) statistical analysis. In addition, health risk assessment in different age groups was calculated using the target hazard quotient (THQ). This study included 76 papers with 157 data reports in our meta-analysis. The overall pooled concentration of Li was 5.374 (95 % CI: 5.261-5.487 μg/L). The pooled concentration of Li in groundwater (40.407 μg/L) was 14.53 times surface water (2.785 μg/L). The highest water Li content was attributed to Mexico (2,209.05 μg/L), Bolivia (1,444.05 μg/L), Iraq (1,350 μg/L), and Argentina (516.39 μg/L). At the same time, the lowest water Li content was associated with Morocco (1.20 μg/L), Spain (0.46 μg/L), and India (0.13 μg/L). THQ due to Li in water resources in consumers of Iraq, Mexico, South Africa, Afghanistan, Bolivia, Portugal, Malawi, South Korea, Nepal, South Korea, Argentina, and the USA was higher than 1 value. Therefore, continuous monitoring of Li concentration in water sources and reducing Li concentration, especially in groundwater water, using new water treatment processes in these countries are recommended.
Collapse
Affiliation(s)
- Trias Mahmudiono
- Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Surabaya, Indonesia
| | - Yadolah Fakhri
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Hasti Daraei
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Fereshteh Mehri
- Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahtab Einolghozati
- Department of Nutrition and food Safety, School of Medicine. Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sara Mohamadi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahre-Kord University, Shahre-Kord, Iran
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
| |
Collapse
|
3
|
Ma X, Liu Y, Chen Z, Gong Y, Wang B, Shen J, Kang J, Yan P, Zhao S. Highly efficient adsorption of natural organic matter from aqueous solutions by macroporous weakly basic anion exchange resin: performance, mechanism, and fixed - bed column. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2024; 59:523-535. [PMID: 39673079 DOI: 10.1080/10934529.2024.2433361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/15/2024]
Abstract
In this study, humic acid was used as a model pollutant to investigate the removal effect of a macroporous weakly alkaline anion exchange resin D301 on natural organic matter (NOM) in water. 3D fluorescence spectroscopy, UV - visible spectrophotometry and Fourier transform infrared (FTIR) spectroscopy were employed to analyze changes in the physical and chemical properties of humic acid solution and natural water samples before and after resin adsorption. The results showed that using humic acid as a model pollutant to simulate NOM in water is feasible. Through kinetic and thermodynamic analysis, ion exchange was identified as the dominant mechanism for the adsorption of organic matter by D301 resin. According to the Langmuir adsorption isotherm, the maximum adsorption capacity of the resin was 37.78 mg/g. The adsorption of NOM by the exchange resin effectively conformed to the Thomas, Yoon - Nelson, and BDST models, offering a reliable basis for practical application prediction. Using sodium chloride solution as the regeneration solution for D301 resin column, after several regenerations, the adsorption efficiency of the resin did not change significantly, which indicated that the anion - exchange resin can be used as an efficient and reusable adsorbent for the removal of NOM from water.
Collapse
Affiliation(s)
- Xingdi Ma
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Yangxue Liu
- China Southwest Architectural Design and Research Insitute Corp.Ltd, Chengdu, China
| | - Zhonglin Chen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Yingxu Gong
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Binyuan Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Jimin Shen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Jing Kang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Pengwei Yan
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Shengxin Zhao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
4
|
Liu A, Feng LJ, Ou Y, Zhang X, Zhang J, Chen H. Competitive adsorption of polycyclic aromatic hydrocarbons on phosphorus tailing-modified sludge biochar provides mechanistic insights. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:497. [PMID: 39508923 DOI: 10.1007/s10653-024-02283-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024]
Abstract
Biochar has been widely used to solve the wastewater pollution of polycyclic aromatic hydrocarbons (PAHs). However, the competition of PAHs with different benzene ring numbers (e.g., phenanthrene [Phe], pyrene [Pyr], and benzo[a]pyrene [BaP]) for adsorption sites on biochar has received little attention. In this study, biochar was produced by co-pyrolysis of sludge and phosphorus tailing at different temperatures (300, 500, or 800 °C) to adsorb PAHs. The results show that phosphorus tailing increased the adsorption of PAH by increasing the biochar's BET surface area (SBET), micropore volume, hydrophobicity (at low temperatures) and aromaticity (at high temperatures). The maximum adsorption capacities were 29.90 µmol/g for Phe, 25.58 µmol/g for Pyr and 20.45 µmol/g for BaP, respectively. Importantly, the types and functions of groups involved in the adsorption of various PAHs were discussed. Adsorption of Phe and Pyr on the biochar mainly involved C=O and C-O-C functional groups, and there was a certain degree of competition between these PAHs for those sites. In contrast, BaP mainly adsorbed at C-OH and C=C moieties, without competing with Phe or Pyr at C-OH sites. The competitive edge of BaP was also stronger than that of Phe and Pyr on C=C functional groups. The adsorption mechanisms involving pore filling, hydrophobic interactions, and π-π interactions governed the adsorption of the evaluated PAHs. Overall, the adsorption of PAHs on biochar followed a heterogeneous chemical adsorption process.
Collapse
Affiliation(s)
- Anrong Liu
- School of Geography and Environmental Science, Guizhou Normal University, Guiyang, 550001, Guizhou, People's Republic of China
- State Engineering Technology Institute for Karst Desertification Control, Guiyang, 550001, People's Republic of China
| | - Li-Juan Feng
- School of Geography and Environmental Science, Guizhou Normal University, Guiyang, 550001, Guizhou, People's Republic of China.
| | - Yangyang Ou
- School of Geography and Environmental Science, Guizhou Normal University, Guiyang, 550001, Guizhou, People's Republic of China
- The State Key Laboratory Incubation Base for Karst Mountain Ecology Environment of Guizhou Province, Guiyang, 550001, People's Republic of China
| | - Xiaoya Zhang
- School of Geography and Environmental Science, Guizhou Normal University, Guiyang, 550001, Guizhou, People's Republic of China
- State Engineering Technology Institute for Karst Desertification Control, Guiyang, 550001, People's Republic of China
| | - Jinhong Zhang
- School of Geography and Environmental Science, Guizhou Normal University, Guiyang, 550001, Guizhou, People's Republic of China
| | - Hongyan Chen
- School of Geography and Environmental Science, Guizhou Normal University, Guiyang, 550001, Guizhou, People's Republic of China
| |
Collapse
|
5
|
Muzaffar U, Naveed M, Naseem Z, Abid I, Amir KZ, Alamri S, Siddique M, Brtnicky M, Mustafa A. Enhanced cadmium immobilization in soil using Fe- and Zn-doped biochar: Mechanisms and safety implications for Cicer arietinum L. CHEMOSPHERE 2024; 368:143797. [PMID: 39580087 DOI: 10.1016/j.chemosphere.2024.143797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/07/2024] [Accepted: 11/21/2024] [Indexed: 11/25/2024]
Abstract
Cd toxicity emerges as a major environmental concern with detrimental impacts on global agricultural systems and food safety. Therefore, there is an urgent need to cope with the high concentration of Cd in the soil and crops. This study elucidates the potential of iron (FeBC) and zinc doped biochar (ZnBC) on the growth and yield of chickpea (Cicer arietinum L.) in Cd-contaminated soil. The parallels of biochemical attributes and Cd absorption of Cicer arietinum L. were investigated after a 120-day pot trial under 1% (w/w) biochar doses and two Cd concentrations (25 and 50 mg kg-1). The results demonstrated that FeBC was more effective in promoting plant growth by reducing Cd mobility in soil than ZnBC and normal biochar (NBC). Additionally, the application of FeBC resulted in significant improvement in photosynthesis rate (53.98%), transpiration rate (91.53%), stomatal conductance (197%), and sub-stomatal conductance (213.33%) compared to other applied treatments. Cd uptake in roots, shoots, and grains was reduced by 44.19%, 56.89%, and 88.25% respectively with the application of FeBC. Notably, the highest decrease in Cd bioaccumulation factor (99.72% and 99.65%) and Cd translocation factor (99.89% and 99.85%) were recorded under FeBC application in 25 and 50 mg kg-1 Cd-contaminated soils, respectively. The improved plant growth and reduced Cd buildup with FeBC under Cd stress suggest that FeBC is a promising strategy to remediate Cd-contaminated soil and simultaneously promote sustainable production of legume crops in Cd-contaminated soils.
Collapse
Affiliation(s)
- Uzma Muzaffar
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Naveed
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - Zainab Naseem
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Iqra Abid
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Kashif Zulfiqar Amir
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Muhammad Siddique
- Department of Botany, Govt. College University, Jhang Road, 38000, Faisalabad, Pakistan
| | - Martin Brtnicky
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Adnan Mustafa
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
6
|
Ma L, Li D, Chen X, Xu H, Tian Y. A sustainable carbon aerogel from waste paper with exceptional performance for antibiotics removal from water. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134738. [PMID: 38815396 DOI: 10.1016/j.jhazmat.2024.134738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
In this work, a sustainable 3D carbon aerogel (AO-WPC) is prepared from waste paper (WP), and used for efficient antibiotics removal from water. The AO-WPC aerogel shows good mechanical property and can recover after 100th of 30 % compression strain. The specific surface area of AO-WPC aerogel is up to 654.58 m2/g. More importantly, this aerogel reveals proper pore size distribution, including micro sized macropores between carbon fibers and intrinsic nano scale mesopores (11.86 nm), which is conducive to remove antibiotics from water. Taking tetracycline (Tc) as an example, the maximum adsorption capacity and adsorption rate of AO-WPC for Tc are as high as 384.6 mg/g and 0.510 g/(mg‧min), respectively, which exhibits significant advantages over most of the recent absorbents, and the adsorption toward Tc reveals good resistance to various environmental factors, including pH, various ions, and dissolved organic matter (DOM). Moreover, good thermal stability enables the AO-WPC aerogel to be regenerated through simple burning, and the adsorption capacity of Tc only decreases by 10.4 % after 10 cycles. Mechanism research shows that hydrogen bonding and π-π electron-donor-acceptor (EDA) interaction play the important role in the adsorption. The excellent mechanical property and adsorption performance imply good practical prospect of the AO-WPC aerogel.
Collapse
Affiliation(s)
- Lina Ma
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Daikun Li
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China.
| | - Xing Chen
- China Construction Power and Environment Engineering Co., Ltd., Nanjing 210012, China
| | - Hua Xu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China; National Engineering Research Center of Urban Water Resources Co., Ltd., Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
7
|
Nguyen TKT, Nguyen TB, Chen CW, Chen WH, Bui XT, Lam SS, Dong CD. Boosting acetaminophen degradation in water by peracetic acid activation: A novel approach using chestnut shell-derived biochar at varied pyrolysis temperatures. ENVIRONMENTAL RESEARCH 2024; 252:119143. [PMID: 38751000 DOI: 10.1016/j.envres.2024.119143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
In this study, biochar derived from chestnut shells was synthesized through pyrolysis at varying temperatures from 300 °C to 900 °C. The study unveiled that the pyrolysis temperature is pivotal in defining the physical and chemical attributes of biochar, notably its adsorption capabilities and its role in activating peracetic acid (PAA) for the efficient removal of acetaminophen (APAP) from aquatic environments. Notably, the biochar processed at 900 °C, referred to as CN900, demonstrated an exceptional adsorption efficiency of 55.8 mg g-1, significantly outperforming its counterparts produced at lower temperatures (CN300, CN500, and CN700). This enhanced performance of CN900 is attributed to its increased surface area, improved micro-porosity, and a greater abundance of oxygen-containing functional groups, which are a consequence of the elevated pyrolysis temperature. These oxygen-rich functional groups, such as carbonyls, play a crucial role in facilitating the decomposition of the O-O bond in PAA, leading to the generation of reactive oxygen species (ROS) through electron transfer mechanisms. This investigation contributes to the development of sustainable and cost-effective materials for water purification, underscoring the potential of chestnut shell-derived biochar as an efficient adsorbent and catalyst for PAA activation, thereby offering a viable solution for environmental cleanup efforts.
Collapse
Affiliation(s)
- Thi-Kim-Tuyen Nguyen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Thanh-Binh Nguyen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung, 411, Taiwan
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Thu Duc City, Ho Chi Minh City, 700000, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, 700000, Viet Nam
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan.
| |
Collapse
|
8
|
Zhou L, Zhang G, Zeng Y, Bao X, Liu B, Cheng L. Endogenous iron-enriched biochar derived from steel mill wastewater sludge for tetracycline removal: Heavy metals stabilization, adsorption performance and mechanism. CHEMOSPHERE 2024; 359:142263. [PMID: 38719127 DOI: 10.1016/j.chemosphere.2024.142263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/24/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024]
Abstract
Steel mill wastewater sludge, as an iron-enriched solid waste, was expected to be converted into iron-enriched biochar with acceptable environmental risk by pyrolysis. The purpose of our study was to evaluate the chemical speciation transformation of heavy metals in biochar under various pyrolysis temperatures and its reutilization for tetracycline (TC) removal. The experimental data indicated that pyrolysis temperature was a key factor affecting the heavy metals speciation and bioavailability in biochar, and biochar with pyrolysis temperature at 450 °C was the most feasible for reutilization without potential risk. The endogenous iron-enriched biochar (FSB450) showed highly efficient adsorption towards TC, and its maximum adsorption capacity could reach 240.38 mg g-1, which should be attributed to its excellent mesoporous structure, abundant functional groups and endogenous iron cycling. The endogenous iron was converted to a stable iron oxide crystalline phase (Fe3O4 and MgFe2O4) by pyrolysis, which underwent a valence transition to form a coordination complex with TC by electron shuttling in the FSB450 matrix. The study provides a win-win approach for resource utilization of steel wastewater sludge and treatment of antibiotic contamination in wastewater.
Collapse
Affiliation(s)
- Lu Zhou
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Guanhao Zhang
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Yulin Zeng
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Xunli Bao
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Bei Liu
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410114, PR China.
| | - Liang Cheng
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, PR China; Clinical College of Changsha Medical University, Changsha 410219, PR China.
| |
Collapse
|
9
|
Yan J, Guo X, Li Q, Yuan X, Zhang Z, Tremblay LA, Li Z. Biochar derivation at low temperature: A novel strategy for harmful resource usage of antibiotic mycelial dreg. ENVIRONMENTAL RESEARCH 2024; 250:118376. [PMID: 38354891 DOI: 10.1016/j.envres.2024.118376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/14/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024]
Abstract
Antibiotic mycelial dreg (AMD) has been categorized as hazardous waste due to the high residual hazardous contaminants. Inappropriate management and disposal of AMD can cause potential environmental and ecological risks. In this study, the potential of pleuromutilin mycelial dreg (PMD) as a novel feedstock for preparing tetracycline hydrochloride (TC) adsorbent was explored to achieve safe management of PMD. The results suggested that residual hazardous contaminants were completely eliminated after pyrolysis. With the increase of pyrolysis temperature, the yields, H/C, O/C, (O + N)/C, and pore size in PMD-derived biochars (PMD-BCs) decreased, while BET surface area and pore volume increased, resulting in the higher stability of the PMD-BCs prepared from higher temperatures. The TC adsorption of the PMD-BCs increased from 27.3 to 46.9 mg/g with the increase of the pyrolysis temperature. Surprisingly, pH value had a strong impact on the TC adsorption, the adsorption capacity of BC-450 increased from 6.5 to 71.1 mg/g when the solution pH value increased from 2 to 10. Lewis acid-base interaction, pore filling, π-π interaction, hydrophobic interaction, and charge-assisted hydrogen bond (CAHB) are considered to drive the adsorption. This work provides a novel pathway for the concurrent detoxification and reutilization of AMD.
Collapse
Affiliation(s)
- Jing Yan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xueqi Guo
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qingjie Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xufeng Yuan
- College of Agronomy and Biotechnology, China Agriculture University, Beijing, 100193, China
| | - Zhenghai Zhang
- Shandong Shengli Bioengineering Co., LTD., Jining, 272000, Shandong, China
| | - Louis A Tremblay
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand; School of Biological Sciences, University of Auckland, PO Box 92019, Auckland, 1142, New Zealand
| | - Zhaojun Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
10
|
Peng Y, Xue C, Luo J, Zheng B, Fang Z. Lanthanum-doped magnetic biochar activating persulfate in the degradation of florfenicol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170312. [PMID: 38278274 DOI: 10.1016/j.scitotenv.2024.170312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
In this study, lanthanum-doped magnetic biochar (LaMBC) was synthesized from bagasse by co-doping iron salt and lanthanum salt, and it was characterized for its application in the activation of persulfate (PS) in the degradation of Florfenicol (FLO). The results indicated that the LaMBC/PS system consistently achieved a degradation efficiency of over 99.5 %, with a reaction rate constant 4.71 times as that of MBC. The mechanism of FLO degradation suggested that O2•- and •OH played dominant roles, contributing 40.92 % and 36.96 %, respectively, during FLO degradation. Through physicochemical characterization and quenching experiments, it can be concluded that the key reasons for the enhancement of MBC activation performance are as follows: (1) Lanthanum doping in magnetized biochar increased the Fe(II) content in MBC. (2) Lanthanum doping significantly improved the adsorption capacity of LaMBC, increased the concentration of pollutants on the catalyst surface and effectively enhancing the reaction rate. (3) Lanthanum doping effectively increased the surface Fe(II) content during the reaction process in LaMBC, promoted the generation of active oxygen species in PS. This study delves into synthesizing and applying LaMBC for PS activation and FLO removal. The emphasis is on comprehensively characterizing and experimenting to elucidate the mechanism, proposing an innovative approach for efficiently degrading antibiotic wastewater.
Collapse
Affiliation(s)
- Yifu Peng
- School of Environment, South China Normal University, Guangzhou 510006, China; Normal University (Qingyuan) Environmental Remediation Technology Co., Ltd, Qingyuan 511500, China; SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., Qingyuan 511517, China
| | - Chengjie Xue
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Jiayi Luo
- Normal University (Qingyuan) Environmental Remediation Technology Co., Ltd, Qingyuan 511500, China; SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., Qingyuan 511517, China
| | - Bin Zheng
- School of Environment, South China Normal University, Guangzhou 510006, China; Normal University (Qingyuan) Environmental Remediation Technology Co., Ltd, Qingyuan 511500, China
| | - Zhanqiang Fang
- School of Environment, South China Normal University, Guangzhou 510006, China; Normal University (Qingyuan) Environmental Remediation Technology Co., Ltd, Qingyuan 511500, China.
| |
Collapse
|
11
|
Dong X, Chu Y, Tong Z, Sun M, Meng D, Yi X, Gao T, Wang M, Duan J. Mechanisms of adsorption and functionalization of biochar for pesticides: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116019. [PMID: 38295734 DOI: 10.1016/j.ecoenv.2024.116019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/14/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024]
Abstract
Agricultural production relies heavily on pesticides. However, factors like inefficient application, pesticide resistance, and environmental conditions reduce their effective utilization in agriculture. Subsequently, pesticides transfer into the soil, adversely affecting its physicochemical properties, microbial populations, and enzyme activities. Different pesticides interacting can lead to combined toxicity, posing risks to non-target organisms, biodiversity, and organism-environment interactions. Pesticide exposure may cause both acute and chronic effects on human health. Biochar, with its high specific surface area and porosity, offers numerous adsorption sites. Its stability, eco-friendliness, and superior adsorption capabilities render it an excellent choice. As a versatile material, biochar finds use in agriculture, environmental management, industry, energy, and medicine. Added to soil, biochar helps absorb or degrade pesticides in contaminated areas, enhancing soil microbial activity. Current research primarily focuses on biochar produced via direct pyrolysis for pesticide adsorption. Studies on functionalized biochar for this purpose are relatively scarce. This review examines biochar's pesticide absorption properties, its characteristics, formation mechanisms, environmental impact, and delves into adsorption mechanisms, functionalization methods, and their prospects and limitations.
Collapse
Affiliation(s)
- Xu Dong
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - Yue Chu
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - Zhou Tong
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - Mingna Sun
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - Dandan Meng
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - Xiaotong Yi
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - Tongchun Gao
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jinsheng Duan
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China.
| |
Collapse
|
12
|
Hamdi S, Gharbi-Khelifi H, Barreiro A, Mosbahi M, Cela-Dablanca R, Brahmi J, J Fernández-Sanjurjo M, Núñez-Delgado A, Issaoui M, Álvarez-Rodríguez E. Tetracycline adsorption/desorption by raw and activated Tunisian clays. ENVIRONMENTAL RESEARCH 2024; 242:117536. [PMID: 38000635 DOI: 10.1016/j.envres.2023.117536] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023]
Abstract
Clay-based adsorbents have applications in environmental remediation, particularly in the removal of emerging pollutants such as antibiotics. Taking that into account, we studied the adsorption/desorption process of tetracycline (TC) using three raw and acid- or base-activated clays (AM, HJ1 and HJ2) collected, respectively, from Aleg (Mazzouna), El Haria (Jebess, Maknessy), and Chouabine (Jebess, Maknessy) formations, located in the Maknessy-Mazzouna basin, center-western of Tunisia. The main physicochemical properties of the clays were determined using standard procedures, where the studied clays presented a basic pH (8.39-9.08) and a high electrical conductivity (446-495 dS m-1). Their organic matter contents were also high (14-20%), as well as the values of the effective cation exchange capacity (80.65-97.45 cmolckg-1). In the exchange complex, the predominant cations were Na and Ca, in the case of clays HJ1 and AM, while Mg and Ca were dominant in the HJ2 clay. The sorption experimental setup consisted in performing batch tests, using 0.5 g of each clay sample, adding the selected TC concentrations, then carrying out quantification of the antibiotic by means of HPL-UV equipment. Raw clays showed high adsorption potential for TC (close to 100%) and very low desorption (generally less than 5%). This high adsorption capacity was also present in the clays after being activated with acid or base, allowing them to adsorb TC in a rather irreversible way for a wide range of pH (3.3-10) and electrical conductivity values (3.03-495 dS m-1). Adsorption experimental data were studied as regards their fitting to the Freundlich, Langmuir, Linear and Sips isotherms, being the Sips model the most appropriate to explain the adsorption of TC in these clays (natural or activated). These results could help to improve the overall knowledge on the application of new low-cost methods, using clay based adsorbents, to reduce risks due to emerging pollutants (and specifically TC) affecting the environment.
Collapse
Affiliation(s)
- Samiha Hamdi
- Department of Biotechnology, Faculty of Science and Technology of Sidi Bouzid, University of Kairouan, 9100, Sidi Bouzid, Tunisia; Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002, Lugo, Spain; Laboratory of Nutrition - Functional Foods and Health (NAFS)-LR12ES05, Faculty of Medicine, University of Monastir, Avenue Avicenne, 5019, Monastir, Tunisia; Laboratory of Transmissible Diseases and Biologically Active Substances · LR99ES27 · Faculty of Pharmacy of Monastir, University of Monastir, Avenue Avicenne, 5019, Monastir, Tunisia.
| | - Hakima Gharbi-Khelifi
- Department of Biotechnology, Faculty of Science and Technology of Sidi Bouzid, University of Kairouan, 9100, Sidi Bouzid, Tunisia; Laboratory of Transmissible Diseases and Biologically Active Substances · LR99ES27 · Faculty of Pharmacy of Monastir, University of Monastir, Avenue Avicenne, 5019, Monastir, Tunisia
| | - Ana Barreiro
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Mohamed Mosbahi
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Raquel Cela-Dablanca
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Jihen Brahmi
- Department of Biotechnology, Faculty of Science and Technology of Sidi Bouzid, University of Kairouan, 9100, Sidi Bouzid, Tunisia
| | - María J Fernández-Sanjurjo
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Avelino Núñez-Delgado
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Manel Issaoui
- Department of Biotechnology, Faculty of Science and Technology of Sidi Bouzid, University of Kairouan, 9100, Sidi Bouzid, Tunisia; Laboratory of Nutrition - Functional Foods and Health (NAFS)-LR12ES05, Faculty of Medicine, University of Monastir, Avenue Avicenne, 5019, Monastir, Tunisia
| | - Esperanza Álvarez-Rodríguez
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002, Lugo, Spain
| |
Collapse
|
13
|
Wang H, Chen D, Cui T, Duan R, Yan X, Zhang Y, Xu R. Efficient and effective immobilization of tetracycline and copper from wastewater by zero-valent iron fabricated hydrochar derived from walnut peel. BIORESOURCE TECHNOLOGY 2023; 387:129557. [PMID: 37499925 DOI: 10.1016/j.biortech.2023.129557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Antibiotics and heavy metals often coexist as non-point-source contaminants in wastewater and their quite contrary physiochemical properties make their co-removal processes challenging. In this work, a bifunctional zero-valent iron-modified hydrochar derived from walnut peel (MWPHC) was synthesized, which was then applied for the simultaneous removal of tetracycline (TC) and Cu(II) from wastewater. Based on the characterizations, Fe0 species were successfully distributed on the surface of the walnut peel substrates. The TC and Cu(II) could be synergistically immobilized, and bridging effects were observed between them, and MWPHC exhibited excellent ability on the simultaneous removal of TC (qmax = 433.59 mg/g) and Cu(II) (qmax = 586.25 mg/g). Furthermore, the engineering feasibility of the MWPHC was evaluated using column and regeneration experiments. These results shed light on the tailored MWPHC as an environmental functional material for pollution control of co-existing antibiotic and heavy metal contaminants in agro-industrial wastewater.
Collapse
Affiliation(s)
- Huabin Wang
- School of Energy and Environmental Science, Yunnan Normal University, Kunming 650500, PR China; Yunnan Key Laboratory of Rural Energy Engineering, Kunming 650500, PR China
| | - Dingxiang Chen
- School of Energy and Environmental Science, Yunnan Normal University, Kunming 650500, PR China; Yunnan Key Laboratory of Rural Energy Engineering, Kunming 650500, PR China
| | - Ting Cui
- School of Energy and Environmental Science, Yunnan Normal University, Kunming 650500, PR China; Yunnan Key Laboratory of Rural Energy Engineering, Kunming 650500, PR China
| | - Ran Duan
- School of Energy and Environmental Science, Yunnan Normal University, Kunming 650500, PR China; Yunnan Key Laboratory of Rural Energy Engineering, Kunming 650500, PR China
| | - Xianghong Yan
- School of Energy and Environmental Science, Yunnan Normal University, Kunming 650500, PR China; Yunnan Key Laboratory of Rural Energy Engineering, Kunming 650500, PR China
| | - Yong Zhang
- School of Energy and Environmental Science, Yunnan Normal University, Kunming 650500, PR China; Yunnan Key Laboratory of Rural Energy Engineering, Kunming 650500, PR China
| | - Rui Xu
- School of Energy and Environmental Science, Yunnan Normal University, Kunming 650500, PR China; Yunnan Key Laboratory of Rural Energy Engineering, Kunming 650500, PR China.
| |
Collapse
|
14
|
Bagheri Novair S, Cheraghi M, Faramarzi F, Asgari Lajayer B, Senapathi V, Astatkie T, Price GW. Reviewing the role of biochar in paddy soils: An agricultural and environmental perspective. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115228. [PMID: 37423198 DOI: 10.1016/j.ecoenv.2023.115228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/19/2023] [Accepted: 07/01/2023] [Indexed: 07/11/2023]
Abstract
The main challenge of the twenty-first century is to find a balance between environmental sustainability and crop productivity in a world with a rapidly growing population. Soil health is the backbone of a resilient environment and stable food production systems. In recent years, the use of biochar to bind nutrients, sorption of pollutants, and increase crop productivity has gained popularity. This article reviews key recent studies on the environmental impacts of biochar and the benefits of its unique physicochemical features in paddy soils. This review provides critical information on the role of biochar properties on environmental pollutants, carbon and nitrogen cycling, plant growth regulation, and microbial activities. Biochar improves the soil properties of paddy soils through increasing microbial activities and nutrient availability, accelerating carbon and nitrogen cycle, and reducing the availability of heavy metals and micropollutants. For example, a study showed that the application of a maximum of 40 t ha-1 of biochar from rice husks prior to cultivation (at high temperature and slow pyrolysis) increases nutrient utilization and rice grain yield by 40%. Biochar can be used to minimize the use of chemical fertilizers to ensure sustainable food production.
Collapse
Affiliation(s)
- Sepideh Bagheri Novair
- Department of Soil Science, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran.
| | - Meysam Cheraghi
- Department of Soil Science, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran.
| | - Farzaneh Faramarzi
- Department of Agronomy and Plant Breeding, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran.
| | | | | | - Tess Astatkie
- Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada.
| | - G W Price
- Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada.
| |
Collapse
|
15
|
Algethami JS, Irshad MK, Javed W, Alhamami MAM, Ibrahim M. Iron-modified biochar improves plant physiology, soil nutritional status and mitigates Pb and Cd-hazard in wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1221434. [PMID: 37662164 PMCID: PMC10470012 DOI: 10.3389/fpls.2023.1221434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/11/2023] [Indexed: 09/05/2023]
Abstract
Environmental quality and food safety is threatened by contamination of lead (Pb) and cadmium (Cd) heavy metals in agricultural soils. Therefore, it is necessary to develop effective techniques for remediation of such soils. In this study, we prepared iron-modified biochar (Fe-BC) which combines the unique characteristics of pristine biochar (BC) and iron. The current study investigated the effect of pristine and iron modified biochar (Fe-BC) on the nutritional values of soil and on the reduction of Pb and Cd toxicity in wheat plants (Triticum aestivum L.). The findings of present study exhibited that 2% Fe-BC treatments significantly increased the dry weights of roots, shoots, husk and grains by 148.2, 53.2, 64.2 and 148%, respectively compared to control plants. The 2% Fe-BC treatment also enhanced photosynthesis rate, transpiration rate, stomatal conductance, intercellular CO2, chlorophyll a and b contents, by 43.2, 88.4, 24.9, 32.5, 21.4, and 26.7%, respectively. Moreover, 2% Fe-BC treatment suppressed the oxidative stress in wheat plants by increasing superoxide dismutase (SOD) and catalase (CAT) by 62.4 and 69.2%, respectively. The results showed that 2% Fe-BC treatment significantly lowered Cd levels in wheat roots, shoots, husk, and grains by 23.7, 44.5, 33.2, and 76.3%. Whereas, Pb concentrations in wheat roots, shoots, husk, and grains decreased by 46.4, 49.4, 53.6, and 68.3%, respectively. Post-harvest soil analysis showed that soil treatment with 2% Fe-BC increased soil urease, CAT and acid phosphatase enzyme activities by 48.4, 74.4 and 117.3%, respectively. Similarly, 2% Fe-BC treatment significantly improved nutrients availability in the soil as the available N, P, K, and Fe contents increased by 22, 25, 7.3, and 13.3%, respectively. Fe-BC is a viable solution for the remediation of hazardous Cd and Pb contaminated soils, and improvement of soil fertility status.
Collapse
Affiliation(s)
- Jari S. Algethami
- Department of Chemistry, College of Science and Arts, Najran University, Najran, Saudi Arabia
- Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, Saudi Arabia
| | - Muhammad Kashif Irshad
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, Republic of Korea
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Wasim Javed
- Punjab Bioenergy Institute (PBI), University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Mohsen A. M. Alhamami
- Department of Chemistry, College of Science and Arts, Najran University, Najran, Saudi Arabia
| | - Muhammad Ibrahim
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
16
|
Li J, Pan L, Li Z, Wang Y. Unveiling the migration of Cr and Cd to biochar from pyrolysis of manure and sludge using machine learning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 885:163895. [PMID: 37146809 DOI: 10.1016/j.scitotenv.2023.163895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/07/2023]
Abstract
Heavy metal (HM) in biochar derived from pyrolysis of sludge or manure is the main issue for its large-scale application in soils for carbon sequestration. However, there is a paucity of efficient approaches to predict and comprehend the HM migration during pyrolysis for preparing low HM-contained biochar. Herein, the data on the feedstock information (FI), additive, total concentration of feedstock (FTC) of HM Cr and Cd, and pyrolysis condition, were extracted from the literature, to predict total concentration (TC) and retention rate (RR) of Cr and Cd in sludge/manure biochar using ML for mapping their migration during pyrolysis. Two datasets for Cr and Cd were compiled with 388 and 292 data points from 48 and 37 peer-review papers. The results indicated that the TC and RR of Cr and Cd could be predicted by the Random Forest model with test R2 of 0.74-0.98. Their TC and RR in biochar were dominated by the FTC and FI, respectively; while pyrolysis temperature was the most important to Cd RR. Moreover, potassium-based inorganic additives decreased the TC and RR of Cr while increased those of Cd. The predictive models and insights provided by this work could aid the understanding of HM migration during manure and sludge pyrolysis and guide the preparation of low HM-contained biochar.
Collapse
Affiliation(s)
- Jie Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; CAS Engineering Laboratory for Recycling Technology of Municipal Solid Wastes, Xiamen 361021, China.
| | - Lanjia Pan
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; CAS Engineering Laboratory for Recycling Technology of Municipal Solid Wastes, Xiamen 361021, China
| | - Zhiwei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; CAS Engineering Laboratory for Recycling Technology of Municipal Solid Wastes, Xiamen 361021, China
| | - Yin Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; CAS Engineering Laboratory for Recycling Technology of Municipal Solid Wastes, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| |
Collapse
|
17
|
Soleymani F, Khani MH, Pahlevanzadeh H, Amini Y. Intensification of strontium (II) ion biosorption on Sargassum sp via response surface methodology. Sci Rep 2023; 13:5403. [PMID: 37012342 PMCID: PMC10070446 DOI: 10.1038/s41598-023-32532-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
A batch system was employed to investigate the biosorption of strontium (II) on Sargassum sp. The biosorption of strontium on Sargassum sp was studied with response surface methodology to determine the combined effect of temperature, initial metal ion concentration, biomass treatment, biosorbent dosage and pH. Under optimal conditions, the algae's biosorption capacity for strontium (initial pH 7.2, initial strontium concentration 300 mg/l for Mg-treated biomass and biosorbent dosage 0.1 g in 100 mL metal solution) was measured at 103.95 mg/g. In our analysis, equilibrium data were fitted to Langmuir and Freundlich isotherms. Results show that the best fit is provided by the Freundlich model. Biosorption dynamics analysis of the experimental data indicated that strontium (II) was absorbed into algal biomass in accordance with the pseudo-second-order kinetics model well.
Collapse
Affiliation(s)
- F Soleymani
- Chemical Engineering Department, Tarbiat Modares University, P.O. Box 14155-143, Tehran, Iran
| | - M H Khani
- Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, P.O. Box 11365-8486, Tehran, Iran.
| | - H Pahlevanzadeh
- Chemical Engineering Department, Tarbiat Modares University, P.O. Box 14155-143, Tehran, Iran
| | - Younes Amini
- Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, P.O. Box 11365-8486, Tehran, Iran.
| |
Collapse
|